Skip to main content
eScholarship
Open Access Publications from the University of California

Effect of Micro-Steps on Twinning and Interfacial Segregation in Mg-Ag Alloy

Abstract

Twinning structures and their interfacial segregation play a key role in strengthening of magnesium alloys. Micro-steps are frequently existed in the incoherent twin boundaries, while the effect of them on interface and interfacial segregation is still not clear. In this work, we performed an atomic-scale microstructure analysis using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) to explore the effect of micro-steps on twin and its interfacial segregation in Mg-Ag alloy. Diffraction pattern of the incoherent {10 1 ¯ 1} twin shows that the misorientation has a slight tilt of 5° from its theoretical angle of 125° due to the accumulated effects of the micro-steps and their misfit dislocations in twin boundaries. Most of the micro-steps in {10 1 ¯ 1} twin boundary are in the height of 2 d ( 10 1 ¯ 1 ) and 4 d ( 10 1 ¯ 1 ) , respectively, and both of them have two types according to whether there are dislocations on the micro-steps. The twin boundary is interrupted by many micro-steps, which leads to a step-line distributed interfacial segregation. Moreover, the Ag tends to segregate to dislocation cores, which results in the interruption of interfacial segregation at the micro-steps with dislocations.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View