Heat Pumps with Phase Change Thermal Storage: Flexible, Efficient, and Electrification Friendly
Skip to main content
eScholarship
Open Access Publications from the University of California

Heat Pumps with Phase Change Thermal Storage: Flexible, Efficient, and Electrification Friendly

Published Web Location

https://doi.org/10.20357/B7R015
Abstract

As we continue to electrify space- and water-heating, the electricity demand profile of many buildings will change significantly, and periods of high electricity demand will likely not align with renewable energy generation. We expect electricity demands will increase substantially in the winter, annual maximum electricity demands will increase, and more regions will experience annual peak electrical demands – and higher wholesale electricity prices – in the winter. This is especially important for cold climates where 60% of site energy use in buildings is for heating, and where heat pumps perform least efficiently. This paper focuses on one promising solution among the many paths to electrification: the use of phase change materials (PCM) for compact low-cost thermal energy storage (TES). We present the design and simulation of a combi heat pump and phase change thermal storage system used for space- and water-heating in a multifamily residence in a cold climate. To assess the benefits of this technology, we compare its annual performance to that of a current state-of-the-art air-to-air heat pump and separate heat pump water heater. Simulation results for IECC Climate Zone 6A reveal that the combi heat pump with phase change thermal storage can reduce the design size for heat pumps by 40-60%, reduce maximum electric demand by 30-50%, reduce electricity use during 4-12-hour load shed periods by 50%, and avoid the need for auxiliary electric resistance for both space- and water-heating. Tariff structures are highly varied between different utilities and currently reflect higher wholesale market prices for electricity during summer days. Consequently, although this system design provides large electric demand reductions during hypothetical 4-12-hour load shed periods, it does not provide energy cost reductions with current winter residential time-of-use tariffs.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View