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Abstract

Short-Range Correlation Models in Electronic Structure Theory

by

Matthew Bryant Goldey

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Martin Head-Gordon, Chair

Correlation methods within electronic structure theory focus on recovering the exact electron-
electron interaction from the mean-field reference. For most chemical systems, including dynamic
correlation, the correlation of the movement of electrons proves to be sufficient, yet exact meth-
ods for capturing dynamic correlation inherently scale polynomially with system size despite the
locality of the electron cusp. This work explores a new family of methods for enhancing the local-
ity of dynamic correlation methodologies with an aim toward improving accuracy and scalability.
The introduction of range-separation into ab initio wavefunction methods produces short-range
correlation methodologies, which can be supplemented with much faster approximate methods for
long-range interactions.

First, I examine attenuation of second-order Møller-Plesset perturbation theory (MP2) in the
aug-cc-pVDZ basis. MP2 treats electron correlation at low computational cost, but suffers from
basis set superposition error (BSSE) and fundamental inaccuracies in long-range contributions.
The cost differential between complete basis set (CBS) and small basis MP2 restricts system sizes
where BSSE can be removed. Range-separation of MP2 could yield more tractable and/or accurate
forms for short- and long-range correlation. Retaining only short-range contributions proves to be
effective for MP2 in the small aug-cc-pVDZ (aDZ) basis. Using one range-separation parameter
within either the complementary error function (erfc) or a sum of two error functions (terfc), supe-
rior behavior is obtained versus both MP2/aDZ and MP2/CBS for inter- and intra-molecular test
sets. Attenuation of the long-range helps to cancel both BSSE and intrinsic MP2 errors. Direct
scaling of the MP2 correlation energy (SMP2) proves useful as well. The resulting SMP2/aDZ,
MP2(erfc, aDZ), and MP2(terfc, aDZ) methods perform far better than MP2/aDZ across systems
with hydrogen-bonding, dispersion, and mixed interactions at a fraction of MP2/CBS computa-
tional cost.

Second, attenuated MP2 is developed within the larger aug-cc-pVTZ (aTZ) basis set for inter-
and intramolecular non-bonded interactions. A single attenuation parameter is optimized on the
S66 database of 66 intermolecular interactions, leading to a very large RMS error reduction by a
factor of greater than 5 relative to standard MP2/aTZ. Attenuation introduces an error of opposite
sign to basis set superposition error (BSSE) and overestimation of dispersion interactions in finite
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basis MP2. A variety of tests including the S22 set, conformer energies of peptides, alkanes,
sugars, sulfate-water clusters, and the coronene dimer establish the transferability of the MP2(terfc,
aTZ) model to other inter and intra-molecular interactions. Direct comparisons against attenuation
in the smaller aug-cc-pVDZ basis shows that MP2(terfc, aTZ) often significantly outperforms
MP2(terfc, aDZ), although at higher computational cost. MP2(terfc, aDZ) and MP2(terfc, aTZ)
often outperform MP2 at the complete basis set limit. Comparison of the two attenuated MP2
models against each other and against attenuation using non-augmented basis sets gives insight
into the error cancellation responsible for their remarkable success.

Third, I present an improved algorithm for single-node multi-threaded computation of the cor-
relation energy using resolution of the identity second-order Møller-Plesset perturbation theory
(RI-MP2). This algorithm is based on shared memory parallelization of the rate-limiting steps and
an overall reduction in the number of disk reads. The requisite fifth-order computation in RI-MP2
calculations is efficiently parallelized within this algorithm, with improvements in overall parallel
efficiency as the system size increases. Fourth-order steps are also parallelized. As an application,
I present energies and timings for several large, noncovalently interacting systems with this algo-
rithm, and demonstrate that the RI-MP2 cost is still typically less than 40% of the underlying self
consistent field (SCF) calculation. The attenuated RI-MP2 energy is also implemented with this al-
gorithm, and some new large-scale tests of this method are reported. The attenuated RI-MP2(terfc,
aug-cc-pVDZ) method yields excellent agreement with benchmark values for the L7 database (R.
Sedlak et al., J. Chem. Theory Comput. 2013, 9, 3364) and 10 tetrapeptide conformers (L. Go-
erigk et al., Phys. Chem. Chem. Phys. 2013, 15, 7028), with at least a 90% reduction in the
root-mean-squared (RMS) error versus RI-MP2/aug-cc-pVDZ.

Fourth, semi-empirical spin-component scaled (SCS) attenuated MP2 is developed for treating
both bonded and nonbonded interactions. SCS-MP2 improves the treatment of thermochemistry
and noncovalent interactions relative to MP2, although the optimal scaling coefficients are quite
different for thermochemistry versus noncovalent interactions. This work reconciles these two dif-
ferent scaling regimes for SCS-MP2 by using two different length scales for electronic attenuation
of the two spin components. The attenuation parameters and scaling coefficients are optimized in
the aug-cc-pVTZ (aTZ) basis using the S66 database of intermolecular interactions and the W4-
11 database of thermochemistry. Transferability tests are performed for atomization energies and
barrier heights, as well as on further test sets for inter- and intramolecular interactions. SCS dual-
attenuated MP2 in the aTZ basis, SCS-MP2(2terfc, aTZ), performs similarly to SCS-MP2/aTZ for
thermochemistry while frequently outperforming MP2 at the complete basis set limit (CBS) for
nonbonded interactions.

Finally, I examine the performance of attenuated MP2 for noncovalent interactions using basis
sets that range as high as augmented triple (T) and quadruple (Q) zeta with TQ extrapolation
towards the complete basis set (CBS) limit. By comparing training and testing performance as a
function of basis set size, the effectiveness of attenuation as a function of basis set can be assessed.
While attenuated MP2 with TQ extrapolation improves systematically over MP2, there are at most
small improvements over attenuated MP2 in the aug-cc-pVTZ basis. Augmented functions are
crucial for the success of attenuated MP2.
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results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Root mean squared deviations for MP2(terfc, aTZ) (left) and MP2(terfc, aTZ-CP)
(right) versus r0 for various subsets of the S66 database . . . . . . . . . . . . . . . . . 32



v

4.1 Strong scaling performance of the RI-MP2 parallel algorithm presented herein for
polyglycines using the cc-pVDZ AO basis set. The overall speedup is plotted on the
left, whereas the speed increase for Function 4, the formation of the 4-center integrals
in the MO basis, is shown on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Weighted RMSD (kcal/mol) on S66 and W4-11 benchmark databases, as defined in
Equation 5.7, evaluated as a function of the bonded attenuation length, r(1)0 , and the

non-bonded attenuation length, r(2)0 . At each point the optimal linear coefficients are
determined to obtain the value of the objective function. Note that the domain where
r(1)0 ≥ r(2)0 is forbidden in Equation 5.7. The best values of r(1)0 and r(2)0 lie in a narrow
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S66 dataset versus r0/Å for attenuated MP2 with Dunning style basis sets . . . . . . . 62



vi

List of Tables

2.1 Root-mean-squared deviations, standard deviations of error, average, and mean un-
signed errors for the S66 Dataset (kcal mol−1) . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Root-mean-squared deviations, standard deviations of error, average, and mean un-
signed errors for the S22 Dataset (kcal mol−1) . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Root-mean-squared deviations for protein subsets of the P76 database (kcal mol−1) . . 22
2.4 Mean absolute deviations and root-mean-squared deviations from RI-MP2/CBS on

alanine tetrapeptide conformers (kcal mol−1) . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Root-mean-squared deviations(RMSD), average, and mean unsigned errors on the S66
database (kcal mol−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Root-mean-squared deviations, average, and mean unsigned errors on the S22 database
(kcal mol−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Root-mean-squared deviations for different protein subsets of the P76 database (kcal
mol−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Root-mean-squared deviations and average errors on the ACONF database (kcal mol−1) 33
3.5 Root-mean-squared deviations and average errors on the SCONF database (kcal mol−1) 34
3.6 Root-mean-squared deviations and average errors on the CYCONF database (kcal mol−1) 34
3.7 Root-mean-squared deviations for relative energies of methods on the SW49 database

(kcal mol−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8 Root-mean-squared deviations for binding energies of methods on the SW49 database

(kcal mol−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.9 Binding energy of the parallel-displaced coronene dimer (kcal mol−1) . . . . . . . . . 36

4.1 RI-MP2 Energy Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Growth of the rate-limiting step (Function 4) of RI-MP2 for polyglycines using the

cc-pVDZ AO basis set. Relative cost is between Function 4 and the overall RI-MP2
time when using one core. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Timings for the L7 database using RI-MP2/aDZ with 64 cores. . . . . . . . . . . . . . 44
4.4 Energies for the L7 database and error metrics, including root-mean-squared deviations

(RMSD), mean signed errors (MSE), mean unsigned errors (MUE), and maximum
deviations (MAX) in kcal/mol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



vii

4.5 Timings (in minutes) for RI-MP2/aTZ on the tetrapeptide model conformers with 64
cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Energies for the tetrapeptide model conformers (relative to βa) and root-mean-squared
deviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Error statistics on the W4-11 non-multireference training set versus W4 benchmarks
(in kcal/mol) with root mean-squared deviations (RMSD) for the total atomization
energies (TAE), bond dissociation energies (BDE), heavy atom transfers (HAT), iso-
merization energies (ISO), and nucleophilic substitution reaction (SN) subsets, with
total RMSD, mean-signed error (MSE), mean-unsigned error (MUE), and maximum
error (MAX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Error statistics on the S66 database versus CCSD(T)/CBS benchmarks (in kcal/mol)
with root mean-squared deviations (RMSD) for the hydrogen-bonded (H-bonds), dispersion-
bonded (disp.), and mixed subsets, with total RMSD, mean-signed error (MSE), mean-
unsigned error (MUE), and maximum error (MAX) . . . . . . . . . . . . . . . . . . . 53

5.3 Performance for MP2/aTZ variants versus L7 benchmarks (in kcal/mol) with root
mean-squared deviation (RMSD), mean-signed error (MSE), mean-unsigned error (MUE),
and maximum error (MAX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Performance (kcal mol−1) of MP2 in various basis sets for the S66 database, including
root-mean-squared deviation (RMSD) for the database, the hydrogen-bonded subset,
the dispersion subset, and the mixed subset, as well as mean-signed error (MSE) and
mean-unsigned error (MUE). Average finite basis set-related error (FBSE) is reported
for SCF and SCF+MP2 relative to the SCF/aQZ and SCF+MP2/CBS energies. Refer-
ence SCF+MP2/CBS energies were taken from the Benchmark Energy and Geometry
DataBase (BEGDB.com)2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Performance (in kcal mol−1) of attenuated MP2 with optimal r0/Å using calendar
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Chapter 1

Introduction

The fundamental laws necessary for the mathematical treatment of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty lies
only in the fact that application of these laws leads to equations that are too complex
to be solved.

Paul Dirac

The study of molecules and atoms is chemistry, which has as its theoretical groundwork the
physical interactions between particles. Electronic structure theory (EST) models the properties
of molecules, given the basic physical laws that constituent particles, electrons and nuclei, obey.
While nuclear motion often requires quantum mechanical treatment, electrons have de Broglie
wavelengths that invoke quantum mechanical effects for the simplest of cases - requiring explicit,
quantum treatment of chemical systems. Full quantum mechanical treatment for molecules re-
quires the solution of the Schrödinger equation, where the essential descriptive quantity is the
wavefunction, or probability amplitude, Ψ. Given the wavefunction, all observable properties are
represented as operators upon this wavefunction, which have eigenvalues corresponding to mea-
surable properties, as the total energy, E, corresponds to the Hamiltonian, Ĥ.

ĤΨ = EΨ (1.1)

A molecular Hamiltonian consists of kinetic (T̂ ) and potential (V̂ ) energy terms for nuclei (N) and
electrons (e), according to each coordinate system, nuclear (~R) or electronic (~r).

Ĥ(~r,~R) = T̂N(~R)+ T̂e(~r)+V̂eN(~r,~R)+V̂ee(~r)+V̂NN(~R) (1.2)

1.1 Common models
Accurate treatment of quantum mechanical systems requires the solution of the ab initio Schrödinger
equation, which is untenable for the majority of systems of chemical interest. As such, we are con-
strained to use theoretical models which approximate the Schrödinger equation systematically3.
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1.1.1 The Born-Oppenheimer Approximation
The first approximation commonly used to simplify the Schrödinger equation is the Born-Oppenheimer
approximation, wherein the electronic and nuclear degrees of freedom are separated4, meaning that
the wavefunction is separated into electronic and nuclear wavefunctions.

ΨBO = ϕ(r;R)χ(R) (1.3)

Since electronic motions occur on a time-scale much faster than the motion of nuclei such that the
electronic wavefunction typically varies smoothly with R, this approximation holds for much of
normal chemistry (with a notable exception being the conical intersections where different elec-
tronic states cross). The Born-Oppenheimer approximation separates the Hamiltonian as well as
the wavefunction. The primary remaining problem is then the solution of the Schrödinger equation
for electronic motion, based upon the electronic wavefunction and Hamiltonian, which depend
parametrically on nuclear coordinates.

Ĥ(~r;~R)ϕe(~r;~R) = Eeϕe(~r;~R) (1.4)

The electronic Hamiltonian is simply a function of the kinetic energy operator, the nuclear poten-
tial, and the electron-electron potential, which proves the most difficult.

Ĥ(~r;~R) = T̂e(~r)+V̂eN(~r;~R)+V̂ee(~r) (1.5)

The Born-Oppenheimer approximation discards terms corresponding to non-adiabatic couplings
between the electronic and nuclear motions due to the separation of the nuclear and electronic
wavefunctions, though some research suggests that the exact wavefunction can be factorized into
nuclear and electronic wavefunctions, albeit in a different manner5.

1.1.2 The Hartree-Fock approximation
Even given the Born-Oppenheimer approximation, solving the Schrödinger equation for molecules
remains impractical for all but the simplest of cases due to the difficult many-body problem of
electron-electron interactions. The simplest physically meaningful wavefuction is used in the
Hartree-Fock method. From chemical intuition, a reasonable basis for a wavefunction for chemi-
cals consists of molecular orbitals or a linear combination of atomic orbitals, which can be used to
construct a many-body wavefunction. Additionally, from the properties of fermions, we know that
the wavefunction for a system should be antisymmetric under exchange of electrons, which can
be enforced through the use of determinants. The simplest wavefunction representation of an n-
electron system consists of a determinant of electronic wavefunctions, called a Slater determinant,
which is represented in equation 1.7.

Ψ(r1,r2, . . . ,rn) = (n!)−
1
2

∣∣∣∣∣∣∣∣∣
χi(r1) χ j(r1) . . . χk(r1)
χi(r2) χ j(r2) . . . χk(r2)

...
...

...
χi(rn) χ j(rn) . . . χk(rn)

∣∣∣∣∣∣∣∣∣ (1.6)
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|Ψ〉= |χ1χ2 . . .χn〉 (1.7)

The Hartree-Fock ansatz approximates the many-body problem of electron-electron interactions
through the generation of a “mean-field” potential. The specific electron-electron interaction is
communicated through an average potential for the system, which generates a one-electron op-
erator, f (i), called the Fock operator (1.8), which in turn produces the Hartree-Fock equations
(1.9).

f (i) =−1
2

∇
2
i −∑

A

ZA

RiA
+ν

HF(i) (1.8)

f (i)χ(ri) = εχ(ri) (1.9)

The apparent field experienced by the individual electron averages the effects of all other electrons.
This produces a nonlinear problem since these motions remain interdependent, but this is normally
soluble using iterative methods. Despite the significant reduction in complexity, the Hartree-Fock
potential recovers an electronic energy that often exceeds 99% of the exact answer.

The Hartree-Fock energy is formed by the expectation value of the Hamiltonian, requiring only
the Fock operator, consisting of the one-electron Hamiltonian and the “mean-field” potential, as
represented in the relevant matrix elements from the many-body wavefunction.

E0 = 〈Ψ0|Ĥ|Ψ0〉= ∑
i
〈χi|ĥ|χi〉+

1
2 ∑

i j
〈χiχ j||χiχ j〉 (1.10)

ĥ(1)χi(1)+∑
j 6=i

[∫
dr2|χ j(2)|2R−1

12

]
χi(1)−∑

j 6=i

[∫
dr2χ∗j(2)χi(2)R−1

12

]
χ j(1) = εiχi(1) (1.11)

ĥ(1) =−1
2

∇
2
1−∑

A

ZA

R1A
(1.12)

The minimization of this energy is bound by the variational principle (1.17). Given any trial wave-
function, Φ̃, we can expand it in terms of the exact solutions to our system, {Φα}. Since the
resultant expression contains energies εα that are larger than the ground state ε0 for all solutions,
this requires that any trial wavefunction will have an energy that cannot be lower than the exact
ground state solution.

〈Φ̃|Φ̃〉= ∑
α

〈Φ̃|Φα〉〈Φα|Φ̃〉 (1.13)

〈Φ̃|Φ̃〉= ∑
α

|〈Φα|Φ̃〉|2 (1.14)

〈Φ̃|Ĥ|Φ̃〉= ∑
αβ

〈Φ̃|Φα〉〈Φα|Ĥ|Φβ〉〈Φβ|Φ̃〉 (1.15)

〈Φ̃|Ĥ|Φ̃〉= ∑
α

εα|〈Φα|Φ̃〉|2 (1.16)

〈Φ̃|Ĥ|Φ̃〉 ≥∑
α

ε0|〈Φα|Φ̃〉|2 = ε0 (1.17)
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The minimization of the Hartree-Fock energy corresponds to the orthogonalization of canonical
molecular orbitals, represented in a specific basis using a coefficient matrix c.

Ĥc = ESc (1.18)

While the Hartree-Fock method recovers greater than 99% of the electronic energy, the remaining
energetic lowering, corresponding to the correlation of electronic motions, is not recovered and is
critical for describing molecules accurately. Adequately and efficiently describing the correlation
energy is the preeminent challenge of electronic structure theory. Various systematic approxima-
tions which can be used to approach the exact wavefunction and energy are presented in sections
1.1.3, 1.1.4, and 1.1.5

1.1.3 Møller-Plesset perturbation theory
Since Hartree-Fock theory includes electron-electron interaction in an approximate manner, the
full electronic energy is not recovered, and the wavefunction only roughly approximates the exact
wavefunction. The explicit electron-electron interaction becomes the natural focus for improving
the wavefunction and the resultant energy. The simplest method for improving this treatment is the
inclusion of electron-electron interactions via perturbation theory.

Perturbation theory relies upon a number of approximations but most importantly assumes that
the interaction between the electrons (correlation) remains small – and this interaction (the fluc-
tuation potential corresponding to the specific 1/r between electrons) is used as the perturbation.
While the choice of reference state results in a number of different theories with differing advan-
tages, the most common choice is the Møller and Plesset form of Rayleigh-Schrödinger perturba-
tion theory6,7, which takes as its reference the Hartree-Fock energy. The perturbative terms that
result from this expansion are not necessarily convergent, but the lowest order correction, second-
order Møller-Plesset perturbation theory (MP2), frequently proves a useful approximation to the
correlation energy. Expanding the Hamiltonian, energy, and wavefunction in terms of powers of
a perturbation, the corrections to the reference energy and wavefunction are trivially obtained in
mathematical form, though at ever-greater computational cost.

Ĥ = Ĥ0 +λV̂ (1.19)

Ei = E(0)
i +λE(1)

i +λ
2E(2)

i + . . . (1.20)

|ψi〉= |ψ(0)
i 〉+λ|ψ(1)

i 〉+λ
2|ψ(2)

i 〉+ . . . (1.21)

The first-order wavefunction, expanded in terms of the other zero-order solutions to the HF equa-
tions, generates the second-order energy, here represented as a matrix element between a doubly-
excited determinant and the ground state.

E(2)
i = 〈ψ(0)

i |V |ψ
(1)
i 〉 (1.22)

E(2)
i =−∑

n6=i

〈ψ(0)
i |V |ψ

(0)
n 〉2

E(0)
i −E(0)

n

=
1
4

occ

∑
i j

virt

∑
ab

[ 〈i j||ab〉2
εi + ε j + εa− εb

]
(1.23)



5

1.1.4 Configuration Interaction
The most dominant direction initially explored for improving the HF wavefunction was the config-
uration interaction method (CI), which generates improved wavefunctions through occupied/virtual
substitutions of the HF reference8–10 , usefully conceptualized as excitations. The wavefunction
that results from this expansion (Equation 1.24) reproduces the exact wavefunction and the ex-
act energy for the electronic Schrödinger equation (within a finite basis) at the cost of examining
all possible determinants, a factorial problem which grows rapidly intractable. As a result, ap-
proximate versions of CI using truncated levels of excited configurations provide a useful ansatz
for chemical problems, but these methods lack size extensivity, which is to say that they fail to
achieve energy additivity for a system composed of non-interacting constituents1,11, though the
rarely achieved full (untruncated) configuration interaction limit does not suffer from this prob-
lem.

ΨCI = Ψ0 + ca
i Ψ

a
i + cab

i j Ψ
ab
i j + cabc

i jk Ψ
abc
i jk + . . . (1.24)

Corrections which approximate the missing terms12 are occasionally used to remedy these systems
in practice, but the CI ansätze are naturally suited to treatment of excited states13, as well as
problems where single-configurations are not a satisfactory reference14–16.

1.1.5 Coupled Cluster theory
Coupled cluster theory (CC) constructs a wavefunction from excitations out of the HF reference
using an exponential excitation operator17,18.

|ψ〉= eT |φ〉 (1.25)

The exponentiated excitation operator constructs all possible determinants through single, double,
triple, etc. excitations of the mean-field reference.

eT = 1+T +
1
2

T 2 +
1
3!

T 3 + . . . (1.26)

T = T1 +T2 +T3 +T4 + . . . (1.27)

The action of the excitation operator on the reference produces the excited determinants with cor-
responding amplitudes.

T1|φ〉= ∑
ia

ta
i |φa

i 〉 (1.28)

T2|φ〉=
1
4 ∑

i jab
tab
i j |φab

i j 〉 (1.29)

By projection onto the reference determinant, the energy expression for coupled cluster theory is
generated.

Ecorr = 〈φ|H0(
1
2

T 2
1 +T2)|φ〉= ∑

i jab

[
1
2

ta
i tb

j 〈i j||ab〉+ 1
4

tab
i j 〈i j||ab〉

]
(1.30)
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The main challenge of coupled cluster theory, therefore, becomes the determination of the tab
i j ,

which requires the solution of the equations formed via projecting with the series of excited deter-
minants. Similar to the necessary truncation of CI, CC theories must be truncated to a given level
of excitation in practice. By design, this truncation results in an ansatz which is size-extensive at
any level of theory1.

1.2 Choice of a finite basis
The wavefunction within EST is typically represented within a basis, converting complex, integro-
differential equations into matrix algebra. The cost of evaluating matrix elements depends upon
the choice of the underlying basis.

1.2.1 Basis set expansion
The natural choice of basis for molecular problems remains atomic orbitals, where molecular or-
bitals are constructed via a linear combination of atomic orbitals. Slater type orbitals resemble
hydrogenic orbitals, of the form φ(r−R) = (ζ3

π
)

1
2 e−ζ|r−R| for an ‘s’ orbital about an atom at po-

sition R. These orbitals reproduce atomic quantities well but are computationally inefficient for
large calculation. Instead, combinations of Gaussian orbitals fitted to atom-like Slater orbitals are
used in practice. The equivalent ‘s’-type orbital form is φ(r−R) = (2α

π
)

3
4 e−α|r−R|2 for Gaussian

orbitals. Significant amounts of effort have gone into the generation of efficient algorithms for
analytically evaluating one- and two-electron matrix elements over Gaussian basis functions19.

1.2.2 Convergence with basis set size
Any given basis has a certain amount of incompleteness associated with the representation of quan-
tum mechanical operators and the wavefunction. This incompleteness causes a myriad of compli-
cations for model chemistries. Unless one is able to attain the complete basis set limit (CBS), the
basis chosen must be held constant for comparing calculations. Correlated wavefunction calcula-
tions contain errors that scale O(N−1) with the number of atomic orbitals, N 20. Unfortunately,
the cost of most correlation methods scales polynomially with the number of basis functions,
O(N4) for MP2 and CCSD(T). Gaussian basis sets suitable for efficiently treating the electronic
Schrödinger equation have been parametrized and are in common use21–31. Correlation consis-
tent basis sets, e.g. the correlation consistent polarized valence double zeta basis set (cc-pVDZ),
increase in size systematically with the cardinal number of the AO basis set. With each increase
in cardinal number, another level of polarization functions is added as well as additional basis
functions for all existing angular momentum numbers. For instance, by adding 1s1p1d1f to the
3s2p1d cc-pVDZ basis set (for second row atoms), the 4s3p2d1f cc-pVTZ basis set is generated.
As the cardinal number is increased from X-1 to X, (X+1)2 basis functions are added. Generating
all AO integrals scales with the fourth power of the number of atomic orbitals, N4, or, in this case,
(X +1)8. These basis sets typically provide a systematic framework for increasing the quality. By
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adding more basis functions, most computed quantities such as the energy change until the basis
is saturated or complete. This convergence occurs relatively quickly for HF, yet accurate descrip-
tion of the Coulomb cusp, which is necessary for any correlation treatment, requires substantively
larger basis sets and actually converges at a significantly slower rate, as seen in figure 1.1. For SCF

Figure 1.1: The convergence of the HF and MP2 energies for the N2 molecule with cardinal number
of basis set are presented herein, reproduced from reference1. The correlation energy is plotted on
the left in mEh. The errors (in mEh) for the MP2 (solid line) and HF (dashed line) energies are
presented on the right versus cardinal number.

calculations, the total energy converges roughly as A+Be−cX to the SCF/CBS estimate, A, with
fitted parameters B and c32–36. The exponential convergence with cardinal number means that in
practice this is normally well-converged by most triple-zeta basis sets. Correlation calculations, on
the other hand, converge with the third power of cardinal number. This comparatively slow conver-
gence means that all practical calculations will contain some amount of basis set incompleteness.
Using the convergence of correlation calculation with cardinal number, extrapolation procedures
can be performed32.

Ecorr
XY =

Ecorr
X X3−Ecorr

Y Y 3

X3−Y 3 (1.31)

Given the difficulty one has in attaining the so-called complete basis set (CBS) limit, it is fortunate
that the majority of chemical questions rely upon relative energies rather than absolute energies
since the use of relative energies allows for significant error cancellation. Unfortunately, even rel-
ative energies are slightly (but fundamentally) inconsistent when atoms are not held fixed since the
basis is tied to the atomic locations, and the problem remains of treating both sides of an equa-
tion with comparable levels of theory and basis set choice. Fictitious energy lowering, commonly
called basis set superposition error (BSSE), occurs for molecules and noncovalent complexes when
basis functions from neighboring fragments or atoms are used for local properties, as commonly
occurs for binding energies, herein denoted with origin of the basis functions in parenthesis.

EBind = EAB(AB)−EA(A)−−EB(B) (1.32)
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This phenomenon results in artificial energy-lowering relative to the atomistic or uncomplexed
system. This problem is particularly pronounced when one is far from the CBS limit. One com-
mon method for partially addressing the problem is the use of the full basis set for the solution
of a subsystem, which is referred to as counterpoise-correction37. This tends to underestimate
nonbonded interactions, yet the corresponding overestimation can be catastrophic or dangerously
misleading38. The counterpoise-corrected binding energy is shown in equation 1.33.

ECP-Bind = EAB(AB)−EA(AB)−EB(AB) (1.33)

1.3 Density Functional Theory
Density functional theory (DFT) represents a recasting of the problem: instead of solving for
the wavefunction, we seek the exact density and the energy as a functional of the density. The
basic framework of this theory comes from the Hohenberg-Kohn theorems, which describe the
correspondence between the electron density and its functional.

Hohenberg-Kohn Theorem 1. The ground state electron density maps to a unique potential.

E[n(r)] = FHK +
∫

n(r)vextdr3 (1.34)

Hohenberg-Kohn Theorem 2. Minimizing the energy yielded by a density functional produces
the ground state density.

The problem of generating a solution to the Schrödinger equation remains despite the Hohenberg-
Kohn theorems. The Kohn-Sham (KS) approach addresses this through the same formalism as
SCF39 where exchange-correlation density functionals replace the Hartree-Fock exchange kernel.
These functionals typically depend upon local properties of the density, either its value40 or deriva-
tives such as the gradient41–44 or higher. Unfortunately, electrons within KS-DFT spuriously inter-
act with themselves45,46, and common KS-DFT approximations can also fail to accurately describe
charge-transfer47 as well as dispersion and other long-range interactions48 due to the inherent lo-
cality of the DFT approximations used.

Despite the possibility for a priori exact functionals, parametrized DFT approximations have
been necessary for chemical accuracy. Even more commonly, the fractional inclusion of SCF or
correlated wavefunction-based ans atze such as MP2 has resulted in hybrid DFT methods49–51 or
double hybrid DFT methods52,53, where Kohn-Sham orbitals are used for wavefunction correlation
calculations, typically MP2.

1.3.1 Dispersion corrected DFT
Most density functionals cannot describe the attractive dispersion forces resulting from long-range
electron correlation since these are inherently long-range effects and DFT approximations focus on
short-range properties of the electronic density. These dispersion forces result from the interaction
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of instantaneous multipoles. For closed shell subunits, this attraction starts with the induced dipole
response to instantaneous charge fluctuations, which decrease in magnitude with the sixth power
of the distance between the subunits with a coefficient (C6) depending on the particular system in
mind.

Edispersion =−
C6

R6 (1.35)

The first description of these types of forces cast the dispersion energy in terms of ionization
potentials and polarizabilities of separated systems54. The London formula, below, reproduces C6
coefficients rather poorly but illustrates the conceptual dependence well.

EAB
dispersion =−

3
2

(
IAIB

IA + IB

)
αAαB

R6 (1.36)

Rigorously, C6 coefficients come from frequency dependent polarizabilities55 which are nontrivial
to compute exactly.

CAB
6 =

3
π

∫
∞

0
αA(iω)αB(iω)dω (1.37)

Within DFT approximations, the problem of generating these C6 coefficients is commonly rele-
gated to tables of experimentally or theoretically derived C6 values56–58 or to methods which tab-
ulate atom-in-molecule properties59–73 based upon Hirshfeld partitioning of the density74 and the
polarizability-volume connection (V =

∫
r3ρ(r)dr = κα). Once computed, the dispersion energy is

expressed through a simple sum over all pairs of atoms.

Edispersion =− ∑
A<B

CAB
6

R6
AB

(1.38)

While this correction dramatically improves treatment of long-range interactions for density
functionals, the reliance upon pairwise atomic contributions, which do not explicitly account for
local electronic structure, proves difficult occasionally. Another approach for this problem is the
design of non-local density functionals, such as VV1075–79, which provide estimates of the inter-
action between two densities using an approximate non-local correlation kernel.

Enon-local
correlation =

h̄
2

∫ ∫
drdr′n(r)φ(r, r′)n(r′) (1.39)

1.3.2 Range-separated hybrids
Accurate treatment of long-range charge-transfer excited states within DFT requires exact ex-
change80, yet most hybrid functionals (those that include HF exchange) contain around 20% exact
exchange, as is the case for B3LYP49. This fractional inclusion of HF results in a large man-
ifold of fictitious charge-transfer excited states for time-dependent (TD) DFT calculations81–83.
Range-separation within DFT84–87 is used to partially remedy the charge-transfer problem and
self-interaction error. In range-separated methods, the Coulomb operator is partitioned into short
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and long-range operators using a distance-dependent function, as done by Gill et al.88–90 and Savin
et al.91–94. This function is commonly taken to be the error function, though other choices are pos-
sible.

1
r
=

erfc(ωr)
r

+
erf(ωr)

r
Range-separated hybrid functionals can then be constructed from short-range DFT exchange,
short-range HF exchange, and long-range HF exchange, with control over the amount of short-
range exact exchange, cHF, and the range-separation parameter, ω.

EXC = EDFT
C +ESR-DFT

X + cHFESR-HF
X +EHF

X

Range-separated hybrids52,84–87,95–102 significantly improve treatment of charge-transfer compounds
and are capable of performing very well even for general chemical problems.

1.4 Extending the reach of correlation methods

1.4.1 The resolution of the identity or density-fitting approximation
The simplest (and most computationally tractable) ab initio description of correlation is MP2,
whose scaling is determined by the transformation of atomic orbitals into the molecular orbital
basis, a fifth-order process.

(ia| jb) = ∑
µ

∑
ν

∑
λ

∑
σ

(µν|λσ)CµiCνaCλ jCσb (1.40)

The two-electron integrals, (µν|λσ), are four-centered quantities. An auxiliary basis, {φX}, can
represent the space spanned by the product of two functions (φλ(R1)φσ(R2)) in a more compact
manner than the full two-function basis, resulting in a different expression for forming two-electron
integrals with a resolution of the identity (RI) approximation.

(ia| jb) = ∑
P

∑
Q
(ia|P)(P|Q)−1(Q| jb) = ∑

P
∑
Q

∑
R
(ia|P)(P|Q)−1/2(Q|R)−1/2(R| jb) (1.41)

Defining BQ
ia = ∑

P
(ia|P)(P|Q)−1/2, we find

(ia| jb) = ∑
Q

BQ
iaBQ

jb (1.42)

This recasting of the equations does not ultimately solve the fifth-order cost of the two-electron MO
integrals, but it does provide a reduction to O2V 2X where O, V , and X are the number of occupied
(i, j, . . . ), virtual (a,b, . . . ), and auxiliary functions (P,Q, . . . ) employed. In practice, substantially
large systems (> 1500 basis functions) are required before RI-MP2 exceeds the fourth-order cost of
the underlying HF calculation, and RI-MP2 calculations are now routine with minimal underlying
error through careful choice (or construction) of appropriate auxiliary basis sets103,104.
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1.4.2 Spin-component analyses
Since the Hartree-Fock method incorporates the exchange of electrons, which is associated with
fermions, within its wavefunction, same-spin electrons are said to be Fermi correlated. The largest
correction to the Hartree-Fock method, then, is the introduction of explicit Coulomb correlation,
which has its largest effect upon the opposite-spin electrons. Since MP2 provides the leading order
improvement for correlation effects, the opposite-spin portion of the MP2 energy should be, and
is, significantly larger than the same-spin MP2 correlation energy. The opposite-spin MP2 energy
(OS-MP2) is presented below.

EOS-MP2 =−
α

∑
ia

β

∑
jb

(ia| jb)2

εa + εb− εi− ε j
(1.43)

The same-spin MP2 energy (SS-MP2) is tabulated through a similar expression.

ESS-MP2 =−
1
2

α

∑
ia

α

∑
jb

(ia| jb) [(ia| jb)− (ib| ja)]
εa + εb− εi− ε j

− 1
2

β

∑
ia

β

∑
jb

(ia| jb) [(ia| jb)− (ib| ja)]
εa + εb− εi− ε j

(1.44)

Since nontrivial improvement is achieved in scaling the total correlation energy for methods105,
one possible approach for improving the MP2 correlation energy is to semi-empirically scale the
resulting energies to form a spin-component scaled MP2 (SCS-MP2)106–115,

ESCS-MP2 = cOSEOS-MP2 + cSSESS-MP2 (1.45)

In fact, spin-component scaled MP2 can be parametrized for different quantities of interest, includ-
ing intermolecular interactions116,117, and the spin-component scaled approach can be applied to
higher order methods118,119.

Notably for OS-MP2, the fifth-order computation inherent in MP2 can be avoided through the
use of an auxiliary basis, where the two-electron integrals are decomposed in terms of auxiliary ba-
sis functions (P,Q, . . . ) spanning the necessary space120. Furthermore, using a Laplace transform,
the OS-MP2 energy expression can be recast to eliminate the denominator.

EOS-MP2 = ∑
ia jbα

wαe−δiatαe−δ jbtα(ia| jb)2 (1.46)

EOS-MP2 = ∑
P,α

wα

[
∑
ia
(BP

ia)
T e−δiatαBP

ia

][
∑
jb
(BP

jb)
T e−δ jbtαBP

jb

]
(1.47)

This formula captures the opposite-spin MP2 energy exactly, subject to RI fitting and Laplace
quadrature errors, and the missing same-spin energy can be approximated simply through scaling
the resultant energy expression, typically by a factor of about 1.3 to generate the scaled, opposite-
spin MP2 method (SOS-MP2)120–123.

Since the difference in treatment between same- and opposite-spin correlation occurs primarily
where the electron-electron distance is small, same-spin and opposite-spin correlation energies
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approach each other as distances between electrons increase, as in nonbonded interactions. This
convergence suggests that the optimal scaling parameter should not be distance-independent for
SOS-MP2 and in fact that correlations between electrons at larger distances should be enhanced.
One method of implementing this behavior is MOS-MP2, which modifies the Coulomb operator
to smoothly increase with interelectronic distance124.

gω(r) =
1
r
+ cMOS

erf(ωr)
r

(1.48)

The introduction of distance dependence, here a form of approximating the missing long-range
interaction energy from the same-spin correlation energy, provides a tractable way for addressing
noncovalent interactions with a fourth-order method.

1.4.3 Adjusting the treatment of long-range interactions
Correlated calculations capture long-range interactions through their descriptions of the frequency-
dependent polarizability. MP2 qualitatively captures dispersion interactions, but it does so at an
insufficient quality of theory for quantitative accuracy125. The MP2 interaction energy for two
isolated closed shell fragments depends on fragment-local molecular orbitals.

EAB =−4
A

∑
ia

B

∑
jb

|(ia| jb)|2
εa + εb− εi− ε j

(1.49)

The resulting C6 from this interaction can be decomposed into frequency-dependent polarizabil-
ities which depend only on the orbitals and eigenvalues of a single fragment, which are termed
uncoupled.

CAB
6 =

3
π

∫
∞

0
αA(iω)αB(iω)dω (1.50)

α(iω) = 4∑
ia

εa
i 〈i|z|a〉2

(εa
i )

2− (iω)2 (1.51)

The polarizability of a single fragment is not sufficient to adequately describe dispersion interac-
tions126. There now exist a number of methods for improving the description of dispersion within
MP2, the most direct method being that of MP2+∆vdW127, which constructs a C6-level correction
for MP2 from the vdW(TS) method73 with approximate MP2 C6s.

EMP2+∆vdW = EMP2−∑
AB

∆CAB
6

R6
AB

(1.52)

An alternative approach is to correct the MP2 correlation energy using coupled response functions
from time-dependent DFT. The resulting method is termed MP2C for corrected MP2128,129. The
uncoupled HF response functions are used to calculate the intermolecular dispersion energy using
well-defined fragments.

χ0(R1,R2,ω) = 4∑
ia

εa
i

(εa
i )

2 +(ω)2 φia(R1)φia(R2) (1.53)
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EAB(2)
disp (UCHF) =− 1

2π

∫
∞

0
dω

∫
dR1dR2dR3dR4χ

A
0 (R1,R3,ω)χ

B
0 (R2,R4,ω)

1
R12

1
R34

(1.54)

The corresponding coupled response functions are tabulated using the interelectronic interaction
within a given approximation and the iterative Dyson equation.

W (R1,R2,ω) =
1

R12
+ fxc(R1,R2,ω) (1.55)

χcoupled(R1,R2,ω) = χ0(R1,R2,ω)+
∫

dR3dR4χ0(R1,R3,ω)W (R3,R4,ω)χcoupled(R4,R2,ω)

(1.56)
These approaches have yielded dramatic improvements for intermolecular interactions130. Unfor-
tunately, these methods require the full MP2 correlation energy as a starting point, and computing
the long-range behavior of MP2 unsatisfactorily retains the high scaling of MP2 while eliminating
all the terms that drive this scaling. Ultimately, these approaches do not exploit their full potential,
and this work is a step towards new methodologies for improving the cost and accuracy of the
calculation of long-range interactions.

1.5 Aims of this work
This work primarily concerns the locality of the explicit electron-electron interaction. It is not
necessary or even desirable to have methods to handle long-range interactions with high cost when
the accuracy is insufficient quantitatively. As such, this work explores methods of range-separation
for correlation methods, using short-range correlation methods to approximately capture correla-
tion effects and relying upon cancellation of error or explicit calculations for long-range effects.
The chemical targets for these calculations are binding energies and relative energetics for equilib-
rium and nonequilibrium geometries for weak potential energy surfaces. The simplest biological
systems rely upon the additive effect of long-range interactions for secondary structure, integrity,
and functionality. Tractable, accurate methods are essential for the future of chemical inquiry into
these classes of systems.

In Chapter 2, attenuated MP2 in the aug-cc-pVDZ basis is formulated and parametrized for
noncovalent interactions and found to outperform complete basis set estimates of MP2 for many
system types. Chapter 3 extends this ansatz to the aug-cc-pVTZ basis and finds increasing gains
and more transferable performance across a wide variety of inter- and intramolecular interactions.
The treatment of large systems and efficient parallelization of the RI-MP2 energy is addressed in
Chapter 4, with a shared memory parallel algorithm developed and applied to system of 1000-
2000 basis functions, pushing the limit of conventional RI-MP2 calculations. Along with severe
examples of the failure of MP2 for large systems, attenuated MP2 in the aug-cc-pVDZ and aug-
cc-pVTZ basis sets is found to transferably improve upon MP2.

I address the lack of transferability of spin-component scaled methods in Chapter 5, developing
SCS-MP2(2terfc, aTZ), which provides a single set of parameters for both thermochemistry and
noncovalent interactions, matching the best performance from SCS-MP2 and attenuated MP2.
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Finally, estimates of the complete basis set limit of attenuated MP2 are examined in Chapter
6. I examine a series of progressively improved basis sets and show the convergence of r0 with
number of diffuse functions and overall cardinal number. The favorable error cancellation of the
aug-cc-pVTZ basis set appears to have a well-tuned price/performance ratio.
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Chapter 2

Attenuating Away The Errors in Inter- and
Intra-Molecular Interactions from Second
Order Møller-Plesset Calculations in the
Small aug-cc-pVDZ Basis Set

Second order Møller-Plesset perturbation theory (MP2) is perhaps the simplest and most cost-
effective wave function approach for adding dynamical correlation effects to the mean field or
Hartree-Fock approximation (HF). Although density functional theory (DFT) often provides greater
accuracy in bond energies and reaction barriers for less computational effort131, MP2 is often supe-
rior for intermolecular interactions132. Present-day density functionals also suffer from incomplete
physical descriptions leading to self-interaction errors45,46 (that are absent in MP2) and cannot be
systematically improved towards the exact density functional. By contrast, wave function theory
provides a systematically improvable formal framework for electronic energies, but approaching
the correct nonrelativistic limit is typically computationally prohibitive for large molecules.

For small molecules, MP2 can be corrected by use of e.g. high order coupled cluster the-
ory, coupled with large basis sets133–138. Such methods are of benchmark quality, but are not
generally applicable to large molecules, although this challenge is being addressed by on-going
developments in explicitly correlated and local correlation methods139,140. Nonetheless, to be fea-
sible for large molecules, improvements in MP2 theory must often be more heuristic in nature.
An example of compensating for basis set deficiencies is to scale the correlation energy105,141

to improve atomization energies and barrier heights. The accuracy of this approach was later
greatly improved by the development of spin-component scaled (SCS)-MP2106. The cost of MP2
could be significantly reduced with little effect on accuracy by the scaled opposite-spin (SOS)-MP2
method120,121. In fact, the exploration of (SOS)-MP2 led to a 4th-order algorithm for the full MP2
energy142. The very strong recent interest in development of double hybrid density functionals,
such as B2PLYP143, XYG353, and ωB97X-252 represents efforts to improve the accuracy of MP2
(and DFT) by combining them together.

The focus of this paper is improving the accuracy of MP2 calculations of intermolecular inter-
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actions and conformational energies in finite basis sets. This has been attempted with some success
via modified SCS-MP2 parameters116,144. Indeed, the performance of MP2 for some types of inter-
actions such as hydrogen bond energies is excellent, in large basis sets. However, other intermolec-
ular interactions such as those associated with π stacking145,146 are poorly described by MP2, even
in large basis sets. Fundamentally, this is a result of MP2 long-range interactions using the erratic
C6 coefficients of uncoupled HF (UCHF) theory125. To address this problem, two promising ap-
proaches have recently been suggested, based on long-range corrections to MP2 theory using better
C6 coefficients. Tkatchenko et al.147 produced a rather promising MP2+∆vdW method that deter-
mined MP2 dispersion coefficients and replaced them, atom-wise, with improved coefficients127.
Similarly, the MP2C method128,129 replaces the system-wide MP2 dispersion energy with that of
TD-DFT. These methods demonstrate dramatic improvement over MP2 for treating dispersion in-
teractions, but do still rely upon possessing the full MP2 energy. This rate-determining part of the
calculation is then discarded for an improved estimate of the long-range interaction energies.

The other significant issue associated with MP2 calculations is the difficulty of converging them
towards the complete basis set limit. In conventional atomic orbital (AO) basis set calculations
based upon the principal expansion20, one generally obtains errors that in the most favorable case
go as O(N−1) in the number of AO’s, N. At the same time, the cost of an MP2 calculation rises as
the 4th power of the number of basis functions. Thus a 10-fold reduction in error requires roughly a
10,000-fold increase in computational cost. Of course such estimates are too pessimistic in practice
because density-fitting approximations148 and explicitly correlated methods149 partially address
cost and convergence with increasing basis set size. Nonetheless it is widely demonstrated that
very large basis sets, and corrections for basis set superposition errors (BSSE) are required150,151.
The BSSE corrections37, whilst desirable for improving the accuracy of calculated intermolecular
interactions in a given basis, are undesirable because they cannot be applied to the same type of
interactions (stacking, H-bonds, etc.) when they occur within a given molecule.

The approach we shall employ to improve the accuracy of MP2 calculations in finite basis
sets is to range-separate the correlation energy. We shall exploit a division of the Coulomb op-
erator into short- and long-range portions, as pioneered by Gill et al.88–90 and Savin et al.91–94.
Range separation is most commonly accomplished using the error function and its complement in
the form 1

r = erfc(ωr)
r + erf(ωr)

r . It has attracted most attention for treating exchange within density
functional theory84–87, where the long-range (non-local part) is evaluated by wave function and the
short-range (more local) part is treated as a density functional. The resulting range-separated func-
tionals52,95–102 reduce self-interaction errors, improve treatment of intermolecular interactions, and
have become widely used.

Range-separation has been applied to electron correlation, for example to partition between
static (long-range) and dynamic (short-range) correlation152. It has also been used to modify long-
range opposite-spin MP2 contributions in the MOS-MP2 approach124. While most divisions of
the Coulomb operator make use of the error function, work by Dutoi and Head-Gordon pursued
a new separation using the terf function, ter f (ω,r0,r) = 1

2 [er f (ωr+ωr0)+ er f (ωr−ωr0)], and
its complement, terfc153. This function permits the introduction of a distance cutoff into the two-
electron integrals, or the preservation of the short-range form of the operator. Thus the terfc-
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attenuated Coulomb operator has the same derivative as the Coulomb operator in the short-range
if the constraint, r0ω = 1√

2
, is applied. Additionally, the terfc-attenuated short-range portion of

the MP2 correlation energy converges more rapidly to the unattenuated MP2 correlation energy as
ω→ 0 than the equivalent erfc-based short-range MP2 energy for the neon atom.

Since long-range contributions drive the overall computational cost of MP2 and also limit its
accuracy, this paper pursues the development of a short-range MP2, targeted specifically at evalu-
ation of inter- and intra-molecular interactions in the small augmented cc-pVDZ basis154. Perhaps
surprisingly, we show below that the combination of unattenuated Hartree-Fock and short-range
MP2 stemming from separation of the Coulomb operator improves upon unmodified MP2. In gen-
eral, improvements to MP2 theory should combine an attenuated treatment of the short-range with
a long-range correction, based for example on improved C6 coefficients56–58,127,155. However, the
relatively inadequate AO basis that we explore here will mean that in fact the results cannot be
substantially improved by the addition of a long-range correction. The role of attenuation will be
to remove part of the over-binding associated with BSSE in small basis sets, as well as part of the
over-binding associated with MP2 itself for some types of dispersion interactions.

We shall denote a short-range MP2 method that employs erfc attenuation (in only the correla-
tion part) in the aug-cc-pVDZ basis as MP2(erfc, aDZ). The corresponding terfc attenuated method
will be denoted as MP2(terfc, aDZ). This work focuses on four short-range variants: MP2(terfc,
aDZ) (I), scaled MP2(terfc, aDZ) (II), MP2(erfc, aDZ) (III), and scaled MP2(erfc, aDZ) (IV).
The scaling is applied solely to the correlation energy, Efull = EHF + s ∗Ecorr., akin to previous
work105,141. The introduction of a scaling parameter allows for the possibility of correcting for
systematic errors in the correlation energy due to severe truncation in the strong attenuation limit
and BSSE in the weak attenuation limit. All calculations were performed within a development
version of Q-Chem 4.0156.

Parameterization of attenuated short-range MP2 requires a well-balanced set of representative
molecules with established CCSD(T)/CBS energies. As we are attempting to remedy unphysical
long-range behavior of MP2, the S66 database157, consisting of hydrogen-bonding, dispersion,
and mixed dimer interactions, was chosen as the training set. This training set contains a range
of binding energies and system sizes. No subset-specific weighting factors were used in order to
promote transferability rather than the biased treatment of any specific interaction type. The terfc-
attenuated variants use the curvature constraint of r0ω = 1√

2
, which justifiably reduces the number

of fitted parameters and preserves short-range quality. No counterpoise corrections are performed.
Figures 2.1 and 2.2 show the behavior of MP2(terfc, aDZ) and MP2(erfc, aDZ) for the S66

database. For comparison to scaled variants II and IV, scaled MP2/aDZ (SMP2) without attenua-
tion is also optimized for this dataset. There are two limits of interest. First, the severe attenuation
limit of r0→ 0 (terfc attenuation) and ω→∞ (erfc attenuation), coincides with the HF/aDZ RMSD
of 4.0 kcal mol−1 if no scaling is applied. This can be strikingly reduced by scaling, though the
large deviation of the optimal scaling factors from unity is compensating for over-attenuation. The
second limit of interest is MP2(terfc, aDZ) as r0 → ∞ and MP2(erfc, aDZ) as ω→ 0. Without
scaling, this limit coincides with the unattenuated MP2 result (RMSD of 2.7 kcal/mol).

Simple scaling of the MP2 correlation energy yields a striking reduction of RMS error by a
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Table 2.1: Root-mean-squared deviations, standard deviations of error, average, and mean un-
signed errors for the S66 Dataset (kcal mol−1)

RMSD MP2/CBS1 MP22 SMP22 I II III IV M06-2X2 B3LYP2

H-Bonds 0.19 0.82 0.71 0.48 0.50 0.51 0.52 0.32 1.36
Disp. 1.11 3.58 0.46 0.39 0.40 0.42 0.40 1.01 4.24
Mixed 0.55 2.81 0.55 0.49 0.50 0.51 0.50 0.88 3.06
Overall 0.73 2.67 0.59 0.46 0.47 0.48 0.48 0.79 3.12
Error MP2/CBS1 MP22 SMP22 I II III IV M06-2X2 B3LYP2

AVG -0.40 -2.15 0.14 0.05 0.05 0.01 0.05 -0.61 2.62
MUE 0.48 2.15 0.49 0.34 0.35 0.36 0.36 0.64 2.62

1 From the Benchmark Energy and Geometry DataBase(BEGDB.com)2

2 Computed using aug-cc-pVDZ without counterpoise correction

factor of 4.5 with a constant scaling factor of s = 0.60. While scaling the correlation energy is
not a new idea105, the very large improvement that can be obtained in intermolecular interactions
using this approach for MP2/aDZ does not appear to have been appreciated. Indeed, reports aimed
at atomization energies and barrier heights used scaling factors larger than one141, whilst we find a
need to significantly attenuate for non-bonded interactions with s = 0.60. SMP2/aDZ surprisingly
surpasses MP2/aDZ with counterpoise correction, which yields a RMSD of 0.88 kcal mol−1.

In between the extreme limits, even larger improvements can be obtained by consider optimal
values of the attenuator. For variant I of MP2(terfc, aDZ), we choose r0 = 1.05 Å. For II, r0 =

1.00 Å and s = 1.06. For variant III of MP2(erfc, aDZ), we select ω = 0.420 Å−1, and for IV,
ω = 0.420 Å−1 and s = 0.99. Performance with these parameters is shown in Table A.3. The
reduction in error relative to no correlation at all is a factor of 8.5, whilst the reduction relative to
MP2/aDZ is a factor of 5.5. These methods even yield better error statistics than MP2/CBS for this
S66 dataset despite requiring hundreds of times less computational effort. Furthermore, the fact
that distance-dependent attenuation is more physical than simple scaling (SMP2) is consistent with
the fact that one parameter attenuation out-performs one parameter scaling. These are remarkable
improvements for a single parameter semi-empirical method, even given that this is training set
data. None of the presented results include a long-range dispersion correction, which was found to
be of minimal value for these short-range MP2 methods at the chosen attenuation parameters.

To establish transferability and thus usability, MP2(terfc, aDZ) and MP2(erfc, aDZ) have been
tested against separate datasets. The S22 database158–161 is of particular significance due to its
wide usage. Table A.4 demonstrates that MP2(terfc, aDZ) and MP2(erfc, aDZ) provide signifi-
cant improvement over MP2/aDZ and again performs better than MP2/CBS. The RMSD for these
interaction energies has been reduced from 1.4 kcal mol−1 for MP2/CBS to 0.6-0.7 kcal mol−1

with the introduction of one parameter (or two in the case of the scaled variants, II and IV). The
significant overestimation of dispersion by MP2/CBS and particularly MP2/aDZ has been reduced
such that MP2(terfc, aDZ) and MP2(erfc, aDZ) perform better on these interactions (0.4-0.5 kcal
mol−1) than on hydrogen-bonded systems (0.8-1.0 kcal mol−1). Scaling the correlation energy



19

Figure 2.1: Performance on S66 Dataset for MP2(terfc, aDZ) with both unscaled, I, and scaled, II,
variants over the range r0 = 0.05Å→ r0 = 4.00Å, which spans from the HF limit (4.0 kcal mol−1)
to the unattenuated MP2 limit (2.7 kcal mol−1).
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Figure 2.2: Performance on S66 Dataset for MP2(erfc, aDZ) with both unscaled, III, and scaled,
IV, variants over the range ω= 0.01Å−1→ω= 2.00Å−1, which spans from the unattenuated MP2
limit (2.7 kcal mol−1) and approaches the HF limit of 4.0 kcal mol−1.
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Table 2.2: Root-mean-squared deviations, standard deviations of error, average, and mean un-
signed errors for the S22 Dataset (kcal mol−1)

RMSD MP2/CBS1 MP22 SMP2 2 I II III IV M06-2X2 B3LYP2

H-Bonds 0.20 1.02 1.17 0.80 0.80 0.85 0.99 0.42 1.66
Disp. 1.93 4.60 0.68 0.45 0.46 0.53 0.50 0.88 4.58
Mixed 1.41 4.75 0.67 0.52 0.52 0.60 0.55 0.98 5.36
Overall 1.39 3.91 0.86 0.61 0.61 0.67 0.71 0.81 4.24
Error MP2/CBS1 MP22 SMP2 2 I II III IV M06-2X2 B3LYP2

AVG -0.84 -2.77 0.01 0.01 0.01 -0.04 0.03 -0.53 3.17
MUE 0.89 2.79 0.70 0.51 0.51 0.56 0.58 0.65 3.17

1 From the Benchmark Energy and Geometry DataBase(BEGDB.com)2

2 Computed using aug-cc-pVDZ without counterpoise correction

(SMP2/aDZ) again reduces overall error by 4.5, but the RMSD is increased for hydrogen-bonding
systems relative to the unscaled MP2/aDZ, which suggests the scaling parameter should be varied
based upon system type, akin to (SCS)-MP2 and (SCS-MI)-MP2116.

MP2(terfc, aDZ) and MP2(erfc, aDZ) have been parameterized without counterpoise correc-
tion; thus relative conformational energies present another metric for assessing their quality since
accounting for intramolecular BSSE is nontrivial162. Valdes et al.163 produced a benchmark en-
ergy and geometry database for conformers of five small peptides with aromatic side chains, which
we shall refer to as P76 for the 76 conformers. The sensitivity of conformer energy ordering to
quality of method across the varied noncovalent interactions makes this a potentially demand-
ing test of the transferability of the short-range MP2 methods. The results summarized in Table
2.3 show that MP2(terfc, aDZ) and MP2(erfc, aDZ) outperform MP2/aDZ by roughly a factor
of 3, and also outperform MP2/CBS, measured relative to CCSD(T)/CBS benchmarks. The er-
ror statistics also suggest that structural motifs can affect the quality of these descriptions for the
GGF (glycine-glycine-phenylalanine) protein, yet MP2(terfc, aDZ) and MP2(erfc, aDZ) still sig-
nificantly improve upon MP2/aDZ as well as the well-tempered M06-2X method164. On these
systems, both terfc-attenuated variants slightly outperform the erfc-attenuated variants, particu-
larly for the GFA (glycine-phenylalanine-alanine) protein. Both attenuated MP2 methods signif-
icantly outperform simple scaling (SMP2) in this test. Further work is necessary to fully char-
acterize the behavior of these short-range attenuated MP2 methods based on interaction type and
distance. Reduced errors are also shown for SMP2/aDZ in all cases, with particular improvement
for WG (tryptophan-glycine) and WGG (tryptophan-glycine-glycine) while leaving the other pep-
tides largely unaffected, again suggesting interaction dependence for the universal scaling of the
correlation energy.

Another useful benchmark for medium-size systems is the alanine tetrapeptide system. The
energetics of different conformers have pushed the limits of systems accessible for wavefunction-
based correlation methods and basis set convergence165,166. The system of twenty-seven conform-
ers analyzed at RI-MP2/CBS is used as a reference, and we present the deviations for various
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Table 2.3: Root-mean-squared deviations for protein subsets of the P76 database (kcal mol−1)

Protein MP2/CBS1 MP22 SMP22 I II III IV M06-2X2 B3LYP2

WG 0.35 1.15 0.53 0.19 0.22 0.19 0.19 0.48 1.63
WGG 0.59 1.49 0.52 0.38 0.38 0.40 0.40 0.72 2.23
FGG 0.44 0.98 0.81 0.46 0.44 0.48 0.50 0.61 1.71
GGF 0.19 0.57 0.51 0.33 0.34 0.32 0.32 0.49 1.14
GFA 0.41 0.89 0.81 0.25 0.24 0.32 0.32 0.30 1.10

Overall 0.42 1.06 0.65 0.33 0.33 0.35 0.36 0.54 1.61
1 From the Benchmark Energy and Geometry DataBase(BEGDB.com)2

2 Computed using aug-cc-pVDZ

Table 2.4: Mean absolute deviations and root-mean-squared deviations from RI-MP2/CBS on ala-
nine tetrapeptide conformers (kcal mol−1)

Error1 MP22 SMP22 I II III IV M06-2X2 B3LYP2

MAD 0.78 0.16 0.16 0.17 0.15 0.15 0.22 1.21
RMSD 0.97 0.20 0.20 0.21 0.17 0.18 0.27 1.48
1 These errors are relative to RI-MP2/CBS estimates166 of these conformers,

which deviates from the CCSD(T) answer significantly enough that superla-
tive judgments of method performance cannot be made.

2 Computed using aug-cc-pVDZ

methods in Table A.14. SMP2/aDZ, MP2(terfc, aDZ), and MP2(erfc, aDZ) present comparable
behavior to RI-MP2/CBS (RMSD 0.2 kcal mol−1), as well as almost fourfold smaller deviations
than MP2/aDZ. This strongly suggests that attenuation of the MP2 correlation contribution in aug-
cc-pVDZ is functioning effectively to remove much of the intramolecular basis set superposition
error that traditionally plagues small basis set MP2 calculations of conformational energies.

Full characterization of SMP2/aDZ, MP2(terfc, aDZ), and MP2(erfc, aDZ) must include ex-
amination of behavior at equilibrium and nonequilibrium distances. Ongoing work will assess the
viability of these methods for geometry optimizations. For non-equilibrium displacements, Figure
2.3 presents four selected dimers from the S22x5 database167, which has CCSD(T) energies for
contraction and extension of the S22 geometries. The behaviors of MP2(terfc, aDZ)(variant I),
MP2/aDZ, SMP2/aDZ, and CCSD(T)/CBS are shown. Given the equivalent computational costs
of MP2/aDZ, SMP2/aDZ, and MP2(terfc, aDZ), the improvement is dramatic for the introduction
of only a single parameter, especially for the parallel-displaced and t-shaped benzene dimers.

With the attenuation of the Coulomb operator within MP2, MP2(terfc, aDZ) and MP2(erfc,
aDZ) improve upon the description of inter- and intramolecular forces of MP2, even compared
to complete basis set limit results. With excellent behavior on dispersion, hydrogen-bonded, and
mixed dimer interactions, as well as protein conformations, both short-range MP2 methods per-
form in a transferable manner. While these methods produce comparable performance, we recom-
mend MP2(terfc, aDZ) since its sharper attenuation parameter of r0 = 1.05 Å (ω= 0.673 Å−1) will
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Figure 2.3: Geometries from S22x5 with MP2(terfc, aDZ)(I), SMP2/aDZ, and MP2/aDZ. For
comparison, CCSD(T)/CBS is provided.

provide a lower prefactor for any optimized algorithm. Since integrals involving the error function
are more widely available, MP2(erfc, aDZ) can be readily implemented using ω = 0.420 Å−1. The
scaled variants are not necessary at this time, as they introduce another parameter without improv-
ing error statistics. However, they do permit shorter range truncation of the correlation contribu-
tions, and SMP2/aDZ with s= 0.60 provides dramatic improvements for all databases investigated.
These parameters are expected to vary per basis set with degree of resulting BSSE. While param-
eterization could be attempted for reaction energies or electron attachment/detachment, behavior
commensurate with or worse than MP2/aDZ is expected.

Relative to MP2/aDZ (and sometimes even relative to MP2/CBS), MP2(terfc, aDZ) and MP2(erfc,
aDZ) show reduced deviations from benchmarks for non-bonded interactions from the S66, S22,
and P76 datasets, the 27 reference alanine tetrapeptide conformers and the selected S22x5 geome-
tries. This suggests these methods have a well-behaved and transferable compensation for BSSE,
and they are thus immediately useful for this purpose. SMP2/aDZ also provides significant error re-
duction across most systems, which lies in accord with the understanding that MP2/aDZ, from both
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BSSE and inherent MP2 exaggeration of dispersion effects, overestimates non-bonded interactions
regardless of distance. By contrast, of course, MP2/aDZ underestimates bonded interactions (e.g.
atomization energies) due to basis set incompleteness, which explains the very different scaling
factors reported previously for bonded interactions (> 1) versus what we find here for non-bonded
interactions (< 1).

In the future, MP2(terfc, aDZ) and MP2(erfc, aDZ) offer the potential for far greater compu-
tational efficiencies than MP2/aDZ because their chosen parameters attenuate the relevant two-
electron integrals for correlation, reducing their spatial extent to a distance of only several bond
lengths. With such limited dependence on long-range terms, there is exciting scope for low-scaling
implementations of these methods that can remedy both BSSE and long-range inaccuracies within
limited basis MP2.
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Chapter 3

Attenuated Second-Order Møller-Plesset
Perturbation Theory: Performance within
the aug-cc-pVTZ Basis

3.1 Introduction
In quantum chemistry based on wave functions168, two basic challenges must be surmounted to
obtain an accurate approximation to the correlation energy, and thereby achieve accurate values of
relative energies for intermolecular and intra-molecular non-bonded interactions. First is achiev-
ing a sufficiently accurate description of electron correlations to accurately approximate the full
configuration interaction limit in a given basis set. Second is converging the basis expansion to-
wards the complete basis set (CBS) limit. In practice, despite great progress, it is only possible
to obtain reasonable approximations to these two limits in benchmark systems. For other cases,
the computational cost of converging the correlation energy and the basis set is at present simply
prohibitive.

Benchmark calculations therefore play a vital role in assessing the likely accuracy of more
tractable quantum chemical models for larger systems. For intermolecular interactions, benchmark
data has been evaluated for model hydrogen bonded interactions, π stacking interactions, electro-
static interactions, and interactions with mixed character. Examples of databases that contain state
of the art benchmarks are the S66 set157, and the S22 set158–161, though there are many others. For
relative conformational energies, which are largely determined by the interplay of steric effects
with intramolecular H-bonding, dispersion, and electrostatic interactions, benchmark data is also
available. Examples include databases of alkane conformations169, sugar conformations170, and
cysteine conformations171.

With respect to electron correlation, the simplest and computationally cheapest useful wave
function method is second-order Møller-Plesset perturbation theory (MP2). Whilst MP2 at the
CBS limit is known to be very accurate for some intermolecular interactions, such as hydrogen-
bonding172, it is also well known to yield large percentage errors for π stacking interactions145,146.
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The problem of MP2/CBS is the inaccurate description of long-range dispersion, since MP2 uses
inaccurate polarizabilities from time-dependent uncoupled Hartree Fock (UCHF) for long-range
interactions125. Recent attempts at remedying these inaccuracies have replaced the UCHF-based
long-range interactions of MP2 with time-dependent DFT128,129 or atomistic van der Waals cor-
rections147. While such methods have achieved significant success, they rely upon computing the
entire MP2 energy only to remove and replace the rate-limiting portion. Furthermore, they cannot
be applied to intra-molecular interactions such as the important problem of relative conformational
energies173.

Even without such inherent limitations of MP2, convergence of the MP2 correlation energy
to the complete basis set limit (CBS limit) is unattainable in larger chemical systems due to high
computational cost20. There is reason for optimism about the prospects for MP2 calculations on
larger molecules because of local MP2 methods174. Likewise, extrapolation methods175,176 with
the correlation consistent cc-pVXZ (abbreviated as XZ) basis sets154 and explicitly correlated
MP2 methods139,140,149 are helping to more routinely approach the basis set limit. Nevertheless,
the quality of relative energies from MP2 calculations in finite basis sets is degraded by basis set
superposition error (BSSE) and basis set incompleteness177. Counterpoise (CP) correction can
partially remedy BSSE37, but this correction method cannot always be applied consistently to
interactions on the same fragment or molecule. Without CP correction, however, the addition of
diffuse (augmented) functions as in the aug-cc-pVXZ basis sets31,154,178–180 (abbreviated as aXZ)
which help to describe anions and polarization, also increases BSSE. In fact, for the S66 database of
noncovalent interactions157, MP2/DZ reproduces CCSD(T)/CBS estimates more accurately than
MP2/aTZ, despite being roughly 100 times less computationally demanding.

Given the somewhat systematic errors of MP2 at the CBS limit (overbinding dispersion in-
teractions), and the even more systematic behavior of BSSE in finite basis sets (overbinding all
intermolecular interactions), it is natural to seek semi-empirical modifications that can remove
this systematic error. Existing examples include modifying spin-component scaled MP2 (SCS-
MP2)106 for intermolecular interactions116, as well as attempting to modify scaled opposite spin
MP2 (SOS-MP2120,124 to treat intermolecular interactions. These methods all work best in large
basis sets, with the SCS approach significantly out-performing the SOS approach, as well as MP2
itself117.

Turning to modifications of MP2 in small basis sets, we recently introduced181 an advantageous
one-parameter semi-empirical MP2 method based upon range-separating the Coulomb operator
within the two-electron integrals, and keeping only the short-range portion. From results for inter-
and intramolecular interactions using only the short-range portion, we designed the terfc- or erfc-
attenuated MP2 within the aug-cc-pVDZ basis (aDZ), termed MP2(attenuator, aDZ). This method
provided up to a five-fold improvement on unattenuated MP2/aDZ and yielded lower errors than
MP2 at the complete basis set (CBS) limit for the S66 database (which was used for training) as
well as for the S22 and P76 databases (which were used for testing).

This remarkable improvement raises a variety of interesting questions. First and foremost, does
the improvement using attenuation in the aDZ basis carry over to larger basis sets? In this report we
explore the performance of attenuated MP2 using the larger aug-cc-pVTZ (aTZ) basis and discover
that it generally outperforms (albeit at greater computational cost) the attenuated aDZ model. We
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also provide extensive tests to establish the extent of transferability of this model. Second, what
type of error compensation is occurring to yield these improvements? We are able to gain some
insight by comparing attenuated MP2 results with and without counterpoise correction in the aDZ
and aTZ basis sets, relative to attenuation in the non-augmented DZ and TZ sets.

3.2 Methods
Attenuated MP2 is based on replacing the electron-electron repulsion operator, r−1

12 with an atten-
uated operator, s(r12)r−1

12 in the evaluation of the correlation energy. The short-range function,
s(r), is a monotonically decreasing function which is one at r = 0 and tends to zero for large r.
Thus s(r) plus its long-range complement, l (r), form a partition of unity, 1 = s(r)+ l (r). One
very suitable function is the sum of two complementary error functions, offset in such a way that
the attenuated operator preserves its shape for small r, as shown in Figure 3.1. The long-range
function is:

l (r) = terf(r,r0) =
1
2

{
er f
[
(r− r0)

r0
√

2

]
+ er f

[
(r+ r0)

r0
√

2

]}
(3.1)

while its short-range complement is:

s(r) = terfc(r,r0) = 1− terf(r,r0) (3.2)

With the choice above, 1st and 2nd derivatives of l (r)r−1 vanish exactly at r = 0, and approximately
for small r. Therefore the attenuated Coulomb operator is merely vertically shifted in the small r
regime then goes to zero smoothly (along with its derivatives) at large r.

Attenuated MP2, where r−1 is replaced by ter f c(r,r0)r−1 in the second order correlation eval-
uation, has been implemented in the Q-Chem program156. Calculations within this work use
the resolution-of-the-identity and frozen core approximations. Our implementation extends the
original code153 to permit the use of higher angular momentum through h functions, construct-
ing intermediates for the terf-attenuated Coulomb integrals using 256-bit precision with the GNU
multiple-precision library182,183 and storing the resulting two-dimensional interpolation tables in
64-bit double precision on disk (∼ 60 Mb).

3.3 Parameter optimization
As before181, we chose the S66 database for training our attenuation parameter. This database con-
tains CCSD(T)/CBS benchmarks of energies for equilibrium geometries of noncovalently bound
systems. The first set of results, shown in Figure 3.2, correspond to performing the attenuated
calculations without counterpoise corrections in cc-pVDZ, cc-pVTZ, aug-cc-pVDZ, and aug-cc-
pVTZ basis sets. The results in this figure show that the optimal attenuation parameter, r0, is
inversely related to BSSE in the calculation. With augmented double zeta (aDZ) and triple zeta
(aTZ) basis sets, attenuation can yield over 5-fold RMS error reduction. The optimal aTZ attenua-
tion (1.35Å) yields 40% lower RMS error than the optimal aDZ attenuation (1.05Å).
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Figure 3.1: The partitioning of the interelectron repulsion operator into short range and long-range
components based on the long-range terf function defined in Eq. (4.1) and its short-range com-
plement, terfc, defined in Eq. (4.2). With these definitions, terf(r,r0)r−1 has zero first and second
derivatives in the small r limit. Therefore the short-range interelectron repulsion, terfc(r,r0)r−1

behaves as a smoothly shifted r−1. The models developed in this paper retain only the short-range
term in the MP2 energy, and optimize the single parameter r0 to reproduce benchmark intermolec-
ular interactions.
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Table 3.1: Root-mean-squared deviations(RMSD), average, and mean unsigned errors on the S66
database (kcal mol−1)

RMSD MP2(terfc, aTZ) MP2(terfc, aTZ-CP) MP2/aTZ MP2(terfc, aDZ) MP2(terfc, aDZ-CP) MP2/aDZ MP2/CBS a

H-Bonds 0.18 0.62 0.51 0.48 1.22 0.82 0.19
Disp. 0.27 0.45 2.20 0.31 0.53 3.80 1.11
Mixed 0.29 0.20 1.38 0.47 0.36 2.45 0.55
Overall 0.25 0.46 1.53 0.43 0.81 2.66 0.73
AVG -0.07 0.15 -1.23 0.05 0.38 -2.15 -0.40
MUE 0.21 0.35 1.23 0.32 0.59 2.15 0.48

aFrom the Benchmark Energy and Geometry DataBase2

The striking error reductions obtained with augmented basis functions cannot be replicated
with the non-augmented basis sets. The attenuated DZ curve shown in Figure 3.2 shows only
about 10% error reduction relative to standard MP2/DZ (large r0). The best attenuated DZ has
over 3-fold larger RMS error than the best attenuated aDZ! A larger error reduction from MP2/TZ
is possible with attenuated TZ (roughly 40%) but the resulting RMS error is still more than twice
that of attenuated aTZ. These comparisons show that augmented functions are essential for large
improvements through attenuation. This suggests attenuated MP2 accounts for dispersion primar-
ily through the tuned interplay of attenuation with BSSE.

Results for counterpoise (CP) correction of attenuated MP2 using augmented basis sets are
shown in Figure 3.3. Attenuated MP2-CP results show strikingly less improvement than atten-
uated MP2 without CP correction. For instance, MP2(terfc, aDZ-CP) attains essentially no im-
provement (no minimum) versus MP2/aDZ-CP (r0 → ∞ limit). This suggests attenuation-based
error cancellation within the aDZ basis is largely due to incomplete removal of BSSE and that this
favorable cancellation disappears with counterpoise correction. Interestingly, in the larger basis,
MP2(terfc, aTZ-CP) moderately outperforms MP2/aTZ-CP, suggesting that attenuation is partially
removing inaccurate long-range contributions. The much larger optimal MP2(terfc, aTZ-CP) r0
value of 1.75 Å vs 1.35 Å for MP2(terfc, aTZ) is also consistent with removing only longer range
interactions. Emphasizing the importance of partial BSSE cancellation over long-range correction,
MP2(terfc, aDZ) and MP2(terfc, aTZ) surpass MP2(terfc, aTZ-CP).

Results for the S66 database using basis set specific optimal r0 parameters are presented in Ta-
ble 3.1. The relatively small r0 values for MP2(terfc, aDZ) (1.05 Å) and MP2(terfc, aTZ) (1.35 Å)
cancel large BSSE for all types of interactions, which is leveraged to reduce errors in all categories
quite substantially. Particularly notable is the dramatic improvement in RMSD for MP2(terfc, aTZ)
over MP2(terfc, aDZ). The increase in computational cost with the larger basis is accompanied by a
41% reduction in error that appears to recover the excellent behavior of MP2 for hydrogen-bonded
interactions.

Subsets of the S66 database show significant variations in resultant errors. Since attenuated
MP2 converges to the unattenuated MP2 result by r0 ∼4 Å, a better description of a type of in-
teraction by the unattenuated method will lead to a more extended r0. This extension is reflected
in Figure 3.4 most clearly by the performance of MP2(terfc, aTZ-CP) on the hydrogen-bonded
subset, which is optimal without attenuation. Exhibiting a different behavior, MP2(terfc, aTZ)
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Figure 3.2: Effect of augmented functions on root mean squared deviation of truncated MP2 meth-
ods for training set S66 with terfc-attenuation. As r0 → 4.0Å, attenuated MP2 converges to the
unattenuated result. As r0→ 0Å, attenuated MP2 approaches HF results.
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Figure 3.3: Effect of counterpoise correction on root mean squared deviation of truncated MP2
methods for training set S66 with terfc-attenuation. As r0→ 4.0Å, attenuated MP2 converges to
the unattenuated result. As r0→ 0Å, attenuated MP2 approaches HF results.

shares nearly the same optimal r0 for all types of interactions, suggesting that this parameteriza-
tion is not heavily biased toward one type of interaction. This encouraging result suggests good
transferability.
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Figure 3.4: Root mean squared deviations for MP2(terfc, aTZ) (left) and MP2(terfc, aTZ-CP)
(right) versus r0 for various subsets of the S66 database

3.4 Tests of transferability
Table 3.2 presents results for terfc-attenuated MP2 for the S22 database of intermolecular inter-
actions145, which has recently been updated with improved estimates of the CCSD(T)/CBS en-
ergies161. MP2(terfc, aTZ) reduces the RMS error of standard MP2/aTZ by about 80%, which
indicates a high degree of transferability from the S66 training set. Furthermore, significant im-
provement is shown for MP2(terfc, aTZ) over MP2(terfc, aDZ) with a 21% reduction in RMSD.
The average error in MP2(terfc, aTZ) reflects a more complete recovery of the unattenuated MP2
correlation energy due to the larger r0 in that basis. Also notable is the similarity of treatment of the
dispersion and mixed subsets by MP2(terfc, aDZ) and MP2(terfc, aTZ). The main improvement in
the MP2(terfc, aTZ) results relative to MP2(terfc, aDZ) is for the hydrogen-bonded subset, which
is consistent with slightly reduced attenuation due to unattenuated MP2/aTZ being a somewhat
better reference than MP2/aDZ.

Table 3.3 shows the behavior of attenuated MP2 for the 76 conformers of the P76 dataset163.
Relative conformational energetics test the quality of description of intramolecular interactions in
a case where CP corrections are not readily possible in conventional calculations. Relative to refer-
ence results at the extrapolated CCSD(T)/CBS limit), attenuated MP2 in both aDZ and aTZ basis
sets shows similar results for overall RMSD (∼0.3 kcal mol−1). In the aTZ basis, this is nonethe-
less a 50% reduction in RMS error relative to conventional MP2. Furthermore both attenuated
MP2 methods yield results that are better than the MP2/CBS limit, despite computational effort
that is significantly reduced in the aTZ case, and dramatically reduced in the aDZ case.
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Table 3.2: Root-mean-squared deviations, average, and mean unsigned errors on the S22 database
(kcal mol−1)

RMSD MP2(terfc, aTZ) MP2/aTZ MP2(terfc, aDZ) MP2/aDZ MP2/CBSa

H-Bonds 0.30 0.73 0.80 1.02 0.20
Disp. 0.50 3.01 0.45 4.60 1.93
Mixed 0.58 2.96 0.52 4.75 1.41
Overall 0.48 2.50 0.61 3.91 1.39
AVG -0.26 -1.76 0.01 -2.77 -0.84
MUE 0.37 1.76 0.51 2.79 0.89

aFrom the Benchmark Energy and Geometry DataBase2

Table 3.3: Root-mean-squared deviations for different protein subsets of the P76 database (kcal
mol−1)

Subset MP2(terfc, aTZ) MP2/aTZ MP2(terfc, aDZ) MP2/aDZ MP2/CBSa

fgg 0.36 0.61 0.46 1.15 0.35
gfa 0.20 0.51 0.25 1.49 0.59
ggf 0.35 0.38 0.33 0.98 0.44
wg 0.16 0.58 0.19 0.57 0.19

wgg 0.40 0.80 0.38 0.89 0.41
Overall 0.31 0.59 0.33 1.06 0.42

aFrom the Benchmark Energy and Geometry DataBase2

The ACONF169 database of the GMTKN30132 presents W1h-val reference values for con-
formational energies of alkanes. This dataset targets intramolecular dispersion interactions. The
results for terfc-attenuated MP2 on the ACONF dataset are presented in Table 3.4. MP2(terfc,
aTZ) dramatically improves over both unattenuated MP2/aTZ (66% reduction in RMS error), and
performs better than the MP2/CBS limit result. The reliable behavior for small alkanes here sug-
gests that intramolecular dispersion is handled comparatively and transferably well by MP2(terfc,
aTZ). By contrast, the MP2(terfc, aDZ) results are somewhat less good, although the 0.29 kcal/mol
RMS error marginally improves upon the conventional MP2/aDZ RMS error of 0.31 kcal/mol.

Table 3.4: Root-mean-squared deviations and average errors on the ACONF database (kcal mol−1)

MP2(terfc, aTZ) MP2/aTZ MP2(terfc, aDZ) MP2/aDZ MP2/CBSa

RMSD 0.08 0.24 0.29 0.31 0.11
Avg -0.05 -0.21 0.24 -0.28 -0.08

aFrom Goerigk and Grimme184

The SCONF170,185 database of the GMTKN30 comprises CCSD(T)/CBS reference values for
sugar conformers, sampling different intramolecular interactions. MP2(terfc, aTZ) reduces the er-
rors in MP2/aTZ by over 40% with a virtually identical improvement over far more computation-
ally demanding MP2/CBS calculations. Since no similar compounds are included in the training
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set, the improved behavior here also supports the transferability of attenuated MP2(terfc, aTZ). By
contrast, the results with MP2(terfc, aDZ) are significantly worse, with RMS errors over 4 times
larger than MP2(terfc, aTZ), and no improvement over the 0.28 kcal/mol error of MP2/aDZ.

Table 3.5: Root-mean-squared deviations and average errors on the SCONF database (kcal mol−1)

MP2(terfc, aTZ) MP2/aTZ MP2(terfc, aDZ) MP2/aDZ MP2/CBSa

RMSD 0.12 0.22 0.52 0.28 0.21
Avg 0.03 0.08 -0.29 -0.08 -0.01

aFrom Goerigk and Grimme184

The CYCONF171 database of the GMTKN30 presents CCSD(T)/CBS reference values for
conformers of the amino acid cysteine. These conformers predominantly sample intramolecular
hydrogen-bonds involving oxygen, sulfur, and nitrogen. This case illustrates the fact that errors in
relative energies can occasionally cancel very well in otherwise poor levels of theory. The results
in best agreement with the benchmark values are conventional MP2/aDZ calculations, surpassing
MP2/aTZ, and even the MP2/CBS limit! As a result, MP2(terc, aDZ) slightly degrades MP2/aDZ.
By contrast, MP2(terfc, aTZ) improves MP2/aTZ significantly and is also better than the MP2/CBS
results.

Table 3.6: Root-mean-squared deviations and average errors on the CYCONF database (kcal
mol−1)

MP2(terfc, aTZ) MP2/aTZ MP2(terfc, aDZ) MP2/aDZ MP2/CBSa

RMSD 0.21 0.30 0.28 0.20 0.25
Avg 0.17 0.26 -0.18 0.09 0.22

aFrom Goerigk and Grimme184

Typically, MP2/CBS outperforms almost every lower scaling method on hydrogen-bonded sys-
tems and produces a high fidelity of agreement with CCSD(T)/CBS. This is particularly true in the
case of the solvation of sulfate anions by water in the SW49 database172,186,187. Table 3.7 shows
the behavior for terfc-attenuated MP2 for the relative energies of hydrogen bond rearrangement for
the 3-6 waters solvating the sulfate anion. MP2/aTZ, MP2(terfc, aTZ), and MP2(terfc, aDZ) per-
form similarly for relative energies regardless of number of waters involved. For binding energies
corresponding to dissociating these sulfate-water clusters, as shown in Table 3.8, MP2(terfc, aTZ)
performs similarly to MP2/CBS, reflecting the removal of BSSE from this computation.

Our final test probes whether or not the good results shown above for small systems can also
transfer to intermolecular interactions between larger molecules. As shown by Janowski, et al.188,
MP2 performs particularly poorly for the parallel-displaced (PD) coronene dimer; (C24H12)2 Their
work showed that the overestimation of π−π interactions by MP2 grows worse with larger molec-
ular systems. We shall test the performance of the attenuated versus non-attenuated MP2 on the
PD coronene dimer. Given the size of this system, we employ the dual basis approximation for
our computations189. Optimized pairings for the aDZ and aTZ sets are available190 which yield
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Table 3.7: Root-mean-squared deviations for relative energies of methods on the SW49 database
(kcal mol−1)

# Waters MP2(terfc, aTZ) MP2/aTZ MP2(terfc, aDZ) MP2/aDZ MP2/a(TQ)Za

3 0.34 0.32 0.40 0.49 0.07
4 0.44 0.36 0.30 0.44 0.11
5 0.30 0.28 0.42 0.63 0.08
6 0.43 0.37 0.27 0.40 0.11

Overall 0.39 0.34 0.34 0.49 0.10

aFrom Mardirossian et al.172

Table 3.8: Root-mean-squared deviations for binding energies of methods on the SW49 database
(kcal mol−1)

# Waters MP2(terfc, aTZ) MP2/aTZ MP2(terfc, aDZ) MP2/aDZ MP2/a(TQ)Za

3 0.34 0.32 0.40 0.49 0.07
4 0.33 0.52 0.50 0.81 0.16
5 0.37 0.85 0.90 1.27 0.32
6 0.36 1.11 1.45 1.60 0.47

Overall 0.36 0.84 1.03 1.23 0.34

aFrom Mardirossian et al.172

roughly 5-10 times speedup with very small errors in binding energy. The dual basis approach is
a generally useful strategy to reduce the cost of (attenuated) MP2 calculations, particularly in the
larger aTZ basis.

Using Janowski et al’s QCISD(T)-optimized geometry, we find that MP2/aDZ overbinds by al-
most 39 kcal/mol relative to QCISD(T)+∆MP2, whilst MP2/aTZ overbinds by about 25 kcal/mol,
as shown in Table 3.9. Even with counterpoise corrections, MP2/aTZ still overbinds by about 15
kcal/mol188. By contrast with these very poor results, attenuated MP2 in both aDZ and aTZ yields
results that are in much better agreement with the benchmark. Specifically, the 4.1 kcal/mol error
of MP2(terfc, aDZ) greatly improves upon the 39 kcal/mol error of MP2/aDZ. The 1.3 kcal/mol
error of MP2(terfc, aTZ) yields even larger improvement over the 25 kcal/mol error of MP2/aTZ.
These superior results for attenuated MP2 in both basis sets suggest that their advantages for inter-
molecular interactions can be retained for larger molecules.

3.5 Conclusions
In this work, we have developed a one-parameter short-range MP2 method for use in the aug-
cc-pVTZ basis without counterpoise corrections. We optimized the terfc attenuator on the S66
database of intermolecular interactions to obtain the parameter r0 = 1.35Å. This compares with
our recommended value of r0 = 1.05Å in the aug-cc-pVDZ basis. We tested both attenuated MP2
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Table 3.9: Binding energy of the parallel-displaced coronene dimer (kcal mol−1)

Method Binding energy
MP2/aDZ 58.772

MP2(terfc, aDZ) 24.082
MP2/aTZ 45.031

MP2(terfc, aTZ) 21.272
QCISD(T)† 17.674

QCISD(T)+∆MP2 † 19.981

†QCISD(T) and QCISD(T)+∆MP2 are both
from Janowski et al.188, using cc-pVDZ with
augmented functions on every other carbon
atom. ∆MP2 is their estimated correction for
basis set incompleteness.

methods on a variety of intermolecular interactions (the S22 dataset), and a range of conformational
energies. Our main conclusions are as follows.

1. Distance-based attenuation of MP2 dramatically improves treatment of most types of inter-
and intramolecular interactions in the aug-cc-pVTZ basis, The extent of improvement is
as much as a 5-fold reduction of the MP2/aug-cc-pVTZ RMS error in the S22 database.
All types of intermolecular interactions (hydrogen bonding, dispersion, and mixed), display
similar dependence on the attenuation parameter. Transferability to the test sets is gener-
ally very encouraging in that attenuation usually significantly improves MP2/aTZ and never
significantly degrades MP2/aTZ.

2. For most of the cases examined, MP2(terfc, aTZ) yields errors that are smaller than MP2/CBS.
In the S22 test set, the MP2(terfc, aTZ) error is over 50% lower than the MP2/CBS RMS
errror.

3. The origin of the excellent results obtained with attenuation was examined carefully in the
S66 training set. We found that the benefits of attenuation are far smaller when applied to
counterpoise corrected results than without correction, and the resulting CP-optimized r0 is
larger. We conclude that whilst attenuating is likely to be favorable even at the MP2/CBS
limit, the excellent results obtained in the aDZ and aTZ basis sets rely upon incomplete
cancellation of BSSE errors with the error associated with attenuation.

4. The results suggest that MP2(terfc, aTZ) generally out-performs MP2(terfc, aDZ), with the
gap being significant enough to justify the significant additional computational cost when
that is computationally feasible. The adaptation and/or development of fast algorithms to
evaluate the attenuated MP2 energy appears justified and desirable.
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Chapter 4

Shared Memory Multiprocessing
Implementation of
Resolution-of-the-Identity Second-Order
Møller-Plesset Perturbation Theory with
Attenuated and Unattenuated Results for
Intermolecular Interactions between Large
Molecules

4.1 Introduction
As the computational resources accessible to theoretical and computational chemists increases,
many algorithms in electronic structure theory (EST) have been designed for high-performance
massively parallel (super)computer architectures, spanning across thousands of individual nodes.
While such algorithms are of significant value for large-scale calculations, many users of EST
software packages are limited to a few machines and therefore a relatively moderate number of
cores. Algorithms built upon the message passing interface (MPI)191 communication protocol,
a common parallelization paradigm designed for the utilization of large computer clusters, typi-
cally require either a significant amount of internode communication or duplication of computa-
tional effort. Alternatively, for shared memory systems (i.e., multicore or multiprocessor architec-
tures), shared memory multiprocessing programming using open multi processing (OpenMP)192

for example, allows one to avoid costly internode communication and duplication of computa-
tional effort. Thus, the shared memory multiprocessing programming model can provide a useful
parallelization scheme for many scientists who are limited by processing time whilst possessing
only modest resources that can be devoted to a single job. In this work, we provide an algorithm
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that employs a single node containing multiple shared memory cores to efficiently perform EST
computations as described below.

Second-order Møller-Plesset perturbation theory193 (MP2) provides the simplest theoretical
description of electron correlation that is qualitatively correct for many phenomena, especially for
noncovalent interactions, where its main competitor, density functional theory (DFT), fails with-
out dispersion corrections56–58,127,155. In fact, one of the primary directions of recent DFT design
and improvement has been the inclusion of second-order perturbative terms applying the MP2
ansatz to Kohn-Sham orbitals52,53. Although MP2 is typically qualitatively correct, significant
errors can and do persist, especially for π-stacking phenomena145,146. Given these inaccuracies,
further work has been done to improve MP2 by incorporating a more accurate treatment of disper-
sion128,129,147,194.

Separately, we have recently shown181,195 that attenuation of the Coulomb operator within
MP2 theory removes long-range inaccuracies as well as basis set superposition errors (BSSE)
associated with finite basis sets. This approach replaces the Coulomb operator in MP2 with a
short-range operator that is parametrized for each basis set. The Coulomb operator is modified
using range separation, 1 = s(r)+ l (r), taking the terf function153 as the long-range component,

l (r) = terf(r,r0) =
1
2

{
er f
[
(r− r0)

r0
√

2

]
+ er f

[
(r+ r0)

r0
√

2

]}
(4.1)

1 whose short-range complement, terfc, is given by

s(r) = terfc(r,r0) = 1− terf(r,r0) . (4.2)

Replacing r−1 by the attenuated Coulomb operator, s(r)r−1, optimally preserves the short-range
shape of the Coulomb operator153. The resulting attenuated MP2 methods, denoted MP2(terfc,
aug-cc-pVDZ)181 and MP2(terfc, aug-cc-pVTZ)195, greatly improve treatment of noncovalent in-
teractions at the MP2 level of theory in these basis sets without increasing the underlying scaling
or changing the algorithmic mechanics. In fact, for large molecules, there are future opportunities
(not considered here) for lower scaling methods, since most of the matrix elements involving this
attenuated Coulomb operator become numerically insignificant and can therefore be neglected.

The computational cost associated with the MP2 energy, shown here in spin-orbital notation,

EMP2 =−
1
2 ∑

i j
∑
ab

(ia| jb) [(ia| jb)− (ib| ja)]
εa + εb− εi− ε j

(4.3)

scales with the fifth power of the system size. This scaling arises from the stepwise transfor-
mation of the four-center electron repulsion integrals (ERIs) from the atomic orbital (AO) basis
(µ,ν,λ,σ, . . .) into the molecular orbital (MO) basis, i.e.,

(ia| jb) = ∑
µνλσ

(µν|λσ)CµiCνaCλ jCσb. (4.4)

The notation utilized herein employs occupied indices i, j, . . .∈O, the number of occupied orbitals,
and virtual indices a,b, . . . ∈ V , the number of virtual orbitals. While the computational time
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Table 4.1: RI-MP2 Energy Algorithm.

Function Computation Memory Disk∗

1. Form (P|Q)−1/2 X3 3X2 X2

2. Form (ia|P) = ∑µν(µν|P)CµiCνa O(N +V )X 2N2nX OV X
3. Form† BQ

ia = ∑P(ia|P)(P|Q)−1/2 OV X2 2nOV X OV X
4. Form (ia| jb) = ∑Q BQ

iaBQ
jb O2V 2X nBV X 0

required by this transformation can be significantly reduced by the introduction of an auxiliary
basis (P,Q,R, . . .) through the resolution-of-the-identity approximation (RI-MP2)196 as in Equation
4.5 below,

(ia| jb) = ∑
Q

(
∑
P
(ia|P)(P|Q)−

1
2

)(
∑
R
(Q|R)− 1

2 (R| jb)
)

= ∑
Q

BQ
iaBQ

jb, (4.5)

the fundamental fifth-order scaling is not ameliorated.
The RI-MP2 energy algorithm, as summarized in Table 4.1, requires fifth-order computational

effort to form the ERIs in the MO basis. Many MPI-based RI-MP2 algorithms197–200 require distri-
bution of the B matrices across nodes, either through duplicated computational effort or significant
internode communication costs (as much as third order in the system size). This paper pursues a
different approach for tackling this asymptotically rate-limiting step using shared memory multi-
processing parallelism, which requires the computation of all precursor quantities only once. This
specialized algorithm is detailed below in Section 4.2. In Section 4.3, the computational perfor-
mance of this algorithm is tested on linear polypeptides, which is followed by an application of the
algorithm to assess further the attenuated MP2 methods in Section 4.4. Specifically, we report at-
tenuated MP2 calculations on the L7 database201 of large noncovalent interactions and conformers
of two model tetrapeptides202.

4.2 Algorithm
The parallel algorithm developed in this work is shown in pseudocode in Functions 1: 2-Center
Integral Formation, 2: 3-Center Integral Formation, 3: B-Matrix Formation, and 4: 4-Center Inte-
gral Formation and Energy Evaluation. The main distinguishing features of this algorithm include
parallel atomic orbital (AO) to molecular orbital (MO) transformation of the three-center integrals,
(ia|P), parallel formation of the B matrices, and parallel construction of the (ia| jb) ERIs.

The diagonalization of the two-center integrals in the auxiliary basis is straightforwardly par-
allelized using the Scalable Linear Algebra Package (ScaLAPACK)203. The transformation to the
MO basis of the three-center integrals in the AO basis is discretized into a sequence of single-
threaded matrix operations, each distributed to different OpenMP core. The formation of the B
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matrices is similarly parallelized using a batch size determined by memory constraints and num-
ber of cores. For each occupied index i inside the batch, (ia|P) is distributed to a core and BQ

ia is
computed with a single-thread.

The fifth-order computation required to form the four-center integrals in the MO basis is ad-
dressed in a similar manner. We again choose the occupied index i for batching the reading of the
BQ

ia matrices from disk and the computation of (ia| jb). This choice of batched index maximizes the
efficiency of matrix multiplications since the number of virtual orbitals, V , is significantly larger
than that of the occupied orbitals, O. We constrain the number of B matrices to be a multiple of
the number of cores.

The remaining B matrices are read from disk one at a time and all possible integrals and
energetic contributions are computed through distributed matrix multiplications using OpenMP
threads. By using a lopsided batching system, this reduces the overall amount of disk read op-
erations from a theoretical maximum of O(O+1)

2 V X to O(O+1)
2nB

V X , where nB is the number of B
matrices that can be stored in memory at a given time.

This algorithm has been implemented in a development version of the Q-Chem program204. All
calculations in this work used the frozen core approximation. Reported energies were converged to
10−10 Hartrees with an integral threshold of 10−14. Computations on the glycine polypeptides were
performed using Macintosh Pro computers containing two 2.66 GHz 6-core Intel Xeon processors
with 16 GB 1333 MHz DDR3 RAM. Application work was performed using a Linux compute node
containing four 2.3 GHz 16-core AMD Opteron processors with 512 GB 1600 MHz DDR3 RAM.
All SCF calculations were performed using the OpenMP parallel SCF routine recently introduced
in Q-Chem 4.1204.

Data: Auxiliary basis functions (P,Q)
Result: (P|Q)−1/2 on disk
Evaluate (P|Q)∀ P,Q;
Invert to form (P|Q)−1/2 (ScaLAPACK203)
Store (P|Q)−1/2 on disk ∀ P,Q

Function 1: 2-Center Integral Formation

Data: Auxiliary basis functions (P,Q), atomic orbitals (µ,ν), molecular orbitals (occupied i, virtual a), and
molecular orbital coefficients Cµi

Result: (ia|P) on disk
Identify batch size nX given memory constraints
for P ∈ X in batches of nX do

Evaluate (µν|P)
Form (iν|P) = ∑µ(µν|P)Cµi
Form (ia|P) = ∑ν(iν|P)Cνa
Store (ia|P) on disk in order (a,P, i) ∀ i,a and P ∈ nX

end
Function 2: 3-Center Integral Formation
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Data: Auxiliary basis functions (P,Q), molecular orbitals (occupied i, virtual a), (ia|P) and (P|Q)−1/2 on disk
Result: BQ

ia on disk
Identify largest possible batch size nO given memory constrains and number of cores
Read (P|Q)−1/2 from disk ∀ P,Q
for i ∈ O in batches of nO do

Read (ia|P) from disk ∀ i ∈ nO,a,P
Form BQ

ia = ∑P(ia|P)(P|Q)−1/2 ∀ i ∈ nO a,Q
Store BQ

ia on disk in order (a,P, i) ∀ i ∈ nO,a, and P
end

Function 3: B-Matrix Formation

Data: Auxiliary basis functions (P,Q), molecular orbitals (occupied i, j, virtual a,b), BQ
ia on disk

Determine largest possible batch size nB given memory constraints and number of cores
for i ∈ O in batches of nB do

Read BQ
ia ∀ i ∈ nB,a,Q from disk

for j ∈ nB do
Form (ia| jb) = ∑Q BQ

iaBQ
ib ∀ a,b, i ∈ nB, j ∈ nB

Increment energy ∀ a,b, i ∈ nB, j ∈ nB
end
for j = O decreasing until j = i+1 do

Read BQ
jb ∀ a,Q from disk

Form (ia| jb) = ∑Q BQ
iaBQ

jb ∀ a,b, i ∈ nB, j
Increment energy ∀ a,b, i ∈ nB, given j
Store BQ

jb for reuse if possible
end

end
Function 4: 4-Center Integral Formation and Energy Evaluation

4.3 Parallel Performance
Since the fifth-order scaling matrix multiplication to generate the four-center integrals in the MO
basis determines the overall computational cost at the asymptotic limit, the efficiency of the par-
allelization of this function, i.e. Function 4: 4-Center Integral Formation and Energy Evaluation,
will determine the ultimate efficiency of this algorithm. We chose to approach this limit systemat-
ically using linear polyglycines with four, eight, sixteen, and thirty-two subunits. Performance for
these systems is shown in Figure 4.1 with relative speed increases due to parallelization listed for
the full RI-MP2 algorithm and the isolated fifth-order step (Function 4). Table 4.2 indicates that
the fifth-order computation (Function 4) dramatically increases in relative cost with system size,
but the overall parallel efficiency improves concurrently.

The relatively poor parallel efficiency of the smaller test systems indicates that the lower scaling
steps are not efficiently parallelized. In particular, the MO transformation of the three-center AO
integrals is computed in batches of the auxiliary index based upon shells, and the storage of these
integrals is seek-bound to align with the natural atomic ordering of the auxiliary index. For the case
of the 32-subunit polyglycine, where Function 4 consists of 95% of the total serial RI-MP2/cc-
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pVDZ cost, this algorithm performs with significantly higher parallel efficiency. In the future,
greater improvements are possible with some internal reordering of the intermediate quantities to
reduce the number of seeks.

Figure 4.1: Strong scaling performance of the RI-MP2 parallel algorithm presented herein for
polyglycines using the cc-pVDZ AO basis set. The overall speedup is plotted on the left, whereas
the speed increase for Function 4, the formation of the 4-center integrals in the MO basis, is shown
on the right.
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Table 4.2: Growth of the rate-limiting step (Function 4) of RI-MP2 for polyglycines using the cc-
pVDZ AO basis set. Relative cost is between Function 4 and the overall RI-MP2 time when using
one core.

# subunits AO Basis functions Relative Cost of Function 4
4 308 60%
8 592 80%
16 1160 90%
32 2296 95%
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4.4 Applications
RI-MP2 remains one of the most widely used methods for treating moderate to large systems with
noncovalent interactions due to its comparatively low computational scaling and qualitative accu-
racy. Treatment of many large systems is tenable with many current wavefunction-based methods
(particularly ones that are MP2 based) in small AO basis sets. However, the cubic-scaling increase
in the cost of the calculations with the number of basis functions per atom makes approaching the
basis set limit computationally prohibitive for large molecules.

The L7 database201 provides complete basis set estimates (CBS) of coupled cluster and quadratic
configuration interaction with perturbative triples, CCSD(T) and QCISD(T),205 of seven larger
systems with significant dispersion interactions. These systems are as follows201:

• CBH: The octadecane dimer in a stacked parallel conformation.

• GGG: A π stacked guanine trimer arranged as in DNA, where the binding energy of one of
the outer guanine monomers is evaluated.

• C3A: A stacked dimer of circumcoronene and adenine.

• C3GC: The binding energy between circumcoronene and a Watson-Crick hydrogen-bonded
guanine-cytosine dimer.

• C2C2PD: The parallel displaced π stacked coronene dimer.

• GCGC: The binding energy of two guanine-cytosine base pairs that are arranged in a stacked
Watson-Crick hydrogen-bonded arrangement as in DNA.

• PHE: The binding energy of an outer residue of a trimer of phenylalanine residues in a mixed
hydrogen-bonded-stacked conformation.

In the aug-cc-pVDZ AO basis (aDZ)154,178, these systems contain 900-2100 basis functions.
Treatment within the aug-cc-pVTZ (aTZ) basis would require as many as 4000 basis functions, also
causing numerical issues (such as linear dependencies) which continue to prove very problematic,
as noted by the authors of the L7 database. Therefore, we restrict our analysis to the results in the
aug-cc-pVDZ basis. While this basis set in known to be too small to permit generally reliable MP2
calculations, it is one of the basis sets in which we have already demonstrated greatly improved
performance using attenuated MP2 for a range of small systems181. Therefore, the following tests
on the much larger L7 systems will allow an assessment of whether the improved performance of
the attenuated MP2(terfc,aug-cc-pVDZ) method relative to MP2/aug-cc-pVDZ still holds in the
large-molecule limit.

Timings and energies for the L7 database are found in Tables 4.3 and 4.4 without counterpoise
corrections37 for the monomer energies. Using 64 cores, the computational cost of evaluating the
RI-MP2 energies is less than 10-40% of the cost of the corresponding HF/aDZ calculations. This
is somewhat surprising given the substantive size of these systems and the fifth-order scaling of
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Table 4.3: Timings for the L7 database using RI-MP2/aDZ with 64 cores.

System AO Basis Functions SCF time (hrs) Function 4 time (hrs) RI-MP2 time (hrs) % Cost RI-MP2 vs. SCF
CBH 1512 1.59 0.16 0.58 36%

C2C2PD 1320 6.45 0.10 0.46 7%
C3A 1679 13.80 0.36 1.37 10%
PHE 1413 2.84 0.18 0.61 20%

GCGC 1054 1.20 0.04 0.21 18%
GGG 894 0.61 0.02 0.10 17%
C3GC 1931 13.64 0.72 2.50 18%

Table 4.4: Energies for the L7 database and error metrics, including root-mean-squared devia-
tions (RMSD), mean signed errors (MSE), mean unsigned errors (MUE), and maximum deviations
(MAX) in kcal/mol.

System Reference MP2/CBS RI-MP2(terfc, aDZ) RI-MP2/aDZ MP2.5/CBS
CBH -11.06 -11.92 -10.68 -22.31 -10.88

C2C2PD -24.36 -38.98 -24.18 -58.90 -22.80
C3A -18.19 -27.54 -20.27 -43.46 -17.85
PHE -25.76 -26.36 -25.63 -33.38 -25.46

GCGC -14.37 -18.21 -15.37 -32.58 -13.41
GGG -2.40 -4.36 -2.84 -9.81 -2.34
C3GC -31.25 -46.02 -32.92 -72.18 -30.40
RMSD – 8.78 1.10 24.14 0.79
MSE – -6.57 -0.64 -20.75 0.61
MUE – 6.57 0.84 20.75 0.61
MAX – 14.77 2.08 40.93 1.56

RI-MP2; however, closer examination reveals that fifth-order costs have been reduced to less than
30% of the overall RI-MP2 computational cost through efficient parallelization.

Let us now turn to the performance of the RI-MP2(terfc, aDZ) method. While RI-MP2/aDZ
reproduces the sign of these interaction energies, basis set related error can be as much as 26
kcal/mol relative to the CBS estimates from the original database. By contrast, the computation-
ally affordable RI-MP2(terfc, aDZ) method reproduces the L7 reference values quite well with a
root-mean-squ deviation (RMSD) of 1.10 kcal/mol, 95% lower than that of RI-MP2/aDZ (24.1
kcal/mol) with essentially identical computational cost. The best method from the L7 database,
MP2.5, has an RMSD of 0.79 kcal/mol on this database at the cost of sixth-order computation (for
the MP3 energy), and was also evaluated towards the CBS limit.

Goerigk et al.202 have recently reported CCSD(T)/CBS estimates for ten conformers of two
model tetrapeptides, noting that limited basis MP2 frequently reorders relative conformational
energetics due to basis set effects. Emphasizing the high cost of these systems, the δCCSD(T)
estimates required over eight years of CPU hours. We examined these systems and report timings
and energies in Tables 4.5 and 4.6 within the aDZ and aTZ AO basis sets using RI-MP2 and
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Table 4.5: Timings (in minutes) for RI-MP2/aTZ on the tetrapeptide model conformers with 64
cores.

Ace-AGA-NMe ‡ SCF time Function 4 time RI-MP2 time % Cost RI-MP2 vs. SCF
βa 120 1.5 7 5.8%
αR 183 1.4 9 4.7%

PP-II 133 1.5 8 5.8%
αL 183 1.5 9 4.9%
β 127 1.5 7 5.9%

Ace-ASA-NMe§ SCF time Function 4 time RI-MP2 time % Cost RI-MP2 vs. SCF
βa 176 2.4 11 6.4%
αR 252 2.4 13 5.3%

PP-II 190 2.4 12 6.4%
αL 248 2.3 13 5.2%
β 182 2.4 11 6.2%

Table 4.6: Energies for the tetrapeptide model conformers (relative to βa) and root-mean-squared
deviations.

Ace-AGA-NMe MP2/aDZ MP2/aTZ MP2(terfc, aDZ) MP2(terfc, aTZ) MP2/CBS CCSD(T)/CBS ¶

βa 0 0 0 0 0 0
αR -3.79 -1.81 0.37 0.28 0.10 0.57

PP-II 0.17 1.16 1.10 1.71 1.65 1.05
αL -2.19 -0.14 2.21 2.08 1.70 1.91
β 1.84 2.03 2.10 2.22 2.06 2.03

RMSD 3.03 1.57 0.19 0.38 0.40 –

Ace-ASA-NMe MP2/aDZ MP2/aTZ MP2(terfc, aDZ) MP2(terfc, aTZ) MP2/CBS CCSD(T)/CBS
βa 0 0 0 0 0 0
αR -3.24 -1.37 0.73 0.63 0.53 1.05

PP-II 1.60 2.55 2.67 3.16 3.13 2.63
αL -2.08 -0.02 2.17 2.13 1.74 1.79
β 2.58 2.76 2.66 2.90 2.80 2.65

RMSD 2.93 1.51 0.25 0.40 0.37 –

the corresponding attenuated methods. Surprisingly, the cost of RI-MP2/aTZ is universally less
than 10% of the corresponding SCF/aTZ calculation using 64 cores. The attenuated methods,
RI-MP2(terfc, aDZ) and RI-MP2(terfc, aTZ), show much higher fidelity with the CCSD(T)/CBS
estimates than their unattenuated counterparts, supporting that ansatz as one capable of remedying
deficiencies in limited basis MP2 results. In fact, the best performing RI-MP2(terfc, aDZ) has an
error that is 94% smaller than that of RI-MP2/aDZ and even outperforms MP2/CBS.
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4.5 Conclusions
The shared memory multiprocessor algorithm detailed in this paper efficiently parallelizes the
the evaluation of the RI-MP2 energy, with a parallel speedup that increases in efficiency with
system size. Using this algorithm, we have been able to provide energies for large, noncovalently
interacting systems, including the L7 database201 and the model tetrapeptides of Goerigk et al.202.

Our main conclusions follow:

1. The RI-MP2 algorithm of this work shows a parallel efficiency that increases with system
size, as demonstrated by test calculations on a series of linear polyglycine chains. We recom-
mend use of entire machines (or an entire node for multi-node systems) during application
of the RI-MP2 algorithm presented herein to large molecules, in order to minimize disk read
operations. Smaller systems will receive less benefits from extensive parallelization.

2. For the size regime of our application systems, we have found that RI-MP2/aDZ costs less
than 40% of the underlying SCF calculations. For RI-MP2/aTZ on the tested tetrapeptides,
this algorithm costs less than 10% of the underlying SCF procedure. This relative cost
suggests that routine use can be made of this RI-MP2 algorithm for moderately-sized systems
including 1000-2000 basis functions without any appreciable difficulty.

3. For the L7 database201, the single-parameter attenuated RI-MP2(terfc, aDZ) shows a 95%
reduction in the RMSD relative to RI-MP2/aDZ and an 87% reduction relative to MP2/CBS.
On the model tetrapeptides, the single-parameter attenuated RI-MP2(terfc, aDZ) outper-
forms its unattenuated counterpart by 94% in RMSD, additionally outperforming MP2/CBS
by over 50%. Performance comparable to MP2/CBS is attained by RI-MP2(terfc, aTZ) for
this system. As a means of circumventing the high cost and inherent errors of MP2/CBS
calculations, these results support the usefulness of the combination of this efficient paral-
lel algorithm and the single-parameter attenuated MP2 methods, RI-MP2(terfc, aDZ), and
RI-MP2(terfc, aTZ).
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Chapter 5

Separate Electronic Attenuation Allowing a
Spin-Component Scaled Second Order
Møller-Plesset Theory to Be Effective for
Both Thermochemistry and Non-Covalent
Interactions

5.1 Introduction
Electronic structure theory pursues the solution of the electronic Schrödinger equation, which apart
from relativistic and vibrational effects, is believed to be exact. However, in practice, truncations
in the treatment of electron correlation and in the size of the finite basis set representation are nec-
essary for all but the smallest of systems. While the full configuration interaction limit is usually
completely intractable (although there is exciting progress towards attacking this problem206,207),
the Møller-Plesset perturbation theory6,7 and coupled-cluster methods17,18 provide a systemati-
cally improvable manner for truncating the treatment of correlation.

Second order Møller-Plesset perturbation (MP2) theory provides a simple and qualitatively ac-
curate estimate of dynamic correlation, particularly for closed shell organic and biological molecules,
although it cannot be recommended for open shell systems when there is significant spin contam-
ination208, or an orbital instability209. For some intermolecular interactions, such as hydrogen-
bonded clusters172,210,211, MP2 can be exceedingly accurate, although the correlation energy ex-
hibits only N−1 algebraic convergence with basis set size212. By contrast with hydrogen-bonding,
due to its often inaccurate C6 values127, MP2 tends to strongly overestimate intermolecular inter-
actions containing π-stacking motifs145,146,213,214.

Since MP2 errors such as finite basis truncation errors appear systematic, there have been many
attempts to semi-empirically modify MP2 theory to better approximate the exact, nonrelativistic
limit, beginning with simply scaling the MP2 correlation energy105,141. It has turned out to be
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far more effective to separately scale the two different spin-components of the MP2 energy, as
first advocated by Grimme106,117. Spin-component scaling of the MP2 correlation energy (SCS-
MP2) has been shown to significantly improve many types of MP2 reaction energies107–109,215.
SCS-MP2 scales the opposite and same spin correlation components with cOS = 6

5 and cSS = 1
3

according to:

EOS = ∑
ia jb

(ia| jb)2

εi + ε j− εa− εb
(5.1)

ESS = ∑
ia jb

(ia| jb) [(ia| jb)− (ib| ja)]
εi + ε j− εa− εb

(5.2)

ESCS-MP2 = cOSEOS + cSSESS (5.3)

The SCS-MP2 approach, whilst semi-empirical in practice, can also be justified based on a
redefinition of the zero order Hamiltonian111,112. It was also discovered that completely dropping
the same-spin term, to define the scaled opposite spin MP2 (SOS-MP2) approach120 performed
essentially as well as SCS-MP2 for thermochemistry. SOS-MP2 has the advantage of requiring
only fourth order computation (or less120,123,213) for both energy and gradient122, rather than the
standard fifth order computation of MP2 or SCS-MP2.

Further work focusing on SCS-MP2 for intermolecular interactions has shown that significantly
improved performance for noncovalent interactions is possible with different parameterizations,
such as the spin-component scaled MP2 for molecular interactions method, SCS(MI)-MP2116,
and alternatives113. These methods provide significant improvements at no additional cost, but
the optimized scaling parameters (for example, in SCS(MI)-MP2, cOS = 0.40 and cSS = 1.29) are
considerably different. The fact that the optimal SCS-MP2 parameters for thermochemistry and
non-bonded interactions have values that are nearly reversed suggests that116 “the MP2 descrip-
tion of bond energies contains a systematically underestimated opposite spin-component and a
simultaneously overestimated same spin-component, while the reverse appears generally true for
intermolecular interactions.”

There have been other extensions of the SCS approach as reviewed elsewhere110. These in-
clude successful extensions of the SCS and SOS approaches to excited states216,217, within the
CIS(D) and CC2 frameworks218,219. Additionally, there has been ongoing benchmarking144, fur-
ther improvements in SCS-MP2 for intermolecular interactions114, and the successful extension of
SCS approaches to higher order coupled cluster methods118,119, and double hybrid density func-
tional theory115. However, regardless of all this progress, the problem of incompatible scaling
parameters for bonded vs non-bonded interactions makes the general purpose use of SCS-MP2
methods problematical.

Attenuated MP2 is a recent development181,195 that takes a different, complementary, approach
to semi-empirically improving finite basis MP2 theory for non-covalent interactions. MP2 strongly
overestimates π-stacking interactions due to its dependence on uncoupled Hartree-Fock polariz-
abilities. Outside of the complete basis set limit, MP2 also possesses significant basis set super-
position error177,202, which increases the overestimation of non-covalent interactions. Since both
these errors have the same sign, they can be significantly compensated by attenuating the strength
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of electron-electron correlations as a function of distance. Of course the attenuation protocol will
be specific to a given choice of basis set. Attenuated MP2 was parametrized for the aug-cc-pVDZ
(henceforth aDZ) and aug-cc-pVTZ (aTZ) basis sets154, with reductions of several hundred per-
cent in the RMS errors for intermolecular interactions relative to MP2 theory in the same basis
set.

In detail, attenuated MP2 works by modifying the Coulomb operator within the two-electron
integrals (Equation 5.4 and 6.3) such that the short-range component is preserved whilst the long-
range component goes to zero. The range-separation function is chosen to be the complementary
terf function (Equation 6.3), which optimally preserves the short-range behavior of the Coulomb
operator153.

(ia| jb) =
∫ ∫

φi(r1)φa(r1)
terfc(r12,r0)

r12
φ j(r2)φb(r2)dτ1dτ2 (5.4)

terfc(r,r0) =
1
2

(
erfc

[
(r− r0)

r0
√

2

]
+ erfc

[
(r+ r0)

r0
√

2

])
(5.5)

The attenuation parameter for MP2(terfc, aDZ) was optimized as r0 = 1.05Å, whilst for MP2(terfc,
aTZ), r0 = 1.35Å. Additional recent tests of the transferability of these attenuated MP2 methods
to larger systems have been very encouraging220.

Attenuated MP2 for non-covalent interactions represents the opposite of the existing scaling
approaches used to correct the finite basis MP2 treatment of thermochemistry such as in scaling
all correlation (SAC). For SAC-MP2, scaling factors of larger than unity are necessary to com-
pensate for basis set incompleteness and to approximate higher order correlation effects105,141. As
a result, attenuated MP2 methods are not expected to improve MP2 for thermochemistry. In that
sense, attenuated MP2 methods have the same limitation reviewed earlier for SCS-MP2: improved
accuracy for covalent interactions and non-covalent interactions require incompatible (opposite)
modifications of MP2.

The purpose of this work is to propose a new method that combines spin-component scaling
and electronic attenuation in such a way that the resulting method is able to inherit the good per-
formance of SCS-MP2 for bonded interactions, and the good performance of attenuated MP2 for
non-bonded interactions. The price to be paid for this step forwards is that we must increase the
number of semi-empirical parameters from 2 for SCS-MP2 and 1 for attenuated MP2 to 4 for the
combined method. However, this is arguably well worthwhile because the resulting method can
be applied to chemical problems where energy changes involve important bonded and non-bonded
contributions, without the present ambiguity of which parametrization to select.

The rest of the paper is laid out as follows. The approach we take to combine attenuated
MP2 with spin-component scaling is elaborated in Section 6.2, leading to a 4-parameter form for
the SCS-MP2(2terfc, aTZ) energy. The training of the 4 parameters is described in Section 6.3,
which uses the S66 database of non-covalent interactions157 and a non-multireference subset of
the W4-11 benchmark dataset for thermochemistry221. The crucial question of the transferability
of the resulting parameterized method is addressed with an extensive range of independent tests
in Section 5.4, with conclusions that are generally very encouraging, as we finally summarize in
Section 6.5.
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5.2 Methods
Given the very promising results for non-covalent interactions obtained with attenuated MP2 with
the HF/aTZ reference, we will employ that basis set. We are then confronted with the question
of how attenuation can be employed to design a spin-component scaled method that performs
simultaneously well for both bonded and non-bonded interactions. We have designed a relatively
simple proposal that is based on the following three observations.

First, since bonded interactions occur on a shorter length-scale, we will attenuate them with a
shorter length scale, r(1)0 , than the longer attenuation length, r(2)0 , associated with non-bonded inter-
actions. Second, given the SCS-MP2 scaling parameters for thermochemistry (cOS = 6

5 , cSS = 1
3 ),

and the nearly equal success of SOS-MP2 for thermochemistry, we expect that the opposite-spin
MP2 correlation energy can be entirely attenuated on the bonded length scale, r(1)0 . Third, given
the existing SCS(MI)-MP2 parameters for non-bonded interactions (cOS = 0.40, cSS = 1.29), and
the nearly equal success of SSS(MI)-MP2 for non-bonded interactions113,116, we expect that the
same-spin MP2 correlation energy should be associated with the length scale, r(2)0 for non-bonded
interactions. To accomplish this cleanly we must subtract the (smaller) same spin contribution as-
sociated with the bonded interaction length scale, to avoid double-counting contributions included
in the opposite spin term. Each of the two resulting spin components will then be scaled.

The resulting method, spin-component scaled separately attenuated MP2, or, SCS-MP2(2terfc,
aTZ), has two non-linear attenuation parameters (r(1)0 ,r(2)0 ), which enter the two-electron integrals
in EOS and ESS through Eqs. 5.4 and 6.3. Additionally there are two linear coefficients scaling
the separately attenuated same and opposite spin correlation energies. Thus the 4-parameter SCS-
MP2(2terfc, aTZ) model is:

E = cOSEOS(r
(1)
0 )+ cSS

[
ESS(r

(2)
0 )−ESS(r

(1)
0 )
]

(5.6)

The spin-component scaling approach described above has been implemented in a development
version of Q-Chem156,204, which was used for all calculations reported here. SCF calculations are
converged to 10−10 Hartree using integral thresholds of 10−14. Correlation calculations use the
frozen core and resolution of the identity approximations.

5.3 Training
We choose as training sets the S66 database of noncovalent interactions157 and a non-multireference
subset of the W4-11 benchmark dataset for thermochemistry221, including atomization energies,
bond dissociation energies, heavy-atom transfers, isomerization energies, and nucleophilic substi-
tution reactions. We employ an objective function constructed from root-mean-squared deviations
(RMSDs), as shown in Equation 5.7 below, on the S66 and W4-11 databases as weighted by the
average interaction energy of the two databases:

RMSDWeighted =
|E|W4-11RMSDS66 + |E|S66RMSDW4-11

|E|W4-11 + |E|S66
(5.7)
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We determine the optimal non-linear attenuation lengths, r(1)0 and r(2)0 , simultaneously to a
resolution of 0.05Å based on explicitly evaluating the energies on a 2-d grid of that spacing. We
report the linear spin component scaling coefficients to two significant figures. The dependence of
our objective function upon the attenuation parameters, r(1)0 and r(2)0 , is shown in Figure 5.1. In this
figure, optimal spin-components scaling coefficients are determined separately at each grid point.
The optimal attenuation parameters were determined to be r(1)0 = 0.75Å, and r(2)0 = 1.05Å while
the optimal scaling coefficients were found to be cOS = 1.27 and cSS = 4.05 for opposite and same-
spin correlation energies. The high same-spin scaling coefficient stems from the removal of the
short-range (r(1)0 ) same-spin correlation energy in Equation 5.6.

The results for SCS-MP2(2terfc, aTZ) on the W4-11 non-multireference training set are shown
in Table 5.1. SCS-MP2(2terfc, aTZ) performs best, with an RMS error roughly one third lower
than regular MP2/aTZ. This result is just slightly better than the improvement seen with the stan-
dard (unfitted) SCS-MP2/aTZ method. SCS-MP2(2terfc, aTZ) outperforms SCS-MP2/aTZ on the
atomization, isomerization, and bond dissociation subsets, while the error is increased on the nu-
cleophilic substitution subset. By contrast, and more or less as expected, MP2(terfc, aTZ) degrades
MP2/aTZ for atomization energies, though it yields a very slight improvement of 0.3 kcal/mol in
the overall RMS error relative MP2/aTZ.

Table 5.1: Error statistics on the W4-11 non-multireference training set versus W4 benchmarks (in
kcal/mol) with root mean-squared deviations (RMSD) for the total atomization energies (TAE),
bond dissociation energies (BDE), heavy atom transfers (HAT), isomerization energies (ISO),
and nucleophilic substitution reaction (SN) subsets, with total RMSD, mean-signed error (MSE),
mean-unsigned error (MUE), and maximum error (MAX)

MP2/aTZ SCS-MP2/aTZ MP2(terfc, aTZ) SCS-MP2(2terfc, aTZ)
TAE 8.33 5.96 8.59 4.80
BDE 7.79 5.92 6.68 5.54
HAT 6.89 4.75 6.41 4.86
ISO 3.32 1.88 3.02 1.76
SN 4.57 0.87 4.80 2.02

Total 7.29 5.16 6.97 4.79
MSE -1.69 0.10 -1.33 -0.63
MUE 5.59 3.57 5.46 3.38
MAX 25.73 22.15 24.34 20.09

The performance for SCS-MP2(2terfc, aTZ) on the S66 training set is shown in Table 5.2. It is
evident that the design we have chosen for SCS-MP2(2terfc, aTZ) is capable of slightly bettering
the already outstanding performance of MP2(terfc, aTZ), which has an RMS error roughly 6 times
smaller than unmodified MP2/aTZ. SCS-MP2(2terfc, aTZ) performs equally well on all the subsets
examined, reducing overall root mean-squared deviation, mean signed error, mean unsigned error,
and maximum error relative to MP2(terfc, aTZ). SCS-MP2/aTZ itself has an RMS error roughly
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Figure 5.1: Weighted RMSD (kcal/mol) on S66 and W4-11 benchmark databases, as defined in
Equation 5.7, evaluated as a function of the bonded attenuation length, r(1)0 , and the non-bonded

attenuation length, r(2)0 . At each point the optimal linear coefficients are determined to obtain the

value of the objective function. Note that the domain where r(1)0 ≥ r(2)0 is forbidden in Equation

5.7. The best values of r(1)0 and r(2)0 lie in a narrow valley with the minimum at r(1)0 = 0.75Å, and

r(2)0 = 1.05Å
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2.5 times smaller than MP2/aTZ, but it is between 2 and 3 times larger than MP2(terfc, aTZ) and
SCS-MP2(2terfc, aTZ).

Table 5.2: Error statistics on the S66 database versus CCSD(T)/CBS benchmarks (in kcal/mol)
with root mean-squared deviations (RMSD) for the hydrogen-bonded (H-bonds), dispersion-
bonded (disp.), and mixed subsets, with total RMSD, mean-signed error (MSE), mean-unsigned
error (MUE), and maximum error (MAX)

MP2/aTZ SCS-MP2/aTZ MP2(terfc, aTZ) SCS-MP2(2terfc, aTZ)
H-Bonds 0.506 0.585 0.176 0.174

Disp. 2.197 0.765 0.274 0.235
Mixed 1.380 0.503 0.293 0.270
Total 1.533 0.632 0.251 0.228
MSE -1.229 -0.138 -0.068 -0.015
MUE 1.229 0.481 0.208 0.182
MAX 3.665 1.462 0.521 0.516

5.4 Tests
Since this spin-component scaled method is based upon an ansatz originally designed for long-
range interactions, capturing the performance of spin-component scaled MP2 for thermochem-
istry is a necessary starting point for transferability tests. Figure 5.2 presents the behavior of
MP2/aTZ, SCS-MP2/aTZ, MP2(terfc, aTZ) and SCS-MP2(2terfc, aTZ) for the G2/97222 and
MGAE109131,223 sets of atomization energies and the HTBH38/08131,223 and NHTBH38/08131,223

sets of barrier height energies. For the G2/97 and MGAE109 sets, where spin-component scaling
significantly improves MP2/aTZ, SCS-MP2(2terfc, aTZ) outperforms SCS-MP2/aTZ and MP2/aTZ.
For the barrier height datasets, where SCS-MP2/aTZ slightly degrades MP2/aTZ, we find slight
degradation relative to MP2/aTZ but to a lesser extent for SCS-MP2(2terfc, aTZ). These results
suggest SCS-MP2(2terfc, aTZ) exhibits a similar level of transferability as SCS-MP2 for thermo-
chemistry for similar reasons.

The behavior of SCS-MP2(2terfc, aTZ) for noncovalent interactions is shown in Figure 5.3.
The databases presented are the S22 database of intermolecular interactions145,161, the relative
energetics of 76 conformers of small tripeptides (denoted herein P76)163, several relative confor-
mational energetics databases from the GMTKN30132, including alkanes (ACONF)169, cysteine
(CYCONF)171, and sugars (SCONF)170,185, and sulfate-water cluster conformers with both rela-
tive and binding energies, SW49(rel) and SW49(bind)172,186,187.

For non-covalent databases where SCS-MP2/aTZ outperforms MP2/aTZ (the S22, P76, ACONF,
and SW49(rel) databases), SCS-MP2(2terfc, aTZ) exceeds or matches SCS-MP2/aTZ. When
MP2(terfc, aTZ) significantly outperforms SCS-MP2/aTZ (the S22, ACONF, SCONF, and
SW49(bind) databases), SCS-MP2(2terfc, aTZ) matches this behavior. SCS-MP2(2terfc, aTZ) is
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Figure 5.2: Root-mean-squared-deviations (RMSDs) in kcal/mol for MP2/aTZ, SCS-MP2/aTZ,
MP2(terfc, aTZ), and SCS-MP2(2terfc, aTZ) for thermochemistry datasets
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the best method for the S22, CYCONF, and SW49(bind) databases. The SCONF database shows
a low RMSD for all methods (≤ 0.5 kcal/mol) except for SCS-MP2/aTZ, which appears to be
quite unfavorable. In this instance, MP2(terfc, aTZ) performs best while SCS-MP2(2terfc, aTZ)
deviates slightly. When spin-component scaling degrades MP2/aTZ for the SW49(bind) databases,
SCS-MP2(2terfc, aTZ) also deviates from MP2(terfc, aTZ), though in a favorable manner.

The error in the MP2 estimate of binding energies for noncovalent interactions grows non-
linearly with system size. As a test of this behavior, we examined the L7 database201, which
contains seven large dispersion-bound complexes which were examined at the CCSD(T)/CBS or
QCISD(T)/CBS level of theory. These include the octadecane dimer (CBH), the guanine trimer
(GGG), the circumcoronene adenine dimer (C3A), the circumcoronene Watson-Crick guanine-
cytosine dimer (C3GC), the parallel-displaced coronene dimer (C2C2PD), stacked Watson-Crick
guanine-cytosine dimers (GCGC), and the phenylalanine trimer (PHE). Using the resolution of the
identity and dual basis approximations224, these systems were tabulated at the aug-cc-pVTZ level
with results summarized in Table 5.3. The high error of MP2/aTZ is reduced through attenuation
and spin-component scaling. It is noteworthy that SCS-MP2(2terfc, aTZ) reduces the RMS errors
of both SCS-MP2 and SCS(MI)-MP2 by approximately a factor of two.

SCS-MP2(2terfc, aTZ) does not reproduce the L7 benchmarks as reliably as MP2(terfc, aTZ),
due primarily to a systematic relative underbinding (compare the mean-signed error). The un-
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Figure 5.3: Root-mean-squared-deviations (RMSDs) kcal/mol for MP2/aTZ, SCS-MP2/aTZ,
MP2(terfc, aTZ), SCS-MP2(2terfc, aTZ), and MP2/CBS∗for noncovalent interaction database
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derbinding likely stems from the harsher attenuation of the same-spin correlation within SCS-
MP2(2terfc, aTZ) (where r(2)0 = 1.05Å) than in MP2(terfc, aTZ) (where r0 = 1.35Å). This suggests
that a long-range correction to the SCS-MP2(2terfc, aTZ) method might be a useful addition in the
future.

The atomization energies of linear alkane chains are poorly treated by MP2 in a limited ba-
sis set relative to W4/quasi-W4 estimates225. Errors in total atomization energies for MP2 and
SCS-MP2 in the aug-cc-pVTZ and aug-cc-pVQZ (aTZ and aQZ) basis sets, MP2(terfc, aTZ), and
SCS-MP2(2terfc, aTZ) are plotted in Figure 5.4. Neither attenuated nor spin-component scaling
alone ameliorates the increase in error with system size, but encouragingly, SCS-MP2(2terfc, aTZ)
exhibits behavior much more consistent with MP2/aQZ and SCS-MP2/aQZ.

5.5 Conclusions
This work reported a spin-component scaled separately attenuated MP2 method within the aug-
cc-pVTZ basis, denoted as SCS-MP2(2terfc, aTZ). We optimized the attenuation parameters and
scaling coefficients using the W4-11 database of thermochemistry reactions and S66 database of
noncovalent interactions to find attenuation parameters of 0.75 and 1.05Å and scaling coefficients
of 1.27 (cOS) and 4.05 (cSS). We have tested this method against MP2/aTZ, SCS-MP2/aTZ, and
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Table 5.3: Performance for MP2/aTZ variants versus L7 benchmarks (in kcal/mol) with root mean-
squared deviation (RMSD), mean-signed error (MSE), mean-unsigned error (MUE), and maxi-
mum error (MAX)

System Referencea MP2/CBSa MP2/aTZ SCS-MP2/aTZ SCS-MI-MP2/aTZb MP2(terfc, aTZ) SCS-MP2(2terfc, aTZ)
CBH -11.06 -11.92 -15.71 -11.83 -10.95 -8.39 -7.94

C2C2PD -24.36 -38.98 -45.03 -33.79 -33.72 -21.27 -18.94
C3A -18.19 -27.54 -32.85 -25.18 -25.00 -17.11 -15.69
PHE -25.76 -26.36 -29.65 -26.25 -27.44 -24.82 -24.60

GCGC -14.37 -18.21 -24.83 -18.59 -17.32 -14.63 -13.85
GGG -2.40 -4.36 -6.99 -4.66 -3.65 -2.65 -2.23
C3GC -31.25 -46.02 -54.95 -41.66 -41.60 -28.86 -26.65
RMSD 0.00 8.78 14.00 6.21 6.03 1.87 3.12
MSE 0.00 -6.57 -11.80 -4.94 -4.61 1.38 2.50
MUE 0.00 6.57 11.80 4.94 4.65 1.52 2.50
MAX 0.00 14.77 23.70 10.41 10.35 3.09 5.42

aReference and MP2/CBS values obtained from the Benchmark Energy and Geometry DataBase2

bObtained using cOS = 0.29 and cSS = 1.46

MP2(terfc, aTZ) on a range of thermochemistry datasets and intermolecular and intramolecular
interaction datasets. Our conclusions from these tests are as follows.

1. SCS-MP2(2terfc, aTZ) performs favorably when spin-component scaling improves MP2/aTZ
for thermochemistry. When SCS-MP2/aTZ degrades MP2/aTZ results, SCS-MP2(2terfc,
aTZ) outperforms SCS-MP2/aTZ, which suggests that SCS-MP2(2terfc, aTZ) exceeds SCS-
MP2/aTZ in transferability.

2. For noncovalent interactions, SCS-MP2(2terfc, aTZ) typically matches MP2(terfc, aTZ)
quality. On all but the SW49(rel) database, SCS-MP2(2terfc, aTZ) reduces MP2/CBS RMSDs
for noncovalent interactions at a fraction of the cost.

3. SCS-MP2(2terfc, aTZ) and MP2(terfc, aTZ) reproduce benchmark values for the L7 database
of large, noncovalent interactions with significantly higher fidelity than MP2/aTZ and
MP2/CBS, surpassing MP2/CBS RMSDs by at least 5 kcal/mol.

4. The poor behavior of MP2 for total atomization energies of linear alkanes in a limited basis
(aTZ) is not ameliorated by spin-component scaling or attenuation, though SCS-MP2(2terfc,
aTZ) performs similarly to MP2/aQZ results.

5. For limited basis studies of mixed interactions and chemical problems, SCS-MP2(2terfc,
aTZ) reproduces the improvements of SCS-MP2 for thermochemistry while frequently match-
ing or outperforming MP2/CBS results for noncovalent interactions.

6. There are a variety of interesting possible future developments. The formulation in terms
of attenuated MP2 components permits the development of lower-scaling algorithms; and
investigation of either long-range corrections, and/or development of a double hybrid density
functionals based upon this approach appear interesting.
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Figure 5.4: Growth of error in atomization energy (kcal/mol) as a function of alkane size
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Chapter 6

Convergence of attenuated MP2 to the
complete basis set limit: Improving MP2 for
long-range interactions without basis set
incompleteness

6.1 Introduction
Systematically approximating the electronic Schrödinger equation to generate a chemical model3

requires truncation by level of excitation (i.e. number of occupied-virtual substitutions) as well
as use of a finite basis set capable of efficiently representing the wavefunction or density1. The
simplest correction to the Hartree-Fock reference is second-order Møller-Plesset perturbation the-
ory6,7 (MP2). While MP2 in large basis sets can be impressively accurate for many systems such
as hydrogen bonded complexes172,210,211, slow convergence of the MP2 correlation energy to the
complete basis set (CBS) limit, O(N−1) for N atomic basis functions212, can make attaining the
MP2/CBS limit difficult if not computationally untenable201. Exciting progress toward solving
this problem has been made using local correlation schemes and explicitly correlated wavefunc-
tions139,140, and adequately addressing basis set incompleteness and related effects on finite-basis
correlation calculations remains an area of active inquiry158,173,177,201,202,226.

The inaccurate physics encoded in MP2 for long-range dispersion-dominated interactions through
poor C6 coefficients125,127 means that MP2 treats many π-stacking and π−π complexes extremely
poorly145,146,213,214. These systematic overestimations can be partially corrected through semi-
empirical scaling105,141, and other inaccuracies are addressed through spin-component scaling of
the MP2 correlation energy106–109,111,112,117,120,122,123,213,215. However different spin-component
scaling parameters result when they are optimized for intermolecular interactions113,114,116. Fur-
ther improvements have been gained through mixing of density functional theory (DFT) exchange
and correlation functionals with HF exchange and second order perturbation theory (PT2) corre-
lation to produce double hybrid density functionals52,53,143, which occasionally incorporate spin-
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component scaled PT2 contributions115.
The fundamental inaccuracies of finite-basis MP2 calculations stem from overestimation of

long-range interactions due to errors in the effective C6 coefficients125 and from finite basis effects
which require the use of correction schemes, most commonly the counterpoise correction scheme
of Boys and Bernard227. There is some dispute as to whether this is optimal226, and other schemes
such as averaging the counterpoise corrected energy and uncorrected energy are in common use228.
An alternative approach for BSSE in HF and DFT is the geometric counterpoise correction (gCP)
of Kruse et al162,229, which tabulates a parametrized correction for basis set superposition error.
This method is particularly useful for intramolecular BSSE, which has no trivial, formally exact
correction. Together with the -D3 dispersion correction58, the composite method B3LYP-gCP-
D3/6-31G* has produced promising results for limited basis studies of large systems229.

The convergence of the HF energy with basis set is approximately exponential, with triple-
zeta quality basis sets capturing reasonable portions of the CBS limit in practice. Correlation
energies, on the other hand, converge only as N−1 for N atomic basis functions. The most popular
Gaussian basis sets, the Pople-style basis sets21, are commonly augmented with diffuse22,23 and
polarization24 functions to improve the quality of the basis for molecular energies and properties.
Correlation consistent polarized valence basis sets, styled cc-pVXZ (hereafter XZ) for cardinal
number X, from Dunning, et al25–31 are designed to systematically approach the complete basis
set limit, allowing the use of basis set extrapolation schemes32,230.

Ecorr
XY =

Ecorr
X X3−Ecorr

Y Y 3

X3−Y 3 (6.1)

The Dunning style basis sets also are commonly augmented with diffuse functions, denoted aug-
cc-pVXZ (hereafter aXZ). Similarly, the latest generation Karlsruhe basis sets231, such as def2-
SVPD or def2-TZVPPD, are designed for efficient reproduction of atomic polarizabilities, with a
select number of diffuse functions added and tuned appropriately. Since different chemical motifs
and desired accuracies require different basis sets, the cardinal number and number of diffuse
functions are chosen per problem and method. For calculations involving ions, the response to
electric or magnetic fields, or energies and structures of van der Waals complexes, diffuse basis
functions are essential for correlation calculations. Since these functions significantly increase the
cost of the overall calculation —common correlation methods scale O(N4) with N atomic basis
functions —in practice many computations use mixed basis sets, only including diffuse functions
on heavy atoms232 or on every other heavy atom188. One systematic approach to this increase in
diffuse functions is that of Papajak et. al.233, who generate a series of diminishingly augmented
basis sets from the standard Dunning-style basis sets through the removal of diffuse functions.
These “calendar” basis sets allow selective and systematic inclusion of diffuse basis functions for
calculations balancing cost and performance.

One recent methodological development for addressing both sources of error for finite basis
MP2 is attenuated MP2181,195. Attenuated MP2 partitions the Coulomb operator of two-electron
integrals into short- and long-range portions, retaining only the short-range contributions to the
correlation energy. This partitioning resembles the range-separation as used in the complete at-
tenuated Schrødinger equation88–90 and range-separated hybrid density functionals84,85. By only
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preserving short-range correlation, attenuated MP2 removes the long-range errors of finite basis
MP2 (BSSE and over-estimated C6 coefficients), as well as all true long-range correlation.

Perhaps remarkably, attenuated MP2 is very effective. The single attenuation length, r0, has
been parametrized for the aDZ181 and aTZ195 basis sets. The resulting methods are denoted as
MP2(terfc, aDZ) and MP2(terfc, aTZ), since the r0 parameter derives from terfc attenuation153

of the correlation energy. They often outperform MP2/CBS estimates of intermolecular and in-
tramolecular interactions. For example, tests for large systems show MP2(terfc, aDZ) and MP2(terfc,
aTZ) reduce MP2 errors of 20-30 kcal mol−1 on the coronene dimer195,220,234 to within 2-4 kcal
mol−1 of the best available calculations188,201,214.

An extension has defined a transferable spin-component scaled, attenuated MP2 for bonded
and nonbonded interactions, SCS-MP2(2terfc, aTZ)234, and further work has paired attenuated
MP2 with the long-range dispersion energy from time-dependent Kohn-Sham density functional
theory to form the attenuated MP2C method235, which has significant promise for modeling in-
termolecular interactions with high accuracy for comparatively low cost. Additionally, it has re-
cently been discovered that attenuated MP2, despite completely omitting long-range dispersion,
correctly describes the long-range correlation contributions of most noncovalent complexes of
dipolar molecules, including the water-dimer236. This is because the dominant long-range cor-
relation contribution is the correction of mean-field overestimates of the dipole-dipole interaction,
which attenuated MP2 does capture.

Following these developments in finite basis attenuated MP2 methods, this work examines the
behavior of attenuated MP2 as a function of improvements in basis set quality, towards the com-
plete basis set (CBS) limit. As the CBS limit is approached, it becomes possible to assess the
balance between the overestimation of dispersion inherent in MP2/CBS calculations and attenua-
tion of the Coulomb operator, without interference from the presence of BSSE in the HF or MP2
energies. On the other hand, BSSE is already known to play a significant role in the success of
attenuated MP2, as attenuated MP2 works far less well when counterpoise corrections to remove
BSSE are performed than when they are not. We will also examine the effect of augmented func-
tions on the success of attenuated MP2 methods in some detail.

6.2 Methods
Attenuated MP2 partitions the electron-electron interaction, r−1

12 , using smooth, range-dependent
short-range functions, s(r12) and l(r12), such that 1 = s(r)+ l(r). As in previous work181,195, this
function is chosen to be a combination of two error functions, terfc153, with a single parameter, r0.

1
r
=

terf(r,r0)

r
+

terfc(r,r0)

r
(6.2)

terfc(r,r0) =
1
2

(
erfc

[
(r− r0)

r0
√

2

]
+ erfc

[
(r+ r0)

r0
√

2

])
(6.3)

This construction defines a switching distance, r0, around which the attenuated Coulomb operator,
terfc(r,r0)

r , decays.
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All calculations in this work utilize a developmental version of Q-Chem 4.2204. MP2 ener-
gies are computed using the resolution of the identity (RI) approximation237 and the frozen core
approximation. Additionally, the dual basis approximation238–241 was employed for all quadruple
zeta basis sets. For complete basis set estimates, quadruple zeta HF is not extrapolated, but corre-
lation energies are extrapolated using cardinal number230. For consistency, dual basis calculations
were performed for triple-zeta correlation energies for T→Q extrapolation. No counterpoise cor-
rections are performed for any interactions, unless explicitly indicated.

6.3 Training
As in previous work, we chose the S66 database157 for training attenuated MP2 methods. This
database contains CCSD(T)/CBS reference values for a variety of sizes and strengths of inter-
molecular interactions in non-covalently bound complexes at their equilibrium geometries. Before
turning to attenuation of MP2 theory, it is useful to assess the performance of the unmodified MP2
calculations across a range of basis sets to explore the relative importance of basis set incomplete-
ness errors, and inaccurate physics within MP2 itself. Results for unmodified MP2 are presented in
Table 6.1 for a wide range of basis sets. No counterpoise corrections are included, since we would
like to be able to directly transfer the methods (and conclusions) to non-bonded intramolecular
interactions where counterpoise corrections are not possible.

Several interesting points can be made. First, if we compare the first and last lines of Table
6.1, we see that the overall improvement in accuracy between 6-31G* and aTQZ (i.e. augmented
TQ extrapolation) is minimal. The relatively modest performance of aTQZ indicates the significant
intrinsic errors associated with MP2 theory for calculating intermolecular interactions (particularly
dispersion interactions). Despite very large errors at the SCF level, the reasonable performance of
MP2/6-31G* indicates fortuitous cancellation between basis set incompleteness effects at the SCF
and correlated levels, also particularly for dispersion interactions.

The second main point is that there is significant reduction in finite basis set error for SCF
calculations with any inclusion of diffuse functions. However, for small basis sets (e.g. 6-31+G*
or def2-SVPD or aug-cc-pVDZ) this significantly increases the error at the MP2 level when coun-
terpoise corrections are not used. Only for very large basis sets (e.g. extrapolated aTQZ) are the
statistics significantly better. Similiarly, the use of intermediate level of diffuse functions, via the
calendar basis sets of Papajak et al.233 leads to better overall performance than full augmentation.
Thus little or no augmentation is preferable if counterpoise corrections cannot be performed.

Exploring the behavior of attenuated MP2 as a function of basis set size is the main purpose
of this paper. Therefore we have used the S66 dataset to optimize the attenuation parameter,
r0 as function of basis set size for a range of regular and augmented Dunning basis sets, and
the intermediately augmented calendar basis sets of Papajak et al. The optimized results without
extrapolation are summarized in Table 6.2, and for TQ extrapolation, in Table 6.3. Figure 6.1
shows the behavior for attenuated MP2 as a function of r0 for the DZ, aDZ, TZ, aTZ, QZ, aQZ,
TQZ, and aTQZ basis sets. There is much information in this figure and these tables, which we
shall discuss in the following paragraphs.
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0.0

0.5

1.0

1.5

2.0

R
M

SD
(k

ca
lm

ol
−

1
)

aDZ
aTZ
aQZ
aTQZ

Figure 6.1: Root-mean-squared deviation (kcal mol−1) on the 66 intermolecular interactions of the
S66 dataset versus r0/Å for attenuated MP2 with Dunning style basis sets

The first main point is the behavior of the RMS error as a function of basis set size augmen-
tation. With the augmented basis sets, there is essentially no reduction in RMS error beyond the
aTZ basis, with both aQZ and aTQZ showing slightly larger errors. Evidently some component of
BSSE is essential for the remarkable success of attenuated MP2 in the aTZ basis. Still, it is inter-
esting to observe that even at the aTQZ level of theory, the error without attenuation is 240% larger
than with optimal attenuation. So even as the CBS limit is approached, substantial improvements
in MP2 theory are possible with attenuation of the PT2 correction.

By contrast, attenuation in the non-augmented basis sets show significant reduction in RMS
error as basis set is improved. However at all levels the results are much poorer than for attenuation
with augmented functions. For example, MP2(terfc, QZ) has an RMS error that is still more than
40% larger than MP2(terfc, aQZ). While the intermediate calendar augmentations are superior
to no augmentation at all, they fall short of the results using full augmentation at each cardinal
number. The best method on this training data is attenuation in the aTZ basis: MP2(terfc, aTZ).

The second point is that r0 behaves differently for augmented and non-augmented basis sets.
For the augmented Dunning basis sets, r0 increases monotonically from aDZ (1.05Å) to aTZ
(1.35Å) to aQZ (1.50Å) to aTQZ (1.65Å), consistent with reduced attenuation being favored as
BSSE is diminished with increasing basis set size. However, there is no such clear trend in the
dependence of r0 on basis set size for the non-augmented (regular) Dunning basis sets. The inter-
mediate calendar augmentations show intermediate behavior.

We were also curious about whether MP2 in other systematic sequences of basis sets could be
usefully attenuated as well. Results for a number of similar double and triple zeta quality basis
sets are shown in Table 6.4. Comparing against Table 6.2, it is evident that the Dunning style basis
sets generate the best performing attenuated MP2 models. Attenuated MP2 in the Karlsruhe and
Pople-style basis sets yields RMS errors that are comparable to the most similar calendar basis
sets. The relatively short attenuation parameter for the def2-SVPD basis set (r0 = 0.75Å) stems
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from poor performance for underlying MP2/def2-SVPD, which has an RMSD of 4.3 kcal mol−1

on the training set. The optimal attenuation parameters for def2-TZVPPD and 6-311++G** match
that of aTZ (1.35Å), suggesting similar underlying error cancellation. However the RMS error is
nearly 300% larger at the 6-311++G** level and is still nearly 150% larger in def2-TZVPPD.

6.4 Transferability tests
The performance of attenuated MP2 for the ACONF169, CYCONF171, and SCONF170 databases is
presented in Table 6.5. These databases probe the relative energies of different conformers of alka-
nes, cysteine, and sugars, sampling a variety of intramolecular interactions, with CCSD(T)/CBS
or W1h reference values. MP2(terfc, aQZ) performs slightly less well than MP2(terfc, aTZ) with
RMSDs of 0.1 to 0.2 kcal mol−1, across these different systems. MP2(terfc, aTQZ) shows a slight
further degradation relative to MP2(terfc, aQZ), and closely resembles MP2/aTQZ without atten-
uation.

Second, we examine the A24 dataset of 24 small non-covalently bound dimers, with reference
CCSDT(Q)/CBS estimates of binding energies at CCSD(T)/CBS-optimized geometries242. The
binding energies obtained by attenuated MP2 and regular MP2 in the aDZ, aTZ, aQZ, and aT→QZ
basis sets are shown in Table 6.6. MP2(terfc, aTZ) matches the performance of MP2/CBS, as
reported previously. In this case, MP2(terfc, aQZ) and MP2(terfc, aTQZ) outperform all other
methods shown, with root-mean-squared deviations (RMSDs) of 0.137 and 0.138 kcal/mol. The
improvements of MP2(terfc, aQZ) and MP2(terfc, aTQZ) relative to MP2(terfc, aTZ) are primarily
found in reducing overbinding for a few systems, most notably the HCN dimer, which is overbound
by 0.65 kcal/mol by MP2/aTZ and 0.55 kcal mol−1 by MP2(terfc, aTZ).

Finally, we assess attenuated MP2 on the S22145,161 database of intermolecular interactions in
Table 6.7. Since the error in MP2 binding energies grows with system size, significant overestima-
tion of these MP2 binding energies occurs, with mean-signed errors between -2.77 (aDZ) and -0.83
(aTQZ) kcal mol−1. The attenuated MP2 methods provide substantial error reductions relative to
regular MP2 in all basis sets considered. MP2(terfc, aQZ) and MP2(terfc, aTQZ) performs simi-
larly to MP2(terfc, aTZ), with an improved value of the mixed interaction RMSD, even relative to
MP2(terfc, aTZ). MP2(terfc, aTQZ) reduces the RMS error of MP2/aTQZ by 62% and the MSE
by 82%, illustrating again that attenuated MP2 outperforms conventional MP2 as the basis set limit
is approached.

6.5 Conclusions
This work examines the behavior of attenuated MP2 as a function of basis set size, and level of
augmentation with diffuse functions. Our results go as far as T→Q extrapolation of the correlation
energy towards the CBS limit. Our main conclusions are as follows:

1. Systematic progression towards the complete basis set limit suggests an optimal MP2(terfc,
aTQZ) attenuation parameter of 1.65Å, which is on a slightly longer length scale than the
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aDZ (1.05Å), aTZ (1.35Å) or aQZ (1.50Å) results, as anticipated by the removal of long-
range charge transfer-like BSSE.

2. Attenuated MP2 shows well-behaved convergence with cardinal number and level of aug-
mentation. Full inclusion of diffuse functions is clearly advantageous relative to use of
non-augmented Dunning basis sets. Minimally augmented triple zeta basis sets perform
appreciably better than fully augmented double zeta basis sets.

3. The cancellation of MP2/CBS errors by attenuation transfers well across a number of dif-
ferent system types, including intramolecular and intermolecular interactions. Considering
both training, and particularly test cases, MP2(terfc, aQZ) and MP2(terfc, aTQZ) perform
roughly comparably in a statistical sense to MP2(terfc, aTZ), and significantly better than
MP2/CBS. MP2(terfc, aTZ) is recommended due to its far lower computational cost, and if
still not viable, then MP2(terfc, aDZ) is still a tremendous improvement of regular MP2 in
the same basis.
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Table 6.2: Performance (in kcal mol−1) of attenuated MP2 with optimal r0/Å using calendar basis
sets for the S66 database with overall root-mean-squared deviation (RMSD), mean-signed error
(MSE) and mean-unsigned error (MUE), as well as RMSDs for the hydrogen-bonded, dispersion,
and mixed interaction subsets

r0 RMSD HB DISP MIX MSE MUE
RMSD RMSD RMSD

DZ 1.55 1.283 1.933 0.743 0.709 -0.571 0.986
jun-DZ 1.50 0.687 0.784 0.772 0.403 0.118 0.510
jul-DZ 1.25 0.644 0.670 0.797 0.351 0.219 0.484
aDZ 1.05 0.426 0.483 0.311 0.469 0.051 0.325
TZ 1.50 0.604 0.826 0.520 0.326 -0.202 0.465

may-TZ 1.60 0.369 0.311 0.494 0.238 0.064 0.288
jun-TZ 1.45 0.388 0.334 0.526 0.223 0.122 0.296
jul-TZ 1.45 0.378 0.270 0.542 0.221 0.053 0.296
aTZ 1.35 0.251 0.176 0.274 0.293 -0.068 0.208
QZ 1.55 0.379 0.419 0.433 0.240 -0.049 0.305

apr-QZ 1.65 0.301 0.198 0.429 0.208 -0.003 0.237
may-QZ 1.60 0.309 0.214 0.442 0.197 0.029 0.243
jun-QZ 1.55 0.313 0.235 0.441 0.192 0.062 0.244
jul-QZ 1.55 0.315 0.251 0.437 0.187 0.077 0.245
aQZ 1.50 0.265 0.208 0.357 0.187 0.035 0.210

Table 6.3: Performance (in kcal mol−1) of attenuated MP2 with optimal r0/Å using standard Dun-
ning basis sets with T→Q extrapolated complete basis set estimates for the S66 database with
overall root-mean-squared deviation (RMSD), mean-signed error (MSE) and mean-unsigned error
(MUE), as well as RMSDs for the hydrogen-bonded, dispersion, and mixed interaction subsets.

r0 RMSD HB DISP MIX MSE MUE
RMSD RMSD RMSD

TQZ 1.55 0.366 0.376 0.421 0.274 -0.101 0.306
aTQZ 1.65 0.304 0.214 0.440 0.174 0.032 0.237
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Table 6.4: Performance (in kcal mol−1) of attenuated MP2 with optimal r0/Å using Pople-style
and Karlsruhe basis sets for the S66 database with overall root-mean-squared deviation (RMSD),
mean-signed error (MSE) and mean-unsigned error (MUE), as well as RMSDs for the hydrogen-
bonded, dispersion, and mixed interaction subsets

r0 RMSD HB DISP MIX MSE MUE
RMSD RMSD RMSD

6-31g* 1.75 1.063 1.558 0.707 0.605 -0.482 0.873
6-31+g* 1.45 0.916 1.155 0.923 0.507 -0.135 0.747

6-31++g** 1.35 0.720 0.938 0.655 0.453 -0.029 0.585
6-311++g** 1.35 0.741 0.952 0.693 0.466 0.036 0.586
def2-SVPD 0.75 0.493 0.422 0.473 0.584 -0.075 0.407

def2-TZVPD 1.30 0.439 0.577 0.397 0.268 0.138 0.324
def2-TZVPPD 1.35 0.375 0.340 0.479 0.256 0.050 0.294

Table 6.5: Root-mean-squared deviations (RMSDs) in kcal mol−1 for attenuated and unattenuated
MP2 in the augmented Dunning basis sets on intramolecular conformational energetics databases

Database MP2/aDZ MP2/aTZ MP2/aQZ MP2/aTQZ
ACONF 0.305 0.241 0.152 0.100

CYCONF 0.198 0.297 0.295 0.312
SCONF 0.282 0.220 0.313 0.130
Database MP2(terfc, aDZ) MP2(terfc, aTZ) MP2(terfc, aQZ) MP2(terfc, aTQZ)
ACONF 0.289 0.078 0.088 0.092

CYCONF 0.277 0.211 0.249 0.270
SCONF 0.519 0.121 0.129 0.140
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Table 6.7: Statistics for the performance (kcal mol−1) of attenuated and unattenuated MP2 in aDZ,
aTZ, aQZ, and aTQZ basis sets on the 22 intermolecular interactions defining the S22 database
with root-mean-squared deviations (RMSD) for hydrogen-bonded, dispersion, and mixed subsets,
as well as overall RMSD, mean-signed error (MSE), and mean-unsigned error (MUE)

Error metric MP2/aDZ MP2/aTZ MP2/aQZ MP2/aTQZ
H-bonds 1.02 0.73 0.37 0.31

Dispersion 4.60 3.01 2.27 1.86
Mixed 4.75 2.96 2.03 1.52

Overall RMSD 3.909 2.497 1.782 1.406
MSE -2.77 -1.76 -1.16 -0.83
MUE 2.79 1.76 1.18 0.90

Error metric MP2(terfc, aDZ) MP2(terfc, aTZ) MP2(terfc, aQZ) MP2(terfc, aTQZ)
H-bonds 0.98 0.30 0.45 0.50

Dispersion 0.40 0.50 0.49 0.64
Mixed 0.43 0.58 0.42 0.46

Overall RMSD 0.649 0.479 0.451 0.536
MSE 0.25 -0.26 -0.12 -0.15
MUE 0.51 0.37 0.31 0.34
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Chapter 7

Conclusion

7.1 Summary of attenuated MP2 methods
For second-order Møller-Plesset perturbation theory (MP2), small and moderate-sized basis sets
are plagued not only by basis set superposition error, but also by fundamental long-range inaccu-
racies in the MP2 energy expression. The cost of complete basis set (CBS) limit calculations dra-
matically restricts the regime of applicability of MP2 computations, but even then, MP2/CBS often
lacks quantitative accuracy. Attenuated MP2 directly addresses these problems through preserving
only short-range correlation. The previous chapters demonstrate the applicability of attenuated
MP2 for efficiently describing intramolecular and intermolecular interactions.

The cancellation of finite basis set error and methodological inaccuracies by attenuation per-
forms well for the majority of noncovalent interactions, especially in augmented, triple-zeta basis
sets. Attenuated MP2 in any augmented basis reduces MP2/CBS errors on intermolecular interac-
tions by 60-80%, with the improvement growing more dramatic in more extended systems, espe-
cially those involving π-stacking or other van der Waals phenomena. Improvement of MP2/CBS
is more difficult for intramolecular phenomena, but attenuated MP2 is perfectly suited for finite
basis study of these systems, especially when basis set superposition error differs between confor-
mations, rendering finite-basis MP2 woefully inadequate.

As basis set quality increases, the removal of finite basis set error extends the range of the atten-
uated correlation ansatz. Using spin-component scaling, both noncovalent and covalent bonds are
transferably treated with high fidelity, though improving MP2 semi-empirically is fundamentally
limited by neglect of higher order excitations and inadequacies of the underlying reference.

Much work remains to take advantage of the improvements demonstrated by these theories,
namely low-scaling MP2 variants using the increased sparsity of attenuated MP2, as well as double
hybrid density functionals based upon spin-component scaled attenuated MP2. The increased
sparsity of integrals should advantageously be affected by the use of the terfc attenuator, which
more drastically removes long-range terms due to its construction. Despite maintaining the current
scaling of MP2 with system size, the ability to use small basis sets without counterpoise correction
results in cost savings of up to 80% with respect to complete basis set estimates.
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7.2 Future Work

7.2.1 Algorithm design
Given the enhanced sparsity of two-electron integrals included in attenuated MP2, algorithms can
be designed to have improved scaling relative to the fifth-order cost of MP2. A number of pos-
sible directions forward exist, including localized orbitals, atomic-orbital ansätze, and Laplace-
transformed methods. Work should also be done to assess the sparsity of attenuated integrals
based on different range-separation functions and the resulting efficiency in recovering the corre-
lation energy.

7.2.2 Long-range dispersion correction
The clearest direction forward for improving attenuated MP2 is the inclusion of long-range disper-
sion. This correction should result in a more compact attenuated MP2 when paired with one of the
many adequate long-range dispersion corrections. Interesting paths for generating accurate long-
range dispersion energies include VV10, atom-wise dispersion corrections (e.g. XDM, Grimme,
or Tkatchenko-Scheffler), or long-range RPA correlation energies. The principal challenge is the
design of a compatible short-range damping function.

7.2.3 Short-range correlation methods
Alternatively, other short-range correlation methods should be designed and compared. Attenuated
MP2 can be viewed as the perturbation theory resulting from a short-range electron-electron inter-
action. Clear analogies to perturbation theory using a range-separated perturbation are possible,
both in terms of attenuated third-order and fourth-order Møller-Plesset perturbation theory, as well
as attenuated coupled cluster theory.

Separating the Coulomb operator into short- and long-range portions, 1
r = s(r)

r + l(r)
r , short-

range and long-range perturbations, V1 = s(r)
r and V2 = l(r)

r , trivially define double perturbation
theory in terms of different ranges of electronic interactions.

H = H0 +λV1 +µV2 (7.1)

The energies are determined based upon the order of the underlying perturbations (which can
differ) in operator or wavefunction, here (λ,µ).

E(2,0) = 〈ψ(0,0)|V1|ψ(1,0)〉
E(0,2) = 〈ψ(0,0)|V2|ψ(0,1)〉
E(1,1) = 〈ψ(0,0)|V2|ψ(1,0)〉+ 〈ψ(0,0)|V1|ψ(0,1)〉

(7.2)

Thus attenuated MP2 is not a unique choice, not only due to the ambiguity of choice of attenuator,
but also in terms of which terms to preserve to define a short-range MP2. Currently, attenuated
MP2 is defined solely as E(2,0), but easily implementable are variants such as E(2,0) + 1

2E(1,1),
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which contains the entire first-order short-range correction to the wavefunction. For MP2, four
contributions to the energy occur for a given range-separation function. For MP3, each expression
included in the energy now has eight possible combinations of short- and long-range perturbations.
Since any MPn will contain 2n possible contributions for each term in the energy, a simplified
approach is clearly needed, and ongoing work is examining the possible short-range correlation
methods for suitability in modeling covalent and noncovalent compounds. These methods present
the most natural directions for directly improving the short-range correlation energies while still
preserving the locality and simplicity of the method.

7.2.4 Application to weakly interacting systems
Weak interactions in biomolecules frequently are poorly treated by small basis calculations with
correlation methods173,177,243. For all but the most minuscule systems, accurate benchmarks for
structure (even just along critical coordinates) or relative energetics are intractable. Using attenu-
ated MP2, more trustworthy studies can and should be done for moderate sized biomolecules.
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[104] C. Háttig, available for download at ftp://ftp.chemie.uni-karlsruhe.de/pub/cbasen.

[105] M. Gordon and D. Truhlar, J. Am. Chem. Soc., 1986, 108, 5412–5419.

[106] S. Grimme, J. Chem. Phys., 2003, 118, 9095–9102.

[107] S. Grimme, J. Phys. Chem. A, 2005, 109, 3067–3077.

[108] M. Gerenkamp and S. Grimme, Chem. Phys. Lett., 2004, 392, 229–235.

[109] I. Hyla-Kryspin and S. Grimme, Organometallics, 2004, 23, 5581–5592.



78

[110] S. Grimme, L. Goerigk and R. F. Fink, WIREs Comput. Mol. Sci., 2012, 2, 886–906.

[111] A. Szabados, J. Chem. Phys., 2006, 125, 214105.

[112] R. F. Fink, J. Chem. Phys., 2010, 133, 174113.

[113] J. G. Hill and J. A. Platts, J. Chem. Theor. Comput., 2007, 3, 80–85.

[114] I. Grabowski, E. Fabiano and F. Della Sala, Phys. Chem. Chem. Phys., 2013, 15, 15485–
15493.

[115] S. Kozuch and J. Martin, J. Comput. Chem., 2013, 34, 2327–2344.

[116] R. A. DiStasio Jr. and M. Head-Gordon, Mol. Phys., 2007, 105, 1073–1083.

[117] J. Antony and S. Grimme, J. Phys. Chem. A, 2007, 111, 4862–4868.

[118] T. Takatani, E. G. Hohenstein and C. D. Sherrill, J. Chem. Phys., 2008, 128, 124111.

[119] M. Pitonak, J. Rezac and P. Hobza, Phys. Chem. Chem. Phys., 2010, 12, 9611–9614.

[120] Y. Jung, R. C. Lochan, A. D. Dutoi and M. Head-Gordon, J. Chem. Phys., 2004, 121, 9793–
9802.

[121] R. C. Lochan, Y. Shao and M. Head-Gordon, J. Chem. Theor. Comput., 2007, 3, 988–1003.

[122] R. C. Lochan, Y. H. Shao and M. Head-Gordon, J. Chem. Theor. Comput., 2007, 3, 988–
1003.

[123] Y. S. Jung, Y. H. Shao and M. Head-Gordon, J. Comput. Chem., 2007, 28, 1953–1964.

[124] R. C. Lochan, Y. Jung and M. Head-Gordon, The Journal of Physical Chemistry A, 2005,
109, 7598–7605.

[125] A. Szabo and N. S. Ostlund, J. Chem. Phys., 1977, 67, 4351–4360.

[126] P. W. Langhoff, M. Karplus and R. P. Hurst, J. Chem. Phys., 1966, 44, 505–&.

[127] A. Tkatchenko, R. A. DiStasio, Jr., M. Head-Gordon and M. Scheffler, J. Chem. Phys., 2009,
131, 094106.

[128] A. Hesselmann, J. Chem. Phys., 2008, 128, 144112.

[129] M. Piton̆ák and A. Heßelmann, J. Chem. Theory Comput., 2010, 6, 168–178.

[130] Y. Huang, Y. Shao and G. J. O. Beran, J. Chem. Phys., 2013, 138, –.

[131] J. Zheng, Y. Zhao and D. G. Truhlar, J. Chem. Theor. Comput., 2007, 3, 569–582.



79

[132] L. Goerigk and S. Grimme, J. Chem. Theory Comput., 2011, 7, 291–309.

[133] L. A. Curtiss, P. C. Redfern and K. Raghavachari, J. Chem. Phys., 2007, 126, 084108.

[134] J. M. L. Martin and G. de Oliveira, J. Chem. Phys., 1999, 111, 1843–1856.

[135] A. D. Boese, M. Oren, O. Atasoylu, J. M. L. Martin, M. Kallay and J. Gauss, J. Chem.
Phys., 2004, 120, 4129–4141.

[136] A. Tajti, P. G. Szalay, A. G. Csaszar, M. Kallay, J. Gauss, E. F. Valeev, B. A. Flowers,
J. Vazquez and J. F. Stanton, J. Chem. Phys., 2004, 121, 11599–11613.

[137] Y. J. Bomble, J. Vazquez, M. Kallay, C. Michauk, P. G. Szalay, A. G. Csaszar, J. Gauss and
J. F. Stanton, J. Chem. Phys., 2006, 125, 064108.

[138] M. E. Harding, J. Vazquez, B. Ruscic, A. K. Wilson, J. Gauss and J. F. Stanton, J. Chem.
Phys., 2008, 128, 114111.

[139] T. B. Adler, H.-J. Werner and F. R. Manby, J. Chem. Phys., 2009, 130, 054106.

[140] T. B. Adler and H.-J. Werner, J. Chem. Phys., 2009, 130, 241101.

[141] P. L. Fast, J. Corchado, M. L. Sanchez and D. G. Truhlar, J. Phys. Chem. A, 1999, 103,
3139–3143.

[142] F. Aquilante and T. B. Pedersen, Chem. Phys. Lett., 2007, 449, 354 – 357.

[143] S. Grimme, J. Chem. Phys., 2006, 124, 034108.

[144] K. E. Riley, J. A. Platts, J. Rezac, P. Hobza and J. Hill, J. Phys. Chem. A, 2012, 116, 4159–
4169.

[145] P. Jurecka, J. Sponer, J. Cerny and P. Hobza, Phys. Chem. Chem. Phys., 2006, 8, 1985–1993.

[146] S. M. Cybulski and M. L. Lytle, J. Chem. Phys., 2007, 127, 141102.

[147] A. Tkatchenko, J. Robert A. DiStasio, M. Head-Gordon and M. Scheffler, J. Chem. Phys.,
2009, 131, 094106.

[148] D. R. A., R. P. Steele, Y. M. Rhee, Y. Shao and M. Head-Gordon, J. Comput. Chem., 2007,
28, 839–856.

[149] W. Klopper, F. R. Manby, S. Ten-No and E. F. Valeev, Int. Rev. Phys. Chem., 2006, 25,
427–468.

[150] C. D. Sherrill, T. Takatani and E. G. Hohenstein, J. Phys. Chem. A, 2009, 113, 10146–10159.

[151] T. Van Mourik, J. Phys. Chem. A, 2008, 112, 11017–11020.



80

[152] R. D. Adamson, J. P. Dombroski and P. M. Gill, Chem. Phys. Lett., 1996, 254, 329 – 336.

[153] A. D. Dutoi and M. Head-Gordon, J. Phys. Chem. A, 2008, 112, 2110–2119.

[154] T. H. Dunning Jr., J. Chem. Phys., 1989, 90, 1007–1023.

[155] A. D. Becke and E. R. Johnson, J. Chem. Phys., 2007, 127, 154108.

[156] Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. Gilbert, L. V.
Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. DiStasio Jr, R. C. Lochan, T. Wang, G. J.
Beran, N. A. Besley, J. M. Herbert, C. Yeh Lin, T. Van Voorhis, S. Hung Chien, A. Sodt,
R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin,
J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi,
T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin,
P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov,
P. A. Pieniazek, Y. Min Rhee, J. Ritchie, E. Rosta, C. David Sherrill, A. C. SimmOnett, J. E.
Subotnik, H. Lee Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman,
F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill
and M. Head-Gordon, Phys. Chem. Chem. Phys., 2006, 8, 3172–3191.
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[240] R. Jurgens-Lutovsky and J. Almlöf, Chem. Phys. Lett., 1991, 178, 451.

[241] R. P. Steele, R. A. DiStasio, Jr., Y. Shao, J. Kong and M. Head-Gordon, J. Chem. Phys.,
2006, 125, 074108.
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Appendix A

Performance of attenuated MP2 and other
methods in the aug-cc-pVDZ basis

Definitions of I, II, etc. are taken from Chapter 2.
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Table A.1: Energetics for the S66 Hydrogen-Bonding Subset (kcal mol−1)

System CCSD(T)1 MP21 MP22 I II III IV M06-2X2 B3LYP2

1 -5.01 -4.96 -5.21 -5.04 -5.05 -4.99 -4.97 -5.18 -4.64
2 -5.70 -5.69 -6.07 -5.69 -5.71 -5.63 -5.62 -5.86 -4.99
3 -7.04 -7.08 -7.50 -7.10 -7.14 -7.03 -7.01 -7.25 -6.76
4 -8.22 -8.07 -8.53 -7.93 -7.92 -7.88 -7.87 -8.77 -7.21
5 -5.85 -5.84 -6.36 -5.74 -5.75 -5.70 -5.68 -5.82 -4.82
6 -7.67 -7.73 -8.51 -7.59 -7.62 -7.54 -7.51 -8.01 -6.68
7 -8.34 -8.18 -8.91 -7.88 -7.88 -7.86 -7.83 -8.60 -6.80
8 -5.09 -5.03 -5.39 -5.05 -5.06 -5.01 -4.99 -5.13 -4.48
9 -3.11 -3.06 -3.77 -2.92 -2.92 -2.93 -2.91 -3.17 -1.95
10 -4.22 -4.29 -5.15 -4.01 -4.01 -3.99 -3.96 -4.68 -2.69
11 -5.48 -5.53 -6.75 -5.04 -5.02 -5.05 -5.02 -6.17 -3.05
12 -7.40 -7.52 -8.08 -7.55 -7.60 -7.47 -7.45 -7.90 -6.83
13 -6.28 -6.32 -7.40 -6.14 -6.14 -6.14 -6.12 -6.55 -4.48
14 -7.56 -7.68 -9.12 -7.55 -7.57 -7.55 -7.51 -8.02 -5.85
15 -8.72 -8.67 -10.30 -8.38 -8.37 -8.41 -8.38 -9.16 -6.27
16 -5.20 -5.15 -5.89 -5.25 -5.25 -5.24 -5.23 -5.38 -4.30
17 -17.45 -17.17 -18.65 -16.59 -16.55 -16.58 -16.54 -17.14 -15.74
18 -6.98 -7.07 -7.68 -7.16 -7.22 -7.10 -7.07 -6.90 -6.52
19 -7.51 -7.68 -8.52 -7.50 -7.55 -7.45 -7.43 -7.31 -6.48
20 -19.42 -19.00 -19.41 -18.55 -18.55 -18.45 -18.43 -19.81 -18.22
21 -16.53 -16.12 -16.78 -15.46 -15.42 -15.40 -15.37 -16.44 -14.93
22 -19.78 -19.40 -20.26 -18.86 -18.83 -18.80 -18.78 -19.77 -18.31
23 -19.47 -19.10 -20.08 -18.42 -18.36 -18.40 -18.37 -19.35 -17.82

1 Extrapolated to the complete basis set limit with counterpoise correction, from the Benchmark
Energy and Geometry DataBase(BEGDB.com)2

2 Computed using aug-cc-pVDZ without counterpoise correction
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Table A.2: Energetics for the S66 Dispersion Subset (kcal mol−1)

System CCSD(T)1 MP21 MP22 I II III IV M06-2X2 B3LYP2

24 -2.72 -4.70 -6.52 -3.62 -3.64 -3.70 -3.66 -3.44 0.11
25 -3.80 -6.01 -6.70 -3.86 -3.87 -3.94 -3.90 -4.06 -0.41
26 -9.75 -11.14 -15.71 -9.56 -9.50 -9.75 -9.67 -11.32 -1.88
27 -3.34 -5.43 -6.91 -4.06 -4.08 -4.14 -4.10 -3.92 -0.28
28 -5.59 -7.54 -11.75 -5.97 -5.96 -6.16 -6.08 -7.03 1.25
29 -6.70 -8.63 -12.52 -6.91 -6.89 -7.10 -7.02 -7.78 0.10
30 -1.36 -2.33 -3.55 -0.91 -0.90 -1.01 -0.98 -2.38 1.44
31 -3.33 -4.01 -5.82 -3.07 -3.05 -3.17 -3.13 -4.30 0.20
32 -3.69 -4.41 -5.75 -3.25 -3.21 -3.35 -3.31 -4.56 -0.40
33 -1.81 -2.83 -4.09 -1.42 -1.41 -1.51 -1.47 -2.71 1.17
34 -3.76 -3.97 -6.96 -3.34 -3.35 -3.42 -3.36 -5.31 0.67
35 -2.60 -2.68 -5.21 -2.63 -2.67 -2.69 -2.65 -3.38 0.34
36 -1.76 -1.74 -3.99 -2.07 -2.11 -2.13 -2.09 -2.17 0.13
37 -2.40 -2.49 -4.92 -2.44 -2.48 -2.50 -2.46 -3.14 0.33
38 -2.99 -3.14 -5.64 -2.73 -2.76 -2.80 -2.75 -3.57 0.39
39 -3.51 -4.58 -7.88 -3.98 -4.00 -4.09 -4.04 -4.70 0.78
40 -2.85 -3.60 -6.57 -3.46 -3.48 -3.55 -3.51 -3.63 0.52
41 -4.81 -5.44 -9.23 -4.74 -4.76 -4.86 -4.79 -6.39 0.94
42 -4.09 -4.70 -8.26 -4.22 -4.24 -4.32 -4.26 -4.97 1.08
43 -3.69 -4.05 -7.15 -3.90 -3.93 -3.98 -3.93 -4.54 0.37
44 -1.99 -2.15 -3.40 -1.51 -1.50 -1.56 -1.53 -2.63 0.54
45 -1.72 -2.10 -3.19 -1.42 -1.42 -1.49 -1.46 -2.29 0.56
46 -4.26 -4.51 -7.52 -4.01 -4.02 -4.09 -4.03 -5.91 0.28

1 Extrapolated to the complete basis set limit with counterpoise correction, from the
Benchmark Energy and Geometry DataBase(BEGDB.com)2

2 Computed using aug-cc-pVDZ without counterpoise correction
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Table A.3: Energetics for the S66 Mixed Interaction Subset (kcal mol−1)

System CCSD(T)1 MP21 MP22 I II III IV M06-2X2 B3LYP2

47 -2.83 -3.75 -7.56 -2.73 -2.71 -2.92 -2.87 -4.23 1.87
48 -3.51 -4.39 -8.78 -3.79 -3.78 -3.98 -3.92 -5.08 1.21
49 -3.29 -4.18 -8.29 -3.36 -3.35 -3.55 -3.49 -4.80 1.49
50 -2.86 -3.46 -5.61 -3.87 -3.87 -3.93 -3.90 -3.54 -0.95
51 -1.54 -1.66 -2.35 -1.74 -1.74 -1.77 -1.76 -1.66 -1.03
52 -4.73 -5.25 -7.14 -4.17 -4.15 -4.27 -4.23 -4.76 -0.01
53 -4.41 -4.72 -6.31 -4.32 -4.30 -4.38 -4.35 -4.87 -1.82
54 -3.29 -3.57 -4.73 -3.58 -3.57 -3.60 -3.57 -3.93 -1.43
55 -4.17 -4.76 -6.68 -4.51 -4.51 -4.55 -4.52 -4.94 -1.11
56 -3.20 -3.84 -5.86 -3.53 -3.52 -3.58 -3.55 -3.99 -0.12
57 -5.26 -6.20 -9.30 -5.91 -5.92 -6.00 -5.95 -6.37 -1.12
58 -4.24 -4.37 -5.81 -4.15 -4.17 -4.19 -4.16 -4.18 -2.54
59 -2.93 -2.87 -3.52 -3.14 -3.12 -3.16 -3.16 -3.24 -2.79
60 -4.97 -5.03 -5.42 -4.41 -4.39 -4.43 -4.41 -5.42 -3.57
61 -2.91 -3.03 -5.30 -2.80 -2.81 -2.87 -2.83 -3.82 0.33
62 -3.53 -3.66 -5.81 -3.01 -3.00 -3.08 -3.03 -4.50 0.24
63 -3.75 -4.56 -7.20 -5.07 -5.07 -5.10 -5.07 -5.32 -1.66
64 -3.00 -3.17 -4.42 -2.59 -2.57 -2.65 -2.62 -3.57 -0.55
65 -4.10 -4.21 -5.33 -4.40 -4.40 -4.43 -4.42 -4.28 -3.87
66 -3.97 -4.55 -6.00 -3.84 -3.84 -3.87 -3.83 -4.54 -1.16

1 Extrapolated to the complete basis set limit with counterpoise correction, from the
Benchmark Energy and Geometry DataBase(BEGDB.com)2

2 Computed using aug-cc-pVDZ without counterpoise correction
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Table A.4: Energetics for the S22 Dataset (kcal mol−1)

System Type CCSD(T)1 MP22 MP23 I II III IV M06-2X3 B3LYP3

1 HB -3.13 -3.20 -3.37 -2.91 -2.91 -2.89 -2.86 -3.43 -2.37
2 HB -4.99 -5.03 -5.21 -5.03 -5.05 -4.97 -4.92 -5.20 -4.64
3 HB -18.75 -18.60 -18.56 -17.90 -17.88 -17.80 -17.62 -19.39 -17.75
4 HB -16.06 -15.86 -16.16 -15.01 -14.96 -14.96 -14.81 -16.22 -14.65
5 HB -20.64 -20.61 -21.72 -19.68 -19.63 -19.68 -19.48 -20.23 -18.82
6 HB -16.93 -17.37 -18.96 -16.32 -16.35 -16.27 -16.11 -16.59 -14.81
7 HB -16.66 -16.54 -18.38 -15.51 -15.60 -15.43 -15.28 -16.06 -13.87
8 D -0.53 -0.51 -0.92 -0.48 -0.48 -0.50 -0.50 -0.85 0.06
9 D -1.47 -1.62 -2.10 -1.01 -0.99 -1.04 -1.03 -2.00 0.06
10 D -1.45 -1.86 -3.28 -1.84 -1.84 -1.87 -1.86 -1.79 0.40
11 D -2.65 -4.95 -8.11 -2.73 -2.71 -2.91 -2.88 -4.04 2.82
12 D -4.26 -6.90 -9.87 -4.51 -4.52 -4.66 -4.61 -5.02 1.67
13 MX -9.81 -11.39 -15.57 -9.53 -9.47 -9.73 -9.63 -11.23 -2.09
14 D -4.52 -8.12 -12.83 -4.88 -4.86 -5.13 -5.08 -6.01 3.63
15 MX -11.73 -14.93 -21.59 -12.41 -12.33 -12.71 -12.58 -13.72 -0.29
16 MX -1.50 -1.69 -2.53 -1.86 -1.86 -1.89 -1.87 -1.73 -1.04
17 MX -3.28 -3.61 -4.67 -3.55 -3.54 -3.58 -3.54 -3.86 -1.51
18 MX -2.31 -2.72 -3.97 -2.65 -2.64 -2.68 -2.66 -2.77 -0.49
19 MX -4.54 -5.16 -6.94 -5.28 -5.26 -5.35 -5.29 -5.29 -2.39
20 D -2.72 -3.62 -6.49 -3.65 -3.68 -3.72 -3.68 -3.22 0.26
21 MX -5.63 -7.03 -10.37 -6.48 -6.51 -6.57 -6.50 -6.31 -1.55
22 MX -7.10 -7.76 -10.07 -7.29 -7.31 -7.31 -7.23 -7.32 -3.64

1 Extrapolated to the complete basis set limit with counterpoise correction, from Marshall et al161

2 Extrapolated to the complete basis set limit with counterpoise correction, from the Benchmark Energy
and Geometry DataBase(BEGDB.com)2

3 Computed using aug-cc-pVDZ without counterpoise correction
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Table A.5: Energetics for phenylalanine-glycine-glycine conformers of P76 database(kcal mol−1)

Label CCSD(T)1 MP21 MP22 I II III IV M06-2X2 B3LYP2

fgg114 -0.02 -0.75 -1.25 -0.10 -0.13 -0.09 -0.06 -0.79 1.57
fgg215 -0.76 -0.77 -0.30 -0.17 -0.24 -0.07 -0.05 -0.18 -0.85
fgg224 0.38 0.33 0.31 0.55 0.47 0.62 0.63 0.60 -0.03
fgg252 0.68 0.92 1.10 0.41 0.48 0.31 0.29 1.09 0.37
fgg300 1.07 1.93 1.60 -0.29 -0.21 -0.34 -0.38 0.11 -1.93
fgg357 -0.87 -1.57 -1.73 -0.65 -0.68 -0.61 -0.58 -1.17 0.50
fgg366 -0.53 0.15 1.29 -0.99 -0.92 -1.00 -1.05 0.06 -2.65
fgg380 0.72 0.74 0.95 0.70 0.60 0.81 0.82 0.87 -0.08
fgg412 0.31 0.04 -0.94 0.61 0.67 0.47 0.48 -0.46 2.61
fgg444 -1.36 -1.22 -0.51 -0.99 -1.08 -0.84 -0.83 -0.36 -2.35
fgg470 0.47 0.49 0.73 0.52 0.55 0.46 0.44 0.35 -0.15
fgg55 0.99 1.07 0.72 0.98 0.92 1.05 1.06 1.36 0.61
fgg691 0.31 0.81 1.87 0.32 0.38 0.27 0.24 1.10 -1.13
fgg80 0.66 0.16 -0.23 0.58 0.54 0.59 0.61 0.19 1.68
fgg99 -2.05 -2.32 -3.62 -1.46 -1.36 -1.62 -1.61 -2.77 1.83

1 Extrapolated to the complete basis set limit without counterpoise correction, from the
Benchmark Energy and Geometry DataBase(BEGDB.com)2

2 Computed using aug-cc-pVDZ without counterpoise correction

Table A.6: Energetics for glycine-phenylalanine-alanine conformers of P76 database(kcal mol−1)

Label CCSD(T)1 MP21 MP22 I II III IV M06-2X2 B3LYP2

gfa01 0.69 0.12 -0.19 0.33 0.39 0.16 0.15 0.57 1.44
gfa02 0.26 -0.06 -0.46 0.29 0.37 0.11 0.10 -0.02 1.18
gfa03 0.56 0.00 -0.34 0.20 0.26 0.02 0.01 0.35 1.29
gfa04 0.31 0.35 0.46 0.19 0.28 0.04 0.02 0.16 0.37
gfa05 0.38 0.44 0.53 0.26 0.35 0.11 0.09 0.08 0.38
gfa06 -0.02 0.50 1.59 0.05 -0.04 0.19 0.18 0.48 -2.35
gfa07 -0.57 -0.19 0.61 -0.46 -0.54 -0.34 -0.34 -0.11 -2.11
gfa08 0.02 0.31 1.12 0.50 0.44 0.63 0.64 0.29 -1.19
gfa09 -0.53 -0.98 -1.40 -0.43 -0.44 -0.43 -0.41 -0.72 0.77
gfa10 -0.62 -1.08 -1.50 -0.52 -0.53 -0.52 -0.50 -0.91 0.73
gfa11 -0.06 0.20 0.94 0.36 0.30 0.50 0.51 0.37 -1.28
gfa12 -0.31 -0.12 0.17 -0.45 -0.53 -0.32 -0.31 0.00 -1.57
gfa13 0.09 0.58 0.12 0.12 0.20 0.04 0.02 0.40 0.81
gfa14 -0.02 0.72 0.62 0.25 0.35 0.19 0.17 -0.17 0.62
gfa15 -0.87 -1.10 -1.77 -1.05 -1.11 -0.91 -0.88 -1.17 -0.35
gfa16 0.69 0.31 -0.52 0.35 0.27 0.52 0.56 0.39 1.24

1 Extrapolated to the complete basis set limit without counterpoise correction, from the
Benchmark Energy and Geometry DataBase(BEGDB.com)2

2 Computed using aug-cc-pVDZ without counterpoise correction



91

Table A.7: Energetics for glycine-glycine-phenylalanine conformers of P76 database(kcal mol−1)

Label CCSD(T)1 MP21 MP22 I II III IV M06-2X2 B3LYP2

ggf01 1.08 0.69 -0.14 0.09 0.07 0.14 0.15 0.30 1.06
ggf02 0.93 0.87 0.86 1.30 1.34 1.23 1.23 0.92 1.33
ggf03 0.75 0.73 1.70 0.68 0.74 0.57 0.54 0.56 -0.72
ggf04 0.65 0.73 0.31 0.35 0.34 0.32 0.32 0.09 0.74
ggf05 0.60 0.31 -0.32 0.88 0.95 0.80 0.81 -0.54 3.81
ggf06 0.58 0.60 0.43 0.63 0.57 0.71 0.72 1.06 0.61
ggf07 0.51 0.65 0.53 0.37 0.37 0.33 0.33 0.64 -0.45
ggf08 0.49 0.31 0.31 0.74 0.78 0.68 0.67 0.44 1.00
ggf09 0.30 0.17 0.30 0.67 0.72 0.59 0.59 0.16 1.21
ggf10 -0.11 -0.03 -0.01 -0.24 -0.24 -0.29 -0.29 0.20 -0.73
ggf11 -0.61 -0.54 0.20 -0.57 -0.60 -0.47 -0.48 -0.40 -1.98
ggf12 -0.78 -0.52 -0.88 -0.83 -0.75 -0.90 -0.91 -0.67 0.33
ggf13 -1.09 -1.04 -0.99 -1.02 -1.09 -0.91 -0.90 -0.71 -1.45
ggf14 -1.45 -1.46 -1.29 -1.30 -1.38 -1.17 -1.16 -0.75 -1.80
ggf15 -1.84 -1.46 -0.99 -1.74 -1.82 -1.62 -1.61 -1.29 -2.95

1 Extrapolated to the complete basis set limit without counterpoise correction, from the
Benchmark Energy and Geometry DataBase(BEGDB.com)2

2 Computed using aug-cc-pVDZ without counterpoise correction

Table A.8: Energetics for tryptophan-glycine conformers of P76 database(kcal mol−1)

Label CCSD(T)1 MP21 MP22 I II III IV M06-2X2 B3LYP2

wg01 -1.53 -1.03 0.44 -1.43 -1.51 -1.27 -1.29 -0.79 -3.90
wg02 -1.13 -1.06 -1.55 -1.32 -1.36 -1.27 -1.26 -0.66 -0.56
wg03 -0.63 -0.64 -0.94 -0.59 -0.63 -0.52 -0.50 -0.73 -0.16
wg04 -0.27 0.15 1.30 -0.43 -0.51 -0.27 -0.29 0.43 -3.01
wg05 -0.27 0.53 2.50 -0.26 -0.31 -0.10 -0.14 0.23 -3.91
wg06 -0.21 -0.12 -0.47 -0.28 -0.31 -0.23 -0.22 0.33 0.33
wg07 -0.01 -0.45 -0.61 0.42 0.47 0.31 0.32 0.05 1.34
wg08 0.53 0.67 0.85 0.13 0.06 0.24 0.24 0.55 -0.67
wg09 0.07 0.02 -0.64 -0.07 0.00 -0.22 -0.24 -0.45 0.77
wg10 -0.01 -0.36 -1.12 -0.02 0.05 -0.18 -0.18 -0.47 1.38
wg11 0.49 0.28 0.22 0.67 0.71 0.62 0.63 0.31 0.97
wg12 0.92 0.88 0.87 1.01 0.98 1.10 1.11 0.92 1.03
wg13 0.50 0.05 -0.45 0.72 0.79 0.59 0.60 -0.14 2.26
wg14 0.68 0.55 0.12 0.73 0.80 0.58 0.57 0.22 1.45
wg15 0.88 0.53 -0.53 0.72 0.76 0.63 0.64 0.19 2.68

1 Extrapolated to the complete basis set limit without counterpoise correction, from the
Benchmark Energy and Geometry DataBase(BEGDB.com)2

2 Computed using aug-cc-pVDZ without counterpoise correction
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Table A.9: Energetics for tryptophan-glycine-glycine conformers of P76 database(kcal mol−1)

Label CCSD(T)1 MP21 MP22 I II III IV M06-2X2 B3LYP2

wgg01 -2.42 -1.85 0.08 -2.06 -2.09 -1.93 -1.95 -1.56 -5.42
wgg02 -2.16 -2.28 -1.69 -2.34 -2.35 -2.27 -2.28 -2.28 -3.12
wgg03 -1.33 -0.04 0.14 -0.26 -0.27 -0.26 -0.28 0.36 -1.46
wgg04 -0.33 -0.23 -0.29 -0.15 -0.15 -0.13 -0.12 -0.46 0.02
wgg05 -0.71 -0.82 -2.57 -0.77 -0.65 -0.96 -0.95 -1.66 2.73
wgg06 0.11 0.28 0.48 0.39 0.38 0.37 0.37 0.66 -0.83
wgg07 -0.05 -0.91 -2.01 -0.20 -0.21 -0.20 -0.17 -0.84 2.46
wgg08 0.54 0.85 1.17 0.65 0.63 0.64 0.62 1.22 -0.62
wgg09 0.36 0.53 0.57 -0.36 -0.37 -0.37 -0.38 0.32 -0.95
wgg10 0.94 1.41 2.80 0.76 0.72 0.85 0.83 1.29 -2.35
wgg11 0.92 0.76 0.77 0.68 0.77 0.53 0.51 0.65 0.80
wgg12 1.41 0.51 -0.53 1.50 1.49 1.50 1.53 0.67 4.59
wgg13 1.82 1.27 0.28 1.60 1.60 1.58 1.61 1.18 3.96
wgg14 -0.04 -0.91 -2.00 -0.19 -0.21 -0.20 -0.16 -0.83 2.48
wgg15 0.95 1.43 2.80 0.77 0.73 0.86 0.83 1.29 -2.28

1 Extrapolated to the complete basis set limit without counterpoise correction, from the
Benchmark Energy and Geometry DataBase(BEGDB.com)2

2 Computed using aug-cc-pVDZ without counterpoise correction
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Table A.10: Energetics for 27 reference alanine tetrapeptide conformers(kcal mol−1)

Label RI-MP21 MP22 I II III IV M06-2X2 B3LYP2

1 0.40 2.79 0.50 0.52 0.55 0.51 0.40 -2.18
2 0.46 2.26 0.37 0.37 0.42 0.39 0.53 -1.93
3 -3.16 -4.00 -3.20 -3.22 -3.21 -3.20 -2.73 -2.70
4 2.00 3.36 1.74 1.72 1.75 1.72 2.12 -0.11
5 1.53 3.00 1.72 1.74 1.70 1.67 1.82 0.19
6 -0.84 -0.86 -0.67 -0.65 -0.71 -0.71 -1.02 -0.34
7 2.93 2.29 2.99 3.00 2.96 2.97 2.28 3.79
8 0.91 -0.08 0.80 0.82 0.77 0.78 0.61 2.47
9 4.19 4.29 3.85 3.81 3.96 3.96 4.07 2.26
10 4.06 3.65 4.12 4.13 4.17 4.18 3.69 4.73
11 -3.73 -4.87 -3.57 -3.55 -3.62 -3.60 -3.60 -1.91
12 -3.44 -4.67 -3.05 -3.05 -3.12 -3.10 -3.76 -0.74
13 -0.08 0.97 -0.31 -0.33 -0.26 -0.28 -0.03 -1.89
14 0.95 1.59 1.10 1.11 1.08 1.07 0.95 0.50
15 -1.54 -3.06 -1.49 -1.48 -1.53 -1.50 -1.90 1.45
16 -0.18 -0.70 -0.20 -0.21 -0.25 -0.24 0.25 0.28
17 -0.31 -1.54 -0.50 -0.49 -0.55 -0.53 -0.55 0.59
18 -1.82 -1.18 -2.11 -2.14 -2.03 -2.04 -1.88 -3.35
19 0.08 0.57 -0.21 -0.25 -0.12 -0.12 -0.05 -1.65
20 -1.98 -1.69 -2.02 -2.03 -2.00 -2.00 -1.89 -2.33
21 -0.81 -1.59 -1.14 -1.12 -1.20 -1.20 -1.05 -0.49
22 2.09 1.74 2.36 2.37 2.33 2.34 2.19 2.48
23 2.08 1.66 2.22 2.23 2.20 2.21 2.12 2.49
24 0.24 -0.02 0.42 0.42 0.40 0.40 0.47 1.14
25 -1.24 -1.05 -1.16 -1.17 -1.14 -1.15 -0.94 -1.10
26 -3.06 -3.30 -2.84 -2.84 -2.86 -2.85 -2.52 -1.77
27 0.29 0.41 0.28 0.27 0.31 0.32 0.44 0.11

1 Computed at the aug-cc-pV(T→Q)Z level without counterpoise correction,
from DiStasio et al166

2 Computed using aug-cc-pVDZ without counterpoise correction
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Table A.11: S22x5 geometries for Water Dimer(kcal mol−1)

Scaling CCSD(T)1 MP22 I II III IV
90% -4.32 -4.52 -4.33 -4.37 -4.23 -4.22

100% -4.97 -5.21 -5.03 -5.05 -4.97 -4.96
120% -4.04 -4.32 -4.16 -4.16 -4.16 -4.15
150% -2.29 -2.47 -2.37 -2.36 -2.38 -2.38
200% -0.96 -1.00 -0.97 -0.97 -0.97 -0.98

1 Extrapolated to the complete basis set limit without coun-
terpoise correction, from the Benchmark Energy and Ge-
ometry DataBase(BEGDB.com)2

2 Computed using aug-cc-pVDZ without counterpoise cor-
rection

Table A.12: S22x5 geometries for Parallel-Displaced Benzene Dimer(kcal mol−1)

Scaling CCSD(T)1 MP22 I II III IV
90% -0.15 -7.91 -0.47 -0.51 -0.55 -0.42

100% -2.81 -8.11 -2.73 -2.71 -2.91 -2.84
120% -1.92 -4.49 -1.82 -1.82 -1.95 -1.93
150% -0.53 -1.48 -0.61 -0.63 -0.62 -0.62
200% -0.07 -0.27 -0.11 -0.11 -0.10 -0.10

1 Extrapolated to the complete basis set limit without coun-
terpoise correction, from the Benchmark Energy and Ge-
ometry DataBase(BEGDB.com)2

2 Computed using aug-cc-pVDZ without counterpoise cor-
rection

Table A.13: S22x5 geometries for T-Shaped Benzene Dimer(kcal mol−1)

Scaling CCSD(T)1 MP22 I II III IV
90% -2.20 -6.72 -3.21 -3.26 -3.24 -3.18

100% -2.80 -6.49 -3.65 -3.68 -3.72 -3.68
120% -2.25 -4.60 -2.77 -2.78 -2.84 -2.82
150% -1.12 -2.16 -1.25 -1.25 -1.28 -1.27
200% -0.35 -0.73 -0.44 -0.45 -0.45 -0.44

1 Extrapolated to the complete basis set limit without coun-
terpoise correction, from the Benchmark Energy and Ge-
ometry DataBase(BEGDB.com)2

2 Computed using aug-cc-pVDZ without counterpoise cor-
rection
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Table A.14: S22x5 geometries for Ammonia Dimer(kcal mol−1)

Scaling CCSD(T)1 MP22 I II III IV
90% -2.41 -2.57 -2.02 -2.03 -1.94 -1.92

100% -3.14 -3.37 -2.91 -2.91 -2.89 -2.87
120% -2.36 -2.57 -2.26 -2.25 -2.28 -2.27
150% -1.11 -1.22 -1.08 -1.08 -1.09 -1.09
200% -0.36 -0.39 -0.35 -0.35 -0.35 -0.35

1 Extrapolated to the complete basis set limit without coun-
terpoise correction, from the Benchmark Energy and Ge-
ometry DataBase(BEGDB.com)2

2 Computed using aug-cc-pVDZ without counterpoise cor-
rection
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Appendix B

Code for generating terf interpolation tables

The following is a python script for generating the interpolation tables required to form the prim-
itive terf integrals. The resulting interpolation tables are provided with any copy of Q-Chem, but
the interpolation tables are truncated to a finite maximum angular momentum, currently including
‘h’ functions. The inherent numerical noise of interpolation tables (here minimized using 256-bit
floating point numbers) or the desire to do 5Z calculations may require the refinement or extension
of these interpolation tables at some future point. For further information about the implementa-
tion, please consult the derivation of the terf primitives done by Dutoi and Head-Gordon153.

#!/usr/bin/python
import os, sys
import math, sys, time
import pp
from math import *
from scipy import *
from numpy import *
from scipy.special import *
from gmpy import *
import numpy, gmpy, scipy, scipy.special

usage = "usage: %s S s interval" % os.path.basename(sys.argv[0])
print usage
print """
Needed files include
4 2 16
10 5 8
20 20 4
20 80 2
"""
if len(sys.argv)<3:
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sys.exit(0)

def gs1(x,i):
tmp=gmpy.mpf(math.exp(-x),256)
for j in range(i):

tmp=tmp*gmpy.mpf(x,256)/gmpy.mpf((j+1),256)
return tmp

def df(x):
if x<=0.0:

return gmpy.mpf(1.0,256)
if x==1.0:

return gmpy.mpf(.5,256)
else:

return (gmpy.mpf(x,256)/gmpy.mpf(x+1,256))*
gmpy.mpf(df(x-2.0),256)

dimi=500
dimm=24
dimn=12
interval=1.000/int(sys.argv[3])
Sstart=0.00
Send=float(sys.argv[1])+interval
deltaS=interval
sstart=0.00
send=float(sys.argv[2])+interval
deltas=interval

Srange=numpy.arange(Sstart,Send,deltaS)
srange=numpy.arange(sstart,send,deltas)
print "Setup now running"
G=[[]]
for S in Srange:

for s in srange:
G[Srange.searchsorted(S)].append([])

G.append([])
ppservers = ()
job_server = pp.Server(ppservers=ppservers)
print "Starting pp with", job_server.get_ncpus(), "workers"
start_time = time.time()

def dosrange(S,s,dimi,dimm,dimn):
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gS=[[],[]]
for i in numpy.arange(dimi):

tmp=gmpy.mpf(0,256)
gS[1].append(gs1(S,i))
for j in numpy.arange(i+1):

tmp=tmp+gS[1][j]
gS[0].append(tmp)

for k in numpy.arange(2,dimm,1):
gS.append([])
for i in numpy.arange(dimi):

if i>0:
gS[k].append(gS[k-1][i]-gS[k-1][i-1])

else:
gS[k].append(gS[k-1][i])

gs=[[],[]]
for i in numpy.arange(dimi):

tmp=gmpy.mpf(0,256)
gs[1].append(gs1(s,i))
for j in numpy.arange(i+1):

tmp=tmp+gs[1][j]
gs[0].append(tmp)

for k in numpy.arange(2,dimn,1):
gs.append([])
for i in numpy.arange(dimi):

if i>0:
gs[k].append(gs[k-1][i]-gs[k-1][i-1])

else:
gs[k].append(gs[k-1][i])

Gmn=[]
for k in numpy.arange(dimm):

for j in numpy.arange(dimn):
tmp=gmpy.mpf(0,256)
for i in range(dimi):

tmp2=df(gmpy.mpf(2,256)*gmpy.mpf(i,256))
#strictly, this would be gS[k][i+1],
#but TD wanted to generalize this
#for the hypergeometric function that was at the root

tmp3=gS[k][i]*gs[j][i]
tmp=tmp+tmp2*tmp3

Gmn.append(tmp)
return Gmn



99

print "Code executing"
jobs = [((S,s), job_server.submit(dosrange,(S,s,dimi,dimm,dimn),

(df,gs1),("math","numpy","gmpy")))
for s in tuple(srange) for S in tuple(Srange)]

for (S,s), job in jobs:
print "S %f s %f" %(S,s)
G[Srange.searchsorted(S)][srange.searchsorted(s)]=job()

print "Time elapsed: ", time.time() - start_time, "s"
job_server.print_stats()

output=open(sys.argv[3]+"_"+sys.argv[1]+"_"+sys.argv[2]+".txt", ’w’)
size=dimm*dimn*((Send-Sstart)/deltaS)*((send-sstart)/deltas)
output.write(’%d’ %size)
for i in G:

for j in i:
for k in j:

output.write(’%+.18e’ %k)
output.close()




