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Abstract

Impact of Sensing and Actuation Characteristics

on Artificial Pancreas Design

by

Lauren Maria Huyett

Type 1 diabetes mellitus (T1DM) is a chronic disease characterized by the body’s

inability to produce insulin, leading to chronically high blood glucose (BG) concen-

trations. T1DM is treated by frequent self-administration of insulin based on BG

measurements; however, there is a fine line between too little and too much insulin,

and an overdose can lead to a dangerous drop in BG. The artificial pancreas (AP), con-

sisting of a glucose sensor, an insulin pump, and a feedback control algorithm, will

replace self-treatment by automatically calculating and delivering insulin dosages

based on continuous glucose measurements. Many iterations of the AP utilize com-

mercially available subcutaneous (SC) insulin pumps and glucose sensors, but these

devices introduce physiological limitations that make control difficult.

In this work, we present a clinical evaluation of an AP that uses SC devices, as

well as an investigation of the intraperitoneal (IP) space as an alternative site for in-

sulin delivery and glucose sensing to improve AP performance. Our results show that

glucose sensors placed in the IP space have a lower time constant than SC sensors, al-

lowing the controller to respond more quickly to BG disturbances. Similarly, insulin

xii



Abstract

delivered through the IP space has faster pharmacokinetic and pharmacodynamic

characteristics than SC insulin. Based on models of the sensing and actuation dy-

namics, a proportional-integral-derivative control algorithm with anti-reset windup

protection was designed for the IP-IP route and evaluated on 10 simulated T1DM

subjects. Using the IP-IP route led to a more robust controller that provided excellent

control during the simulation studies. Our results support the development of a fully

implantable AP that will operate within the IP space to safely and effectively control

BG levels.
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Chapter 1

Introduction1

Type 1 diabetes mellitus (T1DM) is a disease that requires intensive self-treatment.

A small miscalculation or wrong decision can lead to both immediate and long-

term health problems. Technological advancements have greatly improved the way

that T1DM is treated. Even so, this disease is an ideal candidate for an automated

treatment solution, and in fact efforts have been in place to develop one for over 30

years [2]. Continuous insulin infusion pumps and glucose sensors are commercially

available, but the loop must remain open until a suitable controller is designed. The

development of automated control for T1DM will increase the quality of life of those

with the disease by reducing the burden of self-treatment, as well as by providing

improved health outcomes. The objective of this dissertation is to investigate the

characteristics of glucose sensing and insulin action through different routes, as well

as the impact that they have on the development of safe, effective closed-loop control

for T1DM.
1Some content from this chapter is published in F. J. Doyle III, L. M. Huyett, J. B. Lee, H. C. Zisser,

and E. Dassau, “Closed-loop artificial pancreas systems: engineering the algorithms,” Diabetes Care,
vol. 37, pp. 1191-7, 2014. [1]
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1.1 Type 1 Diabetes Mellitus

As of 2010, an estimated 1 in every 300 people under the age of 18 in the United

States has T1DM [3]. This disease is characterized by the autoimmune destruction of

pancreatic beta cells. The cause of this destruction is unknown, but it is hypothesized

to involve both genetic and environmental factors [3, 4].

The pancreas is charged with regulating the blood glucose concentration (BG)

within the body. The regulation process is depicted in Figure 1.1. Cells receive

much of their energy by processing glucose, which is absorbed into the blood stream

through the digestion of carbohydrate-containing food. The pancreas then controls

the uptake of glucose from the blood stream into tissue cells and the liver to maintain

BG homeostasis by secreting insulin, glucagon, and other hormones. In response to

elevated levels of glucose in the blood, the pancreas produces insulin to stimulate

the uptake of glucose into muscle and fat cells to be used for energy. Glucose is also

stored in the liver as glycogen. In response to low levels of glucose in the blood, the

pancreas produces glucagon, which stimulates the conversion of the stored glycogen

to glucose. This process can be viewed as a closed-loop control system, where the

pancreas acts together with the liver to control the BG within the body [4].

1.1.1 Pathophysiology

When the beta cells are destroyed, the pancreas can no longer produce insulin,

which disrupts the feedback loop by removing one of the manipulated variables [6].

The inability to produce insulin leads to chronically high glucose concentrations in

the blood (BG>180 mg/dL), known as hyperglycemia. Glucose is toxic to the vas-

culature at high concentrations. Common long-term complications of hyperglycemia
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Figure 1.1: Schematic of glucose homeostasis maintained by the pan-
creas and the liver. In response to elevated levels of glucose in the blood,
the pancreas produces insulin to stimulate the uptake of glucose into mus-
cle and fat cells to be used for energy. Glucose is also stored in the liver
as glycogen. In response to low levels of glucose in the blood, the pan-
creas produces glucagon, which stimulates the conversion of glycogen to
glucose. Figure adapted from [4] and [5].
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include nephropathy, retinopathy, neuropathy, and cardiovascular disease [4].

In addition to the long-term complications related to chronic hyperglycemia, un-

treated T1DM leads to diabetic ketoacidosis (DKA) in the short-term. This compli-

cation begins when the glucose uptake by cells decreases, while the breakdown of

glycogen and other non-carbohydrate molecules occurs, leading to an excess of glu-

cose within the bloodstream. At the same time, lipids are broken down to form

ketones, which can provide energy to cells as a replacement for glucose. The kid-

neys begin to remove the excess glucose and ketones from the blood, causing water

and electrolytes to be secreted as well. The resulting dehydration leads to increased

urination and thirst, which are both common symptoms of undiagnosed T1DM. This

process ultimately leads to reduced arterial blood pressure and brain blood flow,

while the blood becomes more acidic due to elevated ketone levels. If left unim-

peded, the result of DKA is impaired brain function, coma, and death [4, 6].

1.1.2 Treating Type 1 Diabetes Mellitus

Before insulin was isolated in the early 1920s, there was no way to successfully

treat T1DM [4]. Once the commercial production of insulin began, it was used suc-

cessfully by people with T1DM to replace the role of their absent beta cells. While

this treatment with exogenous insulin allowed people with T1DM to survive, much

improvement in the treatment process was still needed to achieve better long-term pa-

tient outcomes. A key event in this process of improvement was the landmark study

by the Diabetes Control and Complications Trial Research Group, which showed that

intensive insulin treatment reduces the severity and delays the onset of long-term

complications of T1DM [7].

While intensive insulin therapy can reduce the long-term complications of hy-

perglycemia, it also increases the risk of hypoglycemia, or a BG that is too low
4
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(BG<70 mg/dL). Hypoglycemia can occur if an overdose of exogenous insulin is

delivered. Other potential causes are exercise or malnourishment. When the glucose

concentration becomes too low, the sympathetic nervous system is triggered. The

resulting symptoms include increased heart rate, trembling, nervousness, sweating,

and anxiety. In addition, severe hypoglycemia deprives the brain of glucose, lead-

ing to headache, confusion, dizziness, slurred speech, convulsions, coma, and death

[4, 6].

The goal of T1DM treatment is to minimize hyperglycemia, while avoiding hypo-

glycemia, through the delivery of exogenous insulin. The desired range for prepran-

dial glucose is 80-130 mg/dL, with a peak postprandial glucose less than 180 mg/dL.

Additionally, it is recommended that the glycated hemoglobin (HbA1c), a measure

used to indicate BG levels over the past few months, be maintained lower than

7.0% [8]. Successful treatment is accomplished by using a combination of tools and

techniques to monitor the BG and adjust insulin delivery according to those mea-

surements, as well as in anticipation of meals and other daily-life events that affect

glycemia.

1.2 Technology and Diabetes Treatment

1.2.1 Insulin Delivery

To effectively treat T1DM, exogenous insulin must be delivered on a daily basis.

Insulin is needed both at a low background level, known as basal insulin, as well as

in larger doses in response to meals or to correct a high BG. While the most desired

method for the delivery of chronic medication is the oral route, taking an insulin pill

currently is not an option due to low bioavailability through this route [9]. In fact,
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for decades the only option for insulin delivery was through subcutaneous injections

with a syringe [10]. Over time, insulin delivery regimes have grown more refined in

an attempt to exert finer glycemic control.

The two regimens for insulin delivery used most often today were both intro-

duced in the 1970s. The first is multiple daily subcutaneous injections (MDI) of

insulin, which includes doses for basal insulin and doses for meals [11]. MDI was

improved by the development of insulin pens in the 1980s, which allowed for more

convenient and comfortable injections [12]. However, people with T1DM find that

injections can be inconvenient, complex, lacking in precision, and difficult to use in

conjunction with variation in day-to-day activities [13]. Additionally, injections must

use combinations of slow- and fast-acting insulin to meet both the basal and prandial

insulin requirements [13].

The second insulin delivery method used today is continuous subcutaneous in-

sulin infusion (CSII) using a miniature pump. The pump delivers insulin via a can-

nula that is inserted subcutaneously [10]. Insulin pumps use only fast-acting insulin.

They meet basal insulin requirements by delivering small amounts of insulin (called

microboluses) every five minutes. They can also be commanded to deliver larger

boluses to meet insulin requirements for meals and correction doses. CSII has be-

come much more advanced over the years, with the development of pumps that can

be programmed to fine-tune and customize basal insulin delivery and allow easy

calculations for meal and correction boluses [13].

CSII has been associated with improved glycemic control, decreased hypo-

glycemia, and better quality of life [14–16]. Still, there are several disadvantages

of this delivery route. Using CSII means that the patient is attached to an external

device, which may be inconvenient in daily life. Additionally, it is recommended

to change the infusion set every three days to reduce problems with site irritation
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and irregularity in insulin delivery caused by blocked catheters, insulin leakage, or

cannula dislodgement [17]. A failure of the infusion set can lead to hyperglycemia,

and potentially DKA if the problem is not detected in time.

The subcutaneous route of insulin administration is not ideal for many reasons.

This route is nonphysiological and results in peripheral hyperinsulinemia [18]. The

pharmacokinetic and pharmacodynamic characteristics of insulin delivered through

CSII cause delays between delivery and effect, and the insulin can remain active for as

long as 4-6 hours following injection. In addition, inter- and intrapatient variabilities

in insulin sensitivity and absorption through the subcutaneous route can cause in-

consistent pharmacokinetic and pharmacodynamic properties [19]. For these reasons,

the development of alternative insulin delivery routes is an important and active area

of research. One such alternate route that has shown promise in overcoming the dis-

advantages of the subcutaneous route is delivery through the intraperitoneal space.

The use of intraperitoneal insulin delivery is discussed more in Chapters 4 and 5 of

this dissertation.

1.2.2 Glucose Measurement

Accurate BG measurement is essential for safe and successful treatment of T1DM.

The current standard of care for BG measurement is the capillary blood test [20]. A

lancet is used to prick the fingertip to release a small drop of capillary blood, which

is placed onto a test strip in a handheld glucose meter. This method requires active

work by the user and is somewhat painful, meaning that it can be expected to be

performed at most once every few hours, and only while the patient is awake. In

fact, a conventional approach to glucose monitoring will result in only three to four

measurements per day [21]. These measurements create a discrete picture of the BG

over time, but often miss important trends.
7
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The development of glucose sensors that operate in vivo to provide a continuous

estimation of the BG has allowed patients to observe the continuous trajectory of their

BG over time. The first continuous glucose monitor (CGM) was approved for use in

the United States in 1999 [22]. This device, produced by MiniMed (later bought by

Medtronic in 2001), did not display BG readings in real-time; rather, the data were

downloaded and analyzed retrospectively by the user’s doctor after the 3 day period

of wear [23]. CGM technology has advanced greatly since then, with devices today

providing patients with a real-time readout of their BG over 6 or 7 days of continuous

wear. These sensors are worn on the skin, with a transcutaneous sensing element

inserted into the subcutaneous space [24].

Methods of Glucose Detection

The CGMs currently available in the United States operate through the electro-

chemical detection of glucose using the enzyme glucose oxidase [24]. The following

series of reactions is of interest to the detection of glucose [23]:

Eox + C6H12O6 −→ Ered + C6H12O6 (1.1)

C6H10O6 + H2O←→ C6H12O7 (1.2)

Ered + O2 −→ Eox + H2O2 (1.3)

Ered + Mox −→ Eox + Mred. (1.4)

In these reactions, Ered and Eox are the reduced and oxidized forms of the enzyme,

respectively. The fourth step represents the optional inclusion of a mediator to react

directly with the enzyme, with Mox being the oxidized mediator and Mred being the

reduced mediator. Examples of mediators are ferrocene or Os(III). The glucose con-

centration can be inferred either by measuring the production of hydrogen peroxide

8



Chapter 1. Introduction

or the production of the reduced mediator (if in use) [23]. The hydrogen peroxide

concentration or the reduced mediator concentration is measured amperometrically

by inducing its oxidation at a suitable electrode. This process is described by the

following reactions:

H2O2 −→ O2 + 2 H+ + 2 e− (1.5)

Mred −→ Mox + 2 e−. (1.6)

To make the measurement, a constant voltage is applied across the working and

reference electrode to make the reaction thermodynamically favorable.

The two continuous glucose monitors on the market today (Dexcom G4 Platinum

and G5 Mobile, Dexcom, San Diego, California and the Medtronic Enlite, Medtronic

Diabetes, Northridge, California) utilize the detection of hydrogen peroxide, with

no additional mediator used. A schematic diagram of an electrochemical sensor

using this method is shown in Figure 1.2. As the hydrogen peroxide is oxidized,

an electrical current is produced in proportion to the number of molecules that have

reacted. In order for this reaction scheme to be useful, the electrical current produced

must be directly proportional to the concentration of glucose in the range of interest

(approximately 30-360 mg/dL of glucose). The best way to ensure this linearity is

to design the sensor so the mass transport of glucose to the enzyme layer of the

electrode is the rate limiting step [23, 25].

The CGM sensor is designed with a series of selective membranes to limit the pro-

duction rate of hydrogen peroxide by the diffusion of glucose. The outer layer allows

a higher flux of oxygen than glucose. This membrane creates an excess of oxygen

within the enzyme layer, ensuring that the rate of production of hydrogen peroxide

will not be limited by the concentration of oxygen. This diffusion-limiting step is

9
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needed because in the interstitial fluid (ISF) where the sensor is placed, oxygen is

usually found in concentrations that are an order of magnitude smaller than glucose

concentrations. The next layer of the electrode is the enzyme layer, which contains

immobilized glucose oxidase. Excess enzyme is included so the glucose molecules

react as soon as they reach the enzyme layer. The hydrogen peroxide produced by

the reaction diffuses through the interference layer into the electrode layer. The in-

terference layer is a selective membrane that is included to prevent other species that

could be oxidized at the electrode from passing through. The hydrogen peroxide

reacts immediately upon arrival at the surface of the working electrode to produce a

current in proportion to the number of molecules oxidized. Since the process is de-

signed to be limited by the diffusion of glucose, the current produced will be linear

in glucose concentration [23].

To be used for in vivo glucose measurements, the sensing element must be in-

serted transcutaneously so that one end sits in the subcutaneous space, while the

other end connects to the transmitter that is placed on the outside of the body. The

sensor measures the electrical current produced in reaction to the ISF. This current

is calibrated to the BG [23]. Both the Dexcom and the Medtronic sensors require

calibration with a fingerstick measurement every 12 h throughout the sensor wear

period, because the relationship between the glucose concentration and the resulting

electrical current changes over time [23, 24]. While the sensor directly measures the

glucose concentration in the ISF, this measurement is used as an estimation of the

BG. The transmitter sends a value to the receiver at a frequent time interval (usually

every five minutes) [23].

The Abbott FreeStyle Libre is a new type of glucose sensor that is available in

Europe, but not yet in the United States. This sensor is designed to replace fingerstick

measurements in determining insulin doses. The sensor can be worn for 14 days

10
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Figure 1.2: Schematic representation of a sensing element that could
be used in a CGM. (A) Cross section of the electrode. (B) Layers of the
glucose sensing electrode. Figure adapted from [23] and [25].

11



Chapter 1. Introduction

and is factory-calibrated, meaning that no fingerstick measurements are required

throughout the entire device wear period. However, this sensor is not yet a CGM.

Rather than continuously transmitting measurements to a monitor for a real-time

readout, the sensor provides the measurement only when the meter is used to scan

the sensor. Upon scanning, the most recent measurement, plus a history of up to 8 h,

is provided [26]. In the future, this sensor may become available as a true factory-

calibrated CGM.

The FreeStyle Libre operates through Wired Enzyme™ technology, which was

previously used in the FreeStyle Navigator CGM [26, 27]. This technology uses the

detection of a mediator, rather than hydrogen peroxide, to measure the glucose con-

centration. To prevent the mediator from diffusing out of the sensor, it is bound

within a redox active gel, which contains the glucose oxidase and the Os-based

mediator attached by anchors to a polymeric backbone film enzyme. This sensing

mechanism provides a more stable response over the lifetime of the sensor than hy-

drogen peroxide-based sensors. Additionally, the use of the mediator removes the

dependence on the oxygen concentration, so the system of selective membranes to

orchestrate a higher concentration of oxygen is no longer necessary. Since oxygen is

no longer a key component for glucose detection, the glucose measurement will not

be affected by fluctuations in oxygen concentration in the in vivo environment. Lastly,

the potential that needs to be applied to the working electrode to drive the reaction

is much smaller than what is needed for hydrogen peroxide sensors (40 mV versus

500-700 mV). Using this smaller potential removes the possibility of interference from

other electroactive compounds, such as acetaminophen [23, 26]. The feasibility of a

factory calibration was enabled by advances in the sensor manufacturing process that

ensure consistent and reproducible sensor production [27, 28].

An emerging type of CGM operates without using glucose oxidase or any other
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electrochemical reaction. Instead, it detects glucose using a fluorescent indicator. The

sensor consists of a hydrogel containing the fluorescent indicator, an LED to excite

the indicator, and photodiodes to measure the fluorescence intensity. Glucose binds

with the indicator in a reversible reaction that prevents fluorescence quenching, thus

increasing the fluorescence in proportion to the glucose concentration. The fluores-

cent sensor in development by Senseonics (Germantown, MA) is designed to be fully

implantable within the subcutaneous space, meaning there is no transcutaneous com-

ponent. The implanted sensor uses an antenna to communicate with the transmitter

placed on the skin above the sensor site [29]. Data from a clinical study show that

the implanted sensor is able to measure glucose for at least 90 days, which is a sig-

nificant improvement over the 6, 7, or 14 day wear period of other sensors [30]. The

Senseonics Eversense CGM System has recently received the CE mark for adjunctive

use and will be commercialized beginning in Sweden [31].

Subcutaneous Glucose Sensing Characteristics

Subcutaneous CGMs are advantageous for many reasons: they require little pa-

tient effort, capture trends that would be missed by capillary glucose measurements,

continue working even while the patient is asleep, and are painless apart from the

initial insertion. The disadvantages are that the sensors need to be calibrated by cap-

illary glucose measurement every 12 h, pressure on the sensor site during sleep can

cause the signal to drop, and measurements may not be accurate or may lag behind

the true BG [32, 33]. Despite these drawbacks, CGMs have been shown to improve

treatment for adults and children with T1DM, especially when combined with pump

therapy [34–36].

Understanding the glucose measurement process and potential errors associated

with it is important to ensuring that these sensors have a positive impact on patient
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care. Since the sensor is acting in vivo, there are many sources of error that can affect

the measurement [23, 37]. The block diagram in Figure 1.3 depicts the measurement

process from the intravenous (IV) glucose concentration to the measured CGM value.

Glucose must be transported from the blood to the ISF, which adds a diffusion lag

[38]. Pressure on the sensor site can affect the volume of the ISF, acting as a dis-

turbance to the transport process [33, 39]. The ISF concentration is measured by

the CGM, which produces an electrical current (isig) that is designed to be linear in

glucose concentration. Various factors such as biofouling, corrosion, and invalid ki-

netic assumptions can affect the accuracy of the measurement. Random signal noise

(ξCGM) is present as well.

The electrical current is processed with filters as designed by the manufacturer.

The signal is then operated upon by the calibration function to produce a signal in

concentration units. The calibration function receives capillary BG updates periodi-

cally (approximately every 12 h). The capillary glucose measurements are used to fit

a linear relationship between electrical current and glucose concentration, although

the exact method used is typically proprietary information of the manufacturer [23].

Any error in the capillary measurement will potentially lead to an incorrect cali-

bration, which will create a persistent error in the CGM measurement. Finally, the

calibrated glucose signal may be filtered by a noise spike filter to remove unrealisti-

cally large changes in concentration. The CGM measurement thus produced is often

compared to a measurement of the IV BG by a standard reference instrument, which

can also have a small error.

The error present in the glucose measurement process can be dangerous to the

patient if it is significant enough to cause incorrect treatment. Conversely, small

errors in the measurement are not important and will result in the same overall

treatment. The performance characteristics of various CGMs as observed in clinical
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Table 1.1: Performance characteristics of various CGMs over time.
Source of reference measurement is listed as YSI (venous blood with YSI
glucose analyzer), GS (venous blood with GlucoScout), VB (venous blood),
or SMBG (capillary blood measurement).

Mfgr. Model Ref. Year N Comp. MARD
(%)

CEG A
(%)

CEG
A+B
(%)

Dexcom G4 Platinum [40] 2015 72 YSI 13 81 98

[41] 2015 51 YSI 9 92.4 99.5

[42] 2015 24 YSI 13.6 79.9 94.9

[43] 2014 24 GS 10.8 84.5 99.6

[44] 2014 38 SMBG 13.9

[45] 2013 72 YSI 13 79

Seven Plus [45] 2013 53 YSI 16 73

[46] 2013 6 GS 16.5 76.2 98.9

Seven [47] 2009 72 YSI 16.7 70.4 97.9

[48] 2009 14 YSI 16.8 72 94.8

STS [49] 2008 14 YSI 21.2 55.4 100

Medtronic Enlite [42] 2015 24 YSI 16.6 72.3 92.3

[50] 2014 90 YSI 14.71 81.3 98.6

[43] 2014 24 GS 17.9 69.1 98.9

[44] 2014 38 SMBG 17.8

Guardian [46] 2013 6 GS 20.3 63.7 96.9

[49] 2008 14 YSI 15.2 76.3 97.5

Abbott FreeStyle
Libre

[27] 2015 72 YSI 12

Freestyle
Navigator II

[51] 2015 57 SMBG 14.2

Navigator [43] 2014 24 GS 12.3 84.2 98.4

[46] 2013 6 GS 11.8 80.6 98.9

[48] 2009 14 YSI 16.1 77.5 93.2

[49] 2008 14 YSI 15.3 76.3 99.7

Senseonics Senseonics [30] 2015 24 VB 11.4 87 99.5
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studies are displayed in Table 1.1. The table includes the number of subjects (N)

involved in each study. The accuracy is presented as the mean absolute relative

difference (MARD) between the sensor measurement and the reference measurement.

Another measure of accuracy is given by the Clarke Error Grid (CEG), which is used

to determine the clinical implications of the CGM error [52]. The CGM measurements

are plotted against the corresponding reference measurements on a graph that is

divided into five zones: A, where the glucose sensor measurement was within 20%

of the reference; B, where the error was greater than 20% of the reference, but the

treatment determined from the glucose sensor and reference would have been the

same; C, where unnecessary treatment would have been given that could have led to

dangerous hyperglycemia or hypoglycemia; D, where dangerous hyperglycemia or

hypoglycemia would have gone undetected; and E, where the treatment given would

have been the opposite of the required treatment [52]. According to one source, the

percentage of points in the A and B zones should be higher than 98% to be acceptable

[23]. The table reports both the percentage of points in the CEG A zone and the

acceptable A+B zones.

The improved control quality resulting from increased CGM accuracy can be an-

alyzed as a return on investment. Once the glucose sensor reaches a certain level of

accuracy, increasing it any further will no longer lead to improved control. Much

research has been done to investigate and characterize CGM error, with the goal of

using this knowledge to improve the sensor or design filtering and processing tech-

niques to reduce the error [38, 40, 53–59]. While CGMs are not currently approved

for nonadjunctive use in the United States, it is anticipated that they will eventually

be approved for use in treatment decisions once accuracy standards are established

[20]. A major concern with the use of subcutaneous glucose sensors is the measure-

ment lag introduced by diffusion between the blood and the ISF. Placing the sensor
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in a different location may reduce this lag, thereby making the sensor more accurate

and reliable [38]. The characterization and impact of sensor lag are discussed more

in Chapters 3 and 4 of this dissertation.

1.3 Closed-Loop Control for Type 1 Diabetes Mellitus

1.3.1 Motivation

Even with the current standards of treatment and technology available, the risk

of premature death for people with T1DM is two times that of the average person

without it [4]. One study found that the number of participants who reach the recom-

mended HbA1c level of <7.0% was less than 15% [60]. Data from 16,061 participants

in the T1D Exchange clinical registry showed that the mean HbA1c was 8.2%, with

an average of 9.2% in 19-year-olds. Of 2,561 participants who responded to the ques-

tionnaire, 6% listed that they experienced a seizure or loss of consciousness due to

hypoglycemia within the past 3 months [61]. A separate analysis of the 13,316 par-

ticipants in the T1D Exchange aged younger than 20 years showed that only 21% of

participants met the HbA1c criteria for their age group [62].

While physicians can advise patients on how to best use their prescribed insulin,

the onus of most treatment decisions falls on the patient. The degree to which treat-

ment is successful depends greatly on the amount of effort the patient (or patient’s

guardian) is willing and/or able to exert. The patient must take over the role of the

pancreatic beta cells by frequently monitoring the BG and calculating the appropriate

insulin dose to avoid both hyperglycemia and hypoglycemia. This process is made

difficult by the myriad factors that affect insulin sensitivity and BG [63]. Since hypo-

glycemia has severe and immediate health effects, many patients become fearful of
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their BG going low and are therefore more willing to spend time in hyperglycemia,

especially since the consequences are less severe on short time scales [64]. The requi-

site constant self-monitoring can cause psychological disorders as well. For example,

people with T1DM are more likely to develop depression [65]. An algorithm that au-

tomatically controls the BG of people with T1DM by connecting a CGM and insulin

pump in a feedback loop would lessen the burden of treatment while improving the

quality of control that can be achieved.

1.3.2 Design and Implementation

The components required for closed-loop control of BG are a CGM, an insulin

pump, and a control algorithm, with appropriate communication between the three.

This combination of devices is often referred to as an artificial pancreas (AP). Beyond

the inclusion of these three essential components, there are many different choices

that can be made to design a specific AP implementation. The block diagram in

Figure 1.4 depicts the design choices that have been made in AP development. The

major components are discussed in the sections below.

Control Target

The control target is a necessary specification for an AP design. The desired BG

can be set as either a range, as in [66] or a setpoint, as in [67], depending on the

controller design [1]. The target can also be fixed or time-varying. For example,

some controller designs raise the target to a more conservative value overnight to

prevent hypoglycemia [68]. In [67], the controller target is raised from 120 mg/dL to

160 mg/dL upon announcement of exercise. On the other hand, some designs use

the same target throughout the entire operation, as in [69].
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Figure 1.4: Block diagram demonstrating the design choices available
for the artificial pancreas. A specific artificial pancreas configuration is
created by selecting options for each of the major elements shown in the
figure. Solid lines demonstrate connections that are always present and
dashed lines represent connections that may be present in only some con-
figurations. The tuning, model, and desired glucose concentration are all
part of the controller, as signified by the black arrows. The green dash-dot
line distinguishes physiological states or properties from measured or dig-
ital signals. Black lines are used to indicate predetermined features of a
block, and blue lines indicate signals or actions conducted during closed-
loop operation. Reprinted with permission from [1].
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Control Algorithm

Automatic control is a field that has been well-developed within the chemical

process industry [70]. The same algorithms that are applied to regulate the flow from

a tank or the concentration of product leaving a reactor can be successfully applied

to regulate the BG in the human body. The most frequently used control algorithms

for AP applications are model predictive control (MPC) and proportional-integral-

derivative control (PID), although other strategies such as proportional-derivative

control, fuzzy logic, and empirical algorithms have also been applied [1].

MPC is an advanced control method that utilizes a process model to predict the

future trajectory of the system based on past measurements and inputs [70]. While

an MPC controller can be designed to track a single setpoint value, it can also be

designed to keep the controlled variable within a desired zone. The latter approach

is ideal for application in T1DM, since there is no clear choice for a specific setpoint

value [71]. This approach, known as zone model predictive control (ZMPC), has been

applied successfully in several clinical studies [66, 72, 73].

The plots in Figure 1.5 demonstrate two ZMPC scenarios. At each time step, the

controller predicts the measured output P steps into the future, while calculating the

necessary input for each of the next M steps to achieve the control objective. The

objective is to minimize a cost function that weights the output error and the input

energy based on their relative importance for the system. The first calculated input

step is then implemented, after which the next measurement is received and the

process repeats [70].

When using ZMPC, action is taken only if the measured variable is predicted to

leave the desired zone. For example, in the first panel of Figure 1.5, the controlled

variable is predicted to remain within the desired zone, so the output from the con-
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Figure 1.5: Schematic representation of zone model predictive control.
At a given time-point, the controller chooses the next M inputs in order
to minimize the cost function, which includes excursions from the desired
zone for the next P predicted output values. The first input is then imple-
mented, and the process is repeated at the next time-point.
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troller will be the nominal value of the manipulated variable. In the second panel, the

measured value is predicted to leave the desired zone, so the necessary inputs over

the next M steps required to return to the zone are calculated. An additional feature

of MPC is the ability to directly incorporate constraints into the optimization process.

For example, the ZMPC controller is designed to incorporate both physiological and

safety constraints [68, 71, 74, 75]. More information about the ZMPC controller is

presented in Chapter 2.

PID controllers first became commercially available in the 1930s. This type of con-

troller includes three modes that are added together to produce the final controller

action. The proportional mode produces controller action in proportion to the error

(defined as the difference between the measurement and the setpoint). The integral

mode eliminates persistent error between the measurement and the setpoint by act-

ing in proportion to the integral of the error over time. Lastly, the derivative mode

contributes to the controller action in proportion to the rate of change of the error

[70]. PID control has been applied in several AP designs in clinical studies [67, 76–81].

This type of controller is explored more in Chapters 4 and 5 of this dissertation.

Once the controller type has been selected, it must be tuned to meet the safety

and performance requirements of the system. Additionally, predictive controllers

require the selection of a process model [70]. The tuning of the control algorithm

determines how aggressively it will react to BG deviations from the desired value.

While the specifics of the tuning procedure depend on the type of controller being

used, typically the parameters are selected using a combination of process modeling

and simulation studies [82–84]. The controller output and resulting glucose measure-

ments may be used to update the controller or model parameters through adaptation,

as demonstrated in run-to-run approaches and adaptive learning schemes [85–89].

The control algorithm generates an output for insulin delivery and may also cal-
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culate glucagon, pramlintide, and/or additional glucoregulatory hormone delivery.

The controller output is calculated at discrete times determined by the controller ac-

tion interval. This interval has typically been selected as between 5 and 15 minutes

[1].

Actuation

Following the computation of the desired controller action, this signal must be

communicated to the actuator. In nearly all clinical evaluations of the AP thus far,

the actuator has been a subcutaneous insulin pump. A limited number of trials have

used an intraperitoneal insulin pump to take advantage of the faster insulin phar-

macokinetic and pharmacodynamic properties of this route [90, 91]. A majority of

systems have used insulin alone as the manipulated variable, but some implementa-

tions have added glucagon or pramlintide as a second input [88, 92–96]. The addition

of glucagon allows the controller to have a mechanism of raising the BG in the case

of current or impending hypoglycemia [97].

Sensing

All AP implementations require at least one CGM. Typically, commercially avail-

able subcutaneous enzymatic CGMs are used. While including more than one glu-

cose sensor would make the system more robust, this approach would not be ac-

cepted by patients due to the limited space on the body for sensor placement [1].

Other types of sensors may be included to provide additional inputs to the con-

troller. For example, an activity sensor that measures heart rate and accelerometry

data may be included to detect exercise or determine whether the user is sleeping

[98]. All sensor signals need to be processed and filtered before being communicated

to the control algorithm in order to prevent undesired controller action based on sen-
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sor noise or erroneous measurements. After receiving the updated measurements,

the control cycle repeats at the next sample time [1].

User Interaction

Ideally, the AP would be fully automated, with no input required from the user.

However, due to the realities of physiological limitations in the speed of insulin ac-

tion, user input or action may be required to achieve satisfactory control. The most

frequently encountered type of user action is the meal announcement. The user is re-

quired to enter an estimate of the meal carbohydrate content prior to consuming the

meal. This announcement is a type of feedforward action that triggers an immediate

insulin bolus based on the insulin to carbohydrate ratio. However, including user

action introduces human error into the control loop. Over- or underestimation of

the meal size could lead to suboptimal performance and safety risks [1]. Additional

options for user interaction include the announcement of exercise, as in [99].

Safety Systems

While the AP is designed to result in better health outcomes for people with

T1DM, there are safety risks involved that need to be considered in the design. The

most prominent risk is hypoglycemia due to over-delivery of insulin. Most AP de-

signs include an algorithm to limit the commanded insulin dosage based on the

glucose and insulin history. The two most commonly used algorithms are Insulin On

Board (IOB) [100] and Insulin Feedback (IFB) [101]. Both of these methods use the

insulin delivery history to adjust the current insulin dose to account for how much

active insulin is already in the blood. An AP may also include an independent safety

system to detect and alert the user to impending hypoglycemia. An example of this

type of safety system is the Health Monitoring System, which alerts the user to pre-
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dicted hypoglycemia and recommends the consumption of 16 g CHO to prevent or

mitigate the episode [72, 102].

1.3.3 Recent Progress in Clinical Evaluation

To date, there have been 99 published clinical evaluations of AP devices. A full

bibliography of these studies is included in Appendix A. As shown in Figure 1.6, the

number of studies published per year has been increasing steadily since 2004, with

the peak reached in 2014. The clinical protocols used to evaluate AP designs have

varied greatly, making it difficult to compare results across different studies. Varying

factors include the number, type, and size of meals, whether meals are announced,

the presence of physical activity, the level of supervision, the setting, the length of

time spent in closed-loop, and the age and number of subjects [1].

The fifteen2 studies that were published in 2015 are summarized in Table 1.2. Of

these fifteen studies, nine took place in the outpatient environment, whether at a

diabetes camp [67, 96], in a house/hotel/outpatient suite [66, 103, 104], or at home

[81, 92, 105, 106]. The other studies simulated daily-life conditions as closely as

possible to ensure a realistic evaluation of the system. In recent years, the difference

between inpatient and outpatient evaluation has become difficult to delineate, as

studies outside the clinic can still involve significant supervision by study staff. The

transition space between inpatient studies to fully unsupervised outpatient studies is

truly a spectrum, with each study falling somewhere in between the two extremes.

A new trend observed in 2015 is the inclusion of meal announcement in all but one

of the twelve studies that included closed-loop meals [66, 67, 69, 73, 81, 94, 103, 105–

108]. Most studies used the subjects’ usual parameters to calculate either a full or par-

2The study in [69] was published online in 2015 and so is included in this discussion, although the
print publication year is 2016.
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Figure 1.6: Number of artificial pancreas clinical trials published per
year from 2004-2016.
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Table 1.2: Summary of artificial pancreas clinical trials published in 2015.

Ref. Glucagon Setting Bolus Type Exercise
During CL

Controller Device
Platform

[105] No Home Full Variable MPC Android
Phone

[81] No Home Full Variable PID+IFB Android
Phone

[106] No Home Full Variable MPC Android
Phone

[92] Yes vs. No Home No CL
Meals

None MPC Computer

[96] Yes vs. No Camp No CL
Meals

None MPC Tablet
Computer

[67] No Camp Full Basketball,
Soccer,

Football,
Running,

etc.

PID+IFB Pump

[103] No Hotel Full None MPC Android
Phone

[104] No House,
Hotel

No CL
Meals

None Other Android
Phone

[66] No House,
Hotel,

Outpatient
Suite

Full
(Adjusted or

Usual I:C)

Treadmill,
Stationary

Bicycle, etc.

MPC Tablet
Computer

[107] No Clinic Full or
Partial

(100% or
75%)

Stationary
Bicycle

MPC N/A

[108] No Clinic Full None MPC Computer

[73] No Clinic Partial:
Inhaled
Insulin

Stationary
Bicycle

MPC Computer

[94] Yes vs. No Clinic Full or
Partial

(70-100%)

Treadmill MPC Computer

[69] No Clinic Full and
Partial and

None

None Other Low-power
Miniatur-

ized
Chip

[109] No Clinic None Stationary
Bicycle

FL Computer
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tial premeal bolus; however, some included novel approaches. In Zisser, et al. [73], a

partial priming bolus of fast-acting inhaled insulin equivalent to 4U of subcutaneous

insulin was delivered prior to each meal, with no carbohydrate estimate necessary.

In Dassau, et al. [66], an algorithmic adjustment was made using open-loop data to

improve the basal pattern and insulin-to-carbohydrate ratio, with the controller eval-

uated using the initial versus the adapted parameters. Lastly, Mauseth, et al. [109]

presented a study designed to push their fuzzy logic AP system to its limits. Their

challenges included unannounced exercise followed by an unannounced meal and a

large, high-fat unannounced meal (120 g carbohydrate). Testing the controller with

these extreme but realistic challenges revealed valuable information that was used to

improve the controller design.

Three of the fifteen studies used glucagon as a second hormone delivered by the

AP. Two evaluated outpatient overnight control [92, 96], while the other provided 24 h

control in clinic [94]. The 24 h study did not find significant differences between the

glycemic control provided by a single or dual hormone AP; however, the study was

short and conducted in the inpatient setting. An AP system incorporating glucagon

remains a promising area of research during the transition into longer, unsupervised

outpatient studies.

Ten of the studies published in 2015 used model predictive control (MPC) [66, 73,

92, 94, 96, 103, 105–108]. Other controllers used were fuzzy logic [109], proportional-

integral-derivative plus insulin feedback (PID+IFB) [67, 81], and empirical or model-

based controllers [69, 104]. Five of the studies hosted their algorithm on an Android

phone [81, 103–106], one directly on the pump [67], one on a miniaturized low-power

microchip [69], two on tablet computers [66, 96], and five on computers [73, 92, 94,

108, 109].

Exercise is a part of daily life for most people, so the AP will certainly need to
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handle this challenge. For this reason, it has become almost standard to include

exercise activities during closed-loop. The studies in 2015 included many types of

exercise, including using a treadmill [66, 94], using a stationary bicycle [66, 73, 107,

109], playing sports (basketball, soccer, football, running) [67], or following subjects’

typical exercise routine [81, 106].

Overall, the year 2015 in clinical AP research represents the transition period from

inpatient to outpatient studies. New territory is being crossed as researchers learn of

the unique and perhaps unanticipated challenges that must be met to incorporate the

AP into a person’s daily routine. Included in this process is the transition from laptop

computers to more portable devices. Studies moving into the fully outpatient envi-

ronment inevitably become less controlled than supervised inpatient studies, while

at the same time providing a better picture of the work that still needs to be done to

make the AP a viable product for patients. Studying the protocol details and results

of these publications will allow the research community to learn valuable lessons as

they plan their next round of studies and move toward the goal of an AP to improve

care for people with T1DM.

The studies that have been published as of May 20163 are presented in Table 1.3.

The trends observed in 2015 have continued. All of the studies took place in an out-

patient environment except for those in [95, 111, 112], which took place in the clinic to

meet their purposes of rigorously comparing different meal bolus strategies or study-

ing the effects of liraglutide or pramlintide injections. Exercise was included in all

but three studies, and most were conducted on a smart phone or custom integrated

device.
3The studies presented in [110] and [69] are not included in this table because they were published

online ahead of print in 2014 and 2015, respectively, although the print publication dates are 2016.
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Table 1.3: Summary of artificial pancreas clinical trials published in 2016.

Ref. Glucagon Setting Bolus Type Exercise
During CL

Controller Device
Platform

[113] No Home Full Usual
Routine

Empirical
Control-to-

Range

Android
Phone

[114] No Home Full Usual
Routine

MPC Nexus 5
Phone

[115] No Home Full Usual
Routine

MPC Nexus 4
Phone

[116] Yes Home None Usual
Routine

PID Custom
Integrated

Device

[80] No Protected
Home

Full Variable PID+IFB Android
Phone

[117] No Camp Unknown Moderate to
High

Intensity

MPC Android
Phone

[118] No Camp No CL
Meals

None PID+IFB Android
Phone

[119] Yes Camp Partial Usual
Routine

MPC iPhone 4S

[99] No Hotel Full Usual
Routine

PID+IFB Pump

[120] Yes vs. No Outpatient Full or
Simplified

Usual
Routine

MPC Tablet
Computer

[111] No Clinic None None PID+IFB Unknown

[112] No Clinic None None PID+IFB Laptop
Computer

[95] Yes Clinic Full or
Partial or

None

Walking MPC Computer
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1.3.4 Challenges and Future Directions

The AP system must be able to handle frequent disturbances to the BG that are

part of daily life. Important challenges include meals and physical activity, both of

which result in rapid changes in the BG. Nearly all of the AP designs developed so far

have utilized subcutaneous glucose measurements paired with subcutaneous insulin

delivery. An significant disadvantage of this route is that it depends on molecular

transport between the blood and ISF. The delays associated with this route culmi-

nate in approximately 90 minutes between when insulin is delivered and when its

effects on the subcutaneous glucose concentration are seen [121]. Such a large delay

makes compensation for meal disturbances difficult, so many researchers have added

a prandial insulin bolus or meal announcement to their control scheme [1, 122]. While

this approach may result in better control, it is not ideal because the system is not

fully automated and human action is added to the control loop. For this reason, an

important future direction for AP development is the investigation of alternate in-

sulin delivery and glucose sensing sites. As discussed in the following section, this

dissertation is focused on characterizing these alternate insulin delivery and glucose

sensing sites and evaluating their use in the AP.

1.4 Thesis Overview

In this dissertation, the development of the AP is explored, with a specific focus

on the role of the glucose sensing and insulin delivery route in determining overall

controller performance. Chapter 2 presents the application of the state-of-the-art

ZMPC+HMS AP in adolescents. During the trial there were significant challenges

to the controller, including twice-daily mild to moderate exercise and free-choice

32



Chapter 1. Introduction

announced meals.

Since subcutaneous CGMs measure glucose concentration within the ISF, they

introduce an undesirable diffusion lag to the measurement process. We hypothesized

that placing the sensor in the intraperitoneal space would decrease the diffusion lag.

In Chapter 3, experimental data is used to quantify the diffusion lag experienced by

subcutaneous and intraperitoneal sensors placed in non-diabetic swine. Additionally,

the effect of long-term sensor implantation is explored.

In Chapter 4, the lag estimation from Chapter 3 is used to explore the impact of

glucose sensor dynamics on the AP. The error caused by various amounts of sensor

lag is quantified using retrospective analysis of clinical data. Robust performance

and stability analysis, as well as simulation studies, are used to quantify the effect of

sensor lag on the AP controller performance.

Current implementations of the AP are limited by the properties of subcutaneous

glucose sensors and insulin pumps. Chapter 5 outlines the process used to design a

robust PID controller for use in a fully implantable AP that is designed to work with

intraperitoneal devices. Data from the sensor lag studies, as well as from previous

studies of intraperitoneal insulin pharmacokinetic and pharmacodynamic properties,

inform the design of the controller.

Chapter 6 provides a summary of the conclusions made in this dissertation. The

future directions of the work described here are also outlined.
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Chapter 2

Outpatient Evaluation of Artificial

Pancreas with Exercise in Adolescents1

2.1 Introduction

As discussed in Chapter 1, advances in medical device technology have enabled

vast improvements in the way that type 1 diabetes mellitus (T1DM) is treated. For

example, the use of continuous glucose monitors (CGMs) provides patients with a

wealth of information about their blood glucose concentration (BG), its history, and

its real-time trends, allowing them to make more informed adjustments to their in-

sulin therapy. Improvements in CGM technology have increased the accuracy of these

devices, with the prediction that they will soon be approved for non-adjunctive use in

the United States [20]. In addition to CGMs, rapid-acting insulins and programmable

pumps for continuous subcutaneous insulin infusion (CSII) have also shown promise

in allowing patients to exert finer control over their BG; however, successful imple-

1 Portions of this chapter were submitted for publication in the journal Pediatric Diabetes on 13
May 2016 [123]. This study is registered on clinicaltrials.gov with clinical trial registration number
NCT02506764.
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mentation of CSII and CGMs requires time, effort, and ongoing education on the part

of patients and their families [124]. The development of a closed-loop artificial pan-

creas (AP) device to regulate the BG by adjusting insulin delivery in real-time based

on feedback from a CGM will automate the treatment process, removing much of the

daily patient effort and active decision-making that are a part of manual treatment

[1]. While AP devices have been shown to be safe and effective in the inpatient envi-

ronment [66, 72, 78, 125–129], a great challenge remains in determining their safety

and feasibility in a free-living outpatient environment [81, 96, 105, 106, 130–136].

Model predictive control (MPC) is an advanced control strategy that has been

widely implemented in the chemical industry for controlling complex processes with

input and output constraints [70, 137, 138]. This control strategy is promising for use

in the AP, especially due to its ability to directly incorporate physiological constraints

(i.e., cannot remove insulin from the body), its capacity to handle delays in insulin

action, and its customizability in designing the objective function to optimize insulin

delivery according to clinical needs [71, 72]. The state-of-the-art Zone Model Predic-

tive Control (ZMPC) AP algorithm developed at UCSB and Harvard University uses

a model to predict the future BG trajectory and calculate the optimal insulin dose

needed to maintain the BG trajectory within a desired zone, rather than at a specific

set point [71, 74, 75]. When the BG is predicted to be within the desired zone, the

controller delivers the usual basal insulin dose to minimize excessive controller ac-

tion in response to small changes in glucose, such as may occur with noise in CGM

measurements. When the predicted BG trajectory includes excursions from the zone,

the controller modulates the insulin dose up or down to deliver the optimal dose to

produce safe and effective glucose control as calculated by the objective function. The

Health Monitoring System (HMS) provides an additional safety layer, independent

of the controller, to predict and alert the user to impending hypoglycemia [72, 102].
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The ZMPC algorithm has performed well in several controlled inpatient and re-

search suite evaluations in adults with T1DM [66, 72, 73]. For this controller to be

tested in the outpatient setting, a portable platform is required. To this end, the

ZMPC+HMS algorithms were integrated into the Diabetes Assistant (DiAs) platform

from the University of Virginia (UVA), hosted on an Android smartphone [139]. The

DiAs system has undergone extensive clinical testing to demonstrate its safety and

feasibility for use in the outpatient setting [139]. The remaining components of the

AP system are a Dexcom G4P Share CGM (San Diego, CA) and a Roche Accu-Chek

Spirit Combo pump (Mannheim, Germany), as shown in Figure 2.1. The devices

communicate wirelessly via BluetoothTM, eliminating the need for hard-wired con-

nections. The data is automatically transferred by the DiAs platform to a secured

server to allow the subject’s status to be monitored remotely.

3G/

WiFi

Zone Model 

Predic�ve Control

Health 

Monitoring System

Roche Accu-Check 

Insulin Pump

Wireless

Connec�vity

Dexcom G4P CGM

with Share

Dexcom G4P CGM

Remote

Monitoring

Server

Clinical and 

Technical Sta!

Figure 2.1: Components of the ZMPC+HMS/DiAs system. The
ZMPC+HMS algorithms are hosted on the DiAs platform, which runs
on medical Android on a Nexus 5 phone. The DiAs platform commu-
nicates with the Roche Accu-Chek insulin pump and the Dexcom G4P
CGM via Bluetooth. The DiAs platform also communicates with the DiAs
Web Monitoring site by 3G or internet connection.
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While the feasibility of the AP with ZMPC+HMS has been demonstrated in the

adult population in controlled inpatient or research suite settings, it has neither been

evaluated in children or adolescents, nor in highly ambulatory settings with frequent

exercise [66, 72]. Satisfactory glucose control in adolescents and children with T1DM

is notoriously difficult to achieve, with T1D Exchange data showing that approxi-

mately 80% of adolescents have hemoglobin A1c (HbA1c) values above the American

Diabetes Association target of 7.5% (58 mmol/mol)[61, 62]. This trend is particularly

concerning for older adolescents, who saw an average HbA1c of 9.0% (75 mmol/mol)

in the 13-17 year-old age group [61]. Adolescents experience both physiological chal-

lenges due to changes in insulin sensitivity related to puberty [140–143] and psy-

chosocial barriers presenting as missed meal boluses, less frequent self-monitoring

of blood glucose (SMBG) testing, and difficulty following a fixed plan or regimen

[144]. Significantly elevated insulin resistance in pubertal teenagers presents a chal-

lenge to model-based controllers, as the parameters for this population may differ

from those modeled for adults with T1DM. Additional challenges to AP systems in

this age group include school-based sports and more frequently missed meal boluses.

The purpose of this study was to determine the feasibility of the AP with

ZMPC+HMS in adolescents with T1DM engaging in supervised, free-living condi-

tions with twice-daily mild to moderate intensity exercise. This study represents the

first evaluation of the ZMPC+HMS algorithms in the adolescent population. Addi-

tionally, this study is the first evaluation of the ZMPC+HMS algorithms in the transi-

tional hotel environment with frequent repeated exercise, thus bridging between the

inpatient and unsupervised outpatient settings.
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2.2 Research Design and Methods

2.2.1 ZMPC+HMS/DiAs System

The integration of the ZMPC+HMS algorithms with the DiAs platform and de-

vices comprises a portable automated glucose management system (see Figure 2.1).

The ZMPC algorithm automatically regulates the insulin dose based on the glucose

level as determined by current and historical CGM measurements, predicted glucose

trends, historical insulin delivery, and patient-specific information. The model used

by the controller to predict future glucose concentrations is personalized using the

subject’s total daily insulin dose (TDI). The algorithm is designed to drive the BG to

a target zone. During the day (06:00-22:00) the target zone is 80-140 mg/dL and dur-

ing the night (24:00-04:00) the target zone is 90-140 mg/dL, with smooth, two hour

transitions in between the two. As long as the BG is predicted to remain in the target

zone, the controller delivers the subject’s usual basal rate. A previous iteration of the

ZMPC algorithm is described in detail in [68]. Additional features that modify the

objective function to enhance performance in correcting hyperglycemia, while also

reducing the risk of hypoglycemia, are presented in [74, 75].

The HMS provides an additional safety layer outside of the ZMPC algorithm

by analyzing CGM data and trends to detect impending hypoglycemia [102]. This

system produces an audio-visual alarm when the CGM is predicted to cross the

65 mg/dL threshold within 15 min. The user is prompted to perform a SMBG mea-

surement and to treat with oral carbohydrates (CHO), thus preventing or mitigating

the impending hypoglycemic episode.

The ZMPC+HMS/DiAs system is programmed at the start of the study with the

subject’s TDI, as well as the insulin to CHO ratio (CR), correction factor (CF), and
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basal rate profiles. Meal announcements are made through the DiAs interface to

trigger a bolus. The bolus size is computed using the preprogrammed CR and CF

profiles based on the meal size estimate and a SMBG measurement. If the SMBG

at the time of the meal is <120 mg/dL or if no SMBG is entered, the bolus size is

80% of the value computed using the CR. If the SMBG at the time of the meal is

>120 mg/dL, the bolus size is 100% of the value computed using the CR. Lastly, if

the SMBG is >150 mg/dL, the full meal bolus is accompanied by a correction bolus

to 150 mg/dL calculated using the CF. The correction bolus is added only if there has

not been another meal bolus with a correction bolus within the past two hours.

The insulin dose calculated by the controller is subject to safety constraints. At

each five-minute interval, the insulin dose is limited to be less than 1 U (excluding

meal/correction boluses). During the period of 22:00 to 04:00, the insulin infusion

is constrained to be less than 1.8 times the basal rate. Lastly, the Insulin on Board

(IOB) algorithm prevents over-delivery of insulin by taking into account the insulin

infusion history over the past eight hours [75, 100].

2.2.2 Study Design

The primary objective of this study was to determine safe and feasible operation

of the ZMPC+HMS/DiAs system in adolescents with T1DM engaging in free-living

conditions with twice-daily unannounced mild to moderate intensity exercise. Ten

subjects were recruited for the study (5 subjects each at Stanford University (SU) and

the Barbara Davis Center (BDC)). Subjects resided in a hotel setting for three days,

where they slept overnight and engaged in mild to moderate intensity exercise at

least twice daily, with clinical staff in attendance at all times. Subjects chose the

size, content, and timing of their meals to emulate free-living conditions, with no

restriction on meal size. The study protocol was approved by the Stanford University
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Institutional Review Board and the Colorado Multiple Institutional Review Board.

The inclusion criteria for the study were: clinical diagnosis of T1DM, daily insulin

therapy for at least 12 months, aged 10 to 19 years, insulin pump use for at least 3

months with current use of a downloadable pump, TDI requirement >0.4 U/kg/day

over the preceding two weeks, and ability to speak and understand English. Addi-

tional criteria for female participants were: use of acceptable method of contraception

if sexually active and a negative urine pregnancy test for subjects who have entered

menarche. Informed consent was obtained from subjects and/or parents and the as-

sent form signed by the subject if <18 years. Study exclusion criteria were diabetic

ketoacidosis (DKA) in the past month, history of seizure or loss of consciousness in

the last 6 months, or any medical disorder that would affect the completion of the

protocol.

2.2.3 Study Preparation

The Dexcom G4P Share CGM was inserted during a screening visit at least 72 h

prior to the hotel admission. Subjects continued with their usual sensor-augmented

pump therapy (SAP) during the period between CGM insertion and the beginning of

the CLC phase. The data from this period were analyzed to determine the subjects’

usual glycemic control. Upon arrival for the CLC phase, subjects removed their own

pumps and inserted a new infusion set for use with the study pump. After program-

ming the pump and DiAs system with the subjects’ information and establishing

communication between the study devices, CLC was commenced.
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2.2.4 Daily Study Procedures

A full timeline of events at each site is shown in Figure 2.2. The daily procedures

for the trial proceeded as follows: subjects ate breakfast at the hotel, then left for su-

pervised sessions of physical activity in the morning and afternoon. Exercise was not

announced to the system. The physical activity sessions included a variety of mild

to moderate intensity exercise of variable duration lasting at least 30 min. The exer-

cise sessions included activities such as soccer, basketball, tennis, ultimate FrisbeeTM,

walking, and bicycling. Lunch was provided during the afternoon between physi-

cal activity sessions. Dinner was consumed in the evening, followed by additional

activities such as playing pool, completing schoolwork, and watching movies. CLC

continued for three full days (72 h). Throughout the study, subjects made their own

food choices and decided their own meal size announcement. At least three meals

were consumed per day, with no restrictions on food selection. Subjects were also

free to choose the type and intensity of physical activity.

Start CL

10:00
Overnight Overnight Overnight

Exercise Exercise Exercise

End CL

10:00

Meals Meals Meals

24:00 08:00 24:00 08:00 24:00 08:00

Meal

Start CL

17:00
Overnight Overnight Overnight

ExerciseExercise Exercise

End CL

17:00

Meal Meals Meals

24:00 08:00 24:00 08:00 24:00 08:00

Meals

Figure 2.2: Timeline of the 72 h protocol at each clinical site. The timeline
indicates timing of meals, exercise, and overnight periods. The top panel
shows the timeline for SU, and the bottom panel shows the timeline for
BDC.

41



Chapter 2. Outpatient Evaluation of Artificial Pancreas with Exercise in Adolescents

Participants were provided with a meter for fingerstick SMBG measurements and

test strips. SMBG measurements were required at a minimum of 5 times daily (before

meals, prior to and after exercise and at bedtime) throughout the study. An additional

SMBG check was done by study staff at 03:00. CGMs were calibrated as per the

manufacturer’s instructions (at least twice daily), and any time there was a calibration

request from the CGM itself, provided that the SMBG was between 40-400 mg/dL

and the CGM indicated a low rate of change by displaying a horizontal arrow. The

CGM was also calibrated if the error compared to SMBG was >20%.

2.2.5 Safety and Remote Monitoring

At least one clinical staff member was present at all times to supervise use of the

system during the day and night. Monitoring was performed by visually observing

the subjects or by checking the remote monitoring website to view the current status

of all subjects. Subjects were asked to respond to HMS alerts by taking a SMBG

measurement. The HMS alert prompted the user to enter the SMBG and to indicate

whether treatment was given. In the case that SMBG>70 mg/dL, the subject was

prompted to treat with oral CHO, but the treatment was not required. In the case

that SMBG<70 mg/dL or the subject was symptomatic, the subject was given oral

CHO and the SMBG check and treatment process was repeated every 15 min until

SMBG>70 mg/dL and/or the subject was no longer symptomatic.

2.2.6 Statistical Methods

The primary outcome of this study was the feasibility of the system in this co-

hort and setting. Feasibility was defined as proper functioning of the system for at

least 75% of the total study time. Secondary outcomes included percentage of time
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spent in various glycemic ranges and mean CGM (as described in the recommen-

dations published in [145]). The secondary outcomes were evaluated using CGM

values from the entire CLC period. The data are presented as either mean±standard

deviation (SD) or median (interquartile range (IQR)), depending on the determined

distribution. Comparison between the CLC and SAP data was done using either a

paired sample Student’s t test for normally distributed data, or the Wilcoxon signed

rank test for non-normal data. Normality was determined using the Shapiro-Wilk

goodness-of-fit test. The statistical analysis was performed using Matlab 2015b.

2.3 Results

Ten adolescents (11-17 years, 5M/5F) completed 3 days of CLC in a hotel setting,

resulting in 30 person-days of CLC. Subject information is shown in Table 2.1. Data

from 95±14 h of SAP immediately prior to CLC are included to provide a comparison

to the subjects’ glycemic control with their usual therapy.

Table 2.1: Subject demographics for the study (N=10).

Characteristic
Age, years, mean ± SD (range) 15.3 ± 1.8 (11.9-17.7)
Gender, n (%)

Female 5 (50)
Male 5 (50)

Race and ethnicity, n
White 9
Native Hawaiian or Pacific Islander 1

Weight, kg, mean ± SD (range) 58.4 ± 13.9 (37.4-85.2)
Body mass index, kg/m2, mean ± SD (range) 21.5 ± 3.6 (15.6-26.9)
Hemoglobin A1c,

%, mean ± SD (range) 8.1 ± 1.3 (6.8-11.2)
mmol/mol, mean ± SD (range) 65 ± 14 (51-99)

Duration of diabetes, years, mean ± SD (range) 5.1 ± 2.3 (2.3-9.6)
Total daily dose (U/day, mean ± SD (range) 48.8 ± 18.2 (26.8-86.1)
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2.3.1 System Performance

The system demonstrated feasibility in this cohort, with CLC active for 95.0±1.1%

of the intended study time, or 97.3±1.7% of the time when excluding the two hours

of disconnection resulting from CGM change required in 6 of the 10 subjects. The

primary cause of time spent out of CLC was disruption in the Bluetooth connection

between the devices. The system was safe in this cohort, with no episodes of DKA

or severe hypoglycemia resulting in seizure or coma. All system safety alerts for hy-

poglycemia and hyperglycemia performed as expected. In one subject (referred to as

subject 4), the controller did not perform as intended due to a technical issue with the

integration of the DiAs and ZMPC systems. Due to a timing anomaly the controller

did not exploit CGM feedback properly for approximately 60% of the study duration.

During this time the controller was not able to respond as designed to increasing or

decreasing CGM trends. Instead, basal insulin delivery was commanded. The issue

was not detected until the data analysis stage of the study, and did not affect safety

during the trial. The subject’s data was included in the analysis on an intention-to-

treat basis for the feasibility and glucose control endpoints; however, the subject is

delineated from the others during discussions of controller performance.

2.3.2 Glucose control

The glycemic control characteristics during CLC and SAP are summarized in Ta-

ble 2.2 and Figure 2.3. Overall, subjects spent 71±10% of time in the desired range

of 70-180 mg/dL. The CLC period showed a significant improvement over the sub-

jects’ usual therapy, where only 57±16% of time was spent in the 70-180 mg/dL

range (p=0.012). Additionally, time in the tight control range of 80-140 mg/dL was

significantly higher during the CLC session, with 47% (39%, 53%) of time in range
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during CLC, as compared to 30% (21%, 42%) during SAP (p=0.002). In general, CLC

provided a tighter distribution of CGM values, with a narrower vertical band on the

cumulative histogram (Figure 2.4).

Table 2.2: Comparison of glycemic control during daytime and overnight
for CLC versus SAP therapy.

CLC SAP p-value
Day and Night
Mean CGM (mg/dL) 150 ± 19 173 ± 31 0.042*
SD CGM (mg/dL) 58 ± 13 95 ± 14 0.23
COV CGM (%) 39 ± 5 38 ± 8 0.87
% of Time

70-180 mg/dL 71 ± 10 57 ± 16 0.012*
80-140 mg/dL 47 (39, 53) 30 (21, 42) 0.002*
>180 mg/dL 26 ± 11 39 ± 18 0.033*
>250 mg/dL 8 ± 6.9 16 ± 14 0.088
>300 mg/dL 3.5 ± 3.9 7 ± 7.6 0.22
<70 mg/dL 2.5 ± 1.8 4.2 ± 3.1 0.13
<60 mg/dL 0.68 ± 0.63 1.9 ± 1.8 0.076
<50 mg/dL 0.13 ± 0.26 0.44 ± 0.5 0.125

Overnight (00:00-07:00)
Mean CGM (mg/dL) 154 ± 30 157 ± 45 0.832
SD CGM (mg/dL) 45 ± 16 46 ± 19 0.91
COV CGM (%) 29 ± 8 30 ± 9 0.88
% of Time

70-180 mg/dL 71 ± 22.5 67 ± 23 0.713
80-140 mg/dL 46 ± 26 34 ± 17 0.18
>180 mg/dL 29 ± 23 27 ± 28 0.902
>250 mg/dL 6 ± 7.1 11 ± 18 0.456
>300 mg/dL 2.2 ± 3.8 4.2 ± 7.1 0.448
<70 mg/dL 0 (0, 0.6) 1.1 (0, 14) 0.078
<60 mg/dL 0 (0, 0.2) 0.1 (0, 7.6) 0.156
<50 mg/dL 0 (0, 0) 0 (0, 1.5) 0.25

The proportion of time that each subject spent with CGM>180 mg/dL and

CGM<70 mg/dL during CLC and SAP is indicated by the points plotted in Fig-

ure 2.5. The contour lines on the plot represent the percentage of time with CGM in

the range of 70-180 mg/dL. Ideal control is represented by the lower left corner of

45



Chapter 2. Outpatient Evaluation of Artificial Pancreas with Exercise in Adolescents

  <60   60-70  70-180 180-250   >250 

Range (mg/dL)

0

50

100

T
im

e 
in

 R
an

ge
 (

%
)

24h

SAP
CL

  <60   60-70  70-180 180-250   >250 

Range (mg/dL)

0

50

100

T
im

e 
in

 R
an

ge
 (

%
)

Overnight

SAP
CL

Figure 2.3: Box and whisker plot showing the percentage of time with
CGM in various ranges for SAP and CLC. The horizontal blue lines in-
dicate the medians, the box represents the IQR, and the thin vertical lines
represent the range. Outliers are shown as plus symbols.
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Figure 2.4: Cumulative histogram of CGM values for all 10 subjects
during SAP and CLC. The thick line represents the average, and the thin
lines represent the minimum and maximum values. The red, green, and
blue shaded areas show <50 mg/dL, 70-140 mg/dL, and 140-180 mg/dL,
respectively.
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the plot, with improvements in control demonstrated by movement toward this ideal

corner. The subjects showed a migration toward the lower-left corner during CLC,

with an overall narrower distribution on the plot demonstrating consistent control

between subjects. The SAP results are scattered across the upper and right portions

of the plot, demonstrating wide variability in quality of control during usual therapy.
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Figure 2.5: Plot of percent time >180 mg/dL versus percent time <70
mg/dL for each subject. The symbols indicate CLC (red triangles) or SAP
therapy (blue circles). The parallel dotted lines show contours of percent-
age time in range (TIR, 70-180 mg/dL). The large unfilled triangle and
circle indicate the mean for CLC and SAP, respectively.

The mean sensor glucose during closed-loop was 151±19 mg/dL. This result was

significantly lower than the SAP value of 173±31 mg/dL (p=0.042). Excluding subject

4, subjects who had a high mean glucose (>168 mg/dL) during SAP saw a decrease to
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a lower value during CLC, along with an increase in the percent time in range (Figure

2.6A). For other subjects, the mean glucose remained steady, while the percentage of

time in hypoglycemia remained similar or decreased (Figure 2.6B).

The median CGM traces for 24 h glycemic control for CLC and SAP are shown in

Figure 2.7. The distribution of announced meals and snacks during CLC is shown in

the lower panel of the figure (meal information was not recorded during SAP). The

dinner meals at the Stanford site were consumed late in the evening (19:49, 20:53,

and 20:11), which contributed to the hyperglycemia in the beginning of the overnight

period experienced by some subjects. Individual glucose and insulin traces for each

subject are shown in Appendix B.

2.3.3 Hypoglycemia

Time spent with CGM <70 mg/dL was 2.5±1.8% during CLC. While this is lower

than the SAP value of 4.2±3.1% of time, the difference was not significant. Overnight

(00:00-07:00), time <70 mg/dL during CLC was reduced to 0% (0%, 0.6%). The

amount of time spent in hypoglycemia as defined by various thresholds during CLC

and SAP is shown in Figure 2.8. Information about the number and duration of

hypoglycemic episodes during CLC (defined as a CGM excursion below the speci-

fied threshold for >10 min as recommended in [145]) is shown in Table 2.3. Overall,

there were 1.3 (0.58, 2.0) episodes per subject per day <70 mg/dL and 0.33 (0.0, 0.5)

episodes per subject per day <60 mg/dL. The HMS provided 1.8 (1.3, 3.5) alarms per

subject per day warning of impending hypoglycemia. These alerts allowed subjects

to take a carbohydrate treatment before the hypoglycemic event had started, thereby

preventing or shortening the impending hypoglycemic event.

Three subjects each experienced a single event where the CGM measured below

50 mg/dL. These events lasted 4, 24, and 25 min, respectively. They were preceded
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Figure 2.6: Mean CGM for each subject during SAP and during CLC.
The line connecting icons represents the same subject. (A) The size of the
circle icon indicates the percentage of time spent in range (70-180 mg/dL).
(B) The size of the circle icon indicates the percentage of time spent below
70 mg/dL. The dashed red line represents a mean BG of 168 mg/dL,
which corresponds to an HbA1c of 7.5% (58 mmol/mol) [146]
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Figure 2.7: CGM over 24 h during the closed-loop study during SAP and
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Figure 2.8: Box and whisker plot showing the percentage of time in
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blue lines indicate the medians, the box represents the IQR, and the thin
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Table 2.3: Number of hypoglycemic events lasting more than 10 min by
CGM per subject per day. Episodes are broken down during overall 24 h
control, during and 30 min after exercise, and during the overnight period,
shown as median (IQR).

Threshold <50 mg/dL <60 mg/dL <70 mg/dL
Total episodes 2 11 36
Per subject per day

Overall 0 (0, 0.08) 0.33 (0, 0.5) 1.33 (0.58, 2)
Exercise (+30 min) 0 (0, 0) 0.17 (0, 0.42) 0.5 (0.33, 1)
Overnight (00:00-06:00) 0 (0, 0) 0 (0, 0) 0 (0, 0.08)

Number of exercise
sessions with episode per
subject (of 6 or 7)

0 (0, 0) 0.5 (0, 1.3) 1.5 (1, 3)

by 124, 72, and 48 min of pump suspension, which started when the CGMs were

133 mg/dL, 168 mg/dL, and 110 mg/dL. The second event occurred during exer-

cise, although the CGM was already at 87 mg/dL when exercise began. Alerts from

the HMS and corresponding CHO treatments, as well as the controller-directed sus-

pension of insulin delivery, allowed subjects to recover quickly from these episodes,

with no adverse events. Each of these events occurred in the time period 2-4 h after

a meal, indicating that the meal bolus could have contributed to the event.

2.3.4 Insulin

The average TDI during CLC was 47±18 U/day (0.81±0.23 U/kg/day). This

amount was not significantly different from the usual TDI values of 49±18 U/day

(0.82±0.17 U/kg/day) (p=0.52). Still, the percentage of time spent in hyperglycemia

(>180 mg/dL) decreased from 39±18% of time during SAP to 26±11% of time during

CLC (p=0.03). The ZMPC+HMS system was able to significantly reduce the amount

of time spent in hyperglycemia without significantly increasing the TDI or increasing

time spent in hypoglycemia.
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2.3.5 Carbohydrate Consumption

Meal choice throughout the study was determined by the subjects, with no re-

strictions. The average amount of CHO estimated for meals per day was 208±32 g

for female subjects (n=5, mean weight 56 kg) and 259±60 g for male subjects (n=5,

mean weight 61 kg). Meal size estimation and announcement were performed by

subjects. A standard schedule of three daily meals was followed, with opportunities

for snacks as desired.

2.3.6 Exercise

Subjects engaged in 2-3 daily sessions of mild to moderate intensity exercise last-

ing at least 30 min each. This frequency and duration of exercise was intended to

challenge the system, since there was no announcement to the controller of exercise

or pre-exercise preparation, such as lowering or suspending basal insulin delivery.

Additionally, the exercise took place following large breakfast or lunch meals, when

the IOB could be high (estimated IOB at start of exercise was 2.0 U (0.54 U, 4.1 U)).

Since there was no exercise announcement or activity measurement in this study,

the only way for the controller to react to an exercise event was through feedback

from the CGM (i.e., if the CGM is decreasing quickly or approaching hypoglycemia).

In Figure 2.9, the final CGM is plotted versus the minimum rate of change during

each exercise session, with the size of the icon indicating the duration of any associ-

ated controller-directed pump suspension. There are three ways a pump suspension

can be associated with an exercise period: (1) the pump suspension began during the

exercise period, (2) the pump suspension began before the exercise period and lasted

at least 30 min after the start of the exercise period, or (3) the pump suspension began

within 30 min of the end of the exercise period. An indication of desired controller

54



Chapter 2. Outpatient Evaluation of Artificial Pancreas with Exercise in Adolescents

performance is a pump suspension when the CGM is low at the end of exercise, es-

pecially if the CGM is also dropping quickly. Additionally, the pump should not be

suspended (or should suspend for only a short period), if the CGM is high and/or if

the CGM was steady or increasing.
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Figure 2.9: CGM at exercise end versus minimum rate of change during
exercise for each exercise period for each subject. The size of the icon
indicates the length of pump suspension associated with that exercise pe-
riod, in minutes. Exercise periods with no pump suspension are filled
red. Exercise periods with no pump suspension for the subject where the
controller was not functioning as intended are filled blue.

As shown in Figure 2.9, the controller performed as desired during exercise in this

study. Excluding subject 4, there were pump suspensions associated with all exercise

periods ending with CGM below 108 mg/dL, regardless of the rate of change. If the

CGM during exercise was dropping any faster than -0.9 mg/dL/min, then there were

pump suspensions for all exercise periods ending with CGM below 131 mg/dL. If

the CGM during exercise was dropping at a rate that was any faster than -1.6 mg/dL,
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there were pump suspensions for all exercise periods, regardless of the final CGM.

Lastly, the pump did not suspend for each exercise period where CGM was dropping

no less than -0.9 mg/dL/min and ending CGM was greater than 150 mg/dL. Includ-

ing subject 4, there were three instances where a pump suspension would have been

desired but did not occur. These results are summarized in Table 2.4. As a result of

the ZMPC+HMS action during exercise, only 1.5 (1, 3) exercise sessions per subject

(of a total 6 or 7 exercise sessions) resulted in a hypoglycemic event with CGM <70

mg/dL.

Table 2.4: Number of exercise periods with pump suspensions out of
total exercise periods for various ranges of minimum rate of change
(ROCmin) and CGM at exercise end (CGMend). The asterisk indicates
cases where there would have been 100% pump suspension excluding sub-
ject 4.

ROCmin (mg/dL/min)
CGMend (mg/dL) < -2.5 -2.5 to -1.6 -1.6 to -0.9 -0.9 to 0 > 0

>150 2/2 1/1 2/4 0/3 0/3
131-150 N/A 1/1 1/3 1/2 N/A
108-131 2/3* 6/6 2/2 1/5 N/A
90-108 2/2 6/7* 3/3 1/1 N/A

<90 7/7 5/6* 2/2 2/2 N/A

2.4 Discussion

In this chapter, we present the first evaluation of ZMPC+HMS in the adolescent

population. This study showed that the use of this system is feasible in this pop-

ulation. Even in the face of challenges such as large free-choice meals, twice-daily

mild to moderate unannounced exercise, and ambulatory conditions in the outpa-

tient environment, the controller was able to achieve 71±10% time in range, which is

an improvement over the subjects’ typical control (57±16% time in range). This im-
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provement was made without increasing the amount of time spent in hypoglycemia

or increasing the TDI.

The glycemic control in this study is comparable to that observed in other day-

and-night studies of CLC for adolescents. For example, Tauschmann, et al. [115]

showed a median (IQR) of 72% (59%, 77%) of time spent with glucose level between

70-180 mg/dL, as compared to our study, which had 72% (64%, 79%) time in range.

Similarly, Ly et al. [67] reported a mean of 70% time spent in range. While the proto-

cols and controller designs of these studies differed, the similarity of the results for

insulin-only systems indicates that performance may be limited by the constraints

of the slow action of subcutaneous insulin and the hormones present during adoles-

cence that make control difficult. Additionally, these systems are not fully automated.

There is work involved for the patients that can introduce error into the system, such

as in meal size estimation and determination of basal, CR, and CR profiles. Innova-

tions in AP design to reduce the need for patient interaction, including faster insulin

action, may be needed to improve above the 70-75% time-in-range mark.

The pattern of hypoglycemic episodes during the postprandial period, especially

visible following breakfast (Figure 2.7) suggests that some of the meal boluses could

have been too large. Although the system is designed to give 80% of the total meal

bolus when BG is below 120 mg/dL, there were 57 out of 161 meals that were an-

nounced with BG >120 mg/dL and therefore received the full bolus. One potential

cause of postprandial hypoglycemia is a CR that is too high. An algorithmic adjust-

ment of the insulin to carbohydrate ratio based on open-loop data as in Dassau, et al.

[66] could potentially reduce postprandial hypoglycemia during CLC. Errors in the

estimation of the meal size could be caused either by subjects estimating CHO for

the entire meal but only consuming part of it, or overestimating the amount of CHO

in the meal. Subject behavior could also be influenced by the clinician-supervised
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setting, where there may be more pressure to demonstrate good control and avoid

under-dosing. Several studies have investigated the use of a partial bolus based on a

percentage of the total calculated bolus for the meal regardless of the SMBG, allowing

the controller to deliver the rest of the required insulin on an as-needed basis using

feedback from the CGM [78, 88, 147]. While Elleri, et al. [107] did not find evidence

that a partial meal bolus reduced the risk of hypoglycemia, they found that it did

not decrease the time spent in range. Further investigation is needed to optimize the

integration of an announced meal bolus within the AP system.

There was some hyperglycemia during the overnight period in this study, espe-

cially in the first half of the night. This hyperglycemia was caused by late-night meals

and snacking, as shown in the lower panel of Figure 2.7. The protocol should always

be kept in mind when interpreting overnight control results calculated using a com-

mon predetermined time range (e.g. 00:00 to 07:00), especially for studies that allow

varying or unusual meal and sleep schedules. Protocols that allow late-night meals

or snacks will inevitably result in more overnight hyperglycemia. Overnight control

in this study was conservative by design, with safety constraints in place to prevent

over-delivery of insulin from 22:00 to 06:00. Using fixed start and end times for the

additional safety measures at night does not allow for flexible or atypical sched-

ules. An added announcement for sleep to start the safety constraints may reduce

overnight hyperglycemia if users are awake and/or eating at atypical times. How-

ever, this extra announcement also creates additional work for the user and may lead

to safety risks if the user forgets to make the announcement. The compromise be-

tween design safety and efficacy will be an important consideration as the AP moves

forward.

Although this study took place in the outpatient environment, subjects were su-

pervised at all times. Study staff were on hand to assist subjects with troubleshooting
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the system, checking infusion sets and CGM sites, and responding to system alerts,

although subjects were responsible for estimating meal size, entering their meal bo-

lus, taking SMBG measurements, and interacting with the DiAs interface. The pres-

ence of the clinical team ensured that HMS and other system alarms were responded

to promptly. The level of supervision in this study could have led to better results

than if the subjects had been unsupervised. When using the device unsupervised in

daily life, subjects may respond less quickly to alerts for hypo- or hyperglycemia or

take longer to repair loss of communication between devices. Alternatively, subjects

may be more vigilant during unsupervised use since they will not have the reassur-

ance that nearby clinical staff provide. Still, the level of supervision in this study,

necessary to comply with regulatory requirements, had the advantage of ensuring

the best possible assessment of the ZMPC algorithm itself, with minimal time spent

out of CLC and no confounding factors related to patient non-compliance.

There were some technical difficulties encountered during this study. These is-

sues represent the primary challenge that is faced when transitioning from a highly

controlled inpatient environment to a more unpredictable outpatient environment. A

timing anomaly between the CGM and the DiAs system caused a malfunction in the

controller for one subject, resulting in suboptimal (but still safe-by-design) perfor-

mance. The potential for this issue has since been addressed in updated versions of

the controller. Additionally, disruptions in the Bluetooth communication between the

pump, CGM, and DiAs system resulted in some time spent out of CLC. These com-

munication issues need to be improved as the system is prepared for more extensive

outpatient use.
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2.5 Conclusions and Future Work

In conclusion, the ZMPC+HMS algorithms were shown to be feasible for use in

the adolescent population. Additionally, the system was able to provide improved

glycemic control as compared to SAP, even in the ambulatory outpatient environment

emulating real-life conditions. The controller was not informed of the twice-daily

exercise sessions, but it was able to react to the decreasing CGM measurements to

lower or suspend insulin delivery during or after exercise as needed. This study

represents a promising step forward for the ZMPC+HMS AP system in the transition

from inpatient to outpatient evaluation, as well as in expanding the user population

to include adolescents as well as adults.

A follow-up study is being conducted to evaluate the system in the fully out-

patient, unsupervised environment. This study will be conducted in a randomized

crossover design, with a total of 10 subjects at each clinical site. Five subjects will be

randomized to use CLC and five will use SAP during a two week period at home.

The subjects will then cross over to the other therapy for the next two-week session.

This design will provide a control group that can be used for efficacy comparisons be-

tween SAP and CLC. This study will be conducted in adults, rather than adolescents,

because the system is not yet ready to be used in a fully outpatient unsupervised set-

ting by adolescents. The study has been approved by the FDA based on supporting

data from this chapter, and will be conducted in May-June 2016.

While the ZMPC+HMS algorithms are able to provide control of the BG, the use of

subcutaneous insulin delivery and glucose sensing places fundamental limitations on

the quality of control that can be achieved. The system is not fully automated, since

users must enter an estimate for the meal carbohydrate content prior to eating. Even

with this meal announcement and subsequent insulin bolus prior to the meal, there
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are still postprandial BG values reaching above 300 mg/dL. Additionally, suspending

the pump is not always enough to prevent hypoglycemia due to the long residence

time of subcutaneously delivered insulin in the body. For these reasons, a promising

area of research related to the artificial pancreas is the investigation of alternative

insulin delivery and glucose sensing routes. In the next three chapters, the use of

the intraperitoneal space for glucose sensing and insulin delivery for the artificial

pancreas is explored.
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Chapter 3

Modeling Glucose Sensor Dynamics1

3.1 Introduction

An important factor in diabetes treatment is the ability to measure blood glucose

concentration (BG) accurately in real-time. As discussed in Chapter 1, the devel-

opment of continuous glucose monitors (CGMs) has greatly improved the ability of

people with diabetes to be aware of their glycemic status beyond the few isolated

capillary measurements that used to be the norm [21]. However, the decision on

where to place the sensor in the body is not easily made. The first application of

CGM was done in the intravenous space. These sensors provided fast and accurate

BG measurements, but were not feasible for use outside of a hospital and came with

unacceptable safety risks [2, 149]. The selection of a CGM site requires a balance

between proximity to the vasculature and the level of invasiveness required.

The placement of a CGM in the subcutaneous (SC) space has been adopted

1 Portions of this chapter are published in D. R. Burnett, L. M. Huyett, H. C. Zisser, F. J. Doyle III,
and B. D. Mensh, “Glucose sensing in the peritoneal space offers faster kinetics than sensing in the
subcutaneous space,” Diabetes, vol. 63, pp. 2498-505, 2014 [38], and L. M. Huyett, R. Mittal, H. C.
Zisser, E. S. Luxon, A. Yee, E. Dassau, F. J. Doyle III, and D. R. Burnett, “Preliminary evaluation of
a long-term intraperitoneal glucose sensor with flushing mechanism,” Journal of Diabetes Science and
Technology, 2016 [148].
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for commercial application. This placement meets the requirements of being close

enough to the vasculature to capture real-time changes in BG, while minimizing in-

vasiveness by requiring only a small wire to be inserted under the skin [23]. Glucose

enters the body through the ingestion of food. After the glucose is absorbed through

digestion, it travels through the major and minor blood vessels to reach the brain,

muscle cells, and other tissues. To reach individual cells, the glucose first diffuses

from capillaries into the interstitial fluid (ISF), as depicted in Figure 3.1. The ISF of

the SC space has been established as a minimally invasive site for a sensor to provide

a continuous estimation of the BG. Commercially available glucose sensors detect the

glucose once it has reached the ISF using a transcutaneous electrode or other sensing

mechanism [23].

While the sensor measures the glucose concentration in the ISF, the raw sensor

signal is calibrated using a measurement of the glucose concentration in the capillary

blood. The gradient between the glucose concentration in the blood and the ISF at

steady state has been reported as anywhere from 50% to 100%, but is difficult to

establish definitively due to the lack of techniques for directly measuring the concen-

tration of glucose in the ISF [53, 150]. However, many studies have established the

accuracy of SC glucose sensors that are calibrated to BG values across a wide range of

physiological BG values, making it a reasonable assumption that the concentrations

are directly proportional or equal at steady state [20].

CGM in the SC space has several limitations. The sensor insertion below the skin

induces an inflammatory response, leading to biofouling and tissue encapsulation

[23, 151, 152]. This response limits the lifetime of the sensor to one to two weeks, after

which a new sensor must be inserted. SC sensors are sensitive to external factors

such as pressure on the sensor site, often induced during sleep by laying on the

sensor site. Studies have shown that this pressure effect causes large and persistent
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Figure 3.1: Schematic representation of the glucose transport process
from the blood vessel to the ISF. This diagram is based on the model
presented in [150].

inaccuracies in the measurement [33, 39]. Pressure effects on sensor measurements

are problematic, given that accurate measurements are particularly important during

sleep when patients are vulnerable to hypoglycemia [33, 153–162].

A limitation of SC CGM that is especially relevant to artificial pancreas (AP) ap-

plications is the dynamic lag that is introduced by sensing in the ISF. Before reaching

the sensor site, glucose must diffuse from the bloodstream into the ISF. Experimental

evidence has shown that SC CGM measurements appear to lag behind the BG [163–

171], an effect that is exacerbated by encapsulation [172, 173]. Recent studies have

found that radiolabeled glucose could be detected in the SC space with a pure delay

of 5-6 minutes after IV injection [57, 58].

While the SC space has become the most popular route for diabetes applications

such as glucose sensing and insulin delivery, the intraperitoneal (IP) space has long

been known as an alternative. The IP space was first introduced as an alternative

insulin delivery route in the 1970s [174]. Insulin delivered through the IP route has
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faster pharmacokinetic and pharmacodynamic characteristics than insulin delivered

through the SC route: when insulin is delivered through the SC route, the absorption

peak occurs 50-60 minutes later [175], as opposed to 20-25 minutes when using the

IP route [176]. The insulin is also cleared more quickly: insulin delivered through

the SC route has a residence time of 6-8 hours [175], while IP insulin has a much

shorter residence time of 1-2 hours [176]. Characteristics of the IP space that make

it an ideal candidate for CGM location include its proximity to copious blood flow

through vessels lining the peritoneal cavity [177–179], its demonstrated foreign-body

tolerance in humans [180–182], and its isolation from external factors (temperature

and pressure).

In this chapter, we present a direct comparison of enzymatic glucose sensors

placed in the IP and SC space of anesthetized pigs. We hypothesized that a sen-

sor placed in the IP space would respond more quickly to changes in BG than a

sensor placed in the SC space of the same animal.

3.2 Research Design and Methods

3.2.1 Overview of Animal Experiments

Experiments were conducted under an IACUC-approved protocol. Multiple sen-

sors (described below) were placed in the SC, IP, IV, and intra-arterial (IA) spaces of

eight anesthetized nondiabetic juvenile female Yorkshire pigs weighing between 60

and 90 kg. After allowing several hours for sensor wetting and baseline measures, in-

travenous hyperglycemia challenges similar to a glucose tolerance test (IVGTT) were

administered, consisting of 250 mg/kg of D50 pushed over 2 minutes intravenously

by an infusion pump. Venous samples were drawn at frequent intervals post-injection
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and analyzed by glucometer and YSI (YSI Inc., Yellow Springs, OH) assay. In several

animals, an additional IVGTT was administered, separated from the first challenge

by at least 90 minutes.

3.2.2 Sensors and Placement

The sensors used in the SC space were commercially available Dexcom Seven

(DEXCOM, San Diego, CA) sensors placed in the pre-abdominal SC tissue using

standard technique for sensor placement per manufacturer instructions. The sensors

used in the intravenous and intra-arterial spaces were modified Dexcom Seven sen-

sors, lengthened by attaching 30-gauge wires to the silver and platinum electrodes

using conductive silver epoxy, and encapsulating these joints with epoxy to prevent

shorts due to fluid intrusion. The IA and IV sensors were placed through introduc-

ers after cut-downs to the femoral or jugular vessels. The sensors used in the IP

space were modified Dexcom Seven sensors, lengthened in the same manner as the

IA/IV sensors and splinted to a short length of Teflon-coated coaxial wire with sili-

cone o-rings in order to prevent the sensors from bending excessively or perforating

IP tissues. IP sensors were placed in the peritoneal cavity via the Hassan technique.

The signal from all sensors was captured with custom potentiostat electronics and

read into LabVIEW via an analog-to-digital converter. Prior to all analyses, sensor

data was smoothed using a 60-s moving average filter. Some of the data logging for

experimental manipulations was done using a clock with 1-minute resolution, which

could introduce a ±30-second error relative to the sensor board (which recorded at

1-second resolution).
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3.2.3 Data Analysis: Response Time

Response characteristics for each sensor were initially quantified using two mea-

sures on each sensor waveform during the IVGTT. First, to quantify latency between

rapid increases in BG and extravascular sensor measures, we calculated the time

to half-maximum (from beginning of IVGTT). Second, to quantify how rapidly the

extravascular measures recover toward baseline glucose levels after the bolus, we cal-

culated the percentage by which each sensor reading returned (from its maximum)

to baseline at 35 minutes post-glucose-injection.

3.2.4 Data Analysis: Compartmental Modeling

Glucose sensors placed in either the IP or SC space do not directly contact the

blood; rather, they contact the ISF of the sensing space. The diffusion process be-

tween the blood and the ISF means that the concentration measured by the sensor

may lag behind the BG, especially when the BG is increasing or decreasing at a high

rate of change. However, it is hypothesized that the lag will be smaller for IP sen-

sors due to the proximity to major vasculature. In order to quantify the lag from

experimental data, a two-compartment model can be used to represent the glucose

diffusion process. This type of two-compartment model has been used in previous

studies to approximate the transport of glucose between the vascular compartment

and the SC compartment [183–187]. The schematic in Figure 3.1 demonstrates the

two-compartment system. The first compartment is the blood within the vessel, and

the second is the ISF. Glucose diffuses between the blood vessel and the ISF, and vice

versa. Glucose is also taken up from the ISF into cells.

A mass balance can be done on the ISF compartment to determine the rate of

change of the glucose concentration in that compartment. The resulting first-order
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model for ISF glucose concentration as a function of the glucose concentration in the

major blood vessels as follows, where all time-dependent variables are measuring the

deviation from steady-state:

dCm(t)
dt

= −(k3 + k2)Cm(t) + k1
Vb

Vis f
CIV(t− θS) (3.1)

where Cm(t) is the glucose concentration measured by the sensor (mg/dL), CIV(t)

is the glucose concentration in the blood (mg/dL), k1, k2, and k3 (min−1) are the

rate constants for the diffusion processes as defined in Figure 3.1, Vb and Vis f are

the volumes of the blood and ISF, respectively, and θS is the time delay (min). By

grouping constants together, this model can be expressed as:

dCm(t)
dt

=
1
τS
(K̂SCIV(t− θS)− Cm(t)). (3.2)

Here τS = 1
k3+k2

(min) and K̂S = k1Vb
(k3+k2)Vis f

.

The glucose sensors used in this study record the measurement signal as an elec-

trical current (nA). The glucose concentration depends linearly on the current as

given in the following equations:

Cm(t) = aIm(t) (3.3)

CIV(t) = bIIV(t) (3.4)

where a and b are constants (mg/dL)/(nA). The model in Equation (3.2) can be

expressed generically as:

dym(t)
dt

=
1
τS
(KSyIV(t− θS)− ym(t)) (3.5)
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where yIV(t) is the model input (mg/dL or nA) and ym(t) is the model output

(mg/dL or nA). If it is desired to use the uncalibrated sensor signal as the output

of the model, then KS = 1
a K̂S (nA/(mg/dL)). Similarly, if it is desired to use the

uncalibrated sensor signal as the model input, then KS = b
a K̂S. Note that a and b

change between each individual enzymatic sensor, meaning that it will be difficult to

validate the model parameters identified from one sensor signal on another sensor

signal when using uncalibrated sensor signals. Lastly, before modeling, each sensor

signal can be normalized by its maximum value. The additional ratio of yIV,max
ym,max

will be

absorbed into the identified parameter KS. Note that even with all these adjustments,

the lag τS can still be identified.

Equation (3.5) can be expressed as a transfer function in the Laplace domain as

follows:

GS(s) =
Ym(s)
YIV(s)

=
KSe−θSs

τSs + 1
. (3.6)

The identifiable parameters in this transfer function model are the sensor time con-

stant τS (min), the sensor delay θS (min), and the model gain KS. Since the most

challenging aspects of AP design involve time periods where the glucose is changing

rapidly (after meals or during exercise), the filtering effect of the sensor dynamics is

expected to have a detrimental effect on the control quality.

To determine the dynamic response characteristics of each space, the IP and SC

sensor signals were modeled for each IVGTT challenge as a function of the vascular

glucose concentration. The Systems Identification Toolbox in MATLAB (The Math-

Works Inc., Natick, MA) was used to numerically fit the data to a first-order transfer

function with time delay using least-squares regression. The time delay quantifies

the amount of time it takes for the SC or IP sensor signal to begin to respond to a

change in the vascular glucose. The time constant represents the amount of time it
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would take for the IP or SC signal to reach 63% of the vascular glucose concentration

if a step change in vascular glucose were applied.

The models were initially fit using glucometer measurements of venous blood

to represent the glucose concentration in the vascular compartment (yIV(t)), while

either the IP or SC sensor signal was used for ym(t). The normalized root-mean-

square error fitness value was used to quantify the goodness of fit of the model. This

quantity is given by the following equation:

F = 100(1− ||y− ŷ||
||y− ȳ|| ) (3.7)

where y is the experimental data (in this case, the sensor signal), ŷ is the output of

the fitted model, ȳ is the mean of y, and F is the goodness of fit (%).

If more than one sensor was placed in a particular space during a challenge, the

resulting model parameters were averaged. The robustness of the result was sub-

sequently bolstered by comparing model parameters using the following additional

data sources as yIV(t) in the model: signal from an indwelling IV sensor and signal

from an indwelling IA sensor. In all cases, the parameters generated by compartmen-

tal modeling (most importantly the time constant) are a model-specific measure.

3.2.5 Data Analysis: Statistics

Thirteen IVGTT challenges in 8 animals were performed. In general, the null

hypothesis for the study was that SC and IP sensor performance is equal. For each set

of data in which we asked whether the null hypothesis was rejected, we carried out

two statistical tests: one in which we assumed that the challenges were independent

even when performed in the same animal (thus, n=13), and one in which we assumed

that challenges performed in the same animal were completely dependent (thus,
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n=8). In both cases we used the binomial test, which is an exact, non-parametric

test of the significance of deviations from a theoretically expected distribution of

observations into two categories. The expected distribution according to the null

hypothesis is that there is a 50% chance that for a given challenge (or animal) that IP

will be faster than SC, and vice-versa.

3.3 Results

Figure 3.2 shows raw sensor current data from a hyperglycemia challenge. Of

note are the rapid rise and fall of the intravascular (IA and IV) sensors, and the less

rapid waveforms from the extravascular (IP and SC) sensors. Figure 3.2B illustrates

the response-time analysis described above, in which latency (a measure of how

rapidly the tissue glucose increases after a vascular bolus) and recovery (a measure

of how rapidly the tissue glucose decreases as the vascular glucose decreases over 35

minutes post-bolus) were read from each sensor curve.

Figure 3.3A compares the latency between sensors in the SC and IP spaces for the

13 IVGTT challenges (across eight animals) that were successfully carried out. On this

plot, each challenge is depicted as a single point in which the IP latency (y-axis) is

plotted against the SC latency (x-axis) for the same challenge. For each space, latency

was calculated as the mean time to half-maximum for all sensors in that space for that

challenge. SC latency was in the 4-8 minute range, consistent with the faster end of

the range from prior published results (see Introduction). A diagonal line of identity

is included in the plot, which illustrates that for all 13 challenges in all 8 animals, IP

latency was shorter than SC latency (p<0.001 for challenges, p<0.01 for animals). To

assess whether wetting time might influence the results, two of the 13 challenges were

conducted using SC sensors that had been wetted overnight instead of for several
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Figure 3.2: Example of experimental data used in this study. (A) Sample
raw data from an intravenous glucose challenge in one pig. Unfiltered
data were collected every second (1 Hz). (B) Calculation of latency (time-
to-half-maximum) and recovery (percent return-to-baseline at 35 minutes)
for a sample IP trace. Data are filtered using a 1-minute sliding window
average. Baseline is determined by the average reading for the 3 minutes
prior to onset of glucose challenge. As with baseline, the value at 35
minutes is also determined by a 3-minute average (33.5 to 36.5 minutes).
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hours on the morning of the experiments. The results from these sensors were in the

middle of the range of the overall results, suggesting that overnight wetting does not

have a large effect on SC response times. However, because we only performed this

on two sensors, we do not have the statistical power to quantify small influences.

Figure 3.3B compares the post-glucose-bolus recovery between the two sensor

spaces, in a plot similar to Figure 3.3A. The average recovery for the SC space was

33%, compared to 59% for the IP space. For all challenges, the IP space showed more

complete return to pre-challenge baseline glucose levels than the SC space (all points

above diagonal identity line, p<0.001 for challenges, p<0.01 for animals). Finally, we

quantified the glucose kinetics of the SC and IP spaces using compartmental mod-

eling, in which the glucometer measurements served as an input function and the

transport of glucose into the body spaces was modeled with a first-order transfer

function. The glucometer measurements were used in place of the YSI measure-

ments because the YSI data was too sparse to use as a model input. This approach

yielded excellent fits to the data, as illustrated in Figure 3.4; across all challenges the

mean goodness of fit was 75.6% (standard deviation (SD) 8.5%) for the IP sensor data

and 83.2% (SD 8.9%) for the SC sensor data. The uncertainty of the parameters as

determined from the covariance matrix was so small as to be negligible (standard

deviations on the order of 1% of fitted values).

As illustrated in Figure 3.5, IP glucose kinetics during IVGTT were an average of

2.3 times faster than SC (range: 1.2 to 4.1, standard deviation: 1). The mean time

constant was 5.6 (SD 2.9) minutes for the IP space and 12.4 (SD 3.6) minutes for

the SC space. The difference between the SC and IP time constants was statistically

significant, with the IP time constant smaller than that of SC for all 13 challenges

(by paired t-test, p < 0.001; by binomial test p < 0.001 for challenges, p < 0.01 for

animals). The mean time delays were 0.68 (SD 0.58) minutes and 1.4 (SD 0.90) minutes
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Figure 3.3: Comparison of response speed between IP and SC sensors.
(A) Latency (time to half-maximum) is plotted for IP vs. SC for all 13 chal-
lenges across eight pigs. The diagonal line represents IP=SC; thus points
below the line indicate IP faster than SC. (B) Recovery (Percent return to
baseline at 35 minutes, see Figure 3.2B for definition) is plotted for IP vs.
SC for all 13 challenges across eight pigs. The diagonal line of identity
represents IP=SC; thus points above the line indicate IP sensor readings
returning to baseline by a greater amount than SC sensors returned to
baseline for the same IVGTT challenge.
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output for each sensor (solid line and dashed line). The goodness of fit
values for the IP and SC models shown were 89% and 90%, with time
constants of 1.7 min. and 13.1 min., respectively.
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for IP and SC sensors, respectively, although there was an estimated tolerance of 30

seconds to account for potential differences in clock synchronization. The delay for

the IP sensor was significantly smaller than the SC delay (by paired t-test, p = 0.019).

The addition of second-order dynamics did not improve the model fit.
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Figure 3.5: Comparison of kinetic-modeling-based response speed be-
tween IP and SC sensors for all 13 challenges. The diagonal line repre-
sents IP=SC; thus points below the line indicate IP time constants smaller
(faster) than SC.

To demonstrate the robustness of the finding that IP kinetics are more than twice

as fast as SC kinetics, we repeated the modeling analysis using additional sources of

data to represent the vascular glucose concentration in the model (yIV(t)) in Equa-

tion 3.5). For the challenges that had usable indwelling IA and/or IV sensors, the

readings from those sensors were used as the input for modeling. Thus, the kinetics

were modeled using the following three representations of the BG, unless a viable

signal was not available: indwelling IV sensor, indwelling IA sensor, and glucome-
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ter measurements of venous blood. Figure 3.6 demonstrates that the greater than

twofold speed increase for IP over SC is independent of input-function source.
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Figure 3.6: Comparison of kinetic time constants between subcutaneous
and IP sensors from models fit using three different input sources for
vascular glucose concentration. The average ratio is shown, with error
bars indicating the standard error. The number above the bar specifies the
number of challenges that had a usable signal from that particular type of
input. For each type of input, the average IP time constant was less than
half of the SC time constant from the same challenge.

3.4 Discussion

In summary, we show that glucose kinetics between the bloodstream and the

IP space are substantially faster than between the bloodstream and the SC space,
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demonstrating the suitability of the IP space for more rapidly measuring changes in

BG. This improvement is likely due to the robustness of peritoneal transport, which

is, for example, why this space is effectively used for dialysis in patients with renal

failure.

The performance difference between sensing in the IP and SC spaces is of par-

ticular importance when considered in the context of closed-loop AP implementa-

tions. After a carbohydrate-containing meal, an ideal AP system would bring plasma

glucose levels back to baseline nearly as quickly as an endogenous pancreas; how-

ever, with sensor lag in SC CGM devices and slow SC insulin pharmacokinetic and

pharmacodynamic properties, there will inevitably be time spent in hyperglycemia

following the meal. Reduction of delays in the feedback loop for the AP has been

shown to provide quantitative improvements in controller performance [188]. In

Chapter 4 of this dissertation, the mathematical model for glucose sensing kinetics

developed in this study is used to inform an in silico evaluation of the benefits of IP

sensors for closed-loop control with an AP in combination with IP insulin delivery.

As described in the introduction, the decision of where to place in vivo glucose

sensors involves a trade-off between rapid access to plasma glucose, durability with

respect to avoidance of tissue effects, and invasiveness-related complications. The

IP space may optimize this trade-off, as previous work has shown that the IP space

has an excellent safety profile, with no peritonitis across 63 patients over 381 patient

years of implantation [180]. While the safety risk profile will not be identical, since

the sensor does not deliver a hormone with growth-like properties, we do expect a

sensor to have a nearly identical safety risk profile. Furthermore, unlike catheters

placed in the central vasculature, which have been found to occlude in up to 36% of

patients within 1-2 years [189], peritoneal dialysis catheters have been found to have

a mechanical failure rate of only 0.5% over 21 months when the catheter is placed in
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the true pelvis beyond the reach of the omentum [190]. In addition, while this space

would have very little, if any, inherent lag, central venous catheters place patients

at risk for long-term vascular complications related to catheter-related thrombosis

which occurs in up to 50% of children and 66% of adults with a long-term central

venous catheterization [189].

However, tissue effects are still a potential problem, particularly with catheters

placed in the upper quadrants of the peritoneal cavity. Haveman also showed that in

the absence of a mechanism to prevent encapsulation, 49 re-operations were required

in 63 patients over 381 patient years for catheter clogging [180]. Thus, although the

development of encapsulation in the IP space is much slower than in the SC space,

it is still an issue that needs to be contended with, in order to realize the goal of a

long-term, fully-implanted, durable AP. Additionally, although the IP space is more

mechanically protected than the SC space (by virtue of being further from intrusion

by objects in the environment), the IP space does experience mechanical motion and

pressure fluctuations during normal activities such as breathing and peristalsis which

may impact signal stability.

3.5 Long-term Sensor Evaluation

The direct comparison between SC and IP enzymatic glucose sensors presented

in this chapter demonstrated that the IP sensors had a smaller dynamic lag than

the SC sensors. However, in order to be used in a fully implantable AP, the IP

sensor would need to maintain this same level of responsiveness over long periods of

implantation on the order of one year. Tissue encapsulation is known to deteriorate

the performance of long-term implantable SC continuous glucose monitors (CGMs),

preventing these devices from meeting the functionality requirements for widespread
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use and creating a bottleneck in AP development [23, 191]. While recent studies of

implanted SC sensors have shown promising results, there is still much room for

improvement, including the reduction of encapsulation-induced sensor lag [30, 152].

We present a proof-of-concept study of a novel flushing-assembly developed by our

collaborators at TheraNova, LLC to routinely clean the sensor surface of an IP-placed

sensor, thereby prolonging its lifetime, while also taking advantage of the smaller

sensing lag in this space. Placing the sensor in the IP space allows flushing with

saline that would not be possible in the restricted SC space.

Fluorescent glucose sensors were implanted in the SC or IP space of sheep. Sen-

sors were provided by the manufacturer in a lengthened, tethered format. The IP

sensors were modified with silicone tubing, flush port, Dacron cuff, and adaptors to

allow flushing with saline solution. Experiments were conducted under an IACUC-

approved protocol by BioSurg, Inc. (Davis, CA). After preliminary testing to optimize

the flushing procedure, long-term responsiveness was evaluated with an IP sensor

placed in one sheep and an SC sensor placed in a second sheep. The IP sensor was

flushed weekly with saline. Glucose response challenges were performed periodi-

cally over three months by infusing 0.5 g/kg dextrose through an ear vein over 60

seconds (13 challenges over 114 d for IP, 9 challenges over 91 d for SC). The results

are summarized in Figure 3.7.

The IP sensor demonstrated anomalously slow response during the first chal-

lenge (day 8) due to tissue trauma following implantation, which is known to cause

inflammatory response [152]. Excluding day 8, the IP sensor maintained consistent

responsiveness throughout the 114 d period, with time to half-maximum (t1/2) be-

tween 2.7-4.7 min and time to maximum (tmax) between 11.6-17.2 min. Conversely,

the non-flushed sensor in the SC space gradually lost responsiveness, with t1/2 be-

tween 2.6-13.5 min and tmax between 9.7-72 min. By 91 d following implantation, the
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Figure 3.7: Demonstration of the sensor signal response to intravenous
glucose challenge. (A) Representative signal response curves to IVGTT
from sensor in the IP space which was flushed. The solid, dashed, and
dash-dot lines represent days 20, 63, and 98, respectively. (B) Represen-
tative signal response curves to IVGTT from the sensor in the SC space
without flushing. The solid, dashed, and dash-dot lines represent days
41, 55, and 91, respectively. (C) The number of days since insertion for
each challenge is indicated on the y-axis, while the time-course of the
challenge is shown on the x-axis. The time at which the signal reached
half-maximum is indicated by a blue star for SC and a red plus sign for
IP. The time at which the signal reached maximum is indicated by a blue
square for SC and a red circle for IP. The length of the dotted line con-
necting each pair of points shows the amount of time that passed between
reaching half-maximum and reaching maximum.
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SC sensor signal did not peak within the 60 min testing period (see Figure 3.7B).

The development of long-term implantable CGMs is a key step toward making

this technology more practical; however, CGM performance is hindered by diffu-

sion lag and loss of sensitivity caused by encapsulation driven by the foreign body

response [152, 191]. The IP space has already been shown to be valuable to AP ap-

plications, with experimental evidence showing both faster insulin action and faster

glucose sensing in this space [19, 38]. The performance of the flushed IP sensor pre-

sented here far exceeded that of the conventional SC sensor, showing promise for

further investigation of the flushing method. Further studies with a larger sample

size will be needed to confirm this effect.

3.6 Conclusions and Future Work

The IP space shows promise for glucose sensing as part of a fully implantable AP.

A direct comparison in an animal study showed that sensors placed in the IP space

have about half of the dynamic lag of sensors placed in the SC space of the same

animal. In order to make the IP sensor practical for long-term implantation, it needs

to have protection from tissue encapsulation. A proof-of-concept study introduced

the use of a flushing mechanism to allow CGM in the IP space with consistent re-

sponsiveness during 3 months in vivo. This flushing mechanism will be investigated

in further studies with larger sample sizes and control sensors to verify its efficacy

in preventing encapsulation. Future iterations of this system will utilize automated

flushing of the sensing element with small volumes of fluid drawn from the patient’s

bodily fluids. Data generated from the studies presented in this chapter will guide

the development of an IP CGM to enable an implantable AP and improve practicality

of CGM use for day-to-day diabetes therapy. In the following chapter, the effect of
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sensor lag on the closed-loop AP is considered.
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Chapter 4

Impact of Glucose Sensing Dynamics

on the Artificial Pancreas1

4.1 Introduction

As introduced in previous chapters, the artificial pancreas (AP) comprises a con-

trol algorithm, an insulin pump, and a glucose concentration sensor. The system

is depicted by the block diagram in Figure 4.1. The control algorithm delivers in-

sulin to maintain the blood glucose concentration (BG) within the clinically desired

range. The performance of the AP is constrained by the physical limitations in-

troduced by the choice of location for the insulin pump and glucose sensor. Most

clinically tested AP devices have used subcutaneous (SC) insulin delivery and glu-

cose sensing devices, which are minimally invasive and commercially available for

use [1, 193]. However, as discussed in the previous chapter, the SC route intro-

duces transport processes in both the absorption of insulin from the SC space to

1Portions of this chapter are reproduced from L. M. Huyett, E. Dassau, H. C. Zisser, and F. J. Doyle
III, “Impact of glucose sensing dynamics on the closed-loop artificial pancreas,” 2015 American Control
Conference (ACC), Chicago, IL, 2015, ©2015 IEEE, and portions were submitted for publication in IEEE
Control Systems on 31 May 2016 [192].
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the blood and the diffusion of glucose from the blood to the SC space, adding time

lags to the control loop [1, 18, 186]. For this reason, most AP systems are not fully

automated; instead, the system requires the user to manually enter the amount of

carbohydrates in a meal before eating it to trigger a bolus of insulin. Such hybrid

systems have been recently evaluated in clinical studies using model predictive con-

trol (MPC), proportional-integral-derivative control (PID), and fuzzy logic control

schemes. These AP designs have been able to achieve an average of 68%-81% of time

in the range 70-180 mg/dL, depending on the protocol, length of closed-loop, degree

of supervision, and controller design [66, 67, 80, 106, 115, 119].

Glucose/Insulin

Interaction
Controller+

-

Insulin

PK

Control

Objective

Blood Glucose 

Concentration

Glucose

Sensor

Digestion

Process

Meal

Individual 

with T1DM

u

y

ym

Insulin

Pump

u

Figure 4.1: Block diagram representation of the artificial pancreas. The
controller receives the measured glucose concentration, ym, and compares
it to the control objective. The controller then determines the desired in-
sulin dose, u, and sends it to the insulin pump. Depending on the insulin
delivery route, the insulin is absorbed into the bloodstream with a specific
pharmacokinetic (PK) profile. The insulin then acts to change the glucose
concentration, which is affected by other disturbances such as meals. The
blood glucose concentration is measured by the sensor. Depending on the
sensor type and placement, the transfer function may have a different char-
acteristic time constant. The shaded blocks show the parts of the process
that can be changed through pump and sensor site selection.
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In order to improve the percentage of time spent in the desired range, it may

be necessary to alter the system design. For example, there are means to reduce

the lags observed with the SC route, such as implanting the pump and/or sensor

in the intraperitoneal (IP) space. This location is closer to major vasculature, which

increases the speed of glucose diffusion and insulin absorption as compared to that

observed in the SC space. Insulin delivery through the IP route has been shown to

reduce the frequency of hypoglycemic episodes and improve the glycemic control of

people with type 1 diabetes mellitus (T1DM) [194–196]. Additionally, as presented in

the previous chapter, placing the sensor in the IP space has been shown to reduce the

lag associated with the glucose measurement. However, the benefit of this placement

must outweigh the cost of increased invasiveness [19, 38]. Devices in the IP space

require surgery to conduct the placement, while SC devices are primarily external

and involve only a small transcutaneous insertion that can be done by the patient.

The improvement in AP performance gained by decreasing the insulin pharma-

cokinetic time constant was quantified in a previous study [188]. Additionally, im-

proved controller performance has been observed in clinical studies using IP or in-

haled insulin, which are both associated with faster pharmacokinetic and pharmaco-

dynamic properties than the SC space [73, 90, 197]. In this chapter, a complementary

study to [188] is performed to quantify the impact that glucose sensing lag has on an

AP that uses either SC or IP insulin delivery.
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4.2 Continuous Glucose Sensing

4.2.1 Modeling the Sensor Response

As discussed in the previous chapter, the diffusion process between the blood and

the ISF means that the concentration measured by the glucose sensor may lag behind

the BG, especially when the BG is increasing or decreasing at a high rate of change.

A two-compartment model can be used to represent the glucose diffusion process

and quantify this lag. The sensing dynamics can be expressed as a transfer function

in the Laplace domain as initially introduced in Chapter 3:

GS(s) =
Ym(s)
YIV(s)

=
KSe−θSs

τSs + 1
(3.6)

where Ym(s) and YIV(s) are the Laplace transforms of the sensor measurement

(mg/dL) and the BG (mg/dL), respectively. The identifiable parameters in this trans-

fer function model are the sensor time constant τS (min), the time delay θS (min), and

the model gain KS. Note that from this point onward, θS will be set to zero, since

it was found to be negligibly small through experimental evidence [38]. Also, the

sensor measurement is expected to equal the BG measurement at steady-state when

the sensor is calibrated properly, so the gain KS is set to 1. The resulting simplified

model of sensor dynamics is:

GS(s) =
1

τSs + 1
. (4.1)

Since the most challenging aspects of AP design involve time periods where the BG

is changing rapidly (after meals or during exercise), the filtering effect of the sensor

dynamics is expected to have a detrimental impact on the control quality. This effect

is demonstrated in the Bode plot in Figure 4.2. The smaller the sensor lag is, the
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higher frequencies of input can be tolerated without losing response tracking.
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Figure 4.2: Bode plot showing the deterioration of sensor response for
values of τS from 5 to 30 min. The smaller the sensor lag is, the higher
frequencies of input can be tolerated without losing response tracking.

Placing the sensing mechanism in a more highly vascularized area, such as the

IP space, has been shown to facilitate more rapid sensing of glucose changes. The

experimental data presented in Chapter 3 was used to quantify the dynamic response

of glucose sensors placed in either the SC or the IP space of non-diabetic swine. This

animal model is often used for studies that require a model of the human endocrine

system. The data showed that the sensors implanted in the IP space of swine had

faster dynamics than the SC sensors placed in the same animal. The distribution of

fitted time constants of the model in Equation (3.6) for sensors in each space was

5.6±2.9 min for the IP sensors and 12.4±3.6 min for the SC sensors [38]. In general,
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the IP sensors had a lower mean time constant and a tighter distribution, while the

SC sensors had a higher mean time constant and wider distribution. Data from a

human clinical study found that SC sensors have time constants ranging from 2 to 20

min [55]. Lastly, the results of a tracer kinetics study showed that the time constant

in the SC space for people with T1DM was 11.0±3.3 min [53].

In the computational work presented in this chapter, τS is varied to investigate a

wide range of sensor dynamics (0 to 30 min) using the model in Equation (4.1). The

intent is not to replicate a specific sensor placement, but to interrogate the relation-

ship between sensor lag and AP performance. In general, SC sensors that are already

in use are expected to be on the higher end of the lag distribution, while IP sensors

that are in development are expected to have a smaller lag [38]. An ideal BG sensor

is represented by the case when τS=0 min.

4.2.2 Dynamic Measurement Error

Dynamic lags in the measurement process lead to error between the true and

measured BG values. One measure of this error can be computed by determining the

measurement response to a ramp input [70]. The ramp should be selected to have

the maximum rate of change that is expected for the process. For a ramp of slope a,

the upper bound on the error is given by

εmax = |ym(t)− yIV(t)|max (4.2)

where yIV(t) = at (a ramp input in blood glucose concentration). The time-domain

response to a ramp for a transfer function with first-order dynamics and unity gain,

such as that in Equation (4.1), is determined by substituting the Laplace transform of

the ramp (YIV(s) = a
s2 ) into Equation (4.1) and taking the inverse Laplace transform
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to get:

ym(t) = aτS(e−t/τS − 1) + at. (4.3)

By substituting Equation (4.3) into Equation (4.2), the error reduces to

εmax = |aτS(e−t/τS − 1)|max. (4.4)

The maximum error occurs when t >> τS, giving

εmax = |aτS|. (4.5)

The maximum rate of change expected in glucose concentration data can be esti-

mated as between an absolute value of 4 and 5 mg/dL/min, as seen in clinical data

[102, 198]. The upper bounds on the measurement error given a ramp of 4 and 5

mg/dL/min for sensor time constants ranging from 5 to 30 min are shown in Table

4.1. Reducing the glucose sensor lag will reduce the upper bound on the dynamic

measurement error in a linear relationship.

The upper bound on the error provided by Equation (4.5) is a conservative esti-

mate for BG monitoring applications, where the rate of change is unlikely to continue

at the maximum value for times t >> τS. Therefore, it is useful to consider the tran-

sient error response to a ramp of maximum slope lasting 15 min. Figure 4.3 shows

the transient response for simulated glucose sensors with τS equal to 5, 10, 20, and 30

min for a BG ramp of slope -4.5 mg/dL/min. The starting glucose concentration is

set to 130 mg/dL. After 15 min, the BG has crossed the threshold into hypoglycemia;

however, none of the simulated sensors would have detected this safety risk at the

time it happened. Detection of rapid changes in BG is critical to the AP, especially if

the change presents a safety risk such as hypoglycemia. Figure 4.3 demonstrates the
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Table 4.1: Summary of dynamic error characteristics resulting from sim-
ulated glucose sensors with different values of τS. Sensor measurements
are simulated based on experimental BG data (clinical data from [72], clin-
icaltrials.gov ID NCT01472406).

τS (min)
5 10 20 30

εmax (mg/dL)
a = 4 mg/dL/min 20 40 80 120
a = 5 mg/dL/min 25 50 100 150

MARD (%) 1.9 3.6 6.4 8.6
Clarke Zone (%)

A 98.9 98.4 95.5 90.1
B 1.1 1.6 4.5 9.7
C 0 0 0 0
D 0 0 0 0.16
E 0 0 0 0
A+B (%) 100 100 100 99.8

danger of a lagging sensor measurement, which produces an error that is correlated

in time and becomes larger for higher rates of change.

The measurement error due to dynamic sensor lag that would occur for typical

BG trajectories can be investigated using retrospective analysis of data from a previ-

ous clinical study. During a 24 h clinical evaluation of an AP device in 12 subjects,

BG measurements were taken every 30 min, or every 15 min during exercise and

hypo- or hyperglycemic episodes [72]. This study is registered on clinicaltrials.gov

with clinical trial registration number NCT01472406. The BG measurements were

taken from venous blood using a YSI 2300 STAT PlusTM glucose and lactate analyzer

(Yellow Springs Instruments, Yellow Springs, OH), which is considered to be the gold

standard in glucose measurement. Using this data and the sensor model in Equation

(4.1), measurements from sensors with different time constants were simulated. An

example of the experimental YSI measurements and simulated sensor measurements

for one subject are shown in Figure 4.4.
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Figure 4.3: Error introduced by a sensor lag in the transient time re-
sponse for a ramp BG change with slope -4.5 mg/dL/min. The red dashed
line shows the hypoglycemia threshold of 70 mg/dL/min. The varying
values of τS are represented by symbol type and color. The symbols indi-
cate the sampling time of a glucose sensor, which is 5 min. (Top) The ramp
BG and simulated sensor measurements over time. (Middle) The error be-
tween the ramp BG and the simulated sensor measurements. (Bottom)
The error between the rate of change estimated from the sensor versus the
rate of change of the ramp BG.
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(clinical data from [72], clinicaltrials.gov ID NCT01472406).
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A histogram of the error between BG measurement and simulated sensor mea-

surement is shown in Figure 4.5. The mean absolute relative difference (MARD) is

typically used to characterize glucose sensor error during a given time period. This

measure is calculated as

MARD =
1
n

n

∑
i

|ym,i − yIV,i|
yIV,i

× 100. (4.6)

The MARD for each simulated sensor run on the clinical data is shown in Table 4.1.

As seen in the table, the MARD ranges from 1.9% to 8.6% for a τS of 5 to 30 min. The

MARD is considered an important value when reporting glucose sensor accuracy,

and may determine whether the glucose sensor can be used as a replacement for

capillary blood measurements to determine insulin dosing. For example, it is stated

in [20] that glucose sensors must reach a MARD below 10% before they can be cleared

for use in determining insulin dosage.

While the MARD gives a general idea of the glucose sensor performance, it does

not demonstrate how that error might affect control action. For this reason, the sensor

readings were examined using a Clarke Error Grid to determine the clinical impli-

cations of the error [52]. The simulated glucose sensor measurements were plotted

against the corresponding reference measurements on a graph that was divided into

five zones, as shown in Figure 4.6. The zones are: A, where the glucose sensor mea-

surement was within 20% of the reference; B, where the error was greater than 20%

of the reference, but the treatment determined from the glucose sensor and reference

would have been the same; C, where unnecessary treatment would have been given

that could have led to dangerous hyperglycemia or hypoglycemia; D, where dan-

gerous hyperglycemia or hypoglycemia would have gone undetected; and E, where

the treatment given would have been the opposite of the required treatment [52].
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Figure 4.5: Histogram of the error induced by dynamic sensor lag for
simulated sensors and experimental BG data. The error distribution be-
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According to one source, the percentage of points in the A and B zones should be

higher than 98% to be acceptable [23].

As shown in Figure 4.6 and Table 4.1, 100% of points fell within the A or B

zones for values of τS from 5 to 30 min. Therefore, as shown by the MARD and

the Clarke Error Grid, the point-wise error caused by the dynamic sensor lag does

not exceed limits for clinical usability. However, the dynamic nature of the error is

expected to cause problems for the artificial pancreas, which relies on the glucose

trajectory over time to make accurate and timely insulin dose recommendations. A

lag in the measurement will lead to a lag in the controller action, especially when

responding to large disturbances such as meals. In the following sections, control

theory and simulation studies are used to quantify the effect of sensor lag on an

artificial pancreas controller.

4.3 Controller Design and Tuning

Following an analogous approach to the one outlined in [188], a model-based PID

controller design was chosen in this study to highlight the effects of sensor dynamics

on control quality. The following third-order discrete-time model of insulin action on

BG has been previously identified, with different parameters to represent either IP or

SC insulin delivery [199, 200]:

MD =
K(TDI)−1z−3

(1− a1z−1)(1− a2z−1)2 (4.7)

where TDI (U) is the total daily insulin dose of the patient and the sampling time is

5 min. The inclusion of the total daily dose allows the gain to be personalized based

on each individual patient’s response to insulin. The model parameters are given in
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Figure 4.6: Clarke Error Grid for simulated sensors with different lags.
The grid shows that for values of τS from 5 to 20 min, all of the points
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of points fall into the acceptable error zones, with 0.16% in the D zone
(clinical data from [72], clinicaltrials.gov ID NCT01472406).

97



Chapter 4. Impact of Glucose Sensing Dynamics on the Artificial Pancreas

Table 4.2, based on previous work [199–201].

Table 4.2: Parameters for the discrete, continuous, and reduced models
of IP and SC insulin action. Reprinted from [202].

Discrete Continuous

K a1 a2 K′ τ1 τ2
(h·mg/dL) (h·mg/dL) (min) (min)

IP -15 0.98 0.75 -12000 247 17

SC -0.30 0.98 0.965 -12294 247 140

Reduced

τ̂1 (min) τ̂2 (min) θ̂ (min)

IP 247 26 11

SC 247 210 73

The model was converted to continuous time using the zero-pole matching

method [203] to obtain the following third-order continuous model:

MC =
K′(TDI)−1

(τ1s + 1)(τ2s + 1)2 . (4.8)

The parameters for the resulting continuous model are also shown in Table 4.2. The

third-order model was then reduced to a second-order model using Skogestad’s half

rule [204] to obtain

G =
K′(TDI)−1e−θ̂s

(τ̂1s + 1)(τ̂2s + 1)
, (4.9)

where the reduced-order model parameters are determined by the following rela-

tions:

τ̂1 = τ1, τ̂2 = τ2 +
τ2

2
, and θ̂ =

τ2

2
+

∆t
2

, (4.10)

with the resulting reduced model parameters included in Table 4.2. Here, ∆t is the
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sampling time that will be used in the implementation of the controller. The con-

troller parameters were determined from Equation (4.9) using internal model control

tuning rules. Internal model control is a model-based controller design method de-

veloped to give an analytical expression for a controller based on a dynamic model

of the process [70]. The design process leaves a single tuning knob, the characteristic

time constant τC, which sets the robustness of the controller. Internal model control

design for a second-order transfer function model yields an equivalent PID controller,

so direct relations between the model parameters and the PID tuning parameters can

be expressed [70]:

KC =
τ̂1 + τ̂2

K′(TDI)−1(τC + θ̂)
(4.11)

τI = τ̂1 + τ̂2 (4.12)

τD =
τ̂1τ̂2

τ̂1 + τ̂2
. (4.13)

The choices for τC in this study were determined from the dominant time constants

(τdom) of the IP and SC models, which were found by inspection of the step response

to be 285 and 564 min for the IP and SC systems, respectively. Values for τC were

selected as τdom[0.1, 0.3, 0.5, 0.7] as indicated by the tuning guidelines in [70]. The PID

controller was then implemented using the discrete position form with a sampling

time of 5 min:

u(k) = ū + KC[e(k) +
∆t
τI

k

∑
j=1

e(j) +
τD

∆t
[e(k)− e(k− 1)]] (4.14)

where u(k) is the insulin delivery computed by the controller (U/h), ū is the steady

state insulin delivery rate (U/h), KC is the controller gain ([U/h]/[mg/dL]), τI is the

integral time constant (min), τD is the derivative time constant (min), and e(k) is the
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difference between the glucose measurement and the setpoint of 110 mg/dL. While

there is no obvious choice for setpoint based on physiology, 110 mg/dL was chosen

because it is in the middle of the tight glycemic control range of 80-140 mg/dL. This

setpoint has been used in previous AP designs, including in [188].

4.4 Frequency Response and Robustness Analysis

In order for the AP to be safe for clinical use, it must be robust to model uncer-

tainty. The human body’s reaction to insulin can vary depending on the time of day,

hormonal changes, exercise, and other factors that are part of daily life. Changes

in insulin sensitivity of up to 50% have been experimentally observed [205]. These

changes can be considered as perturbations to the gain and delay of the nominal

model. A controller is said to be robust if it is insensitive to differences between the

actual system being controlled and the model of the system that was used determine

the controller tuning parameters. Robustness is determined by checking that the sys-

tem is stable and meets performance requirements even for the worst-case scenario

of model uncertainty [206]. A robust design is crucial for AP applications, since the

controller will be part of a medical device that needs to meet its design specifications

even in the face of model uncertainty introduced between different patients or over

time in the same patient.

4.4.1 Gain and Phase Margin

Gain and phase margins were used to perform a preliminary screening of the

system robustness. These two measures are based on the frequency response analysis

of the open-loop transfer function. The gain margin reflects how much the open-loop

gain can increase before reaching instability, while the phase margin shows how
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much the open-loop delay can increase before instability occurs.

4.4.2 Robust Stability and Performance

Robust stability and performance analysis is a more formal measure of system

robustness to model uncertainty. The family of possible plants ΠI that exist given a

nominal process model with specified uncertainty was represented using multiplica-

tive uncertainty as follows:

ΠI : GP(s) = G(s)(1 + wI(s)∆I(s)); |∆I(jω)| ≤ 1, ∀ω (4.15)

where GP is a potential process model, and G is the nominal process model. The

uncertainty weight fulfills the relation |wI(jω)| ≤ lI(ω), ∀ω where

lI(ω) = max
GP∈ΠI

|GP(jω)− G(jω)

G(jω)
|. (4.16)

The condition for robust stability (RS) is then given by:

RS ⇐⇒ ||wIT||∞ < 1 ∀ω (4.17)

where T is the complementary sensitivity function and wI is the multiplicative un-

certainty weight as defined previously. The weight for parametric uncertainty in the

gain and delay for the model in Equation (4.9) is given by

wI =
(1 + rk

2 )θmaxs + rk
θmax

2 s + 1
(4.18)

where rk = Kmax−Kmin
Kmax+Kmin

and θmax is the maximum uncertainty in the delay considered

[206]. In this study, gains on the range Knom[1 − δ, 1 + δ] were considered, where
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δ was allowed to vary from 0.1 to 0.9. The nominal gain Knom was chosen as the

non-personalized gain of -200 (mg/dL)/(U/h) [199–201]. The maximum delay un-

certainty tested was 30 min.

The robust performance criterion is used to determine whether specified perfor-

mance measures will be met in the presence of model uncertainty. The condition for

robust performance (RP) is given by:

RP ⇐⇒ max
ω

(|wPS|+ |wIT|) < 1 (4.19)

where S is the sensitivity function. The performance weight wP is given by

wP(s) =
s

M + ω∗B
s + ω∗B A

(4.20)

where M is the maximum peak of the sensitivity function, A is the steady state

tracking error, and ω∗B is the bandwidth frequency [206]. In this study, A = 10−2,

ω∗B = 5× 10−5 rad/s, and M = 2. The value of A was chosen to be approximately

zero because it is important for the controller to track the setpoint closely at steady

state, even in the presence of model uncertainty. The value for M was chosen in

accordance with the recommendation in [70]. The bandwidth frequency was selected

based on the bandwidth of a closed-loop system using SC insulin delivery, which is

the current state-of-the-art configuration used in clinical evaluations [1, 188].

4.4.3 Results and Discussion

The calculated gain and phase margins for varying values of τS and τC are shown

in Tables 4.3 and 4.4. A Bode plot demonstrating the calculation of the gain and

phase margin for IP insulin with τC=0.1τdom is shown in Figure 4.7. These values
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show that increasing τS and/or decreasing τC reduces the margin for error before

instability is reached. Overall, the IP system has higher margins than the SC system,

which is due to the faster actuation available through the IP route.

Table 4.3: Gain margin for varying sensor time constants and tuning
parameters. Reprinted from [202].

Intraperitoneal Delivery

τS\τC 0.1τdom 0.3τdom 0.5τdom 0.7τdom

0 min 5.7 14 22 30

10 min 4.1 10 16 22

20 min 3.9 9.5 15 21

30 min 3.8 9.3 15 20

Subcutaneous Delivery

τS\τC 0.1τdom 0.3τdom 0.5τdom 0.7τdom

0 min 2.8 5.2 7.6 10

10 min 2.5 4.7 6.8 9.0

20 min 2.3 4.4 6.4 8.4

30 min 2.2 4.2 6.1 8.0

A general recommendation for the gain and phase margin given in [70] states that

a well-tuned controller will have a gain margin between 1.7 and 4.0 and a phase mar-

gin between 30°and 45° [70]. The gain and phase margins obtained for the controller

design presented in this chapter are similar to those presented in [188], in which the

impact of insulin pharmacokinetic and pharmacodynamic properties on the AP was

evaluated. As in that study, the gain and phase margins in Tables 4.3 and 4.4 are

within or higher than the range of published guidelines in [70] due to the conserva-

tive controller design required for safety in medical applications. Smaller values of

gain and phase margin can lead to an oscillatory response, which must absolutely be
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Figure 4.7: Bode plot demonstrating the calculation of the gain and
phase margin for IP insulin. The plot is shown for τC=0.1τdom, and for
various values of τS. The gain margin is calculated by 1
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The phase margin is calculated as 180+φg, where φg is the phase at the
gain-crossover frequency where the magnitude equals 1 [70].
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Table 4.4: Phase margin for varying sensor time constants and tuning
parameters. Reprinted from [202].

Intraperitoneal Delivery

τS\τC 0.1τdom 0.3τdom 0.5τdom 0.7τdom

0 min 74° 83° 86° 87°

10 min 61° 78° 82° 84°

20 min 51° 72° 79° 82°

30 min 44° 67° 75° 79°

Subcutaneous Delivery

τS\τC 0.1τdom 0.3τdom 0.5τdom 0.7τdom

0 min 58° 73° 78° 81°

10 min 53° 70° 77° 80°

20 min 49° 68° 75° 79°

30 min 46° 66° 73° 77°

avoided in the AP system.

The robust stability analysis was conducted to determine how much model uncer-

tainty in the gain and delay would be tolerated for a specified sensor time constant

and controller tuning. The results are shown in Figure 4.8 (top panels). The results

show that the system will remain stable for large model uncertainty for both IP and

SC insulin, even with a sensor time constant of 30 min, for the most aggressive tuning

tested (τC = 0.1τdom). For the larger three values of τC, robust stability is maintained

for all gain and delay uncertainties tested.

Increasing the sensor time constant may cause a loss of robust performance even

for small model uncertainty (Figure 4.8, middle and bottom panels). Thus, there is

less tolerance for model uncertainty when the sensor time constant is increased, and

it is possible that the robust performance specifications will not be met. In fact, the

SC system does not meet robust performance specifications for gain uncertainties
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Figure 4.8: Gain and delay uncertainty allowed while still retaining ro-
bust stability and robust performance for various sensor time constants
using IP and SC insulin. The top plot shows robust stability, while the
middle and bottom plots show robust performance. The top and middle
panels show the analysis for a fixed τC of 0.1τdom. Robust stability was
met for large amounts of model uncertainty for both systems, but the IP
system performance was more robust to model uncertainty than the SC
system. The analysis was repeated for a more conservative τC of 0.3τdom,
for which the robust performance results are shown (bottom panel). The
robust stability results for τC = 0.3τdom are not shown because the system
was robustly stable for all conditions tested. Reprinted from [202].
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greater than 0.1 when using the most aggressive tuning tested, even for the ideal

sensor case. The same analysis for τC = 0.3τdom shows that the SC system is able

to retain robust performance for small amounts of model uncertainty. Overall, the

IP system displays a higher robust performance than the SC system. This trend is

expected as a result of the faster actuation afforded by IP insulin delivery.

Retaining stability in the AP system is of utmost importance, so it is encouraging

to see that both the SC and the IP systems will be robustly stable even for large

sensor time constants. Robust performance will be retained for low sensor time

constants, but may be lost if there is too much lag in the glucose measurement.

For this reason, more experimental data should be collected to determine the sensor

lags present in systems being used in clinic, and new sensing methods that would

provide a faster glucose measurement should be investigated. Two studies that have

already been conducted to measure the lag between the intravascular and interstitial

compartments of humans are presented in [58] and [57].

4.5 Simulation Studies

4.5.1 Methods

In silico tests were performed to evaluate the impact that sensor dynamics have

on the time-domain performance of the AP. The simulations were conducted using

the UVA/Padova metabolic simulator with ten unique simulated adult subjects with

T1DM [207]. This simulator allows artificial pancreas controllers to be evaluated

under many different scenarios to determine the best design before moving to clinical

studies. The use of the simulator also allows controlled studies to be performed

that would not be possible in real life, such as testing various specified sensor time
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constants.

A block diagram depicting the simulation setup is shown in Figure 4.9. The

intravenous port in the simulator was used to simulate IP insulin delivery. This ap-

proximation has been utilized previously, as the intravenous delivery in the simulator

closely mimics IP delivery [200]. The sensor dynamics were implemented by pass-

ing the BG through the first-order model given by Equation 4.1 before sending the

measurement to the controller. The sensor time constants tested, chosen to represent

the range of experimental values observed in [38], were 0, 10, 20, and 30 min. The

additive measurement noise was disabled in order to isolate the effects of the sensor

dynamics on the controller performance. The protocol tested was a fasting period

followed by an unannounced meal disturbance (output disturbance) consisting of

75 g of carbohydrates (CHO).

Simulated 

T1DM 

Patient

PID

Controller

Adjustable

Diffusion

Model, G

+
-

Insulin

Pump

(IP or SC)

+
+

Optional Additive

Measurement
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Figure 4.9: Block diagram showing the closed-loop simulation setup.
The PID controller receives the error between the setpoint and the mea-
sured glucose concentration and sends an insulin dose to the simulated
patient by using either the IP or SC delivery route. The resulting BG is
passed through the glucose diffusion model with an adjustable time con-
stant. Measurement noise can optionally be added before obtaining the
measured glucose concentration. Reprinted from [202].
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4.5.2 Results and Discussion

The data from one representative subject are shown in Figure 4.10. When the

glucose measurement is delayed, it effectively filters the controller action. The peak

insulin delivery is shifted later in time, and the overall response of the AP is more

sluggish. The simulation results for all 10 subjects are summarized in Table 4.5.

Presented in the table are the mean and standard deviation for the time spent in

hyperglycemia (BG>180 mg/dL, thyper), the area of the region below the glucose

curve and above the 180 mg/dL hyperglycemia cutoff (AUC), the peak BG, and the

minimum BG. For both IP and SC insulin delivery, increasing the sensor time constant

significantly raised the maximum BG that was experienced, while it significantly

lowered the minimum BG. This is the expected trend that would be caused by a

lagging measurement.

More telling than the magnitude of the peak is the increased period of hyper-

glycemia caused by an increased sensor lag. The boxplot in Figure 4.11 shows the

amount of time in hyperglycemia and AUC in hyperglycemia following the meal

for the 10 simulated subjects using IP insulin. Both the time in hyperglycemia and

the AUC in hyperglycemia increased greatly as the sensor time constant increased.

For a sensor time constant as small as 10 min, the mean AUC was doubled when

IP insulin delivery was used. The time spent in hyperglycemia increased by 21±8

min for IP insulin and by 13±3 min for SC insulin for a τS of 20 min as compared

to the ideal sensor case. According to experimental data from [38] and [208], 20 min

serves as a conservative estimate for the time constant of an SC sensor, so it would be

possible to encounter this amount of lag in a clinical AP study. The cumulative time

spent in hyperglycemia over a person’s lifetime determines the severity of long-term

health complications [7]. The increased hyperglycemia brought about by a lagging
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Table 4.5: In silico performance measures for varying τS. The parameter
τC = 0.1τdom. Reprinted from [202].

Intraperitoneal Delivery

τS thyper AUC Max BG Min BG

(min) (min) (min·mg/dL) (mg/dL) (mg/dL)

0 38 ± 25 381 ± 343 192 ± 9 86 ± 5

10 50 ± 20* 761 ± 495* 202 ± 12* 83 ± 6*

20 59 ± 19* 1141 ± 670* 208 ± 14* 78 ± 7*

30 67 ± 19* 1508 ± 834* 213 ± 16* 72 ± 10*

Subcutaneous Delivery

τS thyper AUC Max BG Min BG

(min) (min) (min·mg/dL) (mg/dL) (mg/dL)

0 107 ± 25 3643 ± 1829 231 ± 23 88 ± 5

10 113 ± 23* 4354 ± 2082* 237 ± 26* 80 ± 14

20 120 ± 22* 4957 ± 2329* 242 ± 28* 71± 17*

30 126 ± 22* 5510 ± 2577* 245 ± 30* 62 ± 17*

*Statistically different from τS = 0 min by paired t-test.
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Figure 4.10: Representative result from one subject in the UVA/Padova
metabolic simulator (adult subject 1) with four different values for the
sensor time constant using (top) IP insulin and (bottom) SC insulin.
In both cases, τC=0.1τdom. The plot shows the glucose concentration and
insulin delivery for one hour before and eight hours after an unannounced
75 g CHO meal disturbance. The green and yellow zones represent the
tight clinical range (80-140 mg/dL) and safe clinical range (70-180 mg/dL)
for the BG. The setpoint is shown by the horizontal dashed line at 110
mg/dL. Reprinted from [202].
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measurement will add up each time there is a meal disturbance, and could result in

a worse overall health outcome for the patient.

The effect of the characteristic time constant τC is demonstrated in Figure 4.12,

which shows the results for the same representative subject as in Figure 4.10 for IP

insulin using the four different values of τC. A larger value of τC leads to a slower

and less aggressive response from the controller. A controller with a large value of

τC is not able to respond in a timely manner to the rapid change in glucose caused

by a meal. Using a smaller value of τC is desirable as long as the system will remain

robust to model uncertainty and sensor lag.

Figure 4.13 shows a plot of the maximum versus minimum BG for all 10 subjects,

with error bars showing the standard deviation. The plot includes three representa-

tive choices for τC based on the dominant time constant for each system. On this plot,

improved controller performance is indicated by proximity to the lower left corner.

In all cases, decreasing the sensor time constant improved the controller performance

by moving the point on the plot down and to the left. The standard deviation spread

also became narrower as the sensor time constant decreased, meaning that the system

is more reliable for all subjects. An increased sensor lag is detrimental to SC control

because it necessitates a more conservative tuning to be used to avoid dangerous

hypoglycemia (BG<70 mg/dL), at the expense of allowing more hyperglycemia.

A sensor with a small time constant would improve the ability of the AP to re-

ject a meal disturbance. If a faster sensor is not available, other measures such as

feed-forward action may be necessary to obtain the desired level of performance. For

example, the user of the AP could announce that a meal is about to be consumed,

which would cue the AP to deliver a preemptive dose of insulin. While this con-

figuration is being used more often in clinical studies [1], it is not ideal because it

involves a human in the loop, which could lead to safety risks. A faster sensor could
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Figure 4.11: Boxplot showing the amount of time spent in hyperglycemia
and the area under the curve in hyperglycemia for closed-loop control
in 10 in silico subjects using IP insulin with τC = 0.1τdom. The results are
compared for several different values of τs. The horizontal red line rep-
resents the median value, the blue box represents the interquartile range,
and the vertical black bars represent the range.
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Figure 4.12: Representative result from one subject in the UVA/Padova
metabolic simulator (adult subject 1) with four different values for the
characteristic time constant using IP insulin. The sensor time constant for
this case was 0 min. The plot shows the glucose concentration and insulin
delivery for one hour before and eight hours after an unannounced 75 g
CHO meal disturbance. The green and yellow zones represent the tight
clinical range (80-140 mg/dL) and safe clinical range (70-180 mg/dL) for
the BG. The setpoint is shown by the horizontal dashed line at 110 mg/dL.
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Figure 4.13: Mean maximum versus mean minimum BG for different
sensor time constants (0 (blue), 10 (green), 20 (orange), and 30 (red) min)
and tuning parameters for (A) IP insulin delivery and (B) SC insulin
delivery after a 75 g CHO meal disturbance. Error bars show plus or
minus one standard deviation. Decreasing the sensor time constant causes
the data points to move down and to the left, indicating an improvement
of controller response to the meal disturbance. Reprinted from [202].

potentially avoid the need for this feed-forward action, leaving less burden on the

AP user. Still, there may be a limit to the sensing speed that can be achieved. The

cost of developing and manufacturing a faster sensor must be weighed against the

benefit gained from the reduced lag.

4.6 Conclusions and Future Work

When evaluating a new sensor technology, the point-wise error is frequently re-

ported as a measure of the acceptability of that sensor’s accuracy. A point-wise error

that passes thresholds for safety could still include error from a dynamic lag that

could cause problems for an artificial pancreas controller. Decreasing the glucose

sensor lag leads to a decreased period of hyperglycemia following a meal distur-

bance, which could in turn lead to a better health outcome for the patient. The

relative improvement is higher for the IP system than the SC system. This difference
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is attributable to the fact that delays present in SC insulin actuation cause the sen-

sor lag to have less of an impact. In addition, systems with an increased sensor lag

have a lower tolerance for model uncertainty resulting from inter- and intra-patient

variabilities.

The use of an insulin delivery route with faster pharmacokinetic and pharmaco-

dynamic characteristics (IP rather than SC) improves control performance greatly, but

that improvement is only partially realized if a sensor with a dynamic lag is used.

Further experimental investigation of glucose sensor placement will reveal the extent

to which the diffusion lag can be eliminated. The benefit gained from this lag reduc-

tion must be weighed against the cost and invasiveness of such a sensor to determine

the best solution for the patient. In the next chapter, the design and evaluation of a

PID control algorithm for a fully implantable AP using both IP insulin and IP glucose

sensing is presented.
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Chapter 5

Robust PID Control for an Implantable

Artificial Pancreas1

5.1 Introduction

As discussed in Chapters 1 and 2 of this dissertation, many variations of the ar-

tificial pancreas (AP) have been tested in clinical studies. Current iterations of the

AP have moved past the inpatient clinical testing phase and into the outpatient en-

vironment. The AP designs used in these studies show promising results, but their

performance is limited by the use of commercially available external insulin pumps

and glucose sensors that operate in the subcutaneous space, introducing severe de-

lays into the control loop. In this chapter, we present a design process for a controller

that will work with implantable insulin pumps and glucose sensors, greatly reducing

the delays and resulting in overall better glycemic control.

1Reproduced with permission from L. M. Huyett, E. Dassau, H. C. Zisser, and F. J. Doyle III,
“Design and evaluation of a robust PID controller for a fully implantable artificial pancreas,” Industrial
& Engineering Chemistry Research, vol. 54, pp. 10311-21, 2015. Copyright 2015 American Chemical
Society (available at http://pubs.acs.org/articlesonrequest/AOR-HTwYV5f3SkcycCeZNfSD) [209].
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5.1.1 Control Objective, Challenges, and Constraints

A primary objective of the AP is to provide safe and effective glycemic control

for people with T1DM by delivering doses of insulin. This objective is typically

quantified as maximizing the percentage of time spent within a desired range of

glucose concentrations. The most frequently used ranges are 70-180 mg/dL or 80-140

mg/dL [1]. In addition, the controller must prevent hypoglycemic episodes. Since

safety must remain the top priority in any medical device system, some AP designs

introduce glucagon as a second manipulated variable [94]. This hormone stimulates

the natural conversion of glycogen stored in the liver to glucose, and may be used as a

rescue treatment when a person’s BG approaches hypoglycemia. However, there are

practical difficulties with using glucagon in a closed-loop system, and the effects of

long-term glucagon use are unknown [133]. In addition, a clinical study designed to

compare an AP with and without glucagon did not find any significant improvement

made by including glucagon in the system [94]. For these reasons, we focus on the

design of an insulin-only system. An important constraint in this system is that

insulin cannot be removed once it has been delivered, so the AP must be tuned

accordingly to avoid a potentially dangerous situation.

There are several disturbance challenges that the AP must face to successfully

control BG. The most difficult disturbances to control occur following the ingestion

of a meal, when the BG concentration increases rapidly. Other challenges include

periods of exercise, which can result in unpredictable BG changes, and overnight

periods, during which the AP user is asleep and therefore dependent on the AP to

maintain the BG within a safe range [1]. Periods of illness and stress, along with

hormonal changes, affect the way the body responds to insulin [210]. The AP must

be able to adapt to changing insulin sensitivity to maintain glycemic control.
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5.1.2 An Implantable System

To effectively reject glycemic disturbances, the AP controller must have access

to sensing and actuation with characteristics that allow the controller to detect and

react to glucose concentration changes. The majority of AP designs tested thus far

rely on commercially available insulin pumps and glucose sensors that operate in the

subcutaneous space [1]. These devices have several advantages: they are minimally

invasive, already approved by the United States Food and Drug Administration, and

easy to use. Unfortunately, diffusion lags between the interstitial fluid and the blood

introduce severe delays in both glucose sensing and insulin action, reducing the abil-

ity of the controller to respond to and correct changing glucose concentrations in a

timely manner [57, 58, 79]. To overcome these delays and improve the glucose control

achieved, most iterations of the AP have incorporated meal announcement, a type of

feedforward action initiated by the user to trigger a bolus of insulin before the meal is

consumed. While the addition of the meal announcement improves the resulting BG

profile following a meal, it also poses a safety risk by requiring the user to accurately

and reliably perform an action [211]. The best solution would be to reduce delays in

the system so that fully-automated control is possible. The reduction of delays may

be accomplished with the use of alternate insulin delivery, more rapid-acting insulin

formulations, and glucose sensing methods.

The intraperitoneal (IP) space was first introduced as an alternative insulin deliv-

ery route in the 1970s [174]. Insulin delivered through the intraperitoneal route has

faster pharmacokinetic and pharmacodynamic characteristics than insulin delivered

through the subcutaneous route: when insulin is delivered through the SC route, the

absorption peak occurs 50-60 minutes later [175], as opposed to 20-25 minutes when

using the IP route [176]. The insulin is also cleared more quickly: insulin delivered

119



Chapter 5. Robust PID Control for an Implantable Artificial Pancreas

through the SC route has a residence time of 6-8 hours [175], while IP insulin has

a much shorter residence time of 1-2 hours [176]. A further advantage of IP insulin

delivery is that it mimics healthy pancreatic activity by allowing a high uptake of

insulin by the liver and producing a positive portal-systemic insulin gradient [212].

The use of implanted insulin pumps can also lead to improved quality of life: a

randomized crossover study showed that continuous intraperitoneal insulin infusion

resulted in improved health-related quality of life and treatment satisfaction over

continuous subcutaneous insulin infusion [213]. The main obstacle barring adoption

of IP insulin delivery is that it requires either a pump to be surgically implanted, as

in Logtenberg, et al. [214] or a percutaneous port to be created, as in Liebl, et al.

[194]. The disadvantages of this system are that it is invasive, and may be associated

with higher cost and higher risk of infection [18]. There is no IP insulin delivery

system currently approved for use in the United States, so this hurdle would need to

be passed before the implantable AP could be tested in human clinical trials.

The improvements gained by faster actuation through IP insulin delivery will be

limited without the implementation of fast glucose sensing. In initial clinical stud-

ies, an AP using intraperitoneal insulin delivery did not perform as well as expected

because the sensor introduced a lag to the glucose measurement [215]. As discussed

in Chapters 2 and 3 of this dissertation, several studies have shown that there is a

diffusion lag between the blood and the interstitial fluid, resulting in measurements

that lag behind the blood glucose concentration [57, 58, 184]. The preliminary animal

studies discussed in Chapter 3 have demonstrated that sensors placed in the IP space

provide a more rapid measurement of blood glucose than sensors placed in the SC

space due to the proximity to a highly vascularized area, with the diffusion process

modeled as a first-order transfer function with time constant τS (min) [38, 216]. The

time constants identified from experimental data in a swine model for sensors placed
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in the intraperitoneal and subcutaneous space are shown in Figure 5.1. The IP sensor

time constants were lower and had a tighter distribution than the SC time constants.

This evidence suggests that a glucose sensor implanted within the IP space will pro-

vide a more useful estimation of the blood glucose concentration by reducing the

diffusion lag. As was shown in Chapter 4, reducing the sensor lag leads to a more

robust controller, with better performance in simulation studies.
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Figure 5.1: Sensor dynamics in experimental data. Boxplot showing the
statistical properties of the fitted time constants for sensors placed in the
IP space or the SC space of swine, demonstrating that the IP sensors had
a lower mean time constant and a tighter distribution than the SC sensors.

The primary differences between IP and SC devices are summarized in Table 5.1.

A fully implanted AP will make use of both intraperitoneal insulin delivery and glu-

cose sensing. The pump, sensor, and controller will all be implanted, and the system

will be operated using a handheld remote. This approach will eliminate the need to
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remove and apply new sensors and insulin infusion sets, as must be done with sub-

cutaneous devices. Externally worn devices can be cumbersome, so this approach

may also increase patient compliance. We hypothesize that the glycemic control pro-

vided by a fully implantable system will be superior to that which is possible with a

subcutaneous system. Since the sensing time constant is up to two times faster, the

controller can react promptly to impending hypo- and hyperglycemia [38]. Addition-

ally, pump suspension will have an almost immediate effect on the BG, while with the

SC system the insulin depot in the SC space may delay the effect by up to 60 minutes

[217]. An IP insulin bolus results in a peak in plasma insulin within 40 minutes, and

returns to baseline after 113±63 to 154±55 minutes [176]. The faster insulin action

and clearance will lead to more predictable dynamics, making closed-loop control

more successful.

5.2 Methods

5.2.1 Controller Design and Tuning

As discussed in Chapter 1, several control strategies have been evaluated for AP

applications, including proportional-integral-derivative control (PID), model predic-

tive control (MPC), and fuzzy logic [1]. Records of information related to clinical

trials using each type of controller are available in the searchable database located at

www.thedoylegroup.org/apdatabase. MPC has been proposed as a suitable strategy

for AP designs using subcutaneous insulin delivery and sensing because of the large

delays in these systems. Additionally, this advanced control strategy can directly

incorporate system constraints and other features within the optimization problem

that is solved to calculate the insulin delivery [71, 72]. PID control has also been
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Table 5.1: Summary of differences between subcutaneous and intraperi-
toneal insulin pumps and glucose sensors.

Characteristic Subcutaneous Space Intraperitoneal Space

Insulin absorption
peak

50-60 min [175] 20-25 min [176]

Insulin residence
time

6-8 h [175] 1-2 h [176]

Sensor
measurement time
constant

12.4 min [38] 5.6 min [38]

Device placement External, placed on skin
with adhesive patches and
tubing [13, 23]

Implanted, no components
attached to skin [38, 214]

Device lifetime Replace sensor every 7
days and pump infusion
set every 2-3 days [13, 23]

Implanted pumps last
years, with transcutaneous
insulin refills every few
months [218]

Device invasiveness Minimally invasive [13, 23] Requires surgery [38, 218]

Device availability Commercially available
[13, 23]

In development [38, 215]
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promoted and implemented widely for AP applications. Promising clinical results

have been demonstrated by AP systems using MPC controllers and by ones using

PID controllers [1, 219].

When using intraperitoneal insulin delivery and glucose sensing, the system lags

are highly reduced and we are left with a standard single-input, single-output control

problem. In this case, we anticipate that the advanced control capability of MPC may

no longer needed, and that a PID controller will provide satisfactory performance.

Because the insulin will act quickly and glucose changes will be sensed rapidly, the

system can operate well without the predictive power offered by MPC. Additionally,

PID control is less computationally complex, which may be an advantage when the

system must be embedded on a chip where space and battery power will be at a

premium.

The use of model based tuning is recommended for the AP because online tun-

ing through trial and error is not acceptable for a medical application; however, we

need to find a balance between a general and personalized model. Completing time-

consuming model identification procedures for individual subjects is not feasible,

especially if the AP is to be adopted on a large scale. Still, individual subjects have

widely varying insulin sensitivities [205]. In a previous study, a third-order discrete-

time model structure was identified that adequately captures the behavior of insulin

action on the blood glucose concentration [199, 200]. The poles of the model were

found to be consistent between subjects, while a personalization factor was added in

the model gain. The model that was identified for intraperitoneal insulin action on

blood glucose concentration is:

MD =
G(z−1)

UD(z−1)
=

−15(TDI)−1z−3

(1− 0.98z−1)(1− 0.75z−1)2 (5.1)
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where TDI is the total daily insulin dose of the patient (U), G is the blood glucose

concentration (mg/dL), UD is the insulin delivered through the IP route (U/h), and

the sampling time is five minutes. The inclusion of the TDI allows the model gain to

be tailored to an individual subject’s insulin sensitivity.

Internal model control (IMC) is a comprehensive tuning method that allows PID

parameters to be calculated directly from the process model. This method leaves

a single tuning parameter, τC, which is used to set the closed-loop time constant

[70]. Internal model control tuning has been used successfully in AP designs for

SC insulin delivery [84, 188]. To make the model easier to work with for controller

tuning and robustness analysis, the model MD is converted to continuous time. This

conversion can be done using several methods, but the zero-pole matching method

was determined to best preserve the model characteristics [203]. It should be noted,

however, that the final tuning parameters obtained using other methods of conversion

are the same within choice of τC. Therefore, the final tuning parameters are robust to

the conversion method.

The model resulting from the conversion from discrete to continuous time is:

MC =
−12000(TDI)−1

(247s + 1)(17s + 1)2 (5.2)

where the time constant units are minutes. Internal model control tuning rules re-

quire a second-order model to obtain a PID controller. Skogestad’s half rule can

be used to reduce higher-order models to the first- or second-order model required

to use IMC PID tuning rules [204]. Using this method, the reduced-order model
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parameters are determined by the following relations:

τ̂1 = 247 (5.3)

τ̂2 = 17 + 17/2 (5.4)

θ̂ = 17/2 + 5/2. (5.5)

The final model obtained is:

GP =
−12000(TDI)−1e−11s

(247s + 1)(26s + 1)
. (5.6)

Using this model, the tuning parameters are determined using IMC tuning relations

[70]:

Kc =
τ̂1 + τ̂2

K̂′(TDI)−1(τC + θ̂)
(5.7)

τI = τ̂1 + τ̂2 (5.8)

τD =
τ̂1τ̂2

τ̂1 + τ̂2
. (5.9)

The digital PID controller is implemented using the velocity form [70], with:

u(k) = u(k− 1) + ∆P(k) + ∆I(k) + ∆D(k) (5.10)
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where

∆P(k) = KC[e(k)− e(k− 1)] (5.11)

∆I(k) = KC
∆t
τI

e(k) = KIe(k) (5.12)

∆D(k) = KC
τD

∆t
[e(k)− 2e(k− 1) + e(k− 2)] (5.13)

e(k) = Gsp(k)− Gm(k). (5.14)

In this set of equations, u (U/h) is the insulin delivery calculated by the controller,

P, I, and D (U/h) represent the proportional, integral, and derivative action terms

respectively (U/h), ∆t is the time step (5 min), and the integer k denotes the sample

number. An important feature of the velocity PID form is that it must include the use

of integral action. If it is desired to exclude integral action, the position form should

be used instead [70].

A derivative filter can be implemented with this controller. The derivative filter

prevents excessive controller action in the presence of measurement noise. In this

case, the derivative term becomes:

∆D(k) =
βτD

∆t + βτD
∆D(k− 1) + KC

τD

∆t + βτD
[e(k)− 2e(k− 1) + e(k− 2)]. (5.15)

The parameter β determines the level of filtering of the derivative term, with a larger

value indicating a higher filtering effect. After preliminary testing we selected β as

0.1, which is a commonly used value [70]. The derivative filter was used when sensor

noise was added during simulation studies.

The tuning parameters obtained using the procedure outlined above are shown in

Table 5.2, along with parameters determined for a PID controller using SC insulin in

Laxminarayan, et al. [82]. The remaining parameter τC will be selected using robust
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stability and performance considerations.

Table 5.2: Parameters for PID control using IMC tuning for intraperitoneal
insulin compared to parameters previously identified for PID control us-
ing subcutaneous insulin.

Parameter IMC for Intraperitoneal
Insulin

Previously Suggested for
Subcutaneous Insulin [82]

KC ( U/h
mg/dL )* 0.023(TDI)(τC + 11)−1 0.0026 TDI

bodyweight

τI (min) 273 450 (day), 150 (night)

τD (min) 23.5 98

*The units on the variables in this row are: bodyweight (kg), TDI (U), and τC
(min).

5.2.2 In Silico Artificial Pancreas Evaluation

As described in previous chapters, the metabolic simulator developed by at the

Universities of Virginia and Padova can be used to evaluate AP controllers in silico

before considering them for use in in vivo application [207, 220]. This platform al-

lows the algorithm to be evaluated on 10 in silico T1DM subjects. In this study, the

metabolic simulator was used to determine the optimal tuning parameters and eval-

uate the controller performance. The setup that was used in this work is shown in

Figure 5.2.

To evaluate the intraperitoneal insulin and intraperitoneal sensing (IP-IP) design

we used the intravenous (IV) insulin port and a simulated IP sensor. The IV port

was used to approximate the delivery of IP insulin, as was done in Lee, et al. [200].

The IP sensor was implemented by a first-order diffusion model from the IV glucose

input with a time constant of five minutes. This value was chosen based on the data

presented in Burnett, et al. [38].
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Figure 5.2: Schematic representation of the UVA/Padova metabolic
simulator. Block diagram representation of the configuration of the
UVA/Padova metabolic simulator used in this work to test a fully im-
plantable AP.

The four clinical scenarios shown below were used to evaluate the controllers.

• Scenario 1: A large meal of 100 g of carbohydrates (CHO) was administered to

evaluate the meal response and the setpoint undershoot.

• Scenario 2: A 30% decrease in insulin sensitivity was tested. The change was

simulated by multiplying the insulin delivered by 0.7.

• Scenario 3: A 30% increase in insulin sensitivity was tested by multiplying the

insulin delivered by 1.3.

• Scenario 4: A 27 hour clinical protocol was simulated to evaluate the controller

performance for a typical real-life scenario. Closed-loop control was initiated

at 14:00, followed by a 70 g CHO meal at 19:00. This meal was followed by

an overnight period from 24:00 to 08:00. A breakfast of 40 g CHO occurred at

08:00, and then a lunch of 70 g CHO followed at 13:00. Closed-loop control was

ended at 17:00.
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Scenarios 1-3 were previously tested in Laxminarayan, et al. [82] for an AP using

subcutaneous insulin. The scenarios were repeated here to allow for direct compar-

ison to show the improvement gained by using IP insulin and the design procedure

implemented in this chapter. The best controller design was selected using Scenarios

1-3. The final controller was tested in Scenario 4, including simulated sensor noise

to demonstrate a true-to-life protocol with potential measurement errors. Scenario

4 was used in Lee, et al. [200] to test a zone-MPC controller using IP insulin de-

livery and SC glucose sensing. We repeated this protocol to show that we achieved

comparable results with our IP-IP PID approach.

5.2.3 Introduction of Anti-Reset Windup

The PID controller may cause the BG to undershoot the setpoint after a large

meal, as shown in Figure 5.3. In this figure, PID control was used on subject 1 in

the UVA/Padova metabolic simulator to control a 100 g CHO meal disturbance. The

bottom panel shows the buildup of the integral term that occurs during the large

meal disturbance, leading to the setpoint undershoot.

This undershoot is highly undesirable because it indicates insulin over-delivery

and increases the risk of hypoglycemia. Several approaches have been used to cir-

cumvent this effect. One option, applied in several clinical studies [88, 210, 221–224]

and the in silico study presented by Laxminarayan, et al. [82] is to remove the inte-

gral component and use a proportional-derivative controller. However, the use of PD

control is not ideal because setpoint tracking is sacrificed. Without setpoint tracking,

the controller will not be able to react to changes in insulin sensitivity. Other clinical

studies have detuned the integral component to prevent insulin over-delivery. For

example, in Steil, et al. [77] and Laxminarayan, et al. [82] the integral time constant

was set to 150 min at night and increased to 450 min during the day when meals
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Figure 5.3: Demonstration of setpoint undershoot encountered when
using integral action after a 100 g CHO meal occurring at 1 h. The top
panel shows the glucose deviation from the setpoint after the meal for
subject 1 under PID control. The bottom panel shows the insulin trace
for PID control (dashed gray line) with the integral component plotted
separately (dashed black line). Also on the bottom panel are the advisory
mode calculations for PID with anti-reset windup protection (solid lines)
with the gray line showing the total insulin and the black line showing the
integral component.
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are expected to occur. Nearly all clinical studies using PID control for the AP have

placed an upper limit on the integral term as an additional safety feature. For exam-

ple, in Steil, et al. the integral term was constrained to be less than three times the

06:00 basal rate when BG>60 mg/dL, and was restricted to KC (GSP − 60) U/h when

BG<60 mg/dL [77]. In Laxminarayan, et al. the integral limits were set to 1.4 times

the basal rate when BG>80 mg/dL, 0.7 times the basal rate when BG<60 mg/dL, and

a linear interpolation between those two limits for 60<BG<80 mg/dL [82].

During initial testing, we found that placing an upper limit on the integral term

to reduce the undershoot negatively affected the setpoint tracking ability of the con-

troller. We found that the best option is to instead implement an anti-reset windup

strategy. The relevant approach here is to use conditional integration, which involves

increasing or decreasing the amount of integration depending on specified condi-

tions. A key feature of the AP is that the controller will frequently encounter large

output disturbances. Even with IP insulin delivery it is anticipated that BG will be

elevated for approximately 3 hours following a meal. The ideal AP would exhibit

the characteristics of a PD controller during large but temporary disturbances, while

retaining the characteristics of integral action during smaller but persistent distur-

bances.

The method of anti-reset windup described in Hanssen, et al. can be used to

meet these requirements [225]. The idea behind the method is to attenuate the rate

of change of the integral term, I(k), based on the size of the error term, e(k). When

the error is large, the rate of change of the integral term should approach zero. When

the error is small, the rate of change should be unmodified. To accomplish this goal,

the authors introduced a fuzzy logic scheme with two rules: when error is small, KI

remains at its nominal value (KI=KC
∆t
τI

), and when error is large, KI is equal to zero.

By using the membership functions defined in Hanssen, et al. and applying the
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min-max inference rule, the equation for the integral term in (8) is adjusted to:

I(k)− I(k− 1) = KIKWe(k) (5.16)

KW = e−α|e(k)|. (5.17)

This method introduces a single tuning parameter, α, which sets the degree of atten-

uation for the integral term. Figure 5.4 shows a plot of KW versus |e(k)| for increasing

values of α.
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Figure 5.4: Degree of integral attenuation as a function of error. Plot of
KW versus |e(k)| (mg/dL) for increasing values of α. Error sizes are typical
to those encountered after a large meal.

This strategy is ideal for the AP because it is a flexible and dynamic method char-

acterized by a simple algebraic expression. Instead of placing fixed limitations on

the integral term that apply for all BG levels, it instead applies a weighting factor

appropriate for the current situation. This method is equivalent to using an increas-

ing value for τI as the error becomes larger. The flexibility provided by this method

allows for the minimization of undershoot after large meals, while still offering set-

point tracking to react to changes in insulin sensitivity. In addition, no information

133



Chapter 5. Robust PID Control for an Implantable Artificial Pancreas

about meal timing needs to be supplied for the algorithm to function well. The bot-

tom panel of Figure 5.3 shows an advisory mode calculation of insulin action that

includes anti-reset windup protection. The buildup of the integral term that was

observed when using PID control was prevented, leading to a lower recommended

insulin dose during the meal.

5.2.4 Insulin Feedback

When designing the AP, it is prudent to draw inspiration from nature by exam-

ining how the pancreas is able to achieve glycemic control in people without T1DM.

A key feature of physiological glycemic control that is missing from a single-input

single-output PID design is that insulin in the blood suppresses further insulin pro-

duction [226]. This feature is necessary to prevent insulin stacking. Most studies

using PID control with subcutaneous insulin have incorporated this feature by using

an insulin feedback (IFB) algorithm [77, 101]. Since it is currently not possible to

measure plasma insulin concentration in real time, this method relies on a model of

insulin pharmacokinetics to estimate the plasma insulin concentration based on past

insulin delivery. In the original description of IFB, insulin pharmacokinetics were

represented by a second-order continuous-time transfer function between insulin de-

livered and plasma insulin concentration, with time constants determined from ex-

perimental data [101]. This continuous-time model can be discretized to match the

sampling period of the controller, resulting in the following equation:

ĈP(k) = a1ĈP(k− 1) + a2ĈP(k− 2) + b1UD(k− 1) + b2UD(k− 2). (5.18)
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Here, UD (U/h) is the closed-loop insulin delivery profile and ĈP(k) is the estimated

plasma insulin concentration. The final insulin dose is then calculated as:

UD(k) = (1 +
γ

KPI
)u(k)− γĈP(k− 1) (5.19)

where u(k) is the insulin dose that was calculated in Equation (5.10). Typically, the

insulin plasma concentration units are normalized so that the gain KPI is equal to

one [77, 101]. The parameter γ determines the degree to which the presence of

plasma insulin suppresses insulin delivery. The factor (1+ γ
KPI

) is needed so that the

insulin delivery UD(k) is equal to the basal rate when the system is at steady-state.

In subcutaneous insulin applications, the parameter γ is selected to be 0.5 to achieve

good performance [77, 101].

More complex models have also been developed for subcutaneous pharmacoki-

netic behavior. In Ruiz, et al. [227], the insulin concentration is divided into

three compartments: subcutaneous insulin (ISC), plasma insulin (IP), and intersti-

tial/effective insulin (IEFF). These three concentrations are estimated by:

ISC(k) = α11 ISC(k− 1) + β1UD(k− 1) (5.20)

IP(k) = α21 ISC(k− 1) + α22 IP(k− 1) + β2UD(k− 1) (5.21)

IEFF(k) = α31 ISC(k− 1) + α32 IP(k− 1) + α33 IEFF(k− 1) + β3UD(k− 1) (5.22)

IIFB(k) = γ1 ISC(k) + γ2 IP(k) + γ3 IEFF(k) (5.23)

where the parameters αij and βi are constants and IIFB is the combination of the three

compartments, with weighting factors γi. The numerical values of the parameters αij,
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βi, and γi are given in [227]. The final insulin dose is then calculated as:

UD(k) = (1 + γ1 + γ2 + γ3)u(k)− IIFB(k). (5.24)

This method is further described in a patent held by Medtronic Minimed, Inc. [228].

There is limited information available in the literature to supply a pharmacoki-

netic model of IP insulin. For SC insulin, the second-order continuous-time model

was identified to have time constants of 70 min and 55 min [101]. One study that was

completed to identify corresponding parameters for IP insulin delivery found time

constants of 60±8.7 min and 27.2±9.3 min [229], while an earlier study by the same

authors found parameters to be 34.6±5.9 min and 17.4±4.7 min [230]. In the absence

of further modeling data, we chose the more recently identified model parameters to

use in the implementation of IFB for our system. Once further experimental data is

obtained for the pharmacokinetics of the specific insulin to be used, the model can

be updated to provide a more accurate estimation.

5.3 Controller Optimization and Evaluation

The controller design procedure outlined above leaves several design parameters

to be determined: τC, α, and γ. First, candidate values for τC were selected using

robust stability and performance analysis. The other two parameters were selected

using simulation studies with Scenarios 1-3. The best value for α was determined

without IFB by examining the trade-off between the amount of postprandial under-

shoot and offset after a change in insulin sensitivity. Next, the best value for γ was

chosen without anti-reset windup protection (AWP) by examining the minimum and

maximum postprandial BG values. Lastly, the controller was tested with both IFB
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and AWP implemented.

5.3.1 Robust Stability and Performance

As discussed in Chapter 4, the AP must be robust to model uncertainty in order

to be safe for clinical use. The manner in which the body responds to insulin can

change as a function of the time of day, hormonal changes, exercise, and other factors

that are part of daily life. Experimental evidence shows that the insulin sensitivity

may vary by up to 50% [205]. The changes in the body’s insulin response can be

represented as perturbations to the gain and delay of the nominal model. In order

to determine whether the system will be stable for a specified model uncertainty,

the robust stability condition can be evaluated. A robust controller will be able to

perform according to its design specifications, even in the worst-case scenario of

model uncertainty [206].

In order to use this method, we must first represent a suitable family of possible

plants ΠI , in this case using multiplicative uncertainty. Revisiting the equations from

Chapter 4, we define ΠI as:

ΠI : GP(s) = G(s)(1 + wI(s)∆I(s)); |∆I(jω)| ≤ 1, ∀ω (4.15)

where GP is a possible process model, G is the nominal process model, and the

uncertainty weight satisfies the inequality |wI(jω)| ≤ lI(ω), ∀ω where

lI(ω) = max
GP∈ΠI

|GP(jω)− G(jω)

G(jω)
|. (4.16)
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The stability criterion is then given as:

RS ⇐⇒ ||wIT||∞ < 1 ∀ω (4.17)

where T is the complementary sensitivity function and wI is the multiplicative un-

certainty weight. To represent the parametric uncertainty in the gain and delay of the

nominal model, we use

wI =
(1 + rk

2 )θmaxs + rk
θmax

2 s + 1
(4.18)

where rk =
Kmax−Kmin
Kmax+Kmin

and θmax is the maximum delay considered [206]. Robust perfor-

mance analysis allows us to determine whether certain specified performance mea-

sures will be met even in the presence of model uncertainty. The necessary relation

to show robust performance is given by:

RP ⇐⇒ max
ω

(|wPS|+ |wIT|) < 1 (4.19)

where S is the sensitivity function and wP is the performance weight

wP(s) =
s

M + ω∗B
s + ω∗B A

(4.20)

where M is the maximum peak of the sensitivity function, A is the steady state

tracking error, and ω∗B is the bandwidth frequency where the sensitivity function

crosses the magnitude of 0.707 [206]. In this study, A ≈ 0, ω∗B = 5× 10−5 hz, and

M = 2, as recommended in Skogestad, et al. [206].

We can use the robust stability and performance analyses to inform our choice of

τC. Figure 5.5 shows whether the RP and RS conditions were met under a specified
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model uncertainty for varying values of τC. In order to be able to retain RP and

RS for a delay uncertainty of 10 minutes and a gain uncertainty of 0.5, we should

choose a τC between 40 and 150 minutes. The lower value will result in faster, more

aggressive control, while the higher value will result in slower, more conservative

control. Setting τC to 40 min to obtain the fastest response, the controller designs in
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Figure 5.5: Robust stability and performance as a function of controller
tuning. Robust stability (left) and robust performance (right) for varying
values of τC. The analysis was done for three values of delay uncertainty:
5 minutes (solid line), 10 minutes (dashed line), and 15 minutes (dotted
line). The gain uncertainty was kept constant at 0.5.

Table 5.3 were evaluated.

To evaluate the controller with no integral action, the position form was used:

u(k) = ū + P(k) + D(k) (5.25)

where

P(k) = KCe(k) (5.26)

D(k) =
KCτD

∆t
[e(k)− e(k− 1)] (5.27)
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and ū is the basal rate needed to maintain a fasting glucose concentration of

110 mg/dL.

5.3.2 Evaluation of the Anti-Reset Windup Protection

To determine the best parameter α to use for the anti-reset windup algorithm, we

examined the trade-off between undershoot mitigation and setpoint tracking using

Scenarios 1 and 2. The undershoot was characterized by the minimum blood glu-

cose concentration during the postprandial period after a large meal. The setpoint

tracking was evaluated by examining the offset remaining at two time points follow-

ing a change in insulin sensitivity for the different AWP tunings as compared to the

PID controller with no AWP. The PID controller with no AWP represents the ideal

tracking case at each time point since it has full integral action. The first time point,

11 h, was chosen because after this amount of time the PID controller had made par-

tial progress toward the setpoint. The 20 h time point was chosen because after this

amount of time, the PID controller had nearly returned the BG to the setpoint. By

examining the offset at these two time points, we compared the asymptotic setpoint

tracking of the PID+AWP controllers to the ideal PID tracking on both a short- and

long-term time scale. We then plotted the offset versus the minimum BG for various

values of α, as shown in the left panel of Figure 5.6.

From this analysis, we determined that a good choice for α is 0.04. This option

keeps the undershoot above 100 mg/dL but also reduces the offset after a change in

insulin sensitivity. Note that the offset will be eliminated over time for all values of

α. The larger α is, the longer it takes to reach the setpoint again after a change in

insulin sensitivity. Figure 5.7 shows the simulation results for Scenarios 1-3 for the

optimal value of α, PID control with no anti-reset windup, and PD control.
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Figure 5.6: Evaluation of the trade-off between setpoint undershoot and
offset. Offset 11 h (black triangles) and 20 h (white squares) after a de-
crease in insulin sensitivity plotted versus minimum BG after a 100 g CHO
meal for varying values of anti-reset windup parameter α. The top panel
shows the offset versus minimum BG for PID+AWP, while the bottom
shows the results for PID+AWP+IFB (γ=0.5). The data points represent
the 10-subject mean and the error bars show standard deviation.
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Figure 5.7: Evaluation of the anti-reset windup in simulation. Demon-
stration of the best anti-reset windup tuning (solid black line) compared
to PID (dashed black line) and PD (dashed gray line) control. The top
panel of each plot shows the blood glucose concentration over time, while
the bottom panels show insulin delivered over time. The figures show the
results from Scenario 1 (100 g CHO meal, top), Scenario 2 (30% decrease
in insulin sensitivity, bottom left) and Scenario 3 (30% increase in insulin
sensitivity, bottom right). The lines show the mean of the 10 subjects, and
the error bars show standard deviation.
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Table 5.3: Variations on the PID controller design tested in this work.

Controller Integral Action Anti-Reset
Windup (AWP)

Insulin
Feedback (IFB)

PD 7 7 7

PID 3 7 7

PID+AWP 3 3 7

PID+IFB 3 7 3

PID+AWP+IFB 3 3 3
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Figure 5.8: Evaluation of IFB in simulation. Demonstration of best IFB
tuning (dashed gray line) compared to unmodified PID control (solid black
line) for a 100 g CHO meal. The top panel shows the blood glucose concen-
tration over time and the bottom panel shows the insulin delivered. The
lines show the mean of the 10 subjects, and the error bars show standard
deviation.
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5.3.3 Tuning the Insulin Feedback Algorithm

The IFB strategy was tested using Scenario 1 for several values of γ with no anti-

reset windup protection. Values of γ were tested from 0 to 0.5. The value of 0.5,

which has been used previously for SC insulin, gave the best performance. When

IFB was added to PID control, the minimum BG was raised by an average of 13.3 ±

2.4 mg/dL and the maximum BG was lowered by an average of 9.8 ± 3.8 mg/dL.

When using a paired-sample t-test to compare the minimum BG for each subject with

and without IFB, the difference is significant with a p-value of 3× 10−8. The same

statistical test for the maximum BG for each subject with and without IFB showed

significant difference with a p-value of 1.8× 10−5. The results of the simulation are

shown in Figure 5.8.

To determine whether adding IFB to the controller affects the choice of anti-reset

windup parameter α, we repeated the anti-reset windup evaluation with IFB added

(γ = 0.5). The results are presented in the right panel of Figure 5.6. As seen in the

figure, the shape of the data curve and optimal value of α = 0.04 remain the same

when IFB is added. For all values of α, the performance is better with IFB than

without it.

5.3.4 Evaluation of Finalized Design

Figure 5.9 shows a plot of the maximum versus minimum BG achieved by the 5

controller designs tested in this work following a 100 g CHO meal. The IFB algorithm

is able to raise the minimum BG, but not to the same degree that anti-reset windup

does. IFB has the added benefit of lowering the maximum BG peak. Overall, PID plus

IFB and anti-reset windup provides better control than either strategy alone, and both

provide great improvements over PID alone. The PD, PID+AWP, and PID+AWP+IFB
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controllers have some overlap on the plot in Figure 5.9; however, the PID iterations

have a clear advantage over the PD approach since they include setpoint tracking

while PD does not. The most important comparison to make is to determine whether

adding IFB to the PID+AWP controller results in significant improvement. These two

cases were compared using a paired-sample t-test to compare the maximum BG and

the minimum BG following the 100 g CHO meal. The maximum BG was decreased

by an average of 10±3.8 mg/dL when IFB was added to the PID+AWP controller.

This difference is significant with a p-value of 1.5 × 10−5. The minimum BG was

raised by an average of 2.9±1.5 mg/dL when IFB was added. While the difference

in the minimum BG is relatively small and not likely of clinical significance, it is

still statistically significant with a p-value of 2× 10−4. The benefit of adding IFB in

addition to AWP is the more aggressive initial action that is taken when there is little

insulin already in the body. Additionally, including the IFB mechanism is superior

clinically because it adds a safety layer to prevent insulin over-delivery. This type

of mechanism is a must for clinical application since preventing hypoglycemia is the

first priority.

The results achieved with IP insulin using IFB+AWP in this work are compared

to those achieved for Scenarios 1-3 with SC insulin in Laxminarayan, et al. [82] in

Table 5.4. The IP approach resulted in a much lower peak BG than the SC approach.

In addition, the IP system did not drive the BG as low as the SC system following

the meal, resulting in an overall safer scenario. The time to return to setpoint after a

change in insulin sensitivity was also much faster using IP insulin with the anti-reset

windup strategy presented in this work.

The final controller design was evaluated for Scenario 4 with sensor measurement

noise to create a realistic test. The measurement noise included in the metabolic

simulator was designed to emulate an SC sensor. There is currently no IP sensor
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Figure 5.9: Plot of the maximum BG versus the minimum BG following
a 100 g CHO meal. The large icon shows the mean, and the small icons
show the individual 10 subjects for each case. The PID with IFB and anti-
windup strategy was able to raise the minimum BG while also lowering
the maximum BG, leading to better and safer control than using either
strategy alone.

Table 5.4: Comparison of results with the intraperitoneal system to those
achieved with the subcutaneous system in a previous study (shown as
mean (standard deviation)).

IP System SC System [82]

Scenario 1 Max BG (mg/dL) 229 (15) 279 (14)

Scenario 1 Min BG (mg/dL) 105 (1.6) 92 (3)

Scenario 2 Return to setpoint (h) 20-30 ≈80

Scenario 3 Return to setpoint (h) 20-30 ≈80
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Figure 5.10: Simulation evaluation of the final controller design. Blood
glucose and insulin trace for the final controller design evaluated on 10 in
silico subjects using the 27 hour protocol from Scenario 4. The acceptable
glycemic zone of 70-180 mg/dL is shown by the black horizontal lines on
the top panel. The thick line shows the mean of the 10 subjects, and the
thin lines show plus and minus one standard deviation.

model available due to the paucity of data. The SC sensor noise model included in

the simulator is described in Breton, et al. [183]. The results are shown in Figure 5.10.

The controller was able to maintain the BG within the tight glycemic range of

80-140 mg/dL for 79% of the time, even in the presence of measurement noise. The

added noise did cause a lower minimum BG to occur during the simulation, but

hypoglycemia was still avoided. These results are comparable to those achieved in

Lee, et al. using a zone MPC control strategy with IP insulin and SC sensing [200].
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Table 5.5: Summary of the numerical results from the final controller eval-
uation.

Max BG
(mg/dL)

Min BG
(mg/dL)

% Time BG
80-140
mg/dL

% Time
BG<70
mg/dL

% Time
BG>180
mg/dL

196 ± 14 93 ± 7.3 78 ± 6 0 ± 0 5 ± 4

5.4 Discussion

An AP that uses IP insulin combined with IP sensing has the potential to greatly

improve closed-loop glycemic control. Since IP insulin has faster pharmacokinetic

and pharmacodynamic characteristics than SC insulin, the AP will be able to bring

the BG back to the desired setpoint faster after glycemic disturbances occur. Also,

since the insulin is cleared more quickly, there is less risk of hypoglycemia due to

delayed insulin action [195, 231].

In this study, the tuning of the PID controller was informed using robust stability

and performance analysis. The robustness of the controller is of great importance,

due to inter- and intra-patient variability in the response to insulin. The controller

was designed to maintain robust performance and stability even in the presence of

50% gain uncertainty and 10 minute delay uncertainty. These estimations of uncer-

tainty were based on Lee, et al. [188], and are intended to capture changes in insulin

sensitivity that can occur throughout the day, as well as unexpected delays due to

measurement dropouts, temporary pump failures, or other problems.

The addition of the anti-reset windup strategy used in this work decreases the

risk of hypoglycemia after meals, without increasing time spent in hyperglycemia.

In addition, setpoint tracking is maintained following changes in insulin sensitivity.

The anti-reset windup strategy used in this chapter can also be applied when SC
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insulin is used, although the tuning factor may need to be adjusted. This method

is recommended because it dynamically adjusts the amount of integration based on

the situation, leading to better control for both large, temporary disturbances and

smaller but persistent disturbances.

IFB is an important addition to an AP controller because it imitates the physiol-

ogy of the human body. Increased plasma insulin concentration inhibits the delivery

of more insulin, meaning there is less chance for insulin stacking and hypoglycemia.

IFB was initially introduced after the first clinical study of PID control with SC insulin

resulted in postprandial undershoot leading to hypoglycemia [79]. A following clini-

cal study applying IFB showed that the postprandial hypoglycemia was reduced, but

there were still episodes requiring rescue CHO to be delivered [77, 232]. Our study

shows that IFB alone is not enough to attenuate postprandial undershoot, and that

an anti-reset windup strategy in combination with IFB provides the best results. A

more accurate model of insulin pharmacokinetics may lead to improved performance

of the IFB algorithm. We recommend that such a model be identified before in vivo

studies using IFB with IP insulin are conducted.

There are other benefits to using intraperitoneal insulin delivery beyond faster

insulin action. This route better mimics the natural insulin production process by the

pancreas. When the insulin is delivered into the intraperitoneal space, it introduces

a positive portal-systemic insulin gradient throughout the body. This gradient is

expected to lead to better overall health. Other hormones involved in the metabolism

are also affected by the use of IP insulin, and there is some evidence to suggest

that the benefits of IP insulin use extend beyond improved glycemia. A thorough

explanation of these benefits is presented in Van Dijk, et al. [19].
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5.5 Conclusions and Future Work

A fully implanted AP operating in the IP space allows many of the challenges as-

sociated with subcutaneous insulin delivery to be overcome. Faster insulin transport

and action, along with more rapid glucose sensing, allow the controller to maintain

excellent glycemic control. In addition, IP insulin delivery may also have beneficial

endocrine effects, as discussed in van Dijk, et al. [19]. In this chapter, a model-based

tuning strategy was introduced to develop a PID controller for a fully implantable

AP. Furthermore, a dynamic anti-reset windup strategy was applied to minimize un-

dershoot of the setpoint after meals while still maintaining setpoint tracking. IFB was

also added to improve the controller response. This design may be further refined

with the development of more accurate models based on experimental data. Once

this data has been collected and analyzed, the updated controller will be evaluated

in an animal model to quantify the improved performance offered by this controller

in vivo.
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Chapter 6

Conclusions and Future Work

This dissertation explored the impact of sensing and actuation characteristics

on the closed-loop artificial pancreas (AP) for people with type 1 diabetes mellitus

(T1DM). Conclusions from this work are presented below. Additionally, recommen-

dations for future work building from this dissertation are discussed.

6.1 Conclusions

Under current standards of treatment, people with T1DM must manually monitor

their BG and deliver insulin as needed. This process is difficult to accomplish, and

often results in hyperglycemia or hypoglycemia, both of which lead to long- and

short-term health complications. New developments in medical device technology,

such as the invention of insulin pumps and continuous glucose monitors (CGMs),

have provided additional tools to aid people in managing this disease, but even

these advanced tools still require manual monitoring, decision-making, and ongoing

education on the part of the user.

In this dissertation, the application of process control to T1DM treatment was
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explored. The development of an AP system to automatically deliver insulin using

feedback control based on CGM measurements will lead to better health outcomes for

people with diabetes, while also reducing the amount of effort required for successful

treatment. The necessary components of an AP are a CGM, a control algorithm, and

an insulin pump, plus a means of communication between the three. State-of-the-art

implementations of the AP being evaluated in clinical trials use both subcutaneous

(SC) glucose sensors and SC insulin pumps. These trials have shown promising

results, but there is still room for improvement, especially during the postprandial

period and other times when the BG is changing rapidly. Most SC-SC designs are

hybrid systems that require the user to announce a meal to the controller to trigger

a preemptive preprandial insulin bolus in order to achieve satisfactory results. The

use of the intraperitoneal (IP) space as an alternative site for insulin delivery and

glucose sensing is expected to reduce the lags in the control loop and improve AP

performance, allowing for a fully implantable, fully automated glucose regulation

system.

6.1.1 Clinical Evaluation of the AP in Adolescents

As discussed in Chapter 2, an AP system using zone model predictive control

(ZMPC) and the Health Monitoring System (HMS) hosted on the Diabetes Assistant

(DiAs) mobile platform was evaluated for feasibility in the adolescent population.

Adolescents frequently struggle to meet the recommended glycemic control criteria,

making them excellent candidates for AP use. The study took place in the outpatient

hotel environment with highly ambulatory conditions, thus serving as a transition

between the inpatient setting and the fully unsupervised outpatient setting. The

protocol included mild to moderate intensity exercise sessions at least twice per day

that were not announced to the controller. There were also free-choice announced
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meals to emulate free-living conditions.

Ten adolescents with T1DM completed 72 h of closed-loop control (CLC) during

this trial. The study showed that the ZMPC+HMS/DiAs system was feasible for use

in the adolescent population in a highly ambulatory hotel environment with frequent

unannounced exercise and announced meals. During CLC, the subjects spent 71%

of time in the desired range of 70-180 mg/dL. Additionally, the controller was able

to react to changes in the CGM during exercise sessions to suspend insulin delivery

as needed. The ZMPC+HMS algorithms were determined to be feasible for use in

adolescents. The results from this preliminary study indicate that an AP using the

ZMPC+HMS algorithms is likely to improve glycemic control in this population as

compared to the standard therapy.

6.1.2 Modeling of Glucose Sensor Dynamics

CGMs placed in the SC space are known to experience a measurement lag caused

by the diffusion of glucose from the blood vessels to the interstitial fluid. It was

hypothesized that a CGM placed in the IP space would have a smaller lag than one

placed in the SC space due to the increased proximity to major vasculature. The study

presented in Chapter 3 was conducted to compare the response of enzymatic CGMs

placed in the SC and IP space of non-diabetic swine, which provides a model for the

human endocrine system. Multiple sensors were place in the IP, SC, intravenous (IV)

and intra-arterial (IA) spaces of eight animals. BG measurements were also taken

using a glucometer. The IP and SC sensor signals were modeled as a function of

the BG to determine the time constant of the sensor response. The results showed

that the sensors placed in the IP space were characterized by a time constant that

was approximately half that of sensors placed in the SC space of the same animal.

This study demonstrated that IP sensor placement is a promising alternative to SC
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placement, especially for use in AP applications.

A follow-up study was done to investigate the effects of long-term implantation

of fluorescent CGMs in the IP versus SC space of a non-diabetic sheep. Fluores-

cent sensors may be better suited for long-term implantation than enzymatic sensors

due to their demonstrated longevity. The purpose of this study was to provide the

proof-of-concept of a novel flushing mechanism developed by TheraNova, LLC to

prevent sensor encapsulation, which is known deteriorate the sensor response. The

mechanism was used to flush the IP sensor with saline, thus cleaning the surface and

allowing the sensor to maintain the same level of responsiveness over three months.

Further investigation with an increased sample size will determine whether the flush-

ing mechanism creates a significant improvement in sensor response as compared to

non-flushed sensors in the IP space.

6.1.3 Impact of Sensor Dynamics on AP Performance

Several studies have demonstrated that the use of an insulin delivery route with

faster pharmacokinetic and pharmacodynamic properties can lead to improved AP

performance. In Chapter 4, a parallel study was conducted to determine the impact

of glucose sensor dynamics on the control achieved by an AP. An initial analysis was

done to evaluate the error caused by a dynamic lag in the glucose measurement. The

study showed that a dynamic lag as large as 30 min resulted in a point-wise sensor

accuracy that would be considered clinically acceptable; however, the dynamic nature

of the error could be detrimental to AP performance.

A proportional-integral-derivative (PID) controller was designed using a model-

based method to evaluate the impact of sensor dynamics on an AP using IP or SC

insulin. Due to intra- and interpatient variabilities in the response to insulin, model

uncertainty is an important consideration in the development of an AP system. An
154



Chapter 6. Conclusions and Future Work

analysis using robust performance and robust stability criteria determined that de-

creasing the sensor lag resulted in a system that was more robust to model uncer-

tainty.

In order to analyze the effect of sensor lag on the glycemic control achieved by

an AP, the glucose sensor model developed in Chapter 3 was integrated into the

University of Virgina (UVA) and University of Padova metabolic simulator. This

metabolic simulator allows AP controllers to be evaluated on 10 in silico patients

with T1DM using either IP or SC insulin. The addition of the glucose sensor model

allowed the sensor lag to be specified for the simulation. A series of simulations

were conducted to evaluate the performance of the PID controller using either IP

or SC insulin with a sensor time constant varying from 0 to 30 min. Decreasing

the sensor lag was found to significantly decrease the time spent in hyperglycemia

following a meal challenge. While designing the AP to use IP insulin rather than SC

insulin results in a large improvement in the quality of glycemic control achieved,

the results can be improved even further by decreasing the lag in the glucose sensor.

6.1.4 Implantable Artificial Pancreas Design

As discussed in Chapters 3-5 of this dissertation, the performance of the AP can

be improved by altering its design in order to reduce lags in the control loop. A

fully implantable AP using devices placed in the IP space is a promising solution.

The IP placement will reduce the delays in both insulin action and glucose sensing

that are currently experienced with SC devices. Additionally, the use of IP insulin

better mimics physiological insulin delivery by the pancreas, and therefore may lead

to better metabolic health. A fully implanted system will also eliminate the inconve-

nience of having external devices attached to the skin, along with the need to perform

frequent infusion set and CGM changes.
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In Chapter 5, a procedure for robust PID controller design for a fully implantable

AP was presented. The tuning parameters were selected using internal model con-

trol, leaving a single tuning parameter to determine the robustness of the controller.

This parameter was selected to be as small as possible while still maintaining robust

performance and stability for the anticipated model uncertainty.

The controller was evaluated in a series of simulation studies in the UVA/Padova

metabolic simulator. The initial design was found to result in an undesirable under-

shoot of the setpoint following a meal. An anti-reset windup strategy was imple-

mented to eliminate this undershoot by attenuating the buildup of the integral term

when the measured variable is far from the setpoint. Incorporating this strategy into

the controller eliminated the undershoot, while still maintaining setpoint tracking in

the case of a change in insulin sensitivity.

Insulin feedback (IFB) was also incorporated into the controller design. The IFB

algorithm uses a model to estimate the concentration of insulin in the blood and

modulate the insulin delivery computed by the controller accordingly. This physio-

logically inspired method prevents insulin over-delivery when there is already active

insulin in the body. Incorporation of the IFB algorithm using a model for IP insulin

pharmacokinetics from the literature resulted in safer control by delivering less in-

sulin once there was already a high concentration of insulin in the blood following a

large meal. The final controller design incorporated the IFB algorithm in combination

with the anti-reset windup strategy, as this configuration lead to the best results in

the simulation studies.
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6.2 Recommendations for Future Work

The work presented in this dissertation can be expanded upon to generate further

progress in the development of the AP. Potential future directions for work are de-

scribed below. Two main topics are discussed: future work in the outpatient clinical

evaluation of the ZMPC+HMS/DiAs system (a continuation of the work presented

in Chapter 2) and future work towards the development of a fully implantable AP (a

continuation of the work presented in Chapters 3-5).

6.2.1 Outpatient Use of the ZMPC+HMS/DiAs System

In Chapter 2, the evaluation of the ZMPC+HMS/DiAs system in adolescents in

the transitional hotel environment was presented. This study protocol emphasized

frequent physical activity and free-choice meals to emulate the conditions typically

experienced by active adolescents with T1DM. The results from this trial established

feasibility of the system in this population and setting, but there is still more work to

do to establish efficacy as compared to subjects’ usual therapy, especially over longer

periods of time and in the unsupervised fully outpatient environment.

A follow-up study to the one presented in Chapter 2 is currently underway at

Stanford University and the Barbara Davis Center for Diabetes. This study is follow-

ing a supplemental protocol that was submitted to the Food and Drug Administra-

tion (FDA) to expand upon the work from the initial study. A total of 20 adults will

use the ZMPC+HMS/DiAs system for two weeks of CLC in the unsupervised fully

outpatient setting. The Automated Notification System (ANS), part of the DiAs Web

Monitoring system, is in place to alert clinical staff on-call to any potential safety risks

during CLC. Additionally, fault detection algorithms developed at the University of
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California San Diego and Rensselaer Polytechnic Institute will be run in real-time to

evaluate their ability to detect failures in the insulin infusion set or CGM. These types

of fault detection algorithms are important to include in an AP to improve the safety

of the design, as an undetected failure of the insulin infusion set or glucose sensor

could lead to a health risk such as diabetic ketoacidosis.

One advantage of this study is its randomized crossover design. Half of the sub-

jects will use their usual sensor augmented pump therapy (SAP) during the first

two weeks, while the other half will use CLC. Then each subject will switch to the

other therapy for the second two weeks. This crossover design, combined with the ex-

tended CLC period of 2 weeks rather than 3 days, will allow the efficacy of the system

to be evaluated. However, unlike the first study, the subjects in this trial are all adults.

This transition was made because the AP system requires too much interaction to be

practical for use by adolescents attending school. Additionally, it may be necessary

to first demonstrate the safety and efficacy of fully unsupervised outpatient use of

the ZMPC+HMS/DiAs system in the adult population before performing studies in

the higher-risk adolescent population. It is anticipated that this criteria will be met

soon, as the ZMPC+HMS/DiAs system is already being evaluated in a separate 12

week fully unsupervised outpatient study in adults.

One weakness in the ZMPC+HMS/DiAs system revealed by the clinical study is

the frequent disruption of communication that can occur between the CGM or insulin

pump and the DiAs system. While clinical staff were on-site to assist the subjects with

reestablishing communication between the devices, this type of disruption may cause

more time to be spent out of closed-loop in the unsupervised outpatient environment

if users become frustrated with the device or cannot respond to disconnections in a

timely manner. Device usability is an increasingly important factor to include in the

design as the system moves further from being an experimental device and closer to a
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commercial product. An AP system that requires frequent adjustment or interaction

to remain in CLC may not be acceptable to patients. It will be important to include

user satisfaction surveys as part of the longer outpatient clinical trials in order to

receive feedback on user needs for the device. The user feedback can be used to

prioritize which features should be enhanced or changed by research engineers.

An important area for further engineering research is the optimization of the

method used to incorporate the announced meal bolus within the ZMPC+HMS sys-

tem. The results from the study in Chapter 2 revealed a pattern of hypoglycemia in

the period 2-4 hours following a meal. It is possible that this hypoglycemia occurred

due to the over-estimation of the meal size used to calculate the bolus, or due to a sub-

optimal insulin to carbohydrate ratio. The current iteration of the ZMPC+HMS/DiAs

system delivers only 80% of the calculated meal bolus if the BG value entered with

the meal announcement is less than 120 mg/dL. This reduction is intended to re-

duce potential hypoglycemia following the meal. The full bolus is given for meals

announced with a BG greater than 120 mg/dL, with an additional correction dose to

150 mg/dL if the BG is higher than that value.

While the meal bolus scheme has provided acceptable results in clinical stud-

ies, its performance could potentially be improved by altering its parameters. As

more clinical data is gathered from the outpatient studies described above, each meal

announcement (size, SMBG, and resulting bolus amount) should be examined to

determine whether any of the meal announcement factors were correlated with hy-

poglycemia in the postprandial period. Additional factors could be examined for

inclusion in the meal bolus calculation, such as the current rate of change of the

CGM. Inclusion of an additional correction bolus when the controller has already

acted and the CGM is high but decreasing could lead to an over-delivery of insulin.

Using the CGM rate of change in the bolus calculation could potentially prevent this
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over-delivery.

The clinical study showed that the controller responded as desired to exercise,

but there were still some hypoglycemic episodes with CGM<70 mg/dL that occurred

during or after the exercise periods. Since the exercise was not announced to the con-

troller, it was not able to take action in the form of a pump suspension until the feed-

back from the CGM indicated a rapid decrease or movement toward hypoglycemia

A promising area of research is the inclusion of an algorithm to detect exercise based

heart rate and accelerometer data. In a clinical study, a detection algorithm using

principal component analysis based on these two signals was able to detect the start

and end of exercise in approximately 5 min, before the CGM had changed noticeably

[233]. This algorithm could be added to the AP system to detect the exercise and

adjust the insulin delivery accordingly. The action taken when exercise is detected

could be to raise the target zone, to reduce the controller gain, or to use a lower basal

rate of insulin. Each of these options should be investigated to determine which

would best decrease the risk of hypoglycemia during exercise.

6.2.2 Towards a Fully Implantable Artificial Pancreas

In Chapter 5, a procedure for designing and evaluating a robust PID controller

for a fully implantable AP was presented. The control algorithm was designed and

tuned using models that were available in the literature [229] and identified from the

UVA/Padova metabolic simulator [200], and its performance was validated in silico.

The next step in this project will be to evaluate the implantable AP in vivo in an animal

model, as the system must first be shown to be safe in the animal model before it

can be tested in human studies. Before testing the controller in the animal model, a

crucial step will be to perform a system identification in the particular animal species

with the specific devices and insulin formation that will be used in the closed-loop
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testing. The models can then be updated to be accurate for this system, which will

lead to optimal results.

Collaborators have been identified who will conduct the system identification and

closed-loop experiments in canines, which are frequently used as a model in T1DM

research. A diabetic state can be induced in the animals either through surgery or

medication. The animal will be equipped with the implanted insulin pump and

glucose sensor, as well as a line for sampling intravenous blood. The system identifi-

cation experiments will begin with the animal in hyperglycemia. An IP insulin bolus

will then be administered to reduce the BG to the upper end of the euglycemic range.

After the BG has stabilized, another bolus will be delivered to bring the BG to the

lower end of the euglycemic range. Once again, after the BG has stabilized, a third

bolus will be delivered to bring the BG to a mild hypoglycemic state. At this point a

glucose bolus will be delivered to quickly raise the BG to the euglycemic range. The

following data will be recorded throughout the testing period: plasma insulin con-

centration over time, plasma glucose concentration over time, signal from implanted

glucose sensor over time, quantity of glucose delivered, and quantity of insulin de-

livered. The experiment should be repeated in at least two additional animals, and

may also be repeated in the same animal.

The wealth of data gathered from the animal studies will be used to improve the

models of both IP insulin pharmacokinetics and pharmacodynamic properties that

are used to tune the controller and implement the IFB algorithm. The methods de-

scribed in [234] and [70] can be used to assist in the modeling process. An important

consideration will be to divide the data so that the model and parameters identified

from one dataset can be validated on the second dataset.

The plasma insulin concentration time series will be used to identify a model

describing the plasma insulin concentration as a function of insulin delivered. The
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initial model structure can be the second-order transfer function described in Chapter

5, but additional model structures may be explored as appropriate based on the

data. The model and parameters identified will be used in the IFB algorithm. The

plasma glucose time series will be used to identify a model describing the plasma

glucose concentration as a function of insulin delivered. This process model will be

used to update the PID controller tuning using internal model control tuning rules.

This model may also be used in the future to develop an MPC controller for this

system. Lastly, the implanted glucose sensor time series will be used to identify

the lag between the plasma glucose concentration and the sensor measurement. The

same procedure described in Chapter 3 can be used to perform the modeling.

In addition to the in vivo studies, another important avenue of research will be

to continue work to improve the controller design. While the PID controller was

able to provide excellent results in simulation studies, an MPC design should also be

evaluated as a comparison. The candidate controllers should be evaluated based on

the quality of control achieved in simulation, as well as the computational complexity

that will affect their ability to be embedded in a fully implanted system, where space

and battery power will be at a premium.

Once the system identification has been performed and the controller design has

been finalized, the fully implantable AP will be evaluated in the animal model. An-

imal studies are required because the implantable insulin pump and glucose sensor

being used for this system are also under development and not yet approved for use

in humans. These studies should include challenges to the AP system such as large

meals and exercise in order to fully characterize the design performance. The studies

may also be used to evaluate and select between a subset of controller designs. The

results of these studies will provide the support to pursue human clinical testing.

The long term goal of this project is to evaluate the developed technology in
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human clinical trials so it can move toward being approved for outpatient use by

T1DM patients. Clinical evaluation of the fully implantable system will be much

more complex than the current clinical studies using SC devices because surgery will

be required to implant the IP insulin pump and glucose sensor. Additionally, before

the system can be used in humans, an additional system identification step will need

to be carried out to convert the model parameters from the animal system to the

human system.

A protocol will be developed for a proof-of-concept study to show that a fully

implantable IP-IP system can provide control successfully in human subjects. After

analyzing the outcomes of this pilot study, a more extensive clinical trial design will

be developed to compare the fully implantable system to a system using SC devices.

The hypothesis will be that the fully implantable controller will be able to maintain

more steady control of the BG, with better meal compensation than the SC-SC system.

6.3 Summary

The dream of an AP that uses feedback control to provide automated treatment

for people with T1DM is rapidly becoming a reality. Different versions of this device

are currently being evaluated in the unsupervised, fully outpatient setting under

daily-life conditions. It is only a matter of time before this technology becomes avail-

able as a standard treatment option for people with T1DM. The AP is designed to

relieve T1DM patients from the burden of constant self-monitoring. In addition, it

will improve glycemic control relative to what is possible with manual treatment.

Improved glycemic control will lead to fewer long-term health complications, while

also avoiding dangerous hypoglycemia.

A crucial part of the AP control scheme, no matter which algorithm is used, is
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the choice of sensor and actuator. For this reason, it is important to understand the

performance and capabilities of these devices. By characterizing different routes of

glucose sensing and insulin delivery and their impact on the AP performance, safer

and more effective controllers can be created to meet the treatment needs of people

with T1DM.
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and F. J. Doyle III, “Safety constraints in an artificial pancreatic beta cell: an
implementation of model predictive control with insulin on board,” Journal of
Diabetes Science and Technology, vol. 3, no. 3, pp. 536–544, 2009.

[101] C. C. Palerm, “Physiologic insulin delivery with insulin feedback: a control
systems perspective,” Computer Methods and Programs in Biomedicine, vol. 102,
no. 2, pp. 130–137, 2011.

[102] R. A. Harvey, E. Dassau, H. Zisser, D. E. Seborg, L. Jovanovič, and F. J. Doyle III,
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Appendix A

Artificial Pancreas Clinical

Bibliography

There have been many clinical evaluations of the artificial pancreas (AP) published

since 2004. These studies have been compiled into a database to be used by the

research community to analyze trends and inform future decisions about protocol

design. At the time this dissertation is published, the searchable database of clinical

studies is publicly available at www.thedoylegroup.org/apdatabase. The following

pages contain a bibliography of all of these studies as of May 2016. The studies are

sorted in descending order by date.
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Appendix B

Individual Glucose Traces

The following pages contain the individual glucose and insulin traces for each of

the 10 subjects from the clinical study presented in Chapter 2. This study is regis-

tered on clinicaltrials.gov with clinical trial registration number NCT02506764. The

legend for each graph is as follows: (Top) The CGM is plotted over time as black

circles. The red solid and dashed lines show hypoglycemia thresholds of 70mg/dL

and 50mg/dL. The green shaded areas show times of exercise, the blue shaded areas

show times of pump suspension and the red shaded areas show times where the

CGM was less than 70mg/dL. The magenta circles show the meter glucose values.

The red stars indicate the time of HMS alerts, the black asterisks indicate the time of

carbohydrate treatments, and the yellow triangles indicate the time of meals. (Bot-

tom) The insulin is plotted over time. The left axis shows insulin doses that were less

than 0.6U and the right axis shows insulin doses that were greater than 0.6U.

204



Appendix B. Individual Glucose Traces

09
/0

4 
10

:0
0

09
/0

4 
22

:0
0

09
/0

5 
10

:0
0

09
/0

5 
22

:0
0

09
/0

6 
10

:0
0

09
/0

6 
22

:0
0

09
/0

7 
11

:0
7

M
ea

l
T

re
at

H
M

S
 5

0
 7

0

10
0

15
0

20
0

25
0

30
0

35
0

40
0

CGM (mg/dL)
IT

T
 E

xe
rc

is
e

P
um

p 
S

us
pe

nd
H

yp
o

In
 C

LC
M

et
er

09
/0

4 
10

:0
0

09
/0

4 
22

:0
0

09
/0

5 
10

:0
0

09
/0

5 
22

:0
0

09
/0

6 
10

:0
0

09
/0

6 
22

:0
0

09
/0

7 
11

:0
7

T
im

e 
of

 D
ay

0

0.
2

0.
4

0.
6

Insulin < 0.6 U

0369

Insulin > 0.6 U

S
u

b
je

ct
 1

205



Appendix B. Individual Glucose Traces

09
/0

4 
09

:0
0

09
/0

4 
21

:0
0

09
/0

5 
09

:0
0

09
/0

5 
21

:0
0

09
/0

6 
09

:0
0

09
/0

6 
21

:0
0

09
/0

7 
11

:5
9

M
ea

l
T

re
at

H
M

S
 5

0
 7

0

10
0

15
0

20
0

25
0

30
0

35
0

40
0

CGM (mg/dL)
IT

T
 E

xe
rc

is
e

P
um

p 
S

us
pe

nd
H

yp
o

In
 C

LC
M

et
er

09
/0

4 
09

:0
0

09
/0

4 
21

:0
0

09
/0

5 
09

:0
0

09
/0

5 
21

:0
0

09
/0

6 
09

:0
0

09
/0

6 
21

:0
0

09
/0

7 
11

:5
9

T
im

e 
of

 D
ay

0

0.
2

0.
4

0.
6

Insulin < 0.6 U

061218

Insulin > 0.6 U

S
u

b
je

ct
 2

206



Appendix B. Individual Glucose Traces

09
/0

4 
10

:0
0

09
/0

4 
22

:0
0

09
/0

5 
10

:0
0

09
/0

5 
22

:0
0

09
/0

6 
10

:0
0

09
/0

6 
22

:0
0

09
/0

7 
10

:3
7

M
ea

l
T

re
at

H
M

S
 5

0
 7

0

10
0

15
0

20
0

25
0

30
0

35
0

40
0

CGM (mg/dL)
IT

T
 E

xe
rc

is
e

P
um

p 
S

us
pe

nd
H

yp
o

In
 C

LC
M

et
er

09
/0

4 
10

:0
0

09
/0

4 
22

:0
0

09
/0

5 
10

:0
0

09
/0

5 
22

:0
0

09
/0

6 
10

:0
0

09
/0

6 
22

:0
0

09
/0

7 
10

:3
7

T
im

e 
of

 D
ay

0

0.
2

0.
4

0.
6

Insulin < 0.6 U

0369

Insulin > 0.6 U

S
u

b
je

ct
 3

207



Appendix B. Individual Glucose Traces

09
/0

4 
09

:0
0

09
/0

4 
21

:0
0

09
/0

5 
09

:0
0

09
/0

5 
21

:0
0

09
/0

6 
09

:0
0

09
/0

6 
21

:0
0

09
/0

7 
11

:2
4

M
ea

l
T

re
at

H
M

S
 5

0
 7

0

10
0

15
0

20
0

25
0

30
0

35
0

40
0

CGM (mg/dL)
IT

T
 E

xe
rc

is
e

P
um

p 
S

us
pe

nd
H

yp
o

In
 C

LC
M

et
er

09
/0

4 
09

:0
0

09
/0

4 
21

:0
0

09
/0

5 
09

:0
0

09
/0

5 
21

:0
0

09
/0

6 
09

:0
0

09
/0

6 
21

:0
0

09
/0

7 
11

:2
4

T
im

e 
of

 D
ay

0

0.
2

0.
4

0.
6

Insulin < 0.6 U

0369

Insulin > 0.6 U

S
u

b
je

ct
 4

208



Appendix B. Individual Glucose Traces

09
/0

4 
09

:0
0

09
/0

4 
21

:0
0

09
/0

5 
09

:0
0

09
/0

5 
21

:0
0

09
/0

6 
09

:0
0

09
/0

6 
21

:0
0

09
/0

7 
11

:3
9

M
ea

l
T

re
at

H
M

S
 5

0
 7

0

10
0

15
0

20
0

25
0

30
0

35
0

40
0

CGM (mg/dL)
IT

T
 E

xe
rc

is
e

P
um

p 
S

us
pe

nd
H

yp
o

In
 C

LC
M

et
er

09
/0

4 
09

:0
0

09
/0

4 
21

:0
0

09
/0

5 
09

:0
0

09
/0

5 
21

:0
0

09
/0

6 
09

:0
0

09
/0

6 
21

:0
0

09
/0

7 
11

:3
9

T
im

e 
of

 D
ay

0

0.
2

0.
4

0.
6

Insulin < 0.6 U

0246

Insulin > 0.6 U

S
u

b
je

ct
 5

209



Appendix B. Individual Glucose Traces

09
/1

7 
17

:0
0

09
/1

8 
05

:0
0

09
/1

8 
17

:0
0

09
/1

9 
05

:0
0

09
/1

9 
17

:0
0

09
/2

0 
05

:0
0

09
/2

0 
17

:0
0

M
ea

l
T

re
at

H
M

S
 5

0
 7

0

10
0

15
0

20
0

25
0

30
0

35
0

40
0

CGM (mg/dL)
IT

T
 E

xe
rc

is
e

P
um

p 
S

us
pe

nd
H

yp
o

In
 C

LC
M

et
er

09
/1

7 
17

:0
0

09
/1

8 
05

:0
0

09
/1

8 
17

:0
0

09
/1

9 
05

:0
0

09
/1

9 
17

:0
0

09
/2

0 
05

:0
0

09
/2

0 
17

:0
0

T
im

e 
of

 D
ay

0

0.
2

0.
4

0.
6

Insulin < 0.6 U

0369

Insulin > 0.6 U

S
u

b
je

ct
 6

210



Appendix B. Individual Glucose Traces

09
/1

7 
17

:0
0

09
/1

8 
05

:0
0

09
/1

8 
17

:0
0

09
/1

9 
05

:0
0

09
/1

9 
17

:0
0

09
/2

0 
05

:0
0

09
/2

0 
17

:0
0

M
ea

l
T

re
at

H
M

S
 5

0
 7

0

10
0

15
0

20
0

25
0

30
0

35
0

40
0

CGM (mg/dL)
IT

T
 E

xe
rc

is
e

P
um

p 
S

us
pe

nd
H

yp
o

In
 C

LC
M

et
er

09
/1

7 
17

:0
0

09
/1

8 
05

:0
0

09
/1

8 
17

:0
0

09
/1

9 
05

:0
0

09
/1

9 
17

:0
0

09
/2

0 
05

:0
0

09
/2

0 
17

:0
0

T
im

e 
of

 D
ay

0

0.
2

0.
4

0.
6

Insulin < 0.6 U

0369

Insulin > 0.6 U

S
u

b
je

ct
 7

211



Appendix B. Individual Glucose Traces

09
/1

7 
17

:0
0

09
/1

8 
05

:0
0

09
/1

8 
17

:0
0

09
/1

9 
05

:0
0

09
/1

9 
17

:0
0

09
/2

0 
05

:0
0

09
/2

0 
17

:0
0

M
ea

l
T

re
at

H
M

S
 5

0
 7

0

10
0

15
0

20
0

25
0

30
0

35
0

40
0

CGM (mg/dL)
IT

T
 E

xe
rc

is
e

P
um

p 
S

us
pe

nd
H

yp
o

In
 C

LC
M

et
er

09
/1

7 
17

:0
0

09
/1

8 
05

:0
0

09
/1

8 
17

:0
0

09
/1

9 
05

:0
0

09
/1

9 
17

:0
0

09
/2

0 
05

:0
0

09
/2

0 
17

:0
0

T
im

e 
of

 D
ay

0

0.
2

0.
4

0.
6

Insulin < 0.6 U

0369

Insulin > 0.6 U

S
u

b
je

ct
 8

212



Appendix B. Individual Glucose Traces

09
/1

7 
17

:0
0

09
/1

8 
05

:0
0

09
/1

8 
17

:0
0

09
/1

9 
05

:0
0

09
/1

9 
17

:0
0

09
/2

0 
05

:0
0

09
/2

0 
17

:0
0

M
ea

l
T

re
at

H
M

S
 5

0
 7

0

10
0

15
0

20
0

25
0

30
0

35
0

40
0

CGM (mg/dL)
IT

T
 E

xe
rc

is
e

P
um

p 
S

us
pe

nd
H

yp
o

In
 C

LC
M

et
er

09
/1

7 
17

:0
0

09
/1

8 
05

:0
0

09
/1

8 
17

:0
0

09
/1

9 
05

:0
0

09
/1

9 
17

:0
0

09
/2

0 
05

:0
0

09
/2

0 
17

:0
0

T
im

e 
of

 D
ay

0

0.
2

0.
4

0.
6

Insulin < 0.6 U

0369

Insulin > 0.6 U

S
u

b
je

ct
 9

213



Appendix B. Individual Glucose Traces

09
/1

7 
17

:0
0

09
/1

8 
05

:0
0

09
/1

8 
17

:0
0

09
/1

9 
05

:0
0

09
/1

9 
17

:0
0

09
/2

0 
05

:0
0

09
/2

0 
17

:0
0

M
ea

l
T

re
at

H
M

S
 5

0
 7

0

10
0

15
0

20
0

25
0

30
0

35
0

40
0

CGM (mg/dL)
IT

T
 E

xe
rc

is
e

P
um

p 
S

us
pe

nd
H

yp
o

In
 C

LC
M

et
er

09
/1

7 
17

:0
0

09
/1

8 
05

:0
0

09
/1

8 
17

:0
0

09
/1

9 
05

:0
0

09
/1

9 
17

:0
0

09
/2

0 
05

:0
0

09
/2

0 
17

:0
0

T
im

e 
of

 D
ay

0

0.
2

0.
4

0.
6

Insulin < 0.6 U

071421

Insulin > 0.6 U

S
u

b
je

ct
 1

0

214


	Introduction
	Type 1 Diabetes Mellitus
	Pathophysiology
	Treating Type 1 Diabetes Mellitus

	Technology and Diabetes Treatment
	Insulin Delivery
	Glucose Measurement

	Closed-Loop Control for Type 1 Diabetes Mellitus
	Motivation
	Design and Implementation
	Recent Progress in Clinical Evaluation
	Challenges and Future Directions

	Thesis Overview

	Outpatient Evaluation of Artificial Pancreas with Exercise in Adolescents
	Introduction
	Research Design and Methods
	ZMPC+HMS/DiAs System
	Study Design
	Study Preparation
	Daily Study Procedures
	Safety and Remote Monitoring
	Statistical Methods

	Results
	System Performance
	Glucose control
	Hypoglycemia
	Insulin
	Carbohydrate Consumption
	Exercise

	Discussion
	Conclusions and Future Work
	Acknowledgments

	Modeling Glucose Sensor Dynamics
	Introduction
	Research Design and Methods
	Overview of Animal Experiments
	Sensors and Placement
	Data Analysis: Response Time
	Data Analysis: Compartmental Modeling
	Data Analysis: Statistics

	Results
	Discussion
	Long-term Sensor Evaluation
	Conclusions and Future Work
	Acknowledgments

	Impact of Glucose Sensing Dynamics on the Artificial Pancreas
	Introduction
	Continuous Glucose Sensing
	Modeling the Sensor Response
	Dynamic Measurement Error

	Controller Design and Tuning
	Frequency Response and Robustness Analysis
	Gain and Phase Margin
	Robust Stability and Performance
	Results and Discussion

	Simulation Studies
	Methods
	Results and Discussion

	Conclusions and Future Work

	Robust PID Control for an Implantable Artificial Pancreas
	Introduction
	Control Objective, Challenges, and Constraints
	An Implantable System

	Methods
	Controller Design and Tuning
	In Silico Artificial Pancreas Evaluation
	Introduction of Anti-Reset Windup
	Insulin Feedback

	Controller Optimization and Evaluation
	Robust Stability and Performance
	Evaluation of the Anti-Reset Windup Protection
	Tuning the Insulin Feedback Algorithm
	Evaluation of Finalized Design

	Discussion
	Conclusions and Future Work

	Conclusions and Future Work
	Conclusions
	Clinical Evaluation of the AP in Adolescents
	Modeling of Glucose Sensor Dynamics
	Impact of Sensor Dynamics on AP Performance
	Implantable Artificial Pancreas Design

	Recommendations for Future Work
	Outpatient Use of the ZMPC+HMS/DiAs System
	Towards a Fully Implantable Artificial Pancreas

	Summary

	Bibliography
	Appendix Artificial Pancreas Clinical Bibliography
	Appendix Individual Glucose Traces



