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Abstract

Reflection Principles and Ordinal Analysis

by

James M Walsh

Doctor of Philosophy in Logic and the Methodology of Science

University of California, Berkeley

Professor Paolo Mancosu, Co-chair

Professor Antonio Montalbán, Co-chair

It is a well-known empirical phenomenon that natural axiomatic theories are pre-well-ordered
by proof-theoretic strength. However, without a precise definition of “natural,” it is not clear
how to explain this observation in a strictly mathematical way. One expression of the pre-
well-ordering phenomenon comes from ordinal analysis, a research program wherein ordinals
are assigned to natural theories; these ordinals are commonly understood as measuring the
“strength” of the theories to which they are assigned. Our goal in this dissertation is to
formulate and prove statements that provide insight into the pre-well-ordering phenomenon.

Part I contains an investigation of the pre-well-ordering phenomenon in the setting of
first-order arithmetic. One method for determining the proof-theoretic ordinal of a theory
T involves showing that T can be conservatively approximated by iterating consistency
statements over a weak base theory. This technique yields informative results only for
natural theories. Why can natural theories be conservatively approximated by iterating
consistency statements? Our explanation is that the consistency operator and its iterates
into the effective transfinite are canonical as functions on theories. To this end, we prove
that any recursive monotone function on finitely axiomatized theories that is everywhere
bounded by an iterate of the consistency operator must coincide somewhere with some
iterate of the consistency operator. We also prove that any recursive monotone function on
finitely axiomatized theories must be either as weak as the identity operator in the limit or
as strong as the consistency operator in the limit.

Part II contains an investigation of the pre-well-ordering phenomenon in the setting of
second-order arithmetic. In second-order arithmetic it is possible to formalize Π1

1 reflection,
which provides a more robust measurement of proof-theoretic strength than consistency
strength. We prove that the behavior exhibited by natural theories with respect to consis-
tency strength is exhibited in general with respect to Π1

1 strength in the following sense:
there is no sequence pTnqnăω of Π1

1 sound extensions of ACA0 such that, for each n, Tn proves
the Π1

1 soundness of Tn`1. This means that it is possible to rank the Π1
1 sound extensions of

ACA0 by proof-theoretic strength. We prove that for every Π1
1 sound extension T of ACA`0
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the rank of T is exactly the proof-theoretic ordinal of T ; this vindicates the common wis-
dom that ordinal analysis measures the proof-theoretic strength of natural theories. Along
the way we prove two far-reaching conservation theorems. First, α iterated Π1

1 reflection of
ACA0 is Π1

1pΠ0
3q conservative over εα iterated Π1

1pΠ0
3q reflection of RCA0. Second, for any Π1

2
axiomatizable T , every set is contained in an ω model if and only if, for every well order
α, α iterated Π1

1 reflection for T is Π1
1 sound. Finally, we use the techniques introduced to

prove these results to provide a purely proof-theoretic demonstration of a classical theorem
of recursion theory: there is no sequence pAnqnăω such that, for each n, OAn`1 ďH An. This
engenders a well-founded ranking of the real numbers; we prove for almost all reals A, the
rank of A is ωA1 . These results strengthen the analogy between the pre-well-ordering of nat-
ural theories by proof-theoretic strength in proof theory and the pre-well-ordering of reals
under descriptive complexity.

Part III contains reflections on foundational issues. The main foundational applications
of ordinal analysis to date are in Hilbert’s program and modifications thereof. Instead, I
emphasize the explanatory value of ordinal-theoretic consistency proofs over their justifica-
tory value. Whether, for instance, Gentzen’s consistency proof convinces us that arithmetic
is consistent, it explains why arithmetic is consistent. On this basis, I argue against certain
restrictive norms on mathematical practice. For instance, I argue against the norm that
consistency proofs ought to be carried out using only constructive methods. Though this
restriction is reasonable if one is attempting to convince a constructivist skeptic, it loses
force when one instead seeks a combinatorial explanation of a theory’s consistency.



i

Contents

Contents i

1 Introduction 1
1.1 The consistency strength hierarchy . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The search for new axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Ordinal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Turing progressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Ordinal analysis via iterated reflection . . . . . . . . . . . . . . . . . . . . . 8
1.6 Turing degree theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Summary of upcoming chapters . . . . . . . . . . . . . . . . . . . . . . . . . 11

I First-Order Arithmetic 18

2 On the inevitability of the consistency operator 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 No monotonic function is strictly between the identity and Con . . . . . . . . 23
2.3 Iterating Con into the transfinite . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Finite iterates of Con are inevitable . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Transfinite iterates of Con are inevitable. . . . . . . . . . . . . . . . . . . . . 33
2.6 1-consistency and iterated consistency . . . . . . . . . . . . . . . . . . . . . . 38
2.7 An unbounded recursively enumerable set that contains no true ideals . . . . 40

3 A note on the consistency operator 42
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 The main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Recursiveness is a necessary condition . . . . . . . . . . . . . . . . . . . . . . 48

II Second-Order Arithmetic 53

4 Reflection ranks and ordinal analysis 54
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



ii

4.2 Definitions and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Well-foundedness and reflection principles . . . . . . . . . . . . . . . . . . . 63
4.4 Iterated reflection and conservation . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 Reflection ranks and proof-theoretic ordinals . . . . . . . . . . . . . . . . . . 78
4.6 Ordinal notation systems based on reflection principles . . . . . . . . . . . . 87

5 A reduction principle for ω-model reflection 90
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 ω-proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4 Reduction for ω-model reflection . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Incompleteness and jump hierarchies 102
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Second incompleteness & well-foundedness . . . . . . . . . . . . . . . . . . . 104
6.3 The main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Semantic incompleteness theorems . . . . . . . . . . . . . . . . . . . . . . . . 109
6.5 Spector ranks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

III Foundational Reflections 112

7 Epistemic aspects of consistency proofs 113
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 Logical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.3 The constructive Hilbert program . . . . . . . . . . . . . . . . . . . . . . . . 120
7.4 Consistency proofs as explanations . . . . . . . . . . . . . . . . . . . . . . . 124
7.5 Normative consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography 137



iii

Acknowledgments

Thanks to Antonio Montalbán for encouraging me to develop my research in directions
that excited me; his suggestions and corrections have improved nearly every page of this
document. Thanks to Paolo Mancosu for his professional support, mentorship, and teaching;
I learned much in his seminars and his comments strengthened Chapter 7. Thanks to Wes
Holliday and Thomas Icard for extensive intellectual and professional guidance and for all
their work on behalf of the logic community in the Bay Area. Thanks to Tom Scanlon for
joining my dissertation committee. Thanks also to John MacFarlane for preparing me for
my qualifying exam.

Thanks to Vicky Lee, Jon Phillips, and Barb Waller for extensive administrative support.
I am grateful to my fellow students for their friendship and for creating an inspiring

atmosphere. Thanks especially to Raha Ahmadianhosseini, Dan Appel, Doug Blue, Madeline
Brandt, Reid Dale, Liz Ferme, Matthew Harrison-Trainor, Mikayla Kelley, Arc Kocurek,
Richard Lawrence, Pen Long, Patrick Lutz, Matthew McCauley, Sven Neth, Adele Padgett,
Nick Ramsey, Ed Scerbo, Pia Schneider, Noah Schweber, Anna Seigal, Benny Siskind, and
Kentarô Yamamoto.

Thanks to Lev Beklemishev and Fedor Pakhomov for their hospitality in Russia.
Thanks to my co-authors Patrick Lutz, Antonio Montalbán, and Fedor Pakhomov for

permitting me to include our joint work in this document. It was a pleasure to work with
them all and I hope to do so again in the future.

Thanks to my trivia teammates for injecting levity into Sunday nights.
Most of all, thanks to my parents, Doreen, Tommy, Michael, and Donna.



1

Chapter 1

Introduction

1.1 The consistency strength hierarchy
This dissertation concerns the scope of the axiomatic method, a method whereby disciplines
are organized around basic principles known as axioms. In mathematical logic the notions of
axiom and proof are formalized so that they can be studied by mathematical means. Since
the advent of modern mathematical logic, theoretical understanding of the axiomatic method
has progressed significantly. Gödel’s discovery of the incompleteness theorems marked an
important moment in this development. Gödel’s theorems establish fundamental restrictions
on what can be proven on the basis of any reasonable axiomatic theories. By a reasonable
axiomatic theory I mean a consistent, recursively axiomatized theory that interprets a mod-
icum of arithmetic.

Theorem 1.1.1 (Gödel). No reasonable axiomatic theory is complete.

Theorem 1.1.2 (Gödel). No reasonable axiomatic theory proves its own consistency.

The first incompleteness theorem shows that, no matter what principles we endorse, there
will be questions that are not resolvable on the basis of those principles. This means that
there is no universal axiom system within which mathematics can be developed. Instead, we
are left with a vast array of axiomatic theories. The second incompleteness theorem yields
the primary method for mapping out this vast array of theories. For reasonable theories
T and U , we say that T ďCon U if the consistency of U implies the consistency of T over
a suitable base theory. As usual, T ”Con U if T ďCon U and U ďCon T . Also as usual,
T ăCon U if T ďCon U and U ęCon T . The notion of strength that ăCon engenders is known
as consistency strength.

The structure of all reasonable theories ordered by consistency strength is quite compli-
cated. As far as I know, the following theorems are folklore:

Theorem 1.1.3 (Folklore). The ordering ăCon is not pre-linear, i.e., there are theories T
and U such that T ıCon U , T ćCon U , and U ćCon T .
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Theorem 1.1.4 (Folklore). The ordering ăCon is ill-founded, i.e., there is a sequence T0 ąCon
T1 ąCon T2 ąCon ... where each Ti is consistent.

All known instances of non-linearity and ill-foundedness have been discovered by defining
theories in an ad-hoc manner using self-reference and other logical tricks. When one restricts
one’s attention to the natural axiomatic theories—those that arise in practice—ordered by
ăCon, the resulting structure is a pre-well-ordering.1 Here is a tiny snapshot of such theories:

EA,EA`,PRA, IΣn,PA,ATR0,Π1
nCA0,PAn,ZF,ADLpRq

The well-ordering phenomenon persists, taking a very liberal view of what constitutes a
“natural” theory. Note that the theories just cited run the gamut from weak fragments of
arithmetic to subsystems of analysis and all the way to strong extensions of set theory. These
theories come from different areas of mathematics (e.g., arithmetic, analysis, set theory) and
often codify different conceptions of mathematics. Indeed, many of the natural extensions
of set theory that have been investigated are jointly inconsistent, yet comparable according
to consistency strength.

Explaining the contrast between natural axiomatic theories and axiomatic theories in
general is widely regarded as a major outstanding conceptual problem in mathematical
logic. The following passage from a paper of S. Friedman, Rathjen, and Weiermann is
representative:

The fact that “natural” theories, i.e. theories which have something like an “idea”
to them, are almost always linearly ordered with regard to logical strength has
been called one of the great mysteries of the foundations of mathematics. (S.
Friedman, Rathjen, Weiermann, [33], p. 382)

If it is true that natural axiomatic theories are pre-well-ordered by consistency strength,
and not an illusion engendered by a paucity of examples, then one would like to prove
that it is true. However, the claim that natural axiomatic theories are pre-well-ordered by
consistency strength is not a strictly mathematical claim. The problem is that we lack a
definition of “natural axiomatic theory.” Without a precise definition of “natural,” it is not
clear how to prove this claim, or even how to state it mathematically.

1.2 The search for new axioms
I would like to consider how the well-ordering phenomenon plays out in practice, namely, in
set theory. Indeed, the well-ordering phenomenon has been a focal point of interest in the
search for new axioms extending the standard ZFC axioms for set theory.

1This is to say that the induced ordering on the equivalence classes modulo equiconsistency is a well-
ordering.
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Set theory has been developed in an explicitly axiomatic fashion, at least since Zermelo
isolated the axioms that are the precursors to the standard ZFC axioms. The early pro-
genitors of set theory discovered that various mathematical structures could be realized in
set-theoretic terms and that their properties could be established on the basis of set-theoretic
reasoning. Thus, set theory constitutes a highly general mathematical framework. On the
other hand, many of the central problems of set theory (such as the Continuum Hypothesis,
the Projective Measure problem, and Suslin’s Hypothesis) cannot be resolved on the basis
of the ZFC axioms. This has motivated the search for new axioms for set theory.

Set theorists have investigated many extensions of ZFC, including large cardinal axioms,
determinacy axioms, forcing axioms, and more. Is it possible to make rational judgments
about these principles and their consequences? Maddy has promoted the maxim “maximize
interpretability strength” as a guiding principle in the search for new axioms (see, e.g, [61,
62]). Let’s call this principle maddy’s maxim. For a large swathe of theories, including
extensions of set theory, maximizing interpretability strength coincides with maximizing
consistency strength. For a sentence ϕ that is independent of ZFC, one can imagine the
following four possibilities:

1. ϕ increases interpretability strength but  ϕ does not.

2.  ϕ increases interpretability strength but ϕ does not.

3. Neither ϕ nor  ϕ increases interpretability strength.

4. Both ϕ and  ϕ increase interpretability strength.

It turns out that all four possibilities are realized; in the fourth case we cannot follow
maddy’s maxim or we would land ourselves in inconsistency. However, this is not typically
taken as a refutation of maddy’s maxim. The key point here is that when one restricts
oneself to natural theories, only the first three possibilities are realized, since natural theories
are linearly ordered by consistency strength. See [51] for a discussion of this point.

Consider once more the variety of extensions of ZFC that are investigated by set theorists:
large cardinal axioms, axioms of definable determinacy, forcing axioms, and more. These
axiom systems, which have different motivations and often codify different foundational
conceptions of mathematics, are pre-well-ordered by consistency strength. Indeed, they are
pre-well-ordered according to all the common notions of proof-theoretic strength (such as
1-consistency strength, Π1

1 reflection strength, and so on). A consequence is that these axiom
systems all converge on arithmetic statements and even analytic statements. As Steel writes:

Thus the well-ordering of natural consistency strengths corresponds to a well-
ordering by inclusion of theories of the natural numbers. There is no divergence
at the arithmetic level, if one climbs the consistency strength hierarchy in any
natural way we know of... Natural ways of climbing the consistency strength
hierarchy do not diverge in their consequences for the reals.... Let T, U be natural
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theories of consistency strength at least that of “there are infinitely many Woodin
cardinals”; then either pΠ1

ωqT Ď pΠ1
ωqU or pΠ1

ωqU Ď pΠ1
ωqT . (Steel, [101], p. 159)

That is, at the level of statements about R, all natural theories converge; maddy’s maxim
and its variants suggest that we ought to endorse the sentences on which they converge.
Thus, the apparent pre-well-ordering of theories by consistency strength and other notions
of proof-theoretic strength plays a central role in the search for new axioms in set theory.

1.3 Ordinal analysis
At this point it will be helpful to discuss two research programs that deal with questions of
systematically reducing incompleteness. One is Gentzen’s program of ordinal analysis and
the other is Turing’s program of completeness via iterated reflection principles. Both pro-
grams can be understood as reactions to the incompleteness theorems. The practitioners of
ordinal analysis have attempted to reduce incompleteness by proving consistency statements
in a systematic way, namely, from ever stronger transfinite induction principles. Turing’s
program, on the other hand, uses the second incompleteness theorem as the major engine
for overcoming incompleteness; the practitioners of Turing’s program try to systematically
effect reductions in incompleteness by successively adding consistency statements to theories
as new axioms. Both programs will play a major role in the approach to the “great mystery”
advanced in this dissertation.

Ordinal analysis was developed in the context of Hilbert’s Program, an early twentieth
century research program pioneered by David Hilbert. To combat skepticism about the
cogency of infinitary mathematics, Hilbert proposed to (i) axiomatize infinitary mathematics
and (ii) prove the consistency of the axioms by finitary means. In 1931, Hilbert’s program
reached a major obstacle in the form of Gödel’s [40] second incompleteness theorem. Indeed,
it follows from Gödel’s theorem that if the principles of finitistic mathematics are codifiable
in a reasonable axiomatic theory, then they do not prove their own consistency, much less the
consistency of stronger theories. Thus, it is generally agreed that Hilbert’s program failed.

Gentzen was apparently undeterred, however. Not long after Gödel proved the incom-
pleteness theorems, Gentzen [35] produced a consistency proof of arithmetic.

Theorem 1.3.1 (Gentzen). If ε0 is well-founded, then arithmetic is consistent.

The only principle invoked in Gentzen’s proof that is not obviously finitistically accept-
able is the well-foundedness of the ordinal number ε0. Gentzen’s consistency proof marked
the beginning of a research program known as ordinal analysis, whereby similar consistency
proofs have been discovered for a wide range of axiomatic theories. Developing such con-
sistency proofs for a theory T involves, among other things, determining the proof-theoretic
ordinal of T . Informally, the proof-theoretic ordinal of T is the least ordinal α such that
induction along α suffices to prove the consistency of T . Making this informal definition
precise is no easy task, as we shall see.
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The methods of ordinal analysis have been used to analyze many theories of interest,
including subsystems of first-order arithmetic, second-order arithmetic, and set theory. Or-
dinal analysis has not yet reached the level of full second-order arithmetic. Nevertheless, it
is reasonable to expect that the existing results are part of a general connection between
ordinals and consistency. Do Gentzen-style methods suffice for proving the consistency of
any axiomatic theory? The following result [55] might seem to suggest a positive answer
(TIăΠ1 is a sentence expressing the validity of induction for Π1 predicates along ă):

Theorem 1.3.2 (Kreisel–Shoenfield–Wang). For any reasonable theory T , there is a pre-
sentation ă of a recursive ordinal such that PRA` TIăΠ1 $ ConpT q.

This theorem is proved by showing that, for any true Π1 sentence ϕ, one can encode the
truth of ϕ into an ordinal notation system ă such that recognizing that ă has no Π1 definable
descending sequences is equivalent to recognizing the truth of ϕ. One could not recognize
the validity of Π1 transfinite induction along such a notation system without knowing the
truth of ϕ, so one could not use such a transfinite induction principle to prove ϕ. Thus, the
epistemic value of this theorem is limited.

As we will see, this is one version of a pervasive problem known as the canonicity problem.
The ordinal notations that are devised to prove Theorem 1.3.2 are not natural notations.
They form notation systems that one would introduce only in an ad-hoc manner to solve a
problem in proof theory. Does the distinction between the pathological notation systems and
the natural notation systems reflect some intrinsic mathematical properties of the notation
systems? If one had a convincing definition of “natural,” one might conjecture that, for
any reasonable theory T , there is a natural presentation ă of a recursive ordinal such that
PRA`TIăΠ1 $ ConpT q. However, at present there is no convincing evidence that it is possible
to precisely define the “natural” notation systems.

The canonicity problem also makes it difficult to define “proof-theoretic ordinal,” as
suggested earlier. One might try to define the proof-theoretic ordinal of T as the least ordinal
α such that induction along α (along with finitary methods) suffices to prove the consistency
of T . The problem with this definition is that, in formalized theories, transfinite induction
principles are stated in terms of presentations of ordinals, not the ordinals themselves. Kreisel
has shown that it is always possible to prove the consistency of a reasonable theory by
induction along a sufficiently pathological presentation of ω. Conversely, Beklemishev has
shown that, for any reasonable theory T and recursive ordinal α, there is a sufficiently
pathological presentation of α such that transfinite induction along that presentation (along
with finitary methods) will not suffice to prove the consistency of T . When one restricts
one’s attention to “natural” presentations of ordinals, the definition seems to work, but the
current state of affairs is vexing and unsatisfactory.

At present, many conflicting definitions of the “proof-theoretic ordinal” of a theory have
been proposed; these definitions often coincide in crucial cases. Perhaps the most common
definition is this: the proof-theoretic ordinal of a theory T is the supremum of the order-
types of the primitive recursive well-orderings whose well-foundedness is provable in T . This
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is sometimes called the Π1
1 ordinal of a theory. Of course, this notion is only useful for

measuring the proof-theoretic strength of theories in which well-foundedness is expressible,
so it does not apply, e.g., to fragments of first-order arithmetic. Moreover, it is a somewhat
coarse notion of strength, since Π1

1 ordinals are invariant under the addition of true Σ1
1

sentences to the object theory. Nevertheless, the Π1
1 ordinal of a theory is an ordinal, not a

presentation of an ordinal, so this is a somewhat robust notion.

1.4 Turing progressions
The second incompleteness theorem suggests a method for dealing with the first incomplete-
ness theorem. According to Turing [109], if we endorse the axioms of a reasonable axiomatic
theory T , then there is a principled way of extending T , namely, by adopting T ’s consis-
tency statement as an axiom. Of course, if one adopts the statement ConpT q as an axiom,
the statement ConpT ` ConpT qq remains unprovable. However, there is a principled way
of resolving this problem, namely, by adopting ConpT ` ConpT qq as an axiom. Of course,
this engenders a new problem, but it just as easily engenders a new solution, whence this
process can iterated ad infinitum. Given presentations of recursive ordinals in the language
of arithmetic, one can even extend this process into the effective transfinite.

Naively, we might try to define the iterations of consistency over a theory T as follows:

• T0 :“ T

• Tα`1 :“ Tα ` ConpTαq

• Tλ :“
Ť

αăλ Tα for λ a limit.

However, such a definition does not even pin down the theory Tω`1. According to the
definition, Tω`1 is just Tω`ConpTωq, but for ConpTωq to be a statement of arithmetic we must
have some effective presentation of Tω, and there are many choices for the latter. Accordingly,
when one defines iterated consistency statements, one must first fix an ordinal notation
system ă. One can then define the iterations of consistency along ă within arithmetic via
Gödel’s fixed point lemma.

Does iteratively endorsing consistency statements in this manner effect a significant re-
duction in incompleteness?

Theorem 1.4.1 (Turing). For any true Π1 sentence ϕ, there is a presentation ă of ω ` 1
such that PAă $ ϕ.

This result is known as Turing’s Completeness Theorem. At first glance it may seem that
this theorem is epistemically significant: we can come to know the truth of any Π1 statement
ϕ simply by iterating consistency statements. How are the consistency statements used in
the proof of ϕ ? The disappointing response is that they are not used at all. Instead, the
truth of ϕ is encoded into a non-standard description of the base theory PA, which becomes
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available at iteration ω ` 1. Given this non-standard description of PA, discerning what
the theory PAă is committed to requires knowing the truth-value of ϕ. This is another
appearance of the canonicity problem. As far as I know, this was the initial appearance of
the problem, and Turing was the first to identify it.

Turing was careful not to overstate the epistemic significance of his theorem. Neverthe-
less, one might hope that iterating Con along natural ordinal notations would also suffice
to prove any true Π1 statement. Once again, if we had a precise definition of “natural”
ordinal notation systems, we would be able to formulate a precise conjecture; however, no
such characterization of “natural” ordinal notation systems is currently available.

One might naively try to use iterated consistency progressions to measure the strength
of Π1 statements: the measure of complexity we assign to a true Π1 sentence ϕ is the
least ordinal α such that PAα $ ϕ. One could then extend this measure of complexity to
theories: the complexity of T is the least ordinal such that PAα $ ϕ for each Π1 theorem
ϕ of T . Clearly, Turing’s completeness theorem shows that iterations of consistency depend
on presentations of ordinals and not just on ordinals themselves. The possibility remains,
however, that one could prove informative results of this sort for large swathes of interesting
theories by antecedently fixing some natural notation system; Beklemishev has recently
pursued this possibility, as we will discuss in §1.5.

Turing’s work was later pursued and greatly extended by Feferman [26]. Feferman shifted
the focus from iterated consistency to iterated reflection principles of other sorts. Recall that
RFNpT q is the uniform reflection schema for T , that is,

RFNpT q :“ t@~x
`

PrT pϕp~xqq Ñ ϕp~xqq
˘

: ϕp~xq P LAu.

After fixing a presentation ă of a recursive ordinal, we can then define iterations of reflection
over a theory T so as to satisfy the following conditions:

• TRFN
0 :“ T

• TRFN
α`1 :“ TRFN

α ` RFNpTRFN
α q

• TRFN
λ :“

Ť

αăλ T
RFN
α for λ a limit.

Feferman proved that, merely by iterating the uniform reflection schema along presenta-
tions of recursive ordinals, one can accrue resources sufficient, not only for proving any true
Π1 statement, but for proving any true arithmetical statement.

Theorem 1.4.2 (Feferman). For any true arithmetical sentence ϕ, there is a presentation
ă of an ordinal α ă ωω

ω`1 such that PARFN
ă $ ϕ.

This result is known as Feferman’s Completeness Theorem. In the proof of this theorem,
Feferman used Turing’s technique of encoding the truth of statements into presentations
of recursive ordinals, among other things. Feferman also proved that there are paths P
through Kleene’s O such that iterating uniform reflection along P is arithmetically complete.
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However, any such path is Π1
1 complete. That is, identifying such a path is more difficult

than identifying the set of arithmetical truths. Thus, the epistemic significance of these
results—as Feferman emphasized—is limited.

1.5 Ordinal analysis via iterated reflection
In recent years there has been interest in the interface between ordinal analysis and Turing
progressions. This research has been motivated by a number of the drawbacks of the research
discussed in the previous two sections.

As discussed in §1.3, the standard notion of the Π1
1 ordinal of a theory is (i) only applicable

to theories in which “well-foundedness” is expressible and (ii) insensitive to the true Σ1
1

consequences of a theory. Building on earlier work of Schmerl [87], Beklemishev [7] introduced
the notion of the Π1 ordinal of a theory; this notion of “ordinal analysis” is both (i) suitable
for subsystems of first-order arithmetic and (ii) sensitive to the Π1 consequences of theories.
Iterations of consistency in the style of Turing play a central role in the definition of Π1
ordinals.

First we fix a base theory: Beklemishev uses EA, a weak subsystem of arithmetic that
is just strong enough to carry out arithmetization of syntax in the standard way. We then
fix some natural ordinal notation system and define the iterations of EA so as to satisfy the
following conditions:

1. EA0 :“ EA

2. EAα`1 :“ EAα ` ConpEAαq

3. EAλ :“
Ť

αăλ EAα for λ a limit.

Given a target theory T , the Π1 ordinal of T (relative to the base theory EA and notation
system ă) is defined as follows:

|T |Π1 :“ suptα : EAα Ď T u

This definition yields interesting information only if T is conservatively approximated by
iterations of consistency over EA; that is, only if T ”Π1 EAα where α “ |T |Π1 . Knowing
that T is so approximated is useful, because there are elegant equations (first discovered by
Schmerl) spelling out conservation relations between iterated consistency statements. One
can use these equations to calculate the Π1 proof-theoretic ordinals of theories that are
conservatively approximated by iterated consistency statements in a uniform manner. This
approach to ordinal analysis will play a major role in this dissertation.

Clearly, Π1 ordinals are well-defined for theories of first-order arithmetic in which well-
foundedness is not directly expressible. The definition is also sensitive to Π1 sentences. For
instance, whereas the Π1 ordinal of PA is ε0, the Π1 ordinal of PA` ConpPAq is ε0 ˆ 2.
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Note that the definition of Π1 ordinals achieves Turing’s goal of providing a metric of
strength for theories in terms of the number of iterations of consistency required to capture
their Π1 theorems. It turns out that this metric of strength is the same one provided by
ordinal analysis (indeed, the definition of Π1 ordinals coincides with other standard defini-
tions of proof-theoretic ordinal in standard cases). To provide such a metric of strength, we
must fix (in advance) a natural ordinal notation system. Moreover, the definition only works
for theories whose Π1 fragments can be conservatively approximated by iterated consistency
statements. This is apparently a feature of “natural theories” but not of all theories. We
will explore this theme throughout this dissertation.

In recent years (see [8, 9]) Beklemishev has advocated for an approach to the canonicity
problem for ordinal notation systems that makes use of reflection principles. I will briefly
describe Beklemishev’s notation system for PA and its fragments. The terms are generated
by the constant symbol J and the function symbols ConEAp¨q, 1ConEAp¨q, 2ConEAp¨q, etc.
The ordering on the terms is given, roughly, by consistency strength over EA.2 This notation
system is well-suited to ordinal analysis via iterated reflection, since PA can be conservatively
approximated over EA by the terms of the notation system, regarded as first-order theories.

The connection with the canonicity problem is this: If these reflection principles may be
regarded as a canonical means of specifying the theory PA, then the ordinal notation system
(not just the ordinal) has been extracted from a canonical presentation of PA. Various results
in this dissertation will lend support to the notion that reflection principles are canonical, and
to the notion that natural theories can be approximated by iterating reflection principles.
However, the results in this dissertation seem too coarse grained to isolate Beklemishev’s
notation system as canonical in a way that certain notation systems that give “wrong”
answers for ordinal analysis are not. Nevertheless, this is a potential theme for future
research.

1.6 Turing degree theory
The pre-well-ordering of natural theories is paralleled by a phenomenon in Turing degree
theory. The Turing degrees are not linearly ordered by ăT . That is, there are distinct
degrees a and b such that a ęT b and b ęT a. The Turing degrees are also ill-founded. That
is, there are infinite sequences panqnăω such that ak ąT ak`1 for all k. These two results
mean that is neither possible to compare nor to rank Turing degrees in general.

The degrees that exhibit these pathological properties have been constructed using ad-hoc
recursion-theoretic techniques, like the priority method. When one restricts one’s attention
to natural Turing degrees, the resulting structure is a well-order.

0, 01, 02, ..., 0ω, ...,O, ..., 07, ...
2In fact, Beklemishev uses the ordering ă defined as follows: α ă β if GLP $ β Ñ ♦0α, where GLP is a

certain polymodal logic corresponding to provability over EA.
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This state of affairs is remarkably similar to the state of affairs on the proof-theoretic side.
Once again, it is not entirely clear how to address this problem. It is not a wholly mathemat-
ical problem since there is no precise mathematical definition of “natural” Turing degrees.

One oft-noted feature of natural Turing degrees is that their definitions relativize. Rel-
ativizing the definition of a Turing degree yields a degree invariant function on the reals,
where a function f is degree invariant if A ”T B implies fpAq ”T fpBq. For instance,
relativizing the definition of 01 yields the Turing jump λX.X 1, relativizing the definition of
Kleene’s O yields the hyperjump λX.OX , and so on.

Martin proposed a classification of the degree invariant functions in terms of their be-
havior almost everywhere in the sense of Martin Measure. Recall that a cone in the Turing
degrees is any set of the form ta : a ěT bu. Assuming AD, Martin proved that every de-
gree invariant set of reals either contains a cone or is disjoint from a cone. Moreover the
intersection of countably many cones contains a cone. Thus, assuming AD, the function

µpAq “

#

1 if A contains a cone
0 if A is disjoint from a cone

is a countably additive measure on the σ algebra of degree invariant sets. This measure is
called Martin Measure. In the statement of Martin’s Conjecture, almost everywhere means
almost everywhere with respect to Martin Measure.

Conjecture 1.6.1 (Martin). Assume ZF` DC` AD. Then

I. If f : 2ω Ñ 2ω is degree invariant, and f is not increasing a.e. then f is constant a.e.

II. ďm pre-well-orders the set of degree invariant functions that are increasing a.e. If f
has ďm rank α, then f 1 has ďm rank α ` 1, where f 1pxq “ fpxq1 for all x.

One can view Martin’s Conjecture as a conjecture about the functions in LpRq, since,
assuming appropriate large cardinal axioms, LpRq satisfies AD. Thus, Martin’s Conjecture
roughly states that the only definable degree invariant functions (up to almost everywhere
equivalence) are constant functions, the identify function, and iterates of the Turing Jump.

Though Martin’s Conjecture is presently open, many informative partial results and
special cases are known (see [100, 94]). We remind the reader that a function f is uniformly
degree invariant if there is a recursive φ such that if A ďT B via e then fpAq ďT fpBq via
φpeq. A function f is order-preserving if A ďT B implies fpAq ďT fpBq. Finally, a function
f is increasing if, for all A, A ďT fpAq.

Theorem 1.6.2 (Slaman–Steel). Part I of Martin’s Conjecture holds for all uniformly degree
invariant functions.

Theorem 1.6.3 (Steel). Part II of Martin’s Conjecture holds for all uniformly degree in-
variant functions.
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Theorem 1.6.4 (Slaman–Steel). If f is a Borel order preserving function that is increasing
a.e., then there exists an α ă ω1 such that fpxq ”T xpαq a.e.

There are other results that speak to this phenomenon. For instance, Steel [98] has shown
that there cannot be any “simple” descending sequences in the Turing jump hierarchy, in
the following sense:

Theorem 1.6.5 (Steel). Let P Ă R2 be arithmetic. Then there is no sequence pxnqnăω such
that for every n,

(i) xn ěT x1n`1 and

(ii) xn`1 is the unique y such that P pxn, yq.

We will explore the analogy between the recursion-theoretic and proof-theoretic well-
ordering phenomena throughout this dissertation. On the one hand, the statements and
proofs of many purely proof-theoretic results are inspired by this recursion-theoretic research.
On the other hand, the proof-theoretic theorems we produce inspire some purely recursion-
theoretic results in Chapter 6.

1.7 Summary of upcoming chapters
My goal is to bring precision to the question of the pre-well-orderedness of natural theories
and to offer (at least partial) solutions. Before summarizing the chapters to come, I would
like to mention three themes that will be interwoven.

The first theme is that many natural theories can be axiomatized by reflection princi-
ples over natural base theories. Indeed, the fragments of natural theories corresponding to
different syntactic complexity classes can often be conservatively approximated by iterated
reflection principles of the appropriate complexity class.

The second theme is that ordinal analysis is an expression of the well-ordering phe-
nomenon. For different notions of “proof-theoretic strength,” there are corresponding no-
tions of “proof-theoretic ordinals.” Insofar as the proof-theoretic ordinal afforded by some
definition of “proof-theoretic ordinal” measures the proof-theoretic strength of theories, the
attendant method of ordinal analysis well-orders the theories within its ken according to
that notion of strength. The heuristic that we will try to vindicate in this dissertation is the
following: to calculate the proof-theoretic ordinal of a theory T is to determine T ’s rank in
the hierarchy of natural theories ordered by proof-theoretic strength.

The third theme is that reflection principles play the same role in proof theory that
jumps play in recursion theory. Just as natural Turing degrees are apparently equivalent
to ordinal iterates of the Turing jump, natural theories are apparently equivalent to ordinal
iterates (along natural presentations of well-orderings) of reflection principles. Just as natural
Turing degrees can be obliquely studied in terms of jumps, natural axiomatic theories can
be obliquely studied in terms of reflection principles.
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On the inevitability of the consistency operator
In Chapter 2, co-authored with Antonio Montalbán, we present an approach to the well-
ordering of natural theories that is inspired by Martin’s Conjecture. In particular, we shift
our focus from theories to recursive monotone functions on theories. A function g on finitely
axiomatized extensions of T is monotone if whenever T $ ϕ Ñ ψ, then also T $ gpϕq Ñ
gpψq. Whereas the notion of a “natural” theory is informal and non-mathematical, the notion
of a recursive monotone function is perfectly mathematical.

One recursive monotone function is the consistency operator ϕ ÞÑ ConT pϕq. Our goal is to
show that the consistency operator and its iterates into the effective transfinite are canonical,
by analogy with Martin’s Conjecture for order-preserving functions. Our first step in this
direction is the following theorem. Note that we write rϕsT to denote the equivalence class
of ϕ modulo T provable equivalence, i.e., rϕsT “ tψ : T $ ϕØ ψu.

Theorem 1.7.1. Let T be a sound, recursively axiomatized extension of elementary arith-
metic. Let g be recursive and monotone. Suppose that for all consistent ϕ,

1. T ` ϕ` ConT pϕq $ gpϕq

2. T ` gpϕq $ ϕ and T ` ϕ & gpϕq.

Then for every true ϕ, there is a true ψ such that T `ψ $ ϕ and rgpψqsT “ rψ^ConT pψqsT .

We also generalize this theorem into the effective transfinite. In particular, fixing a nice
ordinal notation system, we show that for any recursive monotone g, for arbitrarily strong
true inputs, g must be either as strong as ConαT or as weak as ConβT for some β ă α.

The main theorem of Chapter 2 states that if the strength of any sufficiently nice function
g is “bounded” by some iterate of the consistency operator, then g must somewhere coincide
with an iterate of the consistency operator.

Theorem 1.7.2. Let T be a sound, recursively axiomatized extension of elementary arith-
metic. Let g be recursive and monotone such that, for all ϕ, gpϕq is Π1. Then one of the
following holds:

1. For some ϕ, T ` ϕ` ConαT pϕq does not prove gpϕq.

2. For some β ĺ α and some ϕ, rϕ` gpϕqsT “ rϕ` ConβT pϕqsT ‰ rKsT .

A note on the consistency operator
In Chapter 3 we extend the results of the previous chapter. We begin by formulating a
conjecture, according to which recursive monotone functions are linearly ordered according
to the amount of strength that they systematically add to theories. This conjecture is stated
in terms of recursive functions that produce only Π1 sentences. This results in no loss of gen-
erality, since the consistency strength of a theory is determined by its Π1 consequences. We
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conjecture that any monotone algorithm that adds only Π1 sentences to theories is equivalent,
in the limit, to some (potentially non-standard) iterate of the consistency operator.

We then prove the first case of this hoped for classification. In particular, we show that
any monotone algorithm that adds only Π1 sentences to theories is either as weak as the
identity operator or as strong as the consistency operator in the limit.

Theorem 1.7.3. Let T be a sound, recursively axiomatized extension of elementary arith-
metic. Let g be recursive and monotone such that, for all ϕ, gpϕq is Π1. Then one of the
following holds:

1. There is a true ψ such that, for all ϕ for which T ` ϕ proves ψ,

T ` ϕ $ gpϕq.

2. There is a true ψ such that, for all ϕ for which T ` ϕ proves ψ,

T ` ϕ` gpϕq $ ConT pϕq.

We also established some limitative results on the scope of this approach. In particular, we
show that the assumption that g is recursive is necessary in the statement of Theorem 1.7.3.
We do this by exhibiting a function g that is limit-recursive but not recursive which meets
the other hypotheses of Theorem 1.7.3 but does not satisfy the conclusion. In particular, g
vacillates between behaving like the identity operator and the consistency operator, without
converging on either.

Theorem 1.7.4. Let T be a sound, recursively axiomatized extension of elementary arith-
metic. There is a limit-recursive monotone function g such that, for every ϕ, gpϕq is Π1,
yet for arbitrarily strong true sentences

rϕ` gpϕqsT “ rϕ` ConT pϕqsT

and for arbitrarily strong true sentences

rϕ` gpϕqsT “ rϕsT .

Reflection ranks and ordinal analysis
To understand the apparent well-foundedness of theories by proof-theoretic strength, we
focus our attention on descending sequences of theories in these hierarchies. We want to
show that no such descending sequence can be simple, in some formal sense. For instance,
we would like to show that all descending sequences are descriptively complex, or contain
elements that are unsound.

In Chapter 4, co-authored with Fedor Pakhomov, we prove a number of theorems along
these lines. The first such theorem concerns, not the ordering ăCon on axiomatic theories,
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but a closely related structure. We say that a theory is Σ2 sound if all its Σ2 consequences
are true. We prove that there are no “simple” descending sequences in the Σ2 soundness
hierarchy.

Theorem 1.7.5. There is no recursively enumerable sequence pTnqnPN of Σ2 sound extensions
of BΣ1 such that, for each n, Tn proves the Σ2 soundness of Tn`1.3

Theorem 1.7.5 is, in a sense to be made precise, the best possible. To state this precisely,
we recall that a theory is Σ1 sound if all its Σ1 consequences are true. The following theorem
demonstrates that Theorem 1.7.5 is the best possible.

Theorem 1.7.6. There exists a recursive sequence pTnqnPN of Σ1 sound extensions of ele-
mentary arithmetic such that, for each n, Tn proves the Σ1 soundness of Tn`1.

The method introduced to prove Theorem 1.7.5 easily adapts to rule out all descending
sequences in another hierarchy of proof-theoretic strength, namely, the one given by Π1

1
soundness.

Theorem 1.7.7. There is no sequence pTnqnPN of Π1
1 sound extensions of ACA0 such that,

for each n, Tn proves the Π1
1 soundness of Tn`1.

Theorem 1.7.7 rules out descending sequences of theories according to a certain metric
of logical strength. This makes it possible to rank theories according to this metric of
strength. Let’s call the rank of a theory in this hierarchy its reflection rank. Recall that in
ordinal analysis, values called proof-theoretic ordinals are systematically assigned to theories
and that, according to conventional wisdom, proof-theoretic ordinals measure the proof-
theoretic strength of theories. We vindicate this conventional wisdom by proving that for
most theories T , the reflection rank of T equals the proof-theoretic ordinal of T . We make
the notion of “most theories” precise in the following way (ACA`0 is an axiomatic theory
extending ACA0 with the axiom “every set is contained in an ω model of ACA0”).

Theorem 1.7.8. For any Π1
1-sound extension T of ACA`0 , the reflection rank of T equals

the Π1
1 proof-theoretic ordinal of T .

We derive Theorem 1.7.8 from a variant of Schmerl’s formula in the context of second-
order arithmetic. To precisely state this variant of Schmerl’s formula, we introduce some
terminology. Let Π1

1pΠ0
3q be the syntactic complexity class consisting of formulas of the form

@XϕpXq where ϕpXq is Π0
3. Though all Π1

1 formulas are provably equivalent to such formulas
in ACA0, this is not the case in RCA0. We define Rα

ΓpT q as the result of iterating Γ reflection
3In Chapter 4 this is stated as a result about EA rather than BΣ1. This is because we formalize our

results in terms of “smooth provability” instead of using the ordinary provability predicate. Our proof works
for smooth provability, but not ordinary provability, over EA, whereas it works for both over BΣ1. Rather
than explicate the notion of smooth provability here we state our result about extensions of BΣ1.
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α many times over T . Roughly, the iterates of reflection are defined as the solutions of the
following equation:

Rα
ΓpT q :“ RFNΓ

`

T ` tRβ
ΓpT q : β ă αu

˘

We are now ready to state our variant of Schmerl’s formula for second-order arithmetic:

Theorem 1.7.9. Rα
Π1

1
pACA0q is Π1

1pΠ0
3q conservative over Rεα

Π1
1pΠ0

3q
pRCA0q.

A reduction principle for ω-model reflection
In Chapter 5, co-authored with Fedor Pakhomov, we prove a conservation theorem relating
different reflection principles in second-order arithmetic. In particular, our result reduces
ω model reflection to iterated syntactic reflection principles. There is a thorough proof-
theoretic understanding of the latter in terms, e.g., of ordinal analysis. Accordingly, these
reductions yield proof-theoretic analyses of ω model reflection principles.

We formalize all our results in ACA0 about the language L2 that extends the standard
language of second-order arithmetic with set-constants CX for all sets X. Boldface notation
is used to define the standard syntactic complexity classes for L2.

The main syntactic reflection principle we consider, Π1
1-RFNpT q, informally says “all Π1

1
theorems of T are true.” We will also be interested in the theories Π1

1-RαpT q that result from
iterating this principle along well-orderings. We give precise definitions of these theories via
Gödel’s fixed point lemma in §5.2. Informally, one can think of them as defined inductively,
according to the following equation:

Π1
1-Rα

pT q :“ T ` tΠ1
1-RFN

`

T `Π1
1-Rβ

pT q
˘

: β ă αu

We will also consider ω model reflection principles. An ω model is an L2 structure whose
first-order part is N and whose second-order part is some subset of PpNq. The semantic
reflection principle we work with is “every set is contained in an ω model of T .”

The main theorem of Chapter 5 is the following:

Theorem 1.7.10 (ACA0). For any Π1
2-axiomatizable T , the following are equivalent:

1. Every set is contained in an ω model of T .

2. @α
`

WOpαq Ñ Π1
1-RFNpΠ1

1-RαpT qq
˘

.

Incompleteness and jump hierarchies
Theorem 1.7.7 demonstrates that the proof-theoretic hierarchy based on Π1

1 reflection is ac-
tually well-founded, not just well-founded for natural theories. In fact, a similar phenomenon
happens on the recursion-theoretic side when we shift our attention from the Turing degrees
to the hyperdegrees. For reals A and B, we say that A ďH B if A is hyperarithmetical in
B. For any real A, there is a canonical real OA, known as the hyperjump of A, such that
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A ăH OA. In Chapter 6, co-authored with Patrick Lutz, we refine the technique introduced
to prove Theorem 1.7.7 to provide a novel proof of a classical theorem (originally due to
Spector):

Theorem 1.7.11. There is no sequence pAnqnPN of reals such that, for each n, OAn`1 ďH An.

Whereas Spector’s proof relies on the theory of admissible ordinals, our proof uses Gödel’s
second incompleteness theorem. We then use Theorem 1.7.11 to give a novel proof of a
semantic incompleteness theorem originally due to Mummert and Simpson:

Theorem 1.7.12. Let T be an L2 theory. For each n ě 1, if there is a βn-model of T then
there is a βn-model of T which contains no countable coded βn-models of T .

The analogy with Theorem 1.7.7 raises the question: what is the analogue of ordinal
analysis in the hyperdegress? Indeed, Theorem 1.7.11 states that the relation A ă B defined
by OA ďH B is a well founded partial order. We call the ă rank of a real its Spector rank.
There is a recursion-theoretically natural characterization of the Spector ranks of reals:

Theorem 1.7.13. For any real A, the Spector rank of A is α just in case ωA1 is the p1`αqth
admissible ordinal.

Corollary 1.7.14. Assuming suitable large cardinal hypotheses, for all X on a cone, the
Spector rank of X is ωX1 .

These new proofs and results strengthen the analogy between the proof-theoretic and
recursion-theoretic well-ordering phenomena.

Epistemic aspects of consistency proofs
Ordinal analysis plays a major role in this dissertation, as a means of addressing the problem
of the well-ordering of natural theories. In Chapter 7 I discuss the role of ordinal analysis in
developing consistency proofs. With respect to the epistemic significance of Gentzen-style
consistency proofs, I emphasize explanation over justification. Philosophers have argued
about the prospects of using Gentzen’s proof to justify the claim that arithmetic is consis-
tent, or to enhance our credence that arithmetic is consistent. I will argue that, independent
of its force as a credence-enhancer, the proof has utility as an understanding-enhancer.
Whether Gentzen’s proof convinces us that arithmetic is consistent, it explains why arith-
metic is consistent. Gentzen’s proof bears many of the marks of explanation: for instance,
it has facilitated new discoveries, including surprising discoveries about unfamiliar contexts,
and it is articulated at a level of grain that is conducive to generalization and even to rever-
sal. I argue that all the major theories of mathematical explanation predict that explanatory
proofs should bear these marks; this provides strong evidence, which lies in the overlapping
consensus of the most prominent theories of mathematical explanation, that Gentzen’s proof
is explanatory. On this basis, I argue against certain restrictive norms on mathematical prac-
tice. For instance, I argue against the norm that consistency proofs ought to be carried out
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using only constructive methods. Though this restriction is reasonable if one is attempting
to convince a constructivist skeptic, it loses force when one instead is attempting to present
a combinatorial explanation of a theory’s consistency.
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Part I

First-Order Arithmetic
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Chapter 2

On the inevitability of the consistency
operator

This chapter contains joint work with Antonio Montalbán.

2.1 Introduction
It is a well-known empirical phenomenon that natural axiomatic theories are well-ordered by
their consistency strength. However, without a precise mathematical definition of “natural,”
it is difficult to explain this observation in a strictly mathematical way. One expression of
this phenomenon comes from ordinal analysis, a research program whereby recursive ordinals
are assigned to theories as a measurement of their consistency strength. One method for
calculating the proof-theoretic ordinal of a theory T involves demonstrating that T can be
approximated over a weak base theory by a class of formulas that are well understood. In
particular, the Π0

1 fragments of natural theories are often proof-theoretically equivalent to
iterated consistency statements over a weak base theory, making these theories amenable to
ordinal analysis. For discussion, see, e.g., Beklemishev [7, 8] and Joosten [46].

Why are the Π0
1 fragments of natural theories proof-theoretically equivalent to iterated

consistency statements? Our approach to this question is inspired by Martin’s approach
to another famous question from mathematical logic: why are natural Turing degrees well-
ordered by Turing reducibility? Martin conjectured that (i) the non-constant degree invariant
functions meeting a certain simplicity condition (f P LpRq)1 are pre-well-ordered by the
relation “fpaq ďT gpaq on a cone in the Turing degrees” and (ii) the successor for this well-
ordering is induced by the Turing jump. Martin’s conjecture is meant to capture the idea
that the Turing jump and its iterates into the transfinite are the only natural non-trivial
degree invariant functions.

1Martin’s Conjecture is stated under the hypothesis ZF`AD`DC, which is satisfied by LpRq assuming
that there are ω many Woodin cardinals with a measurable above them all.
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In this paper we investigate analogous hypotheses concerning jumps on consistent ax-
iomatic theories, namely, consistency statements. We fix elementary arithmetic EA as our
base theory. EA is a subsystem of PA that is often used as a base theory in ordinal analysis
and in which standard approaches to arithmetization of syntax can be carried out without
substantial changes; see [9] for details. We write rϕs to denote the equivalence class of ϕ
modulo EA-provable equivalence. We write ϕ $ ψ if EA $ ϕÑ ψ and say that ϕ implies ψ.
If ϕ $ ψ but ψ & ϕ we say that ϕ strictly implies ψ. The Lindenbaum algebra of EA is the
set of equivalence classes of sentences ordered by $. We focus on recursive functions f that
are monotonic, i.e.,

if ϕ $ ψ, then fpϕq $ fpψq.

We note that (i) a function f is monotonic just in case f preserves implication over EA and
(ii) all monotonic functions induce functions on the Lindenbaum algebra of EA. We adopt
the convention that all functions named “f” in this paper are recursive.

Our goal is to demonstrate that ϕ ÞÑ pϕ ^ Conpϕqq and its iterates into the transfinite
are canonical among monotonic functions. Our first theorem to this end is the following.

Theorem 2.1.1. Let f be monotonic. Suppose that for all consistent ϕ,
(i) ϕ^ Conpϕq implies fpϕq and
(ii) fpϕq strictly implies ϕ.
Then for every true ϕ, there is a true ψ such that ψ $ ϕ and rfpψqs “ rψ ^ Conpψqs.

Corollary 2.1.2. There is no monotonic function f such that for all consistent ϕ,
(i) ϕ^ Conpϕq strictly implies fpϕq and
(ii) fpϕq strictly implies ϕ.

We note that this result depends essentially on the condition of monotonicity. Shavrukov
and Visser [90] studied recursive functions f that are extensional over the Lindenbaum
algebra of PA, i.e.,

if PA $ pϕØ ψq, then PA $ pfpϕq Ø fpψqq,

and proved the following theorem.

Theorem 2.1.3. (Shavrukov–Visser) There is a recursive extensional function f such that
for all consistent ϕ,
(i) ϕ^ Conpϕq strictly implies fpϕq and
(ii) fpϕq strictly implies ϕ.

In particular, Shavrukov and Visser proved that for any consistent ϕ, the sentence

ϕ‹ :“ ϕ^ @x
`

ConpIΣx ` ϕq Ñ ConpIΣx ` ϕ` ConpIΣx ` ϕqq
˘

has deductive strength strictly between ϕ and ϕ ^ Conpϕq, and that the map ϕ ÞÑ ϕ‹ is
extensional. By a theorem of Kripke and Pour-El [77], the Lindenbaum algebras of PA and
EA are effectively isomorphic, whence Theorem 2.1.3 also applies to EA. Thus, Corollary
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2.1.2 cannot be strengthened by weakening the hypothesis of monotonicity to the hypothesis
of extensionality.

We also note that Friedman, Rathjen, and Weiermann [33] introduced a notion of slow
consistency with which they produced a Π0

1 sentence SlowConpPAq with deductive strength
strictly between PA and PA` ConpPAq. In general, the statement SlowConpϕq has the form

@xpFε0pxq ÓÑ ConpIΣx ` ϕqq

where Fε0 is a standard representation of a recursive function that is not provably total in PA.
This is not in conflict with Corollary 2.1.2, however, since ϕ ^ Conpϕq and ϕ ^ SlowConpϕq
are provably equivalent for all ϕ such that ϕ $ @xFε0pxq Ó. On the other hand, changing the
definition of the SlowConpϕq so that the function in the antecedent varies with the input ϕ
results in a map that is not monotonic.

Theorem 2.1.1 generalizes to the iterates of Con into the effective transfinite. For an
elementary presentation α of a recursive well-ordering (see Definition 2.3.1) and a sentence
ϕ, we define sentences Conβpϕq for every β ă α.

Con0
pϕq :“J

Conβ`1
pϕq :“Conpϕ^ Conβpϕqq

Conλpϕq :“@β ă λpConβpϕqq

For a precise definition using Gödel’s fixed point lemma, see Definition 2.3.2. Note that for
every ϕ, rCon1

pϕqs “ rConpϕqs.
Remark 2.1.4. We warn the reader that there is some discrepancy between our notation and
the notation used by other authors. Our iteration scheme Conα`1

pϕq ” Conpϕ^Conαpϕqq is
sometimes denoted ConppEA`ϕqαq, e.g., [6]. Moreoever, the notation Conα`1

pϕq is sometimes
used to denote ConpConαpϕqq, e.g., [15].

With each predicate Conα we associate a function

ϕ ÞÑ pϕ^ Conαpϕqq.

Theorem 2.1.1 then generalizes into the effective transfinite as follows.

Theorem 2.1.5. Let f be monotonic. Suppose that for all ϕ,
(i) ϕ^ Conαpϕq implies fpϕq,
(ii) if rfpϕqs ‰ rKs, then fpϕq strictly implies ϕ^ Conβpϕq for all β ă α.
Then for every true ϕ, there is a true ψ such that ψ $ ϕ and rfpψqs “ rψ ^ Conαpψqs.

Corollary 2.1.6. There is no monotonic f such that for all ϕ, if rϕ^Conαpϕqs ‰ rKs, then
both
(i) ϕ^ Conαpϕq strictly implies fpϕq and
(ii) fpϕq strictly implies ϕ^ Conβpϕq for all β ă α.
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Thus, if the range of a monotonic function f is sufficiently constrained, then for some ϕ
and some α,

rfpϕqs “ rϕ^ Conαpϕqs ‰ rKs.

This property still holds even when these constraints on the range of f are relaxed consid-
erably. More precisely, if a monotonic function is everywhere bounded by a finite iterate of
Con, then it must be somewhere equivalent to an iterate of Con.

Theorem 2.1.7. Let n P N. Let f be a monotonic function such that for every ϕ,
(i) ϕ^ Connpϕq implies fpϕq and
(ii) fpϕq implies ϕ.
Then for some ϕ and some k ď n, rfpϕqs “ rϕ^ Conkpϕqs ‰ rKs.

To generalize this result into the effective transfinite, we focus on a particular class of
monotonic functions that we call Π0

1.

Definition 2.1.8. A function f is Π0
1 if fpϕq P Π0

1 for all ϕ.

Our main theorem is the following: if a monotonic function is everywhere bounded by a
transfinite iterate of Con, then it must be somewhere equivalent to an iterate of Con. This to
say that the iterates of the consistency operator are inevitable; no monotonic function that
is everywhere bounded by some iterate of Con can avoid all of the iterates of Con.

Theorem 2.1.9. Let ϕ ÞÑ fpϕq be a monotonic Π0
1 function Then either

(i) for some β ď α and some ϕ, rϕ^ fpϕqs “ rϕ^ Conβpϕqs ‰ rKs or
(ii) for some ϕ, pϕ^ Conαpϕqq & fpϕq.

The main theorem bears a striking similarity to the following theorem of Slaman and
Steel [94].

Theorem 2.1.10. (Slaman–Steel) Suppose f : 2ω Ñ 2ω is Borel, order-preserving with
respect to ďT , and increasing on a cone. Then for any α ă ω1 either
(i) for some β ď α, fpxq ”T xpβq cofinally or
(ii) pxpαq ăT fpxqq cofinally.

There are two notable disanalogies between Theorem 2.1.9 and Theorem 2.1.10. First,
Theorem 2.1.9 guarantees only that sufficiently constrained functions are somewhere equiv-
alent to an iterate of Con, whereas Theorem 2.1.10 guarantees cofinal equivalence with an
iterate of the Turing jump. Second, by assuming AD, Slaman and Steel inferred that this
behavior happens not only cofinally but also on a cone in the Turing degrees. There is no
obvious analogue of AD from which one can infer that if cofinally many Lindenbaum degrees
have a property then every element in some non-trivial ideal of Lindenbaum degrees has that
property.

We then turn our attention to a generalization of consistency, namely, 1-consistency. Re-
call that a theory T is 1-consistent if T is consistent with the true Π0

1 theory of arithmetic.
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Just as the Π0
1 fragments of natural theories are often proof-theoretically equivalent to iter-

ated consistency statements over a weak base theory, the Π0
2 fragments of natural theories

are often proof-theoretically equivalent to iterated 1-consistency statements over a weak base
theory

Conservativity theorems relating 1-consistency and iterated consistency play an impor-
tant role in the proof-theoretic analysis of arithmetic theories. For instance, it is a conse-
quence of Beklemshev’s reduction principle [9] that for any Π0

1 ϕ,

EA` 1ConpEAq $ ϕ if and only if EA` tConkpEAq : k ă ωu $ ϕ.

This fact plays an integral role in Beklemishev’s [8] consistency proof of PA. We show that
this conservativity result is drastically violated in the limit. For functions f and g, we say
that f majorizes g if there is a consistent ϕ such that for all ψ, if ψ $ ϕ then fpψq $ gpψq;
if in addition ϕ is true then we say that f majorizes g on a true ideal.

Proposition 2.1.11. For any elementary presentation α of a recursive well-ordering, 1Con
majorizes Conα on a true ideal.

It is tempting to conjecture on the basis of this result that 1Con is the weakest monotonic
function majorizing each Conα for α a recursive well-ordering. We prove that this is not the
case.

Theorem 2.1.12. There are infinitely many monotonic functions f such that for every
recursive ordinal α, there is an elementary presentation a of α such that f majorizes Cona
on a true ideal but also 1Con majorizes f on a true ideal.

Theorem 2.1.1 demonstrates that for any monotonic f with a sufficiently constrained
range, f must agree cofinally with Con. We would like to strengthen cofinally to on a true
ideal. One strategy for establishing this claim would be to show that every set that is closed
under EA provable equivalence and that contains cofinally many true sentences also contains
every sentence in some true ideal. We show that this strategy fails.

Proposition 2.1.13. There is a recursively enumerable set A that contains arbitrarily strong
true sentences and that is closed under EA provable equivalence but does not contain any true
ideals.

It is not clear whether Theorem 2.1.1 can be strengthened in the desired manner.

2.2 No monotonic function is strictly between the
identity and Con

In this section we prove that no monotonic function sends every consistent ϕ to a sentence
with deductive strength strictly between ϕ and pϕ^Conpϕqq. Most of the work is contained
in the proof of the following lemma.
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Lemma 2.2.1. Let f be a monotonic function such that for all consistent ϕ, fpϕq strictly
implies ϕ. Then for every true sentence ϕ there is a true sentence θ such that θ $ ϕ and
fpθq $ pθ ^ Conpθqq.

Proof. Let f be as in the statement of the theorem. By assumption the following statement
is true.

χ :“ @ζpConpζq Ñ Conpζ ^ fpζqqq

Let ϕ be a true sentence. Then the sentence ψ :“ ϕ^ χ is true. Let

θ :“ pψ ^ pfpψq Ñ Conpψqqq.

Note that θ $ ϕ.
Claim. fpθq $ pθ ^ fpψqq.

Clearly θ $ ψ. So fpθq $ fpψq since f is monotonic. Also fpθq $ θ by assumption.
Claim. pθ ^ fpψqq $ pψ ^ Conpψqq.

Immediate from the definition of θ.
Claim. pψ ^ Conpψqq $ pθ ^ Conpθqq.

Clearly pψ ^ Conpψqq $ θ. It suffices to show that

pψ ^ Conpψqq $ Conpθq.

We reason as follows.

pψ ^ Conpψqq $ @ζpConpζq Ñ Conpζ ^ fpζqqq by choice of ψ.
$ Conpψq Ñ Conpψ ^ fpψqq by instantiation.
$ Conpψ ^ fpψqq by logic.
$ Conpθq by the definition of θ.

It is immediate from the preceding claims that fpθq $ pθ ^ Conpθqq. q

A number of results follow immediately from the lemma.

Theorem 2.2.2 (Restatement of Theorem 2.1.1). Let f be monotonic. Suppose that for all
consistent ϕ,
(i) ϕ^ Conpϕq implies fpϕq and
(ii) fpϕq strictly implies ϕ.
Then for every true ϕ, there is a true ψ such that ψ $ ϕ and rfpψqs “ rψ ^ Conpψqs.

Proof. By the lemma, for every true ϕ there is a true ψ such that ψ $ ϕ and fpψq $
pψ ^ Conpψqq. Since we are assuming that pψ ^ Conpψqq $ fpψq, it follows that rfpψqs “
rψ ^ Conpψqs. q
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We note that this theorem applies to a number of previously studied operators. For
instance, the theorem applies to the notion of cut-free consistency, i.e., consistency with
respect to cut-free proofs. EA does not prove the cut-elimination theorem, which is equivalent
to the totality of super-exponentiation (over EA), and does not prove the equivalence of cut-
free consistency and consistency. Another such operator is the Friedman-Rathjen-Weiermann
slow consistency operator discussed in §1. Theorem 4.1.2 implies that these operators exhibit
the same behavior as the consistency operator “in the limit.” Indeed, for any ϕ such that ϕ
proves the cut-elimination theorem, ϕ^Conpϕq and ϕ^ConCFpϕq are EA-provably equivalent.
Likewise, for any ϕ that proves the totality of Fε0 , ϕ^ Conpϕq and ϕ^ SlowConpϕq are EA-
provably equivalent.

As a corollary of Theorem 4.1.2 we note that no monotonic function reliably produces
sentences strictly between those produced by the identity and by Con.

Corollary 2.2.3 (Restatement of Corollary 2.1.2). There is no monotonic function f such
that for all consistent ϕ,
(i) ϕ^ Conpϕq strictly implies fpϕq and
(ii) fpϕq strictly implies ϕ.

Shavrukov and Visser [90] studied functions over Lindenbaum algberas and discovered a
recursive extensional uniform density function g for the Lindenbaum algebra of EA, i.e., (i)
for any ϕ and ψ such that ψ strictly implies ϕ, gpxϕ, ψyq is a sentence with deductive strength
strictly between ϕ and ψ and (ii) if EA $ pϕ Ø ψq then, for any θ, rgpxϕ, θyqs “ rgpxψ, θyqs
and rgpxθ, ϕyqs “ rgpxθ, ψyqs. They asked whether this result could be strengthened by
exhibiting a recursive uniform density function that is monotonic in both its coordinates.
As a corollary of our theorem we answer their question negatively.

Corollary 2.2.4. There is no monotonic uniform density function for the Lindenbaum al-
gebra of EA.

Proof. Suppose there were such a function g over the Lindenbaum algebra of EA. Then given
any input of the form xϕ, pϕ^Conpϕqqy, g would produce a sentence with deductive strength
strictly between ϕ and pϕ ^ Conpϕqq. We then note that f : ϕ ÞÑ gpxϕ, pϕ ^ Conpϕqqyq is
monotonic, but that for every consistent ϕ, ϕ^Conpϕq strictly implies fpϕq and fpϕq strictly
implies ϕ, contradicting the previous theorem. q

Our negative answer to the question raised by Shavrukov and Visser makes use of a Π0
2

sentence @ζpConpζq Ñ Conpζ ^ fpζqqq. Shavrukov and Visser raised the following question
in private communication.

Question 2.2.5. Is there a recursive uniform density function for the lattice of Π0
1 sentences

over EA that is monotonic in both its coordinates?

Remark 2.2.6. It is clear from the proof of the lemma that any monotonic f meeting the
hypotheses of Theorem 4.1.2 is not only cofinally equivalent to Con; for every true ψ that
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implies
χ :“ @ζpConpζq Ñ Conpζ ^ fpζqqq,

there is a true θ such that θ $ ψ and rψ ^ Conpψqs “ rθ ^ Conpθqs “ rfpθqs.
This observation points the way toward a corollary of our theorem; namely that any

monotonic function strictly meeting the hypotheses of the theorem must have the same
range as ϕ ÞÑ pϕ ^ Conpϕqq in the limit. To prove this, we first prove a version of jump
inversion—ϕ ÞÑ pϕ ^ Conpϕqq inversion—for Lindenbaum algebras. This is to say that the
range of Con contains a true ideal in the Lindenbaum algebra. A similar result is established
for true Π0

2 sentences in [1].

Proposition 2.2.7. Suppose ϕ $ ConpJq. Then for some ψ, rϕs “ rpψ ^ Conpψqqs.

Proof. Let ψ :“ ConpJq Ñ ϕ.
Claim. ϕ $ pψ ^ Conpψqq.

Trivially, ϕ $ ψ. Since ϕ $ ConpJq, it follows that from the formalized second incom-
pleteness theorem, i.e., ConpJq $ Conp ConpJqq, that ϕ $ Conp ConpJqq. But  ConpJq is
the first disjunct of ψ, so ϕ $ Conpψq.
Claim. pψ ^ Conpψqq $ ϕ.

Note that Conpψq $ ConpJq. The claim then follows since clearly pψ^ConpJqq $ ϕ. q

Corollary 2.2.8. Let f be monotonic. Suppose that for all consistent ϕ,
(i) ϕ^ Conpϕq implies fpϕq and
(ii) fpϕq strictly implies ϕ.
Then the intersection of the ranges of f and Con in the Lindenbaum algebra contains a true
ideal.

Proof. Let ϕ be a sentence such that ϕ $ ConpJq and

ϕ $ @ζpConpζq Ñ Conpζ ^ fpζqqq.

Note that both of these sentences are true, and hence ϕ is in an element of a true ideal. By
the previous proposition, there is a ψ such that rψ ^ Conpψqs “ rϕs. By Remark 2.2.6 there
is a θ such that rfpθqs “ rψ ^ Conpψqs, that is, ϕ is in the range of f . q

2.3 Iterating Con into the transfinite
By analogy with Martin’s Conjecture, we would like to show that there is a natural well-
ordered hierarchy of monotonic functions and that the successor for this well-ordering is
induced by Con. Thus, we define the iterates of Con along elementary presentations of
well-orderings.
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Definition 2.3.1. By an elementary presentation of a recursive well-ordering we mean a
pair pD,ăq of elementary formulas, such that (i) the relation ă well-orders D in the standard
model of arithmetic and (ii) EA proves that ă linearly orders the elements satisfying D, (iii)
it is elementarily calculable whether an element represents zero or a successor or a limit
and (iv) the elementary formulas defining the set of limit ordinals and the successor relation
provably in EA satisfy their corresponding first order definitions in terms of ă.

Definition 2.3.2. Given an elementary presentation xα,ăy of a recursive well-ordering and
a sentence ϕ, we use Gödel’s fixed point lemma to define sentences Con‹pϕ, βq for β ă α as
follows.

EA $ Con‹pϕ, βq Ø @γ ă β,Conpϕ^Con‹pϕ, γqq.

We use the notation Conβpϕq for Con‹pϕ, βq.

Remark 2.3.3. Note that, since the following clauses are provable in EA.

• Con0
pϕq Ø J

• Conγ`1
pϕq Ø Conpϕ^ Conγpϕqq

• Conλpϕq Ø @γ ă λ,Conγpϕq for λ a limit.

Note that this hierarchy is proper for true ϕ by Gödel’s second incompleteness theorem.
We need to prove that for transfinite α, Conα is monotonic over the Lindenbaum algebra
of EA. Before proving this claim we recall Schmerl’s [87] technique of reflexive transfinite
induction. Note that “Prpϕq” means that ϕ is provable in EA.

Proposition 2.3.4. (Schmerl) Suppose that ă is an elementary linear order and that EA $
@αpPrp@β ă α,Apβqq Ñ Apαqq. Then EA $ @αApαq.

Proof. From EA $ @αpPrp@β ă α,Apβqq Ñ Apαqq we infer

EA $ Prp@αApαqq Ñ @αPrp@β ă α,Apβqq

Ñ @αApαq.

Löb’s theorem, i.e.,
if EA $ Prpζq Ñ ζ, then EA $ ζ,

then yields EA $ @αApαq. q

Proposition 2.3.5. If ϕ $ ψ, then Conαpϕq $ Conαpψq.

Proof. Let Apβq denote the claim that Conβpϕq $ Conβpψq.
We want to prove that Apαq, without placing any restrictions on α. We prove the

equivalent claim that EA $ Apαq. By Proposition 2.3.4, it suffices to show that

EA $ @αpPrp@β ă α,Apβqq Ñ Apαqq.
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Reason within EA. Suppose that Prp@β ă α,Apβqq, which is to say that

Prp@β ă α,PrpConβpϕq Ñ Conβpψqqq.

Since Conαpϕq contains EA, we infer that

Conαpϕq $ @β ă αPrpConβpϕq Ñ Conβpψqq.

Since Conαpϕq proves that for all β ă α, EA &  Conβpϕq we infer that

Conαpϕq $ @β ă αConpConβpψqq.

Thus,
Conαpϕq $ @β ă αpConβpψqq.

This concludes the proof of the proposition. q

Thus, for each predicate Conα the function

ϕ ÞÑ pϕ^ Conαpϕqq

is monotonic over the Lindenbaum algebra of EA.
In this section we show that the functions given by iterated consistency are minimal with

respect to each other. We fix an elementary presentation α of a recursive well-ordering. We
assume that f is a monotonic function such that for every consistent ϕ, fpϕq strictly implies
ϕ ^ Conβpϕq for all β ă α. We would like to relativize the proof of Lemma 2.2.1 to Conβ.
However, the proof of Lemma 2.2.1 relied on the truth of the principle

@ζpConpζq Ñ Conpζ ^ fpζqqq.

It is not in general clear that Conαpϕq implies Conαpϕ^ fpϕqq. To solve this problem, we
define a sequence of true sentences pθβqβďα such that for every sentence ϕ, if ϕ $ θβ then
Conβpϕq implies Conβpϕ^ fpϕqq. Thus, we are able to relativize the proof of Lemma 2.2.1
for Conβ to sentences that imply θβ.

Definition 2.3.6. Given an elementary presentation α of a recursive well-ordering, we use
Gödel’s fixed point lemma to define sentences θ‹pβq for β ă α as follows.

EA $θ‹pβq Ø

@γ ă βpTrueΠ3pθ
‹
pγqqq ^ @ζ

´

`

@γ ă βPrpζ Ñ θ‹pγqq
˘

Ñ
`

Conβpζq Ñ Conβpζ ^ fpζqq
˘

¯

.

We use the notation θβ for θ‹pβq.

Remark 2.3.7. Note that every sentence in the sequence pθβqβďα has complexity Π0
3. Note

moreover that for a successor β ` 1, θβ`1 is equivalent to

θβ ^ @ζ
`

Prpζ Ñ θβq Ñ
`

Conβ`1
pζq Ñ Conβ`1

pζ ^ fpζqq
˘˘

.
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Lemma 2.3.8. Let f be monotonic such that, for all ϕ,
(i) ϕ^ Conαpϕq implies fpϕq,
(ii) if rfpϕqs ‰ rKs, then fpϕq strictly implies ϕ^ Conβpϕq for all β ă α.
Then for each β ď α, the sentence θβ is true.

Proof. Let f be as in the statement of the lemma. We prove the claim by induction on
β ď α. The base case β “ 0 is trivial.

For the successor case we assume that β ă α and that θβ is true; we want to show
that θβ`1 is true. So let ζ be a sentence such that ζ $ θβ. We want to show that Conβ`1

pζq
implies Conβ`1

pζ ^  fpζqq. We prove the contrapositive, that  Conβ`1
pζ ^  fpζqq implies

 Conβ`1
pζq. So suppose  Conβ`1

pζ ^ fpζqq, i.e.,

ζ ^ fpζq $  Conβpζ ^ fpζqq. (:)

We reason as follows.
Since ζ $ θβ, ζ $ @γ ă β,TrueΠ3pθγq. From this we infer

ζ $ Prpζ Ñ @γ ă β,TrueΠ3pθγqq (‹)

by Σ0
1 completeness. Moreover, since ζ $ θβ,

ζ $ @ϕ
``

@γ ă βPrpϕÑ θγq
˘

Ñ
`

Conβpϕq Ñ Conβpϕ^ fpϕqq
˘˘

by the definition of θβ.
$ @γ ă βPr

`

ζ Ñ θγ
˘

Ñ
`

Conβpζq Ñ Conβpζ ^ fpζqq
˘

by instantiation.
$ Conβpζq Ñ Conβpζ ^ fpζqq by (‹).

ζ ^ fpζq $  Conβpζ ^ fpζqq by (:).
$  Conβpζq by logic.

ζ $ Conβpζq Ñ fpζq by logic.

Thus, pζ ^ Conβpζqq $ fpζq. Since fpϕq always strictly implies ϕ^ Conβpϕq, we infer that

rζ ^ Conβpζqs “ rKs.

This is to say that  Conβ`1
pζq.

For the limit case we let β be a limit ordinal and assume that for every γ ă β, θγ is
true. We want to show that θβ is true. Let ζ be a sentence such that for every γ ă β, ζ $ θγ.
We want to show that Conβpζq implies Conβpζ ^  fpζqq. So assume that Conβpζq, i.e., for
every γ ă β,Conγpζq. Let γ ă β. Since β is a limit ordinal, γ ` 1 ă β. So by the inductive
hypothesis θγ`1 is true. That is, by the definition of θγ`1,

@ϕ
`

PrpϕÑ θγq Ñ pConγpϕq Ñ Conγpϕ^ fpϕqqq
˘

.
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By instantiation, we infer that

Prpζ Ñ θγq Ñ pConγpζq Ñ Conγpζ ^ fpζqqq.

Since ζ $ θγ and Conγpζq, this means that Conγpζ ^  fpζqq. Since γ was a generic ordinal
less than β, we get that

@γ ă β,Conγpζ ^ fpζqq,

i.e., Conβpζq. This completes the proof of the lemma. q

Theorem 2.3.9 (Restatement of Theorem 2.1.5). Let f be monotonic. Suppose that for all
ϕ,
(i) ϕ^ Conαpϕq implies fpϕq,
(ii) if rfpϕqs ‰ rKs, then fpϕq strictly implies ϕ^ Conβpϕq for all β ă α.
Then for every true χ, there is a true ψ such that ψ $ χ and rfpψqs “ rψ ^ Conαpψqs.

Proof. Let χ be a true sentence. By the lemma, θα is true. So

ϕ :“ χ^ θα

is true. We let
ψ :“ ϕ^ pfpϕq Ñ Conαpϕqq.

Note that ψ $ χ. We now show that rψ ^ Conαpψqs “ rfpψqs.
Claim. fpψq $ pψ ^ fpϕqq.

Since f is monotonic.
Claim. pψ ^ fpϕqq $ pϕ^ Conαpϕqq.

By the definition of ψ.
Claim. pϕ^ Conαpϕqq $ pψ ^ Conαpψqq.

It is clear from the definition of ψ that pϕ ^ Conαpϕqq $ ψ. So it suffices to show that
pϕ^ Conαpϕqq $ Conαpψq.

ϕ^ Conαpϕq $ @ζ
``

@β ă αPrpζ Ñ θβq
˘

Ñ
`

Conαpζq Ñ Conαpζ ^ fpζqq
˘˘

by choice of ϕ.
$ @β ă αPrpϕÑ θβq Ñ

`

Conαpϕq Ñ Conαpϕ^ fpϕqq
˘

by instantiation.
$ @β ă αPrpϕÑ θβq Ñ Conαpϕ^ fpϕqq by logic.

Since Conαpϕ^ fpϕqq $ Conαpψq, to prove the desired claim it suffices to show that

ϕ^ Conαpϕq $ @β ă αPrpϕÑ θβq.
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We reason as follows.

ϕ $ θα by choice of ϕ.
$ @β ă αpTrueΠ3θβq by definition of θα.
$ PrpϕÑ @β ă αpTrueΠ3θβqq by Σ0

1 completeness.
$ @β ă αPrpϕÑ TrueΠ3θβq

$ @β ă αPrpϕÑ θβq

It is immediate from the preceding claims that fpψq $ ψ ^ Conαpψq. By assumption,
ψ ` Conαpψq $ fpψq, so it follows that rfpψqs “ rψ ^ Conαpψqs. q

Corollary 2.3.10 (Restatement of Corollary 2.1.6). There is no monotonic f such that for
all ϕ, if rϕ^ Conαpϕqs ‰ rKs, then both
(i) ϕ^ Conαpϕq strictly implies fpϕq and
(ii) fpϕq strictly implies ϕ^ Conβpϕq for all β ă α.

2.4 Finite iterates of Con are inevitable
In this section and the next section we prove that the iterates of Con are, in a sense, inevitable.
First we show that, for every natural number n, if a monotonic function f is always bounded
by Conn, then it is somewhere equivalent to Conk for some k ď n. In §5, we turn to
generalizations of this result into the effective transfinite.

Theorem 2.4.1 (Restatement of Theorem 2.1.7). Let n P N. Let f be a monotonic function
such that for every ϕ,
(i) ϕ^ Connpϕq implies fpϕq and
(ii) fpϕq implies ϕ.
Then for some ϕ and some k ď n, rfpϕqs “ rϕ^ Conkpϕqs ‰ rKs.

Proof. We suppose, towards a contradiction, that there is no ψ and no k ď n such that
rfpψqs “ rψ ^ Conkpψqs ‰ rKs. We then let ϕ1 be a true statement such that

ϕ1 $ @ζpConpζq Ñ Conpζ ^ fpζqqq
ϕ1 $ @k@ζ

`

Conk`1
pζq Ñ  Pr

`

pζ ^ Conkpζqq Ø fpζq
˘˘

.

The first condition is that ϕ1 proves that for every consistent ϕ, fpϕq strictly implies ϕ.
The second condition is that ϕ1 proves that fpζq never coincides with ζ ^ Conkpζq, unless
rζ ^ Conkpζqs “ rKs.

We define a sequence of statements, starting with ϕ1, as follows:

ϕk`1 :“ ϕk ^ pfpϕkq Ñ Conkpϕkqq.
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We will use our assumption to show that, for all k, ϕk ^ Conkpϕkq $ Conkpϕk`1q. From this
we will deduce that rfpϕn`1qs “ rϕn`1 ^ Connpϕn`1qs ‰ rKs, contradicting the assumption
that f and Conn never coincide. Most of the work is contained in the proof of the following
lemma.
Lemma 2.4.2. For all k, for all j ě k,

`

ϕk ^ Conkpϕkq
˘

$ Conkpϕjq.

Proof. We prove the claim by a double induction. The primary induction is on k. For the
base case k “ 1, we prove the claim by induction on j. The base case j “ 1 follows
trivially. For the inductive step we assume that

`

ϕ1 ^ Conpϕ1q
˘

$ Conpϕjq and show that
`

ϕ1 ^ Conpϕ1q
˘

$ Conpϕj`1q.

ϕ1 ^ Conpϕ1q $ @ζpConpζq Ñ Conpζ ^ fpζqqq by choice of ϕ1.

$ Conpϕjq Ñ Conpϕj ^ fpϕjqq by instantiation.
ϕ1 ^ Conpϕ1q $ Conpϕjq by the inductive hypothesis.

$ Conpϕj ^ fpϕjqq by logic.
$ Conpϕj`1q by definition of ϕj`1.

For the inductive step we assume that the claim is true of k ´ 1, i.e.,

@j ě k ´ 1
``

ϕk´1 ^ Conk´1
pϕk´1q

˘

$
`

Conk´1
pϕjq

˘˘

.

We prove the claim for k. Once again, we prove the claim by induction on j. The base case
j “ k follows trivially. For the inductive step we assume that ϕk ^ Conkpϕkq $ Conkpϕjq.
We want to prove that ϕk ^ Conkpϕkq $ Conkpϕj`1q.

ϕk ^ Conkpϕkq $ @x@ζ
`

Conx`1
pζq Ñ  Pr

`

pζ ^ Conxpζqq Ø fpζq
˘˘

by choice of ϕ1.
$ Conkpϕjq Ñ  Pr

`

pϕj ^ Conk´1
pϕjqq Ø fpϕjq

˘

by instantiation.
ϕk ^ Conkpϕkq $ Conkpϕjq by the inner inductive hypothesis.

$  Pr
`

pϕj ^ Conk´1
pϕjqq Ø fpϕjq

˘

by logic.

Thus, ϕk ^ Conkpϕkq proves that one of the following cases holds.

pϕj ^ Conk´1
pϕjqq & fpϕjq

fpϕjq & pϕj ^ Conk´1ϕjq

We now show that ϕk ^ Conkpϕkq refutes the second option.
Claim. ϕk ^ Conkpϕkq $ Pr

`

fpϕjq Ñ pϕj ^ Conk´1ϕjq
˘

.
By the outer inductive hypothesis, EA proves the following conditional:

θ :“
`

pϕj´1 ^ Conk´1
pϕj´1qq Ñ pConk´1

pϕjqq
˘

.
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Thus, fpϕjq (which contains EA) also proves θ. We now show that fpϕjq $ Conk´1
pϕjq.

fpϕjq $ ϕj ^ fpϕj´1q since f is monotonic.
$ pϕj´1 ^ pfpϕj´1q Ñ Conj´1

pϕj´1qqq ^ fpϕj´1q by the definition of ϕj.
$ ϕj´1 ^ Conj´1

pϕj´1q by logic.
$ ϕj´1 ^ Conk´1

pϕj´1q since j ě k.
$ Conk´1

pϕjq since fpϕjq proves θ.

By Σ0
1 completeness, pϕk ^ Conkpϕkqq $ Pr

`

fpϕjq Ñ Conk´1
pϕjq

˘

.

Claim. pϕk ^ Conkpϕkqq $ Conkpϕj`1q.

We reason as follows.

pϕk ^ Conkpϕkqq $  Pr
`

pϕj ^ Conk´1
pϕjqq Ñ fpϕjq

˘

by the previous claim.
$ Conpϕj ^ fpϕjq ^ Conk´1

pϕjqq.

$ Conpϕj`1 ^ Conk´1
pϕjqq by the definition of ϕj`1.

$ Conpϕj`1 ^ Conk´1
pϕj`1qq by the outer inductive hypothesis.

$ Conkpϕj`1q by definition of Conk.

This concludes the proof of the lemma. q

As an instance of the lemma, we get that pϕn ^ Connpϕnqq $ Connpϕn`1q. We reason as
follows.

fpϕn`1q $ ϕn ^ pfpϕnq Ñ Connpϕnqq by the definition of ϕn`1.
fpϕn`1q $ fpϕnq since f is monotonic.

$ Connpϕnq by logic.
$ Connpϕn`1q by the lemma.

On the other hand, ϕn`1 ^ Connpϕn`1q $ fpϕn`1q since f is everywhere bounded by Conn.
Thus, rfpϕn`1qs “ rϕn`1^Connpϕn`1qs, contradicting the assumption that there is no ψ and
no k ď n such that rfpψqs “ rψ ^ Conkpψqs ‰ rKs. q

2.5 Transfinite iterates of Con are inevitable.
Generalizing the proof of Theorem 2.4.1 into the transfinite poses the following difficulty.
Recall that the proof of Theorem 2.4.1 makes use of a sequence of sentences starting with
ϕ0 :“ J where

ϕk`1 :“ ϕk ^ pfpϕkq Ñ Conkpϕkqq.
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It is not clear what the ωth sentence in the sequence should be. A natural idea is that for a
limit ordinal λ the corresponding “limit sentence” should quantify over the sentences in the
sequence beneath it and express, roughly,

@γ ă λ
`

Truepϕγq ^ pTruepfpϕγqq Ñ Conγpϕγqq
˘

.

However, if the sentences in the sequence pϕγqγăλ have unbounded syntactic complexity,
then we are not guaranteed to have a truth-predicate with which we can quantify over them.

Nevertheless, we show that Theorem 2.4.1 generalizes into the transfinite given an ad-
ditional assumption on complexity. Note that ϕ ÞÑ pϕ ^ Conpϕqq can be factored into two
functions—the identity and ϕ ÞÑ Conpϕq—the latter of which always produces a Π0

1 sentence.
For the rest of this section, we will focus on monotonic functions ϕ ÞÑ ϕ ^ fpϕq where f is
monotonic and also fpϕq P Π0

1 for all ϕ.

Definition 2.5.1. A function f is Π0
1 if fpϕq P Π0

1 for all ϕ.

For the next theorem we fix an elementary presentation Γ of a recursive well-ordering. In
the statement of the theorem and throughout the proof α, β, γ, δ, etc. are names of ordinals
from the notation system Γ.

Theorem 2.5.2 (Restatement of Theorem 2.1.9). Let f be a monotonic Π0
1 function. Then

either
(i) for some β ď α and some ϕ, rϕ^ fpϕqs “ rϕ^ Conβpϕqs ‰ rKs or
(ii) for some ϕ, pϕ^ Conαpϕqq & fpϕq.

Proof. Let f be a monotonic Π0
1 function such that for every ϕ,

pϕ^ Conαpϕqq $ pϕ^ fpϕqq.

We assume, for the sake of contradiction, that there is no sentence ζ and no β ď α such that
rζ ^ Conβpζqs “ rζ ^ fpζqs ‰ rKs. We then let ϕ be the conjunction of the following four
sentences.

@ζpConpζq Ñ Conpζ ^ fpζqqq

@β ď α@ζ
`

Conβpζq Ñ @δ ă β, Pr
`

pζ ^ Conδpζqq Ø pζ ^ fpζqq
˘˘

@ζ@ηpPrpζ Ñ ηq Ñ Prpfpζq Ñ fpηqqq

@x
`

PrpTrueΠ0
2
pxqq Ñ TrueΠ0

2
pxq

˘

The first expresses that for every consistent ϕ, fpϕq strictly implies ϕ. The second sen-
tence expresses that if β ă α, then fpζq and ζ^Conβpζq never coincide, unless rζ^Conβpζqs “
rKs . The third sentence expresses the monotonicity of f . The fourth sentence expresses the
Π0

2 soundness of EA. Note that each of these sentences is true, so their conjunction ϕ is also
true. Each of the four sentences is Π0

2, whence so is ϕ.
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We are interested in the following sequence pϕβqβďΓ. Note that the sentences in the
sequence pϕβqβďΓ all have complexity Π0

2. Note moreover that since ϕ1 is true, so is ϕβ for
every β.

ϕ1 :“ ϕ.

ϕγ :“ ϕ1 ^ @δ ă γ
`

TrueΠ1pfpϕδqq Ñ Conδpϕδq
˘

for γ ą 1.

Formally, we define the sequence pϕβqβďΓ by Gödel’s fixed point lemma as in Definition
2.3.6.
Remark 2.5.3. We may assume that the ordinal notation system Γ is provably linear in EA.
Thus, EA $ @β ď α, @γ ă βpTrueΠ2pϕβq Ñ TrueΠ2pϕγqq.

Our goal is to show that

rϕα`1 ^ Conαpϕα`1qs “ rϕα`1 ^ fpϕα`1qs

contradicting the assumption that f and Conα never coincide. The main lemmas needed to
prove this result are the following.
Lemma 2.5.4. EA $ @γ ď αPr

`

pϕγ ^ fpϕγqq Ñ ϕα
˘

.

Lemma 2.5.5. EA $ @β ď α@γ ď βPr
`

pϕβ ^ Conγpϕβqq Ñ Conγpϕβ ^ fpϕβqq
˘

.

Lemma 2.5.4 is needed to derive Lemma 2.5.5. We now show how we use Lemma 2.5.5
to derive Theorem 3.2.4. As an instance of Lemma 2.5.5, letting α “ β “ γ, we infer that

EA $ Pr
`

pϕα ^ Conαpϕαqq Ñ Conαpϕα ^ fpϕαqq
˘

.

From the soundness of EA, we infer that

ϕα ` Conαpϕαq $ Conαpϕα ^ fpϕαqq. (¯)

We then reason as follows.

ϕα`1 $ ϕα ^ pfpϕαq Ñ Conαpϕαqq by the definition of ϕα`1.
fpϕα`1q $ fpϕαq since f is monotonic.

ϕα`1 ` fpϕα`1q $ ϕα ^ Conαpϕαq by logic.
$ Conαpϕα`1q by ¯.

On the other hand, ϕα`1 ` Conαpϕα`1q $ fpϕα`1q since f is everywhere bounded by Conα.
Since ϕ1 is true, so too is ϕα`1, whence we infer that

rϕα`1 ^ Conαpϕα`1qs “ rϕα`1 ^ fpϕα`1qs ‰ rKs,

contradicting the claim that there is no sentence ζ and no β ď α such that rζ ^ Conβpζqs “
rζ ^ fpζqs ‰ rKs. q

It remains to prove Lemma 2.5.4 and Lemma 2.5.5. We devote one subsection to each.
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Proof of Lemma 2.5.4
In this subsection we prove Lemma 2.5.4. First we recall the statement of the lemma.

Lemma 2.5.6 (Restatement of Lemma 2.5.4).

EA $ @γ ď α
`

Prpϕγ ^ fpϕγqq Ñ ϕα
˘

.

Proof. We reason in EA. Let γ ď α. We assume that

TrueΠ2pϕγq ^  TrueΠ1pfpϕγqq. (η)

We we want to derive ϕα, i.e.

ϕ1 ^ @σ ă αpTrueΠ1pfpϕσqq Ñ Conσpϕσqq.

The first conjunct follows trivially from the assumption that TrueΠ2pϕγq. We now prove
the second conjunct of ϕα in two parts, first for all σ such that α ą σ ě γ and then for all
σ ă γ.

α ą σ ě γ : From the assumption that TrueΠ0
2
pϕγq we infer that ϕ1, whence we infer

that f is monotonic. Thus, for all δ ě γ, fpϕδq $ fpϕγq, i.e., EA $
`

fpϕδq Ñ fpϕγq
˘

. From
ϕ1 we also infer that EA is Π0

2 sound, and so we infer that for all δ ě γ, TrueΠ1pfpϕδqq Ñ
TrueΠ1pfpϕγqq. From the assumption that  TrueΠ1pfpϕγqq we then infer that for all δ ě γ,
 TrueΠ1pfpϕδqq, whence for all δ ě γ, TrueΠ1pfpϕδqq Ñ Conδpϕδq.

σ ă γ : By Remark 2.5.3, η implies that

@σ ă γpTrueΠ1

`

fpϕσqq Ñ Conσpϕσq
˘

.

This completes the proof of Lemma 2.5.4. q

Proof of Lemma 2.5.5
In this subsection we prove Lemma 2.5.5. We recall the statement of Lemma 2.5.5.

Lemma 2.5.7 (Restatement of Lemma 2.5.5).

EA $ @β ď α@γ ď βPr
`

ϕβ ` Conγpϕβq Ñ Conγpϕβ ^ fpϕβqq
˘

.

The proof of this lemma is importantly different from the proof of Lemma 2.4.2. In
particular, to push the induction through limit stages we need to know not only that the
inductive hypothesis is true but also that it is provable in EA. We resolve this issue by using
Schmerl’s technique of reflexive transfinite induction (see Proposition 2.3.4).

In the proof of the lemma, we let Cpγ, δq abbreviate the claim that

ϕδ ` Conγpϕδq $ Conγpϕδ ^ fpϕδqq.
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Proof. We want to show that

EA $ @β ď αp@γ ď βpCpγ, βqqq.

By Proposition 2.3.4 it suffices to show that

EA $ @αpPrp@β ď α@γ ď βCpγ, βqq Ñ @γ ď αCpγ, αqq.2

Thus, we reason in EA and fix α. We assume that

Prp@β ď α, @γ ď β, Cpγ, βqq. (4)

We let γ ď α and we want to show that Cpγ, αq.
Since ϕα $ ϕ we infer that

ϕα ` Conγpϕαq $ @δ ă γ, Pr
`

pϕα ^ Conδpϕαqq Ø pϕα ^ fpϕαqq
˘

. (7)

We first note that both

ϕα $ @δ ă γpTrueΠ1pfpϕδqq Ñ Conδpϕδqq by the definition of ϕα and also
ϕα ` fpϕαq $ @δ ă γPrpfpϕαq Ñ fpϕδqq since ϕ1 proves the monotonicity of f .

$ @δ ă γpfpϕαq Ñ TrueΠ1pfpϕδqqq since ϕ1 proves the Π0
2 soundness of EA.

$ @δ ă γ,TrueΠ1pfpϕδqq by logic.

Thus, we may reason as follows.

ϕα ` fpϕαq $ @δ ă γ,Conδpϕδq
$ @δ ă γ,Conδpϕδ ^ fpϕδqqq since (4) delivers Cpδ, δq.
$ @δ ă γ,Conδpϕαq by Lemma 2.5.4.

Thus, by Σ0
1 completeness,

EA $ @δ ă γPr
`

pϕα ^ fpϕαqq Ñ Conδpϕαq
˘

.

Combined with (7), this delivers

ϕα ` Conγpϕαq $ @δ ă γ Pr
`

pϕα ^ Conδpϕαqq Ñ fpϕαq
˘

.

$ @δ ă γ,Conpϕα ^ fpϕαq ^ Conδpϕαqq.
$ @δ ă γ,Con

`

ϕα ^ fpϕαq ^ Conδpϕα ^ fpϕαqq
˘

since (4) delivers Cpδ, αq.
$ Conγpϕα ^ fpϕαqq.

This completes the proof of Lemma 2.5.5. q

2The reader might expect that we need to write “β ă α” instead of “β ď α” in the antecedent for this
to match the statement of Proposition 2.3.4. However, it is clear from the proof of Proposition 2.3.4 that
this suffices.
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Theorem 3.2.4 shows the inevitability of the consistency operator. For a sufficiently
constrained monotonic function f , f must coincide with an iterate of Con on some non-
trivial sentence. However, it is not clear from the proofs of Theorem 2.4.1 or Theorem 3.2.4
that f must coincide with Con on a true sentence.

Question 2.5.8. Let f be a monotonic Π0
1 function. Suppose that for every ϕ,

pϕ^ Conαpϕqq $ fpϕq.

Must there be some β ď α and some true ϕ such that

rϕ^ fpϕqs “ rϕ^ Conβpϕqs?

2.6 1-consistency and iterated consistency
Just as the Π0

1 fragments of natural theories can often be approximated by iterated con-
sistency statements, the Π0

2 fragments of natural theories can often be approximated by
iterated 1-consistency statements. A theory T is 1-consistent if T ` ThΠ0

1
pNq is consistent.

The 1-consistency of EA` ϕ can be expressed by the following Π0
2 sentence, 1Conpϕq:

@xpTrueΠ0
1
pxq Ñ Conpϕ^ TrueΠ0

1
pxqqq.

In this section, we investigate the relationship between 1-consistency and iterated con-
sistency. First, we show that 1Con majorizes every iterate of Conα.

Proposition 2.6.1 (Restatement of Proposition 2.1.11). For any elementary presentation α
of a recursive well ordering, there is a true sentence ϕ such that for every ψ, if ψ $ ϕ, then
pψ^ 1Conpψqq implies pψ^Conαpψqq. Moreover, if rψ^Conαpψqs ‰ rKs then pψ^ 1Conpψqq
strictly implies pψ ^ Conαpψqq.

Proof. Let α be an elementary presentation of a recursive well-ordering. Let ϕ be a true
sentence such that ϕ $ TIαΠ0

1
, i.e., ϕ implies the validity of transfinite induction along α for

Π0
1 predicates. We prove that

pϕ^ 1Conpϕqq $ Conα`1
pϕq.

Since ϕ^ 1Conpϕq $ TIαΠ0
1
, it suffices to show that:

Base case: pϕ^ 1Conpϕqq $ Conpϕq
Successor case: pϕ^ 1Conpϕqq $ @β ă αpConβpϕq Ñ Conβ`1

pϕqq

Limit case: pϕ^ 1Conpϕqq $ @λ
´

limpλq Ñ
`

p@β ă λConβpϕqq Ñ Conλpϕq
˘

¯

The base case and the limit case are both trivial. For the successor case we first
note that by the definition of 1Conpϕq,

1Conpϕq $ @xpTrueΠ0
1
pxq Ñ Conpϕ^ TrueΠ0

1
pxqqq,
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and so by substituting Conβpϕq in for x,

1Conpϕq $ TrueΠ0
1
pConβpϕqq Ñ Conpϕ^ TrueΠ0

1
pConβpϕqqq. (‘)

Thus, we reason as follows.

1Conpϕq $ Conβpϕq Ñ Conpϕ^ TrueΠ0
1
pConβpϕqqq by (‘).

Ñ Conpϕ^ Conβpϕqq.
Ñ Conβ`1

pϕq by the definition of Conβ`1.

It is clear that the implication ϕ^1Conpϕq $ ϕ^Conαpϕq is strict as long as rϕ^Conαpϕqs ‰
rKs. This completes the proof of the proposition. q

In light of the previous proposition, one might conjecture that 1Con is the weakest mono-
tonic function majorizing every function of the form Conα for some recursive well-ordering
α on true sentences. However, this is not so. To demonstrate this, we use a recursive linear
order that has no hyperarithmetic infinite descending sequences. Harrison [43] introduced
such an ordering with order-type ωCK1 ˆ p1 ` Qq; see also Feferman and Spector [28] who
consider such orderings in the context of iterated reflection principles. We use a presentation
H of Harrison’s ordering such satisfying the conditions explicated in Definition 2.3.1. We
note that since H has no hyperarithmetic descending sequences, transfinite induction along
H for Π0

1 properties is valid. Our idea is to produce a function stronger than each Conα but
weaker than 1Con by iterating Con along the Harrison linear order.

Theorem 2.6.2 (Restatement of Theorem 2.1.12). There are infinitely many monotonic
functions f such that for every recursive ordinal α, there is an elementary presentation a of
α such that f majorizes Cona on a true ideal but also 1Con majorizes f on a true ideal.

Proof. In Definition 2.3.2, we used Gödel’s fixed point lemma to produce iterates of Con
along an elementary well-ordering. We similarly use Gödel’s fixed point lemma to define
sentences Con‹pϕ, βq for β P H as follows.

EA $ Con‹pϕ, βq Ø @γ ăH β,Conpϕ^Con‹pϕ, γqq.

We use the notation Conβpϕq for Con‹pϕ, βq. Recall that we are assuming that it is ele-
mentarily calculable whether an element of H is zero or a successor or a limit. Thus, the
following clauses are provable in EA.

• Con0
pϕq Ø J

• Conγ`1
pϕq Ø Conpϕ^ Conγpϕqq

• Conλpϕq Ø @γ ăH λ,Conγpϕq for λ a limit.

Claim. For γ P H, the function ϕ ÞÑ Conγpϕq is monotonic.
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This follows immediately from Proposition 2.3.5. Note that in the statement of Lemma
2.3.4 we assume only that ă is an elementary linear ordering, not a well-ordering.
Claim. There are infinitely many monotonic functions f such that for every recursive well-
ordering α, there is an elementary presentation a of α such that f majorizes Cona on true
sentences.

If x ăH y then Conypϕq strictly implies Conxpϕq for every ϕ such that Conxpϕq ‰ rKs.
Given the order type of H, this means that for infinitely many γ, for every recursive well-
ordering α, Conγ majorizes Cona where a represents α in H.
Claim. 1Con majorizes Cona on true sentences for each a P H.

Since every Π0
1 definable subset of ω has an H-least element, the sentence TIHΠ0

1
, which

expresses the validity of transfinite induction along H for Π0
1 predicates, is true. But then

if ϕ $ TIHΠ0
1
, then for any γ P H, pϕ ^ 1Conpϕqq strictly implies pϕ ^ Conγpϕqq as long as

rpϕ^ Conγpϕqqs ‰ rKs, as in Proposition 2.6.1. q

2.7 An unbounded recursively enumerable set that
contains no true ideals

In this section we prove a limitative result. Theorem 4.1.2 demonstrates that if f is monotonic
and that for all consistent ϕ, (i) ϕ ^ Conpϕq implies fpϕq and (ii) fpϕq strictly implies ϕ,
then for cofinally many true ϕ, rfpϕqs “ rϕ^Conpϕqs. It is natural to conjecture that cofinal
equivalence with Con be strengthened to equivalence to Con in the limit, i.e., on a true
ideal. One strategy to strengthen Theorem 4.1.2 in this way would be to show that every
recursively enumerable set that contains arbitrarily strong true sentences and that is closed
under provable equivalence contains a true ideal.

We now show that the aforementioned strategy fails. To this end, we define a recursively
enumerable set A that contains arbitrarily strong true sentences and that is closed under
provable equivalence but does not contain any true ideals. We are grateful to Matthew
Harrison-Trainor for simplifying the proof of the following proposition.

Proposition 2.7.1 (Restatement of Proposition 2.1.13). There is a recursively enumerable
set A that contains arbitrarily strong true sentences and that is closed under EA provable
equivalence but does not contain any true ideals.

Proof. Let tϕ0, ϕ1, ...u be an effective Gödel numbering of the language of arithmetic. We
describe the construction of A in stages. During a stage n we may activate a sentence ψ, in
which case we say that ψ is active until it is deactivated at some later stage n ` k. After
describing the construction of A we verify that A has the desired properties.

Stage 0: Numerate ϕ0 and  ϕ0 into A. Activate the sentences pϕ0 ^ Conpϕ0qq and
p ϕ0 ^ Conp ϕ0qq.
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Stage n+1: There are finitely many active sentences. For each such sentence ψ, numer-
ate θ0 :“ pψ ^ ϕn`1q and θ1 :“ pψ ^ ϕn`1q into A. Deactivate the sentence ψ and activate
the sentences pθ0 ^ Conpθ0qq and pθ1 ^ Conpθ1qq.

We dovetail the construction with a search through EA proofs. If we ever see that
EA $ ϕ Ø ψ for some ϕ that we have already numerated into A, then we numerate ψ into
A.

Now we check that A has the desired properties. It is clear that A is recursively enumer-
able and that A is closed under EA provable equivalence.
Claim. A contains arbitrarily strong true sentences. That is, for each true sentence ϕ, there
is a true sentence ψ such that ψ $ ϕ and ψ P A.

At any stage in the construction of A, there are finitely many active sentences, ψ0, ...,
ψk. An easy induction shows that exactly one of ψ0, ..., ψk is true. Indeed, exactly one of ϕ0
or  ϕ0 is true, and hence so is exactly one of ϕ0 ^ Conpϕ0q and  ϕ0 ^ Conp ϕ0q. And if θ
is true, then so is exactly one of ζ0 :“ θ^ϕk and ζ1 :“ θ^ ϕk, and hence so too is exactly
one of ζ0 ^ Conpζ0q and ζ1 ^ Conpζ1q.

Let ϕk be a true sentence. At stage k in the construction of A there are only finitely
many active sentences ψ0, ..., ψn. We have already seen that exactly one of ψi is true. But
then ϕk ^ ψi is true, pϕk ^ ψi $ ϕkq, and pϕk ^ ψiq is numerated into A.
Claim. A contains no true ideals.

An easy induction shows that if ψ0 and ψ1 are both active at the same stage, then for
any θ, if θ implies both ψ0 and ψ1 then θ P rKs.

Let ϕ be a true sentence in A. By the previous remark, the only sentences in A that
strictly imply ϕ are (i) EA refutable sentences and (ii) sentences that imply ϕ^Conpϕq. Since
the Lindenbaum algebra of EA is dense, this means there is some ψ such that pϕ^ Conpϕqq
strictly implies ψ strictly implies ϕ but ψ R A. q

The following questions remain.

Question 2.7.2. Is the relation of cofinal agreement on true sentences an equivalence rela-
tion on recursive monotonic operators?

Question 2.7.3. Let f be recursive and monotonic. Suppose that for all consistent ϕ,
(i) ϕ^ Conpϕq implies fpϕq and
(ii) fpϕq implies ϕ.
Must f be equivalent to the identity or to Con on a true ideal?
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Chapter 3

A note on the consistency operator

3.1 Introduction
Gödel’s second incompleteness theorem states that no consistent sufficiently strong effectively
axiomatized theory T proves its own consistency statement ConT . Using ad hoc proof-
theoretic techniques (namely, Rosser-style self-reference) one can construct Π1 sentences ϕ
that are not provable in T such that T ` ϕ is a strictly weaker theory than T ` ConT .
Nevertheless, ConT seems to be the weakest natural Π1 sentence that is not provable in T .
Without a mathematical definition of “natural,” however, it is difficult to formulate a precise
conjecture that would explain this phenomenon. This is a special case of the well known
empirical observation that natural axiomatic theories are pre-well-ordered by consistency
strength, which S. Friedman, Rathjen, and Weiermann [33] call one of the “great mysteries
in the foundations of mathematics.”

Recursion theorists have observed a similar phenomenon in Turing degree theory. One can
use ad hoc recursion-theoretic methods like the priority method to construct non-recursive
Σ1 definable sets whose Turing degree is strictly below that of 01. Nevertheless, 01 seems
to be the weakest natural non-recursive r.e. degree. Once again, without a mathematical
definition of “natural,” however, it is difficult to formulate a precise conjecture that would
explain this phenomenon.

A popular approach to studying natural Turing degrees is to focus on degree-invariant
functions; a function f on the reals is degree-invariant if, for all reals A and B, A ”T B im-
plies fpAq ”T fpBq. The definitions of natural Turing degrees tend to relativize to arbitrary
degrees, yielding degree invariant functions on the reals; for instance, the construction of 01
relativizes to yield the Turing Jump. Sacks [85] asked whether there is a degree invariant
solution to Post’s Problem. Recall that a function W : 2ω Ñ 2ω is a recursively enumerable
operator if there is an e P ω such that, for each A, W pAq “ WA

e , the eth set recursively
enumerable in A.

Question 3.1.1 (Sacks). Is there a degree-invariant recursively enumerable operator W such
that for every real A, A ăT WA

e ăT A
1?
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Though the question remains open, Slaman and Steel [94] proved that there is no order-
preserving solution to Post’s Problem. Recall that a function f on the reals is order-
preserving if, for all reals A and B, A ďT B implies fpAq ďT fpBq.

In [68], Montalbán and the author proved a proof-theoretic analogue of a negative answer
to Sacks’ question for order-preserving functions. Let T be a sound, sufficiently strong
effectively axiomatized theory in the language of arithmetic, e.g., EA.1 A function g is
monotone if, for all sentences ϕ and ψ, T $ ϕÑ ψ implies T $ gpϕq Ñ gpψq (this is just to
say that g induces a monotone function on the Lindenbaum algebra of T ). Let rϕs denote
the equivalence class of ϕ modulo T provable equivalence, i.e., rϕs :“ tψ : T $ ϕØ ψu. One
of the main theorems of [68] is the following.

Theorem 3.1.2 (Montalbán–W.). Let g be recursive and monotone such that:

• for all ϕ, T ` ConT pϕq $ gpϕq

• for all consistent ϕ, T ` ϕ & gpϕq

Then for every true ϕ, there is a true ψ such that T ` ψ $ ϕ and

rψ ^ gpψqs “ rψ ^ ConT pψqs.

To state a corollary of this theorem, we recall that ϕ strictly implies ψ if one of the
following holds:

(i) T ` ϕ $ ψ and T ` ψ & ϕ.

(ii) rϕs “ rψs “ rKs.

Corollary 3.1.3. There is no recursive monotone g such that for every ϕ,
`

ϕ^ ConT pϕq
˘

strictly implies
`

ϕ^ gpϕq
˘

and
`

ϕ^ gpϕq
˘

strictly implies ϕ.

The Slaman–Steel theorem suggests a strengthening of these results. Recall that a cone
in the Turing degrees is any set of the form tB : B ěT Au where A is a Turing degree. The
following is a special case of a theorem due to Slaman and Steel.

Theorem 3.1.4 (Slaman–Steel). Let f : 2ω Ñ 2ω be Borel and order-preserving. Then one
of the following holds:

1. fpAq ďT A on a cone.

2. A1 ďT fpAq on a cone.
1EA is a theory in the language of arithmetic (with exponentiation) axiomatized by the axioms of Robin-

son’s Q, recursive axioms for exponentiation, and induction for bounded formulas.
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Montalbán and the author asked whether Theorem 3.1.2 could be strengthened in the
style of the Slaman–Steel theorem, i.e., by showing that all increasing monotone recursive
functions that are no stronger than the consistency operator are equivalent to the consistency
operator in the limit. In this note we provide a positive answer to this question.

To sharpen the notion of the “limit behavior” of a function, we introduce the notion of a
true cone. A cone is any set C of the form tψ : T`ψ $ ϕu where ϕ is a sentence. A true cone
is a cone that contains a true sentence. In §2 we prove that all recursive monotone operators
that produce sentences of some bounded arithmetical complexity are bounded from below
by the consistency operator on a true cone.

Theorem 3.1.5. Let g be recursive and monotone such that, for some k P N, for all ϕ, gpϕq
is Πk. Then one of the following holds:

1. There is a true cone C such that for all ϕ P C,

T ` ϕ $ gpϕq.

2. There is a true cone C such that for all ϕ P C,

T ` ϕ` gpϕq $ ConT pϕq.

In §3 we prove that the condition that g is recursive cannot be weakened. More pre-
cisely, we exhibit a monotone 01 recursive function which vacillates between behaving like
the identity operator and behaving like the consistency operator.

Theorem 3.1.6. There is a 01 recursive monotone function g such that, for every ϕ, gpϕq
is Π1, yet for arbitrarily strong true sentences

rϕ^ gpϕqs “ rϕ^ ConT pϕqs

and for arbitrarily strong true sentences

rϕ^ gpϕqs “ rϕs.

Though Theorem 3.1.5 is a considerable strengthening of the result in [68], we conjecture
that it admits of a dramatic improvement. We remind the reader that the aforementioned
theorem of Slaman and Steel is a special case of a sweeping classification of increasing Borel
order-preserving function. We say that a function f is increasing if, for all A, A ďT fpAq.

Theorem 3.1.7 (Slaman–Steel). Let f : 2ω Ñ 2ω be increasing, Borel, order-preserving.
Suppose that for some α ă ω1, fpAq ďT Apαq for every A. Then for some β ď α, fpAq ”T
Apβq on a cone.
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We conjecture that a similar classification of monotone proof-theoretic operators is pos-
sible. Our conjecture is stated in terms of iterated consistency statements. Let ă be a
nice elementary presentation of a recursive well-ordering.2 We define the iterates of the
consistency operator by appealing to Gödel’s fixed point lemma.

T $ ConαT pϕq Ø @β ă αConT
`

ϕ^ ConβT pϕq
˘

For true ϕ, the iterations of ConT form a proper hierarchy of true sentences by Gödel’s second
incompleteness theorem. We make the following conjecture.

Conjecture 3.1.8. Suppose g is monotone, non-constant, and recursive such that, for every
ϕ, gpϕq P Π1. Let ă be a nice elementary presentation of well-ordering and α an ordinal
notation. Suppose that, for every ϕ,

T ` ϕ` ConαT pϕq $ gpϕq.

Then for some β ĺ α, for all ϕ in a true cone,

rϕ^ gpϕqs “ rϕ^ ConβT pϕqs.

According to the conjecture, if an increasing monotone recursive function g that produces
only Π1 sentences is no stronger than ConαT , it is equivalent on a true cone to ConβT for some
β ĺ α. This would provide a classification of a large class of monotone proof-theoretic
operators in terms of their limit behavior.

3.2 The main theorem
Let T be a sound, recursively axiomatized extension of EA in the language of arithmetic. We
want to show that T ` ConT pϕq is the weakest natural theory that results from adjoining a
Π1 sentence to T . A central notion in our approach is that of a monotone operator on finite
extensions of T .

Definition 3.2.1. g is monotone if, for every ϕ and ψ,

T $ ϕÑ ψ implies T $ gpϕq Ñ gpψq.

Remark 3.2.2. We will switch quite frequently using the notation T`ϕ $ ψ and T $ ϕÑ ψ,
trusting that no confusion arises. The two claims are equivalent, by the Deduction Theorem.

Our goal is to prove that the consistency operator is, roughly, the weakest operator for
uniformly strengthening theories. Our strategy is to show that any uniform method for
extending theories that is as weak as the consistency operator must be equivalent to the
consistency operator in the limit. We sharpen the notion “in the limit” with the following
definitions.

2Nice elementary presentations of well-orderings are defined in [6], see §2.3, Definition 1.
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Definition 3.2.3. Given a sentence ϕ, the cone generated by ϕ is the set of all sentences ψ
such that T $ ψ Ñ ϕ. A cone is any set C such that, for some ϕ, C is the cone generated by
ϕ. A true cone is a cone that is generated by a sentence that is true in the standard model
N.

We are now ready to state and prove the main theorem. Note that the following is a
restatement of Theorem 3.1.5.

Theorem 3.2.4. Let T be a sound, effectively axiomatized extension of EA. Let g be recursive
and monotone such that, for some k P N, for all ϕ, gpϕq is Πk. Then one of the following
holds:

1. There is a true cone C such that for all ϕ P C,

T ` ϕ $ gpϕq.

2. There is a true cone C such that for all ϕ P C,

T ` ϕ` gpϕq $ ConT pϕq.

Proof. Since g is recursive, its graph is defined by a Σ1 formula G, i.e., for any ϕ and ψ,

gpϕq “ ψ ðñ N ( Gpxϕy, xψyq.

Since T is sound and Σ1 complete, this implies that for any ϕ and ψ,

gpϕq “ ψ ðñ T $ Gpxϕy, xψyq (‹)

From now on we drop the corner quotes and write Gpϕ, ψq instead of Gpxϕy, xψyq, trusting
that no confusion will arise.

We consider the following sentence in the language of arithmetic:

@x@y
´

`

Gpx, yq ^ TrueΠkpyq
˘

Ñ ConT pxq
¯

. (A)

Informally, A says that, for every ϕ, the truth of gpϕq implies the consistency of T ` ϕ.
Note that we need to use a partial truth predicate in the statement A since we are formalizing
a uniform claim about the outputs of the function g. For any specific output ψ of the function
g, T will be able to reason about ψ without relying on the partial truth predicate.

We break into cases based on whether A is true or false.
Case 1: A is true in the standard model N. We claim that in this case

C :“ tϕ : T ` ϕ $ Au

satisfies condition (2) from the statement of the theorem. Clearly C is a true cone. It suffices
to show that for any ϕ P C,

T ` ϕ` gpϕq $ ConT pϕq.
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So let ϕ P C and let ψ “ gpϕq. We reason as follows.

T ` ϕ $ @x@y
´

`

Gpx, yq ^ TrueΠkpyq
˘

Ñ ConT pxq
¯

by choice of C.

T ` ϕ $
`

Gpϕ, ψq ^ TrueΠkpψq
˘

Ñ ConT pϕq by instantiation.
T ` ϕ $ Gpϕ, ψq by observation p‹q.
T ` ϕ $ TrueΠkpψq Ñ ConT pϕq from the previous two lines by logic.

T ` ϕ` ψ $ ConT pϕq trivially from the previous line.
T ` ϕ` gpϕq $ ConT pϕq since ψ “ gpϕq.

Case 2: A is false in the standard model N. We infer that

DϕDψ
´

Gpϕ, ψq ^ TrueΠkpψq ^  ConT pϕq
¯

.

Thus, there is an inconsistent sentence ϕ such that gpϕq is a true Πk sentence. This is to
say that gpKq is true. We claim that in this case

C :“ tϕ : T ` ϕ $ gpKqu

satisfies condition (1) from the statement of the theorem. Clearly C is a true cone. It suffices
to show that for any ϕ P C,

T ` ϕ $ gpϕq.

So let ϕ P C. By the definition of C, we infer that

T ` ϕ $ gpKq. (:)

We reason as follows.

T $ K Ñ ϕ by logic.
T $ gpKq Ñ gpϕq by the monotonicity of g.

T ` ϕ $ gpϕq from the previous line and :, by logic.

This completes the proof. q

Remark 3.2.5. Theorem 3.2.4 is stated about operators g that produce sentences of bounded
arithmetical complexity, i.e., for some k P N, for all ϕ, gpϕq is Πk. The reason for this restric-
tion is to invoke the partial truth-predicate for Πk sentences when providing the sentence
A.
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3.3 Recursiveness is a necessary condition
In the proof of Theorem 3.2.4 we appealed to the recursiveness of g to show that T correctly
calculates the values of g, i.e., that for every ϕ and ψ,

gpϕq “ ψ ðñ T $ Gpxϕy, xψyq.

In this section we show that recursiveness is a necessary condition for the proof of Theorem
3.2.4. In particular, we exhibit a monotone operator g which is recursive in 01 and produces
only Π1 sentences such that for arbitrarily strong true sentences ϕ,

rϕ^ gpϕqs “ rϕ^ ConT pϕqs

and for arbitrarily strong true sentences ϕ,

rϕ^ gpϕqs “ rϕs.

Our proof makes use of a recursive set A that contains arbitrarily strong true sentences and
omits arbitrarily strong true sentences. A very similar set is constructed in [68]. We now
present the construction of the set A, which is necessary to understand the proof of the
theorem. After describing the construction of A we will verify some of its basic properties.

Let tϕ0, ϕ1, ...u be an effective Gödel numbering of the language of arithmetic.
We describe the construction of A in stages. During a stage n we may activate a
sentence ψ, in which case we say that ψ is active until it is deactivated at some
later stage.
Stage 0: Numerate ϕ0 and  ϕ0 into A. Activate the sentences pϕ0^ConT pϕ0qq

and p ϕ0 ^ ConT p ϕ0qq.
Stage n+1: There are finitely many active sentences. For each such sentence
ψ, numerate θ0 :“ pψ ^ ϕn`1q and θ1 :“ pψ ^  ϕn`1q into A. Deactivate the
sentence ψ and activate the sentences pθ0 ^ ConT pθ0qq and pθ1 ^ ConT pθ1qq.

Remark 3.3.1. It can be useful to visualize, along with the construction of A, the construction
of an upwards growing tree that is (at most) binary branching. The nodes in the tree are the
consistent sentences that are numerated into A. The immediate successors in this tree of a
sentence ϕ have the form pϕ^ConT pϕq^θq and pϕ^ConT pϕq^ θq. Thus, the successors of
any two points are inconsistent with each other. Observe that for any two distinct sentences
ϕ and ψ in the tree, ϕ is below ψ (i.e., ϕ and ψ belong to the same path and ϕ is below ψ) if
and only if T `ψ $ ϕ. It follows from the previous two observations that any two sentences
that are incompatible with each other in the tree ordering are inconsistent with each other.

Lemma 3.3.2. At any stage in the construction of A, (i) exactly one of the active sentences
is true in the standard model N and (ii) exactly one of the sentences numerated into A is
true in the standard model N.
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Proof. We proceed by induction on the stages in the construction of A.
Stage 0: Exactly one of ϕ0 or  ϕ0 is true (these are the numerated sentences), and hence

so is exactly one of ϕ0 ^ Conpϕ0q and  ϕ0 ^ Conp ϕ0q (these are the activated sentences).
Stage n+1: At the end of stage n there is exactly one true activated sentence θ. Then

so exactly one of ζ0 :“ θ^ϕn and ζ1 :“ θ^ ϕn is true (these are the numerated sentences).
Hence exactly one of ζ0^Conpζ0q and ζ1^Conpζ1q is true (these are the activated sentences).

q

Corollary 3.3.3. There is a unique branch through the tree described in Remark 3.3.1 that
contains only true sentences. We will call it the true branch.

Lemma 3.3.4. A contains arbitrarily strong true sentences.

Proof. Let ψ be a true sentence. ψ appears at some point in our Gödel numbering of the
language of arithmetic, i.e., for some n, ψ is ϕn. Going into stage n of the construction of
A, there is exactly one true active sentence θ by Lemma 3.3.2. Then θ ^ ϕn is numerated
into A. So A contains a true sentence that implies ψ. q

Our proof also makes use of iterated consistency statements. Let ă be an elementary
presentation of ω. For the sake of convenience, we reiterate the definition of the iterates
of the consistency operator. We define these iterates by appealing to Gödel’s fixed point
lemma:

T $ ConαT pϕq Ø @β ă αConT
`

ϕ^ ConβT pϕq
˘

For true ϕ, the iterates of ConT form a proper hierarchy of true sentences by Gödel’s second
incompleteness theorem.

Definition 3.3.5. For a true sentence ψ numerated into A at stage n, let θψ be a true
sentence that is either the pn ` 1qth sentence in the Gödel numbering of the language or
the negation thereof (depending on which is true). The point of the definition is this: if
ψ is a true sentence numerated into A, then the next true sentence numerated into A is
ψ ^ ConT pψq ^ θψ.

Lemma 3.3.6. For arbitrarily strong true sentences ψ P A, T & pψ ^ ConT pψqq Ñ θψ.

Proof. Suppose not, i.e., suppose that there is a true ϕ such that for all true ψ, if both
T $ ψ Ñ ϕ and ψ P A, then:

T $ pψ ^ ConT pψqq Ñ θψ. (‘)

By Lemma 3.3.4, A contains arbitrarily strong true sentences, so we know there is at least
one such sentence ψ0 in A that implies ϕ. By the construction of A, the true sentences
numerated into A after ψ0 are:

• ψ1 :“ ψ0 ^ ConT pψ0q ^ θψ0
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• ψ2 :“ ψ1 ^ ConT pψ1q ^ θψ1

and so on. Each ψn implies ϕ and is in A. Thus, each ψn satisfies condition (‘), i.e., for
each ψn, T $ pψn ^ ConT pψnqq Ñ θψn . This means that for all n ě 1 the final conjunct of
ψn is superfluous. It follows that for each n, ψn is T provably equivalent to ψ0 ^ ConnT pψ0q.
But then no sentence in A is stronger than ψ0 ^ ConωT pψ0q, contradicting the fact proved in
Lemma 3.3.4, i.e., that A contains arbitrarily strong true sentences. q

We are now ready to state and prove the theorem. Note that the following is a restatement
of Theorem 3.1.6.

Theorem 3.3.7. Let T be a sound, effectively axiomatized extension of EA. There is a 01
recursive monotone function g such that, for every ϕ, gpϕq is Π1, yet for arbitrarily strong
true sentences ϕ

rϕ^ gpϕqs “ rϕ^ ConT pϕqs

and for arbitrarily strong true sentences ϕ

rϕ^ gpϕqs “ rϕs.

Proof. We define the function g as follows:

gpϕq “

#

Ź

tConT pζq : ζ P A and T ` ϕ $ ζu if rϕs ‰ rKs
K otherwise

We will check one-by-one that g satisfies the properties ascribed to it in the statement of
the theorem. We start by checking that g is 01 recursive. In so doing, we will also demonstrate
that g is well defined, i.e., always produces a finitary sentence.
Claim. g is 01 recursive.

To verify that g is 01 recursive, we informally describe an algorithm for calculating g
using 01 as an oracle. Here is the algorithm: Given an input ϕ, first use 01 to determine
whether rϕs “ rKs. If so, output K. Otherwise, we have to find all sentences ψ P A such that
T ` ϕ $ ζ. Let’s say that ϕ is the nth sentence in our Gödel numbering of the language of
arithmetic. By the construction of A, the only sentences in A that T ` ϕ proves must have
been numerated into A by stage n. So find each of the finitely many sentences that were
activated by stage n in the construction of A. For any such sentence ζ, use 01 to determine
whether T `ϕ $ ζ.3 Once all sentences ψ P A such that T `ϕ $ ζ have been found, output
the conjunction of their consistency statements.

It is now routine to verify that the following claim is true:
Claim. g is monotone and always produces a Π1 sentence.

3Querying 01 is not strictly necessary here. If we already know that two sentences ϕ and ζ are consistent,
we can determine effectively whether T ` ϕ $ ζ by paying attention to details of the construction of A.
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We now work towards showing that g behaves like the consistency operator for arbitrarily
strong inputs.
Claim. For arbitrarily strong true sentences ϕ, rϕ^ gpϕqs “ rϕ^ ConT pϕqs.

To see why the claim is true, note that whenever ϕ P A, it follows that rgpϕqs “ rConT pϕqs,
whence

rϕ^ gpϕqs “ rϕ^ ConT pϕqs.

Since A contains arbitrary strong true sentences, it follows immediately that for arbitrarily
strong true sentences ϕ,

rϕ^ gpϕqs “ rϕ^ ConT pϕqs.

Thus, to prove the theorem, it suffices to see that g behaves like the identity operator on
arbitrarily strong inputs.
Claim. For arbitrarily strong true sentences ϕ, rϕ^ gpϕqs “ rϕs.

To this end, we will assume only that ψ is a true sentence satisfying the following claim:

T & pψ ^ ConT pψqq Ñ θψ. (7)

Recall that if ψ was numerated into A at stage n, then θψ is a true sentence that is either the
pn`1qth sentence in the Gödel numbering of the language or the negation thereof (depending
on which is true). By Lemma 3.3.6, we know that for arbitrarily strong true sentences ψ, ψ
satisfies p7q. We will then show that for any such ψ, where ϕ is the sentence pψ^ConT pψqq,
the following identity holds:

rϕ^ gpϕqs “ rϕs,

thus certifying the truth of Claim 3.3.
So let ψ be a true sentence in A satisfying (7). By Lemma 3.3.2, there is a unique next

true sentence numerated into A, and that sentence is
`

ψ ^ ConT pψq ^ θψ
˘

. We assert the
following claim:
Claim. For all sentences ζ P A, if T `

`

ψ ^ ConT pψq
˘

$ ζ then also T ` ψ $ ζ.
Let’s see why Claim 3.3 is true. Since pψ ^ ConT pψqq is true, any sentence ζ in A that is

implied by
`

ψ ^ ConT pψq
˘

belongs to the true branch (see Corollary 3.3.3). By assumption
p7q, pψ ^ ConT pψqq has strength strictly intermediate between ψ and pψ ^ ConT pψq ^ θψq.
Accordingly, any sentence ζ in A that is implied by pψ^ConT pψqq must have been numerated
into A before pψ^ConT pψq^θψq. Recall that ψ is the sentence in the true branch numerated
into A immediately before pψ ^ ConT pψq ^ θψq. So ζ either is ψ or was numerated into A
earlier than ψ. Either way, ψ implies ζ. This certifies the truth of Claim 3.3.

We now introduce the formula ϕ :“
`

ψ ^ ConT pψq
˘

. We make the following claim:
Claim. rϕ^ gpϕqs “ rϕ^

Ź

tConT pζq : ζ P A and T ` ψ $ ζus.
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We argue for Claim 3.3 as follows:

rϕ^ gpϕqs “ rϕ^
ľ

tConT pζq : ζ P A and T ` ϕ $ ζus by definition of g

“ rϕ^
ľ

tConT pζq : ζ P A and T ` pψ ^ ConT pψqq $ ζus by choice of ϕ

“ rϕ^
ľ

tConT pζq : ζ P A and T ` ψ $ ζus by Claim 3.3.

With Claim 3.3 on board, we are now ready to prove that rϕs “ rϕ ^ gpϕqs. We reason as
follows:

T ` ϕ` ConT pψq $
ľ

tConT pζq : ζ P A and T ` ψ $ ζu by the monotonity of ConT .
T ` ϕ` ConT pψq $ gpϕq by Claim 3.3.

T ` ϕ $ gpϕq since T ` ϕ $ ConT pψq, by the choice of ϕ.

This trivially implies that:
rϕs “ rϕ^ gpϕqs.

This completes the proof of the theorem. q
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Part II

Second-Order Arithmetic
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Chapter 4

Reflection ranks and ordinal analysis

This chapter contains joint work with Fedor Pakhomov.

4.1 Introduction
It is a well-known empirical phenomenon that natural axiomatic theories are well-ordered1

according to many popular metrics of proof-theoretic strength, such as consistency strength.
This phenomenon is manifest in ordinal analysis, a research program wherein recursive or-
dinals are assigned to theories to measure their proof-theoretic strength. However, these
metrics of proof-theoretic strength do not well-order axiomatic theories in general. For in-
stance, there are descending chains of sound theories, each of which proves the consistency
of the next. However, all such examples of ill-foundedness make use of unnatural, artificial
theories. Without a mathematical definition of “natural,” it is unclear how to provide a gen-
eral mathematical explanation of the apparent well-orderedness of the hierarchy of natural
theories.

In this paper we introduce a metric of proof-theoretic strength and prove that it is immune
to these pathological instances of ill-foundedness. Recall that a theory T is Π1

1 sound just
in case every Π1

1 theorem of T is true. The Π1
1 soundness of T is expressible in the language

of second-order arithmetic by a formula RFNΠ1
1
pT q. The formula RFNΠ1

1
pT q is also known as

the uniform Π1
1 reflection principle for T .

Definition 4.1.1. For theories T and U in the language of second-order arithmetic we say
that T ăΠ1

1
U if U proves the Π1

1 soundness of T .

This metric of proof-theoretic strength is coarser than consistency strength, but, as we
noted, it is also more robust. In practice, when one shows that U proves the consistency of
T , one often also establishes the stronger fact that U proves the Π1

1 soundness of T . Our
first main theorem is the following.

1Of course, by well-ordered here we mean pre-well-ordered.
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Theorem 4.1.2. The restriction of ăΠ1
1
to the Π1

1-sound extensions of ACA0 is well-founded.

Accordingly, we can attach a well-founded rank—reflection rank—to Π1
1 sound extensions

of ACA0 in the ăΠ1
1
ordering.

Definition 4.1.3. The reflection rank of T is the rank of T in the ordering ăΠ1
1
restricted

to Π1
1 sound extensions of ACA0. We write |T |ACA0 to denote the reflection rank of T .

What is the connection between the reflection rank of T and the Π1
1 proof-theoretic ordinal

of T? Recall that the Π1
1 proof-theoretic ordinal |T |WO of a theory T is the supremum of

the order-types of T -provably well-founded primitive recursive linear orders. We will show
that the reflection ranks and Π1

1 proof-theoretic ordinals of theories are closely connected.
Recall that ACA`0 is axiomatized over ACA0 by the statement “for every X, the ωth jump of
X exists.”

Theorem 4.1.4. For any Π1
1-sound extension T of ACA`0 , |T |ACA0 “ |T |WO.

In general, if |T |ACA0 “ α then |T |WO ě εα. We provide examples of theories such that
|T |ACA0 “ α and |T |WO ą εα. Nevertheless for many theories T with |T |ACA0 “ α we have
|T |WO “ εα.

To prove these results, we extend techniques from the proof theory of iterated reflection
principles to the second-order context. In particular, we focus on iterated Π1

1 reflection.
Roughly speaking, the theories Rα

Π1
1
pT q of α-iterated Π1

1-reflection over T are defined as
follows

R0
Π1

1
pT q :“ T

Rα
Π1

1
pT q :“ T `

ď

βăα

RFNΠ1
1

`

Rβ
Π1

1
pT q

˘

for α ą 0.

The formalization of this definition in arithmetic requires some additional efforts; see §2 for
details.

Iterated reflection principles have been used previously to calculate proof-theoretic or-
dinals. For instance, Schmerl [87] used iterated reflection principles to establish bounds
on provable arithmetical transfinite induction principles for fragments of PA. Beklemishev
[7] has also calculated proof-theoretic ordinals of subsystems of PA via iterated reflection.
These results differ from ours in two important ways. First, these results concern only the-
ories in the language of first-order arithmetic, and hence do not engender calculations of
Π1

1 proof-theoretic ordinals. Second, these results are notation-dependent, i.e., they involve
the calculation of proof-theoretic ordinals modulo the choice of a particular (natural) ordinal
notation system. We are concerned with Π1

1 reflection. Hence, in light of Theorem 4.1.2, we
are able to calculate proof-theoretic ordinals in a manner that is not sensitive to the choice
of a particular ordinal notation system.

Theorem 4.1.5. Let α be an ordinal notation system with the order type |α| “ α. Then
|Rα

Π1
1
pACA0q|ACA0 “ α and |Rα

Π1
1
pACA0q|WO “ εα.
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It is possible to prove Theorem 4.1.4 and Theorem 4.1.5 by formalizing infinitary deriva-
tions in ACA0 and appealing to cut-elimination, and in an early draft of this paper we did
just that. Lev Beklemishev suggested that it might be possible to prove these results with
methods from the proof theory of iterated reflection principles, namely conservation theo-
rems in the style of Schmerl [87]. Though these methods have become quite polished for
studying subsystems of first-order arithmetic, they have not yet been extended to Π1

1 ordinal
analysis. Thus, we devote a section of the paper to developing these techniques in the con-
text of second-order arithmetic. We thank Lev for encouraging us to pursue this approach.
Our main result in this respect is the following conservation theorem, where Π1

1pΣ0
2q denotes

the complexity class consisting of formulas of the form @X F where F P Π0
3.

Theorem 4.1.6. Rα
Π1

1
pACA0q is Π1

1pΣ0
2q conservative over Rεα

Π1
1pΣ0

2q
pRCA0q.

To prove this result, we establish connections between Π1
1 reflection over second-order

theories and reflection over arithmetical theories with free set variables.
Finally, we demonstrate that Theorem 4.1.2 could be used for straightforward well-

foundedness proofs for certain ordinal notation systems. A recent development in ordi-
nal analysis is the use of ordinal notation systems that are based on reflection principles.
Roughly, the elements of such notation systems are reflection principles and they are ordered
by proof-theoretic strength. Such notation systems have been extensively studied since Bek-
lemishev [8] endorsed their use as an approach to the canonicity problem for ordinal no-
tations. See [29] for a survey of such notation systems. We prove the well-foundedness of
Beklemishev’s reflection notation system for ε0 using the well-foundedness of the ăΠ1

1
-order.

Previously, Beklemishev proved the well-foundedness of this system by constructing the iso-
morphism with Cantor’s ordinal notation system for ε0. We expect that our techniques—or
extensions thereof—could be used to prove the well-foundedness of ordinal notation systems
for stronger axiomatic theories.

Here is our plan for the rest of the paper. In §4.2 we fix our notation and introduce some
key definitions. In §4.3 we present our technique for showing that certain classes of theories
are well-founded (or nearly well-founded) according to various notions of proof-theoretic
strength. Our first application of this technique establishes Theorem 4.1.2. In §4.3 we
prove various conservation results that connect iterated reflection principles with transfinite
induction. The theorems in §4.3 extend results of Schmerl from first-order theories to pseudo
Π1

1 theories, i.e., to theories axiomatized by formulas with at most free set variables, and
to second-order theories. We conclude with a proof of Theorem 4.1.6. In §4.4 we establish
connections between the reflection ranks and proof-theoretic ordinals of theories, including
proofs of Theorem 4.1.4 and Theorem 4.1.5. In §4.5 we show how to use our results to prove
the well-foundedness of ordinal notation systems based on reflection principles. In §4.6
we present an explicit example by proving the well-foundedness of Beklemishev’s notation
system for ε0.
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4.2 Definitions and notation
In this section we describe and justify our choice of meta-theory. We then fix some notation
and present some key definitions. Finally, we describe a proof-technique that we will use
repeatedly throughout the paper, namely, Schmerl’s technique of reflexive induction.

Treatment of theories
Recall that EA is a finitely axiomatizable theory in the language of arithmetic with the
exponential function, i.e., in the signature p0, 1,`,ˆ, 2x,ďq. EA is characterized by the
standard recursive axioms for addition, multiplication, and exponentiation as well as the
induction schema for ∆0 formulas. Note that by ∆0 formulas we mean ∆0 formulas in
the language with exponentiation. EA is strong enough to facilitate typical approaches to
arithmetization of syntax. Moreover, EA proves its own Σ1 completeness.

We will also be interested in EA`. EA` is a theory in the language of EA. EA` extends EA
by the additional axiom “superexponentiation is total.” By superexponentiation, we mean
the function 2xx where 2x0 “ x and 2xy`1 “ 22xy . EA` is the weakest extension of EA in which
the cut-elimination theorem is provable. Indeed, the cut-elimination theorem is equivalent
to the totality of superexponentiation over EA. See [9] for details on EA and EA`; see also
[41] for details on EA and EA` in a slightly different formalism without an explicit symbol
for exponentiation. We will use EA` as a meta-theory for proving many of our results.

In this paper we will examine theories in three different languages. First the language of
first-order arithmetic, i.e., the language of EA. Second the language of first-order arithmetic
extended with one additional free set variable X; we also call this the pseudo-Π1

1 language.
And finally the language of second-order arithmetic. The language of first-order arithmetic
of course is a sublanguage of the other two languages. And we consider the pseudo-Π1

1
language to be a sublanguage of the language of second-order arithmetic by identifying each
pseudo-Π1

1 sentence F with the second-order sentence @X F.
In the first-order context we are interested in the standard arithmetical complexity classes

Πn and Σn. We write Π8 to denote the class of all arithmetical formulas. We write Π0
n

to denote the class of formulas that are just like Πn formulas except that their formulas
(potentially) contain a free set variable X. Formulas in the complexity class Π0

n cannot have
set quantifiers, and so contain only free set variables. Of course, the class Σ0

n is defined
dually to the class Π0

n. We write Π0
8 to denote the class of boldface arithmetical formulas,

i.e., the class of arithmetical formulas (potentially) with a free set variable.
In the second-order context we are mostly interested in the standard analytical complexity

classes Π1
1 and Σ1

1. However, we will also use other complexity classes. Suppose C Ă L2 is
one of the following classes of formulas: Π0

m or Σ0
m, for m ě 1. Then we denote by Π1

npCq
the class of all the formulas of the form @X1DX2 . . . QXn F, where F P C. We define Σ1

npCq
dually.

For a first-order theory T , we use T pXq to denote the pseudo Π1
1 pendant of T . For

example, the theory PApXq contains (i) the axioms of PA and (ii) induction axioms for
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all formulas in the language, including those with free set variables. The theories EApXq,
EA`pXq, and IΣ1pXq are defined analogously, i.e., their induction axioms are extended to
include formulas with the free set variable X.

Formulas in any of the three languages we are working with can naturally be identified
with words in a suitable finite alphabet, which, in turn, are naturally one-to-one encoded
by numbers. Accordingly, we can fix a Gödel numbering of these languages. We denote the
Gödel number of an expression τ by xτ y. Many natural syntactic relations (x is a logical
axiom, z the result of applying Modus Ponens to x and y, x encodes a Πn formula, etc.) are
elementary definable and their simplest properties can be verified within EA. We also fix a
one-to-one elementary coding of finite sequences of natural numbers. xx1, ..., xny denotes the
code of a sequence x1, ..., xn and, for any fixed n, is an elementary function of x1, ..., xn.

We are concerned with recursively enumerable theories. Officially, a theory T is a Σ1
formula AxT pxq that is understood as a formula defining the (Gödel numbers of) axioms of
T in the standard model of arithmetic, i.e., the set of axioms of T is tϕ : N ( AxT pϕqu.
Thus, we are considering theories intensionally, via their axioms, rather than as deductively
closed sets of formulas.

Since our base theory EA is fairly weak, we have to be careful with our choice of formal-
izations of proof predicates. Namely, we want our provability predicate to be Σ1. And due
to this we can’t use the straightforwardly defined predicates PrfNatT px, yq: x is a Hilbert-
style proof of y, where all axioms are either axioms of first-order logic or axioms of T . The
predicates PrfNatT px, yq are equivalent to @bΣ1-formulas over EA (@bΣ1-formulas are the for-
mulas starting with a bounded universal quantifier followed by Σ1-formula). However, EA
is too weak to equivalently transform @bΣ1-formulas to Σ1-formulas; for this one needs the
collection scheme BΣ1, which isn’t provable in EA. We note that this doesn’t affect most
natural theories T , in particular, for any T with ∆0 formula AxT , the predicate PrfNatT px, yq
is equivalent to a Σ1 formula over EA.

Nevertheless, to avoid this issue, we work with proof predicates that are forced to be Σ1
in EA, which are sometimes called smooth proof predicates. In the definition of the smooth
proof predicate, a “proof” is a pair consisting of an actual Hilbert style proof and a uniform
bound for witnesses to the facts that axioms in the proof indeed are axioms. We simply write
PrfT px, yq to formalize that x is a “smooth proof” of y in theory T . The predicates PrfT px, yq
are ∆0-formulas. The predicate PrT pyq is shorthand for DxPrfT px, yq. We use the predicate
ConpT q as shorthand for  PrT pKq, where we fix K to be some contradictory sentence.

The closed term 1` 1` ...` 1 (n times) is the numeral of n and is denoted n. We often
omit the bar when no confusion can occur. We also often omit the corner quotes from Gödel
numbers when no confusion can occur. For instance, we can encode the notion of a formula ϕ
being provable in a theory T , by saying that there is a T -proof (a sequence subject to certain
constraints) the last element of which is the numeral of the Gödel number of ϕ. However,
instead of writing PrT pxϕyq to say that ϕ is provable we simply write PrT pϕq.

Suppose T and U are recursively enumerable theories in the same language. We write
T Ď U if T is a subtheory of U ; we can formalize the claim that T Ď U in arithmetic with
the formula @ϕ

`

PrT pϕq Ñ PrUpϕq
˘

. We write T ” U if T Ě U and U Ě T . For a class
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C of sentences of the language of T we write T ĎC U if the set of C-theorems of T is a
subset of C-theorems of U; this could be naturally formalized in arithmetic with the formula
@ϕ P C

`

PrT pϕq Ñ PrUpϕq
˘

. We write T ”C U if T ĎC U and U ĎC T .
We will be interested in partial truth-definitions for various classes of formulas for which

we could prove Tarski’s bi-conditionals. For a class C of formulas we call a formula TrCpxq a
partial truth definition for C over a theory T , if TrCpxq is from the class C and

T $ ϕp~xq Ø TrCpϕp~xqq, for all ϕp~xq from C.

Moreover, we will work only with truth definitions such that the above property is provable
in EA.

In the book by Hájek and Pudlák [41, §I.1(d)] there is a construction of partial truth
definitions for classes Πn and Σn, n ě 1, over IΣ1. However, we will use a sharper construction
of partial truth definitions for classes Πn and Σn, n ě 1, over EA which could be found in [14,
Appendix A]. And we will use truth definitions for classes Πn and Σn, n ě 1, over EApXq
that as well were constructed in [14, Appendix A].

In the case of second-order arithmetic there are partial truth definitions for classes
Π1
npΠ0

mq, Σ1
npΣ0

mq, Σ1
npΠ0

mq, and Π1
npΣ0

mq, where m ě 1, over RCA0. One could easily con-
struct this partial truth definitions from the partial truth definitions for classes Πn and Σn

over EApXq. However, over ACA0 it is possible to construct partial truth definitions for the
classes Π1

n and Σ1
n, n ě 1. Let Σ1

1 be the class of Σ1
1-formulas with a set parameter X. It is

easy to construct partial truth definitions for classes Π1
n and Σ1

n, n ě 1, from a partial truth
definition for Σ1

1. Simpson [92, Lemma V.1.4] proves that for each Σ1
1 formula ϕpXq there

exists a ∆0
0 formula θpx, yq such that

ACA0 $ @X
`

ϕpXq Ø pDf : NÑ Nq @m θϕpX æ m, f æ mq
˘

.

Here X æ m is the natural number encoding the finite set XXt0, . . . ,m´1u and f æ m is the
code of the finite sequence xfp0q, . . . , fpm´ 1qy. From Simpson’s proof it is easy to extract
a Kalmar elementary algorithm for constructing the formula θϕ from a formula ϕ. And by
the same argument as Simpson we show that the Σ1

1-formula pDf : NÑ Nq @m TrΠ0
1
pθxpX æ

m, f æ mqq is a partial truth definition TrΣ1
1
pX, xq for the class Σ1

1 over ACA0.

Ordinal notations
There are many ways of treating ordinal notations in arithmetic. We choose one specific
method that will be suitable when we work in the theory EA` (and its extensions). Our
results will be valid for other natural choices of treatment of ordinal notations, but some of
the proofs would have to be tweaked slightly.

Often we will use ordinal notation systems within formal theories that couldn’t prove
(or even express) the well-foundedness of the notation systems. Also, most of our results
are intensional in nature and don’t require the notation system to be well-founded from an
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external point of view. Due to this, our definition of an ordinal notation system does not
require it to be well-founded.

Officially, an ordinal notation α is a tuple xϕpxq, ψpx, yq, p, ny where ϕ, ψ P ∆0, ϕpnq is
true according to TrΣ1 , and p is an EA proof of the fact that on the set tx | ϕpxqu the order

x ăα y
def
ðñ ψpx, yq

is a strict linear order. More formally p is an EA proof of the conjunction of the following
sentences:

1. @x, y, z
`

ϕpxq ^ ϕpyq ^ ϕpzq ^ ψpx, yq ^ ψpy, zq Ñ ψpx, zq
˘

(Transitivity);

2. @x
`

ϕpxq Ñ  ψpx, xq
˘

(Irreflexivity);

3. @x, y
´

ϕpxq ^ ϕpyq ^ x ‰ y Ñ
`

ψpx, yq ^  ψpy, xq
˘

_
`

ψpy, xq ^  ψpx, yq
˘

¯

(Antisym-
metry).

We now define a partial order ă on the set of all notation systems. Any tuples α “
xϕ, ψ, p, ny and α1 “ xϕ1, ψ1, p1, ny are ă-incomparable if either ϕ ‰ ϕ1, or ψ ‰ ψ1, or p ‰ p1.
If α, β are of the form α “ xϕ, ψ, p, ny and β “ xϕ, ψ, p,my, we put α ă β if TrΣ1

`

ψpn,mq
˘

but TrΣ1

`

 ψpm,nq
˘

.
Clearly the relation ă and the property of being an ordinal notation system are ex-

pressible by Σ1-formulas. In EA` we could expand the language by a definable superexpo-
nentiation function 2xy . Since the superexponentiation function is EA` provably monotone,
by a standard technique one could show that EA` proves induction for the class ∆0p2xyq of
formulas with bounded quantifiers in the expanded language. It is easy to show that over
EA` the truth of ∆0-formulas according to the Σ1-truth predicate could be expressed by
a ∆0p2xyq formula. Thus, the order ă and the property of being an ordinal notation sys-
tem are expressible by ∆0p2xyq formulas, which allows us to reason about them in EA` is a
straightforward manner.

Let us show that EA` proves that ă is a disjoint union of linear orders. First we note
that the theory EA` proves the Π2 soundness of EA (i.e. RFNΠ2pEAq, see section below). And
we note that for any α “ xϕpxq, ψpx, yq, p, ny the conclusion of p (conjunction of sentences
(1)–(3)) is EA-provably equivalent to a Π1 sentence. Hence for any notation system α “
xϕpxq, ψpx, yq, p, ny the theory EA` proves that the corresponding conjunction of sentences
(1)–(3) is true. Using this we easily prove in EA` that ă is a linear ordering, when restricted
to the tuples that share the same first three components.

For an ordinal notation α the value of |α| is either an ordinal or 8. If the lower cone
ptβ | β ă αu,ăq is well-founded, then |α| is the ordinal isomorphic to the well-ordering
ptβ | β ă αu,ăq. Otherwise, |α| “ 8. In other words, |α| is the well-founded rank of α in
the ă-order.

An alternative (more standard) approach to treating ordinal notations in arithmetic is
to fix an elementary ordinal notation up to some ordinal α. This is a fixed linear order
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L “ pDL,ăLq, where both DL Ď N and ăLĎ N ˆ N are given by ∆0 formulas such that (i)
L is provably linear in EA, (ii) L is well-founded, and (iii) the order type of L is α. It has
been empirically observed that the ordinal notation systems that arise in ordinal analysis
results in proof theory are of this kind; see, e.g., [80]. Note that from any L of this sort we
could easily form an ordinal notation (in our sense) α such that there is a Kalmar elementary
isomorphism f between L and ptβ | β ă αu,ăq; moreover, the latter is provable in EA`.

Further we will work with ordinal notation systems that are given by some combinato-
rially defined system of terms and order on them. The standard example of such a system
is the Cantor ordinal notation system up to ε0. For the notations that we will consider it
will be always possible to formalize in EA the definition and proof that the order is linear.
Thus, as described above, we will be able to form an ordinal notation α such that there will
be a natural isomorphism between ptβ | β ă αu,ăq and the initial combinatorially defined
ordinal notation system. We will make transitions from combinatorial definitions of notation
systems to ordinal notation systems in our sense without any further comments.

Moreover, we will use expressions like ωα and εα, where α is some ordinal notation
system. Let us consider a notation system α “ xϕpxq, ψpx, yq, p, ny and define the notation
system ωα “ xϕ1pxq, ψ1px, yq, p1, n1y. We want the order ăωα to be the order on the terms
ωa1 ` . . .` ωak , where a1 ľα . . . ľα ak. And the order ăωα is defined as the usual order on
Cantor normal forms, where we compare ai by the order ăα. By arithmetizing this definition
of ăωα we get ϕ1, ψ1, and p1. We put n1 to be the number encoding the term ωn. Note that,
according to this definition, α and ωα are ă-incomparable. However, if α ă β, then ωα ă ωβ.

The definition of the notation system εα is similar to that of ωα. The system of terms for
εα consists of nested Cantor normal forms built up from 0 and elements εa, for a P dompăαq.
The comparission of nested Cantor normal forms is defined in the standard fashion, where
we compare elements εa and εb as a ăα b.

Reflection principles
Suppose C is some class of formulas in one of the languages that we consider and T is a theory
in the same language. The uniform C reflection principle RFNCpT q over T is the schema

@~x
`

PrT pϕp~xqq Ñ ϕp~xq
˘

for all ϕ P C, where ~x are free number variables and ϕp~xq contains no other variables.
In those cases for which we have a truth-definition for C in T the scheme RFNCpT q can

be axiomatized by the single sentence

@ϕ P C
`

PrT pϕq Ñ TrCpϕq
˘

.

Given an ordinal notation system ă, we informally define the operation R¨
Cp¨q of iterated
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C reflection along ă as follows.

R0
CpT q :“ T

Rα
C pT q :“ T `

ď

βăα

RFNC
`

Rβ
C pT q

˘

for α ą 0.

More formally, we appeal to Gödel’s fixed point lemma in EA. We fix a formula RFN-InstCpU, xq,
where U and x are first-order variables, that formalizes the fact that x is an instance of the
scheme RFNCpUq. We now want to define a Σ1 formula AxRα

C pT q
pxq (note that α, T , and

x are arguments of the formula) that defines the set of axioms of the theories Rα
C pT q. We

define the formula as a fixed point:

EA $ AxRα
C pT q

pxq Ø
`

AxT pxq _ Dβ ă α RFN-InstCpRβ
C pT q, xqq

˘

,

note that when we substitute Rβ
C pT q in RFN-InstC we actually substitute (the Gödel number

of) AxRβ
C pT q

.
Beklemishev introduced this approach to defining progressions of iterated reflection in

[6]; the reader can find a more modern version of this approach in [13]. It is easy to prove
that this definition of progressions of iterated reflection provides a unique (up to EA provable
deductive equivalence) definition of the theories Rα

C pT q.

Reflexive induction
We often employ Schmerl’s technique of reflexive induction. Reflexive induction is a way
of simulating large amounts of transfinite induction in weak theories. The technique is
facilitated by the following theorem; we include the proof of the theorem, which is very
short.

Theorem 4.2.1 (Schmerl). Let T be a recursively axiomatized theory (in one of the languages
that we consider) that contains EA. Suppose

T $ @α
´

PrT
`

@β ă α ϕpβq
˘

Ñ ϕpαq
¯

.

Then T $ @α ϕpαq.2

Proof. Suppose that T $ @α
´

PrT
`

@β ă α ϕpβq
˘

Ñ ϕpαq
¯

. We infer that

T $ @αPrT
`

@β ă α ϕpβq
˘

Ñ @α ϕpαq,

whence it follows that
T $ PrT

`

@α ϕpαq
˘

Ñ @α ϕpαq.

Löb’s theorem then yields T $ @α ϕpαq. q

2Schmerl proved this result over the base theory PRA. Beklemishev [7] weakened the base theory to EA.
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Accordingly, to prove claims of the form T $ @α ϕpαq, we often prove that T $

@α
´

PrT
`

@β ă α ϕpβq
˘

Ñ ϕpαq
¯

and infer the desired claim by Schmerl’s Theorem. While
working inside T , we refer to the assumption PrT

`

@β ă α ϕpβq
˘

as the reflexive induction
hypothesis.

4.3 Well-foundedness and reflection principles
In this section we develop a technique for showing that certain orders on axiomatic theories
exhibit a well-foundeness like properties. The coarsest order that we will consider is Π1

1 re-
flection order for which we will prove that its restriction to Π1

1 sound theories is well-founded.
For weaker reflection and consistency orders we will prove only some well-foundedness like
properties. Also we note that the same technique is used in [24, Theorem 3.2] to prove certain
facts about axiomatic theories of truth and in [60, Theorem 1.1] to prove a recursion-theoretic
result concerning the hyper-degrees.

Our technique is inspired by H. Friedman’s [31] proof of the following result originally
due to Steel [98]; recall that ďT denotes Turing reducibility.

Theorem 4.3.1. Let P Ă R2 be arithmetic. Then there is no sequence pxnqnăω of reals such
that for every n, both xn ěT x1n`1 and also xn`1 is the unique real y such that P pxn, yq.

Friedman and Steel were not directly investigating the well-foundedness of axiomatic
systems, but rather an analogous phenomenon from recursion theory, namely, the well-
foundedness of natural Turing degrees under Turing reducibility. The adaptability of Fried-
man’s proof arguably strengthens the analogy between these phenomena.

In this section we study both first and second order theories. The first theory that we treat
with our technique is ACA0, a subsystem of second-order arithmetic that has been widely
studied in reverse mathematics. ACA0 is arithmetically conservative over PA. We then turn
to other applications of our technique. We consider RCA0, another subsystem of second-order
arithmetic and familiar base theory from reverse mathematics. RCA0 is conservative over
IΣ1. We then turn to first-order theories, and we study elementary arithmetic EA as our
object theory.

Π1
1-Reflection

In this subsection we examine the ordering ăΠ1
1
on r.e. extensions of ACA0, where

T ăΠ1
1
U

def
ðñ U $ RFNΠ1

1
pT q.

We will show that there are no infinite ăΠ1
1
descending sequences of Π1

1 sound extensions of
ACA0. We recall that, provably in ACA0, a theory T is Π1

1 sound if and only if T is consistent
with any true Σ1

1 statement.
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Theorem 4.3.2. pACA0q The restriction of the order ăΠ1
1
to Π1

1-sound r.e. extensions of
ACA0 is well-founded.

Proof. In order to prove the result in ACA0 we show the inconsistency of the theory ACA0
plus the following statement DS, which says that there is a descending sequence of Π1

1 sound
extensions of ACA0 in the ăΠ1

1
ordering:

DS :“ DE : xTi | i P NypRFNΠ1
1
pT0q ^ @x PrTxpRFNΠ1

1
pTx`1qq ^ @xpTx Ě ACA0qq

Note that E : xTi | i P Ny is understood to mean that E is a set encoding a sequence
xT0, T1, T2, . . .y of r.e. theories.

If we prove that ACA0`DS proves its own consistency, then the inconsistency of ACA0`DS
follows from Gödel’s second incompleteness theorem. We reason in ACA0 ` DS to to prove
consistency of ACA0 ` DS.

Let E : xTi | i P Ny be a sequence of theories witnessing the truth of DS. Let us consider
the sentence F

DU : xSi | i P NypS0 “ T1 ^ @x PrSxpRFNΠ1
1
pSx`1qq ^ @xpSx Ě ACA0qq.

The sentence F is true since we could take xTi`1 : i P Ny as U . It is easy to observe that F
is Σ1

1.
From RFNΠ1

1
pT0q we get that T0 is consistent with any true Σ1

1 statement. Thus, we infer
that

ConpT0 ` Fq.
Now using the fact that PrT0

`

RFNΠ1
1
pT1q

˘

and that T0 Ě ACA0 we conclude,

ConpACA0 ` RFNΠ1
1
pT1q ` Fq.

But it is easy to see that RFNΠ1
1
pT1q ` F implies DS in ACA0. In particular, we may take

xT1, T2, ...y as our new witness to DS. Thus, we conclude that ConpACA0 ` DSq. q

We now observe that a similar result holds over RCA0. To do so, we consider formulas
from the complexity class Π1

1pΣ0
2q (see §2.4). It is easy to see that the proof of Theorem

4.3.3 remains valid if we replace the theory ACA0 with RCA0, the complexity class Π1
1 with

Π1
1pΣ0

2q, and the complexity class Σ1
1 with Σ1

1pΠ0
2q. Thus, we also infer the following.

Theorem 4.3.3. pRCA0q The restriction of the order ăΠ1
1pΣ0

2q
to Π1

1pΣ0
2q-sound r.e. exten-

sions of RCA0 theories is well-founded.

Π3 soundness
In this subsection we study the complexity of descending sequences of r.e. theories with
respect to Π3 soundness. We recall that (provably in EA) a theory T is Π3 sound just in case
T is 2-consistent, i.e., just in case T is consistent with any true Π2 sentence.
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Theorem 4.3.4. There is no recursively enumerable sequence pTnqnăω of r.e. extensions of
EA such that T0 is Π3 sound and such that for every n, Tn $ RFNΠ3pTn`1q.

Proof. If the theorem fails, then the following sentence is true,

DS :“ De : xTi | i P Ny
´

RFNΠ3pT0q ^ @x PrTx
`

RFNΠ3pTx`1q
˘

¯

where De : xTi : i P Ny is understood to mean that e is an index for a Turing machine
enumerating the sequence xT0, T1, ...y.

We show that EA ` DS proves its own consistency, whence, by Gödel’s second incom-
pleteness theorem, EA` DS is inconsistent and hence DS is false.

Work in EA`DS. Since DS is true, it has some witness e : xTi | i P Ny. We now consider
the sequence e1 that results from omitting T0 from e. More formally, we consider the sequence
e1 : xT 1i | i P Ny, which is numerated by the Turing functional te1u : x ÞÑ teupx` 1q. That is,
for each i, T 1i “ Ti`1.

From DS we infer that for all x, Tx`1 $ RFNΠ3pTx`2q. Thus, for every x, T 1x $
RFNΠ3pT

1
x`1q by the definition of e1.

From the first conjunct of DS we infer that RFNΠ3pT0q. That is, T0 is consistent with any
Π2 truth. Thus, we infer that

T0 ` @x PrT 1x
`

RFNΠ3pT
1
x`1q

˘

is consistent.
On the other hand, from DS we infer that T0 proves the Π3 soundness of T 10. So it is

consistent that e1 witnesses DS. q

Consistency
In this subsection we provide a new proof of a theorem independently due to H. Fried-
man, Smorynski, and Solovay (see [59, 96]). Before stating the theorem we recall that, EA
proves the equivalence of, the consistency sentences ConpT q and the Π1-reflection principle
RFNΠ1pT q.

Theorem 4.3.5. There is no recursively enumerable sequence pTnqnăω of r.e. extensions of
EA such that T0 is consistent and such that EA $ @x PrTx

`

ConpTx`1q
˘

.

Proof. Suppose, toward a contradiction, that there is a recursively enumerable sequence
pTnqnăω of r.e. extensions of EA such that T0 is consistent and such that

EA $ @x PrTx
`

ConpTx`1q
˘

.

Since EA is sound, we also infer that for every n, Tn $ ConpTn`1q. Thus the following
sentence is true.

DS :“ De : xTi | i P Ny
´

ConpT0q ^ PrEA
`

@x PrTxpConpTx`1qq
˘

^ @x PrTx
`

ConpTx`1q
˘

¯



66

where De : xTi : i P Ny is understood to mean that e is an index for a Turing machine
enumerating the sequence xT0, T1, ...y.

We show that EA ` DS proves its own consistency, whence, by Gödel’s second incom-
pleteness theorem, EA` DS is inconsistent and hence DS is false.

Work in EA ` DS. Since DS is true, it has some witness e : xTi | i P Ny. We consider
the sequence e1 : xT 1i | i P Ny that results from dropping T0 from the sequence produced by
e. More formally, we consider the sequence e1 which is numerated by the Turing functional
te1u : x ÞÑ teupx` 1q.
Claim. e1 is provably a witness to DS in T0.

To see that e1 provably witnesses the third conjunct of DS in T0, we reason as follows.

EA $@x PrTx`1ConpTx`2q by DS.
EA $@x PrT 1xConpT 1x`1q since T 1x “ Tx`1 by definition of e1.
T0 $@x PrT 1xConpT 1x`1q since T0 extends EA.

To see that e1 provably witnesses the second conjunct of DS in T0, we reason as follows.

EA $@x PrT 1xConpT 1x`1q as above.
EA $PrEA

`

@x PrT 1xConpT 1x`1q
˘

by the Σ1 completeness of EA.
T0 $PrEA

`

@x PrT 1xConpT 1x`1q
˘

since T0 extends EA.

We now show that e1 provably witnesses the first conjunct of DS in T0. From the first
conjunct of DS we infer that ConpT0q. It follows that T0 is Π1 sound. We reason as follows.

T0 $ ConpT1q by DS.
T0 $ ConpT 10q since provably T 10 “ T1.

We then infer that ConpT 10q by the Π1 soundness of T0. So e1 is provably a witness to DS in
a consistent theory. Therefore EA` DS is consistent. q

Remark 4.3.6. Note that we just proved the non-existence of EA-provably descending r.e.
sequences. Without the condition of EA provability such descending sequences do exist. H.
Friedman, Smorynski, and Solovay independently proved that there is a recursive sequence
xT0, T1, ...y of consistent extensions of EA such that for all n, Tn $ ConpTn`1q, answering a
question of Gaifman; see [96] for details.

Π2 soundness
We now know that there are no recursive descending sequences of Π3 sound theories with
respect to the Π3 reflection order, but there are recursive descending sequences of consistent
theories with respect to consistency strength. In this subsection we treat the remaining case,
namely, Π2 soundness. We prove that there is an infinite sequences xT0, T1, ...y of Π2 sound
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extensions of EA such that for all n, Tn $ RFNΠ2pTn`1q. In this sense, Theorem 4.3.4 is best
possible.

In the section, for technical reasons it will be useful for us to impose some natural
conditions on our proof predicate. We make sure that any proof in our proof system has
only one conclusion, whence

EA $ @x, y1, y2

´

`

PrfT px, y1q ^ PrfT px, y2q
˘

Ñ y1 “ y2

¯

.

Moreover, we arrange the proof system so that indices for statements are less than or equal
to the indices for their proofs, i.e.,

EA $ @x, ypPrfT px, yq Ñ y ď xq. (4.1)

Note that the conclusions of the theorems in our paper are not sensitive to the choice of
proof predicate as long as the resulting provability predicates are EA-provably equivalent.
And it is easy to see that even if our initial choice of PrfT px, ϕq didn’t satisfy the mentioned
conditions, it is easy to modify it to satisfy the conditions, while preserving the provability
predicate PrT pϕq up to EA-provable equivalence.

Before proving the theorem we make a few more remarks preliminary remarks. We use
the symbol ´ to denote the truncated subtraction function, i.e., n ´m “ n ´m if n ą m
and 0 otherwise. We remind the reader that, provably in EA, a theory is Σ1 sound if and
only if it is Π2 sound. We also pause to make the following remark, which will invoke in the
proof of the theorem.
Remark 4.3.7. For any Π2 sound extension T of EA, the theory T `  RFNΠ2pT q is Π2
sound. This is actually an instance Gödel’s second incompleteness theorem that is applied
to 1-provability rather than the ordinary provability. Recall that 1-provability predicate
1-PrT pϕq for a theory T is

Dψ P Σ2
`

TrΣ2pψq ^ PrT pψ Ñ ϕq
˘

. (4.2)

The consistency notion that corresponds to 1-provability is precisely Π2-soundness:

EA $ @ϕ
`

 1-PrT p ϕq Ø RFNΠ2pT ` ϕq
˘

. (4.3)

It is easy to see that 1-provability predicate for a theory T satisfies the usual Hilbrt-Bernays-
Löb derivability conditions. Thus Gödel’s second incompleteness theorem for it states that
if a theory T Ě EA is Π2-sound, then RFNΠ2pT q is not 1-provable in T . And the latter is
equivalent to Π2-soundness of T ` RFNΠ2pT q.

We are now ready for the proof of the theorem.

Theorem 4.3.8. There is a recursive sequence pϕnqnăω of Π2-sound sentences such that,
for each n, EA` ϕn $ RFNΠ2pEA` ϕn`1q.
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Proof. For each n P N, we define the sentence ϕn as follows:

ϕn :“ Dψ P Σ1Dp
´

Prf IΣ2pp, ψq ^  TrueΣ1pψq ^ RFNΠ2

`

Rp´n
Π2 pEAq

˘

¯

That is, ϕn expresses “IΣ2 proves a false Σ1 sentence via a proof p, and Π2 reflection for EA
can be iterated up to p´ n.”

The motivation for picking that individual formula is as follows: To find a descending
sequence, we will iterate Π2 reflection up to some non-standard number. So we need to make
sure that our formula forces a certain number to be non-standard but without implying any
false Π2 sentences. The way we do that is by saying that IΣ2 proves a false Σ1 sentence. This
has (we will show) no false Π2 consequences. However, (the code of) any proof witnessing a
failure of Σ1 soundness in IΣ2 must be non-standard. We find our descending sequence by
iterating Π2 reflection up to this non-standard number.

Now the formal details start. We need to check that ϕn is Π2 sound for each n, and that
EA` ϕn $ RFNΠ2pEA` ϕn`1q.
Claim. EA` ϕn is Π2 sound for each n.

The first thing to note is that

IΣ2 $ @x RFNΠ2

`

Rx
Π2pEAq

˘

. (4.4)

Indeed, IΣ2 can prove the latter claim by induction on x. Recall that IΣ2 ” IΠ2 and
@x RFNΠ2

`

Rx
Π2pEAq

˘

is a Π2-formula, hence IΣ2 could formalize the necessary induction.
Also it is known that IΣ2 Ě IΣ1 ” EA` RFNΠ3pEAq and that

EA` RFNΠ3pEAq $ ψ Ñ RFNΠ2pEA` ψq,

for any Π2-formula ψ. This allows us to verify the base and step of the induction in IΣ2.
The second thing to note is that, since Π2 reflection is provably equivalent (in EA) to Σ1

reflection, it follows that:

IΣ2 ` RFNΠ2pIΣ2q $ Dψ P Σ1Dp
`

Prf IΣ2pp, ψq ^  TrueΣ1pψq
˘

(4.5)

Putting these two observations together, we infer that, for each standard n P N,

IΣ2 ` RFNΠ2pIΣ2q $ Dψ P Σ1Dp
`

Prf IΣ2pp, ψq ^  TrueΣ1pψq ^ RFNp´n
Π2 pEAq

˘

(4.6)

which is just to say that for each standard n P N, IΣ2 `  RFNΠ2pIΣ2q $ ϕn. Thus, to see
that EA ` ϕn is Π2 sound, it suffices to observe that IΣ2 `  RFNΠ2pIΣ2q is Π2 sound. The
latter claim follows immediately from Remark 4.3.7.

Before checking that EA`ϕn $ RFNΠ2pEA`ϕn`1q, we will establish the following lemma:
Lemma 4.3.9. For all standard n P N,

EA $ @p@ψ P Σ1

´

`

Prf IΣ2pp, ψq ^  TrueΣ1pψq
˘

Ñ p ą n
¯

.
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Proof. The first thing to note is that (by the Σ1 soundness of IΣ2 and the Σ1 completeness
of EA) for any ψ P Σ1, if IΣ2 $ ψ then also EA $ ψ. Now, for any standard p P N, EA can
check whether p constitutes an IΣ2 proof of a Σ1 sentence ψ, and if p does constitute such a
proof, then EA will prove ψ as well. That is, for each standard p P N:

EA $ @ψ P Σ1

´

Prf IΣ2pp, ψq Ñ TrueΣ1pψq
¯

It follows that for each standard n P N:

EA $ @p ď n@ψ P Σ1

´

Prf IΣ2pp, ψq Ñ TrueΣ1pψq
¯

Whence for each standard n P N:

EA $ @p@ψ P Σ1

´

`

Prf IΣ2pp, ψq ^  TrueΣ1pψq
˘

Ñ p ą n
¯

This completes the proof of the lemma. q

With the lemma on board, we are now ready to verify the following claim:
Claim. For each n P N,

EA` ϕn $ RFNΠ2pEA` ϕn`1q.

Let’s fix an n P N and reason in EA` ϕn:
According to ϕn, there is an IΣ2 proof p of a false Σ1 sentence ψ and RFNΠ2pR

p´n
Π2 pEAqq

is Π2-sound. From Lemma 4.3.9 we infer that p ą n. It follows that p ´ n ą 0, whence
p´ n “ pp´ pn` 1qq ` 1. Hence

Rp´n
Π2 pEAq ” Rpp´pn`1qq`1

Π2 pEAq ” EA` RFNΠ2

`

Rp´pn`1q
Π2 pEAq

˘

. (4.7)

Thus
RFNΠ2

´

EA` RFNΠ2

`

Rp´pn`1q
Π2 pEAq

˘

¯

Since Prf IΣ2pp, ψq is a true Σ1 sentence and ψ is a false Σ1 sentence we infer that

RFNΠ2

´

EA` Prf IΣ2pp, ψq `  TrueΣ1pψq ` RFNΠ2

`

Rp´pn`1q
Π2 pEAq

˘

¯

Which straightforwardly implies RFNΠ2pEA`ϕn`1q. This completes the proof of the theorem.
q

Question 4.3.10. In Theorem 4.3.4 and Theorem 4.3.8 we studied how strong reflection
principles should be to guarantee that there are no recursive descending sequences in the
corresponding reflection order. It is natural to ask how this result could be generalized to
higher Turing degrees.

Let n be a natural number. For which m is there a sequence xTi | i P Ny recursive in 0pnq
such that all Ti are Πm sound extensions of EA and Ti $ RFNΠmpTi`1q, for all i? The same
question for Σm?
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4.4 Iterated reflection and conservation
In this section we prove a number of conservation theorems relating iterated reflection and
transfinite induction. These results are inspired by the following theorem, which is often
known as Schmerl’s formula [87]. For an ordinal notation system α, ωαn is the result of
n-applications of ω-exponentiation (see §4.2), starting with α, i.e., ωα0 “ α and ωαn`1 “ ωω

α
n .

Theorem 4.4.1 (Schmerl). Let n,m be natural numbers. Provably in EA`, for any notation
system α,

Rα
Π0
n`m
pEA`q ”Π0

n
Rωmpαq

Π0
n

pEA`q.

Schmerl’s formula is a useful tool for calculating the proof-theoretic ordinals of first-order
theories. In this section we will develop tools in the mold of Schmerl’s formula for calculating
the Π1

1 proof-theoretic ordinals of second-order theories. Throughout this section we will rely
on the following analogue of Theorem 4.4.1 that is also due to Schmerl [88].

Theorem 4.4.2 (Schmerl). Let n be a natural number. Provably in EA`, for any ordinal
notation α,

Rα
Π0
8
pPApXqq ”Π0

n
Rεα

Π0
n
pEA`pXqq.

Note that the versions of Schmerl’s formulas that we give above aren’t exactly what
Schmerl proved, but rather versions of the formulas that are natural given the notation
of our paper. And they could be proved by either application of Schmerl’s technique or
Beklemishev’s technique [7]. In fact in an early preprint of this paper [71, §6.2] we provided
a proof of Theorem 4.4.2, however since the technique that we used wasn’t new and the
result is just a slight variation of [88] we removed it from the paper.

Here is a roadmap for the rest of this section. In §4.4 we prove Theorem 4.4.9 that states
that

Rα
Π1

1pΣ0
2q
pRCA0q ”Π0

8
R1`α

Π0
3
pEA`pXqq.

In §4.3 we use this result to prove Theorem 4.1.6, i.e., that

Rα
Π1

1
pACA0q ”Π1

1pΣ0
2q

Rεα
Π1

1pΣ0
2q
pRCA0q.

In §4.5 we will combine Theorem 4.1.6 with the results from §4.3 (especially Theorem
4.3.2 and Theorem 4.3.3) to establish connections between iterated reflection and ordinal
analysis. In particular, we will use iterated reflection principles to calculate the Π1

1 proof-
theoretic ordinals of a wide range of theories.

Before continuing, we alert the reader that many of the proofs in this section use Schmerl’s
technique of reflexive induction. For a description of this technique, please see §2.4.
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Iterated reflection and recursive comprehension
Recall that there are no descending chains in the RFNΠ1

1pΣ0
2q

ordering of Π1
1pΣ0

2q sound ex-
tensions of RCA0 (this is Theorem 4.3.3). In this subsection we investigate iterated Π1

1pΣ0
2q

reflection over the theory RCA0. The main result of this subsection is that Rα
Π1

1pΣ0
2q
pRCA0q is

Π1
1 conservative over R1`α

Π0
3
pEA`pXqq. This result will be used in the next section to calculate

Π1
1 proof-theoretic ordinals of subsystems of second-order arithmetic.
Before proving the theorem we prove a few lemmas. These lemmas concern proof-

theoretic properties of theories that are closed under an inference rule that we call the
∆0

1 substitution rule.

Definition 4.4.3. Suppose ϕ and θpxq are Π0
8 formulas that may have other free variables.

We denote by ϕrθpxqs the result of substituting the formula θpxq in for the free set variable
X, i.e. to obtain ϕrθpxqs we first rename all the bounded variables of ϕ in order to ensure
that there are no clashes with free variables of θ and then replace each atomic subformula
of ϕ of the form t P X with θptq.

Definition 4.4.4. We write Subst∆0
1
rϕs to denote the formula

@θ1pxq@θ2pxq
´

@y
`

TrΠ0
1
pθ1pyqq Ø TrΣ0

1
pθ2pyqq

˘

Ñ ϕrTrΠ0
1
pθ1pxqqs

¯

.

A theory T is closed under the ∆0
1 substitution rule if, for any formula ψpXq, whenever

T $ ψpXq then T $ Subst∆0
1
rψs.

Recall that there is a translation ϕpXq ÞÝÑ @X ϕpXq from the set of Π0
8 sentences to the

set of sentences of the language of second order arithmetic. Recall also that we are regarding
the pseudo-Π1

1 language as a sublanguage of the language of second order arithmetic by
identifying each pseudo Π1

1 sentence with its translation.

Lemma 4.4.5. pEA`q For each Π0
8 sentence ϕpXq the following are equivalent.

1. RCA0 ` @X ϕpXq is Π0
8 conservative over IΣ1pXq ` ϕpXq.

2. IΣ1pXq ` ϕpXq is closed under the ∆0
1 substitution rule.

3. IΣ1pXq ` ϕpXq proves Subst∆0
1
rϕs.

Proof. We work in EA` and consider a Π0
8 sentence ϕpXq.

p1q Ñ p2q: Suppose that RCA0 ` @X ϕpXq is Π0
8 conservative over IΣ1pXq ` ϕpXq.

Suppose that IΣ1pXq ` ϕpXq $ ψpXq. Then RCA0 ` @X ϕpXq $ ψpXq. Applying recursive
comprehension, we derive RCA0 ` @X ϕpXq $ Subst∆0

1
rψs. Hence, by Π0

8 conservativity,
IΣ1pXq ` ϕpXq $ Subst∆0

1
rψs.

p2q Ñ p3q: By application of the ∆0
1 substitution rule to ϕ.
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p3q Ñ p1q: Suppose that IΣ1pXq ` ϕpXq proves Subst∆0
1
rϕs. We recall the well-known

ω-interpretation of RCA0 into IΣ1pXq wherein we interpret sets by indices for X-recursive
sets; see, e.g., [92, §IX.1]. The image of the sentence @X ϕpXq under this interpretation is
the sentence Subst∆0

1
rϕs. This latter sentence is provable in IΣ1pXq ` ϕpXq by assumption.

Thus, this interpretation actually interprets RCA0`@X ϕpXq in IΣ1pXq`ϕpXq. Therefore,
for any sentence ψpXq, if RCA0 ` @X ϕpXq proves @X ψpXq, then IΣ1pXq ` ϕpXq proves
Subst∆0

1
rψs, which is the image of @X ψpXq under the interpretation. Obviously, IΣ1pXq `

ϕpXq $ Subst∆0
1
rψs Ñ ψpXq, for any Π0

8 formula ψpXq. Therefore, RCA0 ` @X ϕpXq is
Π0
8 conservative over IΣ1pXq ` ϕpXq. q

Question 4.4.6. Combining Theorem 4.3.3 and Lemma 4.4.5 it is easy to observe that the
restriction of the order ăΠ0

3
to Π0

3-sound r.e. extensions of IΣ1pXq that are closed under
the ∆0

1-substitution rule is well-founded. Could we drop the condition on closure under the
∆0

1-substitution rule? For which n is the restriction of the order ăΠ0
n
to Π0

n-sound r.e.
extensions of IΣ1pXq well-founded?

Remark 4.4.7. We recall that IΣ1 ” EA` ` RFNΠ3pEA`q. See, e.g., [8]. The same argument
could be used to show that IΣ1pXq ” EA`pXq ` RFNΠ0

3
pEA`pXqq.

Lemma 4.4.8. pEA`q For a fixed theory T , if EA` proves “T Ě IΣ1pXq and T is closed under
the ∆0

1 substitution rule,” then EA`pXq`RFNΠ0
3
pT q is closed under the ∆0

1 substitution rule.

Proof. Suppose that EA` proves “T Ě IΣ1pXq is closed under the ∆0
1 substitution rule.” Let

us use the name U for the theory EA`pXq ` RFNΠ0
3
pT q. We want to show that U is closed

under the ∆0
1 substitution rule. Note that, by Remark 4.4.7, U contains IΣ1pXq. That is,

U ” IΣ1pXq ` RFNΠ0
3
pT q. Over EApXq, the reflection schema RFNΠ0

3
pT q is equivalent to

@ϕ P Π0
3

´

PrT
`

TrΠ0
3
pϕq

˘

Ñ TrΠ0
3
pϕq

¯

.

Thus, by Lemma 4.4.5, it suffices to show that U proves

Subst∆0
1
r@ϕ P Π0

3

´

PrT
`

TrΠ0
3
pϕq

˘

Ñ TrΠ0
3
pϕq

¯

s.

But since the formula PrT pTrΠ0
3
pϕqq doesn’t contain occurences of X, we could push Subst∆0

1
under the quantifier, i.e., it will be sufficient to show that

U $ @ϕ P Π0
3

´

PrT
`

TrΠ0
3
pϕq

˘

Ñ Subst∆0
1
rTrΠ0

3
pϕqs

¯

.

Observe that Subst∆0
1
rTrΠ0

3
pϕqs is equivalent to a Π0

3 formula over EApXq. We reason as
follows.

U $ “T is closed under the ∆0
1 substitution rule,” by assumption.

U $ @ϕ P Π0
3

´

PrT
`

TrΠ0
3
pϕq

˘

Ñ PrT pSubst∆0
1
rTrΠ0

3
pϕqsq

¯

U $ @ϕ P Π0
3

´

PrT
`

TrΠ0
3
pϕq

˘

Ñ Subst∆0
1
rTrΠ0

3
pϕqs

¯

by RFNΠ0
3
pT q.
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This concludes the proof of the lemma. q

With these lemmas on board we are ready for the proof of the main theorem of this
subsection.

Theorem 4.4.9. pEA`q For any ordinal notation α,

Rα
Π1

1pΣ0
2q
pRCA0q ”Π0

8
R1`α

Π0
3
pEA`pXqq.

Proof. We prove the claim by reflexive induction. We reason in EA` and assume the reflexive
induction hypothesis: provably in EA`, for any β ă α,

Rβ
Π1

1pΣ0
2q
pRCA0q ”Π0

8
R1`β

Π0
3
pEA`pXqq.

Of course, since RCA0 contains EA`, this also implies that,

RCA0 $ @β ă α
´

Rβ
Π1

1pΣ0
2q
pRCA0q ”Π0

8
R1`β

Π0
3

`

EA`pXq
˘

¯

If RCA0 proves mutual Γ conservation of two theories T and U , then RFNΓpT q and
RFNΓpUq are equivalent over RCA0. Thus, we immediately infer

RCA0 $ @β ă α
´

RFNΠ0
3

`

Rβ
Π1

1pΣ0
2q
pRCA0q

˘

Ø RFNΠ0
3

`

R1`β
Π0

3

`

EA`pXq
˘˘

¯

(4.8)

We now reason as follows.

Rα
Π1

1pΣ0
2q
pRCA0q ” RCA0 `

ď

βăα

RFNΠ1
1pΣ0

2q

`

Rβ
Π1

1pΣ0
2q
pRCA0q

˘

by definition.

”Π0
8

RCA0 `
ď

βăα

RFNΠ0
3

`

Rβ
Π1

1pΣ0
2q
pRCA0q

˘

” RCA0 `
ď

βăα

RFNΠ0
3

´

R1`β
Π0

3

`

EA`pXq
˘

¯

by (4.8).

Since R1
Π0

3
pEA`pXqq ” IΣ1pXq, we are able to show that

R1`α
Π0

3

`

EA`pXq
˘

” IΣ1pXq `
ď

βăα

RFNΠ0
3

´

R1`β
Π0

3

`

EA`pXq
˘

¯

,

by the following argument:

R1`α
Π0

3

`

EA`pXq
˘

” R1
Π0

3

`

EA`pXq
˘

`R1`α
Π0

3

`

EA`pXq
˘

since 1 ď 1` α.

” IΣ1pXq `R1`α
Π0

3

`

EA`pXq
˘

since R1
Π0

3

`

EA`pXq
˘

” IΣ1pXq.

” IΣ1pXq `
ď

βăα

RFNΠ0
3

´

R1`β
Π0

3

`

EA`pXq
˘

¯

by definition.
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Hence in order to finish the proof of the lemma it will be enough to show that

IΣ1pXq `
ď

βăα

RFNΠ0
3
pR1`β

Π0
3
pEA`pXqqq ”Π0

8
RCA0 `

ď

βăα

RFNΠ0
3
pR1`β

Π0
3
pEA`pXqqq,

which, by Lemma 4.4.5, can be achieved by proving that

IΣ1pXq `
ď

βăα

RFNΠ0
3
pR1`β

Π0
3
pEA`pXqqq

is closed under the ∆0
1 substitution rule. We will prove this closedness in the rest of the

proof.
By a usual compactness argument, it will be enough to show that IΣ1pXq is closed under

the ∆0
1 substitution rule and that for each β ă α the theories IΣ1pXq`RFNΠ0

3
pR1`β

Π0
3
pEA`pXqqq

are closed under the ∆0
1 substitution rule. Closure of IΣ1pXq under the ∆0

1 substitution rule
follows directly from Lemma 4.4.5.

By Lemma 4.4.5, we infer that, for each β ă α, R1`β
Π0

3
pEA`pXqq is EA` provably closed

under the ∆0
1 substitution rule. Thus, by Lemma 4.4.8, we infer that for each β ă α,

EA`pXq ` RFNΠ0
3
pR1`β

Π0
3
pEA`pXqqq

is closed under the ∆0
1 substitution rule. Since EA`pXq`RFNΠ0

3
pR1`β

Π0
3
pEA`pXqqq Ě IΣ1pXq,

the theory IΣ1pXq ` RFNΠ0
3
pR1`β

Π0
3
pEA`pXqqq is closed under the ∆0

1 substitution rule. This
concludes the proof of the lemma. q

Iterated reflection and arithmetical comprehension
In this subsection we investigate the relationship between iterated Π1

1 reflection over ACA0
and iterated Π1

1pΣ0
2q reflection over RCA0. The main theorem of this subsection is that

Rα
Π1

1
pACA0q is Π1

1pΣ0
2q conservative over Rεα

Π1
1pΣ0

2q
pRCA0q. The proof of the main theorem of

this subsection is similar to the proof of Theorem 4.4.9. For our first step towards this result,
we establish a conservation theorem relating extensions of ACA0 with extensions of PApXq.

There is a standard semantic argument that ACA0 is conservative over PA (see, e.g., [92,
Section IX.1]). We will present a version of this argument for extensions of ACA0 by Π1

1
sentences. Moreover we ensure that this conservation result is provable in ACA0. Before
presenting the argument, we will say a bit about how we will formalize model theory within
ACA0 for the purposes of our argument.

We will reason in ACA0 and use the formalization of model theory from [92, Section II.8].
Recall that according to formalization from [92, Section II.8] a model M essentially is a set
that encodes the domain of M (which is by necessity a subset of N) and the full satisfaction
relation for M (the latter essentially is the elementary diagram of the model M). Note that
if one would require M contain information only about the satisfaction of atomic formulas,
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rather then all formulas, the resulting notion of a model would be weaker. This is due to
the fact that in ACA0, unlike in stronger theories, it is not always possible to recover the
elementary diagram of a model from its atomic diagram.

Due to this limitation, in ACA0 it is sometimes (including in our proof) useful to employ
weak models [92, Definition II.8.9]. A weak model M of a theory T is a set that encodes
the domain of M and a partial satisfaction relation for M that is defined only on Boolean
combinations of subformulas of formulas used in axioms of T such that all the axioms of T
are according to this satisfaction relation. The key fact that we use is that ACA0 proves that
any theory that has a weak model is consistent [92, Theorem II.8.10].

Lemma 4.4.10. pACA0q Let ϕpXq, ψpXq be Π0
8. If ACA0 ` @X ϕpXq $ @X ψpXq then

PApXq ` tϕrθs : θpxq is Π0
8u $ ψpXq, where θ could contain additional variables.

Proof. We reason in ACA0. We denote by U the theory PApXq ` tϕrθs : θ is Π0
8u. Let

us consider any ψpXq such that U & ψpXq. To prove the lemma we need to show that
ACA0 ` @X ϕpXq & @X ψpXq.

There is a model M of U `  ψpXq. Note that here X is just a unary predicate. We
enrich M by adding, as the family S of second-order objects, all the sets defined in M by
Π0
8 formulas that may contain additional parameters from the model.
Let us first show how we could finish the proof without ensuring that our argument could

be formalized in ACA0 and only then indicate how to carry out the formalization. Indeed, it
is easy to see that the second-order structure pM,Sq satisfies ACA0`@X ϕpXq: the presence
of the full induction schema in U guarantees that pM,Sq satisfies set induction, our definition
of S guarantees that arithmetical comprehension holds in pM,Sq, and the fact that we had
axioms tϕrθs : θ is Π0

8u in U guarantees that @X ϕpXq holds in pM,Sq. And since ψpXq
failed in M, the sentence @X ψpXq fails in pM,Sq. Therefore, ACA0`@X ϕpXq & @X ψpXq.

Now let us show how to formalize the latter argument in ACA0. We want to show that
we could extend pM,Sq to a weak model of ACA0`@X ϕpXq. From the satisfaction relation
for M we can trivially construct the partial satisfaction relation for pM,Sq that covers
all Π0

8 formulas with parameters from pM,Sq. And since we are working in ACA0, using
arithmetical comprehension for every (externally) fixed n we could expand the latter partial
satisfaction relation to all the formulas constructed from Π0

8 formulas by arbitrary use of
propositional connectives and with introduction of at most n quantifier alternations. For
n “ 2 this expanded partial satisfaction relation covers all the axioms of ACA0`@X ϕpXq`
 @X ψpXq. Now after we constructed this satisfaction relation we could proceed as in
the paragraph above and show that in this partial satisfaction realtion all the axioms of
ACA0`@X ϕpXq ` @X ψpXq are true. Hence we have a weak model of ACA0`@X ϕpXq.
Therefore, ACA0 ` @X ϕpXq & @X ψpXq. q

Remark 4.4.11. Although we don’t provide a proof here, we note that with some additional
care it is possible to establish Lemma 4.4.10 in EA` by appealing to the Π2-conservativity of
WKL‹0`“super-exponentiation is total” over EA`, see [93] for the Π2-conservativity of WKL‹0
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over EA. But it isn’t possible to prove this result in EA since ACA0 enjoys non-elementary
speed-up over PA.

Definition 4.4.12. We say that a pseudo Π1
1 theory T pXq is closed under substitution if

whenever T $ ϕpXq then also T $ ϕrθpxqs for any Π0
8 formula θ.

Lemma 4.4.13. If a theory T proves every substitution variant of its own axioms, then T
is closed under substitution.

Proof. Suppose that T proves every substitution variant of its own axioms. Let θ be a Π0
8

formula and let ϕpXq be a theorem of T . Since ϕpXq is a theorem of T , there is some finite
conjunction AT pXq of axioms of T such that the sentence

AT pXq Ñ ϕpXq

is a theorem of pure logic. Since pure logic is closed under substitution, the sentence

AT rθpxqs Ñ ϕrθpxqs

is also a theorem of pure logic. Since T proves every substitution variant of its own axioms,
T proves AT rθpxqs, whence T proves ϕrθpxqs. q

Lemma 4.4.14. PApXq `Rα
Π0
8
pPApXqq is closed under substitution.

Proof. We prove the claim by reflexive induction. We reason within EA` and assume the
reflexive induction hypothesis: provably in EA`, for all β ă α, PApXq ` Rβ

Π0
8
pPApXqq is

closed under substitution. First we note that

Rα
Π0
8

`

PApXq
˘

” PApXq `
ď

βăα

RFNΠ0
8

´

Rβ
Π0
8

`

PApXq
˘

¯

.

For β ă α let us denote by Sβ the theory

PApXq ` RFNΠ0
8

´

Rβ
Π0
8

`

PApXq
˘

¯

.

To prove that Rα
Π0
8

`

PApXq
˘

is closed under substitution it suffices to prove that, for every
β ă α, Sβ is closed under substitution.

By Lemma 4.4.13, to prove that Sβ is closed under substitution, it suffices to show that
Sβ proves every substitution-variant of its own axioms. Let us use the name Uβ to denote
the theory Rβ

Π0
8

`

PApXq
˘

. An axiom of the theory Sβ is either an axiom of PApXq or is
a sentence of the form @~y

`

PrUβ
`

ϕpX, ~yq
˘

Ñ ϕpX, ~yq
˘

. Already the theory PApXq proves
every substitutional instance of its own axioms. By the reflexive induction hypothesis, Uβ
is provably closed under substitution. So Sβ proves @~y

`

PrUβ
`

ϕpX, ~yq
˘

Ñ ϕpθ, ~yq
˘

for any
formula θ. This is to say that Sβ proves every substitution instance of its axioms. q
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Remark 4.4.15. It follows from the lemma that the theories PApXq ` tRα
Π0
8
pPApXqqrθs : θ P

Π0
8u and PApXq `Rα

Π0
8
pPApXqq are equivalent. We will make use of this observation in the

proof of Lemma 4.4.16.
Most of the work towards proving the main theorem of this section is contained in the

proof of the following key lemma.

Lemma 4.4.16. Rα
Π1

1
pACA0q is Π0

8 conservative over Rα
Π0
8
pPApXqq.

Proof. We prove the claim by reflexive induction. We reason within ACA0 and assume
the reflexive induction hypothesis: provably in ACA0, for all β ă α, Rβ

Π1
1
pACA0q is Π0

8

conservative over Rβ
Π0
8
pPApXqq. This means that, provably in ACA0, for any β ă α, Π0

8

reflection over Rβ
Π1

1
pACA0q is equivalent to Π0

8 reflection over Rβ
Π0
8
pPApXqq. That is:

ACA0 $ @β ă α
´

RFNΠ0
8

`

Rβ
Π1

1
pACA0q

˘

Ø RFNΠ0
8

`

Rβ
Π0
8
pPApXqq

˘

¯

(4.9)

We reason as follows.
Rα

Π1
1
pACA0q ” ACA0 `

ď

βăα

RFNΠ1
1

`

Rβ
Π1

1
pACA0q

˘

by definition.

”Π0
8

ACA0 `
ď

βăα

RFNΠ0
8

`

Rβ
Π1

1
pACA0q

˘

” ACA0 `
ď

βăα

RFNΠ0
8

´

Rβ
Π0
8

`

PApXq
˘

¯

by (4.9).

” ACA0 `
ď

βăα

RFNΠ0
8

´

PApXq `Rβ
Π0
8

`

PApXq
˘

¯

by definition.

”Π0
8

PApXq `
ď

βăα θPΠ0
8

RFNΠ0
8

´

PApXq `Rβ
Π0
8

`

PApXq
˘

¯

rθs by Lemma 4.4.10.

”Π0
8

PApXq `
ď

βăα

RFNΠ0
8

´

PApXq `Rβ
Π0
8

`

PApXq
˘

¯

by Remark 4.4.15.

”Π0
8

Rα
Π0
8
pPApXqq by definition.

This concludes the proof. q

The proof of the the main theorem of this section is now straightforward, given Theorem
4.4.9 and Lemma 4.4.16.

Theorem 4.4.17. Rα
Π1

1
pACA0q is Π1

1pΣ0
2q conservative over Rεα

Π1
1pΣ0

2q
pRCA0q.

Proof. We reason as follows.
Rα

Π1
1
pACA0q ”Π0

8
Rα

Π0
8
pPApXqq by Lemma 4.4.16.

”Π0
3

Rεα
Π0

3
pEA`pXqq by Theorem 4.4.2.

”Π0
3

Rεα
Π1

1pΣ0
2q
pRCA0q by Theorem 4.4.9.
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Note for each Π1
1pΣ0

2q sentence ϕ we could find a Π0
3 sentence ϕ1 such that RCA0 proves the

equivalence of ϕ and (the translation into the second order language of) ϕ1. Thus moreover
we have

Rα
Π1

1
pACA0q ”Π1

1pΣ0
2q

Rεα
Π1

1pΣ0
2q
pRCA0q.

This completes the proof of the theorem. q

4.5 Reflection ranks and proof-theoretic ordinals
In this section we introduce the notion of reflection rank. We then use the results from the
previous section to establish connections between reflection ranks and Π1

1 proof-theoretic
ordinals.

Reflection ranks
Recall that the reflection order ăΠ1

1
on r.e. extensions of ACA0 is:

T1 ăΠ1
1

T2
def
ðñ T2 $ RFNΠ1

1
pT1q.

For a theory T Ě ACA0 we define the reflection rank |T |ACA0 P On Y t8u as the rank of T
in the order ăΠ1

1
.

Remark 4.5.1. We recall that as usual the rank function ρ : A Ñ On Y t8u for a binary
relation pA,Ÿq is the only function such that ρpaq “ suptρpbq ` 1 | b Ÿ au. Here the linear
order ă on ordinals is extended to the class On Y t8u by puting α ă 8, for all α P On.
The operation α ÞÑ α ` 1 is extended to the class On Y t8u by putting 8` 1 “ 8. Note
that ρpaq P On iff the cone tb | b Ÿ au is well-founded with respect to Ÿ.

Recall that Theorem 4.3.2 states that |T |ACA0 P On, for Π1
1-sound T .

We will also consider the more general notion of reflection rank with respect to some
other base theories. For second-order theories U Ě RCA0 we consider the reflection order
ăΠ1

1pΣ0
2q
:

U1 ăΠ1
1pΣ0

2q
U2

def
ðñ U2 $ RFNΠ1

1pΣ0
2q
pU1q.

Let us consider some base theory T0 Ě RCA0. We define the set E-T0 of all theories U such
that EA proves that U Ě T0. For U P E-T0 we denote by |U |T0 the rank of U in the order
pE-T0,ăΠ1

1pΣ0
2q
q. Note that Π1

1pΣ0
2q-sound extensions of T0 have a well-founded rank in this

ordering by Theorem 4.3.3.
Remark 4.5.2. For a theory T0 given by a finite list of axioms the set E-T0 coincides with
the set of all U such that U Ě T0. Indeed, for any T0 given by a finite list of axioms we have
a Σ1 formula in EA that expresses U Ě T0 with U as a parameter (the Σ1 formula states
that there is a U -proof of the conjunction of all the axioms of T0).
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Remark 4.5.3. The definition of the rank |T |ACA0 given in the beginning of the section coin-
cides with the more general definition of rank, since in ACA0 each Π1

1 formula is equivalent
to a Π1

1pΣ0
2q-formula and hence for any T Ě ACA0,

ACA0 $ RFNΠ1
1
pT q Ø RFNΠ1

1pΣ0
2q
pT q.

Straightforwardly from Theorem 4.3.3 we get the following.

Corollary 4.5.4. If U Ě RCA0 is Π1
1pΣ0

2q-sound, then the rank |U |RCA0 P On. Hence for
each T0 Ě RCA0 and Π1

1pΣ0
2q-sound theory U P E-T0 we have |U |T0 P On.

Remark 4.5.5. The converse of Corollary 4.5.4 is not true, there are Π1
1pΣ0

2q unsound theories
whose rank is an ordinal. In particular, for each consistent theory T0 Ě RCA0, we have
|T0 `  ConpT0q|T0 “ 0. Indeed, assume T0 `  ConpT0q $ RFNΠ1

1
pUq, for some U P E-T0.

Then
T0 ` ConpT0q $ RFNΠ1

1
pT0q

$ ConpT0q

$ K.

But by Gödel’s Second Incompleteness Theorem T0 ` ConpT0q is consistent. This is to say
that, though T0 ` ConpT0q is not Π1

1 sound, |T0 ` ConpT0q|T0 P On.
Note that later we will introduce a notion of robust reflection rank that enjoys much

better behavior and, in particular, satisfies the converse of Corollary 4.5.4.
Recall that for an ordinal notation α we denote by |α| P OnYt8u the rank of the ordinal

notation α in the order ă.
The main proposition proved in this subsection is the following:

Proposition 4.5.6. For each Π1
2pΠ0

2q-sound theory T0 and ordinal notation α:

|Rα
Π1

1pΣ0
2q
pT0q|T0 “ |α|.

In order to prove the proposition we first establish some lemmas. We state without proof
the following two lemmas, the truth of which may easily be verified.

Lemma 4.5.7 (RCA0).
If T is Π1

2pΠ0
2q sound and α is a well-ordering, then Rα

Π1
1pΣ0

2q
pT q is Π1

1pΣ0
2q sound.

Lemma 4.5.8 (RCA0). If T is Π1
1pΣ0

2q sound and ϕ is a true Σ1
1pΠ0

2q formula, then T ` ϕ
is Π1

1pΣ0
2q sound.

Before proving proposition 4.5.6, we prove the following lemma.

Lemma 4.5.9. If |U |T0 ą |α| then there is a true Σ1
1pΠ0

2q sentence ϕ such that

U ` ϕ $ RFNΠ1
1pΣ0

2q
pRα

Π1
1pΣ0

2q
pT0qq. (4.10)
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Proof. We prove the lemma by transfinite induction on |α|. Since |U |T0 ą |α|, there is a
V P E-T0 such that U $ RFNΠ1

1pΣ0
2q
pV q and |V |T0 ě |α|. By the induction hypothesis there

are true Σ1
1pΠ0

2q sentences ϕβ, for all β ă α, such that

V ` ϕβ $ RFNΠ1
1pΣ0

2q
pRβ

Π1
1pΣ0

2q
pT0qq.

We now formalize the latter fact by a single Σ1
1pΠ0

2q sentence ϕ, which states that there is
a sequence of Π0

2 formulas xψβpY q | β ă αy without free variables other that Y and sequence
of sets xSβ | β ă αy such that

• for all β, the formula ψβpY q holds on Y “ Sβ;

• for all β, we have V ` DY ψβpY q $ RFNΠ1
1pΣ0

2q
pRβ

Π1
1pΣ0

2q
pT0qq.

It is easy to see that indeed we could form a Σ1
1pΠ0

2q sentence ϕ constituting the desired
formalization.

Now let us show that ϕ is true. Without loss of generality, we may assume that each ϕβ
is of the form DY θβpY q, where all θβpY q are Π0

2-formulas. We put each ψβ to be θβ and for
each β ă α we choose Sβ so that θβpY q holds on Y “ Sβ. Thus we see that ϕ is true.

We establish (4.10) by reasoning in U ` ϕ and showing that the theory Rα
Π1

1pΣ0
2q
pT0q is

Π1
1pΣ0

2q-sound. It is enough for us to establish the Π1
1pΣ0

2q-soundness of each finite subtheory
of Rα

Π1
1pΣ0

2q
pT0q, i.e., each theory

T0 ` RFNΠ1
1pΣ0

2q
pRβ

Π1
1pΣ0

2q
pT0qq,

for β ă α. We know (from U) that V is Π1
1pΣ0

2q-sound. And also (from ϕ) we have a
Π0

2-formula ψβpY q such that

V ` DY ψβpY q $ RFNΠ1
1pΣ0

2q
pRβ

Π1
1pΣ0

2q
pT0qq

and a set Sβ such that ψβpSβq holds. From the Π1
1pΣ0

2q-soundness of V we infer the Π1
1pΣ0

2q-
soundness of V ` DY ψβpY q. Therefore T0 ` RFNΠ1

1pΣ0
2q
pRβ

Π1
1pΣ0

2q
pT0qq is Π1

1pΣ0
2q-sound. q

We are now in a position to prove Proposition 4.5.6.

Proof. First let us notice that |Rα
Π1

1pΣ0
2q
pT0q|T0 ě |α|. Indeed this inequality holds since there

is a homomorphism β ÞÑ Rβ
Π1

1pΣ0
2q
pT0q of the low ă-cone of α (the order ptβ | β ĺ αu,ăq) to

the low ăΠ1
1pΣ0

2q
-cone of Rα

Π1
1pΣ0

2q
pT0q in E-T0.

Now assume for a contradiction that |Rα
Π1

1pΣ0
2q
pT0q|T0 ą |α|. In this case by Lemma 4.5.9

we have
Rα

Π1
1pΣ0

2q
pT0q ` ϕ $ RFNΠ1

1pΣ0
2q
pRα

Π1
1pΣ0

2q
pT0qq,
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for some true Σ1
1pΠ0

2q sentence ϕ. We derive

Rα
Π1

1pΣ0
2q
pT0q ` ϕ $ RFNΠ1

1pΣ0
2q
pRα

Π1
1pΣ0

2q
pT0q ` ϕq

$ ConpRα
Π1

1pΣ0
2q
pT0q ` ϕq.

So Rα
Π1

1pΣ0
2q
pT0q ` ϕ is inconsistent by Gödel’s Second Incompleteness Theorem. Yet by

Lemma 4.5.7, since T0 is Π1
2pΠ0

2q sound, Rα
Π1

1pΣ0
2q
pT0q is Π1

1pΣ0
2q sound. Thus, by Lemma

4.5.8, Rα
Π1

1pΣ0
2q
pT0q ` ϕ is consistent. This is a contradiction. q

Proof-theoretic ordinals
For a theory T Ě RCA0 we write |T |WO to denote the Π1

1 proof-theoretic ordinal of T , which
we define as the supremum of the ranks |α| of ordinal notations α such that T $ WOpαq.
The formula WOpαq is

@XppDβ ă αq β P X Ñ pDβ ă αqpβ P X ^ p@γ ă βqγ R Xqq.

Remark 4.5.10. One may also define |T |WO for second-order theories in terms of primitive
recursive well-orders (alternatively recursive well-orders), i.e., |T |WO then would be defined
as the supremum of order types of primitive recursive (T -provably recursive) binary relations
Ź such that T $ WOpŹq. If T proves the well-orderedness of an ill-founded relation then
this supremum by definition is 8. We note that our definition coincides with the definitions
above for T Ě RCA0. The connection between presentations of ordinals of various degrees
of “niceness” is extensively discussed in M. Rathjen’s survey [80], and the equivalence under
consideration could be proved by a slight extension of the proof of [80, Proposition 2.19(i)].3

Theorem 4.5.11. |Rα
Π1

1
pACA0q|WO “ |εα|.

In order to prove the theorem we first establish the following lemma:

Lemma 4.5.12. For each α

1. the theory ACA0 proves WOpαq Ñ RFNΠ1
1pΣ0

2q
pRα

Π1
1pΣ0

2q
pRCA0qq;

2. the theory ACA`0 proves WOpαq Ñ RFNΠ1
1
pRα

Π1
1
pACA0qq.

We will derive Lemma 4.5.12 from the more general Lemma 4.5.13.
We will follow Simpson’s formalization of countable coded models of the language of

second-order arithmetic [92, Definition VII.2.1]. Under this definition a countable coded
ω-model M is a code for a countable family W0,W1, . . . of subsetes of N, where tW0,W1, . . .u

3The proof of [80, Proposition 2.19(i)] implicitly uses Σ1-collection inside the theory T , although the
claim is stated for all T containing PRA. But this issue doesn’t affect the theories that we are interested in
since RCA0 $ BΣ1
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is the M-domain for sets of naturals. We note that the property “M is a countable coded
ω-model” is arithmetical. The expression X P M denotes the natural Σ0

2 formula that
expresses the fact that the set X is coded in a model M (i.e. it is one of X “ Wi, for
some i). For each fixed second-order formula ϕpX1, . . . , Xn, x1, . . . , xnq the expression M |ù

ϕpX1, . . . , Xn, x1, . . . , xnq denotes the natural second-order formula that expresses that M is
a countable coded ω-model, sets X1, . . . , Xn are coded in M, and ϕpX1, . . . , Xn, x1, . . . , xnq
is true in M. We express the fact that that ϕpX1, . . . , Xn, x1, . . . , xnq is true in M by
relativizing second-order quatifiers @X and DX to @X P M and DX P M. Note that the
latter quantifiers are in fact just first-order quantifiers. Hence M |ù ϕp ~X, ~xq is equivalent
to a Π0

m-formula, where m depends only on the depth of quantifier alternations in ϕ. For
a fixed theory T given by a finite list of axioms, by M |ù T we mean the formula M |ù ϕ,
where ϕ is the conjunction of all the axioms of T .

For each theory T0 Ě RCA0 given by a finite list of axioms we denote by T`0 the theory
T0 ` ACA0 ` “every set is contained in an ω-model of T0.” We use this notation by analogy
with ACA`0 . We note that for T0 “ ACA0 the theory T`0 is just ACA`0 and for T0 “ RCA0 the
theory T`0 is just ACA0.

Lemma 4.5.13. For each T0 Ě RCA0 given by a finite list of axioms

T`0 $ @α
´

WOpαq Ñ RFNΠ1
1pΣ0

2q

`

Rα
Π1

1pΣ0
2q
pT0q

˘

¯

.

Proof. We reason in T`0 . We assume WOpαq and claim RFNΠ1
1pΣ0

2q
pRα

Π1
1pΣ0

2q
pT0qq.

Note that it suffices to show that RFNΠ1
1pΣ0

2q
pRα

Π1
1pΣ0

2q
pT0qq is true in all the ω-models of T0.

Indeed, since RFNΠ1
1pΣ0

2q
pRα

Π1
1pΣ0

2q
pT0qq is a Π1

1pΣ0
2q sentence, if it fails, this fact is witnessed

by some set X and hence RFNΠ1
1pΣ0

2q
pRα

Π1
1pΣ0

2q
pT0qq fails in all the ω-models of T0 containing

X.
Now let us consider an ω-model M of T0 and show RFNΠ1

1pΣ0
2q
pRα

Π1
1pΣ0

2q
pT0qq. We note

that, for some fixed k, all the facts of the form M |ù RFNΠ1
1pΣ0

2q
pRβ

Π1
1pΣ0

2q
pT0qq are Π0

k. In
order to finish the proof it suffices to show M |ù RFNΠ1

1pΣ0
2q
pRβ

Π1
1pΣ0

2q
pT0qq, for all β ĺ α by

transfinite induction on β ĺ α. By the induction hypothesis we know that M is a model of
Rβ

Π1
1pΣ0

2q
pT0q. Since M is an ω-model we need to show that for all the (standard) proofs p of

a Π1
1pΣ0

2q-sentence ϕ in Rβ
Π1

1pΣ0
2q
pT0q the sentence ϕ is true in M. We consider some proof p

of this form and apply the cut-elimination theorem for predicate calculus to make sure that
all the intermediate formulas in the proof are of the complexity Π1

npΠ0
mq for some externally

fixed n and m (depending only on the complexity of the axioms of T0). We proceed by
showing by induction on formulas in the proof that all of them are true in the model M; we
can do this since the satisfaction relation for Π1

npΠ0
mq-formulas in M is arithmetical. q

Lemma 4.5.14.

RCA0 $ @α
´

RFNΠ1
1pΣ0

2q

`

Rα
Π1

1pΣ0
2q
pRCA0q

˘

Ñ WOpαq
¯
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Proof. We prove the lemma by reflexive induction on α in RCA0. We reason in RCA0 and
assume the reflexive induction hypothesis

@β ă α PrRCA0

´

RFNΠ1
1pΣ0

2q

`

Rβ
Π1

1pΣ0
2q
pRCA0q

˘

Ñ WOpβq
¯

.

We need to show that:
RFNΠ1

1pΣ0
2q

`

Rα
Π1

1pΣ0
2q
pRCA0q

˘

Ñ WOpαq (4.11)

So assume the antecedent of (4.11). From the reflexive induction hypothesis we see that for
each individual β ă α the theory Rα

Π1
1pΣ0

2q
pRCA0q proves WOpβq. Since WOpβq is a Π1

1pΣ0
2q-

formula, we infer from the antecedent of (4.11) that @β ă α WOpβq. Thus WOpαq. q

Now we are ready to prove Theorem 4.5.11

Proof. From Theorem 4.4.17 we know that

Rα
Π1

1
pACA0q ”Π1

1pΣ0
2q

Rεα
Π1

1pΣ0
2q
pRCA0q.

From Lemma 4.5.14 we see that Rεα
Π1

1pΣ0
2q
pRCA0q proves WOpβq for each β ă εα and thus

|Rα
Π1

1
pACA0q|WO ě |εα|.

In order to prove |Rα
Π1

1
pACA0q| ď |εα| let us assume that for some β the theory Rα

Π1
1
pACA0q

proves WOpβq and then show that |β| ă |εα|. Indeed, by Lemma 4.5.12 the theory Rα
Π1

1
pACA0q

proves RFNΠ1
1pΣ0

2q
pRβ

Π1
1pΣ0

2q
pRCA0qq. Hence

|β| ă |Rα
Π1

1
pACA0q|RCA0 “ |Rεα

Π1
1pΣ0

2q
pRCA0q|RCA0 .

And Proposition 4.5.6 gives us

|εα| “ |Rεα
Π1

1pΣ0
2q
pRCA0q|RCA0 ą |β|.

This completes the proof. q

Extensions of ACA`0
It is usually attributed to Kreisel that for extensions T Ě ACA0 the Π1

1 proof-theoretic ordinal
|T |WO “ |T `ϕ|WO, for any true Σ1

1-sentence ϕ (see [76, Theorem 6.7.4,6.7.5]). We note that
our notion of reflection rank |T |ACA0 does not enjoy the same property.
Remark 4.5.15. Let us consider an ordinal notation system α for some large recursive or-
dinal, for example the Bachmann-Howard ordinal. Now we modify α to define patholog-
ical ordinal notation α1. The order ăα1 is the restriction of ăα to numbers m such that
@x ď m  PrfACA0px, 0 “ 1q. And α1 corresponds to the same element of the domain of ăα

as α (note that since ACA0 is consistent this element is in the domain of ăα1 as well). We
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see externally that α1 is isomorphic to α, since ACA0 is consistent. Let us denote by Iso the
true Σ1

1-sentence that expresses the fact that α and α1 are isomorphic. Clearly,

ACA0 `WOpα1q ` Iso Ě ACA0 `WOpαq,

|ACA0 `WOpα1q ` Iso|ACA0 ě |ACA0 `WOpαq|ACA0

and under our choice of α the rank |ACA0 ` WOpαq|ACA0 will be equal to the Bachmann-
Howard ordinal. At the same time, the theory ACA0 `  ConpACA0q proves that α1 is iso-
morphic to some finite order and hence

ACA0 ` ConpACA0q $ WOpα1q.

Hence
|ACA0 `WOpα1q|ACA0 ď |ACA0 ` ConpACA0q|ACA0 “ 0,

the latter equality follows from Remark 4.5.5. And thus

|ACA0 `WOpα1q|WO ă |ACA0 `WOpα1q ` Iso|WO.

Accordingly, Iso is a true Σ1
1 sentence that alters the reflection rank of the theory ACA0 `

WOpα1q.
We address this problem with two different results. First in Theorem 4.5.16 we show that

for any extension T Ě ACA`0 , |T |ACA0 “ |T |WO. Second we introduce the notion of robust
reflection rank | ¨ |‹ACA0 that enjoys a number of nice properties and at the same time coincides
with reflection rank | ¨ |ACA0 , for many natural theories T (in particular, for any any T such
that T ”Π1

1
Rα

Π1
1
pACA0q, for some ordinal notation α).

Theorem 4.5.16. Suppose T Ě ACA`0 then

|T |WO “ |T |ACA0 .

We prove the following general theorem

Theorem 4.5.17. Suppose that a Π1
2pΠ0

2q-sound theory T0 Ě RCA0 is given by a finite list
of axioms. Then for each U Ě T`0 we have

|U |WO “ |U |T0 .

Proof. Combining Lemma 4.5.13 and Proposition 4.5.6 we see that |U |WO ď |U |T0 . In order
to show that |U |WO ě |U |T0 we prove that for each α ă minpωCK1 , |U |T0q we have α ă |U |WO.
This is suffiecient, since both |U |WO and |U |T0 are either 8 or below ωCK1 . We consider some
α ă minpωCK1 , |U |T0q and fix an ordinal notation system α with |α| “ α. From Lemma 4.5.9
we see that there is a true Σ1

1pΠ0
2q-sentence ϕ such that

U ` ϕ $ RFNΠ1
1pΣ0

2q
pRα

Π1
1pΣ0

2q
pT0qq.
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Since T0 Ě RCA0, we have

U ` ϕ $ RFNΠ1
1pΣ0

2q
pRα

Π1
1pΣ0

2q
pRCA0qq.

And hence by Lemma 4.5.14 we have U ` ϕ $ WOpαq. Thus

α “ |α| ă |U ` ϕ|WO “ |U |WO.

This completes the proof of the theorem. q

Robust reflection rank
The robust reflection rank |U |‹T0 of a theory U P E-T0 over a theory T0 Ě RCA0 is defined as
follows:

|U |‹T0 “ supt|U ` ϕ|T0 : ϕ is a true Σ1
1pΠ0

2q-sentenceu.

Proposition 4.5.18. For theories T0 Ě RCA0 and U P E-T0 the robust reflection rank |U |‹T0

is an ordinal iff U is Π1
1pΣ0

2q-sound.

Proof. If U is Π1
1pΣ0

2q-sound then for any true Σ1
1pΠ0

2q-sentence ϕ the theory U`ϕ is Π1
1pΣ0

2q-
sound. Thus, by Corollary 4.5.4 each rank |U ` ϕ|T0 P On and so |U |‹T0 P On.

If U is not Π1
1pΣ0

2q-sound then there is a false Π1
1pΣ0

2q sentence ϕ that U proves. Let ψ be a
true Σ1

1pΠ0
2q-sentence that is RCA0-provably equivalent to  ϕ. Clearly, U`ψ is inconsistent,

so U ` ψ ăΠ1
1pΣ0

2q
U ` ψ and hence 8 “ |U ` ψ|T0 “ |U |

‹
T0 . q

Proposition 4.5.19. Suppose T0 Ě RCA0 is Π1
2pΠ0

3q-sound, U P E-T0, and for some ordinal
notation α we have U ”Π1

1pΣ0
2q

Rα
Π1

1pΣ0
2q
pT0q. Then

|U |‹T0 “ |U |T0 “ |α|.

Proof. We use Proposition 4.5.6 and see that

|U |‹T0 ě |U |T0 “ |α|.

Let us assume for a contradiction that |U |‹T0 ą |α|. In this case from Lemma 4.5.9 there is a
true Σ1

1pΠ0
2q sentence ϕ such that

U ` ϕ $ RFNΠ1
1pΣ0

2q
pRα

Π1
1pΣ0

2q
pUqq.

Of course, this implies that

U $ ϕÑ RFNΠ1
1pΣ0

2q
pRα

Π1
1pΣ0

2q
pUqq.



86

Note that ϕÑ RFNΠ1
1pΣ0

2q
pRα

Π1
1pΣ0

2q
pUqq is a Π1

1pΣ0
2q sentence. Thus, from the assumption that

U ”Π1
1pΣ0

2q
Rα

Π1
1pΣ0

2q
pT0q, it follows that:

Rα
Π1

1pΣ0
2q
pT0q $ ϕÑ RFNΠ1

1pΣ0
2q
pRα

Π1
1pΣ0

2q
pUqq

Rα
Π1

1pΣ0
2q
pT0q ` ϕ $ RFNΠ1

1pΣ0
2q
pRα

Π1
1pΣ0

2q
pUqq

$ RFNΠ1
1pΣ0

2q
pRα

Π1
1pΣ0

2q
pUq ` ϕq by Lemma 4.5.8.

$ ConpRα
Π1

1pΣ0
2q
pUq ` ϕqq

Thus, Rα
Π1

1pΣ0
2q
pT0q ` ϕ is inconsistent by Gödel’s Second Incompleteness Theorem. On the

other hand, since T0 is Π1
2pΠ0

3q sound, Rα
Π1

1pΣ0
2q
pT0q is Π1

1pΣ0
2q sound by Lemma 4.5.7. Thus,

Rα
Π1

1pΣ0
2q
pT0q ` ϕ is consistent by Lemma 4.5.8. This is a contradiction. q

Finally we connect the notions of robust reflection rank |¨|‹ACA0 and proof-theoretic ordinal
| ¨ |WO:

Theorem 4.5.20. For any theory T P E-ACA0 with robust reflection rank |T |‹ACA0 “ α we
have |T |WO “ εα (here by definition we put ε8 “ 8).

Proof. First let us show that |T |WO ě εα. We break into cases based on whether α “ 8 or
α P On

Assume α “ 8. Then by Proposition 4.5.18 there is false Π1
1 sentence ϕ that is provable

in T . Now we could construct an ordinal notation α such that WOpαq is ACA0-provably
equivalent to ϕ: we put ϕ in the tree normal form [92, Lemma V.1.4] and take α to be the
Kleene-Brouwer order on the tree. Clearly, T $ WOpαq and |α| “ 8. Thus |T |WO “ 8 “ εα.

Now assume that α P On. Let us consider some β ă εα and show that |T |WO ą β. From
the definition of robust reflection rank it is easy to see that we could find some true Σ1

1pΠ0
2q

sentence ϕ such that β ă ε |T`ϕ|ACA0
. Since |T ` ϕ|ACA0 is the rank of a Σ0

1 binary relation,
|T `ϕ|ACA0 ă ω

CK
1 . Thus we could choose an ordinal notation γ such that |γ| ă |T `ϕ|ACA0

but β ă ε|γ|`1. From Lemma 4.5.9 we infer that there is a true Σ1
1pΠ0

2q-sentence ϕ1 such
that T ` ϕ ` ϕ1 $ RFNΠ1

1
pRγ

Π1
1
pACA0qq. We find a β ă εγ`1 such that |β| “ β. By the

same reasoning as in the proof of Theorem 4.5.11 we infer that Rγ`1
Π1

1
pACA0q $ WOpβq. Thus

T ` ϕ ` ϕ1 $ WOpβq. Hence |T ` ϕ ` ϕ1|WO ą β. From Kreisel’s Theorem about Π1
1

proof-theoretic ordinals of extensions of ACA0 we infer that |T |WO “ |T ` ϕ` ϕ
1|WO ą β.

Now let us show that |T |WO ď εα. Assume, for the sake of contradiction, that |T |WO ą εα.
Then there is an ordinal notation β with |β| “ εα such that T $ WOpβq. Let us fix some
ordinal notation α such that |α| “ α. Clearly, there is an isomorphism between β and εα.
Let us denote by Iso the natural Σ1

1pΠ0
2q-sentence expressing the latter fact. We see that

T ` Iso $ WOpεαq. Thus by Lemma 4.5.12 we see that

T ` Iso $ RFNΠ1
1pΣ0

2q
pRεα

Π1
1pΣ0

2q
pRCA0qq.
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From Theorem 4.4.17 we conclude that

T ` Iso $ RFNΠ1
1pΣ0

2q
pRα

Π1
1pΣ0

2q
pACA0qq.

Since over ACA0 every Π1
1-formula is equivalent to a Π1

1pΣ0
2q-formula,

T ` Iso $ RFNΠ1
1
pRα

Π1
1
pACA0qq.

Therefore
|T |‹ACA0 ě |T ` Iso|ACA0 ą |Rα

Π1
1
pACA0q|ACA0 “ |α| “ α,

but |T |‹ACA0 “ α, a contradiction. q

4.6 Ordinal notation systems based on reflection
principles

In this section we turn to ordinal notation systems based on reflection principles, like the one
Beklemishev introduced in [8]. We will formally describe such a notation system momentarily,
but, roughly, the elements of such notation systems are theories axiomatized by reflection
principles and the ordering on them is given by consistency strength. Beklemishev endorsed
the use of such notation systems as an approach to the well-known canonicity problem of
ordinal notation systems. Since then, such notation systems have been intensively studied;
see [29] for a survey of these notation systems and their properties.

We will consider ordinal notation systems based on the calculus RC0 due to Beklemishev
[11]. In earlier works, e.g. [8] on modal logic based ordinal analysis, ordinal notation systems
arose from fragments of the polymodal provability logic GLP. However, this application of
polymodal provability logic didn’t required the full expressive power of GLP. Thus, starting
from a work of Dashkov [20], strictly positive modal logics have been isolated that yield the
same ordinal notation system as the logic GLP, but are much simpler from a technical point
of view.

The set of formulas of RC0 is given by the following inductive definition:

F ::“ J | F ^ F | 3nF , where n ranges over N.

An RC0 sequent is an expression A $ B, where A and B are RC0-formulas. The axioms and
rules of inference of RC0 are:

1. A $ A; A $ J; if A $ B and B $ C then A $ C;

2. A^B $ A; A^B $ B; if A $ B and A $ C then A $ B ^ C;

3. if A $ B then 3nA $ 3nB, for all n P N;

4. 3n3nA $ 3nA, for every n P N;
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5. 3nA $ 3mA, for all n ą m;

6. 3nA^3mB $ 3npA^3mBq, for all n ą m.

Let us describe the intended interpretation of RC0-formulas in L1-sentences. The inter-
pretation J˚ of J is 0 “ 0. The interpretation pA ^ Bq˚ is A˚ ^ B˚. The interpretation
p3nAq

˚ is RFNΣnpA
˚q. A routine check by induction on the length of RC0-derivations shows

that if A $ B then EA` A˚ $ B˚, for any RC0-formulas A and B.
For a more extensive coverage of positive provability logic see [12].
We denote by W the set of all RC0 formulas. The binary relation ăn, and the natural

equivalence relation „ are given by

A ăn B
def
ðñ B $ 3nA, A „ B

def
ðñ B $ A and A $ B.

The Beklemishev ordinal notation system for ε0 is the structure pW{„,ă0q.
The following result is due to Beklemishev (see [10, 11]):

Theorem 4.6.1. pW{„,ă0q is a well-ordering with the order type ε0.

The transitivity of pW{„,ă0q is trivial. The linearity of pW{„,ă0q is provable by a
purely syntactical argument within the system RC0. But Beklemishev’s proof of the well-
foundedness of pW{„,ă0q was based on the construction of an isomorphism with Cantor’s
ordinal notation system for ε0, i.e., Cantor normal forms.

Here we will give a proof of the well-foundedness part of Theorem 4.6.1 by providing an
alternative interpretation of the 3n’s by reflection principles in second-order arithmetic and
then applying the results of §4.3 to derive well-foundedness.

Theorem 4.6.2. pW ,ă0q is a well-founded relation.

Proof. We prove that the set W of RC0-formulas is well-founded with respect to ă0.
We give an alternative interpretation of RC0. According to this interpretation, the image

J˚ of J is 0 “ 0, pA^Bq˚ is A˚ ^B˚, and p3nAq
˚ is RFNΠ1

n`1
pACA0 ` A

˚q.
We note that if A $ B is a derivable RC0-sequent then ACA0 ` A˚ $ B˚. This can be

checked by a straightforward induction on RC0-derivations. Also from the definition it is
clear that for any A the theory ACA0 ` A

˚ is Π1
1-sound (and in fact true A˚ is true).

Now assume for a contradiction that there is an infinite descending chain A0 ą0 A1 ą0 . . .
of RC0-formulas. Then A˚0 , A˚1 , . . . is an infinite sequence of sentences such that ACA0`A

˚
i $

RFNΠ1
1
pACA0 ` A˚i`1q. Henceforth we have a ăΠ1

1
-descending chain of Π1

1-sound extensions
of ACA0, contradicting Theorem 4.3.2. q

The key fact that we have used in this proof is that all the theories A˚i are Π1
1-sound.

In fact all the theories under consideration are subtheories of ACA and hence the proof is
naturally formalizable in ACA0 ` RFNΠ1

1
pACAq.4

4The fact that ACA ”Π1
8

RFNΠ1
8
pACA0q could be proved by a standard technique going back to Kreisel

and Lévy [54]. A study of the exact correspondence between restrictions of the schemes of reflection and
induction in the setting of second order arithmetic has been recently performed by Frittaion [34].
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Now we show that the same kind of argument could be carried in ACA0 itself.

Theorem 4.6.3. For each A PW, the theory ACA0 proves that ptB PW | B ă0 Au,ă0q is
well-founded.

Proof. Note that in RC0 any formula A follows from formulas 3nJ such that, for all 3m

that occur in A, m ă n; this fact could be proved by a straightforward induction on length
of A. Clearly, for any such n, the set tB PW | B ă0 Au is a subset of tB PW | B ă0 3nJu.
Thus, without loss of generality, we may consider only the case of A being of the form 3nJ.

Now we reason in ACA0. We assume for a contradiction that there is an infinite descending
chain 3nJ ą0 A0 ą0 A1 ą0 . . . of RC0-formulas.

We construct a countably-coded ω-model M of RCA0 that contains this chain. Note that
using arithmetical comprehension we could construct a (set encoding) partial satisfaction
relation for M that the sentence RCA0 (conjunction of all axioms from some natural finite
axiomatization of RCA0) and all Π1

n`1pΠ0
3q formulas. We want to show that if RCA0 proves

some Π1
n`1pΠ0

3q sentence ϕ then ϕ is true in M. For this we consider any cut-free proof p of
the sequent  RCA0, ϕ. And next by induction on subproofs of p show that all sequents in
p are valid in M (according to the partial satisfaction relation that we constructed above).
Hence the principle RFNΠ1

n`1pΠ0
3q
pRCA0q holds in M.

We again define an alternative interpretation of RC0. The interpretation J˚ is 0 “ 0, the
interpretations pA^Bq˚ are A˚^B˚, and the interpretations p3kAiq

˚ are RFNΠ1
k`1pΠ

0
3q
pRCA0`

A˚i q. From the previous paragraph we see that M |ù p3nJq
˚. And since 3nJ ą0 A0, we have

M |ù p30A0q
˚, i.e., M |ù RFNΠ1

1pΣ0
2q
pRCA0 ` A˚0q. Thus in M there is an infinite sequence

of theories RCA0 ` A˚0 ,RCA0 ` A˚1 , . . . such that RCA0 ` A˚i $ RFNΠ1
1pΠ0

3q
pRCA0 ` A˚i`1q

and RFNΠ1
1pΣ0

2q
pRCA0 ` A˚0q. Since M is a model of RCA0, by Theorem 4.3.3 we reach a

contradiction. q
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Chapter 5

A reduction principle for ω-model
reflection

This chapter contains joint work with Fedor Pakhomov.

5.1 Introduction
Two sorts of principles are commonly called reflection principles in mathematical logic. First,
according to semantic reflection principles, whatever is true in the universe holds in some
set-sized model. The thought here is that structures within the universe reflect what is
happening in the universe. Second, according to syntactic reflection principles, whatever is
provable is true. The thought here is that we should endorse these principles by reflecting
on the soundness of our axioms and inference rules.

In this chapter we establish a conservation theorem relating both types of reflection
principles in second-order arithmetic. In particular, we establish a conservation theorem
that reduces an ω model reflection principle to iterated syntactic reflection principles. There
is a thorough proof-theoretic understanding of the latter in terms, e.g., of ordinal analysis.
Accordingly, these reductions yield proof-theoretic analyses of ω model reflection principles.

We will be concerned in this paper with iterations of reflection along arbitrary (potentially
non-recursive) well-orderings. We formally define these iterations using the language L2 that
extends the standard language of second-order arithmetic with set-constants CX for all sets
X. The definitions of L2 formulas and the standard syntactic complexity classes for L2 can
be given in ACA0. Accordingly, throughout this paper we formalize our results in ACA0.
Moreover, we restrict our attention to axiomatic theories that extend ACA0.

The main syntactic reflection principle we consider, Π1
1-RFNpT q, informally says “all Π1

1
theorems of T are true.” We will also be interested in the theories Π1

1-RαpT q that result
from iterating this principle along well-orderings α. We will give precise definitions of these
theories via Gödel’s fixed point lemma in §5.2. Informally, one can think of them as defined
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inductively, according to the following equation:

Π1
1-Rα

pT q :“ T ` tΠ1
1-RFN

`

T `Π1
1-Rβ

pT q
˘

: β ă αu

We will also consider ω model reflection principles. An ω model is an L2 structure whose
first-order part is N and whose second-order part is some subset of PpNq. The semantic
reflection principle we work with is “every set is contained in an ω model of T .”

Our main theorem is the following:

Theorem 5.1.1 (ACA0). For any Π1
2 axiomatized theory T , the following are equivalent:

1. Every set is contained in an ω model of T .

2. @α
`

WOpαq Ñ Π1
1-RFNpΠ1

1-RαpT qq
˘

.

Theorem 5.1.1 provides a reduction of ω model reflection to iterated syntactic reflection.
This reduction is desirable because of the distinct roles the two types of principles play in
second-order arithmetic. On the one hand, ω model reflection principles are well-known in
reverse mathematics, since many theories of interest can be axiomatized in terms of ω model
reflection principles. On the other hand, iterated syntactic reflection principles are widely
studied in ordinal analysis because of the systematic connections between iterated reflection
and proof-theoretic ordinals. Thus, Theorem 5.1.1 opens the path to a systematic connection
between ω model reflection and ordinal analysis.

Here is our plan for the rest of the chapter. In §5.2 we cover a number of preliminaries.
We present the class language L2 for second-order arithmetic. We then define its syntactic
complexity classes, their attendant reflection principles, and the iterations thereof. In §5.3
we define an infinitary proof system which is sound and complete with respect to ω models.
The use of such a proof system is crucial for our main result. In §5.4 we prove the main
theorems of our chapter. In particular, we prove Theorem 5.1.1, a reduction of ω model
reflection to iterated syntactic reflection.

5.2 Preliminaries
Our base system is the system ACA0. Since this theory is finitely axiomatizable we identify
it with a sentence giving its finite axiomatization. Throughout this chapter we restrict our
attention to theories extending ACA0. So whenever we make a claim about “every theory
T ,” we mean “every theory extending ACA0.”

Languages and Complexity Classes
In this chapter we will study reflection principles for formulas with set parameters. In the
study of reflection and provability in first-order arithmetic it is common to study provability
for formulas with number parameters; note the parameter in the expression

@x
`

PrvPApxϕp 9xqyq Ñ ϕpxq
˘

.
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Here xϕp 9xqy denotes the Gödel number of the formula, ϕpxq, where x is the numeral

Sp. . . S
loomoon

x times

p0q . . .qq.

This strategy is not available if we want to formalize claims about the provability of formulas
with set parameters. Since there are no numerals for sets of natural numbers, we need to use
a different approach to pass second-order variables inside provability predicates/reflection
principles.

We write L2 to denote the standard language of second-order arithmetic. We write L2
to denote the extension of L2 with set-constants CX for all sets X. From the external
perspective L2 is a continuum-sized language. However, formulas of L2 can be encoded by
sets and reasoned about within ACA0. We will use the rest of this subsection to explain how
this is accomplished.

L2 formulas are finitary objects and are encoded by natural numbers. The code for an L2
formula ϕpCY1 , ..., CYn , ~xq is a pair

`

ϕpX1, ..., Xn, ~xq, xY1, ..., Yny
˘

where ϕpX1, ..., Xn, ~xq is (a
code for) an L2-formula and xY1, ..., Yny is a sequence of sets. Note that whereas L2 formulas
are encoded by numbers, L2 formulas are thus encoded by sets.

Standard manipulations of (codes of) L2 formulas (e.g., forming conjunctions, performing
substitutions, etc.) is totally finitary and thus can be carried out in ACA0 (indeed, in much
weaker theories). Analogous manipulations of (codes of) L2 formulas is carried out on sets
rather than on numbers. Nevertheless, ACA0 can carry out these sorts of manipulations. The
code of a formula formed, e.g., by conjunction is arithmetic in the codes of the conjuncts.

For any formula ϕpX1, ..., Xm, ~xq with m set variables, there is a function cmpϕ which
maps X1, ..., Xm to t~x : ϕpX1, ..., Xm, ~xqu. For any arithmetic ϕ, the graph of cmpϕ is
defined by an arithmetic formula. The functions that manipulate (codes of) L2 formulas are
expressible in terms of these definable comprehension functions. For instance, the code of
a conjunction is the output of the comprehension function corresponding to an arithmetic
operation applied to the codes of the conjuncts. Given a formula

ϕpX1, . . . , Xn, y1, . . . , ymq P L2

the expression
xϕp 9X1, . . . , 9Xn, 9y1, . . . , 9ymqy

is the term (built using the definable comprehension functions) denoting the code of the
formula

ϕpCX1 , . . . , CXn , y1, . . . , ymq.

As usual we write Π1
0 “ Σ1

0 (Π1
0 “ Σ1

0) to denote the class of L2-formulas (L2-formulas)
without second-order quantifiers. The class Π1

n`1 Ď L2 (Π1
n`1 Ď L2) consists of all formulas

of the form @
ÝÑ
Xx ϕ, where ϕ P Σ1

n (ϕ P Σ1
n) and ÝÑXx is a vector of variables that could

contain both first and second order variables. The class Σ1
n`1 Ď L2 (Σ1

n`1 Ď L2) consists of
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all formulas of the form D
ÝÑ
Xx ϕ, where ϕ P Π1

n (ϕ P Π1
n) and

ÝÑ
Xx is some vector of variables

that could contain both first and second-order variables.
In second-order arithmetic it is useful to work with countable sets of sets of naturals.

To do this we represent a countable set S Ď PpNq by a code of a countable sequence
xSi Ď N | i P Ay, A Ď N such that S “ tSi | i P Au. Formally, we use the predicate X 9PY
that says:

Dz
`

xz, 0y P Y ^ @xpx P X Ø xz, x` 1y P Y q
˘

.

Inside ACA0 we work with countable L2-theories represented by sets T treated as codes
for their set of axioms. The provability predicate PrvpT, ϕq expresses that T is an L2-theory,
ϕ is an L2-formula, and there is a proof P of ϕ in first-order logic such that all non-logical
axioms in P are from T . Note that here the proof P by necessity is encoded by a set.
However, Prv is equivalent to a Π1

0 formula.

Reflection Principles
A standard construction allows us to define in ACA0 partial truth definitions TrΠ1

n
pXq, for

the classes of formulas Π1
n. Here for any Π1

n-formula ϕp ~X, ~yq we have that

ACA0 $ @ ~X, ~y
´

ϕp ~X, ~yq Ø TrΠ1
n

`

ϕp ~X, ~yq
˘

¯

Note that the formulas as TrΠ1
n
pXq are Π1

n-formulas. We have truth definitions TrΣ1
n
pXq, for

n ě 1 with analogous properties as well.
For a theory T we put Π1

1-RFNpT q, n ě 1, to be the L2-sentence

@ϕ P Π1
1 pPrvpT, ϕq Ñ TrΠ1

1
pϕqq.

Recall that an ω-model M of second-order arithmetic is a structure whose interpretation
of the natural numbers is standard, and the sort of sets of naturals is interpreted by some
subset SM of PpNq. We reserve Fraktur letters M, N, ... for ω models. If SM is countable,
then the ω-model M is called countable. Formally, an ω-model M is a code for a countable
family SM of sets, and a satisfaction relation |ùM that is defined on LM, where LM is the set
of all L2-sentences that contain constants CX only for X P SM. Full satisfaction predicates
are available only in ACA`0 , but partial satisfaction predicates are available in ACA0. The
partial satisfaction relation |ùM should satisfy the usual Tarski clauses. When we work in
ACA0 the expression M |ù ϕ for ϕ P L2 means that ϕ P LM and |ùM ϕ. And the expression
M |ù T for an L2-theory T means that T Ď LM and for any axiom ϕ of T we have |ùM ϕ.
The expression X PM is a shorthand for X 9PSM. We will also be interested in the reflection
principle “every set is contained in an ω model of T .” This is equivalent to the claim that
every true Σ1

1 is satisfied by some ω model of T , a fact which we will use in the proof of
Theorem 5.1.1.
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Linear Orders and Iterated Reflection
We consider linear orders α defined on subsets of natural numbers. We encode such orders
as pairs xDα,ăαy, where Dα Ď N and ăαĎ D2

α is a transitive irreflexive binary relation. For
x P Dα we denote as conepα, xq the set ty P Dα | y ăα xu. Clearly, cone could be expressed
by a Π1

0 comprehension term.
We will now turn to defining iterations of the reflection principle Π1

1-RFNpT q along linear
orders α. In order to define its iterates Π1

1-R¨p¨q we will define formulas Π1
1-RFNit

pT, αq,
where T and α are free set variables and x is a free number variable. We define Π1

1-RFNit
pT, αq

as a fixed point that satisfies:

ACA0 $ Π1
1-RFNit

pT, αq Ø Π1
1-RFN

`

T ` tΠ1
1-RFNit

p 9T , conep 9α, 9xqq | x P Dαu
˘

.

We put
Rα
pT q “ T ` tΠ1

1-RFNit
pT, conepα, 9xqq | x P Dαu.

And thus
ACA0 $ Π1

1-RFNit
pT, αq Ø Π1

1-RFN
`

Rα
pT q

˘

.

Clearly Π1
1-RαpT q is a Π1

0-comprehension term depending on α and T .

5.3 ω-proofs
In this section we will show that with our choice of ACA0 as base system, the principle
of ω-model reflection is fairly robust with respect to the choice of particular formalization.
Namely, we will show the equivalence of the variants of reflection based on ω-models and
cut-free ω-proofs. Note that David Fernández-Duque [30] proved that for certain other
similar reflection principles these equivalences aren’t provable in ACA0; namely he considered
reflection principles based on certain formalizations of provability in ω-logic that were not
based on the notion of ω-proof.

Defining ω proofs for L2

First let us formulate the variant of ω-logic for L2. This logic will be a variant of the Tait
calculus. Formulas are built up from literals using the connectives ^,_ and quantifiers @x,
Dx, @X, DX. Literals are atomic L2-formulas ϕ and their negations „ϕ. As usual for any
formula ϕ, its negation  ϕ is defined inductively by the De Morgan rules. That is,  ϕ is the
result of switching any connective and quantifier with the dual, switching positive literals ϕ
with „ϕ and switching negative literals „ϕ with ϕ. Sequents are countable sets of formulas
without free natural number variables (we allow free set variables). The axioms and rules of
the logic are:
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, if valptq “ valpvq (Ax1);Γ, t “ v
, if valptq ‰ valpvq (Ax2);Γ,„t “ v;

, if valptq P A (Ax3);Γ, t P CA
, if valptq R A (Ax4);Γ,„t P CA

(Ax5);Γ, t P X,„t P X
Γ, ϕ Γ, ψ (^-Int);Γ, ϕ^ ψ

Γ, ϕ, ψ (_-Int);Γ, ϕ_ ψ
Γ, ϕpnq, for all n P N (@1-Int);Γ, @x ϕpxq

Γ, ϕptq (D1-Int);Γ, Dx ϕpxq
Γ, ϕpY q , if Y R FVpΓq(@2-Int);Γ, @X ϕpXq

Γ, ϕpCAq (D2-Int1);Γ, DX ϕpXq

Γ, ϕpY q (D2-Int2);Γ, DX ϕpXq
Γ, ϕ Γ, ϕ (Cut).Γ

Γ (Rep);Γ
A pre-proof is a any true that accords with these axioms and rules in the sense that its
leaves are axioms and each child node follows from applying one of the rules. Note that a
pre-proof may be ill-founded. By a proof we mean a well-founded pre-proof. A sequent Γ is
ω-provable if there is a well-founded proof-tree with Γ as its conclusion. We write $ω Γ if
the sequent Γ has an ω-proof. And we write $0 Γ if the sequent Γ has a cut-free ω-proof.

Details of encoding ω-proofs

We now describe in some detail how we encode infinitary proof trees in ACA0. We encode
sequents as codes for countable sets of L2-formulas. Due to the way our encoding works, the
same sequent could have multiple representations. Note that equality on codes of sequents
coincides with extensional equality:

X 9“Y
def
ðñ @ZpZ 9PX Ø Z 9PY q.

And it is easy to see that X 9“Y is equivalent to a Π1
0 formula.

It is useful to define not only the notion of proof but also the notion of pre-proof, where
a pre-proof is a possibly ill-founded derivation tree. More formally, a pre-proof P is (a code
for) a triple ShP , SqP , RlP . Here ShP is a “proof-shape” tree xIP , rP ,ăP y, where IP Ď N is
the domain of the tree, rP P IP is the root of the tree, and x ăP y is the binary relation on
IP with the intended meaning that x is a child of y. We require that for any i P IP there
exists unique ăP -path from it to the root

i “ i0 ăP i1 ăP . . . ăP in “ rP .

We require SqP to be an assignment of sequents x∆i | i P IP y to the nodes of the tree ShP .
Finally, RlP is an assignment of rules xRi | i P IP y to the nodes of the tree ShP . Each Ri

contains all the information about the applied rule. First it contains the rule type (Ax1,
Ax2, Ax3, Ax4, Ax5, ^-Int, _-Int, @1-Int, D1-Int, @2-Int, D2-Int1, D2-Int2). And it contains the
information specific to each particular rule type. Let us specify what this information is in
the case when Ri is of the type @1-Int, the cases of all the other rule types are analogous.
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The rule Ri should be supplied with the sequent Γi, variable xi, formula ϕipxiq and sequents
of indices of the premises xpi,n | n P Ny. It is required that ∆i 9“pΓi, @xi ϕipxiqq, that all
∆pi,n 9“pΓi, ϕipnqq, that tpi,n | n P Nu “ tj P IP | j ăP iu, and that pi,n are pairwise distinct.
For a pre-proof P the sequent ΓrP is called the conclusion of P . A pre-proof P is called a
proof if ăP is a well-founded relation.

We write $ω Γ if the sequent Γ has an ω-proof. And we write $0 Γ if the sequent Γ
has a cut-free ωproof. We note that ACA0 cannot the prove full cut-elimination theorem for
ω-logic (cut-elemination for ω-logic requires the system ACA`0 ; however, ACA0 can show that
it is possible to eliminate all the cuts of the highest rank, see [38, Theorem 6.4.1]). Due to
this issue we formulate several variants of ω-completeness theorems.

Recall that we write M |ù T if all axioms of theory T hold in the model M. At the same
time for closed sequents Γ (i.e. sequents without free variables) we will write M |ù Γ if some
formula ϕ P Γ holds in M. This is an abuse of notation since both sequents and theories
are represented by codes of (countable) sets of L2-formulas. However, it will be always clear
from context whether a particular object is a theory or a sequent (in particular we denote
theories by capital Latin letters T, U and sequents by capital Greek letters Γ,∆). For a
theory T we denote by  T the sequent t ϕ | ϕ is an axiom of T u.

Completeness theorems for cut-free ω proofs
We now describe in detail a completeness theorem for ω proofs with respect to ω models. Our
completeness theorem is proved using Schütte’s method of deduction chains. Thus, before
proving the theorem we will work up to the definition of a deduction chain for a sequent Γ
and a countable fragment H of L2. First, the definition of a countable fragment of L2:

Definition 5.3.1. A countable fragment H of L2 is a countable set of L2-formulas such that
for any L2 formula ϕpX1, ..., Xnq and set constants C1, ..., Cn occurring in H the formula
ϕpC1, ..., Cnq is in H.

When we are working with a sequent Γ and a countable fragment H, we will assume that:

1. H comes with a fixed enumeration Y0, Y1, ... of the free set variables in H that do not
occur free in Γ.

2. H comes with a fixed enumeration A0, A1, ... where each Ai is either:

a) an H formula ϕi that does not start with D
b) a pair xDxϕipxq, ty where Dxϕipxq is an H formula and t is a closed term or
c) a pair xDXϕipXq, Uy where DXϕipXq is an H formula and U is either a second

order variable or second order constant.

We require that the sequence A0, A1, ... covers all formulas and pairs of the form we
describe; moreover, we require that each such formula and pair occur infinitely many
times in the enumeration.



97

A sequent ∆ is axiomatic if it contains an instance of one of the axioms (1)–(5).

Definition 5.3.2. A deduction chain for a sequent Γ and a countable fragment of H of L2
is a finite sequence ∆0,∆1, ...,∆k of sequents (i.e., countable sets) of constant L2 formulas
satisfying the following conditions:

1. ∆0 is the sequent Γ.

2. For all numbers i less than k, ∆i is not axiomatic.

3. If Ai is ϕ^ ψ and ϕ^ ψ P ∆i, then ∆i`1 is either ∆i, ϕ or ∆i, ψ.

4. If Ai is ϕ_ ψ and ϕ_ ψ P ∆i, then ∆i`1 is ∆i, ϕ, ψ.

5. If Ai is @xϕpxq and @xϕpxq P ∆i, then, for some n P N, ∆i`1 is ∆i, ϕpn̄q.

6. If Ai is @XϕpXq and @XϕpXq P ∆i, then ∆i`1 is ∆i, ϕpYiq.

7. If Ai is xDxϕpxq, ty and Dxϕpxq P ∆i, then ∆i`1 is ∆i, ϕptq.

8. If Ai is xDXϕpXq, Uy and DXϕpXq P ∆i, then ∆i`1 is ∆i, ϕpUq.

9. Otherwise, ∆i`1 “ ∆i.

This concludes the definition of deduction chains.

Definition 5.3.3. Given a sequent Γ and countable fragment H, we write DTrΓ, Hs to
denote the ω branching tree of all deduction chains for Γ and H. We call DTrΓ, Hs the
canonical tree of Γ, H.

Remark 5.3.4. Note that the tree DTrΓ, Hs constitutes a cut-free pre-proof in our proof
system. So if DTrΓ, Hs is well-founded, then DTrΓ, Hs constitutes a cut-free ω proof of Γ.

The following standard lemma follows from the definition of deduction chains.

Lemma 5.3.5. Suppose DTrΓ, Hs is ill-founded with path P. Then:

1. P does not contain any literals that are true in N.

2. P does not contain formulas s P Ki and t R Ki for constant terms s and t such that
sN “ tN.

3. If P contains E0 _ E1, then P contains E0 and E1.

4. If P contains E0 ^ E1, then P contains E0 or E1.

5. If P contains DxF pxq, then P contains F pn̄q for all n.

6. If P contains @xF pxq, then P contains F pn̄q for some n.
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7. If P contains DXF pXq, then P contains F pUq for all set variables and constants U .

8. If P contains @XF pXq, then P contains F pUq for some set variable/constant U .

To see why clauses 1 and 2 of Lemma 5.3.5 are true, note that if P contained a true atomic
sentence ϕ, then ϕ would belong to an axiomatic sequent, but by definition deduction chains
do not contain axiomatic sequents.

Now we are ready to prove our completeness theorems for ω models.

Theorem 5.3.6. (ACA`0 ) For any closed sequent Γ the following are equivalent:

1. $0 Γ;

2. There exists a family S of sets such that for any ω-model M Ě S we have M |ù Γ.

Proof. (1) implies (2) follows from the soundness of the proof system with respect to ω-
models.

For (2) implies (1) we prove the contrapositive. Assume that Γ does not have a cut-free ω
proof. Let S be a family of sets and let H be a countable fragment in which all sets in S are
named. Note that DTrΓ, Hs is ill-founded; otherwise, it would constitute a cut-free ω proof
of Γ. We will use an infinite path through DTrΓ, Hs to define an ω model M containing the
sets named in H (and so a fortiori the sets in S) such that Γ fails in M.

Let P be a path through DTrΓ, Hs, and let P be the set of all formulas that occur in
P . For any set term (variable or constant) K, we now assign a subset valpKq of N to K as
follows:

valpKq :“ ttN : t is a constant L2 term and pt R Kq belongs to Pu.

It is easy to verify, given the axioms of our proof system, that for any CA P H, valpCAq is
the set A.

Let M be the weak ω model given by relativizing the second-order quantifiers to the
disjoint union of the values valpKnq. Since we are reasoning in ACA`0 we may enrich M with
a full satisfaction class, yielding an ω model M. An induction on the complexity of formulas
(making use of Lemma 5.3.5) shows that for any formula ϕ, ϕ P P only if M * ϕ. Thus,
the assumption that DTrΓ, Hs is ill-founded implies that there is an ω model M containing
each set named by a constant in H in which every sentence in Γ is false. q

5.4 Reduction for ω-model reflection
In this section we prove the main result of this chapter. First we prove a lemma, which can be
viewed as an analogue of Feferman’s completeness theorem for iterated Π1

1 reflection. Then
we prove Theorem 5.4.6 (Theorem 5.1.1 in the introduction), which provides a reduction of
ω model reflection to iterated syntactic reflection.
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An analogue of Feferman’s theorem
The ω rule provides one route to proving all arithmetical truths; indeed, the recursive ω
rule suffices as shown by Shoenfield in [91]. Feferman provided another route in [26]. Recall
that for a theory T in the language of first-order arithmetic, the uniform reflection schema
RFNpT q for T is the set of all sentences of the form:

@~x
´

PrT
`

ϕp~xq
˘

Ñ ϕp~xq
¯

where ϕp~xq is a formula in the language of first-order arithmetic. Given an effective ordinal
notation system ă we may then use the fixed point lemma to define the iterates of uniform
reflection as follows:

RFN0
pT q :“ T

RFNα
pT q :“ T `

ď

βăα

RFN
`

RFNβ
pT q

˘

for α ą 0.

Theorem 5.4.1 (Feferman). For any true arithmetical sentence ϕ, there is a representation
α of a recursive ordinal such that PA` RFNα

pPAq $ ϕ.

Feferman’s proof makes crucial use of Shoenfield’s completeness theorem for the recursive
ω rule. In particular, Feferman shows that applications of the recursive ω rule can be
simulated by iterating uniform reflection along a carefully selected ordinal notation. In [88],
Schmerl cites this result (among others) as evidence that the uniform reflection principle is
a formalized analogue of the ω rule.

In this subsection we will show that if a sequent of Π1
1 formulas can be proved from a

Π1
2 axiomatized theory T by applying the ω rule, then it can also be proved by iterating Π1

1
reflection. Thus, our main lemma is an analogue of Feferman’s completeness theorem.

Lemma 5.4.2. Suppose that T is a Π1
2 axiomatized theory, Γ is a sequent of Π1

1 formulas,
and P is a cut-free ω-proof of  T,Γ with Kleene-Brouwer rank δ. Then Π1

1-RδpT q $
Ž

Γ.

Proof. Let Λ be the statement of the lemma. We will prove Λ by Löb’s Theorem. That is,
we will work in ACA0 and prove the statement PrACA0pΛq Ñ Λ. It will then follow by Löb’s
Theorem that ACA0 proves Λ.

So work in ACA0 and suppose that the statement of the lemma is provable in ACA0. Let
T and Γ be as in the statement of the theorem. Let δ be the Kleene-Brouwer rank of the
canonical tree P for  T,Γ. We split into cases based on the final rule applied in P .

In each case  T,Γ is being inferred from a sequence of sequents ∆i which are the con-
clusions of canonical trees with Kleene-Brouwer ranks δi ă δ. Our initial assumption that
the statement of the lemma is provable in ACA0 yields that

ACA0 $ “for all i, Π1
1-RδipT q proves

ł

∆i.”
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Which straightforwardly implies

ACA0 $ “for all i, if Π1
1-Rδ

pT q then TrueΠ1
1
p
ł

∆iq.”

Which in turn implies
Π1

1-Rδ
pT q $ @iTrueΠ1

1
p
ł

∆iq.

It suffices to check that this guarantees that Π1
1-RδpT q $

Ž

Γ.
Since our canonical tree is cut-free, for each i,

Ž

∆i consists of Σ1
2 formulas (subformulas

of negations of axioms of T ) and Π1
1 formulas (subformulas of members of Γ). Π1

1-RδpT q
automatically rejects the negations of T ’s axioms and so accepts the Π1

1 parts of these
sequents (consisting only of subformulas of members of Γ). Then after checking, case-by-
case, the soundness of each proof rule, Π1

1-RδpT q infers
Ž

Γ from @iTrueΠ1
1
p
Ž

∆iq. q

A special case of the main theorem
Before proving the main theorem we quickly prove a special case of the main theorem,
namely, for T “ ACA0. We will appeal to this special case in our proof of the main theorem.
The special case follows easily from combining a theorem of Marcone and Montalbán with a
theorem of the authors. First, the theorem of Marcone–Montalbán from [66]:

Theorem 5.4.3. (Marcone–Montalbán) RCA0 proves that the following are equivalent:

1. Every set is contained in an ω model of ACA0.

2. @α
´

WOpαq Ñ WOpεαq
¯

.

The following theorem is merely a relativization of a theorem of the authors in a previous
paper; see Theorem 1.5 in [72]:

Theorem 5.4.4. Provably in ACA0, for any α, if Π1
1-RFN

`

Π1
1-RαpACA0q

˘

then WOpεαq.

Now the lemma we need follows easily.

Lemma 5.4.5. (ACA0) Suppose @α
`

WOpαq Ñ Π1
1-RFNpΠ1

1-RαpACA0qq
˘

. Then every set is
contained in an ω model of ACA0.

Proof. Reason in ACA0. Suppose @α
`

WOpαq Ñ Π1
1-RFNpΠ1

1-RαpACA0qq
˘

. By Theorem 5.4.3
it suffices to show that for any α, if α is well-ordered then so is εα. We reason as follows:

WOpαq ñ Π1
1-RFN

`

Π1
1-Rα

pACA0q
˘

by assumption
ñ WOpεαq by Theorem 5.4.4

This completes the proof of the lemma. q
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The main theorem
Now for the proof of the main theorem:

Theorem 5.4.6. For any Π1
2-axiomatizable theory T , the following are equivalent:

1. Every set is contained in an ω model of T .

2. @α
`

WOpαq Ñ Π1
1-RFNpΠ1

1-RαpT qq
˘

.

Proof. The 1Ñ2 direction is relatively straightforward.
Assume, for contradiction, that 1 is true but 2 is false. Since 2 is false, there is a well-

ordering α such that Π1
1-RFNpΠ1

1-RαpT qq is false. So for some false Π1
1 sentence ϕ,

Π1
1-Rα

pT q $ ϕ. (5.1)

Note that  ϕ is a true Σ1
1 statement. By 1, we infer that there is an ω model M of T such

that:
M (  ϕ. (5.2)

On the other hand, by induction, we can show that M satisfies Π1
1-RαpT q. Assume that

for every β ă α, M ( Π1
1-RβpT q. If M * Π1

1-RαpT q then

M ( Dβ ă α “Π1
1-Rβ

pT q proves a false Π1
1 statement ψ.”

Since M is an ω-model, it is correct about what is provable. That is, this claim must be
witnessed in M by a standard proof. However, for any β ă α and Π1

1 statement ψ, if
Π1

1-RβpT q proves ψ then since M is a model of Π1
1-RβpT q, M is a model of ψ, and thus,

that ψ is a true Π1
1 statement.

Thus, we conclude that
M ( Π1

1-Rα
pT q (5.3)

But 5.1, 5.2, and 5.3 are jointly inconsistent.
The 2Ñ1 direction is less straightforward, but we have already laid the groundwork. We

assume 2. We want to prove 1, i.e., that every true Σ1
1 sentence is satisfied by an ω model of

T . So let ϕ be a true Σ1
1 sentence. We break into cases based on whether there is a cut-free

ω proof of  T, ϕ.
Case I: There is no such proof, i.e., &0  T, ϕ. By Lemma 5.4.5 assumption 2 implies

that every set is contained in an ω model of ACA0. That is, we are allowed to use theorems
that are available in ACA`0 . By Theorem 5.3.6, for every family S of sets there is an ω model
M Ě S satisfying T ` ϕ. This yields 1.

Case II: There is such a proof, i.e., $0  T, ϕ. Let δ be the Kleene-Brouwer rank of the
canonical proof tree of  T, ϕ. By 2 we can iterate reflection along δ, yielding Π1

1-RFNpΠ1
1-

RδpT qq. On the other hand, by Lemma 5.4.2, Π1
1-RδpT q $  ϕ. Combining these two

observations, we conclude that  ϕ is true, contradicting our choice of ϕ. q
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Chapter 6

Incompleteness and jump hierarchies

This chapter contains joint work with Patrick Lutz.

6.1 Introduction
In this paper we explore a connection between Gödel’s second incompleteness theorem and
recursion-theoretic jump hierarchies. Our primary technical contribution is a method for
proving the well-foundedness of jump hierarchies; this method crucially involves the second
incompleteness theorem. We use this technique to provide a proof of the following theorem:

Theorem 6.1.1. There is no sequence pAnqnăω of reals such that, for each n, the hyperjump
of An`1 is hyperarithmetical in An.

This theorem is an immediate consequence of a result of Spector’s, namely that if OA ďH
B then ωA1 ă ωB1 (so the existence of such a sequence pAnqnăω would imply the existence of a
descending sequence ωA0

1 ą ωA1
1 ą . . . in the ordinals). We provide an alternative proof that

makes no mention of admissible ordinals, and which has the additional benefit of showing
the theorem is provable in ACA0.

Here is a brief sketch of how our alternative proof works: Consider the theory ACA0`DS
where DS is a sentence asserting the existence of a sequence of reals as described in Theorem
6.1.1. We work inside the theory and let A0, A1, . . . be such a sequence. ACA0 proves
that if the hyperjump of a real exists then there is a β-model (a model that is correct for
Σ1

1 sentences) containing it. In this case OA1 exists so there is a β-model containing A1.
Moreover, since all An’s for n ě 1 are hyperarithmetical in A1, the β-model will contain all
of them. All β-models are models of ACA0 (in fact, ATR0) so it appears this model is a model
of the theory ACA0 ` DS, meaning that the theory proves its own consistency. By Gödel’s
second incompleteness theorem, this implies that ACA0 proves  DS.

There is one problem, however. Just because the model contains all the elements of the
sequence pAnqně1 does not mean it contains the sequence itself (here we are thinking of the
sequence as a single real whose slices are the An’s). Indeed, the sequence itself could be
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much more complicated than any single real in the sequence. In our proof, we overcome this
flaw by showing that if there is a descending sequence then there is a descending sequence
that is relatively simple—in fact there is one that is hyperarithmetic relative to A1. This
means the β-model above really does contain a descending sequence.

In [31], H. Friedman uses similar ideas to prove the following theorem originally due to
Steel:

Theorem 6.1.2 (Steel). Let P Ă R2 be arithmetic. Then there is no sequence pAnqnăω such
that for every n,

(i) An ěT A1n`1 and

(ii) An`1 is the unique B such that P pAn, Bq.

In these proofs we move from the second incompleteness theorem to the well-foundedness
(or near well-foundedness) of recursion-theoretic jump hierarchies. In fact, the implication
goes in both directions: the well-foundedness of appropriate jump hierarchies entails semantic
versions of the second incompleteness theorem. For example, theorem 6.1.1 yields a simple
and direct proof of the following semantic version of the second incompleteness theorem
originally due to Mummert and Simpson (recall that L2 is the standard two-sorted language
of second order arithmetic):

Theorem 6.1.3 (Mummert–Simpson). Let T be a recursively axiomatized L2 theory. For
each n ě 1, if there is a βn-model of T then there is a βn-model of T which contains no
countable coded βn-models of T .

In fact, our proof sharpens the Mummert-Simpson result somewhat by dropping the
requirement that T be recursively axiomatized.

A different semantic version of the second incompleteness theorem also follows from
theorem 6.1.2, as observed by Steel in [98]. Namely, the following:

Theorem 6.1.4 (Steel). Let T be an arithmetically axiomatized L2 theory extending ACA0.
If T has an ω-model then T has an ω-model which contains no countable coded ω-models of
T .

These results all point to a general connection between incompleteness and well-foundedness.
Elucidating this connection is the central goal of this paper. Though many of the theorems we
prove could also be proved from the application of known methods, we believe that the new
techniques are more conducive to achieving our central goal. Additionally, our techniques
are able to prove somewhat sharper results than the original methods.

We also investigate directly the well-founded hierarchy at the center of theorem 6.1.1. It
follows from that theorem that the relation A ă B defined by OA ďH B is a well founded
partial order. We call the ă rank of a real its Spector rank. There is a recursion-theoretically
natural characterization of the Spector ranks of reals:
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Theorem 6.1.5. For any real A, the Spector rank of A is α just in case ωA1 is the p1` αqth
admissible ordinal.

It follows, assuming suitable large cardinal hypotheses, that, on a cone, the Spector rank
of X is ωX1 .

Here is our plan for the rest of the paper. In §6.2 we describe related research. In §6.3 we
prove the main theorem. In §6.4 we provide an alternative proof of the Mummert-Simpson
theorem. In §6.5 we turn to the calculation of Spector ranks.

6.2 Second incompleteness & well-foundedness
The second incompleteness theorem implies the well-foundedness of various structures (in
particular, sequences of models). In turn, the well-foundedness of structures sometimes yields
a semantic version of the second incompleteness theorem (in the form of a minimum model
theorem). It is worth emphasizing that the former argument does not rely on the theory
of transfinite ordinals and the latter argument does not rely on self-reference or fixed point
constructions. This point allows us to sharpen certain results. Because we avoid the use
of ordinals, we can verify that Theorem 6.1.1 is provable in ACA0; because we avoid self-
reference, we can drop the restriction in the statement of Theorem 6.1.3 that T be recursively
axiomatized.

We will now describe both types of arguments, describe their historical antecedents, and
point to related research.

Well-foundedness via incompleteness
To derive well-foundedness from incompleteness we work in the theory T` “there is a

descending sequence,” where T is sound and sufficiently strong. We build a model of T
containing a tail of the sequence, yielding a consistency proof of T` “there is a descending
sequence” within the theory T` “there is a descending sequence.” By the second incomplete-
ness theorem, this means that T proves that there are no descending sequences.

The main difficulties lie in building a model that is correct enough that if a descending
sequence is in the model, the model knows it is descending and in finding a T that is strong
enough to prove the model exists but weak enough that the model built satisfies it.

As far as we know, the first arguments of this type are due to H. Friedman. We were
inspired, in particular, by H. Friedman’s [31] proof of a theorem originally due to Steel [98].

Theorem 6.1.2 (Steel). Let P Ă R2 be arithmetic. Then there is no sequence pAnqnăω such
that for every n,

(i) An ěT A1n`1 and

(ii) An`1 is the unique B such that P pAn, Bq.
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Steel’s proof is purely recursion-theoretic, whereas Friedman’s proof appeals to the sec-
ond incompleteness theorem. In particular, Friedman supposes that there is an arith-
metic counter-example P to Steel’s Theorem. He then works in the theory T :“ CCA `
“P produces a descending sequence” and uses P to build ω-models of arbitrarily large frag-
ments of T . This yields a proof of ConpT q in T , whence T is inconsistent by Gödel’s second
incompleteness theorem.

Recently, Pakhomov and the second named author developed proof-theoretic applications
of this technique in [72]. They show that there is no sequence pTnqnăω of Π1

1 sound extensions
of ACA0 such that, for each n, Tn proves the Π1

1 soundness of Tn`1. This result is proved by
appeal to the second incompleteness theorem, though it could be proved by showing that a
descending sequence pTnqnăω of theories would induce a descending sequence in the ordinals
(namely, the associated sequence of proof-theoretic ordinals). They also show that, “on a
cone,” the rank of a theory in this well-founded ordering coincides with its proof-theoretic
ordinal. These results are strikingly similar to the main theorems of this paper.

Incompleteness via well-foundedness
Here is an informal argument for incompleteness via well-foundedness. Suppose that

second incompleteness fails, i.e. that a consistent T proves its own consistency. If T also
proves the completeness theorem, then every model M of T has (what it is by the lights
of M) a model within it. This produces a nested sequence of models. If these models can
be indexed by ordinals, then this produces a descending sequence of ordinals. So the well-
foundedness of the ordinals produces some form of the second incompleteness theorem. If
we know that the models form a well-founded structure, we can argue directly, without the
detour through the ordinals.

To sharpen this argument one must know that the objects that are “models of T” in the
sense of M are genuinely models of T . So one must restrict one’s attention to structures
that are sufficiently correct. In addition, one must clarify the relation by which the models
are being compared and prove that it is well-founded.

An early argument of this sort is attributed to Kuratowski (see [47, 56]). Set theory
cannot prove the following strong form of the consistency of set theory: that there is an α
such that Vα is a model of set theory. For if it does then there is α such that Vα is a model
of set theory. Since Vα is a model of set theory, there is also a β ă α such that Vβ is a model
of set theory. Iterating this argument produces an infinite descending sequence of ordinals.
Contradiction.

Steel has also developed an argument of this sort. Using his Theorem 6.1.2, he demon-
strates that if an arithmetically axiomatized theory of second order arithmetic extends ACA0
and has an ω-model then it has an ω-model which contains no countable coded ω-models of
the theory.
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Kripke structures
We conclude this discussion of related work with the following observation. Formalized

in the language of modal logic, the statement of Gödel’s second incompleteness theorem
characterizes well-founded Kripke frames. Indeed, the formalization corresponds to the least
element principle:

♦ϕÑ ♦pϕ^ ♦ϕq.
Its contrapositive (writing ψ for  ϕ) is a modal formalization of Löb’s theorem which cor-
responds to induction1:

lplψ Ñ ψq Ñ lψ

Beklemishev has suggested that this observation is connected with ordinal analysis. In [8], he
uses a modal logic of provability known as GLP to develop both an ordinal notation system
for ε0 and a novel consistency proof of PA.

6.3 The main theorem
In this section we provide our alternative proof of Theorem 6.1.1.

Outline of proof
In broad strokes, here is our strategy. We will consider a statement DS which states that

there is a descending sequence in the hyperjump hierarchy. We then work in the theory
ACA0 ` DS and derive the statement ConpACA0 ` DSq. By Gödel’s second incompleteness
theorem, this implies that there is a proof of  DS in ACA0.

To derive ConpACA0 ` DSq in ACA0 ` DS, we use the hyperjump of a real to construct
a coded β-model of ACA0 containing that real. In particular, if we are given a descending
sequence then we can use the existence of the hyperjump of the second real in the sequence
to find a β-model containing all the elements of the tail of the sequence. The point is that
the tail of a descending sequence is again a descending sequence and β-models are correct
enough to verify this.

The only problem is that while the β-model we found contains all the elements of the
tail it may not contain the tail itself (i.e. it may not contain the recursive join of all the
elements of the tail). Our strategy to fix this is to essentially to show that there is a family
of descending sequences which is arithmetically definable relative to some parameter whose
hyperjump exists. A β-model containing this parameter must then contain an element of
this family (because β-models contain witnesses to all Σ1

1 statements).
For the parameter, we will use a countable coded β-model which contains a tail of the

original descending sequence. The arithmetic formula will then essentially say that the β-
model believes each step along the sequence is descending. The point is that we have replaced

1Note that since we replaced φ with  φ before taking the contrapositive, the two modal statements are
equivalent only as schemas.
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a Π1
1 formula saying the sequence is descending by an arithmetic formula talking about the

truth predicate of some coded model and that β-models are correct enough that this does
not cause any errors.

The β-model will just come from the existence of the hyperjump of some element of the
original sequence, and we can guarantee the hyperjump of the model exists by taking one
more step down the original descending sequence.

Useful facts
In this section, we record the facts about β-models that we will use in the proof of the

main theorem. Unless otherwise noted, proofs of all propositions in this section can be found
in [92].

Definition 6.3.1. A β-model is an ω-model M of second order arithmetic such that for any
Σ1

1 sentence ϕ with parameters in M , M ( ϕ if and only if ϕ is true.

Proposition 6.3.2 ([92], Lemma VII.2.4, Theorem VII.2.7). Provably in ACA0, all countable
coded β-models satisfy ATR0 (and hence also ACA0).

Proposition 6.3.3 ([92], Lemma VII.2.9). Provably in ACA0, for any X, OX exists if and
only if there is a countable coded β-model containing X.

Proposition 6.3.4. All of the following can be written as Boolean combinations of Σ1
1 for-

mulas and hence are absolute between β-models

1. A is the hyperjump of B.

2. A ďH B

3. M is a countable coded β-model.

Proof of the main theorem

Theorem 6.1.1. There is no sequence pAnqnăω of reals such that, for each n, the hyperjump
of An`1 is hyperarithmetical in An.

Proof. It suffices to prove the inconsistency of the theory ACA0 ` DS, where

DS :“ DX@npOXn`1 exists and OXn`1 ďH Xnq.

To do this, we reason in ACA0 ` DS and derive ConpACA0 ` DSq. The inconsistency of
ACA0 ` DS then follows from Gödel’s second incompleteness theorem.

Reasoning in ACA0 ` DS:
Let A witness DS. That is, for all n, OAn`1 exists and OAn`1 ďH An. Our goal is now to

show there is a model of ACA0 ` DS.
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Claim. There is a countable coded β-model M coded by M such that OM exists and M
contains An for all sufficiently large n.

The proof of Proposition 6.3.3 in [92] actually shows that for any X, if OX exists then
X is contained in a countable coded β-model which is coded by a real that is recursive
in OX . So A2 is contained in some countable coded β-model M, coded by M , such that
M ďT OA2 ďH A1. Hence OM ďT OA1 . Since OA1 exists, so does OM . And since M is
closed under hyperarithmetic reducibility, M contains An for all n ě 2.
Claim. There is an arithmetic formula ϕ such that

(i) DX ϕpM,Xq

(ii) For any X, if ϕpM,Xq holds then X is a witness of DS

where M is as in the previous claim.
Basically ϕpM,Xq says thatX is a sequence of reals whose elements are inM and for each

n, M believes that OXn`1 exists and is hyperarithmetical in Xn. More precisely ϕpM,Xq is
the sentence

@n pXn`1, Xn PM^M ( “DY rY “ OXn`1 ^ Y ďH Xns”q.

To see why ϕpM, Xq has a solution, recall that M contains An for all n sufficiently large.
Let X be the sequence A but with the first few elements removed so that M contains all
elements in X. For each n, the fact that A is a witness of DS guarantees that there is some
Y such that OXn`1 “ Y and Y ďH Xn. Since M contains Xn and since β-models are closed
under hyperarithmetic reducibility, M contains Y . And by proposition 6.3.4, β-models are
sufficiently correct that M ( “Y “ OXn`1 ^ Y ďH Xn.”

Suppose X is a sequence such that ϕpM,Xq holds. Then for each n there is a Y such
that M ( “Y “ OXn`1 ^ Y ďH Xn.” By proposition 6.3.4, both clauses of the conjunction
are absolute between β-models. Hence OXn`1 exists and is hyperarithmetical in Xn. So X
is a witness of DS.
Claim. There is a model of ACA0 ` DS.

By proposition 6.3.3, there is a β-model N that contains M . Since N is a β-model, by
proposition 6.3.2, it is a model of ACA0.

Since the Σ1
1 formula DX ϕpM,Xq holds and N is correct for Σ1

1 formulas with parameters
from N, there is some X in N such that N ( ϕpX,Mq. And since N is a β-model, it is
correct about this fact—that is, ϕpX,Mq really does hold. Since ϕpM,Xq holds, X is a
witness to DS. The point now is just that N is correct enough to see that X is a witness
to DS. In detail: for each n, OXn`1 exists and is hyperarithmetical in Xn. Since Xn is in
N, this means OXn`1 is in N. And by proposition 6.3.4, N agrees that it is the hyperjump
of Xn`1 and that it is hyperarithmetical in Xn. Therefore N agrees that X is a witness to
DS. q
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Remark 6.3.5. The previous proof actually demonstrates that ACA0 proves Theorem 6.1.1.
The original Spector proof relies on the theory of admissible ordinals, so it is unlikely to be
formalizable in systems weaker than ATR0.

6.4 Semantic incompleteness theorems
Steel derives the following theorem as a corollary of his Theorem 6.1.2.

Theorem 6.1.4 (Steel). Let T be an arithmetically axiomatized L2 theory extending ACA0.
If T has an ω-model then T has an ω-model which contains no countable coded ω-models of
T .

Because ω-models are correct for arithmetic statements, we can restate this as

Corollary 6.4.1. Let T be an arithmetically axiomatized L2 theory extending ACA0. If there
is an ω-model of T then there is an ω-model of T ` “there is no ω-model of T”.

Similarly, we can use Theorem 6.1.1 to prove the following theorem originally proved in a
slightly weaker form by Mummert and Simpson in [69]. Note that this time we do not need
any assumptions about the theory T .

Theorem 6.4.2. Let T be an L2 theory. If there is a β-model of T then there is a β-model
of T that contains no countable coded β-models of T .

Proof. Suppose not. Then every β-model of T contains a countable coded β-model of T .
Let M be a β-model of T . So M contains some countable coded β-model N0 coded by a
real N . Similarly N0 contains a countable coded β-model of T , N1, coded by a real N1. In
this manner we can define a sequence of countable β-models of T , N0,N1,N2, . . . along with
their codes N0, N1, N2, . . .

But for each n, Nn`1 P Nn and since Nn is a β-model it is correct about all Π1
1 facts about

Nn`1. In other words, ONn`1 is arithmetic in Nn. So N0, N1, . . . provides an example of the
type of descending sequence in the hyperdegrees shown not to exist in theorem 6.1.1. q

In fact, this same proof actually yields a seemingly stronger result. A βn-model is defined
to be an ω-model of second order arithmetic which is correct for all Σ1

n statements with
parameters from the model. The same proof as above proves the theorem mentioned in the
introduction (where once again our new proof shows that the assumption that T is recursively
axiomatized can be dropped):

Theorem 6.1.3 (Mummert–Simpson). Let T be a recursively axiomatized L2 theory. For
each n ě 1, if there is a βn-model of T then there is a βn-model of T which contains no
countable coded βn-models of T .



110

Since the statement that a real is the code for a βn-model is Π1
n, βn-models are correct

about such statements. Thus we can restate the above theorem to get the following sharp-
ening of a theorem of Mummert and Simpson (once again dropping the requirement that T
be recursively axiomatized):

Theorem 6.4.3. Let T be an L2 theory. For each n ě 1, if there is a βn-model of T , then
there is a βn-model of

T+“there is no countable coded βn-model of T .”

From this we immediately infer the following corollary, a strengthened version of Mum-
mert and Simpson’s Corollary 2.4 from [69]:

Corollary 6.4.4. Let T be an L2 theory. For each n ě 1, if T has a βn-model then T has
a βn model that is not a βn`1 model.

Proof. Let T be an L2 theory with a βn model. By Theorem 6.4.3, there is a βn model M of
T+“there is no countable coded βn-model of T .” The latter is a false Π1

n`1 sentence, whence
M is not a βn`1 model. q

6.5 Spector ranks
Define a relation ă on pairs of reals by A ă B iff OA ďH B. By theorem 6.1.1, this relation
is well-founded and therefore reals can be assigned ordinal ranks according to it. Let’s refer
to the ă-rank of a real as its Spector rank. In this section we will calculate the Spector ranks
of reals, showing that we get the same ranks as those induced by the ω1’s of reals.

We will need to use the following theorem due to Spector:

Theorem 6.5.1 (Spector). For any reals A and B:

1. If OB ďH A then ωB1 ă ωA1 .

2. If B ďH A and ωB1 ă ωA1 then OB ďH A.

We will also need to use the following theorem of Sacks:

Theorem 6.5.2 (Sacks). If λ is an admissible ordinal greater than ω and X is a real such that
X computes a presentation of λ (i.e. λ ă ωX1 ) then there is a real Y that is hyperarithmetical
in X such that ωY1 “ λ.

This theorem is typically stated without the requirement that Y is hyperarithmetical in
X, though this is implicit in all or nearly all extant proofs of the theorem.

For instance, in [99] Steel uses the method of forcing with tagged trees to prove Sacks’
theorem. In that case, the real Y is obtained as the reduct of a generic filter over Lλ. Since
any presentation of λ can hypercompute such a generic (if you can compute a presentation
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of λ then it just takes ω ¨ pλ` 1q jumps to compute the theory of Lλ), X can hypercompute
a Y witnessing Sacks’ theorem.

Using these two theorems, the calculation of Spector ranks follows relatively easily.
ranks*

Remark 6.5.3. The only reason we need to say p1 ` αqth admissible rather than the αth

admissible is that the way admissible is usually defined, ω is an admissible ordinal but
unlike all other countable admissible ordinals, it is not the ω1 of any real.

Proof. We will argue by induction on α that for any A if rankpAq ą α then ωA1 is greater
than the p1` αqth admissible ordinal and conversely that if ωA1 is greater than the p1` αqth
admissible then rankpAq ą α.

First suppose rankpAq ą α. So there is some B of rank α such that OB ďH A. By
Spector’s result, theorem 6.5.1, this implies ωB1 ă ωA1 . And by the induction assumption,
ωB1 is at least the p1` αqth admissible so ωA1 is greater than the p1` αqth admissible.

Now suppose that ωA1 is greater than the p1`αqth admissible. Let λ denote the p1`αqth
admissible. By Sacks’ theorem, there is some B hyperarithmetical in A such that ωB1 “ λ.
Since ωB1 ă ωA1 , Spector’s theorem implies that OB ďH A and hence rankpBq ă rankpAq.
By the induction assumption, rankpBq is at least α, so rankpAq ą α. q

Theorem 6.5.4 (Silver). If α is admissible relative to 07 then α is a cardinal in L.

Hence if X is a real in the cone above 07 then ωX1 is a cardinal in L. Suppose that ωX1 is
the αth admissible. Since ωX1 is a cardinal in L, it follows that actually α “ ωX1 “ ωCKα . So
if 07 exists then on a cone, the Spector rank of a real X is equal to ωX1 .

Theorem 6.5.5. If 07 exists, then for all A on a cone, the Spector rank of A is ωA1 .

Alternatively, one can infer the previous theorem from the following proposition due to
Martin.

Proposition 6.5.6 (Martin). Assuming appropriate determinacy hypotheses, if F is a degree
invariant function from reals to (presentations of) ordinals such that F pAq ď ωA1 , then either
F is constant on a cone or F pAq “ ωA1 on a cone.

One could also consider the analogous relation given by replacing hyperarithmetic re-
ducibility and the hyperjump with Turing reducibility and the Turing jump. Namely, define
ăT by A ăT B iff A1 ďT B. By results of Harrison (see [43]), this relation is not well-
founded. However, it is well-founded if we restrict ourselves to the hyperarithmetic reals,
as shown by Putnam and Enderton in [25]. In that paper, Putnam and Enderton also show
that the rank of a hyperarithmetic real A in this relation is “within 2” of the least α such
that A cannot compute 0pαq. More precisely, if the rank of A is α then A cannot compute
0pα`1q and if A cannot compute 0pαq then the rank of A is at most α ` 2.
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Part III

Foundational Reflections
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Chapter 7

Epistemic aspects of consistency
proofs

7.1 Introduction
Are the fundamental principles of mathematical reasoning consistent? By a consistency
proof I mean a proof that some such principles are consistent. Though some consistency
proofs are widely regarded as mathematically significant, it is controversial whether they
are epistemically significant. This controversy has primarily concerned the prospects of
using consistency proofs to address skepticism about consistency. I will focus on a different
epistemic aspect of consistency proofs, namely their explanatory value. In particular, I will
argue that a consistency proof can improve one’s understanding of why a theory is consistent,
regardless of how it affects one’s credence that it is consistent. On this basis, I will argue
against certain restrictive norms on mathematical practice.

Modern consistency proofs are descended from an early twentieth century research pro-
gram known as Hilbert’s Program. The program had two parts: (i) axiomatize mathematics
and (ii) prove the consistency of the axioms. The consistency proof was intended to dispel
skeptical worries about the consistency of classical mathematics.1 To have dialectical force
against skeptics, (ii) would have to have been carried out using only methods acceptable to
skeptics. Thus, Hilbert proposed that the consistency proof use only the restricted methods
of finitistic mathematics, which he considered unimpeachable. In 1931, Hilbert’s program
reached a major obstacle in the form of Gödel’s [40] second incompleteness theorem.

Theorem 7.1.1 (Gödel). No reasonable axiomatic theory proves the consistency of its own
axioms.2

1This summary is inadequate for conveying the range of issues that Hilbert wished to address. Many
contemporary logicians and philosophers have focused on other aspects of Hilbert’s program, such as the
elimination of ideal objects from proofs of real statements.

2By a reasonable theory I mean a consistent theory that is recursively axiomatized and that interprets
a modicum of arithmetic. I am eliding other technical complications, e.g., that we must specify in advance
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It follows from Gödel’s theorem that if the principles of finitistic mathematics are codi-
fiable in a reasonable axiomatic theory, then they do not prove their own consistency, much
less the consistency of stronger theories.3 Thus, it is generally agreed that Hilbert’s pro-
gram failed.4 Some logicians were undeterred, however. Not long after Gödel proved the
incompleteness theorems, Gentzen [35] produced a consistency proof of arithmetic.5

Theorem 7.1.2 (Gentzen). If the ordinal number ε0 is well-founded, then the axioms of
arithmetic are consistent.6

Gentzen’s proof was remarkably finitistic, despite the limitations of Gödel’s theorem. The
only principle invoked in the proof that is not obviously finitistically acceptable is the well-
foundedness of the ordinal number ε0. Gentzen’s consistency proof marked the beginning of
a research program known as ordinal analysis,7 whereby similar consistency proofs have been
discovered for a wide range of axiomatic theories. Ordinal analysis has not yet reached the
level of classical analysis. Calculating the proof theoretic ordinal of analysis, i.e., determining
which ordinal number must be invoked in a consistency proof of analysis, is among the most
well-known and difficult open problems in mathematical logic.8

Gentzen [37] described his consistency proof as a “real vindication of the disputable parts
of elementary number theory,” but opinions have not converged on Gentzen’s conclusion.
Tarski famously remarked that Gentzen’s proof increased his credence in arithmetic’s con-
sistency “only by an epsilon.” More recently, Voedvodsky, a prominent mathematician and
skeptic of consistency, called Gentzen’s argument “suspicious” and “not very convincing.”9

By proving a statement, one certifies the truth of that statement. However, in addition to
certifying that a statement is true, some proofs also explain why a statement is true.10 I do
not expect that Gentzen’s proof will increase anyone’s credence that arithmetic is consistent.
some specific consistency predicate and presentation of the theory’s axioms.

3There is not universal agreement as to what the axioms of finitistic mathematics are, an issue to which
I will return in §3.1.

4Some philosophers, most notably Detlefsen, have argued that Hilbert’s program can survive Gödel’s
second incompleteness theorem. See [21].

5When I write “arithmetic” without any qualification, I am referring to first-order Peano Arithmetic.
When I write “analysis” or “classical analysis,” I am referring to second-order Peano Arithmetic with full
comprehension. When I write “set theory,” I mean ZFC, i.e., Zermelo-Fraenkel set theory with the axiom of
choice.

6The transfinite ordinal number ε0 is the supremum of the sequence xω, ωω, ωωω

, ...y, where ω is the least
transfinite ordinal number. Gentzen’s result is stated relative to a particular presentation of ε0, a significant
detail that I will mostly ignore in this paper, except when it is directly relevant to the discussion at hand.

7Gentzen’s work was foreshadowed by work of Hilbert, Bernays, Ackermann, and von Neumann. See
[111].

8I am ignoring a technical complication here, which is that one must determine this ordinal relative to a
sufficiently natural ordinal notation system.

9Voevodsky made these remarks in his lecture What If Current Foundations of Mathematics Are Incon-
sistent? at the Institute for Advanced Study. For a discussion of Voevodsky’s argument, see [19].

10This distinction between explanations and mere certifications can be found in Aristotle [3], and was
famously applied to the philosophy of mathematics by Bolzano [18, 17].
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Nevertheless, an explanation can enhance one’s understanding of a fact without increasing
one’s credence in it. For instance, exposure to the theory of gravity might help me understand
why I am not floating into space, even if it does not increase my credence that I am not
floating into space. The main thesis of this paper is that Gentzen’s consistency proof not
only certifies that arithmetic are consistent, it also explains why it is consistent.

The conception of Gentzen’s proof that I am developing is not motivated by and does
not seek to address skeptical considerations. In this sense I am pursuing a project similar to
Nozick’s [70] account of the possibility of knowledge:

Our goal is not...to refute skepticism, to prove it is wrong or even to argue
that it is wrong.... Our task here is to explain how knowledge is possible.... In
doing this, we need not convince the skeptic, and we may introduce explanatory
hypotheses that he would reject. What is important for our task of explanation
and understanding is that we find those hypotheses acceptable or plausible....
These hypotheses are to explain to ourselves how knowledge is possible, not to
prove to someone else that knowledge is possible.

Schematically, Nozick’s argument is this: There are skeptics who doubt that p is true. In
seeking to explain why p is true, we are not trying to convince the skeptic. Indeed, we may
argue that p is true on the basis of principles that the skeptic rejects. What is important
is that we argue for p on the basis of principles that enhance our understanding of why p is
true. The relevance to the present analysis of consistency proofs is this: For Nozick, p is the
claim that knowledge is possible, whereas for me p is the claim that arithmetic is consistent.

Throughout this paper I will contrast Gentzen’s proof with another familiar argument
for the consistency of arithmetic. This latter argument, which I will refer to as the Tarskian
consistency proof,11 goes as follows:

All the axioms of arithmetic are true. All the rules of inference preserve truth.
So every theorem of arithmetic is true. Since no contradiction is true, no contra-
diction is a theorem of arithmetic. That is, arithmetic is consistent.

Very few would object that the premises of the Tarskian consistency proof are false, or
that the inferences are invalid. However, it is natural to object that if the consistency of
arithmetic is at issue, then the soundness of arithmetic is at issue as well, so it is inappro-
priate to appeal to soundness when arguing for consistency. Like Moore’s argument that
the external world exists, the Tarskian consistency proof seems forceful only to those who
are already convinced of its conclusion. I believe that this objection is fine, insofar as the
consistency of arithmetic is at issue. My criticism of the Tarskian consistency proof is that it
does not explain why arithmetic is consistent. Indeed, whenever I provide some consideration

11I use this terminology because Tarski [108] demonstrated how to formalize this argument by extending
the induction axioms to include induction on formulas including a truth predicate.
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in favor of the explanatoriness of Gentzen’s proof, I will argue that the same consideration
suggests that the Tarskian proof is not explanatory.

The Tarskian consistency proof has recently become a focal point of interest in the
philosophy of logic, since some claim that it is a counterexample to deflationary theories
of truth. According to this line of reasoing, the Tarskian consistency proof explains why
arithmetic is consistent, and so constitutes a genuine explanation that relies crucially on the
concept of truth. Shapiro [89] provides the following statement of this view:

Assume that there is an effective, sound theory A ... and that A contains the
rudimentary axioms of arithmetic ... Suppose that a logic teacher asserts that
[ConpAq] is true, and a puzzled student asks for an explanation ... The natural
reply is to point out that all of the axioms of A are true and the rules of inference
preserve truth. Thus, every theorem of A is true. It follows that “0=1” is not a
theorem and so A is consistent ... It seems to me that this informal version of the
derivation of [Con(A)] ... is as good an explanation as there is. The argument
shows why [Con(A)] is true.

Note that Shapiro claims that the Tarskian consistency proof provides the best possible
explanation for consistency.12 I do not doubt that the Tarskian consistency proof enjoys
virtues that are not shared by Gentzen’s consistency proof. Nevertheless, I will argue, contra
Shapiro, that Gentzen’s is the more explanatory proof.

Here is my plan for the paper. In §2 I will present some logical preliminaries, including
a sketch of Gentzen’s consistency proof of arithmetic. In §3 I will review the philosoph-
ical positions that have been advanced regarding the epistemic significance of consistency
proofs. A number of logicians have argued that Gentzen-style consistency proofs can address
skeptical concerns coming from constructivists. I will review the difficulties facing this po-
sition. In §4 I will present and defend my positive view that Gentzen’s proof explains why
arithmetic is consistent. I will make an effort to show that the explanitoriness of Gentzen’s
proof follows from all of the leading accounts of mathematical explanation. In §5 I will dis-
cuss some normative consequences of my view. My position implies that consistency proofs
may be epistemically valuable even if they have no dialectical force against skeptics. This
undermines popular arguments for certain restrictive norms on mathematical practice.

A methodological remark is in order before continuing. My position is informed by a par-
ticular practice, namely, classical mathematics. Throughout this paper, I will appeal to the
ordinary standards of classical mathematical reasoning. This is not uncontroversial; classical

12It is not entirely clear whether Shapiro is claiming that the Tarskian proof provides the best explanation
when reasoning in general about sufficiently strong effective sound theories, or if he means to claim it about
some specific such theory, which could, for instance, be PA. If it is the former, then Shapiro may very well
be correct. However, asking for a consistency proof for sound theories in general is a strange request, since
all sound theories are obviously consistent. On the other hand, asking of a consistency proof for a specific
sound theory makes sense, since one might question whether the theory is sound (or how we can prove that
the theory is sound). So the latter interpretation seems more plausible.
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mathematics has been attacked on philosophical grounds by finitists, constructivists, pred-
icativists, and others. I will not defend classical mathematics here, though I will articulate
a position from within it, so to speak.

7.2 Logical preliminaries
In this section I will discuss some logical preliminaries. First I will present the axiomatic
theory PA. Then I will discuss some of the core concepts of Gentzen’s consistency proof of
arithmetic.13

Peano Arithmetic
Axiomatic theories are central objects of study in mathematical logic. The axioms of the
theories I will consider are stated in a particular formal language, the language of arithmetic.
The language of arithmetic contains the constant symbols 0 and 1 and the function sym-
bols ` and ˆ. This language is standardly interpreted as concerning the natural numbers
N “ t0, 1, 2, ...u. When I speak of the truth or falsity of a statement in the language of
arithmetic, I mean truth or falsity with respect to this interpretation. The most widely
studied axiomatic theory in this language is Peano Arithmetic or PA. PA is axiomatized by
the following axioms:

1. x` 1 ‰ 0

2. x` 1 “ y ` 1 Ñ x “ y

3. x` 0 “ x

4. x` py ` 1q “ px` yq ` 1

5. xˆ 0 “ 0

6. xˆ py ` 1q “ pxˆ yq ` x

as well as an induction axiom for each formula ϕ :

7.
´

ϕp0q ^ @x
`

ϕpxq Ñ ϕpx` 1q
˘

¯

Ñ @xϕpxq.

13Gentzen produced a number of consistency proofs of arithmetic. This discussion is informed primarily
by Gentzen’s most famous 1938 proof. In §4.3 I will discuss other ordinally informative consistency proofs
of arithmetic that emerged from research programs besides Gentzen’s.
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When I say that PA is consistent, I mean that there is no proof that begins with the
axioms just listed and ends with the statement “0=1.” As I mentioned in §1, there is a very
simple proof that PA is consistent.

Proposition 7.2.1. PA is consistent.

Proof. All the axioms of PA are true. All the rules of inference preserve truth. So every
theorem of PA is true. Since “0=1” is not true, it is not a theorem of PA. So PA is
consistent. q

I will argue that there is a much better explanation for the consistency of PA, namely,
Gentzen’s. There are two concepts that appear in Gentzen’s consistency proof that I want
to emphasize. The first is cut-elimination and the second is the reduction procedure. I will
describe these and briefly discuss their role in Gentzen’s consistency proof of PA.

Cut-elimination
There are many proof calculi for first-order logic, but I will focus on Gentzen’s sequent
calculus [36]. The sequent calculus is characterized by its logical axioms and a number of
inference rules. The initial lines in a proof are logical axioms; if some lines precede another
line then the latter must follow from the former by applying one of the inference rules. The
final line contains the statement that has been proved.

The logical axioms of the sequent calculus are all the implications of the form ϕ ñ ϕ.
The sequent calculus includes many inference rules.14 To give one example, given that Γ
implies ϕ, infer that Γ implies pϕ_ ψq.

Γ ñ ϕ
Γ ñ pϕ_ ψq

However, the rule that concerns us most is the cut rule, which expresses the transitivity of
implication: given that Γ implies ϕ and ϕ implies ∆, infer that Γ implies ∆.

Γ ñ ϕ ϕñ ∆
Γ ñ ∆

Note that in the first rule I mentioned, all the formulas that appear in the top line also
appear in the bottom line. Every inference rule in the sequent calculus has this feature, with
the exception of the cut rule; notice how the formula ϕ is “cut” out of the proof.

14Any reader familiar with the sequent calculus will notice that I am not stating these rules in their full
generality. I am ignoring side formulas, for example. I am doing this to minimize clutter and make the key
points more transparent.
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We are interested in the sequent calculus for two reasons. First, the sequent calculus is a
complete proof system for first-order logic.15 Second, the sequent calculus enjoys a property
called cut-elimination.

Theorem 7.2.2 (Gentzen). There is an algorithm for transforming any proof into a proof
of the same conclusion within which the cut rule is never applied.

The proof of the cut-elimination theorem exploits the symmetry of the logical connectives;
indeed, cut-elimination is typically regarded as an expression of the symmetry inherent
in logic. Since the cut rule is the only rule that “cuts” formulas out of proofs, cut-free
proofs have the crucial subformula property: any formula occurring in a cut-free proof is a
subformula of a formula occurring in the final line. One can straightforwardly show that no
proof of a contradiction can have the subformula property.16 By the cut-elimination theorem,
this means that there is no proof of a contradiction in the sequent calculus.

Before continuing, I will note that cut-elimination is widely regarded as one of the most
important features of the sequent calculus. A considerable amount of research in proof
theory concerns the consequences of cut-elimination, the extension of cut-elimination to new
contexts, and so on. It would be difficult to overstate the importance of cut-elimination in
proof theory.

The reduction procedure
If one adds axioms (1)-(6) of PA to the sequent calculus, cut-elimination is retained. How-
ever, cut-elimination breaks down once the induction axioms are added.17 That is, the
sequent calculus with the axioms of PA in addition to the logical axioms does not enjoy
cut-elimination. Nevertheless, Gentzen reduced the consistency of PA to that of a system
with cut-elimination.

It is integral to the logical understanding of arithmetic that arithmetical formulas can be
stratified according to their complexity. Roughly, formulas with few quantifier alternations
are less complicated than those with many quantifier alternations. Gentzen discovered that
one can also stratify proofs in PA according to their complexity. Proofs that appeal to the
induction axioms are more complicated than those that don’t. The proofs that do appeal

15That is, an implication Γ ñ ∆ is provable in the sequent calculus if and only if the sentence
Ź

Γ Ñ
Ž

∆
is a first-order validity.

16To prove a contradiction in the sequent calculus is to prove the empty sequent ñ. If there were a proof
of the empty sequent with the subformula property, then all of the formulas in the proof would appear in
the end sequent. However, there are no formulas in the end sequent, so there cannot be any proofs of the
empty sequent with the subformula property.

17One has to be somewhat careful in how this is stated. If PA proves ϕ, then, by the cut-elimination
theorem for first-order logic, there will be a cut-free proof from purely logical axioms of a sequent ρ ñ ϕ,
where ρ is some finite conjunction of axioms of PA. This is different from saying that there is a cut-free
proof that uses axioms of PA as initial sequents and results in the sequent ñ ϕ. The typical treatment of
PA in the sequent calculus, with axioms (1)-(6) as initial sequents and induction as a rule, results in a loss
of cut-elimination.
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to the induction axioms can then be stratified according to the complexity of the formulas
that appear in their induction axioms. So Gentzen used the hierarchy of formulas to stratify
proofs into a hierarchy as well.

The ensuing hierarchy is transfinitely tall; in fact, it is much taller than the hierarchy
of natural numbers. Thus, Gentzen assigned ordinal numbers—which extend the natural
numbers beyond the finite—to proofs in PA to measure their complexity. The greater the
complexity of a proof, the larger the ordinal assigned to it. Gentzen then demonstrated that
if there were a proof of a contradiction in PA, one would be able to transform it into a proof
of a contradiction in PA with a lower ordinal rank. Let’s call this the reduction procedure.
If there were a proof of a contradiction in PA, then that proof would have a certain ordinal
α assigned to it. By Gentzen’s result, we could transform it into a proof of a contradiction
with a lower ordinal rank. We could then transform that into a proof of a contradiction with
a still lower ordinal rank and so on, until we reach a proof of a contradiction with ordinal
rank 0. But there are no proofs of contradictions of ordinal rank 0, since proofs of rank 0
enjoy cut-elimination.18 Thus, there can be no proofs of contradictions in PA at all.

Let’s take stock. Gentzen provided an algorithm to reduce any proof of a contradiction
to a proof of a contradiction with ordinal rank 0. Why doesn’t this qualify as finitistic? The
problem is that to prove that Gentzen’s algorithm terminates, one must employ an inference
rule known as transfinite induction along ε0, where ε0 is the upper bound of the ordinals
that Gentzen assigns to proofs in PA.19 This inference rule is not obviously finitistically
acceptable. Nevertheless, some have regarded this as a very small broadening of the finitistic
perspective and thus argued that Gentzen’s proof vindicates a version of Hilbert’s program.
I will take up this claim in the next section.

7.3 The constructive Hilbert program
A number of foundational programs emerged from the ashes of Hilbert’s program. I will
discuss one such program: the constructive Hilbert program. The practitioners of the con-
structive Hilbert program aim to prove the consistency of axiomatic theories using only
constructive principles. Constructive principles are those that can be justified without ap-
pealing to the law of excluded middle and concern only those mathematical objects that have
been “constructed” in intuition.20 Typically, constructive consistency proofs appeal only to
finitistic principles except for an application of transfinite induction along a constructive

18To be more precise, one can transform any proof of ordinal rank 0 into a proof in which cut is applied
only to those formulas provided by initial sequents. I want to emphasize that this is really an application of
the method of cut-elimination though, and that it is sufficient to guarantee consistency.

19It is not exactly correct to say that one must assume full transfinite induction along ε0 to prove the
consistency of arithmetic. One must assume only a restricted version of this rule. I will discuss more precisely
the resources required to prove the consistency of arithmetic in §4.2.2.

20There is no widely accepted, mathematically precise definition of “constructive.” I will return to this
issue in §3.2, where I will discuss some of the most comprehensive systems that have been considered
constructively acceptable.
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transfinite ordinal.21 Bernays [16] articulated the spirit of the program in the following
oft-quoted passage.

The finitary standpoint is not the only alternative to classical ways of reasoning
and is not necessarily implied by the idea of proof theory.22 An enlarging of the
methods of proof theory was therefore suggested: instead of reduction to finitist
methods of reasoning it was required only that the arguments be of a constructive
character.

Proof theorists in this tradition have discovered consistency proofs of many axiomatic
theories. Such results cannot be criticized for lack of ingenuity or rigor. It is controversial,
however, what philosophical significance these results have. For instance, do the principles
used in constructive consistency proofs enjoy any special epistemic status? Should construc-
tive consistency proofs quiet reasonable doubts about a theory’s consistency? As Arana
[2] writes, the “philosophical interest of these projects rests largely on the extent to which
‘constructive’ methods are judged more valuable than non-constructive methods.” In §3.1, I
will revisit considerations for and against the notion that the methods used in constructive
consistency proofs are uniquely evidentially secure. In §3.2, I will discuss the methodological
limitations of the constructive Hilbert program.

It is worth stating explicitly that I am neither rejecting nor endorsing the constructive
Hilbert program. My aim is to argue that Gentzen-style consistency proofs enjoy a certain
epistemic virtue, not to argue that they don’t enjoy others. Nevertheless, it will be helpful,
by means of contrast, to revisit considerations in favor of and against the constructive Hilbert
program.

Epistemology of the constructive Hilbert program
There is a traditional argument for the evidential security of constructive principles, de-
scended from Hilbert’s [44] arguments for the evidential security of finitistic principles.
Hilbert understood finitary reasoning as reasoning that operates on concrete23 objects pre-
sented in intuition—that is, pure Kantian intuition24—and that does not appeal to abstract

21The constructive ordinals are the order-types of recursive relations on the natural numbers.
22Bernays was reacting to the Gödel–Gentzen theorem that the consistency of Heyting Arithmetic, i.e.,

intuitionistic first-order arithmetic, implies the consistency of Peano Arithmetic. Though this demonstrated
one path for convincing constructivists of the consistency of classical mathematics, Bernays was also sym-
pathetic to Gentzen-style consistency proofs as a constructive path to executing Hilbert’s program, and this
passage is often cited in that context.

23I am not using “concrete” here in the metaphysician’s sense, so concreteness does not exclude abstract-
ness. Rather, the concreteness of these objects consists in their primitiveness and sensibility in intuition.
For discussion of Hilbert’s finitist epistemology see [49] or [110].

24Hilbert’s conception of intuition may have evolved throughout his career. In particular, though Hilbert
eventually embraced a Kantian conception of intuition, Mancosu has argued that Hilbert originally supported
finitism on the basis of an empiricist conception of intuition. See [63].
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concepts concerning infinite sets. Hilbert argued that finitary reasoning was so basic and
unimpeachable that it was necessary for all logical and scientific thought. Hilbert believed
that a finitary consistency proof of a theory T would confer the same unimpeachable epis-
temic status upon T .25 After proving the consistency of arithmetic by finitary methods and
transfinite induction along ε0, Gentzen [35] argued that transfinite induction up to ε0 is con-
structively justified. Takeuti [107] argued that constructive reasoning operates on objects in
intuition and enjoys something like the special epistemic status Hilbert ascribed to finitary
reasoning. The combined arguments of Gentzen and Takeuti imply that transfinite induction
up to ε0 enjoys the type of special evidential security Hilbert praised.

Skepticism of Kantian intuition in the philosophy of mathematics has a long history, and
I hardly need to contribute to it here. Nevertheless, objections to the use of Kantian intuition
to justify the principles used in consistency proofs suggest themselves immediately. Bolzano
and Frege famously criticized Kantian intuition on the grounds that we cannot practically
intuit arbitrarily large numbers. In the context of ordinal analysis the question is even more
pressing; can we really intuit—whether in Kant’s sense or in any other sense—transfinite
ordinals? Moreover, Hilbert insisted that consistency proofs require intuitions of indetermi-
nate objects. Can we really have intuitions of indeterminate objects?26 Perhaps there are
other arguments to the effect that constructive principles enjoy a privileged epistemic status,
but such arguments have not, to my knowledge, been brought to bear on the epistemology
of consistency proofs.

It is worth noting that consistency proofs for axiomatic theories stronger than PA require
principles that are increasingly difficult to consider constructive. There are two sources of
this difficulty. First, as the transfinite ordinals used in the consistency proofs become larger
and more remote from ordinary mathematical practice, the proofs become less obviously
constructive. Perhaps, the objection goes, transfinite induction along ε0 is constructively
justified but transfinite induction along larger ordinals is not. Second, consistency proofs
for strong theories have involved the use of heavy set-theoretic machinery. For instance,
Rathjen’s [79] consistency proof of Π1

2-CA0 made use of ordinal notation systems that were
defined using large cardinals, which are quintessentially non-constructive objects.27 Rathjen

25Hilbert did not identify any axiomatic theory with finitary reasoning. According to an influential con-
ceptual analysis due to Tait [103], finitary reasoning coincides with Primitive Recursive Arithmetic, or PRA.
It is worth noting that Tait’s analysis has been challenged. Another influential argument, due to Kreisel,
equates finitary with visualizable. Kreisel argues on this basis that finitary reasoning coincides with PA. See
[53]. By Gödel’s theorem, PRA is insufficient for establishing the consistency of any theory containing PRA.
However, Gentzen’s result demonstrates that it is sometimes possible to prove consistency statements by
augmenting PRA with transfinite induction along a constructive ordinal. PRA is often vast overkill for ac-
complishing this task. EA`, i.e., elementary arithmetic augmented with the totality of superexponentiation,
suffices for the consistency proof of PA.

26The problem is this. Consistency proofs require induction on a Π1 property, namely, consistency. To
avoid finitistic meaninglessness, Hilbert suggested that one induct instead on an open formula. But working
with formulas with free variables is tantamount to working with an “indeterminate object” in intuition. For
discussion, see [73] and [42].

27Π1
2-CA0 is the strongest subsystem of analysis whose consistency has been proved by means of ordinal
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argued that the use of large cardinals was heuristic and eliminable from these proofs in
principle, but the mathematical community trusts Rathjen’s proofs because of their faith in
the cogency of the non-constructive principles he used.28 As Feferman [27] put it, “it is not
at all clear what they contribute to an extended [Hilbert’s program] in the sense envisioned
by Bernays.”

Methodological limitations
Whatever the epistemic virtues of the constructive Hilbert program, there are reasons to
believe that a constructive consistency proof of analysis is not forthcoming. To circumscribe
the limits of constructivism, one would have to precisely articulate a conception of construc-
tively acceptable mathematics. Martin-Löf has articulated and formalized a framework of
this sort, his constructive type theory. Constructive type theory is perhaps the most general
framework for constructively acceptable mathematics. With a precise framework in place,
one can assess its limitations. Martin-Löf [67] gave the following assessment.

What we see in front of us at this stage is some kind of abyss, or chasm, which
we do not seem able to pass... The original aim was to obtain a constructive
consistency proof for classical analysis...but we have now so much information
that we know that this is out of our reach, and why? Well, if this is to be
a constructive consistency proof, it will have to use constructively acceptable
principles...we have at present exhausted the principles for which we can claim
evidence.

Martin-Löf claimed that Π1
2-CA0 is on the other side of the abyss. Rathjen [81] argued

for the weaker claim that currently known constructively acceptable principles cannot secure
the consistency of theories stronger than ∆1

3-CA0. In any case, Rathjen’s consistency proof
of Π1

2-CA0 already appeals to controversial principles,29 and the details of the proof are
widely regarded as unusually cumbersome. Indeed, Rathjen [80] claimed that his proof
“taxes the limits of human tolerance.” Given these difficulties, it is reasonable to expect that
constructively acceptable consistency proofs will not advance much further.30

It is a great testament to the ingenuity and perseverance of the proof theory community
that they have pushed constructively acceptable consistency proofs to their very limits.
Nevertheless, it seems that constructive consistency proofs have hit a wall.
analysis.

28Feferman makes a similar point in [27].
29Martin-Löf argued that these principles were already on the other side of the abyss. In particular,

Martin-Löf argued that the use of large cardinals in the consistency proofs was evidence of postulating what
was necessary to complete the proof rather than building objects from below.

30It is worth noting that constructive type theory is supposed to be an open-ended framework. Neverthe-
less, to extend the framework in a constructively acceptable way, any extension must be accompanied with
an argument certifying the extension’s constructivist credentials.
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A number of proof theorists, including Girard [38] and Feferman [27], have argued that
the constructive Hilbert program was wrongheaded and epistemically dubious. In fact, many
of the proof theorists involved in ordinal analysis emphasize other benefits of ordinal analy-
sis, such as its utility in measuring the strength of theories.31 There is nothing wrong with
using ordinal analysis to measure strength, but it is too philosophically modest to claim that
this exhausts its significance. Moreover, it would be premature to dismiss Gentzen-style
consistency proofs as philosophically insignificant because of the difficulties facing the con-
structive Hilbert program. In the next section I will articulate what I take the philosophical
significance of consistency proofs to be.

7.4 Consistency proofs as explanations
In this section I will articulate and defend a conception of consistency proofs that is not mo-
tivated by and does not seek to address skeptical considerations. In this sense, as mentioned
in §1, I am pursuing a project similar to that of Nozick [70] with respect to skepticism about
knowledge. I will assume that we are justified in believing that arithmetic is consistent;
indeed, we have a very simple semantic consistency proof that arithmetic is consistent. I do
not expect that Gentzen’s proof will increase anyone’s credence that PA is consistent but I
will argue that it has enhanced our understanding of why PA is consistent.

In §4.1, I will provide a survey of the leading theories of mathematical explanation and
discuss the heuristics that they yield for identifying explanatory proofs. In §4.2, I will argue
that Gentzen’s proof is explanatory. Rather than argue for this claim on the basis of any one
theory of explanation, I will argue that Gentzen’s meets the conditions for explanatoriness
identified by all the leading theories of mathematical explanation.

Mathematical explanation
There is no consensus among philosophers as to what constitutes an explanation. Some
philosophers [58, 86] have endorsed theories of explanation that rely crucially on counter-
factual dependence or causation. Such theories cannot easily account for mathematical
explanation. Mathematical facts are necessarily true, so it is difficult to explain them by
appealing to counterfactual dependence. Moreover, mathematical objects are causally inert,
so mathematical facts cannot be explained by appealing to the causal properties of mathe-
matical objects. One could deny that there are explanations within mathematics at all, but
a cursory glance at mathematical practice reveals that mathematicians place a great deal
of emphasis on the relative explanatory weight of proofs, so these views are not consonant
with mathematical practice.32 In any case, I will assume that there are explanations within

31Others still emphasize the computational information engendered by proof theory [52, 4].
32Mancosu demonstrates this with many examples from mathematical practice. See [64]. I do not believe

that this is a knock-down argument in favor of the cogency of mathematical explanation. Nevertheless, it
suggests that the notion merits serious consideration.
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mathematics.
Some of the most prominent figures in the philosophy of mathematics have argued that

some but not all proofs are explanatory. These philosophers argue that all proofs certify the
truth of the statement proved, but only some do so on the basis of those facts in virtue of
which it holds. Many of these philosophers have argued that the explanans, i.e., the facts in
virtue of which the proved statement holds, need not be more obvious or certain than the
proved statement itself. For instance, Russell [84] argued that the basic laws of arithmetic
should be established by recourse to less evident but more primitive logical laws, and the
logicist program was supposed to elucidate this. I believe that the situation with consistency
proofs is analogous. Though the consistency of arithmetic is evident, and perhaps more
evident than the hypotheses Gentzen invoked to prove it, the order of explanation proceeds
from these hypotheses to consistency.

One could argue that Gentzen’s proof is explanatory by adopting a specific theory of
mathematical explanation and then checking that Gentzen’s proof conforms to its strictures.
Opinions have not converged on any specific account of mathematical explanation, however,
so any argument that is tied to a specific theory is bound to be controversial. It would be more
dialectically secure to argue that whichever of the leading theories theories of mathematical
explanation one adopts, Gentzen’s proof conforms to its strictures. Ultimately, this is what
I will attempt.

Theories of mathematical explanation can be partitioned into local and holistic theories
(Mancosu proposes this classification is his survey article [65]). According to local theories,
explanatoriness is a property of individual arguments; according to holistic theories, explana-
toriness is a property primarily of theoretical frameworks and only derivatively of individual
arguments. I will briefly review the most popular versions of these theories of mathemati-
cal explanation: Steiner’s local theory and Kitcher’s holistic theory. According to Mancosu
[64], “there are mainly two philosophical accounts of mathematical explanation available,”
namely, Steiner’s and Kitcher’s. While reviewing these theories, I will highlight the heuris-
tics they yield for identifying explanatory proofs. In §4.2, I will argue that Gentzen’s proof
is explanatory according to Steiner’s theory. Then in §4.3, I will argue that Gentzen’s proof
is explanatory according to Kitcher’s theory. Finally, in §4.4, I will argue that these con-
siderations suggest that Gentzen’s proof should be explanatory according to any reasonable
theory of mathematical explanation.

Steiner’s theory of mathematical explanation

The quintessential local theory of mathematical explanation is Steiner’s [102]. Steiner’s
theory is guided by the maxim “that to explain the behaviour of an entity, one deduces the
behavior from” those properties that characterize the entity. Steiner identifies characterizing
properties as those that are “unique to a given entity or structure within a family or domain
of such entities or structures.” According to Steiner, an explanatory proof of a claim ϕ must
exhibit how ϕ depends on properties that characterize an entity mentioned in ϕ.

How can we recognize explanatory proofs? Steiner suggests the following test:
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It must be evident ... that if we substitute in the proof a different object of the
same domain, the theorem collapses; more, we should be able to see as we vary
the object how the theorem changes in response.

This provides a heuristic for recognizing whether a proof is explanatory in Steiner’s sense.
To see if a proof explains why a particular entity a has a property, we first identify a family F
to which a belongs such that a is uniquely characterized among the entities in F by enjoying
a certain property ψ mentioned in the proof. Second, we substitute different elements of the
family F into the proof, and we see that the proof breaks down precisely where the property
ψ is invoked. Finally, we check whether the same proof form yields analogous theorems about
other entities in the family F when we shift our attention to their characterizing properties.

Kitcher’s theory of mathematical explanation

The quintessential holistic theory of mathematical explanation is Kitcher’s [50]. Kitcher
provides the following description of his own view:

Successful explanations earn that title because they belong to a set of explana-
tions, the explanatory store ... Intuitively, the explanatory store associated with
science at a particular time contains those derivations which collectively provide
the best systematization of our beliefs. Science supplies us with explanations
whose worth cannot be appreciated by considering them one-by-one but only by
seeing how they form part of a systematic picture of the order of nature.

According to Kitcher, systematic accounts of nature render nature more intelligible, and
arguments are explanatory only insofar as they contribute to the systematization of our
beliefs. Accordingly, Kitcher identifies theoretical unification as the hallmark of explanation.
He emphasizes that theoretical unification reduces the number of argument patterns required
for comprehensive understanding of reality:

Science advances our understanding of nature by showing us how to derive de-
scriptions of many phenomena, using the same patterns of derivation again and
again.

Thus, according to Kitcher, to recognize the explanatoriness of a proof it suffices to
recognize that the proof pattern generalizes fruitfully within the context of a systematic and
comprehensive theoretical framework.

Continuing ahead

I will argue that, whether we follow Steiner or Kitcher, we ought to regard Gentzen’s proof
as explanatory. Note that, despite their profound differences, the two most prominent the-
ories of mathematical explanation both emphasize that conduciveness to generalization is
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a characteristic mark of explanatory proofs. Indeed, the conduciveness of good explana-
tions to generalization is widely noted in the philosophical literature on both mathematical
and non-mathematical explanation. Gentzen’s proof, as I will demonstrate in the following
subsections, generalizes along several dimensions. I will first discuss these generalizations
in a way that emphasizes that they depend on the characterizing properties of the entities
involved, in accord with Steiner’s theory. I will then discuss these generalizations in a way
that emphasizes how they have facilitated theoretical unification, in accord with Kitcher’s
theory.

Gentzen’s proof and Steiner’s theory of explanation
Gentzen’s proof is an argument for the consistency of PA. There are two dimensions along
which the proof could conceivably be generalized:

(i) to concern theories other than PA;

(ii) to concern properties other than consistency.

I will argue that Gentzen’s proof generalizes along both dimensions. Along the way I
will identify a family to which PA belongs and a family to which the property consistency
belongs. I also identify properties that characterize PA and the property consistency within
their respective families. When arguing that Gentzen’s proof generalizes along a dimension,
I will pay attention to the characterizing properties of other entities in the family, and show
how substituting those properties into the proof yields analogous results about those entities.

Along the way, I will contrast Gentzen’s proof with the Tarskian proof. Insofar as the
Tarskian proof generalizes along either dimension, it does not generalize by shifting attention
to the characterizing properties of other entities in the family. Indeed, whenever the Tarskian
proof goes through, consistency (or an analogous property) is derived from the same property,
namely, soundness; that is, the Tarskian proof exhibits no sensitivity to the theory being
analyzed or the property being established. Moreover, the Tarskian proof does not generalize
as widely as Gentzen’s proof, since there are consistent but unsound theories.

Generalizing to other theories

PA is not the only theory that has been subject to a Gentzen-style consistency proof; similar
analyses have been carried out for a wide array of systems. The methods introduced by
Gentzen, namely cut-elimination and the reduction procedure, play a central role in each
such analysis. Nevertheless, generalizing Gentzen’s methods beyond PA requires innovation.
When one approaches a new system T , one has to determine how to stratify T so that the
reduction procedure can be carried out. Ordinal analysis is inter alia how the appropriate
stratifications are developed.

Following Steiner, it will be useful to regard PA as a member of a family. PA is a
reasonable theory, i.e., a consistent, effectively axiomatized theory that interprets a modicum
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of arithmetic. Standard proof-theoretic questions33 can be intelligibly asked only about
reasonable theories. Since I am currently focusing on such questions, I will regard PA’s
family as comprising the reasonable theories. There is a stratification of PA’s proofs of
order-type ε0, and, insofar as proof-theoretic questions are concerned, PA is characterized by
this stratification.

For any reasonable T , finding a similar stratification of T involves calculating the proof-
theoretic ordinal of T . Once this is accomplished, one can develop an analogous consistency
proof for T . These consistency proofs will be different from Gentzen’s insofar as they involve
induction along smaller or larger ordinals. I claim that for any reasonable theory T , T
is characterized among reasonable theories by its stratification that facilitates a Gentzen-
style consistency proof. Put another way, for any reasonable theory T , T is characterized
among reasonable theories by its proof-theoretic ordinal.34 I take it that this perspective
is continuous with the perspective of working proof-theorists, such as Pohlers [75], who
claims that by calculating the proof-theoretic ordinal of a theory T , we thereby gain a total
understanding of T ’s proof-theoretic properties.

To check that Steiner’s criteria for explanatoriness are met, we must check that (i) when
we substitute different elements of PA’s family into Gentzen’s proof, the proof breaks down
precisely where the PA’s characterizing property is invoked and (ii) the same proof form
yields analogous theorems about other entities in PA’s family when we shift our attention to
their characterizing properties.

Regarding (i), note that Gentzen’s proof is insufficient for proving the consistency of
theories stronger than PA, precisely because these theories have different proof-theoretic
ordinals. Indeed, if the proof-theoretic ordinal of a theory T is some α ą ε0, then induction
on ε0 is insufficient for proving the consistency of T .35 Indeed, if we stratify T into some
hierarchy of height ε0, then the crucial reduction procedure cannot be carried out.

Regarding (ii), I reiterate that Gentzen-style consistency proofs have been developed for
many theories, including theories with proof-theoretic ordinals other than ε0. By calculating
the proof-theoretic ordinal of a theory T , we may thereby discover a stratification of T
that facilitates a Gentzen-style consistency proof of T . Thus, Gentzen’s proof form yields
analogous theorems about other axiomatic theories when we shift our attention to their
proof-theoretic ordinals.

33Proof theory is a broad area, but here I am referring to those questions concerning consistency strength,
ordinal analysis, reflection principles, provably recursive functions, and the like.

34Throughout, when I speak of proof-theoretic ordinals, I really mean canonical representations of proof-
theoretic ordinals. Discovering the latter is effectively equivalent to discovering a stratification of T that
facilitates a Gentzen-style consistency proof.

35Indeed, each β ă α, T will prove transfinite induction along α. The claim then follows by Gödel’s
second incompleteness theorem. It is worth pointing out that all of these results are sensitive to manner in
which ordinals are represented. Nevertheless, extensive investigation has provided ample empirical evidence
for the following two claims. First, for any natural presentation of α, induction along α will suffice to prove
the consistency of T . Second, for any natural presentation of an ordinal β ă α, induction along β will not
suffice to prove the consistency of arithmetic.
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The Tarskian consistency proof is notably not conducive to generalization in this manner.
If we consider any member T of PA’s family that is not sound, then the Tarskian proof cannot
be carried out. Insofar as the Tarskian proof does generalize, it does so only by invoking
soundness, a property which is too coarse to characterize any reasonable theory with respect
to questions of proof-theoretic interest. Indeed, a Tarskian consistency proof of a theory T ,
when it can be carried out, can be carried out no matter what T ’s proof-theoretic ordinal is;
thus, the Tarskian proof a theory’s consistency does not depend on the theory’s characteristic
features.

Generalizing to other properties

Gentzen’s proof is conducive to generalization even in the case of PA, since it generalizes to
prove that PA enjoys other properties of interest. In §2.3 I mentioned that it is integral to
the logical understanding of arithmetic that arithmetical formulas can be stratified into a
hierarchy based on their complexity. Roughly, statements with fewer quantifier alternations
are less complicated than statements with many quantifier alternations. This engenders the
following hierarchy of formulas:

Π1 Ă Π2 Ă ... Ă Πn Ă ...

The Πn formulas are roughly those formulas that have n many quantifier alternations, start-
ing with a universal quantifier.36

The statement ConpPAq that expresses the consistency of arithmetic is the quintessential
Π1 sentence that is not provable in arithmetic. Indeed, the sentence says “for all numbers x,
x does not encode a proof of ‘0=1’ from the axioms of arithmetic.” ConpPAq is often called
a reflection principle for PA, which is to say that it expresses that PA meets some minimal
standards of correctness. Other reflection principles for PA have been widely studied. For
instance, we say that PA is n-consistent if PA is consistent with all true Πn sentences. This
yields the following hierarchy of statements:

ConpPAq, 1ConpPAq, 2ConpPAq, ..., nConpPAq, ...

where for each n, nConpPAq expresses the n-consistency of PA. For present purposes, it is
important to note that for each n, nConpPAq is a Πn`1 sentence. We may regard the claims

tConpPAq, 1ConpPAq, 2ConpPAq, ..., nConpPAq, ...u

as forming a family of entities each of which is distinguished from the others by its logical
complexity (e.g., being Π1, Π2, etc.).

36Here is a more precise definition. We assume that all formulas are in prenex normal form, i.e., all
quantifiers appear in the beginning of the formula. A formula with only bounded quantifiers is both Σ0 and
Π0. If ϕ is Πn and ψ is Σn, then Dxϕ is Σn`1 and @xψ is Πn`1. We can extend the definition of these
classes so that Πn includes all formulas that are EA provably equivalent to a Πn formula, in the old sense.
This delivers the inclusions as described above.
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Steiner’s heuristic suggests that if Gentzen’s proof is explanatory, then it should be possi-
ble to prove that PA is n-consistent by modifying Gentzen’s proof by invoking a characteristic
property of n-consistency instead of the characteristic property of consistency. Indeed, this
is the case. Gentzen proved the consistency of PA by finitary methods and an application
of a certain inference rule: ε0 induction for Π1 predicates. The same argument, slightly
modified so that we instead employ ε0 induction for Πn`1 predicates, yields a proof that PA
is n-consistent.37

Steiner’s heuristic also suggests that it should be clear that the proofs of n-consistency
must depend on the characteristic property of n-consistency; if we substitute in the charac-
teristic property of some other reflection principle, then the proof should break down. To
see that Gentzen’s proof and its generalizations truly depend on the precise ε0 induction
rule that is applied, it will be useful to discuss the reversals of these results. To prove
the n-consistency of arithmetic by Gentzen’s methods, we use finitary techniques plus an
application of ε0 induction to a Πn`1 formula. This is the best possible result, by the fol-
lowing theorem (note that by a non-nested application of ε0 I just mean an application of
ε0 induction to a formula which was not itself derived by ε0 induction).38

Theorem 7.4.1 (Beklemishev). Any statement that is provable by finitary methods and non-
nested applications of ε0 induction to Πk`1 predicates can also be proved by finitary methods
from the assumption that PA is k-consistent.39

Thus, ε0 induction for Πn`1 predicates is both necessary and sufficient for proving the
n-consistency of arithmetic.40 In particular, one cannot prove the n-consistency of arithmetic
by applying induction to any Πn predicates. So Gentzen’s proof is couched at a level of grain
that emphasizes the importance of the quantifier complexity, i.e., the characteristic property,
of the claims being proved.

Before continuing, it is worth noting that the Tarskian proof is not articulated at a level
of grain that is conducive to results of this sort. Certainly one can prove the n-consistency
of arithmetic by appealing to the soundness of arithmetic. However, one cannot “reverse”
the Tarskian proof so as to prove the soundness of arithmetic from the consistency of arith-
metic. The assumption of soundness is not necessary for proving consistency; accordingly,
the Tarskian proof of consistency does not depend in any way on consistency’s characteristic
property.

37For details see [8].
38Beklemishev essentially proves this theorem in [8], where he works over the base theory PRA. He weakens

the base theory to EA` in [9]. EA` is stated in the language of arithmetic augmented with a primitive symbol
for exponentiation. EA` has the usual recursive axioms for addition, multiplication, and exponentiation, as
well as an axiom stating the totality of super-exponentiation. EA` is the weakest canonical theory in which
various meta-mathematical results, such as the cut-elimination theorem and its corollaries, can be proven
and hence in which various meta-mathematical arguments can be carried out. EA` is widely regarded as
finitistically acceptable.

39Here’s a more precise statement. Over EA`, k-ConpPAq is deductively equivalent to the inference rule
for non-nested applications of ε0 induction for Πk`1 predicates.

40Once again, this means necessary and sufficient modulo finitary methods.
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Gentzen’s proof and Kitcher’s theory of explanation
The preceding remarks demonstrate that Gentzen’s proof pattern generalizes. I have em-
phasized along the way that these generalizations meet Steiner’s criteria for explanatori-
ness. Have these same considerations demonstrated that Gentzen’s proof is explanatory in
Kitcher’s sense?

Recall that, according to Kitcher [50], explanatory frameworks are those in which we can
“derive descriptions of many phenomena, using the same patterns of derivation again and
again” and that strike a balance “between minimizing the number of patterns of derivation
employed and maximizing the number of conclusions generated.” Gentzen’s proof is arguably
the seminal result of proof theory, and we have already seen that Gentzen’s proof general-
izes to derive other claims within the framework of proof theory. Therefore, the preceding
considerations provide evidence that Gentzen’s proof is explanatory in Kitcher’s sense.

However, there is more evidence that Gentzen’s proof is explanatory in Kitcher’s sense.
Generalizations of Gentzen’s argument have played important roles in systematizing our
understanding of other logical aspects, not yet discussed, of arithmetic and its kin. A
Gentzen-style consistency proof of a theory T often leads inter alia to (i) a characterization
of the functions41 that are provably total in T , (ii) a characterization of the transfinite
induction principles that are provable in T , and (iii) the discovery of combinatorial principles
that are true but not provable in T . Moreover, systematic connections have been discovered
between Gentzen style consistency proofs and other streams of research within mathematical
logic, including the study of functional interpretations [45], indicators [5], and modal logics
of provability [8]. This is all to say that Gentzen’s proof draws our attention to “connections,
common patterns, in what initially appeared to be different situations,” as Kitcher [50] claims
explanations do.

It is worth noting that Tarskian consistency proofs did not and could not facilitate these
discoveries. Indeed, Tarskian consistency proofs appeal essentially to the soundness of a the-
ory, and that information is too coarse-grained to deliver these results, which are sensitive to
fine-grained information. For instance, (i) above requires knowledge of the Π2 consequences
of a theory, but these cannot be encoded into the soundness claim. Knowing that a theory
is sound does not yield any information about the theory’s Π2 consequences.42 By contrast,
one of the modifications of Gentzen’s proof discussed in the previous subsection does deliver
this result.43

41Of course, here I mean recursive functions on the natural numbers.
42None of this is to say that semantic techniques are inappropriate for studying consistency. Indeed,

one can establish these corollaries using semantic techniques. However, one can do so only by examining
non-standard models, since all total recursive functions are total in the standard model, all ordinals are
well-ordered in the standard model, and all true combinatorial principles hold in the standard model.

43One might wonder whether a generalization of the Tarskian proof might deliver this information, but
it is difficult to see how such a generalization could go. One might try to extract this information by,
say, attempting to prove the Π2 soundness of PA by induction on the length of proofs, in the Tarskian
style. However, the induction step of such an argument would not work if the inference considered increases
the quantifier complexity of the formulas considered. To get around this subtlety, one would invoke the
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Gentzen’s proof and other theories of mathematical explanation
Before discussing the normative consequences of the preceding arguments, it is worth con-
sidering other theories of mathematical explanation. As stated in §7.4, Mancosu [64] wrote
in 2001 that Steiner’s and Kitcher’s are effectively the “two philosophical accounts of math-
ematical explanation available.” In the intervening years there has been an expansion in
the theories of explanation available, though Steiner’s and Kitcher’s remain two of the most
influential contenders. Is Gentzen’s proof explanatory according to the other theories?

Even if we do not follow Steiner or Kitcher, there remains strong evidence that Gentzen’s
proof is explanatory. The extant theories of mathematical explanation all predict that ex-
planatory proofs tend to enjoy certain qualities, which I will call marks of explanation.
Indeed, theories of mathematical explanation, old and new, have identified the following as
candidate marks of explanation: conduciveness to generalization [50, 102], methodological
purity [22, 23], facilitation of theoretical unification [32, 50], tracking of dependency relations
[102, 48, 74], and exploitation of symmetry [57]. It is remarkable that Gentzen’s proof bears
each of these marks. Perhaps some new theory of mathematical explanation will identify
some mark of explanation that Gentzen’s proof lacks, but at present we lack evidence that
there is any such mark.

The standard theories of mathematical explanation do not, as far as I know, propose any
necessary conditions for explanatoriness that do not apply to Gentzen’s proof. As we saw
in the previous section, some of them (including the two leading theories) propose sufficient
conditions for explanatoriness that do apply to Gentzen’s proof. Moreover, whenever any
of the extant theories of mathematical explanation predicts that some marks accompany
explanations, Gentzen’s proof bears these marks. Therefore, the claim that Gentzen’s proof
is explanatory falls within the overlapping consensus of the extant theories of mathematical
explanation. Accordingly, one could argue for the explanatoriness of Gentzen’s proof abduc-
tively, without embracing any particular theory of mathematical explanation: Whichever
theory of mathematical explanation is correct, Gentzen’s proof bears the marks that the
theory predicts accompany explanatory proofs; the best explanation of this empirical obser-
vation is that Gentzen’s proof is explanatory.

7.5 Normative consequences
In this section I will discuss the normative upshot of the preceding analysis of Gentzen’s
proof. In particular, I will argue against the widely held view that consistency proofs are
cut-elimination theorem. However, there remains a problem: the induction axioms of PA have unbounded
syntactic complexity, so one must use the reduction procedure to get the cut-elimination theorem to do the
required work. By attempting to modify the Tarskian proof, we converge on a Gentzen-style proof. The
failure of the Tarskian proof to generalize here follows from a general consideration. The Tarskian proof is
an ordinary induction (not transfinite induction) on the length of proofs. Any ordinary induction with an
arithmetical induction formula can be carried out in PA. Thus, no such argument can yield results about
what is not provable in PA, since such results imply the consistency of PA.
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epistemically interesting only if they use the limited methods of constructive mathematics.
I will then discuss a line of research that my position suggests.

Restricted methodology
A prevalent view among logicians is that, for any axiomatic theory T , mathematical tech-
niques that are less evidentially secure than those codified in T should not appear in consis-
tency proofs of T . Already such restrictions were articulated by Gentzen [37]:

In a consistency proof we can use only forms of inference that count as consider-
ably more secure than the forms of inference of the theory whose consistency is to
be proved ... In carrying out this consistency proof we must make certain...that
the inferences and derived concepts used in the proof itself are indisputable or at
least considerably more reliable than the doubtful forms of inference of elemen-
tary number theory.

Which concepts and inferences are “considerably more reliable” than those of arithmetic?
Some have argued that consistency proofs should use only the limited means of constructive
mathematics. For instance, Zach [112] remarks that for an assignment of an ordinal αT to
a theory T “to have any foundational significance it is also required that one can give a
constructive argument for transfinite induction up to αT.” Likewise, Rathjen [83] writes that
“consistency proofs should be given relative to ‘constructive’ theories.”

If one wants to convince skeptics, then perhaps one ought to restrict one’s methods to
those accepted by the skeptic. However, foundational significance should not be identi-
fied with propensity to convince skeptics. Are the methodological constraints identified by
Gentzen, Rathjen, and Zach appropriate constraints on the task of explaining why axiomatic
theories are consistent? If one avails oneself of arbitrary resources when proving a consis-
tency statement, then one might reach for the Tarskian proof, which, I have argued, is not
explanatory. Thus, it is reasonable to abide by some methodological constraints when trying
to prove consistency. However, just because some methodological constraints are appro-
priate it does not follow that using non-constructivist resources is inappropriate. Without
the motivation of addressing constructivists, it is not clear that this constraint is justified;
defending the constraint would require a substantial argument.

Which principles can be appealed to in explanatory consistency proofs? It seems hope-
lessly difficult to delimit, with formally precise criteria, the principles to which one can
appeal in explanatory consistency proofs. On the other hand, the epistemic virtues that
I described in §7.4 can provide evidence for the correctness of a methodology. That is, if
a particular approach to proving consistency can be systematically generalized, facilitates
theoretical unification, and so on, this is evidence of the explanatory power of that approach.
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Incomparable systems
A related methodological constraint on consistency proofs arises from the second incomplete-
ness theorem. From Gödel’s theorem, some philosophers have inferred that a consistency
proof of a theory T can be philosophically interesting only if, like Gentzen’s, it goes through
in a theory that is deductively incomparable with T .44 What is the source of this constraint?
Smith [95] introduces the constraint as follows:

Trying to prove the consistency of PA by appeal to a stronger theory which
already contains PA might well not seem to be a good strategy if we want to
quiet doubts about PA’s consistency ... And the Second Theorem shows that
it is impossible to prove PA’s consistency by appeal to a weaker theory which
is contained inside PA...there’s another possibility: maybe we can prove PA’s
consistency by appeal to an attractive theory which is weaker than PA in some
respects but stronger in others.

Smith is explicit that the goal of quieting doubts about consistency motivates this con-
straint. I do not believe that the constraint holds up when this motivation is abandoned.
Of course, some consistency proofs given in strictly stronger theories are not interesting.
Indeed, the Tarskian proof is given in a strictly stronger theory, and it lacks many of the
epistemic virtues of Gentzen’s proof. However, it would be rash to infer from this example
that no such consistency proof is explanatory. To illustrate what an informative consistency
proof given in a strictly stronger theory might look like, I will consider a specific example:
Tait’s resolution of Takeuti’s conjecture.

Takeuti [106] proved, using only finitistic means, that if second-order logic enjoys cut-
elimination, then analysis is consistent.45 Takeuti then conjectured that second-order logic
enjoys cut-elimination. Tait [104] proved that second-order logic enjoys cut-elimination, re-
solving Takeuti’s conjecture.46 Tait’s proof used highly non-constructive techniques. Indeed,
Tait’s proof invokes a very strong form of the assumption that analysis is consistent.47

44The thought is this. Neither one of PRA ` Π1-TIε0 or PA is contained in the other. Only the former
proves ConpPAq and only the latter proves any of the canonical induction axioms IΣn`1.

45By “second-order logic” I mean the standard sequent proof system for second-order logic with full
comprehension. For details, see [107], where Takeuti calls the system LK`.

46Indeed, Takeuti conjectured that full simple type theory enjoys cut-elimination. This was known as
Takeuti’s Fundamental Conjecture. After Tait partially resolved the conjecture, Takahashi and Prawitz in-
dependently resolved the full conjecture in the positive; see [105] and [78]. Both proofs used non-constructive
semantic techniques. It is worth mentioning that cut-elimination for simple type theory also follows from
Girard’s strong normalization theorem for the system F. See [39].

47Specifically, Tait relied on the assumption that every relation on the naturals is an element of a countable
ω model of second-order arithmetic, where an ω model of second-order arithmetic is a model of second-order
arithmetic whose first-order domain is the set N of natural numbers and whose second order domain is some
subset of PpNq. The statement that analysis is consistent is equivalent to the statement that the successor
relation is contained in a countable ω model of second-order arithmetic. It is important to remember that
Tait’s assumption, though very strong, is still true.
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Proving the consistency of analysis by assuming a strong form of the consistency of anal-
ysis might seem circular. Rathjen [82] comments that though Tait’s theorem is a “very
interesting result...as far as instilling trust in the consistency of [analysis]...is concerned,
the...proofs are just circular since they blatantly use the very comprehension principles for-
malized in [analysis] (and a bit more).” I agree with Rathjen; however, if one seeks ex-
planation instead of justification, then the charge of circularity is not as strong. Takeuti’s
result—that cut-elimination for second-order logic implies the consistency of analysis—shows
that the consistency of analysis can be understood in terms of cut-elimination, as long as
second-order logic does enjoy cut-elimination. This is already an impressive achievement.
Experience in proof theory suggests that consistency can often be fruitfully understood in
terms of cut-elimination; verifying that this is so in the case of analysis brings us closer to
integrating the consistency of analysis into the current theoretical landscape. Tait’s proof,
though it relies on the assumption that analysis is consistent, nevertheless certifies that
second-order logic enjoys cut-elimination. The combined work of Takeuti and Tait shows
that the consistency of analysis follows from cut-elimination for a canonical, natural proof
calculus. Given the central role of cut-elimination in proof theory, it is difficult to resist the
conclusion that these results have brought us closer to an explanation of the consistency of
analysis.

Tait’s proof was carried out in a theory strictly stronger than analysis, but the objection
that Tait assumes the consistency of analysis misses the point. The combined work of
Takeuti and Tait won’t convince any skeptics, but that does not imply that their work will
not contribute to a satisfying explanation of the consistency of analysis.

Towards an explanation of the consistency of analysis
None of this is to say that our understanding of the consistency of analysis is satisfactory.
Tait’s result, though non-trivial and interesting, does not bear all of the marks of explanation
I mentioned in §7.4. Perhaps the most glaring issue is this. There are other noteworthy con-
sistency proofs of analysis, but the relationship between these proofs is not understood. One
such consistency proof comes from Spector’s [97] work extending Gödel’s Dialectica interpre-
tation by the bar recursion principle. Another comes from Girard’s [39] strong normalization
theorem for the system F. In the case of first-order arithmetic, there is a highly developed
and compelling network of theorems explaining the consistency of arithmetic. The connec-
tions between different consistency proofs—including those using functional interpretations
and those using cut-elimination—are well-understood. Thus, different methods converge on
the same explanation, and the results reinforce each other with respect to the correctness of
this explanation. This is not yet the situation for analysis.48 Thus, it seems that it would

48It is not understood, for example, how to show that every provably recursive function of analysis is
represented by a bar-recursive term by appealing to cut-elimination for second-order logic. Of course, some
connections are understood, but they are not so illuminating. To prove the consistency of fragments of
second-order arithmetic with Γ-comprehension, one can appeal to Tait’s cut-elimination argument, which
will use Γ comprehension and slightly more. Similarly, Spector’s functional interpretation uses ever higher
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be illuminating to develop—unbeholden to constructive or finitistic scruples—connections
between these three proofs. I expect that the discovery of such connections would greatly
enhance our understanding of the consistency of analysis.

bar recursive functionals to match increases in the complexity of comprehension. So there is some connection
between the complexity of bar recursive functionals and the complexity of the amount of comprehension used
to eliminate cuts.
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