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Abstract

NumS: Scalable Array Programming for the Cloud

by

Huseyin Melih Elibol

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Co-chair

Professor Ion Stoica, Co-chair

Scientists increasingly rely on Python tools to perform scalable distributed memory array
operations using rich, NumPy-like expressions. Existing solutions achieve sub-optimal per-
formance on numerical operations and training of machine learning models by relying on
dynamic scheduling provided by task-based distributed systems. This can lead to perfor-
mance problems which are difficult to address without in-depth knowledge of the underlying
distributed system. In particular, generalized linear models are difficult to scale given their
reliance on element-wise array and basic linear algebra operations.

In this thesis, I present these problems in terms of scalable linear algebra and automatic
parallelization of Python. The solutions presented seamlessly scale the NumPy API and
generalized linear models on task-based distributed systems. Our overall solution is presented
in three primary parts: (1) An approach to parallelizing generalized linear models (GLMs)
using blocked matrix operations. (2) The open source library NumS, an implementation of
these ideas for the NumPy API optimized for the distributed system Ray. (3) Formal syntax
and semantics for automatic parallelization of basic Python and linear algebra operations.

Our primary contribution is NumS, a modular Python-based distributed numerical array
library optimized for Ray. Load Simulated Hierarchical Scheduling (LSHS), the scheduler
developed for NumS, is capable of attaining communication lower bounds on some common
numerical operations. Our empirical study shows that LSHS enhances performance on Ray
by decreasing network load by a factor of 2×, requiring 4× less memory, and reducing exe-
cution time by 10× on the logistic regression problem. In a comparison to related solutions,
LSHS achieves up to 2× speedup on logistic regression compared to Dask ML and Spark’s
MLlib on a terabyte of data.
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Chapter 1

Introduction

Within the past decade, the proliferation of data science and machine learning applications
has rapidly increased, and the demand to scale these methods continues to grow. These
applications typically consist of executing several independent analyses on multi-dimensional
numerical arrays, such as administrative health data [14, 26], genomics [20], climate [39],
and physics data [3]. These applications are written using numerical array operations on
multi-dimensional numerical arrays. Python [40] has emerged as the language of choice for
these types of applications. Within this domain, Python programmers use a combination
of NumPy [25] and scikit-learn [28] for numerical array, statistical, and machine learning
operations. NumPy popularized conventions around expressing multi-dimensional numerical
array operations in Python, and scikit-learn popularized a framework for machine learning
model training and inference on NumPy data.

1.1 Shared Memory Solutions

However, NumPy primarily provides serially executing operations, except for linear algebra
operations. Linear algebra operations are exposed via BLAS [7] and LAPACK [4] implemen-
tations installed on the operating system. BLAS provides an interface for parallel execution
of linear algebra operations, but assumes a shared-memory architecture. These architectures
typically consist of one or more multi-core processing unit(s), all of which have access to
the same random access memory. Within the context of cloud-based distributed systems,
a single instance of this kind of architecture is referred to as a node. Parallel algorithms
on shared memory provide concurrent execution of code, but are unable to efficiently scale
beyond a single node. In theory, virtual shared memory could be used to scale any parallel
shared memory algorithm beyond a single node. This method exposes a shared memory
abstraction on top of a distributed memory system. High performance BLAS libraries are
designed for specific architectures. Typically, these implementations optimize performance
by implementing algorithms which exploit architecture-specific cache hierarchies [2], which
makes them either incompatible or useless on virtual shared memory.
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Scikit-learn models are written against the NumPy API, resulting in similar limitations
to NumPy. Ensemble methods, such as the random forest, which fit many small independent
models, can be trivially scaled to multiple nodes, but these are only a small subset of the
greater set of models made available by the library. In particular, scaling generalized linear
models (GLMs) requires parallelization of NumPy operations themselves. We present our
solution to this problem in Chapters 2 and 3.

1.2 Distributed Memory Solutions

Parallel algorithms written to operate on distributed memory typically consist of multiple
processes which are distributed across multiple nodes. Distributed memory parallel algo-
rithms are able to exceed the processor and memory capacity of a single node by networking
multiple instances of such nodes into a multi-node cluster. Cloud services, such as AWS and
Azure, provide multi-node clusters for distributed memory computing.

We now turn our attention to existing solutions in this space. We observe that high-
performance solutions require expertise beyond the programming knowledge required to
write numerical algorithms in NumPy, and solutions which expose a NumPy-like API achieve
sub-optimal performance.

Solutions such as ScaLAPACK [8] and SLATE [16] are very similar to one another, but
SLATE is currently viewed as the successor of ScaLAPACK. We view SLATE as state-
of-the-art in terms of distributed memory linear algebra. SLATE is built on the message
passing interface (MPI) [12] and implements algorithms that are optimized for linear algebra
operations. These specialized libraries are state-of-the-art for scalable linear algebra, but
they do not support the NumPy API, making them inaccessible to an increasing number
of scientists who are adopting Python. They also do not handle out-of-memory issues and
fault tolerance.

Dask Arrays [32] implements parallel numerical array operations (Chapter 3, Section 3.3)
by constructing discrete task graphs which represent the desired computation and schedules
these tasks dynamically. While this decoupling of algorithm from scheduling has desirable
software design properties, the loss of information to the scheduler leads to sub-optimal data
and operator placement. In particular, when data placement is not optimized for numerical
array operations, unnecessary communication among processes is often required in order
to carry out basic operations, such as element-wise addition and vector dot products. In
general, any scheduling algorithm which dynamically schedules distributed numerical array
operations as discrete task graphs is susceptible to sub-optimal performance.

The Dask ML [32] library provides several machine learning models. The optimization
algorithms written for these models frequently execute code on the driver process. The
library is written using Dask’s array abstraction, which achieves sub-optimal performance
on a variety of linear algebra operations previously mentioned.

Spark’s MLlib [22] is a library for scalable machine learning. MLlib depends on Breeze [10],
a Scala library that wraps optimized BLAS [7] and LAPACK [4] implementations for numer-
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ical processing. Breeze provides high-quality implementations for many common machine
learning algorithms that have good performance, but because it relies on Spark primitives,
it introduces a learning curve for NumPy users.

In this thesis, we provide solutions to all of these problems. The remaining sections in
this chapter summarize the structure of this thesis.

1.3 Scalable Linear Algebra for Second Order

Optimization of Unconstrained Convex Problems

Chapter 2 develops an intuition to our approach to distributed memory linear algebra. It
provides a path to parallelizing basic linear algebra operations, and their application to sec-
ond order methods for unconstrained convex problems. This directly solves the scalability
problem of generalized linear models using fast second-order optimizers. We provide robust-
ness through elastic net regularization and show that, analytically, the non-smoothness of L1

regularization is addressed with an appropriate choice for its sub-differential at 0. The use
of second order methods provides asymptotically faster rates of convergence than first-order
methods [21, 33], and provides greater opportunities to exploit resources at scale for expen-
sive computations, such as direct computation of the Hessian matrix involved in Newton’s
method.

1.4 Scaling the NumPy API

With an intuition for blocked matrix operations for basic linear algebra operations on dis-
tributed memory systems, we turn our attention to scaling NumPy and generalized linear
models. An ideal solution provides the same familiar API to existing users of these libraries,
while enabling high performance execution on distributed systems which are competitive
with the state-of-the-art.

Chapter 3 presents our solution, NumS. NumS is a scalable numerical array programming
library which enables programmers to write code using the NumPy API. NumS scales the
NumPy API by partitioning multi-dimensional arrays automatically according to the softmax
distribution of the array’s shape. Array partitions are physically mapped to nodes according
to a node grid, which generalizes the concept of a block-cyclic data layout, and optimizes
layouts for hierarchical network topologies.

Beyond data layout, numerical operations are represented lazily by an array-of-graphs
data structure, called a GraphArray. GraphArrays are executed by our scheduler, Load
Simulated Hierarchical Scheduling (LSHS), which is tailored to the architecture and primi-
tives provided by task-based distributed systems. As placement decisions are simulated or
dispatched, our scheduler models memory load, network load, and object locality on each
node and worker process. A simple greedy operator placement algorithm is used to execute
GraphArrays. See Section 3.5 for details.
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The empirical results of our work are presented in Chapter 3. An ablation study on our
method shows that our solution to scheduling enhances NumS’ performance on both Ray
and Dask in almost every benchmark we perform. In particular, LSHS combined with Ray’s
low overhead achieves peak performance, outperforming Dask ML on the logistic regression
problem by 2×, and Spark MLlib by 3× on a terabyte of data. We provide similar gains in
performance for QR decomposition and core operations involved in tensor factorization.

When tuned, NumS achieves competitive performance to ScaLAPACK and SLATE on
square dense matrix-matrix multiplication within cloud-based environments. We support
these results with a comprehensive communication analysis in Chapter 4.

1.5 Automatic Parallelization of Basic Python

Operations

Seamlessly scaling basic Python operations, as well as the NumPy API, are described in
Chapters 5 and 6. These approaches to parallelization form the basis of our approach to
seamlessly scaling the NumPy API.

In Chapter 5, we provide the syntax and semantics of a subset of the Python language,
and a language which supports concurrently executing futures. We provide a procedure
for translating Python programs comprised of the syntax we specify to our language of
concurrently executing futures, and provide a rigorous proof of correctness. In Chapter 6,
we extend our solution to incorporate syntax and semantics for 2-dimensional numerical
arrays.
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Chapter 2

Scalable Second-Order Convex
Optimization

In this chapter, we’ll describe a straightforward approach to parallelizing and scaling uncon-
strained convex optimization problems. In particular, we develop a technique optimized for
tall-skinny matrices, matrices which frequently occur when modeling data using generalized
linear models. We develop a second-order solution to elastic net regularization for these
models. We show that the speedups achieved using second order methods for our approach
to parallelism are substantial, showing significant speedups over optimizers provided by the
scikit-learn library [28] for GLMs.

Our approach is based on the block decomposition of vectors and matrices, which is a
powerful approach to parallelizing linear algebra operations, and performing such operations
on terabytes of data on distributed memory supercomputers and distributed systems in the
cloud.

Any algorithm that uses the linear algebra operations we formulate can be parallelized
with this approach. Due to the abundance of computational resources made available by
block partitioning these basic operations, we are able to employ second order methods on
terabytes of data. We’ll go over how Newton’s method is parallelized for logistic regression,
and how the same principles apply to generalized linear models with elastic net regularization.

2.1 Blocked Representations and Operations

The block decomposition of vectors and matrices can be described as follows. For a matrix
X ∈ Rm×n, let g1 and g2 be the dimensions of the grid into which X is decomposed into
blocks. For i ∈ {0, . . . , g1− 1} and j ∈ {0, . . . , g2− 1}, let Xi,j denote the i, j block of X, as
depicted in the following equation.
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X =

 X0,0 . . . X0,g2−1
...

. . .
...

Xg1−1,0 . . . Xg1−1,g2−1

 (2.1)

Note that each block Xi,j is itself a matrix with dimensions (m/g1) × (n/g2). We will
assume the dimension along any axis of the matrix is divisible by the size of its grid along
the same axis. For example, b1 = m/g1 and b2 = n/g2 are integer values. We call b1 and
b2 the dimensions of the blocks of X. With that said, an extension to arbitrary matrix and
grid dimensions is relatively straightforward.

For any matrix multiplication C = AB, we have A ∈ Rm×k and B ∈ Rk×n so that
C ∈ Rm×n. We decompose C into an r× c grid. We decompose A into an r× q grid and B
into a q × r grid. Thus, block Ci,j =

∑q−1
h=0Ai,hBh, j.

We treat vectors as a special case of the above formulation, with the second axis set to
1. For example, y = Ax is computed by decomposing y into an r × 1 (column) grid and x
into a q × 1 grid so that yi =

∑q−1
h=0Ai,hxh.

For element-wise operations, such as X + Y, we assume that the dimensions of the
matrices are equivalent, and the grid into which they’re decomposed are also equivalent so
that the blocks within the respective grids have compatible dimensions.

Example: Matrix Multiplication

Consider a 6×4 matrixA decomposed into blocks of size 2×2. The grid dimensions of matrix
A are 3×2. Let us also define B as 4×10 with blocks of size 2×5 and grid dimensions 2×2.
Note that, in both cases, the element-wise multiplication of the grid and block dimensions
yield the dimensions of the entire matrix. To compute the matrix multiplication of A and
B, we proceed as follows.

C =


∑1

h=0 A0,hBh,0

∑1
h=0A0,hBh,1∑1

h=0 A1,hBh,0

∑1
h=0A1,hBh,1∑1

h=0 A2,hBh,0

∑1
h=0A2,hBh,1


Thus, we represent the 6× 10 matrix C above as a 3× 2 grid of 3× 5 blocks.

2.2 Parallelizing Blocked Linear Algebra Operations

Parallelizing block partitioned vectors and matrices can be achieved in a number of different
ways. In this section, we describe a simple approach that computes the output blocks of an
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operation on a grid of nodes. In this context, nodes may be distinct processes, GPU devices
connected on a single computer, or computers that are networked in the cloud.

Let us begin with a grid of r × c nodes. We have p = rc nodes total. We represent the
memory contents of node i, j as the set Ni,j. Each node is unable to access the memory
of any other node, and nodes are assumed to have sufficient memory to carry out matrix
multiplication on pairs of blocks. How do we decide on which node to store each block that
makes up each matrix? How do we decide on which nodes to execute computations?

We decide where each block is stored by assuming a block cyclic data layout. If X is
decomposed into a g1 × g2 grid, then we store Xi,j on node (i mod r), (j mod c). Note
that, when g1 = r and g2 = c, each block is stored on a distinct node. As for where to
execute operations, we will adopt a simple convention: If the output block is in Ni,j, then
all operations will be performed on node i, j.

Matrix Multiplication

Recall our general formulation of matrix multiplication of the two matrices A and B. We
have that Ci,j =

∑q−1
h=0Ai,hBh,j. Recall that b1 = m/g1 and b2 = n/g2 are the dimensions

of each block. We will rewrite the basic procedure for matrix multiplication so that the
memory requirements per node are at most O(b1b2). By doing so, we will have a general
procedure for matrix multiplication that scales.

In the following algorithms, we write ∀m−1,n−1
i=0,j=0 {expression} to denote the concurrent

execution of expression for all instances of the indices i ∈ {0, . . . ,m−1} and j ∈ {0, . . . , n−
1}. Consider the approach to matrix multiplication given in Algorithm 1. Notice that the

Algorithm 1: Serial Matrix Multiplication.

C← 0;
for i← 0 to m do

for j ← 0 to n do
for h← 0 to k do

Ci,j ← Ci,j +Ai,hBh,j

end

end

end

operations within the outer two loops (over i and j) are all independent of one another. If
we reorder the loops and rewrite our matrix multiplication procedure as Algorithm 2, we
can bound the memory required by each node to a constant factor of the block sizes. Lets
assume we have an m×n grid of nodes on which to execute the above computation. We can
see that, for each iteration of the outer loop, we need 1 block to store the result, and 2 blocks
to perform the matrix multiplication. Thus, Algorithm 2 provides a way to arbitrarily scale
matrix operations.
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Algorithm 2: Concurrent Matrix Multiplication.

C← 0;
for h← 0 to k do

∀m−1,n−1
i=0,j=0 {Ci,j ← Ci,j +Ai,hBh,j}

While we’ve shown that this approach achieves good scaling, we have not discussed the
matter of transmitting blocks between nodes in order to perform the required operations.
Recall our simple assumption: If the output block Ci,j is in Ns,t, then all operations are
performed on Ns,t. We’ll simply assume that any operation performed on Ns,t transmits the
required blocks implicitly from the nodes on which they reside under the block cyclic data
layout. It’s worth noting that sophisticated data communication algorithms are typically
employed to efficiently interleave communication and computation for distributed memory
computations such as the one we’ve described. In many cases, simply transmitting objects
to wherever they are needed is sufficient to achieving good scalable performance.

Element-wise Unary and Binary Operations

Element-wise unary operations on a matrix X decomposed into a grid g1 × g2 of blocks
distributed over a grid of nodes r×c can be done by simply applying the operations in place.
For example, to perform eX, if Xi,j is in Ns,t, we simply apply eXi,j on node Ns,t.

Since the unary operation transpose drastically rearranges the way blocks are distributed
over a grid of nodes, we treat it differently. If a transpose is performed, we fuse it with
the next operation without actually changing the nodes on which the transposed matrix’s
blocks reside. The transpose is then performed before the operation with which it is fused.
For example, if we must perform Y = XTX, instead of updating the data layout of XT , we
keep all the blocks in place and simply perform Yi,j =

∑k
h=0(X

T )i,hXh,j and transmit blocks
between nodes as needed for the matrix multiply.

For element-wise binary operations between two matrices A and B, we assume A has the
same dimension and decomposition as B. By the block-cyclic data layout, if Ai,j is in Ns,t,
so is Bi,j, and the operation is performed on node Ns,t without requiring any communication
between nodes. Thus, we also have that each output block Ci,j also resides on Ns,t. For
example, the expression C = A+B induces the computation Ci,j = Ai,j +Bi,j on Ns,t.

2.3 Scalable Logistic Regression with Newton’s

Method

Given a dataset X ∈ Rm×n decomposed into a grid g1 × 1 of blocks, y ∈ Rm×1 decomposed
into a grid g1×1, a logistic regression model1 m with corresponding twice differentiable convex

1This formulation works for any generalized linear model.
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Algorithm 3: Newton’s method.

β ← 0;
while true do

µ← m(X, β);
g← ∇f(X,y, µ, β);
H← ∇2f(X,y, µ, β)
β ← β −H−1g;
if ∥g∥2 ≤ ϵ then

return β;
end

end

objective f , and minimum gradient norm ϵ, Algorithm 3 computes the global minimum β of
f using Newton’s method. Upon initialization, β is decomposed into a 1× 1 grid.

As-is, Algorithm 3 appears no different than a serial implementation of Newton’s method,
which is precisely why this approach to parallelization is so appealing. In what follows, we
work through the execution of Algorithm 3 on an r × 1 grid of nodes. We assume the usual
block cyclic data layout, so that X and y are distributed row-wise over r nodes, and the
single block β0,0 of β is in node N0,0.

1. For logistic regression, we have that m(X, β) = 1
1+e−Xβ . We see first that the lin-

ear operation Xβ will yield an intermediate value C comprised of a grid of blocks
Ci,0 = Xi,0 × β0,0. According to the rules we’ve defined thus far, this is computed by
broadcasting β0,0 to all the nodes in which the Xi,0 reside. The remaining unary and
binary operations are applied in place to C to yield the output µ, which is decomposed
into a g1 × 1 matrix.

2. The gradient of f is given by the expression XT (µ−y). We see that µ has the required
grid decomposition to perform the element-wise subtraction operation with y, yielding
the vector c. Finally, the transpose operator is fused with the matrix-vector multiply,
resulting in the final set of operations g0,0 =

∑g1−1
h=0 (X

T )0,hch,0. Like β, g is comprised
of a single block.

3. The Hessian of f is given by the expression XT (µ × (1 − µ) × X), where × denotes
element-wise multiplication. The expression µ× (1− µ) yields an intermediate vector
c that has the same decomposition as µ, and the vector-matrix element-wise operation
c×X broadcasts c so that c is multiplied element-wise with every column ofX, yielding
an intermediate matrix C with the same decomposition as X. Finally, the operation
XTC results in the computation H0,0 =

∑k−1
h=0(X

T )0,hXh,0, where H is square with
dimension n.
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4. Finally, we update β. At this point, β, g and H are all comprised of single blocks, so
the update to beta is executed serially on node N0,0.

5. Similar to the update to β, the gradient norm is computed serially on node N0,0.

In this example, it is crucial that n is much smaller thanm, which is usually the case when
X is a design matrix consisting of m samples with n features. This allows us to decompose X
row-wise only, which significantly improves the performance of this algorithm. In particular,
while distributed algorithms based on L U decomposition exist for matrix inversion, the
approach we’ve taken allows us to execute matrix inversion serially.

2.4 Unconstrained Minimization with L-BFGS

As with Newton’s method, let us assume the objective function f(x) is convex and twice dif-
ferentiable, only now we allow x ∈ Rn. For Newton’s method, the computational complexity
of the Hessian H is on the order of O(qn2), where q is the number of operations required to
compute each entry of the Hessian. For large n, computing the Hessian is a bottleneck.

A popular solution to overcome this issue is the BFGS algorithm, a quasi-Newton method
that approximates H with an n × n symmetric positive definite matrix Bt that is updated
at every iteration. At iteration t, the quadratic model of the objective function is

mt(p) = f(xt) +∇f(xt)
Tp+

1

2
pTBtp.

Similar to Newton’s method, this model is convex with a minimum at iteration t given by

pt = −B−1
t ∇f(xt).

Since Bt is positive definite, we have pTt ∇f(xt) = −∇f(xt)
TB−1

t ∇f(xt) < 0, and therefore
pt is a descent direction.

We learned that Newton’s method may diverge for some f if the starting point x0 is
too far from the global minimum x∗. To avoid divergence for any convex f , both Newton’s
method and BFGS can be rewritten to require a step length parameter αt. The iterate for
BFGS with a step length parameter is defined as

xt+1 = xt + αtpt.

Notice that, when αt is near 0, xt+1 is near xt. In most cases, the exact Hessian captures
the curvature of the local approximation, and αt can be set to 1.

BFGS

In BFGS, since the inverse Hessian is required to update x, we approximate the inverse
Hessian directly. When computing the inverse Hessian approximation at step t, we apply
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a simple modification to the current approximation based on the most recent information
obtained from the objective function. Let

st = xt+1 − xt

yt = ∇f(xt+1)−∇f(xt).

The inverse Hessian approximation at step t + 1 is defined as B−1
t+1 = minH ||H − B−1

t ||
subject to H = HT , Hyt = st. This choice determines B−1

t+1 uniquely by choosing the closest
solution to B−1

t that satisfies the secant equation Bst = yt, which is enforced for the inverse
Hessian by the constraint Hyt = st. The secant equation captures the requirement that the
gradient at mt+1 matches the gradient of f at xt and xt+1. Thus, B

−1
t+1 is unique, and maps

yt into st so long as st and yt satisfy the curvature condition sTt yt > 0, which is true for any
two points xt and xt+1 if f is strongly convex 2.

Using a weighted Frobenius norm, the solution to the optimization problem given above
is

B−1
t+1 = V T

t B−1
t Vt + ρtsts

T
t ,

where ρt =
1

yTt st
and Vt = I − ρtyts

T
t . A common choice for the initial approximation B−1

0 is

the identity matrix.

L-BFGS

For high-dimensional x, A simple extension to BFGS can provide a significant decrease in
the memory required to compute the Hessian approximation at each iteration. Instead of
storing the Hessian approximation at iteration t, which requires O(n2) memory, limited-
memory BFGS, or L-BFGS, provides a solution that reduces the memory requirement to
O(n). The basic idea is to store the last m vectors of si and yi, and to compute the search
direction pt via a sequence of vector operations. The computation of pt is given by Algorithm

4. A practical approach to computing H0
t is to simply set it to

(
sTt−1yt−1

yTt−1yt−1

)
I, which can be

stored as a vector and used to compute the initial value of r by element-wise multiplication.
With pt, we compute xt+1 as is done for BFGS. At the end of each iteration, if t > m, then
we delete st−m and yt−m from memory. In most cases, values as small as m = 10 work well.

Line Search

For BFGS and L-BFGS, a line search method is used to compute αt, the step size used in
the computation xt+1 = xt + αtpt. Line search methods begin with an initial guess for αt,
such as 1, and update the guess iteratively to achieve a sufficient decrease in f . Backtracking
line search (see Figure 2.1) is one such line search method and is defined by Algorithm 5 3.

2When f is not strongly convex, the curvature condition can be explicitly enforced by requiring Wolfe
or strong Wolfe conditions on the line search (see Section 2.4).

3While backtracking works for strongly convex functions, a line search satisfying strong Wolfe conditions
is recommended when using L-BFGS for non-convex functions.
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Algorithm 4: Computation of Search Direction.

q ← ∇f(xt);
for i← t down to t−m do

αi ← ρis
T
i q;

q ← q − αiyi;

r ← H0
t q;

for i← t−m up to t do
β = ρiy

T
i r;

r = r + si(αi − β);
pt ← −r;

0

Figure 2.1: Backtracking line search. The curve shows f , restricted to the line over which
we search (e.g. α ∈ (0, 1]). The lower dashed line shows the linear extrapolation of f ,
and the upper dashed line has a slope a factor of c smaller. Note that f(xt + α0pt) =
f(xt) + cα0∇f(xt)

Tpt. The backtracking condition is that f lies below the upper dashed
line, which in this diagram is 0 ≤ α ≤ α0.

The parameter c is usually chosen to be small, such as 10−4.

2.5 Elastic Net Regularization

The procedure outlined in Section 2.3 is the same for any generalized linear model. Inference
is reduced to the process of computing η = Xβ, and applying the inverse link function
associated with the model [6]. We use µ to refer to the result of the inverse link function. For
instance, the inverse link for linear regression is the identity, µ = η. For logistic regression,
we have µ = 1

1+e−η . For Poisson regression, µ = eη. Elastic net regularization is a popular
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Algorithm 5: Backtracking Line Search.

α > 0; ρ ∈ (0, 1); c ∈ (0, 1);
while f(xt + αpt) > f(xt) + cα∇f(xt)

Tpt do
α = ρα;

αt = α

regularization technique for generalized linear models [44]. Elastic net interpolates L1 and
L2 regularization for a given loss function Loss(X,y, β) as follows:

Loss(X,y, β) + λ (α∥β∥1 + (1− α)∥β∥2) . (2.2)

Given the L1 term, coordinate descent is recommended to optimize the objective. Given
the level of parallelism and convergence properties provided by Newton’s method, we apply
Newton’s method to optimization of elastic net regularized generalized linear models. The
gradient of the L1 norm is −1 when βi < 0 and 1 when βi > 0. While the gradient is not
defined for βi = 0, the sub-differential is, which provides the set (−1, 1) as valid choices at
0. We therefore choose 0 as the derivative of βi = 0.
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Part II

Scalable Multi-dimensional Array
Operations.
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Chapter 3

A System for Scalable N-Dimensional
Arrays

3.1 Introduction

NumPy API

GraphArray

LSHS N
1

N
2

Distributed System

Figure 3.1: Design diagram of NumS.
Users express numerical operations using
the NumPy API. These operations are im-
plemented by the GraphArray type. LSHS
dispatches these operations to the underly-
ing distributed system, specifying data and
operator placement requirements. The un-
derlying distributed system moves arrays
between nodes and processes to satisfy data
dependencies for task execution.

Many popular Python programming tools [32]
exist in the space of solutions which address
scalable linear algebra and generalized linear
models. These tools primarily provide scalable
distributed numerical operations using rich,
Numpy-like expressions. However, many of
these tools rely on dynamic schedulers [23, 32]
optimized for abstract task graphs, which do
not exploit the structure of distributed numer-
ical arrays, such as apriori knowledge of input
and output sizes, or properties shared among
element-wise, reduction, and tensor algebra op-
erations, such as the locality inherent in their
parallel decompositions. This can lead to per-
formance problems which are difficult to ad-
dress without in-depth knowledge of the under-
lying distributed system.

Dask Arrays [32] implements parallel nu-
merical array operations (Section 3.3) by con-
structing discrete tasks graphs which represent
the desired computation, and schedules these
tasks dynamically. While this decoupling of al-
gorithm from scheduling has desirable software
design properties, the loss of information to the
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Syntax Description
−X Unary operation.

X+Y Binary element-wise.
sum(X, axis = 0) Reduction.

X@Y Basic linear algebra.
tensordot(X,Y, axes = 2) Tensor contraction.
einsum(ik, kj → ij,X,Y) Einstein summation.

Table 3.1: While NumS provides greater coverage of the NumPy API, we list only the set
of operations we consider in this work, along with syntax examples.

scheduler leads to sub-optimal data and oper-
ator placement. In particular, when data placement is not optimized for numerical array
operations, unnecessary communication among processes is often required in order to carry
out basic operations, such as element-wise addition and vector dot products. In general, any
scheduling algorithm which dynamically schedules distributed numerical array operations as
discrete task graphs is susceptible to sub-optimal performance.

High-performance computing (HPC) tools built on the message passing interface (MPI)
[12], such as ScaLAPACK [8] and SLATE [16], implement algorithms that are optimized for
linear algebra operations. These specialized libraries are state-of-the-art for scalable linear
algebra, but they do not support the NumPy API, making them inaccessible to an increasing
number of scientists who are adopting Python.

To enhance the performance of NumPy-based numerical array programming libraries,
we present a scheduling framework tailored to the architecture and primitives provided by
task-based distributed systems. Our framework is limited to data and operator placement
decisions over a collection of compute nodes comprised of worker processes. As placement
decisions are simulated or dispatched, our framework models memory load, network load,
and object locality on each node and worker process. Within this framework, we implement
a simple greedy operator placement algorithm guided by a cost function of our model of
the underlying system’s state, called Load Simulated Hierarchical Scheduling (LSHS) (see
Section 3.5).

To support our empirical analysis, we analyze the communication time between node and
worker processes, as well as the latency associated with dispatching placement decisions. We
present communication lower bounds for a collection of common operations, and show that
LSHS attains these bounds for some operations. We also show, both analytically and empir-
ically, limitations of these distributed systems as they apply to the scalability of distributed
numerical array operations.

Figure 3.1 depicts the design of NumS. While NumS operates on Dask, it is optimized for
and achieves peak performance on Ray. When we refer to NumS without explicitly stating
the underlying distributed system, we assume it is using LSHS and running on Ray.
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Overall, our evaluation shows that NumS can achieve competitive performance to SLATE
on square matrix multiplication on a terabyte of data, and outperforms Dask ML and Spark
MLlib on a number of end-to-end applications. We show that, in every benchmark, LSHS is
required for NumS’s algorithms to achieve peak performance on Ray.

In comparison to SLATE, NumS is limited by the rate at which operations can be dis-
patched to the underlying distributed system, and the overhead introduced by remote func-
tion invocation. Our empirical and theoretical analysis on these limitations show that NumS
performs best on a smaller number of coarse-grained array partitions. Fewer partitions
mitigate control overhead introduced by having a centralized control process, and larger
partitions amortize the overhead associated with executing remote functions in Ray. Section
3.7 measures these overheads and provides a theoretical framework to model them in our
analyses. On the other hand, SLATE runs on MPI, which can operate on a greater number
of partitions due to MPI’s programming model, which enables decentralized and partitioned
application control. For matrix multiplication, SLATE uses SUMMA, which allocates a
memory buffer for output partitions, and accumulates intermediate results to achieve bet-
ter memory efficiency than NumS’s matrix multiplication algorithm. However, SUMMA
achieves sub-optimal communication time for a variety of matrix multiplication operations,
such as matrix-multiplication among row-partitioned tall-skinny matrices. SLATE users
must therefore be knowledgeable about the performance trade-offs of the variety of different
operations provided by the library in order to take full advantage of its capabilities. We
therefore recommend NumS for high-performance, medium-scale (terabytes) projects which
may benefit from the flexibility of the NumPy API, and SLATE for projects which require
specialized, large-scale distributed memory linear algebra operations.

In this chapter, we outline our research contributions to the following areas.

1. LSHS, a scheduling algorithm for numerical array operations optimized for cloud-based
distributed systems.

2. Theoretical lower bounds on the number of bytes required to perform a variety of
common operations, including square matrix multiplication and tensor contractions.
We show that LSHS attains some of these bounds. We also show theoretical limitations
of distributed numerical array computing on Ray and Dask, and how these limitations
manifest in practice.

3. An evaluation of our approach, which includes an ablation study comparing LSHS to
Ray’s and Dask’s schedulers on a variety of common basic operations. Our results
show that LSHS consistently enhances performance on Ray and Dask.

4. A comparison of NumS to ScaLAPACK and SLATE for square matrix multiplication,
and Dask ML and Spark MLlib for QR decomposition and logistic regression. Our
results show that our solution achieves competitive performance to ScaLAPACK and
SLATE. Our results show that, on the logistic regression problem, LSHS enhances
performance on Ray by decreasing network load by a factor of 2×, using 4× less
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memory, and decreasing execution time by a factor of 10×. NumS also achieves a
speedup of up to 6× on logistic regression compared to Dask ML and Spark’s MLlib
on a terabyte of data.

3.2 Related Work

NumPy NumPy [25] provides a collection of serial operations, which include element-
wise operations, summations, and sampling. When available, NumPy uses the system’s
BLAS [7] implementation for vector and matrix operations. BLAS implementations use
shared-memory parallelism. For large datasets that fit on a single node, NumS outper-
forms NumPy on creation and element-wise operations. NumPy does not provide a block
partitioned representation of arrays on distributed memory.

Dask Dask [32] provides parallelism on a single machine via futures, and is able to scale to
multiple nodes via the Dask distributed system, a distributed system framework similar to
Spark [43] and Ray [23]. Dask constructs a static task graph as operations are invoked on its
futures API. When a task graph is executed by the user, Dask dynamically schedules tasks
that have its dependencies computed. Independent operations are scheduled round-robin
over workers, and dependent tasks benefit from a variety of dynamic scheduling heuristics.

Dask provides a distributed array abstraction, partitioning arrays along n-dimensions,
and providing an API which constructs task graphs of array operations. In particular, when
a graph of array operations is executed, array partitions and their operations are dynamically
scheduled as tasks in an task graph. Round-robin scheduling of independent tasks results
in sub-optimal data layouts for common array operations, such as the element-wise and
linear algebra operations. NumS mitigates this issue by statically mapping array partitions
to physical nodes in a cyclic layout optimized for hierarchical networks (see Figure 3.3).
Furthermore, at schedule time, the output sizes of tasks are unknown, which can result in
OOM errors for tasks with large outputs. NumS mitigates this issue by maintaining the
output size of all operations, and simulating the network and memory load imposed on a
given node before scheduling an operation on that node.

Distributed Machine Learning. The Dask ML [32] library provides several machine
learning models. The optimization algorithms written for these models frequently execute
code on the driver process. The library is written using Dask’s array abstraction, resulting
in sub-optimal performance on many linear algebra operations.

Spark’s MLlib [22] is a library for scalable machine learning. MLlib depends on Breeze [10],
a Scala library that wraps optimized BLAS [7] and LAPACK [4] implementations for numer-
ical processing. Breeze provides high-quality implementations for many common machine
learning algorithms that have good performance, but because it relies on Spark primitives,
it introduces a learning curve for NumPy users.
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High performance computing. HPC libraries such as ScaLAPACK (Scalable Linear
Algebra PACKage) [8] and SLATE [16] provide tools for distributed memory linear alge-
bra. They implement highly optimized communication-avoiding operations using MPI [12].
These libraries are state-of-the-art in terms of performance. The high performance provided
by these libraries comes at the cost of several specialized implementations of various lin-
ear algebra operations. ScaLAPACK exposes 14 different routines for distributed matrix
multiplication, each optimized for specialized matrices with various properties [8]. Unlike
NumS which enables programming against the NumPy API, which includes support for ten-
sor algebra operations, while these libraries provide a C++ API limited to linear algebra
operations.

DNN libraries. Deep learning libraries such as Tensorflow [1], PyTorch [27], and MXNet [11]
provide tensor abstractions, and JAX [9] provides a NumPy array abstraction which en-
hances usability. Mesh Tensorflow [36] provides tensor partitioning on top of Tensorflow,
but requires specifying layouts for tensors, and targets Google TPUs. These libraries are
specialized for DNN training on accelerators. In contrast, NumS is designed for general
purpose array programming on CPUs.

Ray. Ray [23] is a task-based distributed system which dynamically executes a distributed,
dynamic task graph. A Ray cluster is comprised of a head node and worker nodes. Worker
nodes are comprised of worker processes, which execute tasks. The output of a task is written
to the shared-memory object store on the node on which the task was executed. Any worker
can access the output of any other worker within the same node. Python programs connect
to a Ray cluster via a centralized driver process, which dispatches remote function calls
to worker nodes. Ray implements a bottom-up distributed scheduler. Driver and worker
processes submit tasks to their local scheduler. Based on available resources and task meta
data, a local scheduler may execute a task locally, or forward the task to a centralized process
on the head node. The latter occurs only when a local scheduler is unable to execute a task
locally, a decision based on a variety of heuristics. Our understanding is that, when a local
scheduler is presented with a collection of tasks which have no dependencies, it distributes
tasks to reduce overall load on any given node.

3.3 Background

In task-based distributed systems, a task is a unit of work with one or more dependencies.
This can be thought of as an arbitrary pure function. Objects serve as the inputs and
outputs of tasks. A completed task can be viewed as the object(s) it outputs. A task graph
is a representation of the dependencies between tasks. A remote function call (RFC) creates
a task with zero or more dependencies. In NumS, numerical kernel operations are executed as
RFCs, creating a task with the kernel operation’s operands as dependencies. Operands may
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be tasks that have not yet been executed, or they may be the output object of a completed
task.

A worker is an independent process which executes tasks. We use the term node to refer
to machines comprised of one or more worker processes. Task placement refers to the process
of deciding on which node or worker a particular task should execute. All task placement
decisions are executed on a centralized driver process.

N1

N3

N2

W1

W3

W2

W4

Figure 3.2

Figure 3.2 depicts the network topology for which NumS is opti-
mized. The cluster is comprised of 4 nodes, with 4 workers per node.
Node N3 is expanded to expose the intra-node network topology of
worker processes. Thicker edges correspond to greater bandwidth.
In Ray, we make placement decisions at the granularity of nodes,
leaving worker-level scheduling to each node’s local scheduler. Ray
implements a shared memory object store, enabling any local worker
to access the output of any other local worker without worker-to-
worker communication. In Dask, we make placement decisions at
the granularity of worker processes. worker-to-worker communica-
tion within the same node can be expensive, which we address with
our hierarchical data and operator placement design. Our design is
given in Section 3.4.

3.4 GraphArray Type

The GraphArray type implements distributed array creation, manipulation, and numerical
operations. Creation and manipulation operations execute immediately, whereas numerical
operations are deferred.

A GraphArray is created via read operations, invocation of operations like zeros(shape,
grid) to create a dense array of zeros or ones, or operations like random(shape, grid) to
randomly sample a dense array from some distribution. The shape parameter specifies the
dimensions of the array, and the grid parameter specifies the logical partitioning of the
multidimensional array along each axis specified by the shape. The logical partitioning of
an array is called its array grid. For example, A = random((256, 256), (4, 4)) will randomly
sample a block-partitioned array partitioned into 4 block along the first axis, 4 blocks along
the second axis, and 2 blocks along the third axis for a total of 16 blocks. Mathematically,
we use the notation Ai,j to denote the i, j block of A, as depicted in the following equation.

A =


A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

 (3.1)

Each block Ai,j is itself a matrix with dimensions 64× 64.
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N0W0 N1W0 N0W1 N1W1

N2W0 N3W0 N2W1 N3W1

N0W2 N1W2 N0W3 N1W3

N2W2 N3W2 N2W3 N3W3

(a) Worker Mapping.

A00 A02 A01 A03

A20 A22 A21 A23

A10 A12 A11 A13

A30 A32 A31 A33

(b) Array Mapping.

Figure 3.3: Hierarchical mapping of logical array partitions to physical nodes and workers.

When a creation operation is invoked, the logical partitions of an array are mapped
hierarchically to physical nodes. To carry out this mapping within our framework, a user-
defined node grid, a multi-dimensional coordinate space for nodes within a cluster, is required.
For a cluster consisting of 4 nodes with 4 workers each, figure 3.3a depicts the mapping of
the previously defined array A to nodes and workers from a user-defined 2 × 2 node grid.
NiWj corresponds to worker j on node i. The node grid is fixed throughout the execution
of a NumS application. Without loss of generality, for a node grid with dimensions g1 × g2,
Ai,j is placed on node N(i%g1)g2+j%g2 . Within each node, blocks of A are placed round-robin
over available workers. In Ray worker-level mapping is ignored since worker processes on the
same node use a shared-memory object store. In our example, A2,3 is placed on node N1

and worker W3: The node placement is straightforward, whereas the worker-level placement
is due to 3 other partitions which are placed on node N1. Figure 3.3b depicts the grouping
of partitions within each node.

While creation operations are immediately executed, arithmetic operations in NumS are
lazily executed. Figure 3.4 provides the subgraphs induced when a particular operation is per-
formed among GraphArray’s consisting of leaf vertices. When an operation is performed on
one or more GraphArrays, an array of subgraphs is generated, depicting the sub-operations
required to compute the operation. Operations performed on GraphArrays are referred to
as array-level operations, whereas the sub-operations performed among leafs and vertices
are referred to as block-level operations. The operands involved in block-level operations are
referred to as blocks. Blocks are either materialized subarrays, or future subarrays which
have not yet been computed.

To perform the −X, a new GraphArray is constructed, and each leaf vertex is replaced by
the subgraph given in Subfigure 3.4a. For X+Y, the dimensions of X and Y and their grid
decompositions are required to be equivalent. The execution of this expression generates a
new GraphArray, comprised of an array of subgraphs given by Subfigure 3.4b.

The sum(X, axis) operation depends on theReduce(add, . . . ) andReduceAxis(add,X, axis)
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Figure 3.4: The subgraphs induced by operations listed in 3.1 within a GraphArray. Rect-
angular vertices correspond to leaf vertices, and circular vertices correspond to opera-
tions. Dashed edges and borders are used to denote arbitrary repetition. Σ corresponds
to Reduce(add, . . . ), σ corresponds to ReduceAxis(add,X, axis), and @, t, e correspond to
matrix multiplication, tensor dot, and Einstein summation, respectively.

vertex types. The ReduceAxis vertex type takes a single block and reduces it using the given
operation and axis. The Reduce vertex type takes any number of blocks with equivalent di-
mension, and reduces them using a given operation. The sum operation is implemented by
first summing each individual block along the given axis, and then summing output blocks
along the same axis. For example, if we performed A′ = sum(A, 0) on the array we pre-
viously defined, the output blocks of A′ would be vectors with dimension 64, and its array
grid would be single-dimensional, consisting of 4 blocks.

Figure 3.5 provides a simple example of matrix multiplication. Matrix multiply is bro-
ken down into independent sub-matrix-multiplication operations. The output of each sub
operation is summed used the Reduce(add, . . . ) vertex type.

The rest of the operations given in Figure 3.4 are structurally similar to sum and matrix
multiplication. The operations are broken down into sub-operations of the same kind, and
a Reduce(add, . . . ) vertex is used to sum the intermediate outputs. In this sense, these
operations can be viewed as recursive.

When two or more sub-operations generated by these induced subgraphs require operands
which are located on different nodes, the operation may be executed, or placed, on multiple
nodes. The decision process for placing operations is left to our scheduling algorithm, which
is described in Section 3.5, but LSHS requires a set of placement options to be provided by
every vertex in a GraphArray. For unary, and ReduceAxis operations, there is only a single
operand. For element-wise binary operations, the data is already located on the same node
and workers by our hierarchical mapping procedure, so only one potential option is provided
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Figure 3.5: Matrix multiplication A@B of two arrays A and B partitioned into 2× 2 array
grids. The operation is invoked on a cluster with node grid 2 × 1. Blocks on node 0, 0 are
colored purple, and blocks on node 1, 0 are colored blue.

to the scheduler for these vertex types. For matrix multiplication, tensor dot, and einsum,
the set of placement options is the union of all the nodes on which all the operands reside.

The Reduce vertex may have n operands. Our scheduler must place n− 1 binary opera-
tions in order to complete the execution of the Reduce vertex. For each of the n− 1 binary
operations, the set of placement options is the union of all the nodes on which each of the
two operands reside. The Reduce vertex is responsible for deciding which operands to pair
for each of the n− 1 binary operations. We pair operands according to their locality within
the hierarchical network. We first pair operands on the same workers, then we pair operands
on the same node. Our scheduler must make placement decisions for operands which are
not on the same workers. We describe our solution to this scheduling problem in the next
section.

3.5 Load Simulated Hierarchical Scheduling

LSHS approximates an optimization-based formulation of operator scheduling on a dis-
tributed system. There are three primary components to LSHS: A GraphArray; a cluster
state object used to simulate load imposed on the cluster for a particular placement deci-
sion; and an objective function which operates on an instance of the cluster state. LSHS is a
discrete local tree search algorithm [34]. Pseudo-code for the algorithm is given in Figure 6.
The LSHS algorithm executes the GraphArray s by sequentially scheduling frontier vertices.
An operation vertex is on the frontier when all of its children are leaf vertices. A vertex is
sampled from the frontier, and the placement option which minimizes the cost function is
selected. The GraphArray is then transitioned to a new GraphArray by either updating a
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Figure 3.6: Partitioning and scheduling of the expression AB on a 2 node cluster, where A
and B are both 4× 4, and both have a block shape of 2× 2. The example assumes A and
B are already in memory. Objects are color-coded to the nodes on which they reside.

Algorithm 6: LSHS.

Function lshs(s):
while frontier(s) do

Nmin ← null ;
Cmin ←∞ ;
v = sample(frontier(s)) ;
for i← 0 to k do

if cost(v, N i) < C then
Cmin = cost(s, N i) ;
Nmin = Ni ;

s← transition(s,Nmin) ;

return s ;

Reduce vertex to reflect its remaining child operands, or converting an operation vertex to
a leaf vertex. The algorithm terminates when s consists of all leaf vertices.

Figure 3.6 provides a step-by-step depiction of the execution of the matrix multiplication
operation given in 3.12. Each step in the algorithm is depicted by a numerically labeled
arrow. Step 1 generates the GraphArray as described in Section 3.4. The vertices which are
highlighted green are frontier nodes. Step 2 randomly samples a frontier node. In step 3,
each placement option is simulated, and its costs is computed. In step 4, the option that
minimizes the cost function is chosen, and the GraphArray is transitioned to its new state.
In Step 5, we show how the transition procedure performs the actual remote function call to
the underlying distributed system, which carries out the required operation on Node 1.
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Cluster State and Optimization Problem

The cluster state is used to monitor the memory and network load imposed on all nodes
within a Ray cluster. To simplify exposition, we use the number of elements in an array to
signify both memory and network load 1. For a given node, we compute the network load as
two integers: The total number of incoming and outgoing array elements. The memory load
is the total number of array elements on a node resulting from the transmission of arrays to
that node, and the output of any operation executed on that node. Let M denote a data
structure that maintains a mapping from all objects to their corresponding nodes, and S
denote a k × 3 matrix maintaining the memory, network in, and network out of a k node
cluster. Let m = 0, i = 1, o = 2 so that Sj,m corresponds to the memory load on node j, and
likewise i corresponds to input load, and o corresponds to output load. Let A correspond
to the set of scheduling actions (i.e. nodes on which to schedule an operation) available
for vertex v. An action a ∈ A is a tuple (j, size), where j corresponds to the jth node
in S, and size corresponds to the size of the output of vertex v. Let S′,M′ = T(S,M, a)
be a transition function that takes M,S, a and returns S′,M′ such that the operation v is
simulated on S via the action a. With M, the transition function T has enough information
to simulate object transfers between nodes.

At a given cluster state S,M, the objective function which obtains the best action a from
the set of actions A available to vertex v is formulated as follows.

min
a∈A

(
k

max
j=1

S′
j,m +

k
max
j=1

S′
j,i +

k
max
j=1

S′
j,o

)
subject to S′,M′ = T(S,M, a).

(3.2)

See Figure 6 for pseudo-code, where Equation 3.2 is computed on lines 9-12.

Optimization Problem is NP-Hard

If we modify Equation 3.2 to jointly minimize the maximum memory and network loads over
all nodes for a collection of operations, the problem is very similar to load balancing: Given
a collection of task execution times, load balancing minimizes maximum execution time over
a collection of nodes.

To construct a reduction from load balancing, we need an optimization problem that
minimizes the maximum load over all possible scheduling choices. We introduce the su-
perscript t to identify the state of the variables at a given step in the sequence of actions
required to compute the optimal solution. The superscript t is used to identify the vertex vt

being computed at step t. In addition to containing the node on which to compute vertex
vt and its output size, the set of actions At are expanded to include the next vertex vt+1

on which to operate. We incorporate these new requirements into the transition function T

1An additional coefficient we use to discount worker-to-worker communication within the same node on
Dask. Ray does not require such a coefficient since workers operate on a shared-memory object store within
each node.
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by returning the set of next actions At+1 as well. We represent the optimal solution as a
sequence of actions π, where πt ∈ At. For a computation tree consisting of n operations, the
optimal sequence of actions of length n is given as follows.

min
π∈(A0, ... , An−1)

(
k

max
j=1

Sn
j,m +

k
max
j=1

Sn
j,i +

k
max
j=1

Sn
j,o

)
subject to St+1, Mt+1, At+1 = T(St,Mt, πt).

(3.3)

The optimization problem given in Equation 3.3 is NP-hard by a straightforward reduction
from load balancing. Tasks in load balancing are independent. In our formulation, inde-
pendent tasks require no object transfers between nodes. Thus, a load balancing problem
instance can be converted to an instance of the problem given by Equation 3.3, and all solu-
tions to these problem instances will have zero network load. Instead of maximum memory
load, the remaining term maxkj=1 S

n
j,m is used to compute the maximum time for all tasks to

execute on any given node. □

3.6 Generalized Linear Models

Listing 3.1: Newton’s Method.

for in range(max iter):

mu = model.forward(X, beta)

g = model.gradient(X, y, mu, beta=beta)

H = model.hessian(X, y, mu)

beta +=−linalg.inv(app, H) @ g
if app.max(app.abs(g)) <= tol:

break

To illustrate NumS’s usage, we provide a detailed explanation of the implementation
and execution of Newton’s method on generalized linear models (GLMs) [24, 6]. This is in
fact a concrete implementation, with scheduling, of the distributed memory GLM algorithm
outlined in Chapter 2. Given a tall-skinny dataset X ∈ Rn×d decomposed into a grid
q× 1 of blocks, y ∈ Rn×1 decomposed into a grid q× 1, a GLM m with corresponding twice
differentiable convex objective f , and minimum gradient norm ϵ, Algorithm 3.1 computes the
global minimum β ∈ Rd of f using Newton’s method. Upon initialization, β is decomposed
into a 1× 1 grid.

We work through the execution of Algorithm 3.1 on an r × 1 grid of nodes. We use the
notation Ni,0 to refer to the ith node in the r × 1 grid. We assume the usual block cyclic
data layout, so that X and y are distributed row-wise over r nodes, and the single block
β0,0 of β is created on node N0,0. In this example, we assume that expressions are computed
upon assignment. For example, LSHS is applied to the computation tree induced by the
expression µ = m(X, β), which schedules the operations which comprise the computation
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tree and places the output µ using the block-cyclic data layout. Similarly, the expressions
assigned to g, H, and β are represented as computation trees which are submitted to LSHS
for scheduling.

Let m = model.forward. For logistic regression, we have that m(X, β) = 1
1+e−Xβ . We

see first that the linear operation Xβ will yield an intermediate value C comprised of a grid
of blocks Ci,0 = Xi,0 × β0,0. It is usually the case that Xi,0 has more elements than β,
so LSHS will broadcast β0,0 to all the nodes on which the Xi,0 reside. LSHS will schedule
the remaining unary and binary operations to the blocks of C in-place: Since all data is
local, the node placement options are reduced to the node on which all of the data already
resides. The output µ is decomposed into a g1 × 1 matrix and distributed according to the
block-cyclic data layout.

The gradient of f is given by the expression XT (µ− y). We see that µ has the required
grid decomposition to perform the element-wise subtraction operation with y, yielding an
intermediate vector c. Because µ and y have the same size, partitioning, and layout, the data
is local, and LSHS schedules the operations without data movement. In NumS, transpose is
executed lazily by fusing with the next operation. Thus, the transpose operator is fused with
the matrix-vector multiply, resulting in the final set of operations g0,0 =

∑g1−1
h=0 (X

T )0,hch,0.
Like the element-wise operations, because blocks of X and c have the same size and par-
titioning along axis 0, the product operation executes locally. The sum of the products is
executed as a reduction: A reduction tree is formed, and any local sums are executed first.
The remaining sums are scheduled according to the cost function defined for LSHS. Like β,
g is comprised of a single block, therefore the final sum is scheduled on node N0,0 to satisfy
the block-cyclic data layout required by the outputs of LSHS.

The Hessian of f is given by the expressionXT (µ×(1−µ)×X), where × denotes element-
wise multiplication. The expression µ×(1−µ) is scheduled locally by LSHS because the input
data for these sub trees all reside on the same node. The intermediate vector c resulting from
the previous operation has the same block decomposition as µ, and µ has the same size and
partitioning as the first dimension of X, therefore the blocks of c and X are distributed the
same way over the r nodes. Thus, the vector-matrix element-wise operation c×X is executed
without data movement: NumPy executes this kind of expression by multiplying c with every
column of X, yielding an intermediate matrix C with the same decomposition as X. Finally,
the operation XTC results in the computation H0,0 =

∑k−1
h=0(X

T )0,hCh,0, where H is square
with dimension d. The matrix multiplications are executed without data movement, and the
sum operation is executed as a reduction like the previous reduction. Since H is square with
dimension d, it is single partitioned, and the final operation to compute H is scheduled to
occur on node N0,0.

Finally, we update β. At this point, β, g and H are all comprised of single blocks, and
all reside on node N0,0, so the update to beta is executed locally on node N0,0. Similar to
the update of β, the gradient norm is computed locally on node N0,0.
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Figure 3.7: Optimal layout and scheduling of data-parallel training.

Data Parallel Machine Learning

In figure 3.7, we show a parameter server design for data-parallel training of machine learning
algorithms: The model parameter β is broadcasted to a collection of worker nodes, the worker
nodes perform some local computations, and the results of their computations are aggregated
on the parameter server to update β for the next iteration of training. The scheduling
behavior of CRTS as described in section 3.6 uses node N0,0 as a parameter server, where
the aggregation procedure is done more efficiently as a tree reduction of the local outputs of
the worker processes. Thus, CRTS achieves similar communication patterns to state-of-the-
art implementations of synchronous distributed data parallel machine learning.

3.7 Communication Analysis

We extend the α−β model of communication to analyze the communication time of element-
wise, reduction, and basic linear and tensor algebra operations. In our model, for a particular
channel of communication, α denotes latency and β denotes the inverse bandwidth of the
channel. We also model the time to dispatch an operation from the driver process as γ.
The time to transmit n bytes between two nodes is given by C(n) = α + βn. We also
model the implicit cost of communication between workers within a single node of Ray as
R(n) = α′ + β′n. For a dense array of size N , let p the number of workers, N/p = n the
block size, or number of elements, and r = p/k the number of workers-per-node on a k node
cluster.

The results of our theoretical analysis are summarized in 3.2. A rigorous analysis is given
in Chapter 4. We drop intra-node communication time whenever inter-node communication
is required, since inter-node communication will dominate. We also exclude the γ in our
table, since this constant is present in every placement decision in both Dask and Ray. For
element-wise operations, LSHS on Dask achieves the given lower bound of 0, which is not
listed in the above table.

We are not able to provide bounds for square matrix multiplication for LSHS, but we are
able to provide evidence that LSHS has the potential to achieve competitive performance to
SUMMA. SUMMA has a communication time of 2

√
p log(

√
p)C(n), which is greater than
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Operation Lower Bound LSHS
−x 0 R(n)

x+ y 0 R(n)
sum(X) log2(k)C(n) log2(k)C(n)

XTY log2(k)C(n) log2(k)C(n)

XYT 2(
√
k − 1)rC(n) 2(

√
k − 1)rC(n)

XY
(√

k + log(
√
k)
)
rC(n) -

Table 3.2: All arrays are partitioned row-wise into p partitions, except for arrays in XYT ,
which are partitioned row-wise into

√
p partitions, and arrays in XY, which are square and

partitioned into a
√
p×√p grid. For sum, XTY, and XYT , arrays are Rn,d where n >> d.
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Figure 3.8: Control overhead can be seen by measuring the time to allocate a vector of
dimension 1024 on a 16 node cluster, with a total of 1024 workers (one per virtual core).
This is captured by the γ term. As we decrease the number of blocks, γ decreases. RFC
overhead is measured by executing −x on a single block vector x, forcing the system to
execute the task using a single worker. The overhead is directly measured as the difference
between the time it takes to perform this operation using NumPy. Ray writes task outputs
to an object store, resulting in greater RFC overhead. This is captured by the R(n) term in
our analysis.

the lower bound we provide for matrix multiplication. In Chapter 4, we also provide a
deterministic algorithm for matrix multiplication which achieves a bound that is

√
k faster

than SUMMA. We also show that this algorithm is balanced for memory and network load,
which proves the existence of this algorithm within the search space of LSHS.

We are also unable to provide bounds for Ray’s and Dask’s dynamic schedulers. Since
data placement is dynamic, it is possible that all data may be placed on any number of nodes
between 1 and k with no locality guarantees. We believe this can often lead to scheduling
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decisions which require inter-node communication among all nodes, but we are not able to
show this formally.

3.8 Evaluation

The primary focus of this paper is LSHS, a scheduler which enhances NumS’s performance
by balancing data placement within multi-node cloud-based distributed systems, and placing
operations in a fashion which maintains load balance while minimizing inter-node communi-
cation. While NumS provides automatic block partitioning like Dask and Spark, these par-
titioning heuristics introduce additional complexity to our evaluation of LSHS, which is the
primary focus of this work. We therefore manually tune block partitioning and node/work-
er/process grid layouts where applicable to evaluate peak scheduling performance directly.

We answer the following questions in our evaluation:

1. How does Dask and Ray perform with and without LSHS?

2. How well does NumS on Ray perform for linear algebra, tensor algebra, and machine
learning applications?

3. How does NumS compare to state-of-the-art high-performance computing solutions?

4. How does NumS compare to other systems which provide linear algebra, tensor algebra,
and machine learning solutions?

Experimental Setup

NumS is designed for medium-scale (terabytes) problem sizes. We evaluate on problem sizes
of this scale, in order to highlight the benefits NumS does provide. We provide limitations to
our approach in Section 3.7, which show that NumS’s performance degrades as the number
of array partitions increase, and when partition sizes are too small.

We run all CPU experiments on a cluster of 16 r5.16xlarge instances, each of which have
32 Intel Skylake-SP cores at 3.1Ghz with 512GB RAM connected over a 20Gbps network.
Each AWS instance is running Ubuntu 18.04 configured with shared memory set to 512GB.
For CPU-based experiments, the Ray cluster uses 312GB for the object store, and 200GB
for workers. All NumS experiments run on a single thread for BLAS operations and use only
Ray worker nodes for computation, leaving the head node for system operations.

All synthetic classification data are drawn from a bimodal Gaussian with 75% of the
data concentrated at mean 10 with variance 2 (negative samples), and the remaining 25%
concentrated at mean 30 with variance 4 (positive samples). Each sample is 256-dimensional.
We sample from these distributions to satisfy the required dataset size. For example, a 64GB
dataset of 64bit floats consists of a design matrix X with 31, 250, 000 rows and 256 columns,
and a target vector y consisting of 31, 250, 000 values ∈ {0, 1}.
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Figure 3.9: An ablation study comparing NumS on Dask and Ray, with and without LSHS,
and include Dask Arrays as an additional point of comparison. All experiments are run on
16 node clusters, with 32 workers per node, for a total of 512 workers. In all but sum, X,Y
are 1 terabyte arrays, partitioned row-wise. y is partitioned to match the partitioning of X
in X@y and XT@y. sum is executed on a multi-dimensional tensor partitioned along its
first axis.

Unless otherwise noted, all experiments are executed by sampling data using random
number generators, and all experiments are repeated 12 times. The best and worst per-
forming trials are dropped to obtain better average performance. This is done primarily to
avoid bias results due to cold starting benchmarks on Dask, Ray, and Spark. Our generated
datasets resemble the data our industry collaborators encounter.

Dask We evaluate Dask’s logistic regression (Dask ML 1.6.0) and QR decomposition, which
implements the direct tall-skinny QR decomposition [5].

Spark We evaluate Spark-MLlib’s (v2.4.7) logistic regression and QR decomposition. Lo-
gistic regression uses the L-BFGS solver from Breeze, which is an open source Scala library
for numerical processing. Mllib’s QR decomposition implements the indirect tall-skinny
QR decomposition [13] and uses the QR implementation from Breeze, which is internally
implemented using LAPACK.

Microbenchmark Ablation

The results of our ablation study are given in Figure 3.9. In every experiment, NumS on Ray
is significantly enhanced by LSHS. For X + Y and X@YT , NumS on Dask without LSHS
and Dask Arrays achieve good performance whenever the number of partitions is divisible by
the number of workers, whereas LSHS performs addition with 0 and X@YT with minimal
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Figure 3.10: Memory and network load for NumS with and without LSHS.

communication. With fewer partitions, we believe X@YT is sub-optimal on Dask and Ray
due to assigning large creation operations on fewer nodes, resulting in under-utilization
of available cluster resources. For matrix-vector operations, LSHS does not provide any
significant enhancement over Dask scheduling. The optimal scheduling behavior is to move
y to the nodes on which the partitions of X reside. For NumS on Ray without LSHS, we
observe object spilling due to too many large objects being assigned to a few nodes, and large
object transmissions between nodes. For sum, we measure the performance of reductions
over large object transmissions. Ray’s high inter-node throughput achieves good results for
this experiment. We believe Dask Array’s poor performance on this task is due to a sub-
optimal tree reduce, pairing partitions which are not co-located. Overall, we see that NumS
on Ray is the most robust to partitioning choices, and achieves well-rounded performance.
See Section 3.7 for our theoretical analysis, which supports the claims we make in these
results.

Memory and Network Load Balancing

We measure memory, network in, and network out of every node at equally spaced intervals
for NumS on Ray with and without LSHS. For these experiments, we use 16 nodes with 32
workers per node and measure over a single iteration of Newton’s method on a 128GB logistic
regression problem. These experiments measure execution time and resource utilization
required to load data from S3, execute a single iteration of Newton’s method.

Figure 3.10 shows memory usage and network input over one iteration of Newton’s
method. Each curve tracks the load on one node. Densely clustered curves, where all nodes
have similar load over the experiment, indicate good load balance. Lower y-axis values in-
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Figure 3.11: QR decomposition achieves near-perfect scaling. Logistic regression exhibits
a slowdown at 16 nodes primarily due intermediate reduction operations over a 20Gbps
network.

dicate lower resource footprint. LSHS significantly enhances NumS performance on Ray in
terms of load balance and resource footprint. Without LSHS, Ray executes the majority of
submitted tasks on a single node, while LSHS distributes load without increased network
communication. In particular, Ray’s bottom-up scheduling does not define a clear strategy
for scheduling tasks with no dependencies [23], potentially resulting in a sub-optimal data
layout for both element-wise and linear algebra operations. Overall, for this task, LSHS
enhances maximum memory load by about 60%, and maximum network load by about 80%.

Scalability

We measure the weak scaling of NumS on dense square matrix multiplication, our imple-
mentation of indirect QR decomposition, and logistic regression using Newton’s method. We
use 32 workers per node, the number of physical cores available on r5.16x EC2 instances.

For each doubling of resources, we double the amount of work, starting with 64GB of
data on a single node. QR and logistic regression are evaluated on tall-skinny matrices.
For QR-decomposition, scaling is near perfect (Figure 3.11a). For logistic regression, scaling
is near perfect until we execute on 16 nodes, at which point performance degrades due to
inter-node reductions over a 20Gbps network (Figure 3.11b).

For dense square matrix multiplication, we compare to state-of-the-art baselines ScaLA-
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Figure 3.12: Dense square matrix-matrix multiplication.

2GB 4GB 8GB 16GB 32GB
ScaLAPACK 224 480 992 64 992

SLATE 992 928 992 1408 992
NumS 3953 3727 3953 5591 5271

Table 3.3: Square block size settings for ScaLAPACK, SLATE, and NumS on the DGEMM
benchmark. DGEMM is distributed over 1 node for 2GB, 2 nodes for 4GB, etc. up to 32GB
on 16 nodes.

PACK and SLATE [8, 16]. We start with 2GB matrices on a single node, and double the
amount of data as we double the number of nodes. We tune all libraries to their optimally
performing block dimension. These settings are given in Table 3.3.

Figure 3.12 shows that NumS is competitive with HPC libraries on this benchmark.
Both ScaLAPACK and SLATE implement the Scalable Matrix Multiplication Algorithm
(SUMMA) [17] for their dgemm routine. While these results may seem surprising, the theo-
retical results we present in Section 3.7, as well as our comprehensive analysis in Chapter 4
show that our approach to parallelizing and scheduling distributed arrays can attain asymp-
totically lower communication time for this operation. We show the existence of a square
dense matrix-matrix multiplication algorithm which is faster than SUMMA by a factor of

√
k

on a k node cluster. While the SUMMA algorithm provides good communication bounds on
distributed memory, it assumes every process has equivalent communication time. While the
difference in communication time between vs. within nodes on supercomputers may not be
significant, on multi-node clusters in the cloud, inter-node communication is generally much
more expensive than intra-node communication. LSHS places data and operations in a net-
work topology-aware manner. For a particular operation, LSHS approximates the location
of data, including data which is cached by Ray’s object store from previous object transmis-
sions. This enables LSHS a greater variety of operator placement decisions, enabling it to
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Figure 3.13: Comparison of tensor algebra operations on NumS vs Dask Arrays.

reduce inter-node communication by placing operations on nodes where operands are already
co-located. Coupled with a locality-aware reduction operation, the final set of summations
invoked in this operation can be performed entirely locally prior to performing an inter-node
reduction. Furthermore, the overhead associated with performing intra-node communication
among processes is implicit given Ray’s shared-memory object store.

Tensor Algebra

We compare NumS to Dask Array’s implementation of the tensordot and einsum operators,
primitives which enable the expression of distributed dense tensor algebra operations. We
perform these operations on a 16 node cluster with 32 workers per node. For the einsum
operator, we perform the Matricized Tensor Times Khatri Rao Product (MTTKRP), which
we express in Einstein summation notation. This operation is the closed-form solution to the
alternating least squares algorithm for tensor factorization [35]. For the tensordot operator,
we perform the standard tensor double contraction on operands which frequently occur in a
variety of other tensor decompositions[31].

For MTTKRP, we sampleX ∈ RI×J×K ,B ∈ RI×F ,B ∈ RJ×F , and perform einsum(ijk, if, jf →
if,X,B,C). For both Dask and NumS, we partition every array to achieve peak perfor-
mance. In NumS, we also tune a cubic configuration of the available compute nodes, to
further control the mapping of partitions to nodes. We set F = 100 and vary the number of
elements of I = J = K to set the size of X from 8GB to 4TB.

For tensor double contraction, we sample X identically to the MTTKRP benchmark, and
sample Y ∈ RJ×K×F with F = 100. We also vary the size of X identically to the MTTKRP
benchmark.

Both results depend heavily on LSHS. Array partitioning and node grid also play a
significant role. For NumS, MTTKRP partitioned along dimension J , and a node grid of
16× 1× 1 performed best. For the double contraction benchmark, a node grid of 1× 16× 1
performed best, with relatively balanced partitioning along dimensions J and K. In both
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benchmarks, both NumS and Dask Arrays perform a collection of sum-of-products. Both
libraries perform tree-based reductions.

For MTTKRP, Dask performed best with relatively balanced partitioning of blocks, but
is unable to achieve good initial data placement to minimize inter-node communication
due to its inability to specify a node grid. Furthermore, its reduction tree is constructed
before any information about the physical mapping of blocks to nodes is available, resulting
summations between vs. within nodes. After tuning, the 4TB benchmark on Dask Arrays
took approximately 241.9 seconds, which exclude from Figure 3.13.

For double contraction, Dask and NumS performance is relatively the same. Unlike MT-
TKRP, there is no good factoring of 16 nodes into a node grid that LSHS can take advantage
of in order to reduce inter-node communication. This is mainly due to the structure of the
problem: The tensor contraction sums over the dimensions J and K, and the ordering of
dimensions for tensors X and Y align only along dimension J . This is why the 1 × 16 × 1
factoring of the nodes performs best.

Machine Learning

We compare NumS’s performance on logistic regression to Dask ML and Spark MLlib. We
include results for NumS on Ray without LSHS to highlight the role of scheduling. Dask
and Spark implement different versions of these algorithms, so we implement both versions
of both algorithms for a fair comparison. In these experiments, we hold the cluster resources
fixed at 16 nodes, varying only the dataset size to evaluate the performance of each system.
All experiments perform the same number of steps and operations.

For our comparison to Dask, we sample data row-wise in 2GB blocks, which yields peak
performance for both Dask and NumS. We use Newton’s method for both libraries. Newton’s
method is optimal for logistic regression’s convex objective. Figure 3.14a shows that NumS
outperforms Dask at every dataset size. The performance gap is partially explained by
differences between LSHS and Dask’s dynamic scheduler. We believe the majority of the
performance gap is due to Dask ML’s implementation logistic regression which, based on our
inspection of their source code, aggregates gradient and hessian computations on the driver
process to perform updates to model parameters and test for convergence.

Since Spark does not support Newton’s method, we compare our implementation of the
L-BFGS optimizer to Spark’s version. We initialize our logistic regression implementation to
execute 10 optimization steps, with no regularizer, and L-BFGS configured to use a history
length of 10. Both implementations use identical line search algorithms and are config-
ured identically. Figure 3.14b shows that our implementation of logistic regression with
the L-BFGS optimizer outperforms Spark. We have read Spark’s logistic regression and
Breeze’s L-BFGS [10] thoroughly, which shows that logistic regression with the L-BFGS
optimizer is essentially a statically scheduled implementation. To our knowledge, the algo-
rithms and scheduling of operations on partitions is identical to NumS’s implementation, and
the scheduling behavior of LSHS for this problem. We therefore believe that the performance
gap is explained by differences between Spark and Ray.



CHAPTER 3. A SYSTEM FOR SCALABLE N-DIMENSIONAL ARRAYS 38

64 128 256 512 1024
Dataset Size (GB)

0

100

200

Se
co

nd
s

Newton's Method

Dask ML
NumS-Ray-Stock
NumS-Ray-LSHS

(a) Newton’s method.

64 128 256 512 1024
Dataset Size (GB)

0

200

400

Se
co

nd
s

L-BFGS

Spark MLlib
NumS-Ray-Stock
NumS-Ray-LSHS

(b) L-BFGS.

Figure 3.14: Logistic regression runtime on NumS, Dask, and Spark.

Linear Algebra

In this section, we evaluate the performance of NumS, Dask, and Spark on QR decomposition.
We include results for NumS on Ray without LSHS to highlight the role of scheduling. All
experiments perform the same number of steps and operations. Each experiment is repeated
12 times, and the best and worst performing trials are dropped to obtain better average
performance.

We compare Dask and NumS on the direct tall-skinny QR decomposition algorithm [5].
Similar to our logistic regression experiment, we sample data row-wise in 2GB blocks, which
achieves peak performance for both libraries. Figure 3.15a shows the results of our direct
TSQR benchmarks. NumS performs comparably to Dask on this benchmark. Dask’s QR
decomposition implementation is highly optimized and does not rely on any array operations.
Dask’s direct tall-skinny implementation requires a single column partition, leaving only one
dimension along which data is partitioned. The partitioning of data for Dask which achieves
peak performance implicitly results in data locality for a number of intermediate operations
due Dask’s round-robin placement of initial tasks. The results of our ablation study in Figure
3.9 measures this phenomena directly.

Since Spark does not implement a direct QR decomposition, we evaluate both NumS and
Spark on indirect TSQR decomposition. Similar to logistic regression, Spark’s implementa-
tion of indirect TSQR decomposition is sensitive to partition tuning. Figure 3.15b compares
the results of our indirect TSQR implementation to Spark’s. Similar to direct TSQR for
Dask, indirect TSQR is a statically scheduled algorithm for Spark and NumS. Since both
algorithms are identical, and scheduling is static, we attribute the difference in performance
to differences between Spark and Ray, which is further evidenced by the results obtained for
NumS without LSHS.
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Figure 3.15: TSQR runtime on NumS, Dask, and Spark.

Tool Stack Load Train Predict Total
Python Stack 65.55 61 0.43 126.98

NumS 11.79 3.21 0.20 15.2

Table 3.4: NumS vs. a Python stack consisting of Pandas for a data loading, and scikit-
learn (which uses NumPy) for training a logistic regression model. All values are reported
in seconds.

Comparison to Python Tools

NumS not only provides a speedup in distributed memory settings, but it also provides a
significant speedup on a single node for GLMs. All experiments in this section make use of
NumS’s automatic block partitioning, showing that a speedup can be achieved by simply
replacing Python import statements of the libraries used in this section with NumS equiv-
alents. While these experiments run on the same instances we have been using throughout
this section, NumS is pip-installable on your laptop and can provide comparable speedups
to what we present in this section.

Figure 3.16 shows that NumS achieves a speedup over NumPy that scales linearly with
the number of blocks used in the computations. Since NumS uses NumPy’s PCG64 RNG to
enable parallel sampling, we also use the non-default PCG64 RNG for our NumPy baseline
(which is faster than the default RNG implementation). The growing gap between single-
block sampling and NumPy is due to Ray’s RPC overhead: When an RPC, such as sample,
is invoked, the output of the RPC is copied into Ray’s object store, causing overhead that
grows linearly with the size of the data. Our data sampling experiment samples data from
the same uniform distribution using the rand method, provided by both NumPy and NumS.

Pandas, NumPy, and scikit-learn make up a common stack for data science in Python.
NumS provides a parallel read csv method comparable to Pandas’, eliminating one layer
in the package stack for numerical CSV files. Table 3.4 shows that NumS achieves an
8× speedup over Pandas’ [37] serial read_csv operation with scikit-learn’s training and
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Figure 3.16: Parallelization of sampling. (k, 1) is the node grid used for NumS, effectively
scaling the available resources by k.

prediction procedures for a logistic regression model trained on the 7.5GB HIGGS dataset [3].
Both NumS and scikit-learn’s logistic regression are configured to use 32 cores.

We tune scikit-learn to use its fastest optimizer, which is l-bfgs. Compared to NumS’
Newton optimizer, l-bfgs requires significantly more iterations to converge. Furthermore,
l-bfgs requires line search at every iteration, which requires multiple calls to the logistic re-
gression objective function. Newton’s method does not require a line search and converges
in fewer iterations than l-bfgs. Our Newton’s method implementation is optimized for the
kinds of tall-skinny matrices which commonly occur in data science, achieving greater uti-
lization of available memory and cores through efficient parallelization of basic linear algebra
operations.

To further dig into these differences, we compare NumS to scikit-learn on different frac-
tions of the HIGGS dataset. Figure 3.17 shows that, at smaller scales, NumS is 5× slower
than scikit-learn, and at larger scales, it is 20× faster than scikit-learn.

Beyond differences in the optimizer, the primary difference in performance is due to
NumS’s parallelization of all array operations, not just those parallelized by the underlying
system’s BLAS implementation. We measure this by implementing Newton’s method in
pure NumPy, with full parallelization of BLAS operations (32 cores). We measure the
amount of time spent in serial operations vs. parallel operations, and we find that 90%
of the time for Newton’s method using NumPy is spent on serial operations. In total, our
NumPy implementation of Newton’s method takes approximately 11 seconds, a 5× speedup
over scikit-learn’s fastest optimizer. Compared to this implementation of Newton’s method,
NumS achieves a speedup of 3.5×. Compared to Newton’s method, l-bfgs is comprised of
less expensive matrix operations (no direct computation of the Hessian), and many more
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Figure 3.17: Evaluating NumS vs. scikit-learn on fractions of the HIGGS dataset.

serially executing element-wise operations.

3.9 Discussion

This chapter presents LSHS, a scheduler for numerical array operations in NumS which is
optimized for task-based distributed systems. Our results show that LSHS achieves com-
petitive performance with state-of-the-art approaches to scheduling, and in many instances
outperforms these libraries. Based on our work, we believe that all distributed data struc-
tures, not just distributed arrays, that rely on dynamic scheduling require some combination
of LSHS with data layouts optimized for operations on those data structures. In particular,
Dask’s dataframes and project Modin [29], a portable dataframe abstraction that runs on
Dask and Ray, could benefit from similar techniques presented in this work. Future direc-
tions for NumS include (1) generalizing our findings and providing a framework on which any
distributed data structure can benefit from LSHS; (2) improving the usability of NumS’s user
API by enhancing automatic block-partitioning and eliminating the need for a user-specified
node grid; and (3) reducing RFC overhead by introducing operator fusion.
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Chapter 4

Communication Analysis

This chapter presents the complete communication analysis of LSHS. We extend the α − β
model of communication to analyze the communication time of element-wise, reduction,
and basic linear and tensor algebra operations. In our model, for a particular channel of
communication, α denotes latency and β denotes the inverse bandwidth of the channel. We
also model the time to dispatch an operation from the driver process as γ, called the dispatch
latency. The time to transmit n bytes is given by α + βn.

For a dense array of size N , let p the number of workers, N/p = n the block size, or
number of elements, and r = p/k the number of workers-per-node on a k node cluster.

Let C(n) = α + βn denote the time to transmit n bytes between two nodes within a
multi-node cluster. Let D(n) = α′′ + β′′n. This is the cost of transmitting data between
workers within a single node in Dask. Let R(n) = α′ + β′n. This expression captures the
implicit cost of communication between workers within a single node of Ray. Ray maintains
a shared memory key/value store on each node, enabling every worker to access data written
by any other worker without explicit communication.

In general, by our assumptions on hierarchical networks, α >> α′′ > α′, and β >> β′′ >
β′. We expect α′′ > α′ and α′′ > α′ because Dask relies on the TCP protocol for object
transmission between workers within the same node, whereas Ray writes data directly to
Linux shared memory.

All lower bounds are given in terms of Ray’s communication time. Our lower bounds
depend on the assumption that a block need only be transmitted to a node once, after which
it is cached by Ray’s object store. We also assume Ray’s object store is large enough to
hold all intermediate objects which it caches. We present the γ term once as part of the
lower bound, since in all cases, the same number of operations are dispatched from the driver
process.
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Algorithm 7: Recursive Matrix Multiplication.

Function RMM(A, B):
if NOTPARTITIONED(A, B) then

return MATMUL(A, B) ;

∀m−1,n−1,k−1
i=0,j=0,h=0 {C

′
i,j,h ← RMM(A i,h, B h,j)} ;

∀m−1,n−1
i=0,j=0 { Ci,j ← Reduce(C′

i,j) } ;
return C ;

4.1 Recursive Matrix Multiplication

Our results are more easily presented and understood in terms of the recursive matrix mul-
tiplication algorithm, which is given by Algorithm 7. Nested blocks of a recursively parti-
tioned matrix X are obtained by the subscripts ((Xi1,j1)i2,j2) . . . )id,jd , where d is the depth
of the nested blocks of arrays. At depth d, a sub-matrix is detected using the predicate
NOTPARTITIONED, and the sub-matrices are multiplied. In our analysis, we only con-
sider nested matrices of depth 2. We refer to the first level block partitions as the node-level
partitions, and the second-level partitions as the worker-level partitions.

4.2 Elementwise Operations

For unary operations (e.g. −x), we assume x ∈ Rn and x is partitioned into p blocks. The
lower bound for this operation is γp. LSHS on Dask and the Dask scheduler will incur 0
communication overhead. LSHS on Ray and the Ray scheduler will incur a communication
overhead of approximately R(n).

For binary element-wise operations, we assume x,y ∈ Rn and both are partitioned into p
blocks. The lower bound for this operation is γp. LSHS on Dask achieves 0 communication
for element-wise operations: The LSHS data placement procedure ensures blocks in x and
y are stored on the same workers, and the cost of executing on some other worker is strictly
greater than executing on the worker on which the two input blocks already exist: The
memory load is the same on whatever worker the operation is executed, but the network
load is greater on workers other than the worker on which the input blocks already reside.
Similarly, LSHS on Ray ensures blocks are placed on the same nodes, but can guarantee at
most R(n) time due to constant overhead associated with writing function outputs to its
object store.

In our empirical analysis, Dask often coincidentally achieves locality at the node-level
and at the worker-level: The results suggest that data is placed round-robin when workers
are idle. For instance, when the number of blocks of each input array are divisible by p,
Dask’s scheduler achieves the same execution time as LSHS.
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4.3 Reduction Operations

We define reduce(bop,X) as the reduction of operation bop on blocks of X. The reduce
operation constructs a binary tree of binary operations bop over the blocks of X.

Assume X ∈ Rn,d is tall-skinny, n >> d, so that X is block-partitioned along its first
axis into p partitions of blocks with dimensions (n/p) × d. For the addition operation, the
reduce operation sums all blocks in X and outputs a block of (n/p)× d. As a subroutine of
reduce(bop,X, axis) and tensordot(X, Y, axes), this operation is critical to achieving high
performance reduction and tensor algebra operations.

Due to the same argument presented for element-wise operations, LSHS first performs
bop on operands which already reside on the same nodes. Recall that r = p/k. The lower
bound for this operation is γ(p− 1) + log2(r)R(n) + log2(k)C(n).

For Dask, LSHS incurs a cost of log2(r)D(n) for local reductions, plus log2(k)C(n) for
the remaining k blocks. Likewise, LSHS on Ray incurs a cost of log2(r)R(n) + log2(k)C(n).

4.4 Block-wise Inner Product

Assume X,Y ∈ Rn,d is tall-skinny, n >> d, so that X,Y are block-partitioned along their
first axes into p partitions of blocks with dimensions (n/p)× d. Under these conditions, we
define the block-wise inner product asXTY . This is the most expensive operation required to
compute the Hessian matrix for generalized linear models optimized using Newton’s method.

This operation will execute matrix multiplication between Xi and Yi, where Zi denotes
the ith block of array Z. Let the output of the previous proceduce be denoted by the block-
partitioned array W . The final step of this operation is reduce(add,W ). Thus, the analysis
provided for element-wise and reduce operations also apply to this operation.

The lower bound for this operation is γ(p+ p− 1)+ log2(k)C(n)+ (1+ log2(r))R(n). For
LSHS on Dask, we have log2(k)C(n)+ log2(r)D(n), and for Ray we have log2(k)C(n)+ (1+
log2(r))R(n).

Empirically, we observe that LSHS on Ray is slightly faster than LSHS on Dask for this
operation. This suggests that (1 + log2(r))R(n) < log2(r)D(n) and R(n) < log2(r)(D(n) −
R(n)), which is reasonable given our assumption that R(n) < D(n). As R(n) goes to 0,
this inequality goes to 0 < log2(r)D(n), suggesting that Dask’s performance is explained by
worker-to-worker communication within a single node.

4.5 Block-wise Outer Product

Assume X,Y ∈ Rn,d is tall-skinny, n >> d, so that X,Y are block-partitioned along their
first axes into

√
p partitions of blocks with dimensions (n/

√
p) × d. The block-wise outer

product is defined as XYT . The output Z will be a
√
p × √p grid of blocks. Every node

must transmit 2(
√
k − 1)rC(n) node-level blocks to every row and column in its grid (mi-



CHAPTER 4. COMMUNICATION ANALYSIS 45

nus itself), and every off-diagonal node must receive 2rC(n) node-level blocks, resulting in
a communication lower bound of 2(

√
k − 1)rC(n), which is also the communication time

attained by LSHS.
For LSHS on Dask, blocks placed within the diagonal of our k×k logical grid of nodes will

not incur any inter-node communication overhead. This constitutes k of the k2 logical nodes.
Within this diagonal grid of nodes, blocks placed within the diagonal of the r×r grid of logical
workers within each node can be used to compute the output Zi,i = XiY

T
i without worker-

to-worker communication. This constitutes r such workers per node along the diagonal of
our logical grid of nodes. We therefore incur a communication time of k(r2 − r)D(n) for
blocks placed on the diagonal of the logical grid of nodes. Computing output blocks on the
rest of the nodes requires an inter-node communication time of (k2 − k)C(n).

Example

Let’s assume we have k = 4 nodes and r = 4 workers per node. X and Y are therefore
partitioned into p = 16 blocks. The output Z will be a 16x16 grid of blocks distributed
over a 2x2 grid of nodes, and within each node we will distribute the blocks over a 2x2 grid
of workers. Each worker will therefore have a factor

√
p = 4 more blocks. kr = 16 of the

Xi,Yi blocks will be placed on the same workers, allowing for the corresponding Zi,i to be
computed without communication.

4.6 Matrix Multiplication

Let Z = XY for X,Y ∈ Rn×n. Both are partitioned into
√
p × √p grids. Z will have the

same dimension and partitioning as X and Y. We have O(
√
p3 = p3/2) block operations:

For each of the
√
p2 = p output blocks, we have

√
p matrix multiplies, and

√
p−1 additions.

The same arguments used to derive the communication time for block-wise inner and outer
products can be applied to matrix multiplication.

LSHS Lower Bound on Ray

Our implementation of matmul is a special case of our recursive implementation of tensordot.
We can therefore view the entire computation as a

√
k×
√
k grid of node-level blocks, each of

which are comprised of
√
r×
√
r worker-level blocks. At the node-level, we have k3/2 matrix

multiplies,
√
k of which require 0 inter-node communication. The remaining k3/2 −

√
k

node-level blocks are parallelized over k nodes, which requires at least (k3/2 −
√
k)/kr =

(k − 1)/
√
kr of the worker-level blocks to be transmitted between nodes, yielding a lower

bound of (k − 1)/
√
krC(n) <

√
krC(n).

On each node, we have approximately r
√
r addition operations. Over r local workers, we

achieve approximately log(
√
r)R(n) communication time. At the node-level, we now need
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to add k
√
k node-level blocks of size rn. With k nodes, this will require approximately

log(
√
k)rC(n) communication time.

Putting this all together, the communication lower bound for matrix multiplication is

approximately
(

k−1√
k
+ log(

√
k)
)
rC(n)+ log(

√
r)R(n). We ignore the diagonal terms for the

simpler expression of
(√

k + log(
√
k)
)
rC(n) + log(

√
r)R(n).

Note that this result depends on the assumption that a block need only be transmitted
to a node once in order to be used for other local operations, and that bytes may be sent
and received in parallel, which is possible in Ray.

LSHS Lower Bound on Dask

While Dask provides some worker-level caching, the caching mechanism does not lend itself
to a clear lower-bound analysis. We are therefore unable to provide a lower bound for Dask
on matrix multiplication.

SUMMA

Algorithm 8: SUMMA

Zi,j ← 0;
for h← 0 to

√
p do

Broadcast Xi,h to
√
p workers in worker grid row i;

Broadcast Yh,j to
√
p workers in worker grid column j;

Zi,j ← Zi,j +Xi,hYh,j;
end

In the given setting, the blocked Scalable Universal Matrix Multiplication Algorithm
(SUMMA) [17] is characterized by Algorithm 8. The blocks are partitioned over workers so
that worker with grid coordinates i, j stores blocks Xi,j, Yi,j, and the output block Zi,j.

A tree-based broadcast has an inter-node communication cost of (log
√
p)C(n). The

algorithm performs 2 such broadcasts per iteration over
√
p, yielding an inter-node commu-

nication complexity of 2
√
p log(

√
p)C(n).

Deterministic Recursive Algorithm

We provide a deterministic algorithm within our framework which achieves a lower theoretical
upper bound than SUMMA. If we place every operation on its output worker according to
the LSHS data layout, then each node in the cluster will receive exactly 2(

√
k − 1)rC(n)

bytes: An entire row and an entire column of node-level blocks for each node, minus itself.
This can be thought of as stacking the

√
kr blocks required in the summation to compute the
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final output block. Thus, the sum step requires only intra-node communication, resulting in
an upper bound of 2(

√
k − 1)rC(n) + log(

√
r)R(n).

SUMMA requires

2
√
kr log(

√
kr)C(n) = 2

√
k(log(

√
k)C(n) + 2

√
r log(

√
r)C(n).

We can see that the terms which depend on k have a difference of

2(
√
k − 1)rC(n)− 2

√
k log(

√
k)C(n) =

2C(n)((
√
k − 1)r −

√
k log(

√
k)) =

2C(n)(
√
kr − r −

√
k log(

√
k)) =

2C(n)(
√
k(r − log(

√
k))− r).

In our analysis, we assume that r is the number of workers per node, so r will tend to be
fixed as k grows. As k approaches ∞, the inner factor 2r − log(

√
k) tends to −∞, which

suggests that this algorithm has lower asymptotic complexity in k.
The terms which only depend on r have a difference of

log(
√
r)R(n)− 2

√
r log(

√
r)C(n) =

log(
√
r)(R(n)− 2

√
rC(n)).

The inner factor R(n) − 2
√
rC(n) is constant in this algorithm, and by assumption, we

have R(n) << C(n). Putting this all together, this proves that this algorithm has lower
asymptotic communication complexity than SUMMA.

This result shows that, given a homogenous cluster of k nodes, where each node has
r workers, as we increase the number of nodes k, this algorithm requires fewer bytes of
communication than SUMMA. We also note that this algorithm is in the feasible set of
solutions for our objective: Every node sends and receives exactly the same amount of data,
resulting in balanced network in, network out, and memory across all nodes. Note, also, that
this is not the lower bound we obtained for matrix multiplication.



48

Part III

Automatic Parallelization of Basic
Python Programs.
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Chapter 5

Compiling Basic Python Programs on
Task-based Distributed Systems

In this chapter, we formalize the foundations of our approach to parallelizing a subset of
Python. The system described in Chapter 3 converts all Python and NumPy objects, oper-
ations, and expressions in NumS to a language of concurrently executing futures described
in this chapter. We use the syntax of a basic subset of the Python programming language,
along with a basic set of distributed systems primitives, to define a translation operator that
translates Python code to a language of concurrently executing futures. We summarize the
syntax of our languages, informally describe our semantics, and provide a proof sketch of
correctness in Section 5.1. A complete treatment of the syntax, semantics, translation, and
correctness proofs are provided in the remaining sections.

Notation

We adopt much of the syntax and semantics to describe our language from Dijkstra’s lan-
guage of guarded commands, Hoare and Milner’s language of communicating processes, and
Milner’s CCS. [41] At a minimum, a basic understanding of BNF notation, a notation for
defining programming languages recursively, is required. While we use the term ”program-
ming language” to refer to our source and target languages, much of what we define in
this section are key operations required to formulate our translation procedure. The syntax
a:: = constant | a1 • a2 can be broken down as follows. The variable to the left of :: =
is a recursive definition of a piece of syntax, while the right side may contain subscripted
instances of the variable being defined, as well as other variables that have been previously
defined. | can be interpreted as ”or.” In this example, a can be constant, or the binary
operation a1 •a2. In turn, a1 and a2 can be any piece of syntax that appears in the definition
of a. We use . . . to denote the operations which appear previously for a particular variable
which has already been defined.

Similar to our language definition, the translation solution we present in this work is
defined recursively, where ≡ is used to recursively define the translation of every operator
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in our source language. This approach to defining our translation procedure allows us to
reason about the runtime behavior and correctness of different translation solutions.

5.1 Intuition

Our approach to concurrency relies on futures and promises. A promise can be thought of
as a function which executes asynchronously, immediately returning a future. The returned
future can be thought of as a reference to the object that the promise computes. When
we allow promises to operate on futures, a single-threaded process can execute a program
comprised of futures and promises without doing any of the computation. The underlying
execution model can be anything. In this work, we execute futures concurrently. To under-
stand this, it’s helpful to consider a future as having two states: It’s either computed and
references an object, or it’s not computed and references a promise. If a promise f(x) is
called with a future x that has been computed, the promise is considered independent. An
independent promise can be executed immediately. A promise called with a future y that
has not yet been computed is considered dependent. In the concurrently executing futures
model, all independent promises are executed concurrently. The goal of a concurrently ex-
ecuting futures-based system is to translate a program comprised of futures and promises
to concurrently executing code. Our goal in this section is to provide the intuition behind
translating a subset of serial Python code to futures and promises.

c ::= skip | c1; c2 | x = e

| if b then c1 else c2

| while b do c

f ::= f(x1, ...,xm){e}

Figure 5.1: Definition of Sub-Python statements in BNF form. Assignment stores the result
of Python expressions e as the variable x. b is defined inductively over Boolean expressions.

The subset of Python we consider is given in figure 5.1. We call this language Sub-
Python. Some key operations include loops, conditionals, and functions. Our language of
futures, called Sub-Futures, is the extension of Sub-Python given in figure 5.2. Sub-Futures
enables concurrent execution of arbitrary functions on shared memory. This design is heavily
inspired by the distributed system Ray [23]. The operator R is used to create an RPC from
an existing function f. The piece of syntax o (short for object reference), is used to define
the futures of our language: id() constructs the future associated with a collection of values
vi, r(o1, . . . ,om) denotes the future returned by a call to the RPC r, and put(e) denotes the
future returned by submitting the result of an expression to the distributed system store.
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r ::= R(f)

o ::= id(v1, ...,vm) | r(o1, ...,om) | put(e)
e ::= . . . | o | get(o)

Figure 5.2: Sub-Python extended to support futures. The R operator is a higher-order
function that takes as input Python functions and outputs remote functions. o denotes the
space of futures, which is comprised of the id(·) operator, the output of remote function
calls, and the put operator. The space of expressions e is extended to include futures and
the get operator. For any value v, we have v = get(put(v)).

The set of expressions e is extended to include futures, and the get(o) operation, which
retrieves the object associated with the future o.

Program Translation

Our translation procedure translates all operations from the Sub-Python language to the
Sub-Futures language. The key benefit of our translation-based approach is composability:
Any composition of operations from Sub-Python can be translated to a semantically equiv-
alent Sub-Futures program. We describe the translation procedure inductively by way of a
translation operator T below.

T(skip) ≡ skip

T(c1; c2) ≡ (T(c1);T(c2))

T(x = e) ≡ x = T(e)

T(f(x1, . . . ,xm){e}) ≡ R(f(x1, . . . ,xm){e})
T(R(f)) ≡ R(f)

T(f(e1, . . . , em)) ≡ T(f)(T(e1), . . . ,T(em))

T(a1 •2 a2) ≡ R(•2)(T(a1),T(a2))

T(v) ≡ put(v)

T(x) ≡ x

Here •2 is shorthand for arbitrary binary operations on arithmetic expressions. This
translation operator takes syntax from a subset of Python code and translates it to futures
syntax which, when executed by the driver process M, generates correct programs in our
computation model.
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Correctness

In this section, we provide a proof sketch which shows that Sub-Futures is semantically
equivalent to Sub-Python. Consider key/value stores σ, σ′, and µ. In our source language,
σ maps keys directly to values. In our target language, σ′ maps keys to futures, and µ
maps futures to values. The basic idea behind our proof is as follows: If some program from
the source language terminates with store content σ, then the target language must also
terminate with store contents σ′ and µ such that for any key/value pair (x,v) ∈ σ, there
exists (x,o) ∈ σ′ and (o,v) ∈ µ. For instance, if we evaluate the assignment operation
x = 1 + 2 in our source language, we end up with some value (x, 3) ∈ σ. According to
our translation operator, we want our source language translated as x = R(+)(o1,o2). The
semantics of our RPC calls dictate that the expression R(+)(o1,o2) evaluates to o3 such
that (o3,v) ∈ µ, and the assignment yields (x,o3) ∈ µ.

5.2 Sub-Python: Syntax and Semantics

Syntax

In the Python-inspired grammar below, we use curly braces to scope functions, and semi-
colons to delimit statements (commands).

c ::= skip | c1; c2 | x = e | if b then c1 else c2 | while b do c

e ::= a | b | f | f(e1, ..., em) | null
f ::= f(x1, ...,xm){e}
a ::= n | x | − a | a1 + a2 | a1 − a2 | a1 ∗ a2 | a1 + a2

b ::= True | False | x | not b | b1 or b2 | b1 and b2 | a1 == a2 | a1 < a2

v ::= True | False | n | f
d ::= v | error

Evaluation order is defined as follows.

ARG ::= e | e , ARG

H ::= [.] | not H | −H | H • e | v •H | f(H) | H , ARG | v , H

Above, • ranges over Boolean and arithmetic binary operations. We introduce d above to
deal with cases where expressions evaluate to either a value v or error.

Semantics

The semantics for this grammar are equivalent to small-step operational semantics of IMP
[42]. The program state σ is not type-safe. We allow for ⊥ ∈ Σ to indicate non-terminating
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programs. In what follows, we define the semantics for terminating and non-terminating
expressions (due to recursion), as well as functions. Let →k denote k small steps, and V
denote the set of values. We define d ∈ V ∪ {error}.

∃k.H[e]→k H[v]

⟨H[e], σ⟩ →∗ ⟨H[v], σ⟩
Expr

∀k.H[e]→k H[e′] e′ /∈ V
⟨H[e], σ⟩ → ⟨error, σ⟩

Expr-∞

e→ error

⟨x = e, σ⟩ → ⟨skip,⊥⟩
Assgn-∞

Assgn
e→∗ v

⟨x = e, σ⟩ → ⟨skip, σ[x = v]⟩
e→∗ d

⟨x = e,⊥⟩ → ⟨skip,⊥⟩
Assgn-Dead

Read
σ(x) = v

⟨x, σ⟩ → ⟨v, σ⟩ ⟨x,⊥⟩ → ⟨error,⊥⟩
Read-Dead

⟨c,⊥⟩ → ⟨skip,⊥⟩
Cmd-∞

⟨ei, σ⟩ →∗ ⟨vi, σ⟩ ⟨[vi/xi]
m
i=1 e, σ⟩ →∗ ⟨v, σ⟩

⟨f(x1, . . . ,xm){e}(e1, . . . , em), σ⟩ →∗ ⟨v, σ⟩
Func-Eval

Note that in the rule for non-terminating expressions, the entire context transitions to
error, which covers cases such as error + e, f(error, . . . , em), etc. We have reads on ⊥
evaluate to error to be consistent with read behavior in the multi-process setting.

Loop Semantics

We define the semantics of while loops in terms of a bounded while loop which executes at
most k times before transitioning to ⊥, written whilek b do c. The operational semantics
of whilek is defined as follows.

⟨b, σ⟩ → ⟨True, σ⟩
⟨while0 b do c, σ⟩ → ⟨skip,⊥⟩

While-0

⟨b, σ⟩ → ⟨True, σ⟩ k > 0

⟨whilek b do c, σ⟩ → ⟨c;whilek−1 b do c, σ⟩
While-k-True

⟨b, σ⟩ → ⟨False, σ⟩
⟨whilek b do c, σ⟩ → ⟨skip, σ⟩

While-k-False
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The semantics for whilek can be interpreted simply as follows: If after k executions of c
the conditional b still evaluates to True, then transition the program state to ⊥. We use this
key property of whilek below to define the semantics of while to handle non-terminating
programs.

⟨b, σ⟩ → ⟨True, σ⟩ ∃k. ⟨whilek b do c, σ⟩ →∗ ⟨skip, σ′⟩ σ′ ̸= ⊥
⟨while b do c, σ⟩ → ⟨c;while b do c, σ⟩

While-True

∀k. ⟨whilek b do c, σ⟩ →∗ ⟨skip,⊥⟩
⟨while b do c, σ⟩ → ⟨skip,⊥⟩

While-∞

⟨whilek b do c, σ⟩ → ⟨skip, σ⟩
⟨while b do c, σ⟩ → ⟨skip, σ⟩

While-False

The derivation While-True can be interpreted as follows: When b evaluates to True, if
there is some k for which whilek b do c transitions to a program state other than ⊥, then
while b do c is terminating and can make progress. The derivation While-∞ simply states
that if no k exists such that whilek b do c terminates in a state other than ⊥, then the loop
while b do c cannot make progress and yields state ⊥. The derivation of While-False is
self-evident.

5.3 Concurrently Executing Futures: Syntax and

Semantics

We define a futures-based extension of the Sub-Python language, called Sub-Futures, which
provides an API enabling concurrent execution of arbitrary functions on a shared memory
store. We adopt much of the syntax from Dijkstra’s language of guarded commands, Hoare
and Milner’s language of communicating processes, and Milner’s CCS.

We define the configuration of a futures program with k workers as follows:

⟨M ∥W ∥ S, (σ, µ)⟩ , (5.1)

where M denotes the main futures process (aka the driver), σ denotes the state for M,
S = Sr ∥ Sw = Sr

0 ∥ Sr
1 ∥ ... ∥ Sr

k ∥ Sw denotes a collection of ”store” processes which are
responsible for writing to and reading from a shared state µ across all processes, called the
store, and W = W1 ∥ ... ∥Wk denotes k worker processes.
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Futures: Communication Syntax

This section and the next can be skipped if the reader is already familiar with these lan-
guages. Duplication of some of the operations is necessary to ensure correct semantics when
defining transitions between command operations and operations which evaluate to data.
s is used to label an arbitrary channel of communication, and τ is the null process and is
equivalent in functionality to skip for commands.

Communication Commands:

c ::= ...

| s!µ(o)
| seal(o, f(e1, ..., em))
| sealed(o) ⇒ c

| gc
| do gc od

Guarded commands:

gc ::= s?(x1, ...,xm) ⇒ c

|
∑

(s0?(x1, ...,xm) ⇒ c0, ..., sk?(x1, ...,xm) ⇒ ck) ⇒ ck

Communication Operations:

p ::= τ | wait(o) | snd(o) | rcv(o) | seal(o,v)
| s!(v1, ...,vm) | s?(x1, ...,xm) ⇒ p

| p ⇒ p | p ⇒ v

Following are some clarifications on transitions.

1. Worker and store processes rely on the do gc od command in order to invoke com-
mands on incoming data. This is also why we’ve defined the special commands seal(·),
sealed(·) and s!µ(·), as these are downstream commands to the guarded commands.

2. The semantics for get(·), put(·), and R(f)(·) transition through a sequence of com-
munication operations, all of which have defined semantics, and all of which eventually
transition to either a value or an object id.

3. wait, snd, rcv, and seal are aliases to communication operations to improve the read-
ability of semantics, proofs, etc.
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Futures: Communication Semantics

Assume the following.

1. Whenever a command transitions to ”nothing,” it transitions to skip.

2. Whenever a process transitions to ”nothing,” it transitions to τ .

s ! (v1, ...,vm)
s ! (v1,...,vm)−−−−−−−→ p

Send

s ? (x1, ...,xm)⇒ p
s ? (v1,...,vm)−−−−−−−→ p[v1/x1, ...,vm/xm]

Rcv

µ(o) = v

⟨s !µ(o), (σ, µ)⟩ s !v−−→ ⟨c, (σ′, µ′)⟩
Send-Value-Cmd

⟨s ? (x1, ...,xm)⇒ c, (σ, µ)⟩ s ? (v1,...,vm)−−−−−−−→ ⟨c[v1/x1, ...,vm/xm], (σ
′, µ′)⟩

Rcv-Guard-Cmd

⟨sj ⇒ cj, (σ, µ)⟩
sj?(v1,...,vm)−−−−−−−→ ⟨cj, (σ′, µ′)⟩〈

k∑
i=0

si?(x1, ...,xm)⇒ ci, (σ, µ)

〉
λ−→ ⟨cj, (σ′, µ′)⟩

Rcv-Sum-Guard-Cmd

⟨gc, (σ, µ)⟩ λ−→ ⟨c, (σ, µ)⟩

⟨do [gc ] od, (σ, µ)⟩ λ−→ ⟨c;do [gc ] od, (σ′, µ′)⟩
Loop-Guard-Cmd

Sub-Futures Syntax

In the following, we’ll define the syntax of Sub-Python extended with the futures API,
and additional syntax to support inter-process communication and parallelism. Sub-Futures
schedules remote functions by selecting worker processes at random, and maintaining a single
centralized object store. Much of the design of Sub-Futures is inspired by distributed systems
such as Ray and Dask [23, 32].

The syntax for declaring a remote function r using an existing function f is defined by the
syntaxR(f). When a remote function is invoked with r(o1, . . . ,om), the function evaluates on
a separate process and execution on the process which invoked the remote function continues
to make progress. put(e) puts data in the object store and returns an object id o, and get(o)
gets an object from the object store and returns a value v. The id(·) function is not part
of the Sub-Futures API, but is needed internally to generate hashes of objects and function
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invocations. The Sub-Futures API and id(·) function are defined as follows.
Sub-Futures Extensions:

o ::= id(v1, ...,vm) | r(o1, ...,om) | put(e)
c ::= ... | o = v

r ::= R(f)

a ::= ... | rand(a)
e ::= ... | o | get(o)
v ::= ... | id(v1, ...,vm)

h ::= ... | put(H) | get(H) | r(H)

Parallelism:

h ::= c | c || h

The syntax o = v adds values to µ so that (o,v) ∈ µ and µ(o) evaluates to v.

Sub-Futures Semantics

In this section we present semantics for the Sub-Futures API and parallelism. We continue
with small-step operational semantics. The state σ is initialized to {k = n}, where n
corresponds to the number of Sub-Futures workers.

⟨o = error, (σ, µ)⟩ → ⟨skip, (σ,⊥)⟩
Store-Assgn-∞

Store-Assgn
⟨o = v, (σ, µ)⟩ → ⟨skip, (σ, µ[o = v])⟩ ⟨o = v, (σ,⊥)⟩ → ⟨skip, (σ,⊥)⟩

Store-Assgn-Error

Store-Read
µ(o) = v

⟨µ(o), (σ, µ)⟩ → ⟨v, (σ, µ)⟩ ⟨µ(o), (σ,⊥)⟩ → ⟨error, (σ,⊥)⟩
Store-Read-Error

Assumptions

The following assumptions are made explicit in the remaining semantics. Recall that M
is the main process, S = Sr ∥ Sw = Sr

0 ∥ Sr
1 ∥ ... ∥ Sr

k ∥ Sw are store processes, and
W = W1 ∥ ... ∥Wk are worker processes.

1. M sends data with put to Sw via communication channel α0.

2. Wi sends data with seal to Sw via communication channel αi for i = 1, ..., k.
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3. M receives data with get from Sr
0 via communication channel γ0.

4. Wi receives data with get from Sr
i via communication channel γi for i = 1, ..., k.

5. M triggers RPCs on Wi via communication channel βi for i = 1, ..., k.

6. Only M reads from and writes to σ.

7. Only S reads from and writes to µ.

8. Processes W and S have no local state.

Parallelism

The store processes Sr
i are responsible for handling reads from the object store. We parallelize

communication from M and each worker Wj for j = 1 . . . , k to the store processes Sr
i for

i = 0, . . . , k, to avoid deadlock, as well as to prevent the main process and worker processes
from blocking one another. These semantics are defined as follows:

⟨M, (σ, µ)⟩ → ⟨M′, (σ′, µ)⟩
⟨M ∥W ∥ S, (σ, µ)⟩ → ⟨M′ ∥W ∥ S, (σ′, µ)⟩

Parallel-Main

⟨W, (σ, µ)⟩ → ⟨W′, (σ, µ)⟩
⟨M ∥W ∥ S, (σ, µ)⟩ → ⟨M ∥W′ ∥ S, (σ, µ)⟩

Parallel-Worker

⟨S, (σ, µ)⟩ → ⟨S′, (σ, µ′)⟩
⟨M ∥W ∥ S, (σ, µ)⟩ → ⟨M ∥W ∥ S′, (σ, µ′)⟩

Parallel-Store

For non-terminating commands and expressions occurring in M, we have

⟨skip ∥W ∥ S, (⊥, µ)⟩ → ⟨skip ∥W′ ∥ S′, (⊥,⊥)⟩
Parallel-Main-Error

⟨skip ∥W ∥ Sr ∥ o = d, (⊥, µ)⟩ → ⟨skip ∥W′ ∥ S′, (⊥,⊥)⟩
Parallel-Main-Error-2

For non-terminating expressions occurring in Wi, we have some function transitioning
to error. In this case, the write process Sw will attempt o = error, which will transition µ
to ⊥, and whenever µ is ⊥, all assignments o = v transition ⊥ to ⊥. We therefore define
the following parallel semantics to deal with this scenario.
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⟨M ∥W ∥ Sr ∥ o = error, (σ, µ)⟩ → ⟨M ∥W′ ∥ S′, (σ,⊥)⟩
Parallel-Worker-∞

⟨M ∥W ∥ S, (σ,⊥)⟩ → ⟨skip ∥W′ ∥ S′, (⊥,⊥)⟩
Parallel-Store-Error

⟨x = d ∥W ∥ S, (σ,⊥)⟩ → ⟨skip ∥W′ ∥ S′, (⊥,⊥)⟩
Parallel-Store-Error-2

Worker Processes

A worker process Wi is defined as follows. Operational semantics for these processes appear
in the section on remote procedure calls.

Wi = do [ βi ? (xf ,xr,x1, . . . ,xm)⇒ seal(xr,xf (get(x1), . . . ,get(xm))) ] od (5.2)

This process receives function calls from the main process, executes them, then sends the
result with the appropriate object id to the object store by invoking the seal operation.

Store Processes

Store processes are defined as S = Sr ∥ Sw = Sr
0 ∥ Sr

1 ∥ ... ∥ Sr
k ∥ Sw, where for i = 0, ..., k

we have

Sr
i = do [ γi ?x⇒ sealed(x)⇒ γi !µ(x) ] od (5.3)

Sw = do

[
k∑

j=0

αj ? (xo,xv)⇒ xo = xv

]
od (5.4)

The sealed operation checks whether an object is currently stored in the object store:

∃v.(o,v) ∈ µ

⟨sealed(o)⇒ c, (µ)⟩ λ−→ ⟨c, (µ′)⟩
Sealed-True

̸ ∃v.(o,v) ∈ µ

⟨sealed(o)⇒ c, (µ)⟩ λ−→ ⟨sealed(o)⇒ c, (µ′)⟩
Sealed-False

⟨sealed(o)⇒ c, (⊥)⟩ λ−→ ⟨c, (⊥)⟩
Sealed-Error

Note that when µ = ⊥, all Sr
i processes transmit error. Together with semantics for

assignment to µ and σ, this behavior causes worker processes to immediately evaluate to
error, and the main process to enter skip with σ = error.
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Put

The put operation immediately transitions to the seal operation as defined by the following
semantics.

e→∗ v o = id(v)

⟨put(e) ∥ Sw, (σ, µ)⟩ → ⟨seal(o,v) ∥ Sw, (σ, µ′)⟩
Put

The seal operation may be triggered by the main processM or any of the worker processes
Wj, j = 1, . . . , k. An invocation of seal requires communication with Sw, which is done over
the channel α0 if seal is invoked from M and αj if seal is invoked from Wj. For this reason,
we only need to define the parallel semantics of seal between Pi and Sw, where P0 = M
and Pj = Wj for j = 1, . . . , k.

It is important to note that while processes other than Pi may be invoking seal, Sw

handles those communications serially. Thus, while the intermediate shared state µ may
be non-deterministic during execution due to non-deterministic selection of which incoming
request to process next, the final shared state µ is deterministic as all requests will be
processed serially. The semantics of seal are defined as follows for i = 0, . . . , k.

(αi ! (o,d)⇒ o)
αi ! (o,d)−−−−−→ o ⟨Sw, (µ)⟩ αi ? (o,d)−−−−−→ ⟨o = d;Sw, (µ)⟩

⟨seal(o,d) ∥ Sw, (σ, µ)⟩ λ−→ ⟨o ∥ o = d;Sw, (σ′, µ)⟩
Seal

The Store-Assignment command will transition the resulting program configuration µ to
a configuration µ′ = µ[o = v] if d ̸= error, and to ⊥ otherwise. It is impossible for µ to
have changed after a seal transition because the Sw process only lets one seal through at a
time 1.

Get

Get may be invoked from two separate process types: The main process and worker processes.
Each process which may invoke get has a dedicated store process which carries out the read
for that process. Thus, it is sufficient to define the semantics for a particular process Pi where
P0 = M and Pi = Wj for j = 1, . . . , k. A get invocation transitions over the following
communication configurations before evaluating to d, which may be v or .

1. get(o), which submits a request over channel γi. This request is received by dedicated
store process Sr

i , which is listening for such a request on channel γi. This operation
always makes progress as each Pi is able to make at most a single request at a time.

2. get(o) transitions to rcv(o) on Pi while the store process Sr
i transitions to wait(o).

Pi cannot make progress until o becomes available in the object store.

1A similar seal operation for commands is defined for remote procedure calls. This is to ensure the seal
operation transitions to the appropriate program configuration when invoked as a command.
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3. Sr
i transitions to snd(o) once the object is available in the object store. Pi makes no

progress during this transition.

4. With Pi in a rcv(o) configuration and Sr
i in a snd(o) configuration, Pi is able to

transition to d, which is error if µ = ⊥, or the value µ(o) = v. In both cases, Sr
i

transitions to its original listening state.

γi !o⇒ rcv(o)
γi !o−−→ rcv(o) ⟨Sr

i , µ⟩
γi ?o−−−→ ⟨sealed(o)⇒ γi !µ

′′(o);Sr
i , µ

′⟩

⟨get(o) ∥ S, (σ, µ)⟩ λ−→ ⟨rcv(o) ∥ . . . ∥ (wait(o);Sr
i ) ∥ . . . ∥ Sw, (σ′, µ′)⟩

Get

〈
sealed(o)⇒ γi !µ

′(o);Sr
i , (µ)

〉 λ−→
〈
γi !µ

′(o), (µ′)
〉

⟨rcv(o) ∥ . . . ∥ (wait(o);Sr
i ) ∥ . . . ∥ Sw, (σ, µ)⟩ λ−→

〈
rcv(o) ∥ . . . ∥ (snd(o);Sr

i ) ∥ . . . ∥ Sw, (σ′, µ′)
〉 Wait-True

〈
sealed(o)⇒ γi !µ

′(o);Sr
i , (µ)

〉 λ−→
〈
sealed(o)⇒ γi !µ

′′(o);Sr
i , (µ

′)
〉

⟨rcv(o) ∥ . . . ∥ (wait(o);Sr
i ) ∥ . . . ∥ Sw, (σ, µ)⟩ λ−→

〈
rcv(o) ∥ . . . ∥ (wait(o);Sr

i ) ∥ . . . ∥ Sw, (σ′, µ′)
〉 Wait-False

⟨γ0 !µ(o);Sr
0, (µ)⟩

γ0 !d−−−→ ⟨Sr
0, (µ

′)⟩ ⟨γ0 ?x⇒ x⟩ γ0 ?d−−−→ d

⟨rcv(o) ∥ . . . ∥ (snd(o);Sr
i ) ∥ . . . ∥ Sw, (σ, µ)⟩ λ−→ ⟨d ∥ S, (σ′, µ′)⟩

Snd-Rcv

In the above and in general, µ ⊆ µ′ ⊆ µ′′, which is proven by Lemma 5.5.

Remote Function Call

To simplify the analysis, we assume function calls are randomly assigned to workers. The
definition of a remote function call serves only to direct operational behavior during invoca-
tion. Semantics for sampling random numbers and remote function definitions are given as
follows.

n2 ∼ U(1, ...,n1)

⟨rand(n1), (σ, µ)⟩ → ⟨n2, (σ, µ)⟩
Random

⟨R(f(x1, . . . ,xm){e}), (σ, µ)⟩
Remote-Def

Only the main process may invoke a remote function call. Remote function calls transmit
a function definition, as well as a collection of object ids to a random worker. Recall that a
worker process is defined as follows

Wi = do [ βi ? (xf ,xr,x1, . . . ,xm)⇒ seal(xr,xf (get(x1), . . . ,get(xm))) ] od



CHAPTER 5. COMPILING BASIC PYTHON PROGRAMS ON TASK-BASED
DISTRIBUTED SYSTEMS 62

The worker invokes the provided function and stores the result in the object store. Com-
munication between the main process M and workers Wi is carried out over the communi-
cation channels βi, where i = 1, ..., k. The semantics of remote function calls need only be
defined in parallel for processes M and W.

σ(r) = R(f(x1, . . . ,xm){e}) or = id(f,o1, . . . ,om) i = rand(k)

(βi ! (f,or,o1, . . . ,om)⇒ or)
βi ! (f,or,o1,...,om)−−−−−−−−−−−→ or

Wi
βi ? (of ,or,o1,...,om)
−−−−−−−−−−−−−→ seal(or, f(get(o1), . . . ,get(om)))

⟨r(o1, . . . ,om) ∥W, (σ, µ)⟩ →
〈
or ∥ . . . ∥ seal(or, f(get(o1), . . . ,get(om)));Wi ∥ . . . , (σ′, µ′)

〉 R-Call

The following seal command for worker processes transitions the program to its final
state by evaluating all get operations, evaluating the function, and actually invoking seal
on the resulting value.

f(d1, . . . ,dm)→∗ d (αi ! (o,d)⇒ o)
αi ! (o,d)−−−−−→ o ⟨Sw, (µ)⟩ αi ? (o,d)−−−−−−→ ⟨o = d;Sw, (µ)⟩

⟨seal(o, f(d1, . . . ,dm)) ∥ Sw, (σ, µ)⟩ λ−→
〈
skip ∥ o = d;Sw, (σ′, µ)

〉 Seal-Cmd

5.4 Compilation of Basic Python Operations

In this section, we formally present a procedure for translating serially executing Python
programs to programs which execute concurrently. We provide a proof of correctness for this
procedure by way of induction over all operations presented in chapter 5. Let T denote the
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translation operator, which is inductively defined as follows.

T(skip) ≡ skip

T(c1; c2) ≡ (T(c1);T(c2))

T(x = e) ≡ x = T(e)

T(if b then c1 else c2) ≡ if get(T(b)) then T(c1) else T(c2)

T(while b do c) ≡ while get(T(b)) do T(c)

T(f(x1, . . . ,xm){e}) ≡ R(f(x1, . . . ,xm){e})
T(f(e1, . . . , em)) ≡ R(f)(T(e1), . . . ,T(em))

T(R(f)) ≡ R(f)

T(−a) ≡ R(−)(T(a))

T(notb) ≡ R(not)(T(b))

T(a1 •2 a2) ≡ R(•2)(T(a1),T(a2))

T(b1 •2 b2) ≡ R(•2)(T(b1),T(b2))

T(v) ≡ put(v)

T(x) ≡ x

In the above, •2 is shorthand for arbitrary binary operations conditioned on the operands.
For instance, •2 in a1 •2 a2 stands for all binary arithmetic operations. R(•2) is the remote
function which takes two arguments and returns the result of applying •2 on those arguments.
In general, for an n-ary operation •n, R(•n) is the remote function which takes n arguments
and returns the result of applying the n-ary operation.

5.5 Correctness Proofs

The notion of correctness of translated programs is captured by the following theorem.

if ⟨c, σ⟩ →∗ σ′ and σ′ ̸= ⊥
then ⟨T(c) ∥W ∥ S, (σ, µ)⟩ →∗ ⟨skip ∥W ∥ S, (σ′′, µ′)⟩

such that ∀(x,v) ∈ σ′. (σ′′(x),v) ∈ µ′.

(5.5)

Note that in this theorem we assume c is terminating. We deal with the case of non-
terminating programs in Lemma 5.5. We need to prove this for all Sub-Python commands,
so we proceed by structural induction on the derivation of Sub-Python commands and Sub-
Futures commands. Specifically, these are the Sub-Futures operation transitions, as well as
the resulting configuration transitions, that appear in translated Sub-Python programs. In
our proofs, we make the following simplifying assumptions:

1. The number of worker processes k = 1.
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Remark: Object Hashes are Unique

The function id(·) generates a hash of its input. For any function f(x1 . . . ,xm){e} the
identifier o = id(f,o1, . . . ,om) uniquely identifies the invocation of f on v1, . . . ,vm where
oi = id(vi). This is trivially true as the expressions e are deterministic. If an expression is
non-terminating, the entire context in which the expression occurs transitions to error.

Lemma: Object Store Does Not Lose Information

Some of the following proofs require that concurrent write requests sent to Sw from M and
theWj never result in a configuration whereby the store loses previously written information.
We only care about the case where expressions evaluate to values. We deal with the non-
terminating case in Lemma 5.5. Formally,

if ⟨put(v0) ∥ put(v1) ∥ . . . ∥ put(vk) ∥ Sw, (σ, µ)⟩ →∗ ⟨skip ∥W ∥ S, (σ, µ′)⟩
then ∀ i = 0, . . . , k . (id(vi),vi) ∈ µ′.

Consider the process Sw, which can be in one of two configurations: Sw, or oi = vi;S
w. In

the configuration Sw, the summation over incoming messages non-determinisitcally accepts
a single message from the incoming messages over channels αi. This transition yields the
configuration oi = vi;S

w. Since Sw is the only process listening on channels α0, . . . , αk, other
processes Pj where j ̸= i are blocking until oi = vi;S

w → Sw, at which point µ[oi = vi], and
the next incoming write request will be written to µ[oi = vi]. Thus, the cardinality of the
store µ is monotonically increasing, and µ does not lose previously written information. □

Correctness of Translated Expressions

We start by proving correctness of all translated expressions e. The translation of an ex-
pression e is simply T(e). We need to prove the following.

if (e→∗ v) then ⟨T(e) ∥W ∥ S, (σ, µ)⟩ →∗ ⟨o ∥W ∥ S, (σ, µ′)⟩ such that (o,v) ∈ µ.

We proceed by structural induction on the derivation of expressions.

Base Case

Our base cases are the following:

1. e ≡ v. We have T(v) = put(v).

2. e ≡ x. This follows immediately from e = v since T(x) = x and σ(T(x)) will be an
object id by definition of the translation operator.
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put(v) provides a derivation of the step to seal(o,v), and the derivation of seal yields

⟨seal(o,v) ∥W ∥ S, (σ, µ)⟩ λ−→ ⟨o ∥W ∥ Sr ∥ o = v;Sw, (σ, µ)⟩ .

The proof for the base case follows immediately from the derivation of o = v:

⟨o ∥W ∥ Sr ∥ o = v;Sw, (σ, µ)⟩ → ⟨o ∥W ∥ S, (σ, µ[o = v])⟩ .

Functions

The rest of expressions follow immediately from a proof of function invocation, as the binary
operations of arithmetic and boolean expressions, such as a1 + a2, are translated to remote
functions R(+)(put(a1),put(a2)), where R(+) ≡ R(f(x1,x2){x1 + x2}). We must show
that

if (f(v1, . . . ,vm)→ v)

then ⟨T(f(v1, . . . ,vm)) ∥W ∥ S, (σ, µ)⟩ →∗ ⟨o ∥W ∥ S, (σ, µ′)⟩
such that (o,v) ∈ µ′.

T(f(v1, . . . ,vm)) ≡ R(f)(T(v1), . . . ,T(vm)). By the induction hypothesis, we have that
T(vi) ≡ put(vi) →∗ oi, and that by Lemma 5.5, the entire program will transition to a
configuration

⟨R(f)(o1, . . . ,om) ∥W ∥ S, (σ, µ′′)⟩ ,
where ∀ i = 1, . . . ,m. (oi,vi) ∈ µ′′. The rule for remote function call provides a derivation

of the transition to

⟨o ∥ seal(o, f(get(o1), . . . ,get(om)));W1 ∥ S, (σ, µ′′)⟩ .

For get(o1), the derivation of get provides the following transition:

⟨o ∥ seal(o, f(get(o1), . . . ,get(om)));W1 ∥ S, (σ, µ′′)⟩
λ−→⟨o ∥ seal(o, f(rcv(o1), . . . ,get(om)));W1 ∥ (wait(o1);S

r
0) ∥ Sw, (σ, µ′′)⟩ .

For wait to make progress, sealed(o1) must evaluate to True. The derivation of
sealed(o1) requires that ∃v . (o1,v) ∈ µ′′. This is satisfied since µ′′(o1) = v1. Thus, the
derivation of wait provides the remaining transitions:

⟨o ∥ seal(o, f(rcv(o1), . . . ,get(om)));W1 ∥ (wait(o1);S
r
0) ∥ Sw, (σ, µ′′)⟩

λ−→⟨o ∥ seal(o, f(rcv(o1), . . . ,get(om)));W1 ∥ (snd(o1);S
r
0) ∥ Sw, (σ, µ′′)⟩

λ−→⟨o ∥ seal(o, f(v1, . . . ,get(om)));W1 ∥ S, (σ, µ′′)⟩ .

The same holds for the remaining get operations, which evaluate left-to-right as specified
by the evaluation order of function arguments and yield ⟨o ∥ seal(o, f(v1, . . . ,vm)) ∥ S, (σ, µ′′)⟩ .
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Function evaluation yields ⟨o ∥ seal(o,v);W1 ∥ S, (σ, µ′′)⟩ , and finally the seal operation
yields the following sequence of configurations

⟨o ∥ seal(o,v);W1 ∥ S, (σ, µ′′)⟩
λ−→⟨o ∥ skip;W1 ∥ Sr ∥ o = v;Sw, (σ, µ′′)⟩
λ−→⟨o ∥W ∥ S, (σ, µ′′[o = v])⟩ .

This concludes the proof for expressions. □

Lemma: Get is Correct

We want to show that if e →∗ v then get(T(e)) →∗ v. We know that T(e)) →∗ o yields
a state µ′(o) = v from the proof of correctness of expressions. For get(o), the derivation of
get provides the following transitions:

⟨get(o) ∥W ∥ S, (σ, µ′)⟩
λ−→⟨rcv(o) ∥W ∥ (wait(o);Sr

0) ∥ Sw, (σ, µ′)⟩
λ−→⟨rcv(o) ∥W ∥ (snd(o);Sr

0) ∥ Sw, (σ, µ′)⟩
λ−→⟨v ∥W ∥ S, (σ, µ′)⟩ .

To make progress, wait(o) requires that sealed(o) evaluates to True, and we have by I.H.
∃v . (o,v) ∈ µ′.

Correctness of Translated Commands

Assignment

c ≡ x = e. We have T(x = e) ≡ x = T(e). We have ⟨x = e, σ⟩ →∗ ⟨v, σ′⟩. By definition of
the operator T and the induction hypothesis, we haveM ≡ x = o and µ′ such that µ′(o) = v.
Assignment yields ⟨x = o ∥W ∥ S, (σ, µ′)⟩ → ⟨skip ∥W ∥ S, (σ′′, µ′)⟩ where σ′′ = σ[x = o].
Thus, we have (x,v) ∈ σ′ and (σ′′(x),v) ∈ µ′.

Sequence

c ≡ c1; c2. Let σ
′
0 be the intermediate state after executing c1 and before executing c2, and

σ′′
0 be the intermediate state after executing T (c1) and before executing T (c2). By induction

hypothesis, for c1 we have ∀(x,v) ∈ σ′
1. (σ

′′
1(x),v) ∈ µ′

1. By induction hypothesis, for c2 we
have ∀(x,v) ∈ σ′

2. (σ
′′
2(x),v) ∈ µ′

2. By definition of the sequence command, we have σ′
0 = σ′

1,
σ′′
0 = σ′′

1 . Thus, σ
′ = σ′

2, σ
′′ = σ′′

2 , µ
′ = µ′

2, and ∀(x,v) ∈ σ′. (σ′′(x),v) ∈ µ′.
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If-Then-Else

c ≡ if b then c1 else c2. We have by the I.H. and Lemma 5.5 that b = get(T(b)). Thus,
if b = get(T(b)) = True then by I.H. the theorem holds for c1. Likewise, b = get(T(b)) =
False, the theorem holds for c2 by I.H.

While Loops

Note here we only prove the terminating case. We prove the non-terminating cases in Lemma
5.5, where ⟨while b do c, σ⟩ → ⟨skip,⊥⟩, and in such cases we have that µ also transitions
to ⊥. We want to show Theorem 5.5 for c ≡ while b do c′.

By I.H. and Lemma 5.5, if ⟨b, σ⟩ →∗ ⟨True, σ⟩ then ⟨get(T(b)), σ, µ⟩ →∗ ⟨True, σ, µ′⟩.
The same holds when b evaluates to False. If b evaluates to False, so does get(T(b)),
which means σ = σ′ = σ′′ and µ = µ′, proving the result for False. If b evaluates to True,
then

⟨while get(T(b)) do T(c′), σ, µ⟩ → ⟨T(c′);while get(T(b)) do T(c′), σ, µ⟩ .

We have already proven the theorem for sequence, thus, we know that if c′ and T(c′) execute
k times and terminate in state σ′ and (σ′′, µ′), respectively, then ∀(x,v) ∈ σ′, (σ′′(x),v) ∈ µ′.

We now want to show that if the serial loop body c′ executes k times, the parallel loop
body T(c′) also executes k times. We show this by proving that b = get(T(b)) after every
loop iteration. We have this result by the I.H. for k = 1. We can prove the theorem for
arbitrary k by showing that the theorem holds after executing c′. Let ⟨c′, σ0⟩ →∗ ⟨skip, σ′

0⟩
and ⟨T(c′), σ0⟩ →∗ ⟨skip, σ′′

0 , µ
′
0⟩. We have by the I.H. that ∀(x,v) ∈ σ′

0. (σ
′′
0(x),v) ∈ µ′

0.
Thus, after the kth execution of c′ and T(c′), we have again by the I.H. and Lemma 5.5 that
if ⟨b, σ′

0⟩ →∗ ⟨True, σ′
0⟩ then ⟨get(T(b)), σ′′

0 , µ
′
0⟩ →∗ ⟨True, σ′′

0 , µ
′′
0⟩. The same holds when

b evaluates to False. This concludes the proof of correctness for translated programs that
terminate. □

Corollary: Non-Terminating Programs Translate to
Non-Terminating Programs

To show that non-terminating Sub-Python programs are translated to non-terminating Sub-
Futures programs, we need to prove the following corollary for expressions and while loops.

if ⟨c, σ⟩ →∗ ⟨skip,⊥⟩
then ⟨T(c) ∥W ∥ S, (σ, µ)⟩ →∗ ⟨skip ∥W ∥ S, (⊥,⊥)⟩

(5.6)
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Expressions

Here we want to show that, for some non-terminating expression e,

if ⟨e, σ⟩ →∗ ⟨error,⊥⟩
then ⟨T(e) ∥W ∥ S, (σ, µ)⟩ →∗ ⟨o ∥W ∥ S, (⊥,⊥)⟩

The only relevant case is when e = f(v1, . . . ,vm), and in such cases, T(f(v1, . . . ,vm)) is a
remote function. Let r(o1, . . . ,om) = T(f(v1, . . . ,vm)). By the derivation of remote function
calls, on worker i we transition to a seal operation of the form seal(o, f(v1, . . . ,vm)) and
yield the object id o corresponding to the result of executing f 2. The derivation of seal
relies on the evaluation of f, which we know evaluates to error. Thus, the seal command
transitions to a state where Sw ≡ o = error;Sw. The derivation of Store − Assign −∞
handles this state by transitioning µ to ⊥. The derivations for Parallel-Store-Error and
Parallel-Store-Error-2 handle this state by transitioning σ to ⊥, and the main process to
skip. This proves the theorem for expressions and shows that whenever we translate a non-
terminating recursive function, the translated remote function is also non-terminating and
handled appropriately.

While Loops

We now prove Theorem 5.6 for c ≡ while b do c′, which is the only command that may
not terminate. By the derivation of While-∞, if while b do c′ is non-terminating, we have
⟨while b do c′, σ⟩ → ⟨skip,⊥⟩, which relies on the premise

∀k. ⟨whilek b do c′, σ⟩ → ⟨skip,⊥⟩ .

If we prove that this premise is preserved under the translation operator, then we have proven
our result. We want to prove that

if ∀k1. ⟨whilek1 b do c′, σ⟩ →k1+1 ⟨skip,⊥⟩
then ∀k2. ⟨whilek2 get(T(b)) do T(c′) ∥W ∥ S, (σ, µ)⟩ →k2+1 ⟨skip ∥W ∥ S, (⊥,⊥)⟩ ,

We proceed by induction on k2. If k2 = 0, then by Theorem 5.5 we have that ⟨get(T(b)), σ, µ⟩
evaluates to the same value as ⟨b, σ⟩. Since ⟨b, σ⟩ evaluates to True for all k1,

⟨while0 get(T(b)) do T(c′) ∥W ∥ S, (σ, µ)⟩ →1 ⟨skip ∥W ∥ S, (⊥, µ)⟩ .

By the derivation of Parallel-Main-Error and Parallel-Main-Error-2, the Sub-Futures pro-
gram transitions to a state where µ = ⊥.

For k2 > 0, we’ll show that

⟨whilek2 get(T(b)) do T(c′), σ, µ⟩ →1 ⟨T(c′);whilek2−1 get(T(b)) do T(c′), σ, µ′⟩ .
2A get invocation on such an object id will yield error. This is not needed in the proof but is worth

noting.
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The derivation of While-k-True provides the transition

⟨whilek b do c′, σ⟩ →1 ⟨c′;whilek−1 b do c′, σ⟩

and requires that b evaluates to True. By theorem 5.5 and Lemma 5.5 we have that if ⟨b, σ⟩
evaluates to True, then ⟨get(T(b)), σ, µ⟩ must also evaluate to True. Since b evaluates to
True for all k1, ⟨whilek2 get(T(b)) do T(c′), σ, µ⟩ → ⟨T(c′);whilek2−1 get(T(b)) do T(c′), σ, µ′⟩.
The derivation of sequence yields the transition

⟨T(c′);whilek2−1 get(T(b)) do T(c′), σ, µ′⟩ → ⟨whilek2−1 get(T(b)) do T(c′), σ′, µ′′⟩ .

By the I.H., we have that ⟨whilek2−1 get(T(b)) do T(c′), σ′, µ′′⟩ →k2 ⟨skip ∥W ∥ S, (⊥,⊥)⟩ .
□

5.6 Extension to Distributed Memory

While we do not model distributed memory explicitly, we informally show that our approach
can be extended to the distributed-memory setting. Consider the key/value stores introduced
in Section 5.1: σ, σ′, and µ. We introduce a new key/value store, ω, which maps futures o
to nodes η, where η serves as an identifier corresponding to a set of workers which operate
locally on the key/value store µ. An RPC call with a result associated with future o is
assigned to a worker on node η. We therefore set (o, η) ∈ ω. During dependency resolution,
a worker will block until o exists in ω instead of blocking until o exists in µ. We make this
change because the data may no longer be co-located with the worker executing the RPC.
To obtain all future and value pairs (o,v) required to execute an RPC, a worker initiates a
read from a non-local object store µ′ and writes o with associated value v to its local object
store µ. The worker then executes the RPC.

Our correctness theorem is extended to include ω as follows. Consider a cluster with p
nodes η1, . . . , ηp. We have p stores local to each node, defined as µ1, . . . , µp. If some program
from the source language terminates with store content σ, then the target language must also
terminate with store contents σ′, µi, and ω such that for any key/value pair (x,v) ∈ σ, there
exists (o, ηi) ∈ ω, (o,v) ∈ µi, and (x,o) ∈ σ′. With minor modifications to the semantics
of RPCs as described above, the proof of correctness for the distributed memory setting is
very similar to our existing proof.
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Chapter 6

Compilation of Block-Partitioned
Array Operations

In this chapter, we extend our formalism from Chapter 5 to support 2-dimensional arrays.
We provide a brief summary and intuition before presenting formal syntax and semantics of
our formulation of arrays.

Consider a snippet of our NumPy-inspired array syntax. We focus on the matrix multi-
plication operator, which is the only binary operation which does not trivially generalize to
n dimensions.

A ::= N(n,m) | x | . . . | A1@A2

We have A ∈ A, where A is the set defined above in BNF form, and N(n,m) ∈ Rn×m is
a real-valued 2-dimensional array. To translate arrays to our target language, we will need a
way to represent them as futures. We define the syntax for a 2-dimensional array of futures
as follows.

o ::= . . . | o(κ1, κ2)

The syntax o(κ1, κ2) denotes a 2-dimensional futures encoding of 2-dimensional arrays, where
κ1, κ2 define the number of blocks along axes 1 and 2. To ease the exposition of our treatment
of arrays, assume that κ1 = n and κ1 = m, so that every value vi,j in N(n,m) is translated
to a future oi,j in o(n,m). The structure of 2-dimensional futures is as follows:

o(n,m) =

o1,1 . . . o1,m
...

. . .
...

on,1 . . . on,m.

 (6.1)

We call 2-dimensional arrays of futures 2-dimensional futures for short. For our translation of
matrix multiplication, we denote by x1,N1(n1,m1),o1(n1,m1) the operands corresponding
to the left-hand side of the @ operation, and by x2,N2(n2,m2),o2(n2,m2) the right-hand
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side. The result is denoted by N(n,m) and o(n,m), where n = n1 and m = m2. We
use the notation o1(n1,m1)i,: and o1(n1,m1):,j to denote the ith row and jth column of o1,
respectively. The local function g(argsi,j) computes the i, j entry of the result N(n,m),
where argsi,j = (o1(n1,m1)i,:,o2(n2,m2):,j, i, j). We define g as follows:

g(argsi,j) ≡R(+)(

R(@)(o1(n1,m1)i,1,o2(n2,m2)1,j) ,

. . . ,

R(@)(o1(n1,m1)i,k,o2(n2,m2)k,j)),

where k = m1 = n2. The translation operator for matrix multiplication is as follows:

T(o1(n1,m1)@o2(n2,m2)) ≡g(args1,1) . . . g(args1,m)
...

. . .
...

g(argsn,1) . . . g(argsn,m)


T(x1@x2) ≡ T(T(x1)@T(x2)).

Each entry oi,j in array N(n,m) is computed using remote functions. While this is ineffi-
cient due to the RPC overhead problem, it illustrates our approach to parallelizing array
operations.

The correctness of matrix multiplication follows from our proof of correctness of functions.
Each entry of the matrix is computed by a composition of basic linear algebra operations
on futures. Our translation operator generates n×m such remote function compositions to
generate each future entry of o(n,m). The resulting 2-dimensional futures object therefore
contains entries such that for each value vi,j in N(n,m) computed by a Python program, we
have (oi,j,vi,j) ∈ µ.

Data Dependency Resolution and Concurrency

The 2-dimensional futures object solves the problem of establishing data dependencies within
a matrix multiplication operation by translating all values to futures, and all binary oper-
ations to RPCs. The semantics of our execution model is defined on k worker processes.
Futures generated by RPCs are computed on workers, which block until the futures on which
they depend are made available. Let k go to infinity. In this configuration, all operations
which have no dependencies execute concurrently, and all operations which have dependen-
cies block until their dependencies are resolved. Thus, our formulation of 2-dimensional
futures simultaneously solves the data dependency and concurrency problem.

In this chapter, We extend the language presented in Chapter 5 to support 2-dimensional
arrays and basic linear algebra operations. Our syntax, semantics, and translation operators
are defined for a core subset of the NumPy API, which illustrates our general approach



CHAPTER 6. COMPILATION OF BLOCK-PARTITIONED ARRAY OPERATIONS 72

to translating NumPy syntax to our representation of multi-dimensional futures and their
operations. The definition of Assignment differs slightly from what we implement in practice.

6.1 Syntax

c ::= ... | x[i1:i2, j1:j2] = e | x[i, :] = e | x[:, j] = e | x[i, j] = e

e ::= ... | A
A ::= N(n,m) | x

| Zeros(n,m) | Read(s,n,m) | Read(s, i1:i2, j1:j2)

| A[i1:i2, j1:j2] | A[i, :] | A[:, j] | A[i, j]

| A.T | A1@A2 | A1 +A2 | A1 −A2

| A ∗ a | A+ a | A− a | A/a

a ::= ... | A.shape[0] | A.shape[1] | pow(x,n) | sqrt(n) | norm(A1,A2)

v ::= ... | N(n,m)

We have A ∈ A, where A is the set defined above in BNF form, and N(n,m) ∈ Rn×m is
a real-valued 2-dimensional array. Zeros and Read are the only constructors for real-valued
arrays. We introduce ω ⊆ S×N×N×R, which corresponds to a read-only object containing
entries of 2-dimensional arrays. We access entries using ω(s,n1,n2) ∈ R. s ∈ S and S
corresponds to the space of all strings. For brevity, we exclude ω in program configurations.

6.2 Semantics

Declaration

0 < n,m 0 ≤ i < n 0 ≤ j < m N(n,m)[i, j] = 0

⟨Zeros(n,m), σ⟩ → ⟨N(n,m), σ⟩
Zeros

0 < n,m 0 ≤ i < n 0 ≤ j < m N(n,m) = Read(s, 0:n, 0:m)

⟨Read(s, n,m), σ⟩ → ⟨N(n,m), σ⟩
Read

n = i2 − i1 m = j2 − j1 0 < n,m i1 ≤ i < i2 j1 ≤ j < j2
(s, n− 1, m− 1) ∈ ω N(n,m)[i, j] = ω(s, i, j)

⟨Read(s, i1:i2, j1:j2), σ⟩ → ⟨N(n,m), σ⟩
Read-Block

σ(x) = N(n,m)

⟨x, σ⟩ → ⟨N(n,m), σ⟩
Array-Lookup
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Selection

Selection

⟨A, σ⟩ → ⟨N′(n′,m′), σ⟩ 0 ≤ i1 < i2 ≤ n′ 0 ≤ j1 < j2 ≤ m′

n = i2 − i1 m = j2 − j1 0 < n,m 0 ≤ i < n 0 ≤ j < m
N(n,m)[i, j] = N′(n′,m′)[i1 + i, j1 + j]

⟨A[i1:i2, j1:j2], σ⟩ → ⟨N(n,m), σ⟩
Select-Block

⟨A, σ⟩ → ⟨N′(n,m), σ⟩ 0 ≤ i < n ⟨N′(n,m)[i:i+ 1, 0:m], σ⟩ → ⟨N(1,m), σ⟩
⟨A[i, :], σ⟩ → ⟨N(1,m), σ⟩

Select-Row

⟨A, σ⟩ → ⟨N′(n,m), σ⟩ 0 ≤ j < m ⟨N′(n,m)[0:n, j:j + 1], σ⟩ → ⟨N(n, 1), σ⟩
⟨A[:, j], σ⟩ → ⟨N(n, 1), σ⟩

Select-Col

⟨A, σ⟩ → ⟨N′(n,m), σ⟩ 0 ≤ i < m 0 ≤ j < m
⟨N′(n,m)[i:i+ 1, j:j + 1], σ⟩ → ⟨N(1, 1), σ⟩

⟨A[i, j], σ⟩ → ⟨N(1, 1), σ⟩
Select-Entry

Array Assignment

We model array assignments as pure functions: Assigning new values to entries of an existing
array produces a new array object.

⟨x, σ⟩ → ⟨N′(n′,m′), σ⟩ 0 ≤ i1 < i2 ≤ n′ 0 ≤ j1 < j2 ≤ m′

⟨e, σ⟩ → ⟨N′′(n′′,m′′), σ⟩ n′′ = i2 − i1 m′′ = j2 − j1
0 ≤ i′′ < n′′ 0 ≤ j′′ < m′′ 0 ≤ i′ < n′ ∧ i′ ̸= i′′ 0 ≤ j′ < m′ ∧ j′ ̸= j′′

n = n′ m = m′

N(n,m)[i1 + i′′, j1 + j′′] = N′′(n′′,m′′)[i′′, j′′] N(n,m)[i′, j′] = N′(n′,m′)[i′, j′]

⟨x[i1:i2, j1:j2] = e, σ⟩ → ⟨N(n,m), σ⟩
Assign-Block

⟨x, σ⟩ → ⟨N′(n,m), σ⟩ i1 = i i2 = i+ 1 j1 = 0 j2 = m
⟨x[i1:i2, j1:j2] = e, σ⟩ → ⟨N(n,m), σ⟩
⟨x[i, :] = e, σ⟩ → ⟨N(n,m), σ⟩

Assign-Row

⟨x, σ⟩ → ⟨N′(n,m), σ⟩ i1 = 0 i2 = n j1 = j j2 = j + 1
⟨x[i1:i2, j1:j2] = e, σ⟩ → ⟨N(n,m), σ⟩
⟨x[:, j] = e, σ⟩ → ⟨N(n,m), σ⟩

Assign-Col

⟨x, σ⟩ → ⟨N′(n,m), σ⟩ i1 = i i2 = i+ 1 j1 = j j2 = j + 1
⟨x[i1:i2, j1:j2] = e, σ⟩ → ⟨N(n,m), σ⟩
⟨x[i, j] = e, σ⟩ → ⟨N(n,m), σ⟩

Assign-Entry
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Operators

We rely on underlying implementations of array operators, such as the @ operator imple-
mented by NumPy [25]. We denote such reliance by coloring the operator blue. We denote
the binary operations corresponding to Array-Array operators, and Array-Real operators as
•.

⟨A, σ⟩ →
〈
N′(n,m), σ

〉
0 ≤ i < n 0 ≤ j < m N(m,n)[j, i] = N′(n,m)[i, j]

⟨A.⊤, σ⟩ → ⟨N(m,n), σ⟩
Transpose

⟨A1, σ⟩ → ⟨N1(n1,m1), σ⟩ ⟨A2, σ⟩ → ⟨N2(n2,m2), σ⟩
m1 = n2 n = n1 m = m2 N(n,m) = N1(n1,m1)@N2(n2,m2)

⟨A1@A2, σ⟩ → ⟨N(n,m), σ⟩
Matrix-Multiply

⟨A1, σ⟩ → ⟨N1(n1,m1), σ⟩ ⟨A2, σ⟩ → ⟨N2(n2,m2), σ⟩
n = n1 = n2 m = m1 = m2 N(n,m) = N1(n1,m1) • N2(n2,m2)

⟨A1 •A2, σ⟩ → ⟨N(n,m), σ⟩
Array-Array-Binary-Op

⟨A, σ⟩ →
〈
N′(n,m), σ

〉
⟨a, σ⟩ → ⟨n, σ⟩ N(n,m) = N′(n,m) • n

⟨A • a, σ⟩ → ⟨N(n,m), σ⟩
Array-Real-Binary-Op

Additional Array and Arithmetic Expressions

⟨A1, σ⟩ → ⟨N1(n1, 1), σ⟩ ⟨A2, σ⟩ → ⟨N2(n2, 1), σ⟩ n1 = n2

⟨N1(n1, 1).⊤@N2(n2, 1), σ⟩ → ⟨N(1, 1), σ⟩
⟨norm(A1,A2), σ⟩ → ⟨N(1, 1), σ⟩

Vector-Norm

n = N(1, 1)[0, 0]

⟨N(1, 1), σ⟩ → ⟨n, σ⟩
Array-to-Real

n = nn2
1

⟨pow(n1,n2), σ⟩ → ⟨n, σ⟩
Power

n′ =
√
n

⟨sqrt(n), σ⟩ → ⟨n′, σ⟩
Square Root

6.3 Translation

In our target language, we assume a grid layout for 2-dimensional arrays. For each array
Ai(ni,mi) in a program, a block shape (ci1, c

i
2) is chosen. The block shape is comprised

of two integers corresponding to the block’s length along each axis of Ai(ni,mi) with the
constraint that if ni = nj then ci1 = cj1 and if mi = mj then ci2 = cj2. Let n//k be the
integer division of n by k. Then divup(n, k) = (n + k − 1)//k is the integer division of n
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by k rounded up. For each array, we have a grid of divup(n, c1) × divup(m, c2) blocks.
We denote the 2-dimensional grid layout of array Ai by κi

1 × κi
2. We drop the superscripts

i when the array in question is obvious. An additional object id structure is given below to
represent futures for arrays. Below, we denote the object ids corresponding to blocks of an
array by oi,j for 1 ≤ i ≤ κ1 ∧ 1 ≤ j ≤ κ2.

o(κ1, κ2) =

 o1,1 . . . o1,κ2

...
. . .

...
oκ1,1 . . . oκ1,κ2

 (6.2)

We extend the syntax of object ids below to include the above data structure.

o ::= ... | o(\kappa_1, \kappa_2)

The index set corresponding to the indices of the i, j block of A is given by

I(κ1, κ2)i,j = {(i′, j′) | i′ = (i− 1)c1, . . . , ic1 − 1 ; j′ = (j − 1)c2, . . . , jc2 − 1}.

We assume for simplicity that the size of the last block along the first and second axes are
min(κ1c1, n), and min(κ2c2,m), respectively. Translations for arrays and their operators are
defined as follows.

Declaration

T(Zeros(n,m)) ≡

R(Zeros)(n,m, 1, 1) . . . R(Zeros)(n,m, 1, κ2)
...

. . .
...

R(Zeros)(n,m, κ1, 1) . . . R(Zeros)(n,m, κ1, κ2)


T(Read(s, n,m)) ≡

R(Read)(s, n,m, 1, 1) . . . R(Read)(s, n,m, 1, κ2)
...

. . .
...

R(Read)(s, n,m, κ1, 1) . . . R(Read)(s, n,m, κ1, κ2)


For brevity, we extend Zeros and Read in their remote counterparts to take block

indices.

Selection

Let n′,m′ denote the dimensions of the array A′ from which entries are being selected, and
n,m be the dimensions of the resulting arrayA. We denote by o′ and o the object id to which
A′ and A are translated, respectively. We know n = i2− i1, m = j2− j1, and we also denote
by κ′

1, κ
′
2 the number of blocks in A′, and κ1, κ2 the number of blocks in A. We can now

derive the index sets I′(κ′
1, κ

′
2)i′,j′ for the block representation of A′ and I(κ1, κ2)i,j for the

block representation ofA = A′[i1:i2, j1:j2]. We define the selection set Si,j = {(i1+i′′, j1+j′′ |
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(i′′, j′′) ∈ I(τ1, τ2)i,j} to obtain argsi,j = {(i′, j′, o′i′,j′) | I
′(κ′

1, κ
′
2)i′,j′∩Si,j ̸= ∅}, the arguments

provided to the operator Sel(args, i, j), where args = (argsi,j, i1, i2, j1, j2). The selection
operator returns an object id o(κ1, κ2)i,j corresponding to block i, j of A = A′[i1:i2, j1:j2].

T(o′(κ′
1, κ

′
2)[i1:i2, j1:j2]) ≡

R(Sel)(args, 1, 1) . . . R(Sel)(args, 1, κ2)
...

. . .
...

R(Sel)(args, κ1, 1) . . . R(Sel)(args, κ1, κ2)


T(A′[i1:i2, j1:j2]) ≡ T(T(x)[i1:i2, j1:j2])

T(A′[i′, :]) ≡ T(A′[i′:i′ + 1, 0:m′])

T(A′[:, j′]) ≡ T(A′[0:n′, j′:j′ + 1])

T(A′[i′, j′]) ≡ T(A′[i′:i′ + 1, j′:j′ + 1])

Assignment

Let n′,m′ be the dimensions of A′, the array to which new values are being assigned, and
n′′ = i2 − i1,m

′′ = j2 − j1 the dimensions of the array A′′ containing the new values.
We further define o′(m′, n′) and o′′(m′′, n′′) as the object ids corresponding to A′ and A′′,
respectively. The number of blocks in A′ and A′′ are κ′

1, κ
′
2 and κ′′

1, κ
′′
2, respectively. We use

Asgn(args, i, j), where args = (argsi,j,o
′′(κ′′

1, κ
′′
2)i,j, i1, i2, j1, j2), to denote the assignment

A′[i1:i2, j1:j2]i,j = A′′
i,j. We compute argsi,j in a similar fashion to what is done for the

selection operator.

o′(n′,m′)[i1:i2, j1:j2] = o′′(n′′,m′′) ≡ o′(n′,m′) =

R(Asgn)(args, 1, 1) . . . R(Asgn)(args, 1, κ′
2)

...
. . .

...
R(Asgn)(args, κ′

1, 1) . . . R(Asgn)(args, κ′
1, κ

′
2)


x[i1:i2, j1:j2] = e ≡ T(T(x)[i1:i2, j1:j2]) = T(e)

x[i′, :] = e ≡ T(T(x)[i′:i′ + 1, 0:m′]) = T(e)

x[:, j′] = e ≡ T(T(x)[0:n′, j′:j′ + 1]) = T(e)

x[i′, j′] = e ≡ T(T(x)[i′:i′ + 1, j′:j′ + 1]) = T(e)

The Asgn operator updates the entries of A′ in block i, j which intersect the selection
operator [i1:i2, j1:j2]. The resulting updated block is returned. If a block has no intersection
with the selection operator, then the unchanged object id corresponding to that block is
returned.

Operators

We denote by x1,N1(n1,m1),o1(n1,m1) the operands corresponding to the left-hand side of
the @ operation, and by x2,N2(n2,m2),o2(n2,m2) the right-hand side. The result is denoted
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by N(n,m) and o(n,m), where n = n1 and m = m2. We use the notation o1(n1,m1)i,: and
o1(n1,m1):,j to correspond to the ith ”row block” and jth ”column block” of o1, respectively.
The remote function R(@)(argsi,j) computes the i, j block of the result N(n,m), where
argsi,j = (o1(n1,m1)i,:,o2(n2,m2):,j, i, j). In short, the R(@) operator computes the result
of the operation N1(n1,m1)i,: @N2(n2,m2):, j, which corresponds to block i, j of N(n,m).

For binary array operations, R(•)(o1
i,j,o

1
i,j, i, j) denotes the parallel application of • on

block i, j of o1(n1,m1) and o2(n2,m2);
For binary array-scalar operations, R(•)(o1

i,j,o, i, j) denotes the parallel application of •
on block i, j of o1(n1,m1), o corresponds to the scalar n.

Unary operations, such as x.⊤, are applied in parallel in the obvious way and are ranged
over with the notation Unary.

T(o1(n1,m1)@o2(n2,m2)) ≡

R(@)(args1,1) . . . R(@)(args1,κ2
)

...
. . .

...
R(@)(argsκ1,1) . . . R(@)(argsκ1,κ2

)


T(x1@x2) ≡ T(T(x1)@T(x2))

T(o1(n1,m1) • o2(n2,m2)) ≡

R(•)(o1,o2, 1, 1) . . . R(•)(o1,o2, 1, κ2)
...

. . .
...

R(•)(o1,o2, κ1, 1) . . . R(•)(o1,o2, κ1, κ2)


T(o1(n1,m1) • o) ≡

R(•)(o1,o, 1, 1) . . . R(•)(o1,o, 1, κ2)
...

. . .
...

R(•)(o1,o, κ1, 1) . . . R(•)(o1,o, κ1, κ2)


T(x1 • x2) ≡ T(T(x1) •T(x2))

T(Unary(o(n,m))) ≡

R(Unary)(o(n,m)1,1) . . . R(Unary)(o(n,m)1,κ2)
...

. . .
...

R(Unary)(o(n,m)κ1,1) . . . R(Unary)(o(n,m)κ1,κ2)


T(Unary(x)) ≡ T(Unary(T(x)))

Additional Array and Arithmetic Expressions

T(pow(x1,x2)) ≡ R(pow)(T(x1),T(x2))

T(sqrt(x)) ≡ R(sqrt)(T(x))

T(norm(x1,x2)) ≡ T(sqrt(T(x.⊤@x)))

T(o) ≡ o
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6.4 Proof Of Correctness

Our proof of correctness for arrays follows trivially from our existing proof of correctness
for expressions. Consider the case where block shape and array shape are (1, 1). Our proof
of correctness for n-ary operations covers this case. Recall the proof of n-ary operations
follows from the proof for arbitrary functions. If an array A has shape equivalent to its block
shape (one large block), then its proof of correctness is covered by our proof of correctness
for arbitrary functions. Now consider the case for arbitrary array sizes with arbitrary block
shape. The expressions that comprise each block in the translated arrays are each covered
in our proof of theorem 5.5. The proof is by induction on the translations of operations for
2-dimensional arrays. The proof approach follows the same process as the other proofs of
correctness.

We do not provide formal solutions for the n-dimensional array and distributed memory
setting, but we do provide the intuition to these extensions in this section.

6.5 Extension to N-Dimensions

The correctness of all but matrix multiplication trivially extends to the n-dimensional setting.
We now describe how our translation approach and proof of correctness generalizes to the
tensordot(A1,A2, n) operation. Consider the output shape of a matrix multiply of two
arrays N1(n1,m1) and N2(n2,m2). The output shape (n1,m2) provides a structure whereby
the correct value of each entry N(n1,m2)i,j is a basic sum of products. The same idea
applies to the tensordot operation: The output structure (shape) of a tensor dot operation is
predefined. Consider the output of the tensordot operation, an n-dimensional array N. Let
I denote the index tuple which accesses arbitrary entries of an n-dimensional array, so that
vI ∈ R is a value inN. The tensordot operation is a straightforward generalization of matrix
multiplication. Like matrix multiplication, each entry vI is computed by a composition of
binary functions. Thus, each entry oI in an n-dimensional futures object is a composition of
remote functions. The proof argument is the same as the proof for 2-dimensional arrays.
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Chapter 7

Conclusion

This thesis shows that, by combining state-of-the-art techniques from distributed memory
numerical linear algebra, discrete local search optimization techniques typically employed
by numerical optimization algorithms for machine learning, and automatic parallelization
of Python programs using Python-based distributed systems APIs, we enable the ease of
programming provided by Python tools, as well as the ability to achieve performance com-
petitive with state-of-the-art techniques through application-specific performance tuning.

As with related solutions in this space, our solution is not without its limitations. In
particular, centralized control of our system limits the number of partitions possible without
introducing control overhead. Thus, NumS is not suitable for fine-grained tasks. For large-
scale problems, where number of blocks are on the order of hundreds of thousands, we expect
NumS will not perform as well as SLATE or ScaLAPACK.

NumS is also unable to provide a speedup over serially executing solutions for very small
arrays. For such applications, we recommend using NumPy and scikit-learn.

The following sections provide some exciting applications of NumS, as well as ways in
which we believe NumS can be improved.

7.1 Applications in Climate Science

One exciting application of NumS is in the climate sciences. CMIP6 [19, 15, 18] persisted
as block-partitioned ZARR [38] data in the cloud can be read into NumS using a simple set
of APIs, bringing the scale and performance provided by NumS to climate scientists.

One such application in the climate sciences is in wildfire danger forecasting. A group of
researchers at the National Observatory of Athens develops a method for wildfire forcasting
using deep learning [30], but their method is limited to Greece. NumS is being used to
scale their method globally. The primary bottleneck is one of sampling, which NumS is able
to overcome with recent optimizations to its solution to sub-sampling multi-dimensional
arrays on distributed memory. For deep learning models to train effectively using stochastic
gradient descent, multi-dimensional data needs to be permuted along a particular axis. We
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reformulate this procedure as a shuffle operation, a technique used to reorder data in map
reduce frameworks. By enabling fast subsampling, we exceed the speed of updating model
parameters, which alleviates the bottleneck associated with scaling this work.

7.2 Potential Improvements and Open Problems

Array Programming. Although novel, our solution to automatic partitioning is still
relatively basic. One future direction in this area is to compile a NumS program, and
optimize array partitioning according to the operations performed within the NumS program.
Compilation can also be used to enhance scheduling. Beyond partitioning and scheduling,
reshape operations can be optimize by leveraging the same kind of shuffle procedure used
for array permutation.

Scalable Sparse Tensor Programming. One potential future direction of NumS is to
provide support for scalable sparse tensor programming. Sparsity support would enable
models such as graph neural networks, sparse GLMs, and collaborative filtering models via
sparse matrix factorization. Some interesting problems in this area include efficiently reading
tabular data in a balanced manner into a distributed memory sparse array representation,
and optimizing certain expressions by mapping them to optimized sparse einsum kernels at
runtime.

Second Order Optimization. The Newton optimizer for NumS achieves very high per-
formance compared to all other methods we evaluated. However, it is limited to small feature
spaces. With proper implementation of a scalable matrix inversion, this bottleneck could be
alleviated. There are known methods for symmetric semi-definite matrices, such as the Hes-
sian matrix. Fusing Hessian inversion with other operations involved in updating parameters
could also avoid the memory overhead associated with constructing a large Hessian.

Deep Learning Models. We can expand the set of machine learning models supported
by NumS by adding support for automatic differentiation, or updating model parameters
directly using a distributed memory solution to backpropagation. NumS also lacks the
necessary operations (stencil and convolution operations) to support image classification.

Distributed Systems. NumS is based on immutable objects, which prevents it from
matching NumPy’s view semantics. One area of improvement for the concurrently executing
language of futures is mutability. The centralized control bottleneck which we described may
also be solved within Ray. Ray actors may potentially be used as a mechanism for control
replication and partitioning.
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