
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
A Methodology for Teaching from Student Errors in Computer Science Education

Permalink
https://escholarship.org/uc/item/9x472353

Author
Koehler, Adam Thomas

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9x472353
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

RIVERSIDE

 A Methodology for Teaching from Student Errors

in Computer Science Education

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Adam Thomas Koehler

June 2020

Dissertation Committee:

Dr. Thomas F. Stahovich, Chairperson

Dr. Thomas Payne

Dr. Celeste Pilegard

Dr. Daniel Wong

Copyright by

Adam Thomas Koehler

2020

The Dissertation of Adam Thomas Koehler is approved:

 Committee Chairperson

University of California, Riverside

 iv

ACKNOWLEDGEMENTS

 I would like to thank Dr. Vahid for his guidance in the first years of my research,

and for allowing me access to the zyBooks tools to create exercises and studies.

 To my lab mates, I thank you for the support in this joined experience of graduate

school. Special thanks to Justin Gyllen and Kevin Rawson for their guidance in lab

interactions and help in crafting my dissertation. Lastly, to Amir Darvishzadeh, thank you

for the encouragement as we both proposed, wrote, defended, and finished.

 Three individuals were pivotal in my Ph.D. First, Dr. Brylow, my Marquette

University advisor, thank you for the support and opening this pathway. Next, Dr.

Stahovich, my UCR advisor, thank you for everything. As an advisor, he allowed my

independence while also providing guidance. Lastly, Dr. Pilegard, asking her to be on my

committee was the best decision of my Ph.D. She provided feedback and help when I

needed it most. Her genuine interest in my work created positive reinforcement for my

research. She may have saved my dissertation, and for that, I am endlessly grateful.

 Finally, I would like to thank my family for everything they have done during all

my academic pursuits. And to Ralph and Billy, the countless hours of Hangouts chatter

provided everything from mindless distraction to positive encouragement, thank you.

Chapter 2 is a reprint of the material published by the American Society of

Engineering Education and presented at ASEE 2016. I was the sole author of the paper

published in June 2016. The material in Chapter 3 is based on research presented as a

poster at SIGCSE 2019 in February 2019. The material in Chapter 4 is based on research

presented as a poster at SIGCSE 2018 in February 2018.

 v

ABSTRACT OF THE DISSERTATION

A Methodology for Teaching from Student Errors

in Computer Science Education

by

Adam Thomas Koehler

Doctor of Philosophy, Graduate Program in Computer Science

University of California, Riverside, June 2020

Dr. Thomas F. Stahovich, Chairperson

In education, many assessments boil down to getting the correct solution or

necessary result to receive credit. This end goal mentality, in turn, influences how

educators transfer knowledge to students. For example, some educators may present or

walk through completed solutions. However, continually displaying and using worked-

out solutions to teach can quickly become an obstruction to learning. In computer

science, a significant amount of learning occurs while fixing the errors that litter the

pathway from a blank page to a working solution. This dissertation establishes a

methodology for teaching from student errors in computer science.

 vi

The first part of the dissertation establishes how we developed over fifty

lightweight exercises to integrate into a ten-week course without content replacement.

Using past research in computer science, education theory, and cognitive load theory, we

developed and refined a standard exercise structure that incorporates student submissions

containing erroneous code, past student solutions presented during student-instructor

interactions, and instructor feedback. Collectively, our core exercises are known as

"What's Wrong With My Code" exercises.

Next, we evaluated the "What's Wrong With My Code" exercises in three distinct

ways. First, we performed a study to assess student improvement when using our

exercises in place of current course activities (e.g., CodeLab). Second, we analyzed the

differences in student error encounters for an entire term by comparing error counts in

prior course offerings to offerings with our exercises integrated into the weekly course

workload. Lastly, we evaluated student self-efficacy improvements over an entire term by

comparing offerings with and without our exercises. In each of the studies, our exercises

proved beneficial with increased student performance (with effect sizes of 0.56 and 0.42),

increased self-efficacy (p-value < 0.05), and diminished student error encounter rates.

Finally, we used our methodology to implement additional exercises to

demonstrate a pathway for use beyond common errors. Specifically, we developed

exercises to teach programming style in an introductory C++ computer science course.

We evaluated the style exercises alongside data from seven years of submissions, which

spanned four different instructional methods of teaching programming style. Our research

concludes that students showed increased use of proper programming style before

 vii

receiving any assessment feedback in academic terms that utilized our exercises.

Additionally, we discovered that using an automatic assessment tool with an assigned

style grade significantly improves the use of proper programming style.

This dissertation creates a methodology for teaching from student errors in any

computer science course, utilizes the methodology to provide multiple implementations

and use case examples for an introductory computer science course in C++, and suggests

concrete changes for computer science course instructors.

 viii

TABLE OF CONTENTS

Acknowledgements iv

Abstract v

Table of Contents viii

List of Tables ix

List of Figures x

Chapter 1: Introduction 1

Chapter 2: What’s Wrong With My Code (WWWMC) 9

Chapter 3: Improving Student Self-efficacy Using Exercises Containing

Erroneous Code 35

Chapter 4: Teaching Programming Style in CS 1 47

Chapter 5: Conclusions 65

Appendix A: Results & Analyses Addendum to Chapter 2 75

Appendix B: Style Checker Code 80

Appendix C: Additional Graphs & Charts 89

Appendix D: What’s Wrong With My Code Exercises 91

Appendix E: What’s Wrong With My Style Exercises 169

 ix

LIST OF TABLES

TABLE TABLE TITLE PAGE

1 Chapter 2: What's Wrong With My Code Question Categories 15

2 Chapter 2: Scores for Spring study out of 10 points 22

3 Chapter 2: Scores for Fall study out of 10 points 24

4 Chapter 2: Scores for Winter and second Spring study out of 10 points 27

5 Chapter 2: Percent of students to not encounter the error per quarter 28

6 Chapter 3: Cronbach’s alpha calculations per instrument use. 40

7
Chapter 3: End of term self-efficacy averages per measure with the

score change between week 1 and week 10 shown in parentheses.
42

8
Chapter 4: Important characteristics of the course offerings included in

this study.
55

9
Chapter 4: Average number of style errors per student assignment

submission.
56

10
Chapter 4: Pearson correlation calculations between style and

course/assignments grade.
59

11
Chapter 4: Average style grades per submission for style exercise

effectiveness evaluation.
60

12 Appendix A: Term A mean scores for pre- and post-test out of 10. 75

13 Appendix A: Term B mean scores for pre- and post-test out of 10. 75

14 Appendix A: Chi-Squared scores and Phi calculations. 77

15
Appendix C: Autograded terms (F and I), style scores on the first

submission of unlimited submissions.
90

16
Appendix C: Autograded terms (F and I), style scores on the final

submission of unlimited submissions.
90

 x

LIST OF FIGURES

FIGURE FIGURE TITLE PAGE

1 Chapter 1: Example “What’s Wrong With My Code” exercise. 3

2 Chapter 2: Example “What's Wrong With My Code” problem 13

3
Chapter 2: Example compile-time error from the String Member

Functions category
15

4
Chapter 2: What's Wrong With My Code problem from the Basic

Variables and Math category
16

5
Chapter 2: Example runtime error from the String Member

Functions category
16

6
Chapter 2: Example written response (1&2) and multiple choice

(3) test questions
19

7 Chapter 3: Example of one of our exercises. 36

8
Chapter 4: Example of an exercise teaching programming style

for variables.
53

9
Appendix A: Flow chart outlining study evaluating student

performance increase.
75

10
Appendix B: Code to check whether the source file has

programming comments or not.
80

11
Appendix B: Code to return lines numbers of lines exceeding 80

characters in length.
81

12
Appendix B: Code to return line numbers of conditional

expressions that compare to literal values of true or false.
82

13
Appendix B: Part 1 of the code to return a string of all global

variable names.
83

14
Appendix B: Part 2 of the code to return a string of all global

variable names.
84

15
Appendix B: Code to return all source code line numbers

containing a tab character.
85

16
Appendix B: Part 1 of indentation check - verify single curly

brace per line.
86

17
Appendix B: Part 2 of indentation check - create blocks to

separate indentation levels.
87

 xi

18
Appendix B: Part 3 of indentation check - primary function to

create a list of improperly indented lines.
88

19
Appendix C: Style scores for the final submission for the last five

assignments in the quarter across seven years
89

20
Appendix C: Style scores for the last five assignments in the

quarter. Comparing two terms (types F and I).
89

21 Appendix D: Basic Output, Question #1, Answer #1 91

22 Appendix D: Basic Output, Question #1, Answer #2 91

23 Appendix D: Basic Output, Question #1, Answer #3 92

24 Appendix D: Basic Output, Question #2, Answer #1 92

25 Appendix D: Basic Output, Question #2, Answer #2 93

26 Appendix D: Basic Output, Question #2, Answer #3 93

27 Appendix D: Basic Output, Question #3, Answer #1 94

28 Appendix D: Basic Output, Question #3, Answer #2 94

29 Appendix D: Basic Output, Question #3, Answer #3 95

30 Appendix D: Basic Output, Question #4, Answer #1 95

31 Appendix D: Basic Output, Question #4, Answer #2 96

32 Appendix D: Basic Output, Question #4, Answer #3 96

33 Appendix D: Basic Output, Question #5, Answer #1 97

34 Appendix D: Basic Output, Question #5, Answer #2 97

35 Appendix D: Basic Output, Question #5, Answer #3 98

 xii

36 Appendix D: Basic Output, Question #6, Answer #1 98

37 Appendix D: Basic Output, Question #6, Answer #2 99

38 Appendix D: Basic Output, Question #6, Answer #3 99

39 Appendix D: Basic Output, Question #7, Answer #1 100

40 Appendix D: Basic Output, Question #7, Answer #2 100

41 Appendix D: Basic Output, Question #7, Answer #3 101

42 Appendix D: Basic Output, Question #8, Answer #1 101

43 Appendix D: Basic Output, Question #8, Answer #2 102

44 Appendix D: Basic Output, Question #8, Answer #3 102

45 Appendix D: Basic Input, Question #1, Answer #1 103

46 Appendix D: Basic Input, Question #1, Answer #2 103

47 Appendix D: Basic Input, Question #1, Answer #3 104

48 Appendix D: Basic Input, Question #2, Answer #1 104

49 Appendix D: Basic Input, Question #2, Answer #2 105

50 Appendix D: Basic Input, Question #2, Answer #3 105

51 Appendix D: Basic Input, Question #3, Answer #1 106

52 Appendix D: Basic Input, Question #3, Answer #2 106

53 Appendix D: Basic Input, Question #3, Answer #3 106

 xiii

54 Appendix D: Basic Input, Question #4, Answer #1 107

55 Appendix D: Basic Input, Question #4, Answer #2 107

56 Appendix D: Basic Input, Question #4, Answer #3 107

57 Appendix D: Basic Math, Question #1, Answer #1 108

58 Appendix D: Basic Math, Question #1, Answer #2 108

59 Appendix D: Basic Math, Question #1, Answer #3 109

60 Appendix D: Basic Math, Question #2, Answer #1 109

61 Appendix D: Basic Math, Question #2, Answer #2 110

62 Appendix D: Basic Math, Question #2, Answer #3 110

63 Appendix D: Basic Math, Question #3, Answer #1 111

64 Appendix D: Basic Math, Question #3, Answer #2 111

65 Appendix D: Basic Math, Question #3, Answer #3 112

66 Appendix D: Basic Math, Question #4, Answer #1 112

67 Appendix D: Basic Math, Question #4, Answer #2 112

68 Appendix D: Basic Math, Question #4, Answer #3 113

69 Appendix D: Basic Math, Question #5, Answer #1 113

70 Appendix D: Basic Math, Question #5, Answer #2 113

71 Appendix D: Basic Math, Question #5, Answer #3 114

 xiv

72 Appendix D: Basic Math, Question #6, Answer #1 114

73 Appendix D: Basic Math, Question #6, Answer #2 115

74 Appendix D: Basic Math, Question #6, Answer #3 115

75 Appendix D: Basic Math, Question #7, Answer #1 116

76 Appendix D: Basic Math, Question #7, Answer #2 116

77 Appendix D: Basic Math, Question #7, Answer #3 116

78 Appendix D: Basic Variable, Question #1, Answer #1 117

79 Appendix D: Basic Variable, Question #1, Answer #2 117

80 Appendix D: Basic Variable, Question #1, Answer #3 117

81 Appendix D: Basic Variable, Question #2, Answer #1 118

82 Appendix D: Basic Variable, Question #2, Answer #2 118

83 Appendix D: Basic Variable, Question #2, Answer #3 119

84 Appendix D: Basic Variable, Question #3, Answer #1 119

85 Appendix D: Basic Variable, Question #3, Answer #2 120

86 Appendix D: Basic Variable, Question #3, Answer #3 120

87 Appendix D: Basic Variable, Question #4, Answer #1 120

88 Appendix D: Basic Variable, Question #4, Answer #2 121

89 Appendix D: Basic Variable, Question #4, Answer #3 121

 xv

90 Appendix D: Branching, Question #1, Answer #1 122

91 Appendix D: Branching, Question #1, Answer #2 122

92 Appendix D: Branching, Question #1, Answer #3 123

93 Appendix D: Branching, Question #2, Answer #1 123

94 Appendix D: Branching, Question #2, Answer #2 124

95 Appendix D: Branching, Question #2, Answer #3 124

96 Appendix D: Branching, Question #3, Answer #1 125

97 Appendix D: Branching, Question #3, Answer #2 125

98 Appendix D: Branching, Question #3, Answer #3 126

99 Appendix D: Branching, Question #4, Answer #1 126

100 Appendix D: Branching, Question #4, Answer #2 127

101 Appendix D: Branching, Question #4, Answer #3 127

102 Appendix D: Branching, Question #5, Answer #1 128

103 Appendix D: Branching, Question #5, Answer #2 128

104 Appendix D: Branching, Question #5, Answer #3 129

105 Appendix D: Branching, Question #6, Answer #1 129

106 Appendix D: Branching, Question #6, Answer #2 130

107 Appendix D: Branching, Question #6, Answer #3 130

 xvi

108 Appendix D: String Functions, Question #1, Answer #1 131

109 Appendix D: String Functions, Question #1, Answer #2 131

110 Appendix D: String Functions, Question #1, Answer #3 132

111 Appendix D: String Functions, Question #2, Answer #1 132

112 Appendix D: String Functions, Question #2, Answer #2 133

113 Appendix D: String Functions, Question #2, Answer #3 133

114 Appendix D: String Functions, Question #3, Answer #1 134

115 Appendix D: String Functions, Question #3, Answer #2 134

116 Appendix D: String Functions, Question #3, Answer #3 135

117 Appendix D: String Functions, Question #4, Answer #1 135

118 Appendix D: String Functions, Question #4, Answer #2 136

119 Appendix D: String Functions, Question #4, Answer #3 136

120 Appendix D: String Functions, Question #5, Answer #1 137

121 Appendix D: String Functions, Question #5, Answer #2 137

122 Appendix D: String Functions, Question #5, Answer #3 138

123 Appendix D: Loops, Question #1, Answer #1 138

124 Appendix D: Loops, Question #1, Answer #2 139

125 Appendix D: Loops, Question #1, Answer #3 139

 xvii

126 Appendix D: Loops, Question #2, Answer #1 140

127 Appendix D: Loops, Question #2, Answer #2 140

128 Appendix D: Loops, Question #2, Answer #3 141

129 Appendix D: Loops, Question #3, Answer #1 141

130 Appendix D: Loops, Question #3, Answer #2 142

131 Appendix D: Loops, Question #3, Answer #3 142

132 Appendix D: Loops, Question #4, Answer #1 143

133 Appendix D: Loops, Question #4, Answer #2 143

134 Appendix D: Loops, Question #4, Answer #3 144

135 Appendix D: Random Numbers, Question #1, Answer #1 144

136 Appendix D: Random Numbers, Question #1, Answer #2 145

137 Appendix D: Random Numbers, Question #1, Answer #3 145

138 Appendix D: Function Invocation, Question #1, Answer #1 146

139 Appendix D: Function Invocation, Question #1, Answer #2 146

140 Appendix D: Function Invocation, Question #1, Answer #3 147

141 Appendix D: Function Invocation, Question #2, Answer #1 147

142 Appendix D: Function Invocation, Question #2, Answer #2 148

143 Appendix D: Function Invocation, Question #2, Answer #3 148

 xviii

144 Appendix D: Function Invocation, Question #3, Answer #1 149

145 Appendix D: Function Invocation, Question #3, Answer #2 149

146 Appendix D: Function Invocation, Question #3, Answer #3 150

147 Appendix D: Function Invocation, Question #4, Answer #1 150

148 Appendix D: Function Invocation, Question #4, Answer #2 151

149 Appendix D: Function Invocation, Question #4, Answer #3 151

150 Appendix D: Function Invocation, Question #5, Answer #1 152

151 Appendix D: Function Invocation, Question #5, Answer #2 152

152 Appendix D: Function Invocation, Question #5, Answer #3 153

153 Appendix D: Function Invocation, Question #6, Answer #1 153

154 Appendix D: Function Invocation, Question #6, Answer #2 154

155 Appendix D: Function Invocation, Question #6, Answer #3 154

156 Appendix D: Function Invocation, Question #7, Answer #1 155

157 Appendix D: Function Invocation, Question #7, Answer #2 155

158 Appendix D: Function Invocation, Question #7, Answer #3 156

159 Appendix D: Function Invocation, Question #8, Answer #1 156

160 Appendix D: Function Invocation, Question #8, Answer #2 157

161 Appendix D: Function Invocation, Question #8, Answer #3 157

 xix

162 Appendix D: Function Writing, Question #1, Answer #1 158

163 Appendix D: Function Writing, Question #1, Answer #2 158

164 Appendix D: Function Writing, Question #1, Answer #3 159

165 Appendix D: Function Writing, Question #2, Answer #1 159

166 Appendix D: Function Writing, Question #2, Answer #2 160

167 Appendix D: Function Writing, Question #2, Answer #3 160

168 Appendix D: Vectors, Question #1, Answer #1 161

169 Appendix D: Vectors, Question #1, Answer #2 161

170 Appendix D: Vectors, Question #1, Answer #3 162

171 Appendix D: Vectors, Question #2, Answer #1 162

172 Appendix D: Vectors, Question #2, Answer #2 163

173 Appendix D: Vectors, Question #2, Answer #3 163

174 Appendix D: Vectors, Question #3, Answer #1 164

175 Appendix D: Vectors, Question #3, Answer #2 164

176 Appendix D: Vectors, Question #3, Answer #3 165

177 Appendix D: Vectors, Question #4, Answer #1 165

178 Appendix D: Vectors, Question #4, Answer #2 166

179 Appendix D: Vectors, Question #4, Answer #3 166

 xx

180 Appendix D: Vectors, Question #5, Answer #1 167

181 Appendix D: Vectors, Question #5, Answer #2 167

182 Appendix D: Vectors, Question #5, Answer #3 168

183
Appendix E: Style Exercise #1 and #2 - Basic Style, Answers #1

and #1
169

184
Appendix E: Style Exercise #1 and #2 - Basic Style, Answers #2

and #2
170

185
Appendix E: Style Exercise #1 and #2 - Basic Style, Answers #3

and #2
171

186 Appendix E: Style Exercise #3 - Style with Variables, Answer #1 172

187 Appendix E: Style Exercise #3 - Style with Variables, Answer #2 173

188 Appendix E: Style Exercise #3 - Style with Variables, Answer #3 174

189 Appendix E: Style Exercise #4 - Style with Variables, Answer #1 175

190 Appendix E: Style Exercise #4 - Style with Variables, Answer #2 176

191 Appendix E: Style Exercise #4 - Style with Variables, Answer #3 177

192 Appendix E: Style Exercise #5 - Style with Branches, Answer #1 178

193 Appendix E: Style Exercise #5 - Style with Branches, Answer #2 179

194 Appendix E: Style Exercise #5 - Style with Branches, Answer #3 180

195 Appendix E: Style Exercise #6 - Style with Branches, Answer #1 181

196 Appendix E: Style Exercise #6 - Style with Branches, Answer #2 182

197 Appendix E: Style Exercise #6 - Style with Branches, Answer #3 183

 xxi

198 Appendix E: Style Exercise #7 - Style with Loops, Answer #1 184

199 Appendix E: Style Exercise #7 - Style with Loops, Answer #2 185

200 Appendix E: Style Exercise #7 - Style with Loops, Answer #3 186

201
Appendix E: Style Exercise #8 - Style with Functions, Answer

#1
187

202
Appendix E: Style Exercise #8 - Style with Functions, Answer

#2
188

203
Appendix E: Style Exercise #8 - Style with Functions, Answer

#3
189

 1

Chapter 1: Introduction

In education, many assessments boil down to getting the correct solution or

necessary result to receive credit. This end goal mentality, in turn, influences how

educators transfer knowledge to students. For example, some educators may present or

walk through completed solutions. However, continually displaying and using worked-

out solutions to teach can quickly become an obstruction to learning. In computer

science, a significant amount of learning occurs while fixing the errors that litter the

pathway from a blank page to a working solution.

Motivation & Background

Growing class sizes, as well as dwindling resources, have led instructors to pursue

different tactics, methods, and implementations in scalable and effective teaching habits.

New tools and online environments help recreate standard teaching pedagogy, such as

worked-out examples, but they also create an opportunity to introduce alternatives to

complement long-standing teaching practices. In the era of growing class sizes,

automated assessment of programming exercises helps bridge the scalability gap.

However, the open-ended nature of programming assignments can lead to (1) misguided

automatic feedback, (2) a disconnection between an errant student solution and proper

advice, (3) a complete lack of advice due to the student not understanding the presented

question, or (4) knowledge gaps due to students never encountering a problem/feedback

pairing. Altering worked-out examples into broken examples for students to fix is a novel

way to supplement the overuse of worked-out examples in current teaching methods.

 2

Incorporating teaching from errors into courses is an active pursuit in computer

science education (Denny et al., 2012; Du Boulay, 1986; Ginat & Shmalo, 2013; Mathis,

1974; Murphy et al., 2010) and many other fields. However, many computer science

explorations have limited impact because the research requires altering an entire course

or removing content to add the newly developed content of the researchers. Additionally,

a common stance is to offer an entire course on debugging, but students who may take

the course are well into their computer science studies. Other fields offer potential

implementation pathways for using broken examples or examples with missing pieces. In

Chemistry, Barke (2015) incorporated incorrect examples to teach students to balance

chemical equations. Rogers et al. (2000) utilize errant examples in a teaching model to

correct student misconceptions in electrochemistry. At the grade school level, Durkin and

Rittle-Johnson (2012) use correct and incorrect worked-out examples to teach decimal

mathematics, and Adams et al. (2014) extend the research to introducing a web-based

tutoring system using incorrectly completed examples. In the medical field, Kopp et al.

(2008) use misleading or broken examples to help students build diagnostic knowledge.

We build on the research both from computer science education and from other

disciplines to create building blocks for our methodology.

Cognitive Load Theory

The APA Dictionary of Psychology defines cognitive load as the number of

mental resources required to complete a task (VandenBos, 2007). Cognitive load has

three distinct types, intrinsic, extraneous, and germane. Intrinsic cognitive load is the load

of the actual content and correlates with the amount of effort output by the learner during

 3

information consumption. Extraneous cognitive load relates to the presentation style of

the material and the effort placed into parsing or interpreting the presentation. Lastly,

germane cognitive load is the load necessary to store the knowledge into memory.

Cognitive load theory ties cognitive load to problem-solving, a key element of instruction

and learning (Sweller, 1988). Chandler and Sweller (1991) use cognitive load theory to

guide the design of pedagogy by reducing the complexity and presentation of examples

and exercises. Following up on Sweller’s work, Renkl (2010) shows that the current use

of worked-out examples does not take advantage of prior research in cognitive load

theory. Our work builds upon research from Chandler, Sweller, and Renkl to redefine

what a worked-out example should look like within an exercise.

Figure 1: Example “What’s Wrong With My Code” exercise.

 4

Developing Exercises: Building on Prior Research

Traditionally, instruction from examples teaches from the correct way of

programming by presenting a completely worked-out solution with proper syntax.

However, students are not always able to infer the important principles, such as fixing a

commonly occurring syntax mishap, from an already correct presentation. In our

exercises, we teach from the point of an error. For example, instead of showing a student

a proper “cout” statement, we present a broken code attempting to use “cout” and our

exercise asks the student to choose a proper fix for the problem. Durkin and

Rittle-Johnson (2012) concluded that mixing in exercises with errant solutions alongside

normal practice problems and worked-out examples increases student understanding.

Our core group of exercises (Appendix D) adapts cognitive load reduction

strategies developed in prior research. Figure 1 contains an example of our exercises. To

reduce extraneous cognitive load in exercise presentation, we separate each problem into

three distinct parts, 1) the student’s description of the problem combined with an example

with erroneous code, 2) several student-produced potential solutions to the described

problem, and 3) the instructor feedback area that outlines why a chosen solution is correct

or incorrect.

In the first area, we use student descriptions to describe the problem. Presenting a

problem from a student’s perspective lowers the intrinsic cognitive load of the problem

description. Similarly, we lower the intrinsic and extrinsic cognitive load of the program

code by using prior student submissions to represent the problem and stripping the code

of an extraneous syntax. According to Große and Rekl (2004), highlighting can reduce

 5

cognitive load. In our exercises, we highlight the specific errant line or lines of code to

draw the student’s attention to problematic lines.

In the second area, we reduce cognitive load by using a multiple-choice layout

and presenting potential solutions from a student’s perspective. Presenting student-

oriented answers in a multiple-choice format builds upon prior research about

encouraging student self-explanation (Chi, 1994) and research reducing the cognitive

load of self-reflection by providing options to game players (Johnson and Mayer, 2010).

Finally, in the instructor feedback area, we use clear and concise statements at the

student’s knowledge level to provide feedback on correctness based on the selected

multiple-choice answer. Additionally, we color code the feedback. We use red for

incorrect responses and green for correct responses. Coloring the feedback helps students

quickly pick up on whether the chosen answer is right or wrong.

The design of our exercises aims to reduce the intrinsic and extraneous cognitive

load of each exercise. This facilitates the student’s understanding of the problem and

enables the student to commit the knowledge to memory without experiencing cognitive

overload.

Impact

This dissertation makes several significant contributions to computer science

education.

1. We create a methodology for incorporating exercises containing erroneous

code within computer science education.

 6

2. We implement over fifty exercises for use within introductory computer

science courses in C++.

3. We show that utilizing exercises containing erroneous code can increase

student performance on short term assessments.

4. We show that utilizing exercises containing erroneous code can reduce the

number of errors students encounter.

5. We show that student self-efficacy increases when using exercises containing

erroneous code.

6. We utilize our methodology to create exercises to teach programming style

within an introductory computer science course.

7. We show that automatically assessing style with immediate feedback is an

effective means for getting a student to use proper programming style.

8. We show that our exercises increase student use of proper programming style

with and without automatic style assessment.

9. We provide practical implementations and directions for using our

methodology to computer science instructors.

Research Inquiries and Hypotheses

We collected our data within the Introduction to Computer Science for Science,

Mathematics, and Engineering I at the University of California, Riverside (CS 010 in

UCR’s catalog). CS 010 is the first computer science course taken by computer science

majors at UCR. Colloquially the first computer science course for majors is referred to as

“CS 1” because the catalog designation varies by university.

 7

Research Inquiry 1) How does the introduction of exercises containing erroneous code

affect student performance?

Hypothesis 1a) We hypothesize that completing exercises containing erroneous

code will increase student performance on quizzes in comparison to normal

lightweight programming activities.

Hypothesis 1b) We hypothesize that the introduction of weekly exercises

containing erroneous code will reduce the number of compiler errors directly

related to the newly introduced exercises.

Research Inquiry 2) How does the use of exercises containing erroneous code across an

entire term affect student self-efficacy?

Hypothesis 2a) We hypothesize that student self-efficacy will increase across the

entire term with the addition of weekly exercises containing erroneous code.

Research Inquiry 3) How effective are current strategies at teaching programming style

in introductory computer science courses? How can we introduce exercises to take

advantage of previously discovered benefits of exercises that contain erroneous code?

What effect does the use of exercises containing erroneous style examples have on the

student’s use of proper programming style for assignments?

Hypothesis 3a) We hypothesize that students will use proper programming style

more often when they receive a grade for proper programming style.

Hypothesis 3b) We hypothesize that students with better programming style will

perform better in the course.

 8

Hypothesis 3c) We hypothesize that the introduction of style exercises that use

erroneous code will increase the student’s ability to employ proper programming

style.

Summary

 This dissertation consists of three primary studies. In Chapters 2, 3, and 4, we

present our studies in a format similar to the one used by the American Society for

Engineering Education. One of our studies (Chapter 2) has already been published as a

paper (Koehler, 2016; doi: doi.org/10.18260/p.27196) and is presented with some edits.

The other two studies (Chapter 3, Chapter 4) were published as posters

(doi: doi.org/10.1145/3287324.3293720, doi: doi.org/10.1145/3159450.3162330) and

will be published as full papers. The three studies address the following connected lines

of inquiry:

A. How does the introduction of exercises containing erroneous code affect student

performance?

B. How does the use of exercises containing erroneous code affect student self-

efficacy when used for an entire term?

C. How can we introduce alternate exercises to take advantage of previously

discovered benefits of exercises that contain erroneous code?

 9

Chapter 2: What’s Wrong With My Code (WWWMC)

Abstract

Student-instructor interaction and passage of knowledge is often optimal in a one-

on-one setting1. Individual interactions between a student and an instructor form a

distinct pathway for the passage of knowledge, including information about topic-specific

misconceptions. Unfortunately, these interactions can be time-consuming. Automated

assessment and directed educational tools attempt to address the time concerns by

presenting the student with immediate feedback but can often be lacking in other ways.

Our paper presents a teaching instrument, “What's Wrong With My Code,” that

allows us to capture these one-on-one interactions. We provide our design methods used

to create the “What's Wrong With My Code” problem sets and analyze the results of

studies that utilized the problem sets within a teaching environment.

Introduction

Growing class sizes, as well as dwindling resources, have led instructors to pursue

different tactics, methods, and implementations for scalable and effective instruction. The

goal is to adapt specific teaching methodologies to accommodate resource and personnel

constraints with rising per-class student enrollments. The apprenticeship method is one

such teaching strategy that requires adaptation. With this method, a single student learns

through direct instructor feedback across various examples through one-on-one

1 The material in this chapter was previously published at 2016 ASEE Annual
Conference & Exposition (Koehler, 2016). This chapter is an edited version of that
publication. The material was edited to achieve consistency with the rest of this
document and to provide clarification of some details. Also, an appendix was added
to present additional details (Appendix A).

 10

interactions. One-on-one interactions help facilitate an excellent teaching environment,

and instructors use one-one-one interactions to teach students about programming

misconceptions and errors in introductory programming courses. The repetitive nature of

a substantial portion of these interactions makes them a prime candidate for improving

scalability through automation.

Automated assessment of programming exercises can bridge the scalability gap.

However, the open-ended nature of programming assignments can lead to (1) misguided

automatic feedback, (2) a disconnection between an errant student solution and proper

advice, (3) a complete lack of advice due to the student not understanding the presented

question, or (4) knowledge gaps due to students never encountering a problem/feedback

pairing. “What's Wrong With My Code” (WWWMC) attempts to emulate the

apprenticeship environment and solve these problems by using a much more stringent

and guided experience while still maintaining scalability.

Background

As class sizes grow, we must support the instructor-student relationship with

growing technologies that allow interaction outside the typical lecture environment.

Automated tools are now capable of grading homework and tutoring students on specific

topics (Farrel et al., 1984; Vanlehn et al., 2005; Wood, 1996). In recent years a few of

note include Web-CAT (Edwards & Perez-Quinones, 2008), Marmoset (Spacco et al.,

2006), and Codelab (Arnow & Barshay, 1999). One of the goals of automated assessment

is to replace both human-generated grading and feedback with automated testing suites,

thus reducing the workload of instructors with growing class sizes. As an example, the

 11

Codelab environment allows automated assessment through grading of a multitude of

exercises as well as feedback on errant solutions to guide the student to a correct

submission (Arnow & Barshay, 1999). However, automated assessment utilities can have

drawbacks based on how general or how specific the tool implementation and use is.

Autograders often reduce their ability to provide specific tutoring and feedback as a

compromise to create an implementation for a broader set of programming submissions.

Therefore, applying and scaling appropriate feedback becomes the most challenging part

of scaling automated assessments.

As resources continue to change in computer science education, many old

techniques utilized by instructors to distribute knowledge have moved to an online

environment. Systems such as Codelab (Arnow & Barshay, 1999) have established online

presence as tutoring software for computer science education. Additionally, researchers

like Edgcomb, Vahid, and Wood have shown that increasing the interaction level of the

tools utilized within computer science education can improve students’ scores (Edgcomb

& Vahid, 2014; Wood, 1996). For example, Edgcomb and Vahid showed that using

interactive web content, such as animations, within an online textbook is more effective

than simply migrating a book to a static online version (Edgcomb & Vahid, 2014).

Identifying pitfalls, ranging from those of a specific programming language to

pitfalls of an entire computer science class, has also been a long-sought task of

researchers (Du Boulay, 1986 and Spacco et al., 2006). When building and analyzing the

findings of Marmoset, Spacco et al. set up repositories for student code that allowed the

researchers to analyze intermediate student programs and not just final submissions

 12

(Spacco et al., 2006). Garner, Haden, and Robins categorize programming pitfalls into

twenty-seven categories built from the error reports gathered within a Java-based CS 1

course (Garner et al., 2005). As we will show in the WWWMC Tool Development

section, many of the categories we have chosen for our question sets overlap the outlined

categories of Garner et al.

Once misconceptions are known, incorporating pedagogy into courses is an active

pursuit of not only computer science education (Denny et al., 2012; Du Boulay, 1986;

Ginat & Shmalo, 2013; Mathis, 1974; Murphy et al., 2010) but other educational fields as

well (Barke, 2015 and Rogers et al., 2000). Pair debugging by Murphy et al. shows how

to incorporate debugging into the commonly utilized pedagogical technique of pair

programming (Murphy et al., 2010). Simon et al. developed several videos to help CS 1

students when debugging programs (Simon et al., 2007). Each of these pedagogical

techniques has had a modicum of success. However, a few are only feasible in a smaller

classroom, and others use different programming languages than C++.

WWWMC Tool Development

Traditionally with student-instructor interactions, a student presents a problem

description, problematic code, and potential solutions to the instructor who provides

feedback and guidance. This process can be time consuming as mastery of the specific

piece of knowledge may require several such interactions. Furthermore, multiple students

may ask similar questions, requiring the instructor to provide the same guidance multiple

times. The goal of “What's Wrong With My Code”, is to streamline these multi-part and

potentially multi-day teaching moments into a single WWWMC question. An individual

 13

WWWMC question allows all students to encounter the same problem and receive

feedback.

We created the WWWMC problems to have four distinct parts, as shown in

Figure 2. The left column initially contains the problem or question, as well as the

problematic code. The right column contains potential answers. Each time a student

selects an answer in the right column, the left column updates with an explanation for

why the choice is correct or incorrect. Also, we use textual coloring and answer

highlighting to emphasize whether the selection is correct or incorrect. All our problems

come from a CS 1 course using the C++ programming language.

 Figure 2: Example “What's Wrong With My Code” problem

 14

The first part of the WWWMC question is a student question paired with code

derived from a student submission. We gathered student programming questions from

two years from course forum interactions, program submissions, and office hour

inquiries. From this, we isolated several pervasive and recurring issues to build our

question sets around. The question for each WWWMC problem covers a distinct issue

that many students encounter when learning to program for the first time. The problems

use C++ syntax, but the concepts are portable to other introductory programming

languages, such as Java. We developed over fifty problems and categorized them into

various CS 1 teaching topics, as shown in Table 1. Many of the categories and errors

overlap with the previous categorization by Garner, Haden, and Robin (Garner et

al., 2005). The first aspect of a traditional “What's Wrong” interaction is the student

presenting the problem to an instructor. In a WWWMC exercise, we present the problem

description and code from the student perspective. We edited the problem description for

spelling, grammar, and conciseness. Despite some alterations, we emphasize posing each

question as a student would. We trimmed the code portion of the questions to exclude any

unnecessary pieces of code to help focus the question but maintained the full program

aspect by presenting a piece of code that could be copied and pasted into an editor,

compiled, and executed. Lastly, we added code highlighting to focus the student on the

error.

The categories shown in Table 1 contain several distinct errors from both runtime

and compile-time error groupings. For our purposes, when referring to runtime, we mean

any error that occurs during program execution, such as logical bugs or thrown

 15

exceptions. Also, we have several style questions to help build a basis of proper style for

a novice programmer. For example, in Figure 2, we see a compile-time error from the

input and output problems. This is a common error that occurs when novice students

attempt to combine input and output statements when first learning. In Figure 4, we see

an example of a runtime error resulting from using variables before values have been

assigned to them.

Table 1: “What's Wrong With My Code” Question Categories

Figure 3: Example compile-time error from the String Member Functions category.

1. Style

2. Basic Input & Output

3. Basic Variables and Math

4. Random Numbers

5. Branching

6. String Member Functions

7. Loops

8. Functions

9. Vectors

 16

Figure 4: What's Wrong With My Code problem from the Basic Variables and Math

category

Figure 5: Example runtime error from the String Member Functions category

 17

If we delve into the String Member Functions category, we see more examples of

the mix of runtime and compile-time errors. These include syntax errors, such as leaving

off parentheses when invoking a function (shown in Figure 3) and runtime errors, such as

the out-of-range exception (shown in Figure 5). A combination of compile-time and

runtime errors allows students to learn about multiple types of errors while gaining

knowledge of how to fix specific errors.

As shown in Figures 2, 3, 4, and 5, each question has several potential solutions.

The solutions use student-centric wording just as in the problem descriptions. As with the

questions, we gathered many of the solutions from correct and incorrect student answers

to other student's inquiries about incorrect code. Additionally, we derived solutions from

correct and incorrect implementations of student programs. Most solutions are

a simple description of what is wrong with the code. Occasionally, a description requires

additional clarification with a code snippet (as seen in Figure 4). We present the potential

solutions in a multiple-choice layout. Using multiple-choice allows the student to easily

navigate through all the explanations by selecting the various solutions. Our approach of

providing errant code alongside multiple-choice options exposes the student to questions

they might not otherwise encounter during the course.

Each potential solution gives feedback. When the student selects a potential

solution, we show the corresponding feedback and explanation. We provide all feedback

and explanation statements from the instructor's perspective; we show examples of

feedback in Figure 2 and Figure 5. The explanation describes why the solution is correct

or incorrect as if an instructor is talking to a beginning programmer. Additionally, the

 18

explanation utilizes a green checkmark or red 'x' as well as colored text to denote whether

a solution is correct or incorrect.

Lastly, the explanations attempt to avoid using too much computer science

terminology. This is done to simplify the explanation and avoid confusing the student

with unfamiliar words or programming terms. The goal of the explanation is to provide

feedback on the potential solution and why the solution is correct or incorrect, not to

teach computer science terminology and definitions. The feedback provides immediate

justification for the correctness of a solution, rather than merely marking a question right

or wrong.

Study Implementation

We performed our initial study in two quarters, Spring and Fall. In each study,

students completed a pretest, a randomly assigned either an experimental or control

treatment, and a post-test. The experimental treatment option was the “What's Wrong

With My Code” exercises. In the Spring study, the control treatment used several

exercises with the Codelab (Arnow & Barshay, 1999) instructional programming

environment. In the Fall study, the control treatment used a home-grown automated

assessment system to replace submission to the Codelab environment. The exercises used

in the Fall study mimicked the Spring’s Codelab exercises but provided only correct or

incorrect marking with no guided feedback. We developed the second control treatment

for the Fall study because instructors opted not to use Codelab after the Spring quarter. In

each study, the control attempts to teach items similar to the WWWMC questions.

 19

Each study contained five parts, presented through a single web page, one part at

a time. We integrated the parts with a Google Form to allow data and timestamp

collection after each section. The five parts of the study included: background survey,

pretest, lesson or instruction, post-test, and follow-up survey. At the beginning of the

course, we provide a unique four-digit ID to each student. We used the ID within the

study to anonymize the results, assign course credit to the participants, and maintain

continuity in data collection across the multiple parts of the study.

The pretest and post-test were the same series of ten questions, comprising three

multiple-choice questions and seven free-response essay questions. Each of the seven

free-response questions required the student to write no more than a few lines of code.

Figure 6 shows two free-response questions. The third item in Figure 6 is an example of a

multiple-choice question. We informed participants that all questions in the pretest and

post-test are optional. Additionally, we informed all participants that they receive credit

based on participation, not performance on either the pretest or post-test.

1. Write an expression that calculates the floating-point value of the fraction 1213 /

57101.

2. Given the code above, write the code to store the floating-point average of x, y, and

z in the variable avg.

3. Which of the following is a character literal?

Figure 6: Example written response (1&2) and multiple choice (3) test questions. In

question 2, code precedes the question to declare and initialize variables. In question 3,

we present several C++ literals as multiple-choice options.

 20

To avoid grading bias toward a specific study, pretest over post-test, or toward a

specific lesson, the student answers were all combined regardless of the test, lesson, or

quarter. After merging the test responses, we randomized the collected student answers

before grading. To establish consistency in grading, we established a standard rubric for

each written question allowing partial credit between a score of 0 (no credit) and 1 (full

credit).

Study Participation Breakdown

Our study population included all students enrolled in the Introduction to

Computer Science course at the University of California, Riverside (UCR). Introduction

to Computer Science is the first course taken by all computer science majors at UCR. We

performed the study in two different quarters, but the on-track Fall quarter had many

more computer science majors. Even with the increase in computer science majors during

the Fall study, most participants did not have prior programming experience (66% of the

333 participants had no prior experience). Not every participant completed the study

correctly. For example, some participants completed the background section and skipped

the other sections. Additionally, some students in the course opted to skip the entire

study.

The Spring study had 201 total participants, seven of which were computer

science majors. The class breakdown of participants was 23% Freshmen, 34%

Sophomores, 20% Juniors, 19% Seniors, and 4% being either non-matriculated or outside

the typical classifications. The Fall study had 333 total participants, 80 of whom were

 21

computer science majors. The yearly distributions were 53% Freshmen, 17%

Sophomores, 14% Juniors, 9% Seniors, and 7% other.

After the study, we identified the exclusion criteria. To be included in the study:

(1) the student must complete all parts of the study, (2) the student must complete the

pretest, lesson, and post-test within eighty minutes, and (3) the student must have had no

prior programming experience. The first criterion ensures that the student was engaged in

the study enough to complete the five required steps. Our second criterion comes from

our study instructions, which asked all participants to complete the study in a single

sitting. An eighty-minute allotment allowed twenty minutes each for the pretest and post-

test, along with forty minutes for the lesson. Over 90% of the students that completed the

study were able to do so in under eighty minutes. Many of the remaining students took

several hours to complete all the parts, indicating they did not complete the study in one

sitting. Lastly, to control for knowledge variation between students with and without

prior programming experience, we included participants with no prior programming

experience.

With exclusion criteria 1 and 2, the Spring study had 128 eligible participants.

After applying all three exclusion criteria, 91 participants remained. With the Fall study,

267 participants remained after applying exclusion criteria 1 and 2, and 172 participants

remained after applying all three exclusion criteria.

 22

Table 2: Scores for Spring study out of 10 points

Results and Analysis

We analyzed the results of the study across three different scores: the average

pretest score, the average post-test score, and the performance improvement from pretest

to post-test in the Spring and Fall studies. Additionally, during the Spring quarter, we

used participant engagement scores, which we gathered during a follow-up survey using

a six-point Likert scale question with no neutral option.

As shown in Table 2, both the control lesson and the WWWMC lesson showed

improvements to the students’ test scores in the Spring study. Students taking the

WWWMC lesson posted a statistically better average improvement of 1.73 points (on a

scale of 0 to 10) versus students taking the alternate lesson who posted an average

improvement of 1.03 points (p-value 0.033). The 1.73 point improvement corresponds to

a 48% improvement on the pretest score and an actual grade percentage increase of

17.3%. When examining the post-test for differences to determine if the students

 23

achieved a different level of knowledge, we saw no significant difference between the

post-test averages for the two groups despite the average score being slightly lower for

the WWWMC group than for the Codelab group (p-value 0.162).

In the Spring study, we also evaluated whether students who were more engaged

with each of the lessons benefited more. First, we examined if there was a difference in

engagement between the two groups of students and found no significant difference

(p-value 0.47). We then compared the performance of students who reported that they at

least slightly agreed that they were engaged in the treatment. In this case, the WWWMC

group had an average score increase of 1.89, an average pretest score of 3.51, and an

average post-test score of 5.41. The Codelab group had an average improved score of

1.05, with averages scores of 4.38 and 5.43 for the pretest and post-test, respectively.

These differences were non-significant, but this may be due to small population size, as

only 34 students met the criteria for inclusion in this analysis.

When we go one step further and only consider individuals that replied "agree" or

"strongly agree" to the engagement question, the scores improve even more. The students

in the WWWMC group had an average improvement of 1.91 points with average scores

of 3.51 and 5.42 for the pretest and post-test. However, the scores for the Codelab group

are similar to those with lower levels of engagement, with an average of 0.97 points of

score improvement and pretest and post-test scores of 4.74 and 5.71. However, the

differences between the groups are non-significant, most likely due to the small

population that met the criteria for inclusion in this analysis.

 24

Table 2 shows that increased engagement corresponds to increased improvements

for students in the WWWMC group, but not for students in the control group. While this

evidence lacks statistical significance, it suggests that increased engagement in the

WWWMC treatment may contribute to improved outcomes.

The Fall study had results similar to those of the Spring study, as shown in

Table 3. The WWWMC group showed significant improvement from pretest to post-test

(p-value < 0.001). However, for the control group, while there were improvements from

pretest to post-test, these were not statistically significant.

The lack of improvement may have been due to the students performing a task

that had minimal feedback to help them solve the problem, additionally having only a

single exercise to complete may have prevented the students from encountering all the

potential errors before completing the submission.

Table 3: Scores for Fall study out of 10 points

 25

Students taking the WWWMC lesson in the Fall posted a statistically better

average improvement score of 1.16 points (a 24% improvement from the pretest) when

using two of the three exclusion criteria. When we apply all three exclusion criteria, the

improvement is 1.35 points (a 32% improvement from the pretest). Those are increases of

11.6% and 13.5%, respectively. Additionally, the students with the WWWMC treatment

benefited with significantly stronger post-test scores when compared to students with the

control treatment (p-value < 0.001).

A common sentiment among the follow-up feedback for the WWWMC treatment

stated that students enjoy knowing why something is correct versus only getting points. A

common myth, often reinforced by correct/incorrect auto graders, is that if a student got

the answer correct, then he or she clearly understands why. The explanations for correct

and incorrect answers create teachable moments, reiterating knowledge the student may

not have fully grasped. Of the students who took the WWWMC treatment, 78% of the

students stated they explored both correct and incorrect answers to read the provided

instructor feedback.

The results from Spring and Fall allowed us to conclude that the “What's Wrong

With My Code” questions were a positive influence on the success of the students. The

WWWMC treatment provided significant changes in scores, often increasing the

student's post-test score an entire letter grade. With this knowledge in mind, we moved to

the third part of our implementation: integrating WWWMC exercises across the entire

introductory computer science course.

 26

Full Course Integration

Working with Zyante (zyBooks, 2015), the research team created a supplemental

zyBook for the students of the Winter and Spring 2 quarters. We named the zyBook

PreLab to designate the time for the completion of all activities in the supplemental text.

The “What's Wrong With My Code” chapter had ten sections (one per week of the

quarter) comprising an introduction and nine sections containing WWWMC exercises.

The introduction explained the purpose of the WWWMC questions and offered a few tips

for effective use of the questions, based on prior feedback from students. Instructors

incorporated all of the exercises in our supplemental textbook into the required weekly

student workload.

To compare the effectiveness of the fully integrated WWWMC problems to

previous studies, we use the survey and post-test from the Spring and Fall studies. With

no easy control for the consumption of knowledge beyond the current workload, we did

not conduct a pretest in the two terms using fully integrated WWWMC exercises (Winter

and Spring 2). We compare the singular survey to the previous post-test scores because

students would complete all relevant WWWMC questions before the singular survey.

When analyzing the data, we applied exclusion criteria 1 & 3. We modify exclusion

criteria 1 to require that all WWWMC exercises be completed before the survey. Because

the exercises in this study did not mandate completion in a single sitting, we did not use

exclusion criteria 2.

 27

 Winter Spring 2

Participants (N) 118 147

Exclusion Criteria 1 & 3 1 & 3

WWWMC Test 6.75 6.46

Table 4: Scores for Winter and second Spring study out of 10 points.

Table 4 shows us the results of the Winter and Spring 2 studies. The Winter study

had 118 participants, 4 of which were computer science majors. The Spring 2 study had

147 participants, 14 of which were computer science majors. We administered a single

test using the post-test questions from the Spring and Fall studies. Students completed the

singular test for Winter and Spring 2 in the same timeframe in the academic term as the

post-test of the Spring and Fall studies. The average scores (in a range from 0 to 10) for

the test administered in the Winter and Spring 2 studies were 6.75 and 6.46 points,

respectively. When we compared these results to the post-test results of Fall and Spring,

the Winter and Spring 2 scores were significantly better than the Spring and the Fall

scores, with p-values less than 0.001 for comparisons with Winter and p-values less than

0.009 for comparisons with Spring 2. These test results show that the complete

integration of WWWMC into the course further benefited the students.

In addition to the one test, we collected all the errors that the students encountered

during all four quarters. For errors covered within “What's Wrong With My Code”

exercises we analyzed whether the percent of students that encountered the error was

different during full quarter integration that the percent of students that encountered the

error given no exposure to “What's Wrong With My Code” treatment during the quarters

 28

before full concept integration. We collected errors by redirecting the compiler (g++)

with a script that automatically filled in a Google form when an errant compilation

occurred. The redirection script allowed us to gather errors for students, in all four terms,

that used the online IDE for the course. When students initially set up the script, we

triggered a Google form to show the instructors that a student set up an online IDE

workspace. We calculated percentages for each error string in Table 5 from the total

number of participants that set up our version of the IDE with compiler redirection. This

means we excluded students enrolled in the course who use another IDE because we do

not have error encounter information for those students

Error Search String Spring 1* Fall* Winter Spring 2

expected ';' before '{' 93.69% 59.63% 76.00% 79.39%

no return statement in function

returning non-void
47.75% 43.58% 99.11% 97.33%

expected primary-expression

before '<<'
63.06% 44.95% 58.22% 60.69%

operator<< 56.76% 67.89% 85.78% 87.02%

operator>> 75.68% 91.74% 96.00% 96.56%

invalid use of member 79.68% 68.35% 83.11% 85.50%

void value not ignored 97.30% 91.28% 100.00% 100.00%

cannot be used as a function 81.98% 69.72% 92.44% 91.98%

assignment of read-only variable 100.00% 95.41% 98.22% 99.24%

Table 5: Percent of students to not encounter the error per quarter, a higher percentage is

better. *Spring 1 & Fall data from students not exposed to WWWMC treatment.

 29

In Table 5, we show the percent of students that never encounter the various types

of errors in each quarter. The error search strings listed in Table 5 are the strings used to

search the compiler output. A few error strings map to multiple compiler errors, such as

“operator<<” which will find all errors containing improper use of the C++ output

operator. We group these similar errors into a single count because the groups of

WWWMC exercises covered several different potential errors on a concept, such as the

proper use of the output operator.

As shown in Table 5, full integration does not win out in every comparison, but

often, the comparison results are in favor of the quarters with full WWWMC integration.

For example, errors containing the input operator >> (row 5 in Table 5) showed

significantly reduced encounter rates during the fully integrated quarters of Winter and

Spring 2. However, one error that showed a significant reduction in the control quarters

was the expected semicolon error (first row in Table 5). For this error, the rates for

Winter and Spring 2 (the quarters with WWWMC exercises) were similar, but the percent

of students in Spring 1 that did not encounter the error was significantly better than the

fully integrated quarters. Similar results that favor quarters without WWWMC exercises

include errors for expecting primary expressions before the << operator (row 3 in Table

5) and assignment into a read-only variable (last row in Table 5).

The fully integrated quarters were significantly better in six cases, and Spring 1

was significantly better in two cases (p-values < 0.01). We highlighted the significant

differences in Table 5. The rows in Table 5 with the following search strings showed

significant improvements: expected ‘;’ before ‘{‘, no return statement, operator<<,

 30

operator>> (Spring 1), invalid use of member, void value not ignored, and cannot be used

as a function. The positive results showing the percent of students that never encountered

an error help further support our claim that “What's Wrong With My Code” exercises

benefit the students. Additional analysis of the association between treatment and errors

is in Appendix A.

Future Work

We hope to work with Zyante (zyBooks, 2015) textbooks to create a free online

textbook containing all the “What’s Wrong With My Code” problems. At present, the

questions are available only upon request. The free zyBook would allow open access to

our WWWMC problem sets. We sorted our questions into the concept groups described

in the WWWMC Tool Development section. Additionally, we would like to translate the

questions into other programming languages leading to an entire zyBook of WWWMC

problems with chapters for different programming languages.

We would like to break off a subset of WWWMC specifically for style. Style is

often a "learn through experience" endeavor. We believe that using WWWMC type

questions can help eliminate some of the programming style frustrations encountered by

novice programmers when adapting to the programming style of an instructor.

Lastly, we are investigating whether our “What’s Wrong With My Code” problem

set can develop into a more structured tutoring system. We are unsure whether this would

create further benefit for students, but it is certainly worth investigating, given our

positive results thus far.

 31

Conclusion

The “What's Wrong With My Code” teaching instrument proved beneficial to

student learning. In all the studies we conducted, the students showed improvement from

pretest to post-test when using the WWWMC lessons. As we continued to develop and

enhance this tool, the scores for the students using the WWWMC tool also improved. The

improvement to student test scores for the WWWMC lesson participants was

significantly better than scores for students taking the control lesson in the Fall study with

p-values less than 0.001. Additionally, we show reduced error encounters for errors

covered by the WWWMC exercises in the quarters with full integration of our “What’s

Wrong With My Code” exercises.

Ultimately, we believe our more guided approach with curated problems and

solution-explanation pairings helps minimize some of the known drawbacks in

automatically assessing open-ended programming problems. First, our problems provide

concise instructor feedback. Second, the streamlined nature of presenting all the pieces

a -- the problem the errant code, the solution, and the feedback -- in one exercise helps to

reinforce the connection between all the pieces. Third, to make the questions easily

understandable, we frame them from the student’s perspective. If the student is still

struggling, WWWMC provides the student with the code, solutions, and feedback to

provide contextual support in understanding the problem. Lastly, every student that

completes an exercise will have seen the problem, solution, feedback coupling. By

contrast, students with traditional instructional methods may fail to learn an important

piece of knowledge if they happen not to encounter a particular mistake in a traditional

 32

programming exercise. In summary, our results demonstrate that the integration of

“What's Wrong With My Code” problems within an introductory programming course is

beneficial to student learning.

 33

References

Arnow, D., & Barshay, O. (1999, November). WebToTeach: An interactive focused

programming exercise system. In FIE'99 Frontiers in Education. 29th Annual

Frontiers in Education Conference. Designing the Future of Science and

Engineering Education. Conference Proceedings (IEEE Cat. No. 99CH37011 (Vol.

1, pp. 12A9-39). IEEE.

Barke, H. D. (2015). Learners Ideas, Misconceptions, and Challenge. Chemistry

education, 395-420.

Denny, P., Luxton-Reilly, A., & Tempero, E. (2012, July). All syntax errors are not

equal. In Proceedings of the 17th ACM annual conference on Innovation and

technology in computer science education (pp. 75-80). ACM.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational

Computing Research, 2(1), 57-73.

Edgcomb, A., & Vahid, F. (2014, June). Effectiveness of online textbooks vs. interactive

web-native content. In 2014 ASEE Annual Conference.

Edwards, S. H., & Perez-Quinones, M. A. (2008, June). Web-CAT: automatically

grading programming assignments. In ACM SIGCSE Bulletin (Vol. 40, No. 3, pp.

328-328). ACM.

Garner, S., Haden, P., & Robins, A. (2005, January). My program is correct but it doesn't

run: a preliminary investigation of novice programmers' problems. In Proceedings

of the 7th Australasian conference on Computing education-Volume 42 (pp. 173-

180). Australian Computer Society, Inc.

Ginat, D., & Shmalo, R. (2013, March). Constructive use of errors in teaching CS1. In

Proceeding of the 44th ACM technical symposium on Computer science education

(pp. 353-358). ACM.

Farrell, R. G., Anderson, J. R., & Reiser, B. J. (1984, August). An Interactive Computer-

Based Tutor for LISP. In AAAI (pp. 106-109).

Mathis, R. F. (1974). Teaching debugging. ACM SIGCSE Bulletin, 6(1), 59-63.

Murphy, L., Fitzgerald, S., Hanks, B., & McCauley, R. (2010, August). Pair debugging: a

transactive discourse analysis. In Proceedings of the Sixth international workshop

on Computing education research (pp. 51-58). ACM.

 34

Rogers, F., Huddle, P. A., & White, M. D. (2000). Using a teaching model to correct

known misconceptions in electrochemistry. Journal of chemical education, 77(1),

104.

Simon, B., Fitzgerald, S., McCauley, R., Haller, S., Hamer, J., Hanks, B., ... & Thomas,

L. (2007, December). Debugging assistance for novices: a video repository. In

ACM SIGCSE Bulletin (Vol. 39, No. 4, pp. 137-151). ACM.

Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth, J. K., & Padua-Perez, N.

(2006, June). Experiences with marmoset: designing and using an advanced

submission and testing system for programming courses. In ACM SIGCSE Bulletin

(Vol. 38, No. 3, pp. 13-17). ACM.

Vanlehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., ... &

Wintersgill, M. (2005). The Andes physics tutoring system: Lessons learned.

International Journal of Artificial Intelligence in Education, 15(3), 147-204.

Wood, S. L. (1996). A new approach to interactive tutorial software for engineering

education. IEEE transactions on Education, 39(3), 399-408.

zyBooks. (2015). Animated Interactive Learning. Retrieved February, 2016, from

http://www.zyante.com

 35

Chapter 3: Improving Student Self-efficacy Using Exercises with Erroneous Code

Abstract

Research has shown that self-efficacy, a student's confidence in his or her ability,

contributes to student success. Here, we examine if teaching students to recognize

common programming errors increases their self-efficacy in an introductory

programming course. We provided students with exercises containing examples of

typical novice programming errors and methods for fixing them. At the beginning of the

course, we assessed self-efficacy and administered a test to measure programming

competence. We repeated these measurements at the end of the course. To assess self-

efficacy, students rated their confidence in completing various programming tasks on a

scale of 0 to 100. The test had fourteen questions; twelve were short answer questions,

and two were multiple-choice questions. Short answer questions required the students to

write at most a few lines of C++ code, with most requiring only a single line. We

analyzed student self-efficacy in relation to the pre- and post-test, assignment grade, final

exam grade, and overall course grade. Our research reinforces prior research

demonstrating a correlation between student assessment grades and student self-efficacy.

We also found that our exercises provided significant self-efficacy improvements during

an experimental term as compared to a control term across our eleven measurers for

student self-efficacy (p-value < 0.05).

 36

Introduction

Believing in oneself can go a long way. Throughout lower-level computer science

courses, instructors will note that being confident will, in turn, yield benefits to student

performance on assessments. However, encouraging students to have confidence in their

abilities can only go so far, especially when the students are faced with finding and fixing

errors in their code. In our past research, we demonstrated that presenting students with

examples of erroneous code and asking them to identify the errors improved students’

performance in an introductory computer science course (Koehler, 2016). In Chapter 2,

we described our “What’s Wrong With My Code” system. An example “What’s Wrong

With My Code” exercise is in Figure 7, and Appendix D contains the full set of exercises.

Figure 7 shows an example of one of these exercises. Here we examine if this system

improves student self-efficacy in an introductory computer science course.

Figure 7: Example of one of our exercises.

 37

Background

Research both inside and outside of computer science has examined student self-

efficacy and ways of improving it. The concept of self-efficacy, introduced by Albert

Bandura (1986), comprises one’s confidence in one’s ability to complete a task.

Following up on this initial concept description, Zimmerman, Bandura, and Martinez-

Pons (1992) studied the interplay between goal setting and student self-efficacy. Outside

of computer science, a multitude of discipline-specific studies evaluated the relationship

between self-efficacy and error detection (Zamora et al., 2018; King et al., 2013;

Kluge et al., 2011; Winne and Nesbit, 2009; and Lorenzet et al., 2005).

Specifically looking at computer science education, we find prior work evaluating

course changes and the use of specific instruments or teaching style changes to affect

self-efficacy. For example, Kinnunen and Simon (2011) analyzed prior results about

student perceptions and self-efficacy evaluations in terms of Bandura’s established

theories to outline future course modifications and interventions. Ramalingam and

Wiedenbeck (1998) developed a 32-item scale to measure programming self-efficacy in

introductory computer science courses. Many studies use Ramalingam and Wiedenbeck’s

all-encompassing scale to evaluate student self-efficacy on a wide range of programming

tasks of the sort used in a semester-long introductory computer science course. Wilson

and Shrock (2001), Campbell et al. (2016), and Lambert (2015) all evaluated several

factors of success in introductory computer science courses, including self-efficacy. All

three studies reinforced prior research correlating student performance and student self-

efficacy. Etsey and Coady (2017) evaluated whether students understand the connection

 38

between exam performance and problem-solving, and they discovered that students who

perform poorly on the final exam are also confident that looking at solutions to problems

prepares a student to solve future similar problems. Zingaro (2014) determined that peer

instruction improves student self-efficacy significantly.

Study Design

Our study evaluates student self-efficacy improvements for students taking a ten-

week introductory programming course using the C++ programming language. (Such

courses are often called “CS 1” despite the actual designation in a course catalog.) At the

beginning of the course, we conducted a survey to assess student self-efficacy across

several tasks. Additionally, we administered a test to measure programming competence.

We repeated our measurements at the end of the course. We also used a survey to gather

additional demographic information such as major and prior programming history. We

conducted the study in three different terms, one control term and two experimental

terms. Each of the three terms had the same course structure and materials, with the

experimental terms adding our erroneous code exercises to the weekly student workload.

The same instructor taught all three courses with the same course layout and materials.

Instrument Development

Bandura (2006) outlined a method of developing self-efficacy scales. We utilize

Bandura’s guide to implement our eleven-question survey to measure student self-

efficacy. The survey measures a student’s self-efficacy in C++ programming skills

learned in a CS 1 course in C++ as well as general skills developed in any CS 1 course.

As suggested by Bandura (2006), we asked students to rate their confidence from 0 to

 39

100 on specific tasks after completing a familiarization question. The familiarization

question introduces the student to rate their confidence level to complete a common task.

Our familiarization question asks students to rate their confidence (from 0 to 100) in their

ability to pick up weights of different sizes varying from ten pounds to 500 pounds. Our

self-efficacy scale asked students to rate their confidence in the following eleven tasks.

1. Program with proper style.

2. Tell another student what proper style is.

3. Outline a series of steps to solve the problem.

4. Write a program in code-like statements (pseudocode).

5. Write a C++ program to solve the problem on a computer with a compiler.

6. Write a solution to the problem on paper using proper C++.

7. Describe your solution to another student without showing them any code.

8. Discover errors in a program without a compiler (g++).

9. Fix compile-time errors.

10. Fix runtime or logic errors.

11. Describe how to fix an error to another student without providing them any

code.

 40

Control (n = 57) Experiment 1 (n = 111) Experiment 2 (n = 67)

Week 1 0.948 Week 1 0.961 Week 1 0.979

Week 10 0.966 Week 10 0.956 Week 10 0.954

Table 6: Cronbach’s alpha calculations per instrument use.

Instrument Reliability

We performed a reliability analysis by calculating the Cronbach’s alpha for each

use of the 11-item instrument. We performed this calculation six times, once for the

pretest and once for the post-test, for all three terms. As shown in Table 6, all of the

alphas are over 0.90, with five of the six being over 0.95. Thus, the reliability of our scale

is in line with other self-efficacy measurement instruments utilized in computer science

and computing education. Ramalingam and Wiedenbeck (1998) developed a 32-item

scale to measure programming self-efficacy with an overall alpha of 0.98, and

instruments prior to Ramalingam and Wiedenbeck’s reported alphas ranging from 0.92 to

0.97 (Torkzadeh and Koufteros, 1994; Murphy et al., 1989; Loyd and Gressard, 1984).

Results and Analyses

We compare results across three terms, all taught by the same instructor.

However, the enrolled student population contained zero computer science majors in the

control term as well as one of the two experimental terms, and under ten majors in the

other experimental term. Since zero computer science majors existed in the control term,

we exclude all computer science majors during our analyses across terms. Additionally,

to control for variable levels of programming knowledge in students with prior

programming knowledge, we exclude all students with prior programming knowledge

 41

from our analyses. After the two population restrictions, the control term had 57

participants remaining, the first experimental term had 111 participants remaining, and

the second experimental term had 67 participants remaining.

As expected from prior research on student self-efficacy improvements in

education, student self-efficacy increased significantly from week 1 to week 10 for all

three terms. Table 7 shows the mean and standard deviation of the 11 self-efficacy

measures from week 10 for all three terms. The table also includes the gains from week

one to week ten. To control for differing week-one scores between the control and

experimental groups, we performed an ANCOVA analysis to determine the statistical

significance for the differences in the week-10 scores for each of the measures.

Additionally, we computed each student’s overall self-efficacy score by taking the

average of all eleven measures for that student.

We performed an ANCOVA analysis to determine the significance of the

difference in the overall week-10 student self-efficacy scores across the three terms

(shown in the “All Measures” row of Table 7). For the first experimental term, all

measures except measure one show statistically significant improvements in student self-

efficacy scores (p-values < 0.05) compared to the control. For the second experimental

term, all eleven measures show statistically significant improvements (p-values < 0.05)

compared to the control term. As the only difference between the control and

experimental course offerings was the inclusion of our exercises, we can conclude that

our exercises are beneficial to improving student self-efficacy.

 42

 Control Experiment 1 Experiment 2

Measure Mean Std. Dev Mean Std. Dev Mean Std. Dev

1 73.16

(15.79)

20.04 75.85

(34.86)

18.19 74.79*

(54.04)

17.17

2 64.21

(15.18)

21.79 69.99**

(35.03)

20.51 69.63**

(52.97)

20.06

3 66.75

(7.28)

23.33 74.02**

(23.60)

21.37 75.67**

(44.78)

17.27

4 64.47

(14.12)

20.57 73.19**

(35.77)

22.09 72.91**

(48.88)

19.25

5 67.95

(6.81)

19.82 76.67**

(39.15)

19.15 74.55**

(56.87)

18.44

6 63.47

(6.02)

20.10 69.23**

(33.30)

20.94 70.00**

(51.49)

18.43

7 60.18

(8.26)

21.64 65.46*

(30.05)

23.88 65.55**

(47.72)

22.91

8 55.70

(8.95)

24.68 63.42**

(30.05)

20.79 62.40**

(43.85)

22.11

9 65.26

(8.60)

25.723 70.66*

(37.64)

21.58 69.75*

(52.57)

21.45

10 64.91

(10.61)

22.77 68.55*

(35.11)

20.70 68.58**

(52.42)

20.87

11 56.14

(8.12)

25.44 62.75**

(32.20)

22.07 59.78**

(44.34)

24.16

All

Measures

63.84

(9.98)

19.38 70.00**

(33.34)

17.57 69.42**

(49.99)

16.80

Table 7: End of term self-efficacy averages per measure with the score change between

week 1 and week 10 shown in parentheses.

** indicates p-value < 0.01, * indicates p-value < 0.05

 43

We also evaluated the correlation between student self-efficacy scores and a

student’s programming assignment’s grade, midterm grade, and final exam grade. We

found that the correlations were significant for all three terms (p-values < 0.05). These

findings reinforce previously mentioned related work examining the correlations between

learning outcomes and self-efficacy.

Limitations

One issue with our style of study design is the self-selection bias introduced by

students completing surveys. To counteract the bias, the instructor provided extra credit

to students participating in our study. Our study spanned only three terms, and when we

control for the instructor, three possible terms remain for comparison. Selecting courses

taught by this instructor resulted in student population controls that eliminated computer

science majors and students with prior programming knowledge before our analyses.

Having additional terms would allow the selection of a different instructor and potentially

allow the inclusion of the two excluded populations.

Conclusion

In this study, we analyze the effect of using exercises containing erroneous code

to improve student self-efficacy in an introductory computer science course. Students in

the two experimental terms used our “What's Wrong With My Code” exercises as part of

their weekly workload. Students in the control term did not use our exercises. Instruction

in the three terms was otherwise identical. Students completed a survey at the start and

end of the quarter to self-assess their confidence levels from zero to one hundred on

eleven different tasks. Self-efficacy improved for all eleven tasks across all three terms.

 44

For ten of the eleven measures and the overall student self-efficacy score, both

experimental terms showed statistically significant improvements in student self-efficacy

compared to the control term (p values < 0.05). The other measure showed statistically

significant improvement in one of the two experimental terms (p value < 0.05). With this

evidence, we conclude that our exercises do contribute to the improvement of student

self-efficacy in an introductory computer science course. These results demonstrate one

more benefit for including our “What's Wrong With My Code” exercises in introductory

computer science courses.

 45

References

Bandura, A. (1986). The explanatory and predictive scope of self-efficacy theory. Journal

of social and clinical psychology, 4(3), 359-373.

Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ,

1986.

Bandura, Albert. "Guide for constructing self-efficacy scales." Self-efficacy beliefs of

adolescents 5.307-337 (2006).

Estey, A., & Coady, Y. (2017, June). Study Habits, Exam Performance, and Confidence:

How Do Workflow Practices and Self-Efficacy Ratings Align?. In Proceedings of

the 2017 ACM Conference on Innovation and Technology in Computer Science

Education (pp. 158-163).

Campbell, J., Horton, D., & Craig, M. (2016, July). Factors for success in online CS1. In

Proceedings of the 2016 acm conference on innovation and technology in computer

science education (pp. 320-325).

King, A., Holder, M. G., & Ahmed, R. A. (2013). Errors as allies: error management

training in health professions education. BMJ Qual Saf, 22(6), 516-519.

Kinnunen, P., & Simon, B. (2011, August). CS majors' self-efficacy perceptions in CS1:

results in light of social cognitive theory. In Proceedings of the seventh

international workshop on Computing education research (pp. 19-26).

Kluge, A., Ritzmann, S., Burkolter, D., & Sauer, J. (2011). The interaction of drill and

practice and error training with individual differences. Cognition, Technology &

Work, 13(2), 103-120.

Koehler, A. T. (2016). What's wrong with my code (wwwmc). In 2016 ASEE Annual

Conference & Exposition, number (Vol. 10, p. 27196).

Lambert, L. (2015). Factors that predict success in CS1. Journal of Computing Sciences

in Colleges, 31(2), 165-171.

Lorenzet, S. J., Salas, E., & Tannenbaum, S. I. (2005). Benefiting from mistakes: The

impact of guided errors on learning, performance, and self‐efficacy. Human

Resource Development Quarterly, 16(3), 301-322.

Loyd, B. H., & Gressard, C. (1984). Reliability and factorial validity of computer attitude

scales. Educational and psychological measurement, 44(2), 501-505.

 46

Murphy, C. A., Coover, D., & Owen, S. V. (1989). Development and validation of the

computer self-efficacy scale. Educational and Psychological measurement, 49(4),

893-899.

Torkzadeh, G., & Koufteros, X. (1994). Factorial validity of a computer self-efficacy

scale and the impact of computer training. Educational and psychological

measurement, 54(3), 813-821.

Winne, P. H., & Nesbit, J. C. (2009). 14 Supporting Self-Regulated Learning with

Cognitive Tools. Handbook of metacognition in education, 259.

Zamora, Á., Súarez, J. M., & Ardura, D. (2018). A model of the role of error detection

and self-regulation in academic performance. The Journal of Educational Research,

111(5), 595-602.

Zimmerman, B. J., Bandura, A., & Martinez-Pons, M. (1992). Self-motivation for

academic attainment: The role of self-efficacy beliefs and personal goal setting.

American educational research journal, 29(3), 663-676.

Zingaro, D. (2014, March). Peer instruction contributes to self-efficacy in CS1. In

Proceedings of the 45th ACM technical symposium on Computer science education

(pp. 373-378).

 47

Chapter 4: Teaching Programming Style in CS 1

Abstract

Students in introductory computer science courses (CS 1) typically receive little

formal instruction in proper programming style. Students may gain a limited

understanding of proper style by reading code samples, observing an instructor write

code with proper style, or by receiving feedback on homework submissions. In our

research, we evaluate the effectiveness of an alternative pedagogical approach in which

we provide students with brief instruction on proper style, and then students critique and

fix examples containing improper style. Our research answers three questions: First, will

students use proper style if they know each program receives a style grade? Second, does

the student's ability to use proper style correlate with academic performance? Third, do

our exercises increase the student's ability to employ proper style? We investigated the

first two of our research questions using data from three CS 1 courses with distinct forms

of style assessment: 1) no style grading and no feedback, 2) automated style grading with

feedback, and 3) hand-graded style with feedback. We investigated the third research

question by augmenting the first two course forms with our pedagogical approach. In all

courses, students use the same textbook, complete similar assignments, receive a

programming style guide at the beginning of the term, and experience similar examples in

lectures. We found that simply having a style grade is insufficient. Our results show that

automatic assessment with feedback is the best route to proper style adoption. Our

approach shows promise in increasing student use of proper programming style on

programming assignments with and without automatic assessment.

 48

Introduction

Teaching programming style is an afterthought for many introductory computer

science courses (CS 1). Programming style is never the primary subject of a text or

lecture, and students learn proper programming style only through years of watching,

reading, and doing rather than through instruction and assessment. Students may

eventually obtain an understanding of and reasoning behind proper programming style,

but the process can leave students frustrated, cause unnecessary delays in debugging, and

increase the time needed for instructors to provide help. Teaching and enforcing proper

programming style at the CS 1 level can set a student on the correct path of using proper

style and reaping the benefits of proper style from the beginning of a student’s computer

science education.

In this paper, we present our research that evaluates the usefulness of assessing

proper programming style and present our exercises as a teaching implement that

integrates into current introductory computer science courses without the need for content

replacement. Our research answers three questions: First, will students use proper style if

they know each program receives a style grade? Second, does the student's ability to use

proper style correlate with academic performance? Third, do our exercises increase the

student's ability to employ proper style? We investigated the first two of our research

questions using data from three CS 1 courses with three distinct forms of style

assessment: 1) no style grading and no feedback, 2) automated style grading with

feedback, and 3) hand-graded style with feedback. We investigated the third research

question by using our style exercises with the first two of these forms of style assessment.

 49

Background

Dennis Ritchie invented the C programming language in 1974, and the language

became popular throughout the 1980s after the first release of The C Programming

Language (K&R C) in 1978 (Kernighan and Ritchie, 2006). Between the invention of C

and the release of K&R C, Kernighan and Plauger (1974) investigated what proper

programming style and structure should be and made their arguments with a series of

examples. However, a dearth of research into what proper style is and how to teach it has

continued to exist after Kernighan and Plauger’s work. Jumping a decade, Oman and

Crook (1988) separated style into two categories, typographical and structural, in their

pursuit of creating better style guidelines and automatic style assessment. Following their

work, Oman and Cook (1990) created a taxonomy for programming style and

demonstrated, for the first time in decades, the impact of teaching programming style.

Since Oman and Cook’s work, the C programming language is now the parent

language of many current programming languages, including C++ and Java, which are

common programming language choices for introductory computer science courses. To

support growing class sizes, a handful of researchers have looked for alternative methods

of teaching style, such as automatic assessment tools to help grade style and provide

feedback. For example, Ala-Mutka et al. (2005) developed an automatic C++ style

analyzer for deployment in introductory computer science courses. In “Effectively

teaching coding standards in programming,” Xiaosong Li and Christine Prasad (2005)

question several students about coding standards to determine the importance of style

from the student’s perspective. They discovered that students believe in assessing and

 50

teaching coding standards, but students prefer to learn through examples and practice. As

a follow-up, Li (2006) used peer review as a teaching and assessment method for

programming style. Li’s case study provided anecdotal results demonstrating the

usefulness of peer review. However, a student that does not understand style may not be

able to peer review another student’s style. We believe teaching style directly through our

exercises is a more straightforward approach to build from the results of Li and

Prasad (2005).

Previous research has outlined several potential benefits of teaching programming

standards. To this prior research, we provide our pedagogical contribution of teaching

style through exercises containing erroneous style examples for use at the CS 1 level.

Exercise Development & Implementation

The APA Dictionary of Psychology defines cognitive load as the amount of

mental resources required to complete a task (VandenBos, 2007). Cognitive load has

three distinct types, intrinsic, extraneous, and germane. Extraneous cognitive load relates

to the presentation style of the material and the effort placed into parsing or interpreting

the presentation. Chandler and Sweller (1991) use cognitive load theory to outline

guidance for exercise creation, concentrating on reducing extraneous load by reducing the

exercise presentation complexity. Within our university’s version of CS 1, instructors

provide a style guide to students as the primary instructional tool for teaching proper

programming style. We used Chandler and Sweller’s guidance to reduce the style guide

from 7 pages of text and examples to create the following 15 concrete rules for proper

programming style in our version of CS 1.

 51

1. Indent each block of code 3 spaces beyond the previous indentation level. A

block of code is code between a pair of left and right curly braces. One

indentation level is three spaces. The global block, function headers, and

everything outside function bodies, start with zero indentation.

2. Only one curly brace can exist on a single line.

3. Indent any line that continues from a prior line one level beyond the original

line.

4. Comments and vertical whitespace should help identify and visually separate

logical code blocks.

5. Initialize variables to literals, not expressions.

6. Variables must have well thought out names, and names are usually nouns.

7. Variables must use camel casing style casing. The first letter is lowercase, and

then the first letter in each new word of the variable name is uppercase, such

as personName.

8. A conditional expression should not contain any comparisons to the literal

values of true or false.

9. All branches and loops must use curly braces to enclose code.

10. The opening curly brace for all branches and loops must be on the same line

and one space after the terminating parenthesis of the conditional expression.

11. Indent all terminating curly braces to the initial indentation level, and the

curly braces must be alone on the syntax line.

12. Function headers have zero indentation.

 52

13. Functions have an opening curly brace immediately following the header, or

the curly brace may go on the line after the function header by itself.

14. If a function header is too long, continue the function header on the next line,

but remember to indent the continuation line one indentation level.

15. The function body or implementation code should follow all previously

outlined style guides.

Our past research establishes the benefits of teaching with examples of errors and

establishes a core exercise structure to use when building exercises (Koehler 2016). We

used our prior research to develop eight exercises to teach programming style. We

integrated the eight exercises into the weekly student workload across the first five weeks

of the term. In our CS 1, all syntax learned after week 5 follows one or more style rules

established in the first five weeks of exercises, such as when students learn about vectors.

Students complete our exercises shortly after learning new C++ syntax. Figure 8 shows

one example of the exercises (all eight are in Appendix E). As illustrated in Figure 8, our

exercises present style rules sequentially, and each rule is presented along with a list of

rules that have been previously taught. We designed this style of presentation to reduce

unnecessary cognitive load.

Research Questions

Our research answers three questions: First, will students use proper style if they

know they will receive a style grade on each assignment? Second, does the student's

ability to use proper style correlate with academic performance? Third, do our exercises

increase the student's ability to employ proper style? We investigated the first two of our

 53

research questions using data from three CS 1 courses with distinct forms of style

assessment: 1) no style grading and no feedback, 2) automated style grading with

feedback, and 3) hand-graded style with feedback. We investigated the third research

question by using our style exercises with the first two of these forms of style assessment.

Figure 8: Example of an exercise teaching programming style for variables.

 54

Methodology

To compare style across terms, we created a style checker to mark seven types of

style errors covered by the fifteen rules. Our checker output the number of style errors per

group and the total style errors for a student’s submission. Each of the following style

checks is specific to our CS 1 course implementation; other instructors may choose

different rules for grading. Our rules, test harnesses, and approach to grading can serve

as a model for other approaches to grading style. The Python code we use to test style

errors is included in Appendix B. The seven style elements we check are:

1. Global variables. Our CS 1 instructors prohibit the use of global variables.

Students may use global variables to circumvent the need to learn scope rules

and to learn how to send and return values from functions.

2. Existence of comments. Checking the usefulness of comments is a difficult

task. Our CS 1 instructors simply want to make sure students use comments.

3. Line length must be 80 characters or less. Our CS 1 instructors use a common

programming standard of avoiding long lines of syntax. Our CS 1 instructors

define long lines as syntax lines with more than 80 characters.

4. Indentation must use spaces. Our CS 1 instructors allow only the use of spaces

for indentation, and tabs are prohibited.

5. Proper conditional expressions. Our CS 1 instructors do not allow students to

create conditional expressions with direct comparisons to literal values of true

or false. A conditional expression using the literal value of true or false is

improper.

 55

6. One curly brace per syntax line. Our CS 1 instructors require that no more

than one curly brace is used on a line to reduce code complexity.

7. Proper indentation. Our CS 1 instructors allow consistent indentation between

two and six spaces. Our style checker attempts to determine the number of

spaces used for indentation in each file. If a value cannot be determined, the

checker uses three spaces as a default.

 Term: A B C D E F G H I

On-track ▪ ▪ ▪ ▪

Style Guide ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪

Style Exercises ▪ ▪ ▪

Style Grade ▪ ▪ ▪ ▪ ▪

Feedback on

programming

style in

homework

assignments

Human

Generated
▪ ▪

Machine

Generated
 ▪ ▪ ▪

none ▪ ▪ ▪ ▪

Table 8: Important characteristics of the course offerings included in this study.

Our study included student program submissions from seven offerings of CS 1.

Table 8 lists the important differences between these course offerings. Some of the

courses were offered during the Fall quarter. We refer to these as on-track offerings (A,

C, E, and G), as that is when first-year students in computer science are supposed to take

 56

the course. In all terms, students were provided with a six-page style guide. During our

style exercise development, we used this guide as the basis of our fifteen style rules. We

deployed our style exercises during three of the terms: G, H, and I. Five terms (A, B, E,

F, and I) had programming assignments with a style grade. All of the terms with a style

grade incorporated style feedback to justify the assigned style grade. Two types of style

feedback were provided to students: human-generated and machine-generated. In terms A

and B, instructors provided human-generated feedback on student programming style

when hand grading student submissions. In terms E, F, and I, the autograder provided

machine-generated style feedback immediately following each student submission. In

terms, C, D, G, and H, students received no programming style feedback on their

submissions, nor did they receive a grade for style. In terms that used the autograder,

students were allowed unlimited attempts to submit programming assignments. When

possible, we gathered data from both the first and final submission to the autograder.

Term

Type

Term

Description and

Submissions

Description

Style

Feedback

Style

Grade

Average

Errors per

Submission

(Std Dev)

Average non-

Indent Errors

per Submission

(Std Dev)

A
Hand-graded:

One Submission

After Only

Submission
Yes 41.69 (72.66) 12.18 (35.24)

C
Ungraded:

One Submission
None No 41.58 (69.03) 6.06 (23.58)

E
Autograded:

Final Submission

After Each

Submission
Yes 1.28 (8.33) 0.18 (2.15)

G

Style Exercises:

Autograded Final

Submission

None No 26.97 (32.41) 7.42 (12.97)

Table 9: Average number of style errors per student assignment submission.

 57

Will students use proper style if they know each program receives a style grade?

Our first research question asks whether students will use proper programming

style if style is graded. To ensure consistent demographics, for this analysis, we consider

data from only the on-track terms, A, C, E, and G. For two of these terms, A and E, the

students received a style grade on assignments. In term A, students received handwritten

style feedback when instructors returned graded assignments one week after submission.

In term E, students received machine-generated feedback immediately after each

submission to the autograder. In terms C and G, students received no style feedback or

style grade. In term G, our style exercises were presented in the textbook alongside other

required exercises.

Table 9 provides data about the frequency of style errors in students’ programs.

To determine the impact of receiving a grade, we compare the frequency of style errors

for terms where assignments received no style grade (C and G) to terms where they did

(A and E). In all these comparisons, we used a student t-test to determine significance.

Students in term C averaged 41.58 style errors per submission, and students in

term A averaged 41.69 errors. This difference is non-significant using a p-value cutoff of

0.05. Students in term G averaged 26.97 style errors per submission. This average is

significantly less than that of term A (p-value < 0.01). Students in term E averaged 1.28

style errors per submission. This average is significantly less than the average of term C

and the average of term G (p-values < 0.01).

 58

These results do not support the hypothesis that receiving a style grade leads to

improved use of style. For example, there was no significant difference in the number of

errors between terms A and C, even though only term A include a grade for style.

Likewise, there were significantly fewer errors in term G than for term A, even though

term A included a grade, but G did not. This latter fact suggests that other factors besides

style grade, may have a greater influence on students’ use of style. However, the grade

does have some influence. We found that for term E, the average number of errors on the

first submission was 6.65 and on the last submission was 1.46. The latter is significantly

smaller than the former. This suggests that students were explicitly attempting to improve

their style. The most likely reason for doing that would be to improve their grade.

The vast majority of style errors were related to indentation. Because of this,

including indentation errors in our analysis may obscure our ability to examine student’s

knowledge of the other style rules. Thus, here we repeat our analysis, excluding

indentation errors. Students in term A averaged 12.18 non-indentation style errors per

submission while students in term C averaged 6.06. This latter is significantly less than

the former (p-value < 0.01). Students in term G averaged 7.52 non-indentation style

errors per submission. This average is significantly less than that of term A (p-value <

0.01). Students in term E averaged 0.18 non-indentation style errors per submission. This

average is significantly less than the average of term C and the average of term G

(p-values < 0.01).

 59

Once again, these results do not support the hypothesis that receiving a style grade

leads to improved use of style. For example, there were significantly fewer errors in

terms C and G than for term A, even though term A included a grade, but C and G did

not.

Table 10: Pearson correlation calculations between style and course/assignments grade.

* p-value < 0.01.

Does the student's ability to use proper style correlate with academic performance?

Our next research question is to determine if a student’s ability to use proper style

correlates with academic performance. For this analysis, we examine the correlation

between the total number of style errors a student made during the term and both the

student’s course grade and the average grade across all programming assignments. Table

10 shows the Pearson correlation coefficients and corresponding p-values. As before, we

consider only the on-track terms, except for term A, which is excluded because we could

not obtain a gradebook for that term. Also, we consider correlations for both all style

errors and only non-indentation style errors.

 Course Grade Assignment Grade

Term (n)
All Style

Errors

non-Indent

Errors

All Style

Errors

non-Indent

Errors

E (314) -0.193* -0.178* -0.151* -0.190*

C (520) -0.043 0.080 0.114* 0.144*

G (455) -0.173* 0.015 -0.026 0.014

 60

For term E, all correlations are negative and significant (p-value < 0.01). For term

C, the correlations with assignment grades are positive and significant. However, the

correlations with course grade are non-significant. For term G, only the correlation for

the number of style errors (including indentation errors) and course grade is negative and

significant. The other correlations are non-significant.

For term E, the number of style errors does correlate significantly and negatively

with grade, indicating that a student’s ability to employ proper style does correlate

positively with performance. For the other terms, there was no strong evidence to support

a correlation between proper use of style and performance. Thus, the evidence supporting

the hypothesis that proper use of style relates to performance is, at best, mixed.

Term

Style

Autograded

Style

Exercises

Average

Errors per Submission

(Std Dev)

Average non-Indent

Errors per Submission

(Std Dev)

C No No 41.58 (69.03) 6.06 (23.58)

F Yes No 10.61 (27.32) 12.18 (35.24)

G No Yes 26.97 (32.41) 7.42 (12.97)

I Yes Yes 8.35 (18.76) 12.18 (35.24)

Table 11: Average style grades per submission for style exercise effectiveness evaluation.

Do our exercises increase the student's ability to employ proper programming style?

Our next research question examines if our exercises significantly improve the

use of proper programming style. For this analysis, we compare term C to G and term F

to I. Terms C and G differ only in that G included our style exercises, but C did not. In

 61

both terms C and G, students received no feedback on style and no grade for style.

Likewise, terms G and I differ only in that I included our style exercises, but F did not. In

both terms F and I, students received machine-generated feedback on style and a grade

for style.

Table 11 shows the frequencies of errors for these four terms. For terms F and I,

we consider the number of errors on the first submission to the autograder. This

represents their ability to apply proper style before receiving feedback from the

autograder. On average, students in term C had 41.58 errors per submission, while

students in term G had 26.97 errors per submission. This difference is significant at

p-value < 0.01. In this comparison, our style exercises have a medium Cohen’s d effect

size of 0.439, which exceeds Hattie’s educational effectiveness threshold of 0.40

(Hattie 2009). Likewise, students in term F averaged 10.61 errors per submission, while

students in term I averaged 8.35 errors per submission. This difference is significant at

p-value < 0.05. In this comparison, our style exercises have a minimal Cohen’s d effect

size of 0.097. In both cases, the style scores for the students in terms where our exercises

were significantly better than for students in similar terms without our exercises.

Therefore, we conclude that our exercises do increase a student’s ability to employ proper

programming style.

Limitations

Our autograder may be considered too harsh. The most problematic style marking

is the score given to indentation errors. Many of the style score averages are drastically

reduced when indentation errors are ignored. This is why, in multiple analyses, we

 62

provide statistics for style scores with and without indentation errors. Our anecdotal

interactions with instructors suggest that improper indentation is the top complaint about

student programming style, so we believe the exclusion of indentation from any style

assessment would be a misstep. In future research, hand-grading a randomized selection

of programming assignments and comparing hand-graded style scores to autograded

scores could help alleviate the sentiment that autograding style can be too harsh.

Future

Many anecdotes suggest that proper programming style improves code readability

and reduces debugging times. Future investigations should take an empirical look at

many of these anecdotes to provide concrete evidence to either back up this gut feeling or

disprove it.

Conclusions

We used our “What’s Wrong With My Code?” methodology to develop eight

style exercises to teach fifteen style rules during the first five weeks of a ten-week course.

Our analysis compares data across seven years of programming submissions to answer

three research questions.

First, we investigated whether assigning a grade for programming style as part of

a programming assignment would result in students using proper programming style. Our

analysis compared several terms with and without a style grade. From our analysis, we do

not believe that giving a grade for style has a strong effect on students’ use of proper

programming style. However, we found that there was some effect as we found that

 63

students’ final submissions to the autograder were significantly better than their first

submissions, with a likely motivation being improving the style grade.

Our second research question investigated whether a correlation exists between

students’ use of proper style and students’ performance in a course. For three different

on-track term types, we calculated the Pearson correlation coefficients relating student

style scores to both the course grade and the average assignment grade. Our results show

that a student’s overall performance for a term with autograding did significantly

correlate with student performance, but for other terms, there was no strong evidence to

support a strong relationship.

Our final research question investigated whether students in terms that included

our style exercises employed proper programming style more often than students in terms

without these exercises. We examined both terms that used an autograder and those that

did not. Our results show that students in terms with our exercises had significantly

improved style scores compared to students in other similar terms. These results suggest

that our exercises did improve students’ use of proper programming style.

Based on the results in this paper, we recommend that all CS 1 instructors use our

exercises or similarly developed exercises to teach programming style. Additionally, if

possible, instructors should automatically provide style feedback for each submission and

allow students to fix style before the final assignment submission. Finally, we encourage

instructors to use a style grade for each assignment as a means of motivating students to

fix style problems caught by the autograder.

 64

References

Ala-Mutka, K., Uimonen, T., & Jarvinen, H. M. (2004). Supporting students in C++

programming courses with automatic program style assessment. Journal of

Information Technology Education: Research, 3(1), 245-262.

Garner, S., Haden, P., & Robins, A. (2005, January). My program is correct but it doesn't

run: a preliminary investigation of novice programmers' problems. In Proceedings

of the 7th Australasian conference on Computing education-Volume 42 (pp. 173-

180).

Ginat, D., & Shmalo, R. (2013, March). Constructive use of errors in teaching CS1. In

Proceeding of the 44th ACM technical symposium on Computer science education

(pp. 353-358).

Kernighan, B. W., & Plauger, P. J. (1974). Programming style: Examples and

counterexamples. ACM Computing Surveys (CSUR), 6(4), 303-319.

Kernighan, B. W., & Ritchie, D. M. (2006). The C programming language.

Koehler, A. T. (2016). What's wrong with my code (wwwmc). In 2016 ASEE Annual

Conference & Exposition, number (Vol. 10, p. 27196).

Oman, P. W., & Cook, C. R. (1988). A paradigm for programming style research. ACM

Sigplan Notices, 23(12), 69-78.

Oman, P. W., & Cook, C. R. (1990, January). A taxonomy for programming style. In

Proceedings of the 1990 ACM annual conference on Cooperation (pp. 244-250).

Renkl, A., & Atkinson, R. K. (2010). Learning from worked-out examples and problem

solving.

Li, X. (2006, October). Using peer review to assess coding standards-a case study. In

Proceedings. Frontiers in Education. 36th Annual Conference (pp. 9-14). IEEE.

Li, X., & Prasad, C. (2005, October). Effectively teaching coding standards in

programming. In Proceedings of the 6th conference on Information technology

education (pp. 239-244).

 65

Chapter 5: Conclusions

In this dissertation, we used past research in computer science, education theory,

and cognitive load theory to develop and establish a methodology for incorporating

examples of student errors into computer science education. Our methodology

incorporates five steps:

1. Determine a set of common student errors. These are errors made by differing

students term after term, but the errors may be specific to a course or field.

2. Collect a group of prior student submissions containing errors from the set of

errors in step 1. Curate each submission such that the submission contains only a

single error and minimizes the amount of information presented with the error.

For example, a student submission may reduce to just the errant lines of code and

a handful of other lines to create relevant a program structure.

3. Gather 3 or 4 student resolutions (only one correct) for each errant submission

created in step 2. The student-suggested resolutions are a crucial component to

invoking self-explanation.

4. Create an instructor response per resolution from step 3. The instructor response

provides feedback for each potential solution and establishes why a solution is

correct or incorrect.

5. Use the content created in steps 1 through 4 and our exercise design to create

exercises. Spread the exercises across the term and integrate the exercises into the

weekly student workload alongside current teaching practices.

 66

We built a standardized exercise structure based on prior research in education,

cognitive load theory, and computer science. The structure incorporates student

submissions containing erroneous code, past student solutions presented during student-

instructor interactions, and instructor feedback. Using our methodology, we created over

fifty "What's Wrong With My Code" exercises to teach programming syntax and several

additional exercises to teach programming style for use in an introductory computer

science course based on the C++ programming language.

Student Performance Improvement Study

In our first study, we evaluated the effect of using our "What's Wrong With My

Code" on student performance and reducing students’ programming errors. Our study

design was based on a pretest, a lesson, and a post-test. We randomly assigned one of two

lessons to each student. The first lesson contained typical course programming exercises

and used the native course programming environment to complete the lesson. The other

lesson was a series of our "What's Wrong With My Code" exercises. In the first term of

the study, the students using our exercises showed improvement over the control group in

post-test scores. Using the average of the student improvement scores (change from

pretest to post-test), we calculated a Cohen's d effect size of 0.56. However, an

ANCOVA analysis could not prove the post-test scores to be significantly different

between the control group and the experimental group. In the study’s second term, the

experimental group’s post-test scores were significantly better than the post-test scores of

the control group (p-value of 0.001). For the second term, the Cohen's d calculation using

the average of student improvement scores yielded an effect size of 0.42. Each of the

 67

calculated effect sizes exists in the moderate treatment range of 0.4 to 0.6 for education,

and both clear Hattie's proposed 0.40 educational importance threshold (Hattie, 2009).

The student improvements, combined with the effect sizes, show that our exercises

provide beneficial contributions to student learning.

After our positive initial result, we integrated our exercises into the students’

weekly course workload in subsequent course offerings. In those offerings, instructors

chose to drop the exercises offered to the control group in our first study. After students

completed the “What’s Wrong With My Code” exercises from the previous study (spread

across multiple weeks of instruction), they were given a quiz. The quiz used the questions

from the previous study’s post-test. However, a controlled pretest could not be completed

due to the exercises being spread across the early weeks of the course. Quiz scores of

students in courses with the full implementation were similar or better than the average of

the experimental group scores for prior studies, suggesting our full implementation was

working as expected.

Reduction in Errors Encountered

In this analysis, we cataloged nine types of errors displayed during student

compilation using g++. We gathered the errors from four academic quarters, including

two control quarters and two experimental quarters, which used our exercises as part of

the weekly student coursework. We found that most of the error types occurred less

frequently in the quarters using our exercises than in the control quarters. For five of the

nine error types, both experimental quarters showed a statistically significant reduction in

error encounters (p-values < 0.01), and for another error type, one of the two

 68

experimental quarters showed a statistically significant reduction in error encounters (p-

value < 0.01) while the other did not. Two error types were more common during the

experimental quarters than during the control quarters.

Additionally, we evaluated the association between the treatment (our exercises

and the control) and sixteen errors. Our analysis, presented in Appendix A, uses a chi-

squared test to show a statistically significant association between our exercises and nine

of the sixteen errors. This suggests that our treatment directly affected the error rates on

those nine errors.

Improved Student Self-efficacy

In our study on improving student self-efficacy, we compared experimental

quarters that used our “What's Wrong With My Code” exercises as part of the weekly

student workload to a control quarter that did not. Students completed a survey at the start

and end of the quarter to self-assess their confidence levels from zero to one hundred on

eleven different tasks. All eleven tasks showed improvement in student self-efficacy

across all the quarters. The improvement was statistically significant for ten of the eleven

measures and the overall student self-efficacy score in both experimental terms (p-

values < 0.05). The remaining measure improved in both terms, but significantly

improved in only one of the two experimental terms (p-value < 0.05). Based on this

evidence, we conclude that our exercises contribute to the improvement of student self-

efficacy in an introductory computer science course.

 69

Using Proper Programming Style

We used our “What's Wrong With My Code” methodology to develop eight

programming style exercises to teach fifteen style rules during the first five weeks of a

ten-week quarter. Our analysis compares data across seven years of programming

submissions. Employing the exercises adds only a minimal amount of additional work to

the student workload but yields a Cohen's d effect size of 0.36 for improving the use of

proper style, which is lower than Hattie's educational importance threshold of 0.40

(Hattie, 2009). Our analysis shows that students in our experimental term had better style

scores on their initial submission to the autograder, even when style was not a part of the

overall assignment or course grade. Likewise, when our exercises were used in course

with feedback from an autograder and with a grade assigned for style, we observed

significantly improved style scores on both the initial and final submissions to the

autograder for several programming assignments (p-values < 0.05).

The benefits demonstrated in Chapter 4 and summarized above make our style

exercises an ideal choice over the currently established standards of a long style guide or

not teaching programming style at all. Furthermore, to encourage even better use of

proper programming style, our results indicate that instructors should automatically

assess style and provide immediate feedback with the ability to fix the style errors and

resubmit. A style grade or style for an assignment should be used to motivate students to

fix errors caught by the autograder.

 70

Limitations & Future Directions

Many of our studies rely on students to provide self-evaluation or self-assessment.

One known limitation to this style of data collection is self-selection bias. When possible,

course instructors provided extra credit to students that participated in our research

studies to help reduce self-selection bias, and an alternate option for extra credit was

offered to students that did not wish to participate in the study. Self-assessment can also

be unreliable. For example, in our self-efficacy study, our control group’s confidence

scores for the pretest were significantly higher than for the experimental terms, even

though we performed the pretests at the same time for all three terms. Self-assessment is

necessary for certain types of data, but ensuring students understand the evaluations and

are honest is important. Instructors provided participation credit for our studies, and we

provided explanations at the beginning of each study to help the student understand that

the correctness of their answers was not going to affect their participation credit.

We use CS 1 for all our studies, and to help control for changes in student

population across terms, we used several exclusion criteria. Using exclusion criteria can

limit the generalization of the results. Future studies should be longitudinal to allow

comparison of several similar terms across multiple academic years without exclusion

criteria. Additionally, future studies should evaluate courses beyond CS 1.

Instructor changes can lead to uncontrollable threats to validity. We could not

control the change of teaching assistants for the course offerings used in our studies, but

our analyses compare courses with the same programming assignments, textbook, and

primary instructor.

 71

We analyzed error reduction on errors related to or loosely related to the common

errors encountered by our students. This narrowing of the field limits our analysis to

these specific errors, and thus limits the generality of our findings. Our analysis focused

on the frequency of occurrence of various types of errors. It would also be beneficial to

examine other measures of performance, such as the effects of our exercises on the time

required to fix an error or debug a program.

Contributions

This dissertation establishes a methodology for the incorporation of examples of

student errors within instructional materials in introductory computer science courses.

We used the methodology to create over fifty lightweight exercises that use erroneous

code from students and created a series of similar exercises to teach programming style.

Our exercises proved to be effective at reducing students’ programming and style errors.

These exercises could be easily incorporated into existing introductory programming

courses that use the C++ programming language. Our methodology could also be adapted

to other topics for use in other computer science courses.

Key Takeaways

With our contributions in mind, we recommend the following for all computer

science instructors:

1. Instructors should teach using examples of students’ errors. This is a must for

future course development at all levels of computer science education.

However, teaching using errors should supplement and not replace current

instruction.

 72

2. Instructors should consider using our methodology to develop their own

exercises to integrate into their courses.

Additionally, the following recommendations apply specifically to instructors teaching

introductory courses using the C++ programming language:

3. Our exercises should be distributed across the entire CS 1 course. For

instructors using zyBooks, you can file a request to add our “What’s Wrong

With My Code” exercises to your book. However, with the sale of zyBooks in

2019, we are not sure how long this option will be available.

4. At a minimum, instructors should consider teaching programming style with

our exercises or similarly designed exercises. To further improve students’

ability to use proper programming style, a grade should be assigned for

programming style, and student submissions should be evaluated with an

automatic style checker, and feedback should be provided immediately.

 73

References

Adams, D. M., McLaren, B. M., Durkin, K., Mayer, R. E., Rittle-Johnson, B., Isotani, S.,

& Van Velsen, M. (2014). Using erroneous examples to improve mathematics

learning with a web-based tutoring system. Computers in Human Behavior, 36,

401-411.

Barke, H. D. (2015). Learners Ideas, Misconceptions, and Challenge. Chemistry

education, 395-420.

Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction.

Cognition and instruction, 8(4), 293-332.

Chi, M. T., De Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-

explanations improves understanding. Cognitive science, 18(3), 439-477.

Denny, P., Luxton-Reilly, A., & Tempero, E. (2012, July). All syntax errors are not

equal. In Proceedings of the 17th ACM annual conference on Innovation and

technology in computer science education (pp. 75-80). ACM.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational

Computing Research, 2(1), 57-73.

Durkin, K., & Rittle-Johnson, B. (2012). The effectiveness of using incorrect examples to

support learning about decimal magnitude. Learning and Instruction, 22(3), 206-

214.

Ginat, D., & Shmalo, R. (2013, March). Constructive use of errors in teaching CS1. In

Proceeding of the 44th ACM technical symposium on Computer science education

(pp. 353-358). ACM.

Große, C. S., & Renkl, A. L. E. X. A. N. D. E. R. (2004). Learning from worked

examples: What happens if errors are included. Instructional design for effective

and enjoyable computer-supported learning, 356-364.

Hattie, J. A. C. (2009). Visible learning: a synthesis of over 800 meta-analyses relating to

achievement. New York: Routledge.

Johnson, C. I., & Mayer, R. E. (2010). Applying the self-explanation principle to

multimedia learning in a computer-based game-like environment. Computers in

Human Behavior, 26(6), 1246-1252.

Koehler, A. T. (2016). What's wrong with my code (wwwmc). In 2016 ASEE Annual

Conference & Exposition, number (Vol. 10, p. 27196).

 74

Kopp, V., Stark, R., & Fischer, M. R. (2008). Fostering diagnostic knowledge through

computer‐supported, case‐based worked examples: effects of erroneous examples

and feedback. Medical education, 42(8), 823-829.

Mathis, R. F. (1974). Teaching debugging. ACM SIGCSE Bulletin, 6(1), 59-63.

Murphy, L., Fitzgerald, S., Hanks, B., & McCauley, R. (2010, August). Pair debugging: a

transactive discourse analysis. In Proceedings of the Sixth international workshop

on Computing education research (pp. 51-58). ACM.

Renkl, A., & Atkinson, R. K. (2010). Learning from worked-out examples and problem

solving.

Rogers, F., Huddle, P. A., & White, M. D. (2000). Using a teaching model to correct

known misconceptions in electrochemistry. Journal of chemical education, 77(1),

104.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive

science, 12(2), 257-285.

VandenBos, G. R. (2007). APA dictionary of psychology. American Psychological

Association.

 75

Appendix A: Results & Analyses Addendum to Chapter 2

Figure 9: Flow chart outlining study evaluating student performance increase.

Term A – Participants: 108 Pre- SD Post- SD Δ SD

Control (54) 4.67 1.79 5.76 1.77 1.09 1.47

What's Wrong With My Code (54) 3.90 1.89 5.92 2.04 2.02 1.81

Table 12: Term A mean scores for pre- and post-test out of 10.

Term B – Participants: 269 Pre- SD Post- SD Δ SD

Control (144) 5.13 2.25 5.45 2.18 0.32 1.72

What's Wrong With My Code (123) 4.89 2.10 6.04* 2.45 1.16* 2.25

Table 13: Term B mean scores for pre- and post-test out of 10.

*Significantly different (p-value < 0.001)

ANCOVA Analysis of Student Performance Increases

As discussed in Chapter 2, we performed a study during a single week of the

quarter to analyze the performance increases of students on a post-test after taking either

a control or experimental lesson containing “What’s Wrong With My Code” exercises.

Figure 9 demonstrates the student flow through the study. The results of the study are in

 76

Table 12 and Table 13. Term A utilized a control of Codelab exercises, and Term B used

a control of a lab implementation that mimicked the previously used Codelab exercises

on a homegrown automated marking and feedback system. We gave a ten-question pre-

and post-test before and after the student completed the randomly assigned lesson. The

ten-question test contained seven written and three multiple-choice questions. Each

question was worth one point, and we gave partial credit to all written questions.

Due to the differing pretest scores, we performed an additional analysis to

determine if statistically significant differences exist between the two groups of student

post-test scores. We performed an ANCOVA analysis on the post-test scores comparing

students in the control lesson group to students in the experimental lesson group using the

pre-test as the covariate. Student scores for the “What’s Wrong With My Code”

experimental lesson were higher than the student scores for the control lesson in both

Terms A and B. However, the ANCOVA analysis shows that only Term B qualified as a

statistically significant improvement (p-value < 0.001).

Effect Size Analysis

In addition to the ANCOVA analysis, we evaluated the effect size of the “What’s

Wrong With My Code” lesson using the average of all the student score improvements

from pretest to post-test. The delta column in Table 12 and Table 13 displays the average

improvement out of 10 points. For Term A, we achieve an effect size of 0.56, and for

Term B, we achieve an effect size of 0.42. Both of our calculated effect sizes meet

Hattie’s educational effectiveness threshold of 0.40 (Hattie, 2009).

 77

Table 14: Chi-Squared scores and Phi calculations.

*Significant difference, p-value < 0.05

 78

Error Reduction - Chi-Squared Analysis

We gathered all g++ error output across four terms, two control terms, and two

experimental terms. In the experimental terms, students completed our “What’s Wrong

With My Code” exercises as part of their weekly course workload. We counted specific

errors encountered by each student by searching for a specific string in a log of all the

g++ compilation results collected over an entire term. Each of the sixteen different search

strings (seen in Table 14), identifies a different error output by the g++ command. For

our analysis, we performed a chi-squared test to determine if one of the specific errors is

associated with either the control group or the experiment group. Table 14 contains the

chi-squared and Phi scores for all sixteen error strings. Additionally, Table 14 contains

the number of students that did not encounter the error and the percent of the total

students for the control or experimental grouping.

Five error strings (numbers 1, 4, 11, 13, and 16) did not have a significant

association with either the control or experimental offerings. The five error strings range

from highly encountered errors to barely encountered errors. At the high end, error string

number 1 describes the error output by g++ when the input file name has a typo. Students

in both types of offerings encountered this at a high rate, with only 3.04% of control

group students and 5.95% of experimental group students not encountering the error. On

the other end of the spectrum, error string number 16 describes the error output by g++

when a programmer attempts to change the value of a constant variable after the constant

is initially set. For error number 16, 96.96% of control group students and 98.77% of

experimental group students did not encounter the error.

 79

Two error strings (numbers 3 and 10) are significantly associated with the control

offerings of the course (p-values < 0.001). For error string number 3, 80.85% of control

group students and 65.30% of experimental group students did not encounter the error for

mismatched modulo operands. For error string number 10, 87.54% of control group

students and 78.44% of experimental group students did not encounter the g++ error

output for a string literal assignment into a character variable

Nine error strings (numbers 2, 5, 6, 7, 8, 9, 12, 14, and 15) are significantly

associated with the experimental offerings of the course (p-values < 0.001 to 0.05). The

differences in percentages of students that did not encounter one of the individual errors

ranged from 6.69% on error string number 2 to 53.17% on error string number 5.

Conclusion

Overall, our additional analyses reinforce the findings of Chapter 2. Our

ANCOVA analysis showed significant performance improvements. Our effect size

calculations are higher than the educational effectiveness threshold. Lastly, our chi-

squared analysis indicates a relationship between several error strings and our

experimental course offering containing “What’s Wrong With My Code” exercises.

Together these findings combined with the finding in Chapter 2 emphasize the usefulness

of our exercises within an introductory computer science course.

 80

Appendix B: Style Checker Code

Automatic Style Checker

The following sections contain subtests called by our style checker. We use

Python for all our test harnesses. We extracted the code from a full test harness, and

therefore use by others may require source code modification.

Comments Existence Check

Figure 10: Code to check whether the source file has programming comments or not.

 81

Line Length Check

Figure 11: Code to return lines numbers of lines exceeding 80 characters in length.

 82

Check for Improper Conditional Expressions

Figure 12: Code to return line numbers of conditional expressions that compare to literal

values of true or false.

 83

Check for Global Variables

Figure 13: Part 1 of the code to return a string of all global variable names.

 84

Figure 14: Part 2 of the code to return a string of all global variable names.

 85

Check for Tab Characters

Figure 15: Code to return all source code line numbers containing a tab character.

 86

Check for Proper Line Indentation

Figure 16: Part 1 of indentation check - verify single curly brace per line.

 87

Figure 17: Part 2 of indentation check - create blocks to separate indentation levels.

 88

Figure 18: Part 3 of indentation check - primary function to create a list of

improperly indented lines.

 89

Appendix C: Additional Charts and Graphs

Figure 19: Style scores for the final submission for the last five assignments in the quarter

across seven years.

Figure 20: Style scores for the last five assignments in the quarter. Comparing two terms

(types F and I) with automatic feedback on unlimited submissions.

 90

Autograded

Assn Number:
8 7 6 5 4

Term F (Control)

N 154 138 172 182 158

Average # of Errors 30.00 12.67 10.65 13.83 7.13

Std Dev 57.13 28.76 22.28 26.28 15.43

Term I (Experimental) ✓ ✓

✓ ✓

N 187 200 169 199 214

Average # of Errors 4.01 5.37 11.52 15.87 5.95

Std Dev 10.33 13.76 22.27 27.69 9.54

Table 15: Autograded terms (F and I), style scores on the first submission of unlimited

submissions. ✓ indicates significant difference in errors (p-value < 0.01).

Autograded

Assn Number:
8 7 6 5 4

Term F (Control)

N 154 137 173 162 188

Average # of Errors 5.22 1.00 1.05 3.51 3.86

Std Dev 18.94 6.74 8.46 14.33 24.49

Term I (Experimental)

✓

N 216 200 196 201 189

Average # of Errors 0.56 2.01 0.58 0.16 0.35

Std Dev 3.47 10.22 6.81 1.61 2.75

Table 16: Autograded terms (F and I), style scores on the final submission of unlimited

submissions. ✓ indicates significant difference in errors (p-value < 0.01).

 91

Appendix D: What’s Wrong With My Code Exercises

Basic Output Exercises

Figure 21: Basic Output, Question #1, Answer #1

Figure 22: Basic Output, Question #1, Answer #2

 92

Figure 23: Basic Output, Question #1, Answer #3

Figure 24: Basic Output, Question #2, Answer #1

 93

Figure 25: Basic Output, Question #1, Answer #2

Figure 26: Basic Output, Question #2, Answer #3

 94

Figure 27: Basic Output, Question #3, Answer #1

Figure 28: Basic Output, Question #3, Answer #2

 95

Figure 29: Basic Output, Question #3, Answer #3

Figure 30: Basic Output, Question #4, Answer #1

 96

Figure 31: Basic Output, Question #4, Answer #2

Figure 32: Basic Output, Question #4, Answer #3

 97

Figure 33: Basic Output, Question #5, Answer #1

Figure 34: Basic Output, Question #5, Answer #2

 98

Figure 35: Basic Output, Question #5, Answer #3

Figure 36: Basic Output, Question #6, Answer #1

 99

Figure 37: Basic Output, Question #6, Answer #2

Figure 38: Basic Output, Question #6, Answer #3

 100

Figure 39: Basic Output, Question #7, Answer #1

Figure 40: Basic Output, Question #7, Answer #2

 101

Figure 41: Basic Output, Question #7, Answer #3

Figure 42: Basic Output, Question #8, Answer #1

 102

Figure 43: Basic Output, Question #8, Answer #2

Figure 44: Basic Output, Question #8, Answer #3

 103

Basic Input Exercises

Figure 45: Basic Input, Question #1, Answer #1

Figure 46: Basic Input, Question #1, Answer #2

 104

Figure 47: Basic Input, Question #1, Answer #3

Figure 48: Basic Input, Question #2, Answer #1

 105

Figure 49: Basic Input, Question #2, Answer #2

Figure 50: Basic Input, Question #2, Answer #3

 106

Figure 51: Basic Input, Question #3, Answer #1

Figure 52: Basic Input, Question #3, Answer #2

Figure 53: Basic Input, Question #3, Answer #3

 107

Figure 54: Basic Input, Question #4, Answer #1

Figure 55: Basic Input, Question #4, Answer #2

Figure 56: Basic Input, Question #4, Answer #3

 108

Basic Math Exercises

Figure 57: Basic Math, Question #1, Answer #1

Figure 58: Basic Math, Question #1, Answer #2

 109

Figure 59: Basic Math, Question #1, Answer #3

Figure 60: Basic Math, Question #2, Answer #1

 110

Figure 61: Basic Math, Question #2, Answer #2

Figure 62: Basic Math, Question #2, Answer #3

 111

Figure 63: Basic Math, Question #3, Answer #1

Figure 64: Basic Math, Question #3, Answer #2

 112

Figure 65: Basic Math, Question #3, Answer #3

Figure 66: Basic Math, Question #4, Answer #1

Figure 67: Basic Math, Question #4, Answer #2

 113

Figure 68: Basic Math, Question #4, Answer #3

Figure 69: Basic Math, Question #5, Answer #1

Figure 70: Basic Math, Question #5, Answer #2

 114

Figure 71: Basic Math, Question #5, Answer #3

Figure 72: Basic Math, Question #6, Answer #1

 115

Figure 73: Basic Math, Question #6, Answer #2

Figure 74: Basic Math, Question #6, Answer #3

 116

Figure 75: Basic Math, Question #7, Answer #1

Figure 76: Basic Math, Question #7, Answer #2

Figure 77: Basic Math, Question #7, Answer #3

 117

Basic Variable Exercises

Figure 78: Basic Variable, Question #1, Answer #1

Figure 79: Basic Variable, Question #1, Answer #2

Figure 80: Basic Variable, Question #1, Answer #3

 118

Figure 81: Basic Variable, Question #2, Answer #1

Figure 82: Basic Variable, Question #2, Answer #2

 119

Figure 83: Basic Variable, Question #1, Answer #3

Figure 84: Basic Variable, Question #3, Answer #1

 120

Figure 85: Basic Variable, Question #3, Answer #2

Figure 86: Basic Variable, Question #3, Answer #3

Figure 87: Basic Variable, Question #4, Answer #1

 121

Figure 88: Basic Variable, Question #4, Answer #2

Figure 89: Basic Variable, Question #4, Answer #3

 122

Branching Exercises

Figure 90: Branching, Question #1, Answer #1

Figure 91: Branching, Question #1, Answer #2

 123

Figure 92: Branching, Question #1, Answer #3

Figure 94: Branching, Question #2, Answer #1

 124

Figure 93: Branching, Question #2, Answer #3

Figure 95: Branching, Question #2, Answer #3

 125

Figure 96: Branching, Question #3, Answer #1

Figure 97: Branching, Question #3, Answer #2

 126

Figure 98: Branching, Question #3, Answer #3

Figure 99: Branching, Question #4, Answer #1

 127

Figure 100: Branching, Question #4, Answer #2

Figure 101: Branching, Question #4, Answer #3

 128

Figure 102: Branching, Question #5, Answer #1

Figure 103: Branching, Question #5, Answer #2

 129

Figure 104: Branching, Question #5, Answer #3

Figure 105: Branching, Question #6, Answer #1

 130

Figure 106: Branching, Question #6, Answer #2

Figure 107: Branching, Question #6, Answer #3

 131

String Function Exercises

Figure 108: String Functions, Question #1, Answer #1

Figure 109: String Functions, Question #1, Answer #2

 132

Figure 110: String Functions, Question #1, Answer #3

Figure 111: String Functions, Question #2, Answer #1

 133

Figure 112: String Functions, Question #2, Answer #2

Figure 113: String Functions, Question #2, Answer #3

 134

Figure 114: String Functions, Question #3, Answer #1

Figure 115: String Functions, Question #3, Answer #2

 135

Figure 116: String Functions, Question #3, Answer #3

Figure 117: String Functions, Question #4, Answer #1

 136

Figure 118: String Functions, Question #4, Answer #2

Figure 119: String Functions, Question #4, Answer #3

 137

Figure 120: String Functions, Question #5, Answer #1

Figure 122: String Functions, Question #5, Answer #2

 138

Figure 121: String Functions, Question #5, Answer #3

Loops Exercises

Figure 123: Loops, Question #1, Answer #1

 139

Figure 124: Loops, Question #1, Answer #2

Figure 125: Loops, Question #1, Answer #3

 140

Figure 126: Loops, Question #2, Answer #1

Figure 127: Loops, Question #2, Answer #2

 141

Figure 128: Loops, Question #2, Answer #3

Figure 129: Loops, Question #3, Answer #1

 142

Figure 130: Loops, Question #3, Answer #2

Figure 131: Loops, Question #3, Answer #3

 143

Figure 132: Loops, Question #4, Answer #1

Figure 133: Loops, Question #4, Answer #2

 144

Figure 134: Loops, Question #4, Answer #3

Random Number Exercises

Figure 135: Random Numbers, Question #1, Answer #1

 145

Figure 136: Random Numbers, Question #1, Answer #2

Figure 137: Random Numbers, Question #1, Answer #3

 146

Function Invocation Exercises

Figure 138: Function Invocation, Question #1, Answer #1

Figure 139: Function Invocation, Question #1, Answer #2

 147

Figure 140: Function Invocation, Question #1, Answer #3

Figure 141: Function Invocation, Question #2, Answer #1

 148

Figure 142: Function Invocation, Question #2, Answer #2

Figure 143: Function Invocation, Question #2, Answer #3

 149

Figure 144: Function Invocation, Question #3, Answer #1

Figure 145: Function Invocation, Question #3, Answer #2

 150

Figure 146: Function Invocation, Question #3, Answer #3

Figure 147: Function Invocation, Question #4, Answer #1

 151

Figure 148: Function Invocation, Question #4, Answer #2

Figure 149: Function Invocation, Question #4, Answer #3

 152

Figure 150: Function Invocation, Question #5, Answer #1

Figure 151: Function Invocation, Question #5, Answer #2

 153

Figure 152: Function Invocation, Question #5, Answer #3

Figure 153: Function Invocation, Question #6, Answer #1

 154

Figure 154: Function Invocation, Question #6, Answer #2

Figure 155: Function Invocation, Question #6, Answer #3

 155

Figure 156: Function Invocation, Question #7, Answer #1

Figure 157: Function Invocation, Question #7, Answer #2

 156

Figure 158: Function Invocation, Question #7, Answer #3

Figure 159: Function Invocation, Question #8, Answer #1

 157

Figure 160: Function Invocation, Question #8, Answer #2

Figure 161: Function Invocation, Question #8, Answer #3

 158

Function Writing Exercises

Figure 162: Function Writing, Question #1, Answer #1

Figure 163: Function Writing, Question #1, Answer #2

 159

Figure 164: Function Writing, Question #1, Answer #1

Figure 165: Function Writing, Question #2, Answer #1

 160

Figure 166: Function Writing, Question #2, Answer #2

Figure 167: Function Writing, Question #2, Answer #3

 161

Vector Exercises

Figure 168: Vectors, Question #1, Answer #1

Figure 169: Vectors, Question #1, Answer #2

 162

Figure 170: Vectors, Question #1, Answer #3

Figure 171: Vectors, Question #2, Answer #1

 163

Figure 172: Vectors, Question #2, Answer #2

Figure 173: Vectors, Question #2, Answer #3

 164

Figure 174: Vectors, Question #3, Answer #1

Figure 175: Vectors, Question #3, Answer #2

 165

Figure 176: Vectors, Question #3, Answer #3

Figure 177: Vectors, Question #4, Answer #1

 166

Figure 178: Vectors, Question #4, Answer #2

Figure 179: Vectors, Question #4, Answer #3

 167

Figure 180: Vectors, Question #5, Answer #1

Figure 181: Vectors, Question #5, Answer #2

 168

Figure 182: Vectors, Question #5, Answer #3

 169

Appendix E: What’s Wrong With My Style Exercises

Figure 183: Style Exercise #1 and #2 - Basic Style, Answers #1 and #1

 170

Figure 184: Style Exercise #1 and #2 - Basic Style, Answers #2 and #2

 171

Figure 185: Style Exercise #1 and #2 - Basic Style, Answers #3 and #2

 172

Figure 186: Style Exercise #3 - Style with Variables, Answer #1

 173

Figure 187: Style Exercise #3 - Style with Variables, Answer #2

 174

Figure 188: Style Exercise #3 - Style with Variables, Answer #3

 175

Figure 189: Style Exercise #4 - Style with Variables, Answer #1

 176

Figure 190: Style Exercise #4 - Style with Variables, Answer #2

 177

Figure 191: Style Exercise #4 - Style with Variables, Answer #3

 178

Figure 192: Style Exercise #5 - Style with Branches, Answer #1

 179

Figure 193: Style Exercise #5 - Style with Branches, Answer #2

 180

Figure 194: Style Exercise #5 - Style with Branches, Answer #3

 181

Figure 195: Style Exercise #6 - Style with Branches, Answer #1

 182

Figure 196: Style Exercise #6 - Style with Branches, Answer #2

 183

Figure 197: Style Exercise #6 - Style with Branches, Answer #3

 184

Figure 198: Style Exercise #7 - Style with Loops, Answer #1

 185

Figure 199: Style Exercise #7 - Style with Loops, Answer #2

 186

Figure 200: Style Exercise #7 - Style with Loops, Answer #3

 187

Figure 201: Style Exercise #8 - Style with Functions, Answer #1

 188

Figure 202: Style Exercise #8 - Style with Functions, Answer #2

 189

Figure 203: Style Exercise #8 - Style with Functions, Answer #3

