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ARTICLE

Association of structural variation
with cardiometabolic traits in Finns

Lei Chen,1,2,3 Haley J. Abel,1,2 Indraniel Das,1 David E. Larson,1,4 Liron Ganel,1,2 Krishna L. Kanchi,1

Allison A. Regier,1,2 Erica P. Young,1,5 Chul Joo Kang,1 Alexandra J. Scott,1,2 Colby Chiang,1,2

Xinxin Wang,1,2,3 Shuangjia Lu,3 Ryan Christ,1 Susan K. Service,6 Charleston W.K. Chiang,7,8

Aki S. Havulinna,9,10 Johanna Kuusisto,11,12 Michael Boehnke,13 Markku Laakso,11,12

Aarno Palotie,9,14,15 Samuli Ripatti,9,15,16 Nelson B. Freimer,6 Adam E. Locke,1,2 Nathan O. Stitziel,1,2,4,*
and Ira M. Hall1,2,3,*
Summary
The contribution of genome structural variation (SV) to quantitative traits associated with cardiometabolic diseases remains largely un-

known. Here, we present the results of a study examining genetic association between SVs and cardiometabolic traits in the Finnish pop-

ulation.We used sensitive methods to identify and genotype 129,166 high-confidence SVs from deep whole-genome sequencing (WGS)

data of 4,848 individuals. We tested the 64,572 common and low-frequency SVs for association with 116 quantitative traits and tested

candidate associations using exome sequencing and array genotype data from an additional 15,205 individuals. We discovered 31

genome-wide significant associations at 15 loci, including 2 loci at which SVs have strong phenotypic effects: (1) a deletion of the

ALB promoter that is greatly enriched in the Finnish population and causes decreased serum albumin level in carriers (p ¼ 1.47 3

10�54) and is also associated with increased levels of total cholesterol (p ¼ 1.22 3 10�28) and 14 additional cholesterol-related traits,

and (2) a multi-allelic copy number variant (CNV) at PDPR that is strongly associated with pyruvate (p ¼ 4.81 3 10�21) and alanine

(p ¼ 6.14 3 10�12) levels and resides within a structurally complex genomic region that has accumulated many rearrangements over

evolutionary time.We also confirmed six previously reported associations, including five led by stronger signals in single nucleotide var-

iants (SNVs) and one linking recurrent HP gene deletion and cholesterol levels (p ¼ 6.24 3 10�10), which was also found to be strongly

associated with increased glycoprotein level (p ¼ 3.53 3 10�35). Our study confirms that integrating SVs in trait-mapping studies will

expand our knowledge of genetic factors underlying disease risk.
Introduction

Common human diseases affecting the cardiovascular and

endocrine systems are known to be associated with a vari-

ety of quantitative risk factors including various measures

of cholesterol, metabolites, insulin, glucose, blood pres-

sure, and obesity.1,2 Understanding the genetic basis of

these and other quantitative traits can shed light on the

etiology, prevention, diagnosis, and treatment of disease.

Family- and population-based studies have shown signifi-

cant heritability for many cardiometabolic traits,3–6 and

prior genome-wide association studies (GWASs) have iden-

tified hundreds of associated loci.7–9 However, most prior

trait-mapping studies have focused on common variants

ascertained by genotyping arrays or rare coding variants
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measured by exome sequencing, leaving out the contribu-

tion of larger and more complex forms of genome

variation.

Of particular interest is the contribution of genome

structural variation (SV), which encompasses diverse

variant types larger than 50 base pairs (bp) in size,

including copy number variants (CNVs), mobile element

insertions (MEIs), inversions, and complex rearrange-

ments. Although rare and de novo SVs have long been

recognized to cause various rare and sporadic human disor-

ders10,11 and somatic SVs play a central role in cancer

biology,12 the extent to which SVs contribute more gener-

ally to common diseases and other complex traits in hu-

mans is less clear. Early genome-wide studies13–15 failed

to identify SVs associated with common diseases, but these
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were limited by the use of low-resolution array platforms,

which only capture extremely large CNVs (>100 kb or

similar), and by modest sample size. Several later studies

performed targeted analysis of known SVs combined

with larger-scale GWAS data,16–18 leading to the associa-

tion of structural alleles at HP and LPA with cholesterol

levels. More recent array-based CNV association studies

with large sample sizes (>50,000 individuals) have re-

vealed several genome-wide significant CNV loci for

anthropometric traits and coronary disease, but these

studies focused on extremely large CNVs representing

<1% of the overall SV burden, leaving most SVs un-

tested.19–21 Fine mapping of expression quantitative trait

loci (eQTLs) using deep whole-genome sequencing

(WGS) data has indicated that SVs are the causal variant

at 3.5%–6.8% of eQTLs, and that causal SVs have larger ef-

fect sizes than causal single nucleotide variants (SNVs) and

indels and are often not well-tagged by flanking SNVs.22,23

This suggests that direct assessment of SVs in WGS-based

complex trait association studies has the potential to reveal

causative variants not found through other approaches.

Here, we have performed a SV association study using

deep (>203) WGS data from 4,030 individuals from

Finland with extensive cardiometabolic trait measure-

ments and extended these results to a larger set of 15,205

individuals with whole-exome sequencing (WES) and sin-

gle nucleotide polymorphism (SNP) genotype data.

Compared to prior work, our study benefits from (1)

comprehensive SV ascertainment due to the use of deep

WGS data and complementary SV detection methods, (2)

deeply phenotyped individuals with existing SNP array

and exome sequence data, and (3) the unique history of

the Finnish population, which was shaped by multiple

population bottlenecks and rapid population expansions,

leading to an enrichment of some otherwise rare and

low-frequency variants that can be detected by trait associ-

ation at relatively modest sample sizes.24–26 By testing for

associations between structural variants and cardiometa-

bolic traits, we identified 15 genome-wide significant

loci, nine of which remained significant after multiple

testing correction for the number of phenotypes,

including a Finnish-enriched ALB promoter deletion asso-

ciated with multiple traits, and a multi-allelic CNV

affecting PDPR that is associated with pyruvate levels.

Material and methods

Samples and phenotype collection
The genomic data in this study come from 10,197 METSIM partic-

ipants collected from Kuopio in Eastern Finland and 10,192 FIN-

RISK participants collected from northeastern Finland. Both

studies were approved by the Ethics Committees in Finland and

all individuals contributing samples provided written informed

consent. Besides collecting genotype data by SNP array and exome

sequencing, both studies measured up to 254 quantitative cardio-

metabolic traits, among which we selected 116 traits with

adequate sample sizes to maintain trait-mapping power (see

below). All phenotype data were residualized for trait-specific
584 The American Journal of Human Genetics 108, 583–596, April 1,
covariates and transformed to a standard normal distribution by

inverse normalization. Complete details of sample collection, ge-

notype acquisition, and trait adjustments were described previ-

ously.26

Power estimation and phenotype selection
Phenotypes with limited sample size are likely to be underpowered

in trait-mapping analysis and increase the test burden if included.

So, we selected 116 traits with large enough sample size that guar-

anteed 80% power to detect a hypothesized rare SV (minor allele

count [MAC] ¼ 10) with strong effect (explained 8.4% of the addi-

tive quantitative trait locus [QTL] variance, a contribution compa-

rable to the effect of SV expression QTLs22). We estimated themin-

imum required sample size as 375 through an analytical approach

implemented inGenetic PowerCalculator.27 Several other assump-

tions for the calculationare (1) all samples are independent (sibship

size¼ 1); (2) the top signal is in perfect linkage disequilibrium (LD)

with the causal variant; and (3) type I error rate ¼ 1 3 10�6.

Generation of SV callsets from WGS data
For SV discovery, we used WGS data from 3,082 METSIM partici-

pants and 1,114 FINRISK participants sequenced at the McDon-

nell Genome Institute under the NHGRI Centers for Common

Disease Genomics (CCDG) program. To increase variant detection

sensitivity, we also included 779 additional Finnish participants

from other cohorts and 112 multi-ethnic samples from 1000 Ge-

nomes (1KG) Project. All genomes were sequenced at >203

coverage on the Illumina HiSeq X and NovaSeq platforms with

paired-end 150 bp reads.

WGS data were aligned to the GRCh38 reference genome using

BWA-MEM and processed using the functional equivalence pipe-

line.28 An SV callset based on breakpoint mapping was generated

using our recently published workflow29 using the same methods

as in our recent study of 17,795 human genomes.30 Briefly, we ran

LUMPY (v.0.2.13),31 CNVnator (v.0.3.3),32 and svtyper (v.0.1.4)33

to perform per-sample variant calling. After removing 22 samples

that failed quality control, we merged sites discovered in all the

samples and re-genotyped all sites in all samples to create a joint

callset using svtools (v.0.3.2).29 Each variant was characterized as

either deletion (DEL), duplication (DUP), inversion (INV), mobile

element insertion (MEI), or generic rearrangement of unknown ar-

chitecture (BND), based on comprehensive review of its break-

point genotype, breakpoint coordinates, genome annotation,

and read-depth evidence, as described previously.29,30 According

to our definition of SV, we filtered variants smaller than 50 bp.

Moreover, we tuned the callset based on Mendelian error rate

and flagged BNDs with mean sample quality (MSQ) score < 250

and INVs with MSQ < 100 as low-confidence variants. Details

about this QC strategy are described elsewhere.30 For convenience,

we refer to this as the ‘‘LUMPY callset.’’

We applied two read-depth based CNV detection methods to

WGS data to detect variants that might be missed by breakpoint

mapping. GenomeSTRiP34 is an established tool for cohort-level

CNV discovery that has proven effective in many prior studies;

however, when using the recommended parameters (as we did

here), detection is limited to larger CNVs (>1 kb) within relatively

unique genomic regions. Thus, in parallel we used a custom

cohort-level CNV detection pipeline based on CNVnator32 to

detect smaller and more repetitive CNVs (see below).

We adapted the original GenomeSTRiP pipeline (v.2.00.1774)

for the large cohort of 5,087 Finnish samples: after the SVPrepro-

cess step, samples were grouped by study cohorts and sorted by
2021



sequencing dates, then split into 54 batches withmaximum size of

100. CNVs were detected within each batch by CNVDiscoveryPi-

peline and classified as either deletion (DEL), duplication (DUP),

or mixed CNV (mCNV), with both copy number gain and loss ex-

isting in the population (referred to as ‘‘multi-allelic CNV’’ in the

text). Next, we concatenated variants from the 54 batch VCFs

and re-genotyped all variants in all samples using SVGenotyper

to produce a joint callset. Then we ran several GenomeSTRiP an-

notators (CopyNumberClassAnnotator, RedundancyAnnotator)

to reclassify variants and remove redundant variant calls. During

callset generation, 72 samples with abnormal read-depth profiles

were excluded.

The read-depth based ‘‘CNVnator’’ callset was constructed using

a custom pipeline that took as inputs the individual-level CNV

callsets generated by CNVnator during the svtools pipeline. After

removing samples with abnormal read-depth profiles, CNV calls

from 4,979 samples were sorted and merged using the svtools

pipeline. All merged CNV calls were re-genotyped in all samples

using CNVnator. Within each connected component of overlap-

ping CNV calls, individual variant calls were clustered based on

correlation of copy-number profiles and by pairwise overlap. For

each cluster, a single candidate was chosen to represent the under-

lying CNV. For sites with carrier frequency >0.1%, we fit the copy

number distribution to a series of constrained Gaussian Mixture

Models (GMMs) with varying numbers of components, and

selected the site with the ‘‘best’’ variant representation based on

a set of model metrics, including the Bayesian Information Crite-

rion (BIC) and the distance between cluster means (‘‘mean_sep’’).

For the remaining sites, we selected those with the most signifi-

cant copy number difference between carriers and non-carriers.

With the same criteria used in GenomeSTRiP, we assigned integer

copy number genotypes and CNV categories to the variants.

We used array intensity data for 2,685 METSIM samples to esti-

mate the false discovery rate (FDR) under different filtering

criteria, and to tune both CNV callsets. FDR was estimated from

the intensity rank sum (IRS) test statistics based on CNVs intersect-

ing at least two SNP probes. Based on the FDR curves (Figure S3),

we excluded GenomeSTRiP variants with GSCNQUAL score < 2

and CNVnator DELs and DUPs with mean_sep < 0.47 or low car-

rier counts (DUPs < 1, DELs < 5, mCNVs < 7).

To eliminate likely false positive calls introduced by sequencing

artifacts, we excluded 612 LUMPY SVs, 740 GenomeSTRiP SVs,

and 1,098 CNVnator SVs that were highly enriched in any of the

three sequencing year batches (p < 10�200 from Fisher’s exact

test). We further excluded 3 samples in the LUMPY callset, 72 sam-

ples in the GenomeSTRiP callset, and 12 samples in the CNVnator

callset that carried abnormal numbers of variants (outlier samples

defined by the difference of per-sample SV count from median

divided by median absolute deviation [mad] larger than 10 for

LUMPY/GenomeSTRiP or larger than 5 for CNVnator). Together

with the samples that failed QC during variant calling, the com-

bined list of outliers consists of 84 METSIM samples, 56 FINRISK

samples, and 99 samples from other cohorts. More information

about sample- andvariant-level exclusions canbe found inTable S1.

For each high-confidence callset, we evaluated the final FDR by

using the IRS, and ran the TagVariants annotator in GenomeSTRiP

to estimate the proportion of SVs in LDwith nearby SNPs (Rmax
2R

0.5, flanking window size ¼ 1 Mb). We calculated the overlap frac-

tion between SV callsets by bedtools35 intersect (v.2.23.0) requiring

>50% reciprocal overlap between variants. To evaluate the geno-

type redundancy within and between callsets, we compared the

original variant counts and the equivalent number of independent
The Ame
genetic variables estimated by amatrix decompositionmethod im-

plemented in matSpDlite,36 using the genotype correlation matrix

as input. The space clustering was evaluated by running bedtools

cluster with -d (max distance) specified as 10 bp.

Association test with WGS data
For CNV callsets, we defined minor allele count (MAC) as the

number of samples with different genotypes from the mode

copy number. We kept the conventional MAC definition for the

LUMPY callset since it primarily contains bi-allelic SVs. We set

the minimum MAC threshold as 10 for variants to be included

in the trait association test. We renormalized the phenotype data

of theWGS samples by rank-based inverse normal transformation.

We performed single-variant association tests across all renormal-

ized metabolic traits using the EMMAX model37 implemented in

EPACTS (v.3.2.9) software (see web resources). In the model, we

specified the dosage-format input genotype variables as the integer

copy number genotype for GenomeSTRiP variants, allele balance

for LUMPY variants, and raw decimal copy number for CNVnator

variants. We also incorporated in the model a kinship matrix

derived from SNP data by EPACTS to account for sample related-

ness and population stratification. For each multi-allelic CNV,

one single variant test was performed between the phenotype

and the copy number value of the interval.

We applied matSpDlite36 to estimate the equivalent number of

independent tests. The genome-wide significance threshold was

set at 1.89 3 10�6 after Bonferroni correction at level a ¼ 0:05

over 26,495 independent genetic variables, and the experiment-

wide significance threshold was set as 3.32 3 10�8 to further cor-

rect for the 57 independent phenotypic variables also estimated

using matSpDlite.36

Replication using exome and array data
We attempted to replicate the association signals with a nominal p

< 0.001 in WGS analysis using genotype data for an additional

15,205 FinMetSeq participants (Figure S1). To achieve this, we em-

ployed two approaches to infer the genotypes of candidate SVs

from WES and array data: WES read depth analysis for CNVs

and genotype imputation for bi-allelic SVs.

We separated the WES alignment data into two batches: the

first composed of 10,379 samples sequenced with 100 bp

paired-end reads and the second composed of 9,937 samples

sequenced with 125 bp paired-end reads. For samples in each

batch, we calculated the per-sample per-exon coverage by

GATK38 DepthOfCoverage (v.3.3-0) and adopted the data process-

ing steps from the XHMM (v.1.0) pipeline39 to convert the raw

coverage data into PCA-normalized read-depth z-scores. Dupli-

cated and outlier samples were filtered simultaneously, with

9,537 samples left in batch 1 and 9,864 samples left in batch 2.

We calculated the correlation between SV genotypes from WGS

data and the normalized read-depth z-scores of exons intersected

or nearby (<5 kb) using samples with both WES and WGS data.

Exons with R2 < 0.1 were filtered out and the rest were passed

on to validation, restricted to samples absent from the WGS anal-

ysis (n ¼ 15,205). The genetic relationship matrix used for WES

replication was generated in a previous study.26 We later did a

meta-analysis under a fixed effect model using METASOFT

(v.2.0.1)40 to combine the results from the two WES batches,

considering the two sequencing batches were actually sampled

from the same population.

We standardized the genotype representations of 2,291 bi-allelic

candidate SVs, with copy number genotypes of duplications (CN
rican Journal of Human Genetics 108, 583–596, April 1, 2021 585



¼ 2,3,4) and deletions (CN ¼ 0,1,2) converted to allelic genotype

format (GT ¼ 0/0, 0/1, 1/1), and extracted the SNPs and indels in

the 1 Mb flanking regions of those SVs from the GATK callset

generated from the same WGS data. We then phased the joint

VCF with Beagle (v.5.1)41 to build a reference panel composed of

3,908 high-quality samples shared by the SV callset and the SNP

callset. Then, we imputed the SV genotype in the additional

15,125 FinMetSeq samples with array genotype data by running

Beagle on the genotyped SNPs. We filtered out low-imputation-

quality SVs with DR2 < 0.3 reported by Beagle (the estimated cor-

relation between imputed genotype and real genotype of each

variant), then ran the EMMAX model on the 1,705 well-imputed

SVs with the corresponding traits.

58 of the 2,053 candidate SVs had both imputed genotype and

WES read-depth genotype, so we compared the imputation DR2

with exon-SV genotype R2, then chose the measurement that

was most well correlated with the WGS data. Considering the dif-

ferences between directly measuredWGS-based SV genotypes and

predicted genotypes estimated from WES and array data, for SVs

with consistent direction of effects across the discovery stage

(WGS data only) and replication stage, we used Fisher’s method

to combine the p values (instead of conventional meta-analysis

models that assume effect sizes across studies were sampled from

the same distribution). As a sanity check for the imputation qual-

ity, we conducted leave-one-out validation for the eight genome-

wide significant SVs using the reference panel only. Specifically,

we took one sample out each time as a test genome and imputed

the SV genotype using the other 3,907 samples as reference and

repeated the process 3,908 times to calculate the validation rate.

The array data and WES data were aligned to reference genome

GRCh37 while the WGS data were aligned to reference genome

GRCh38. For analysis, the coordinates were lifted over using the

LiftOver utility from the UCSC GenomeBrowser (see web re-

sources). Considering the LiftOver works less efficiently for inter-

vals (e.g., exons) than single-base coordinates (e.g., SNPs), we

chose different strategies for the WES experiment and the impu-

tation experiment to minimize information loss. For the WES da-

taset, we converted the CNV coordinates from GRCh38 to

GRCh37; 5,391 successfully converted (2,310 intersected with

exons) while 264 failed (78 intersected with exons). We dropped

the CNVs that failed conversion. For the imputation experiment,

we converted the coordinates of array-genotyped SNPs to

GRCh38, thus all the bi-allelic SV candidates were kept in the

replication experiment. A small number of SNPs (0.1%) dropped

out during this process, which should not have big impact on

the imputation considering the abundance of SNPs around each

SV and the fact that this only happened to the imputed callset,

not to the reference panel.

Candidate analysis
For genome-wide significant trait-SV associations, we collected

previous GWAS signals on the same chromosome with p < 10�7

from the EBI GWAS catalog (see web resources) with the same

set of keywords used in a previous study26 (one publication based

on METSIM samples was excluded to only include findings from

independent studies). We then performed conditional analysis

on the original trait-SV pairs adding the GWAS hits as covariates.

Conditional analyses were restricted to samples with WGS data

to minimize the difference in genotype accuracy of the SV callset

versus the SNP callset.

For loci containing multiple genotype-correlated SVs associated

with a trait, we lumped the variants together using bedtools
586 The American Journal of Human Genetics 108, 583–596, April 1,
merge35 and reported the coordinates of the entire region with

the summary statistics of the strongest signal. To better understand

these loci, we manually curated the candidates in IGV42 and

extended the regionsof interest to include surroundinggenes, func-

tional elements, previousGWAS signals, andother genomeannota-

tions. We then equally split each region into �1,000 windows and

used CNVnator to calculate the copy number values of those win-

dows for 100 individuals selected to represent all genotype groups.

We thenplotted thewindow-sample copynumbermatrix as a heat-

map with scales best presenting the locus structure (e.g., Figure 3).

In addition, for SNPs in the same region, we calculated the SNP-

SV genotype correlation R2 by a linear regression model and SNP-

trait p values by EMMAX, then plotted them together in a local

Manhattan plot (e.g., Figure 2) using custom R scripts.

For the fine-mapping experiment of albumin,we selected the top

100 most significant SNPs on chr4:67443182–79382541 plus the

ALB promoter deletion to calculate the pairwise genotype correla-

tion matrix and ran CAVIAR (v.0.2)43 on those 101 variants, with

the ‘‘rho’’ probability set at 0.95 andvarying themaximumnumber

of causal variants one to five. The same experimentwas done for to-

tal cholesterol. We used the model with maximum causal variants

set at two to plot the posterior probability in Figure 2.

Results

We now turn to the results of this study starting with an

overview of the SV callset, followed by trait association re-

sults including the in-depth discussion of individual

genome-wide significant loci.

Structural variation detection and genotyping

We identified 120,793 SVs by LUMPY,31 111,141 CNVs by

GenomeSTRiP34 (GS), and 92,862 CNVs by our customized

pipeline based on CNVnator.32 Considering the different

genotypemetrics and detection resolutions, to retain sensi-

tivity we chose to concatenate those three callsets together

and adjust for redundancy later instead of merging the var-

iants. 129,166 high-confidence autosomal SVs passed

quality control, and 64,572 passed the frequency filter

for association tests (Table S9). Figures 1 and S2 provide

an overview of the high-confidence callset, including the

size distribution, composition of bi-allelic versus multi-

allelic SVs, and frequency distributions. The SV size and

frequency distributions are consistent with those in previ-

ous studies:22,30,44,45 most called SVs are relatively small

(<10 kb), bi-allelic, and rare; called MEIs exhibit the ex-

pected size distribution corresponding to Alu and L1 inser-

tions; and allele frequency decreases with increased mean

SV size, consistent with negative selection against large

SVs (Figures 1 and S2).

Based on comparison with a set of SNP array intensity

data (seematerial andmethods),we estimate anoverall false

discovery rate (FDR) of 4.7% for thehigh-confidence callset.

As an indicator of true positive rate, the proportion of SV

calls tagged by nearby SNPs (R2 R 0.5, see material and

methods) was 56.8%, consistent with our prior GTEx study

that used similar methods22 and was evaluated extensively

in the context of eQTLmapping.Wealso comparedour call-

set to the high-quality SV callsets from 1000 Genomes
2021
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Figure 1. Overview of the high-confi-
dence SV callset
(A) SV size distribution (log10 scale, bp) by
variant type. BNDs are not included due to
the ambiguous definition of variant bound-
aries.
(B) Proportion of bi-allelic SVs and multi-
allelic CNVs, where N is defined by the
number of copy number groups (e.g., CN
¼ 0,1,2,3,4, etc.).
(C) Theminor allele count distribution of all
the high-confidence bi-allelic SVs stratified
by variant type.
(D) The size distribution (log10 scale) of bi-
allelic SVs stratified by MAF groups
(<0.1%, ultra-rare; 0.1%–5%, rare, >5%,
common). The central line and box borders
represent median, 1st and 3rd quartiles. The
upper whiskers extend to the lesser extreme
of the maximum and the 3rd quartile plus
1.5 times the interquartile range (IQR); the
lower whiskers extend to the lesser extreme
of the minimum and the 1st quartile minus
1.5 times the IQR.
(1KG) and gnomAD projects and found an overlap of

35.2%, which is reasonable considering that these studies

used distinct methods and sample sets. Table 1 shows the

above metrics stratified by pipelines. We estimated the ge-

notype redundancy in total and stratified by pipelines (Ta-

ble S2). Overall, the ‘‘effective sample size’’ of independent

genetic variables was 55.5% of the original variant count.

Additionally, since read-depth detection methods

commonly result in ‘‘fragmented’’ CNV calls, we estimated

the fragmentation level of calls by clustering variants

within10bpandmeasured the sizeof the clusters (Table S3).

Our CNVnator pipeline was the major source of redun-

dancy and fragmentation since it detects CNVswith higher

resolution—as small as 100 bp—and covers repetitive and

low-complexity regions, where the coverage profile is in

general much noisier than the rest of the genome. The

benefit is that CNVnator detected many true CNVs missed

by the twoothermethods. As abenchmarkof the sensitivity

gain, we calculated the external validation rates for SVs

uniquely detected in each of our pipelines (Figure S4).

7,210 variants identified only in CNVnator overlapped

with variants in 1KG and gnomAD, contributing to the
The American Journal of Huma
43.1% of the overall CNVnator SVs

that were validated through compari-

son to external datasets.

Association of SVs with

cardiometabolic traits

We first performed single-variant

association tests for 64,572 high-confi-

dence SVs (MAC R 10) and 116 quan-

titative traits using the EMMAX

model37 in the 4,030 individuals with

WGS data. We defined the genome-

wide significance threshold as 1.89 3
10�6 and the experiment-wide significance threshold as

3.32 3 10�8 (see material and methods). Nine associations

of six loci passed genome-wide significance threshold (Ta-

ble S5); six were still significant after adjusting for the

equivalent number of independent phenotypes (Table 2,

WGS P).

We next sought to replicate these findings and to follow

up on 4,855 loci with sub-threshold associations (p <

0.001) via meta-analysis with larger WES (n ¼ 20,316)

and array genotype datasets (n ¼ 19,033) from these

same cohorts, using independent samples (nWES ¼
15,205, narray ¼ 15,125) not included in the original

WGS experiment (see material and methods).26 We devel-

oped a strategy to genotype coding CNVs from WES data

using read-depth information from XHMM,39 and we

measured copy number at the 20,058 exons intersecting

with 819 candidate CNVs from WGS. We found that 281

exons from 392 CNV calls were able to recapture the

copy number variability detected by WGS (at R2 > 0.1).

To genotype SVs using array data, we used standard impu-

tation methods to impute 2,127 bi-allelic SVs based on the

background of array-genotyped SNPs (see material and
n Genetics 108, 583–596, April 1, 2021 587



Table 1. Callsets QC metrics

QC Metrics Variants subset LUMPY GS CNVNATOR

CNV FDRa all – 27% 25%

high confidence 0.80% 3% 9%

Counts all 120,793 111,141 92,862

high confidence 35,713 39,660 53,793

common 11,633 11,062 41,877

Overlap w. 1KGa all 10% 10% 11%

high confidence 34% 21% 15%

common 49% 34% 13%

Overlap w. gnomADa all 18% 14% 25%

high confidence 47% 27% 27%

common 60% 40% 27%

Tagged by SNPs high confidence 63% 62% 46%

common 77% 65% 49%

Quality control metrics of the SV callsets including all variants, high-confidence variants, and high-confidence common variants (defined by R10 carriers). CNV
FDR was estimated by intensity rank sum test (IRS) using the SNP array data fromMETSIM samples. Note that LUMPY CNVs are by definition high confidence due
to confirmation of independent read-depth support during variant classification steps (see material and methods). Variant overlaps with 1KG and gnomAD were
defined based on >50% reciprocal overlap. ‘‘Tagged by SNPs’’ was defined as SVs that are in LD (max r2 R 0.5) with any SNP in the 1 Mb flanking regions.
aCNVs only
methods). The estimated imputation accuracy of SVs corre-

sponded well to their LD with nearby SNPs, as expected

(Figure S5). To assess performance more rigorously for the

eight significant SVs described below, we also performed

a leave-one-out experiment, and the validation rate ranged

from 93.3% to 99.8% (Table S4). Overall, we were able to

accurately genotype 2,053 of 4,864 candidate SVs using

exome (n ¼ 392) and/or array genotype (n ¼ 1,705) data.

We then ran single-variant tests on those genotyped SVs

with the corresponding candidate traits in the indepen-

dent samples and performed a meta-analysis to calculate

a combined p value (Table 2).

After merging fragmented SVs, we ended up with 15 in-

dependent loci associated with 31 traits at genome-wide

significance, 9 of which remained significant after correc-

tion for the multiple phenotypes. Table 2 shows the sum-

mary statistics of the lead SVs for their top traits (see also

Table S5 for pre-merged summary statistics).

Deletion of the ALB promoter is associated with multiple

traits

The strongest signal in the combined study was a 4 kb

deletion immediately upstream of ALB, affecting the pro-

moter region (Figure 2). This variant was 16-fold enriched

in the Finnish population compared to non-Finnish Euro-

peans from 1KG (MAF: 1.6% versus 0.1%) and was associ-

ated with 16 traits at genome-wide significance (Table S5,

Figure S6). The top two associations were with serum albu-

min (p ¼ 1.47 3 10�54, beta ¼ 0.91) and total cholesterol

(p ¼ 1.22 3 10�28, beta ¼ �0.49), and these are indepen-

dent signals based on conditional analyses (Table S8). The

cholesterol signal appears to explain the remaining 14 trait
588 The American Journal of Human Genetics 108, 583–596, April 1,
associations, all of which are highly correlated (Figure S6).

This SV was well tagged by nearby SNPs (R2 ¼ 0.73), and

the tagging SNPs showed similar trait association patterns.

To tease apart potentially indirect associations caused by

LD, we performed fine-mapping analysis for serum albu-

min and total cholesterol with CAVIAR43 including the

deletion variant and the 100 most significant SNPs on

chr4:67–79 Mb (see material and methods). The top candi-

date for the association with total cholesterol was a SNP

(rs182695896) in moderate LD (R2 ¼ 0.49) with the dele-

tion. Accounting for this SNP via conditional analysis

attenuated the association between the deletion and total

cholesterol (p ¼ 0.023, n ¼ 4,014). The deletion was iden-

tified as the most probable causal variant for the associa-

tion with albumin, and the association between the dele-

tion and albumin remained significant after adjusting for

rs182695896 (p ¼ 6.52 3 10�13, n ¼ 3,117). We also

observed different causality patterns for the two traits by

aligning the posterior probabilities with the LD structure

of the causal candidates in 95% confidence sets (Figure 2).

Thus, we hypothesize that the promoter deletion directly

affects serum albumin by altering ALB expression and is

associated with total cholesterol through its genetic corre-

lation with other underlying causal variant(s) in the same

LD block.

Prior studies48–51 have reported five albumin-associated

SNPs and two cholesterol-associated SNPs in this region. In

our conditional analyses including all intrachromosomal

GWAS hits,46 the SV-albumin association remained

genome-wide significant (Table 2) while the SV-cholesterol

association was diminished (conditioned p ¼ 0.004). To

investigate the relationship between our signal and each of
2021



Table 2. Summary statistics for all the genome-wide significant signals

SV type
Gene or
annotation Top trait Chr p WGS

P GWAS
conditioned BETA WGS REP Novel

Carrier
frequency p combined

deletion ALB albumin 4 3.49E�21 1.05E�10 0.91 IMP Y 0.03 1.47E�54a

deletion HP glycoprotein 16 1.38E�10 3.63E�04 �0.16 IMP N 0.55 3.53E�35a

mCNV PDPR pyruvate 16 9.41E�11 1.07E�10 �0.72 WES Y 0.02 4.81E�21a

TCR TRAV genes CRP 14 1.30E�15 1.89E�15 1.2 WES Y 0.36 1.51E�16a

deletion HNF1A-AS CRP 12 7.23E�04 3.60E�01 0.19 IMP N 0.55 4E�13a

TCR TRBV genes CRP 7 3.36E�09 6.29E�09 0.84 WES Y 0.38 2.47E�16a

mCNV NUMTS fast insulin 1 1.00E�10 N/A �0.12 N/A Y 0 1E�10a

MEI LEPR CRP 1 3.94E�04 2.20E�01 0.16 IMP N 0.51 4.5E�13a

deletion IL34 tyrosine 16 2.10E�04 5.45E�04 1.95 IMP Y 0.02 4.17E�10a

MEI CDH13 adiponectin 16 1.24E�04 1.91E�02 �0.33 IMP N 0.24 3.68E�08

mCNV AMDHD1 histidine 12 4.74E�04 2.72E�01 0.15 IMP N 0.52 5.33E�07

mCNV SegDup cluster fatty acid 16 1.10E�06 N/A �0.16 N/A Y 0.57 1.10E�06

mCNV SegDup cluster glutamine 9 1.25E�06 N/A �0.79 N/A Y 0.43 1.25E�06

deletion PLTP small HDL particle 20 2.40E�04 3.81E�02 0.11 IMP N 0.53 1.24E�06

mCNV simple repeats creatinine 4 1.41E�06 N/A �0.39 N/A Y 0.01 1.41E�06

Summary statistics for 15 genome-wide significant loci with the top associated traits. Highly correlated SVs showing the same signal were manually inspected and
clumped together. The genome-wide significance threshold was 1.893 10�6 and the experiment-wide significance threshold was 3.323 10�8 (see Table S2 and
material andmethods for details). The p value fromWGS analysis and the p value from the replication experiment (IMP-imputation, WES-WES read-depth analysis,
if applicable) were combined by Fisher’s method and used to determine the significance level. The BETA WGS column shows the effect size in the unit of normal-
ized trait value (e.g., for the ALB deletion, gaining one copy of the SV corresponds to 0.91 standard deviation of increased albumin level). The carrier frequency was
calculated in the WGS dataset. The column of ‘‘p GWAS conditioned’’ shows the SV p value conditioned on all intrachromosomal GWAS SNPs from GWAS Cat-
alog,46 using WGS data only (see material and methods)
aExperiment-wide significant
the seven previous GWAS SNPs, we tested the SV for associ-

ationwhile conditioning on the reported SNPs one at a time

(Table S6) and ran the association tests on those SNPs with

the SV as covariate (Table S7). These results suggest that

theALBdeletion is the causal variant for three prior albumin

associations (rs16850360, rs2168889, and rs1851024), is

linked to one previously reported cholesterol association

(rs182616603), and is independent of two prior albumin as-

sociations (rs115136538, rs184650103) and one cholesterol

association (rs117087731).

We next explored the potential downstream effects of

this promoter deletion in the FinnGen dataset (see web re-

sources), which reports GWAS results for 1,801 disease

endpoints in 135,638 individuals. We queried the top

SV-tagging SNP (rs187918276, R2 ¼ 0.73) in the PheWeb

browser (Figure S7, web resources); the top association

was with statin medication use (p ¼ 6.5 3 10�69). The sec-

ond set of signals appeared in the ‘‘Endocrine, nutritional

and metabolic diseases’’ category, led by disorders of lipo-

protein metabolism and other lipidemias (p ¼ 1.4 3 10�11

), pure hypercholesterolemia (p ¼ 3.0 3 10�11), and meta-

bolic disorders (p ¼ 1.8 3 10�7). These results support the

medical relevance of genetic variation at this locus sug-

gested by this and prior work; however, it is unclear

whether these results are due to the ALB promoter dele-

tion or the linked variants (e.g., rs182695896) associated

with cholesterol.
The Ame
A multi-allelic CNV at PDPR is associated with pyruvate

and alanine levels

We identified a cluster of 13 highly correlated CNV calls at

chr16q22.1 that were strongly associated with pyruvate (p

¼ 4.81 3 10�21, beta ¼ �0.72) and alanine (p ¼ 6.14 3

10�12, beta ¼ �0.53) levels in the serum. We reconstructed

the copy number profile of this locus from short-readWGS

data (see material and methods) and confirmed that the 13

correlated variant calls correspond to a single �250 kb

multi-allelic CNV (CNV1 in Figure 3) spanning the coding

sequence and 50 region of PDPR, a gene involved in the py-

ruvate metabolism pathway. PDPR encodes the regulatory

subunit of pyruvate dehydrogenase phosphatase (PDP)

which catalyzes the dephosphorylation and reactivation

of pyruvate dehydrogenase complex, the catalyst of pyru-

vate decarboxylation. According to this mechanism, fewer

copies of PDPR should slow down the decarboxylation re-

action and lead to increased pyruvate levels, and increased

copies should decrease pyruvate levels, consistent with our

data (Figure 3). This CNV was also negatively associated

with alanine levels, the product of pyruvate transamina-

tion, and conditional analysis suggested this association

was mediated through pyruvate (Table S8).

An intriguing aspect of the PDPR locus is that it contains

numerous segmental duplications (SDs), including highly

similar local SDs scattered throughout the PDPR locus, addi-

tional SDs at aPDPRpseudogene (LOC283922) located4Mb
rican Journal of Human Genetics 108, 583–596, April 1, 2021 589



Figure 2. The ALB promotor deletion
associated with serum albumin level and
cholesterol traits
(A) The genomic location of the chr4 dele-
tion, with coordinates detected from
LUMPY, GenomeSTRiP, and 1KG. The
H3K27Ac track is from the ENCODE47

data obtained from the UCSC Genome
Browser (showing the data of K562 cells).
(B) Boxplot showing serum albumin levels
stratified by genotype, with the sample size
of each genotype group annotated at the
center of each box. The trait value on the
y axis is the inverse normalized residual
of raw measurement (residualized for age,
age2, and sex). The central line and box
borders representmedian, 1st, and 3rd quar-
tiles. The upper whiskers extend to the
lesser extreme of the maximum and the
3rd quartile plus 1.5 times the interquartile
range (IQR); the lower whiskers extend to
the lesser extreme of the minimum and
the 1st quartile minus 1.5 times the IQR.
(C) Local Manhattan plot of albumin
association signals on chr4:71–75 Mb,
including the ALB deletion (red diamond)
and SNPs with minimum allele count of 9
(filled circles). The sizes of the circles are
proportional to -log10(p) and colors indi-
cated LD (Pearson R2) with the deletion
(NA shown in gray). Six of the seven previ-
ously published GWAS signals are indi-
cated with ‘‘x’’ (the seventh was too rare
in our data to be included in the test).
(D) Fine-mapping results at the ALB locus
for albumin and total cholesterol trait as-
sociations, using CAVIAR. The top panel
shows the 95% confidence causality sets
for albumin (top) and cholesterol (bottom)
and posterior probability of each variant
to be causal (assuming a maximum of
two causal variants). The bottom panel
shows the LD structure for the candidate
variants, using the genotype correlation
(Pearson R2) calculated from WGS data.
distal to PDPR, as well asmore divergent copies located�55

Mb away on chr16p13.11. These include LCR16a, a core

element shared by many SDs on chr16 and a well-known

driver of the formation of complex segmental duplication

blocks in the genomes of humans and primates.53,54,55

There are both duplication and deletion alleles of PDPR,

and these have indistinguishable breakpoints that corre-

spond to LCR16a duplicons, suggesting these CNVs were

caused by recurrent non-allelic homologous recombina-

tion. Similar to the ALB deletion described above (and

many prior coding associations26), this CNV appears to be

enriched in the Finnish population: the duplication allele

was identified in 1KG with a frequency of 0.005 in non-

Finnish Europeans, 503 less than the 0.025 frequency

observed in our Finnish sample, and the deletion allele

wasnot detected in1KG.TheCNVispoorly taggedbyflank-

ing SNPs (max R2¼ 0.088),making it virtually undetectable

using standard GWAS methods.
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In addition, a second highly polymorphic and multi-

allelic CNV (CNV2 in Figure 3) intersects with CNV1 and

covers >90% of the gene body of PDPR, missing the first

three exons. Notably, CNV2 did not show association

with pyruvate levels in our data (p ¼ 0.6), despite being

previously reported as a cis-eQTL for PDPR in multiple tis-

sues.22 To resolve the structure of this locus, we aligned

chromosome 16 of the GRCh38 reference against itself

and also against the recent high-quality CHM13 assem-

bly56 created from long-read sequencing data (Figure S8).

Interestingly, we found that the sequence of CNV2 con-

tains three inverted paralogs of the LOC283922 locus

(a PDPR pseudogene) in the CHM13 assembly, while there

is only one copy of LOC283922 in GRCh38 (Figure 3).

These data suggest that CNV2 reflects highly variable struc-

tural alleles of LOC283922 located 4 Mb away from PDPR,

and thus it is not surprising that this CNV does not affect

pyruvate levels.
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Figure 3. The multi-allelic CNV at the PDPR
locus affecting pyruvate and alanine
(A) The PDPR locus showing (from top to bot-
tom) genes, duplicated genomic segments
based on dotplot analysis (see Figure S8),
segmental duplication annotations from
the UCSC table browser,52 and copy number
profiles for 100 samples comprising 51 car-
riers and 49 non-carriers for CNV1. Copy
number is shown in 500 bp windows, as
determined by CNVnator, and the color satu-
rates at four copies. The two horizontal lines
indicate locations of the two CNVs (solid-
CNV1, dashed-CNV2).
(B) Pyruvate levels for 3,121 WGS samples
stratified by copy number genotypes
of CNV1 (p ¼ 9.41 3 10�11) and CNV2
(p ¼ 0.6).
(C) Structure of GRCh38 reference and
CHM13 assembly at the PDPR locus (top)
and its pseudogene locus (bottom two), us-
ing the same annotations as in part (A).
Blocks with the same color and letter nota-
tion are highly similar DNA sequences and
arrows show the direction of alignments. Di-
agrams were drawn based on the dot plots in
Figure S8. The segment B corresponds to
LCR16a, the core element shared by many
duplicons sparsely distributed on chromo-
some 16.53
Additional trait-association signals

We confirmed a previously reported association between

the recurrent HP deletion and decreased total serum
The American Journal of Huma
cholesterol levels.16 In our data, this

same deletion was strongly associated

with serum glycoprotein acetyls quan-

tified by NMR (p ¼ 3.53 3 10�35),

and conditional analysis showed that

the two associations were independent

(Table S8). Since Boettger et al.16 pro-

posed a plausible mechanism for the

association of HP copy number and

cholesterol, here we focus on the

glycoprotein association. As a serum

glycoprotein, haptoglobin forms di-

mers in individuals with the HP1/HP1

genotype (homozygous deletion) but

forms multimers in individuals car-

rying HP2 allele(s). The multimers can

be as large as 900 kDa—more than

twice the size of the dimers

(86 kDa)57—which could result in

fewer haptoglobin molecules in HP2

carriers and consequently fewer glyco-

protein molecules overall.

We identified five trait associations

involving common SVs that were

within 1 Mb of previously published

GWAS loci for the same traits. All SVs
were well tagged by SNPs (R2 > 0.9) and were either in-

tronic or upstream of genes that are functionally related

to the associated phenotypes. In all five cases there were
n Genetics 108, 583–596, April 1, 2021 591



stronger SNP signals nearby, and the SV associations drop-

ped to not more than nominal significance when condi-

tioned on the known GWAS SNPs (Table 2). This suggests

that instead of having independent effects on the pheno-

types, those SVs were more likely to be in LD with the

causal variants.

Additionally, we identified a low-frequency (MAF ¼ 0.01)

SV associated with serum tyrosine levels (combined p ¼
4.17 3 10�10). This variant was a 4 kb deletion of IL34,

affecting the first exon of one transcript isoform and the in-

tronic region of the two longer isoforms. There is a stronger

signal from a SNP (rs190782607, p ¼ 1.44 3 10�11) within

100 kb of and partially tagging the SV (R2¼ 0.61), indicating

that the SV is unlikely to be the causal variant. However, the

p value of this association remained at a similar level when

conditioned on knownGWAS SNPs46 (Table 2), suggesting a

novel signal. IL34 mediates the differentiation of mono-

cytes andmacrophages and to our knowledge has not previ-

ously been reported to be associated with amino acid

traits.58

The re-discovery of known loci described above dem-

onstrates the effectiveness of our study design. Our

CNV detection pipeline also detected two associations

with metabolic traits that appear to be related to blood

cell-type composition rather than inherited genetic

variation.

We identified three clusters of CNVs on chr7q34,

chr7p14, and chr14q11.2 associated with C-reactive Pro-

tein (CRP) levels in the plasma, a biomarker for inflamma-

tion and a risk factor for heart disease (Table 2, Table S5).

These CNVs are large, involve subtle alterations in copy

number and correspond to T cell receptor loci, suggesting

that they are likely to reflect somatic deletions due to

V(D)J recombination events during T cell maturation.

This hypothesis was supported by the read-depth coverage

pattern (see Figure S9), where the measured copy number

is lowest at the recombination signal sequence (RSS) used

constitutively for rearrangement, and gradually increases

with increasing distance to the RSS. The cause of this asso-

ciation is unclear but may reflect increased T cell abun-

dance and CRP levels due to active immune response in a

subset of individuals.

Interestingly, we also indirectly measured mitochondrial

(MT) genome copy number variation due to the mis-map-

ping of reads from mitochondrial DNA to ancient nuclear

MT genome insertions (NUMT)59 on chromosomes 1 and

17, that show strong homology to segments of the MT

genome. These apparent ‘‘CNVs,’’ which reflect MT abun-

dance in leukocytes, were strongly associated with fasting

insulin levels (p ¼ 1.00 3 10�10) and related traits and

are the topic of a separate study.60

We also discovered three association signals correspond-

ing to dense clusters of fragmented CNV calls within high-

ly repetitive and low-complexity regions including simple

repeats and segmental duplications (Table 2). Interpreting

patterns of variation and trait association at these loci re-

mains challenging due to their complex and repetitive
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genomic architecture and known alignment artifacts

within such regions. Although we were not able to identify

any technical artifacts that might explain these specific as-

sociations, they should be interpreted with caution.

Further investigation of these highly repetitive loci will

require improved sequencing and variant detection

methods.

Discussion

Wehave conducted what is to our knowledge the first com-

plex trait association study based on direct ascertainment

of SV from deep WGS data. Our study leverages sensitive

SV detection methods, extensive cardiometabolic quanti-

tative trait measurements, and the unique population his-

tory of Finland. Despite the relatively modest sample size

and limited power of this study, we identified nine novel

(i.e., not present in existing GWAS databases) and six

known trait-associated loci. Most notably, we identified

two novel loci where SVs are the likely causal variants

and have strong effects on disease-relevant traits. Both

SVs are ultra-rare in non-Finnish Europeans but present

at elevated allele frequency in Finns—presumably due to

historical population bottlenecks and expansions—which

mirrors the findings from our recent study of coding vari-

ation, where many cardiometabolic trait-associated vari-

ants were enriched in Finns.26 The first, a deletion of the

ALB promoter, strongly decreased serum albumin levels

in carriers (�1 standard deviation per copy) and also re-

sides on a haplotype associated with cholesterol levels.

This example shows that non-coding SVs can have

extremely large effects, consistent with our prior results

based on eQTLs22 and selective constraint,30 and points

to the importance of including diverse variant classes in

trait association efforts. Although more work is required

to understand the disease relevance of this deletion

variant, we note that low levels of albumin can cause

analbuminemia, which is associated with mild edema,

hypotension, fatigue, lower body lipodystrophy, and

hyperlipidemia.

The second, a multi-allelic CNV with both duplication

and deletion alleles that affect PDPR gene dosage, has

strong effects on pyruvate and alanine levels. Notably,

this CNV is the product of recurrent NAHR between flank-

ing repeats at a complex locus that has accumulated

numerous segmental duplications over evolutionary time

and is not well-tagged by SNVs. This phenomenon—recur-

rent CNVs at segmentally duplicated loci—has been stud-

ied extensively in the context of human genomic disorders

and primate genome evolution, but there are few examples

for complex traits. This result underscores the importance

of comprehensive variant ascertainment in WGS-based

studies of common disease and other complex traits. We

further note that it is unusual to observe multi-allelic

CNVs at a conserved metabolic gene such as PDPR; it is

tempting to speculate about the role of such variation in

human evolution.
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Interestingly, our study also identified two novel and

highly atypical trait associations that appear to be caused

by variable cell type composition in the peripheral blood.

Identifying these results was only possible due to our use

of WGS on blood-derived DNA, combined with sensitive

SV analysis methods capable of detecting sub-clonal

DNA copy number differences. Our quantitative detection

of subclonal T cell receptor locus deletions formed by

V(D)J recombination served as a proxy for measuring

T cell abundance and allowed us to determine that CRP

levels are associated with T cell abundance. We hypothe-

size that this association is caused by active immune

response in a subset of individuals. Similarly, our quanti-

tative detection of mitochondrial genome copy number

via apparent ‘‘CNVs’’ at NUMT sites in the nuclear

genome led to the important discovery that variable

abundance of neutrophils versus platelets in peripheral

blood is strongly associated with insulin, fat mass, and

related metabolic traits (as described in detail else-

where60).

Taken together, these results highlight the potential role

of rare, large-effect SVs in the genetics of cardiometabolic

traits and suggest that future comprehensive and well-

powered WGS-based studies have the potential to

contribute greatly to our understanding of common dis-

ease genetics.

Data and code availability

WES and phenotype data for METSIM and FINRISK are

available through dbGaP (accessions phs000752 and

phs000756). METSIM WGS data have been submitted to

AnVIL (dbGaP accessions phs0001579). Genomic and

phenotypic data for the FINRISK cohort can be obtained

through THL Biobank, the Finnish Institute for Health and

Welfare, Finland. Structural variant site frequency informa-

tion is available indbVAR(accessionnstd204). Summarysta-

tistics are available on GitHub (see web resources). Code is

available upon request.
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Web resources

AnVIL, https://anvilproject.org/data

dbGaP, https://www.ncbi.nlm.nih.gov/gap

dbVar, https://www.ncbi.nlm.nih.gov/dbvar/

EBI GWAS Catalogue (2019-11-21 version), https://www.ebi.ac.

uk/gwas/docs/file-downloads

Efficient and parallelizable association container toolbox

(EPACTS), https://genome.sph.umich.edu/wiki/EPACTS

FinnGen project PheWeb, http://r4.finngen.fi/about

LiftOver from UCSC Genome Browser, https://genome.ucsc.edu/

cgi-bin/hgLiftOver

THL Biobank, the Finnish Institute for Health and Welfare,

Finland, https://thl.fi/en/web/thl-biobank

The summary statistics of all the tested SVs and traits are available

through GitHub, https://github.com/hall-lab/FinnSV_paper_

1220
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