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ABSTRACT OF THE THESIS

How MPT Works in Reality?

Han Bai
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Professor Rick Paik Schoenberg, Chair

The major goal of this thesis is to discuss and test some of the models and
fundamental elements of the Modern Portfolio Theory in order to learn about whether
the optimal portfolios constructed on the theory formulate the best asset allocation in
reality. In an effort to solve this question, three different models are tested by three
fundamental elements of the theory respectively. The outcomes for each model and

element are discussed and evaluated.
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The empirical result shows that the models are inconsistent, which leads to the
conclusion that optimal portfolios based on Modern Portfolio Theory are not the best
asset allocation strategies in the real investment world. The main reason can be
concluded that the models based on the theory make oversimplified approximations of

the reality.
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1 Introduction

One of the key issues facing an individual is how to allocate wealth among
alternative assets. The most important theory of financial assets allocation is
Modern Portfolio Theory whose fundamental objective is to predict expected
returns and optimal allocations. Modern Portfolio Theory emerged from the
mathematics of chance and statistics and has been for years the foundation of
financial management despite its criticism (Mandelbrot B., 2004). It is the

methods of Modern Portfolio Theory (MPT) that will be the issue in this thesis.

For decades, scholars and investors have had their doubts about whether
predictions of expected returns, which is the most important part of MPT, are
accurate or even possible. In fact, the general consensus has been that expected
returns are notoriously difficult to predict. This leads me to think whether MPT
works perfectly in reality. What investors care most is to find a realistic way to
allocate their money to a stock portfolio. Can this be achieved under MPT? The

kernel of my thesis is to explore the practicality of MPT by taking the accuracy of

expected returns, optimal allocations and future monthly returns into account.

This thesis is divided into 5 sections. Section 2 presents a basic historical
review of MPT, the major models used for estimating, and its limitations. Section
3 discusses my research design which explains the data details and the process
of testing MPT models. In section 4, empirical test is conducted to solve the
major question: Are the optimal portfolios suggested by the Modern Portfolio
Theory the realistic asset allocation strategy in investment world? In an effort to

answer how realistic it is, the following questions are tested in section 4:



1. Do the models predict accurate future returns, namely expected returns?
If the models work, predicted future returns should be the same as the
real future returns.

2. Are the optimal portfolio weights realistic for investors? For example, if a
stock’s weight is 8, or -8(when 1*short selling allowed), then it is
impossible for investors to raise the amount of money. An investor’s
capital is 1.

3. When applying optimal allocations to real returns, what is the monthly

return? It is supposed to be the higher the better.

The last section of the thesis summarizes the main results of the empirical

test and answers the above center question which is how practical the theory is.

2 Literature Review

2.1 History of Modern Portfolio Theory

In 1952, Harry Markowitz(1952,1959) set a mile stone in financial theory.
He is the father of modern portfolio theory and also the first person to quantify
the relationship between assets. He proved the fundamental theorem of mean-
variance portfolio theory, namely holding constant variance, maximize expected
return, and holding constant expected return minimize variance. Mean-variance
portfolio theory is developed to establish the optimal portfolio concerning return

distributions over a single period. An investor is assumed to estimate the mean

1* short selling: In finance short selling is the practice of selling securities or other
financial instruments that are not currently owned, with the intention of subsequently
repurchasing them ("covering") at a lower price.



return and variance of return for each asset. These estimates are derived from
historical data. Based on the theory, an efficient frontier can be formulated for
investors to choose his or her preferred portfolio, depending on personal risk
return preference. MPT delivered an important message that assets cannot be
selected merely on characteristics, but also each security’s co-movement with all
other securities. Portfolios that neglect these co-movements is less efficient
compared to those that take the interaction between securities into
account(Edwin,1997).

Though the theory is profound, its simple calculation may lead some
researcher to think there might be a more complicated and better model. For
example, researchers (Lee, 1977; Kraus and Litzenberger, 1976) stated
alternative portfolio theories that had more moments such as skewness or
researchers (Fama, 1965; Elton and Gruber, 1974) indicated alternative
portfolio theories for more realistic descriptions of the distribution of
return. However, mean-variance theory has remained the keystone of MPT
regardless of those alternatives. No evidence shows that adding additional
concerns to the theory improves the performance (Edwin,1997). Even 60

years later, Markowitz’s model is still widely used among private and

professional investors, despite its shortcomings.

2.2 Models for Modern Portfolio Theory

After mean-variance portfolio theory was first developed, estimating inputs
becomes a crucial and necessary task. While Modern Portfolio Theory is an
important theoretical advance, its application has universally encountered a

problem: it is difficult to come up with reasonable estimates of expected returns.



Models mainly focus on how to estimate returns accurately.

The principal tool developed for estimating covariance was index models. The
earliest index model that received wide attention was the Single Index Model.
Markowitz discussed this first, but was developed and popularized by Sharpe
(1967). Shortly after the model was developed, a number of researchers
started to explore whether Multi Group Models better explained reality. These

two models estimate expected returns and covariances using historical return.
Composing a portfolio based only upon historical statistical measures may yield
simplistic results. Black-Litterman overcame this problem by not requiring the
user to input estimates of expected return. Instead it assumes that the initial
expected returns are whatever is required so that the equilibrium asset

allocation is equal to what we observe in the markets.
2.21 Single Index Model:

SIM is one of the earliest models that aroused wide attention. One variant
of SIM was especially drawing attention. It is the market model. The SIM states

that

Rit = a; + BiRp: + €t

where R;; is the return of stock i in period t, a; is the unique expected
return of security i, §; is the sensitivity of stock i to market movements, R,,,;
is the return on the market in period t, and e;; is the unique risky return of

security i in period t and has a mean of zero and variance /. Therefore,



Ri =a; + Biﬁm

The significance of the market model is that it reduces the number
of estimates required, makes it easier for analyst to understand the type of
inputs needed and increases the accuracy of portfolio optimization. The
accuracy of the market model in estimating covariances is obviously

higher than direct estimation.

The above is the traditional SIM. But nowadays, people use a lot of

adjusted betas. One the most efficient techniques is Vasicek.’s technique.

2 0-2

Biz = b By + B Bi
i2 = 2 2 2 2 Fil
031 + 93, 051 + 03,,

where £ is the average beta for the sample of stocks in the historical period and
a/—?lis the variance of the betas for the sample of these stocks. f3;; is the beta of
stock i in the historical period and Uﬁzil be the variance of f3;;. Vasicek’s technique

will be applied to the empirical parts as well.
2.22 Multi Group Model:

After the market model was developed, a number of researchers
started to explore whether Multi Group Model better explained reality.
The stocks are grouped by industry and correlations between industries
are added to the model. The most important assumption is that the
correlation coefficients between any firms in one group and all other firms

are identical for members of the same group. Let’s define the elements that



will be used in the model.

Prr = the correlation coefficient between members of group k
Pr: = the correlation coefficient between members of group k and t
o; =the standard deviation of security i

o0;; =the covariance between security i and security j

R; =the expected return on security i

R; =the risk-free rate of interest
R, =the expected rate of return on the optimal portfolio
» =the standard deviation of the optimal portfolio

N, = the number of securities in group K

X) =the set of stocks in group k
P =the number of groups

M; =the fraction of funds invested in security

The Multi Group Model states

where z; = M;(R, — Ry)/0}

For a security i, which is a member of group k, equation (1) can be written as

p
Ri = Ry = 2,0} (1 = ) + 0 Z Prg Pg
g=1

where ¢, = Zjexg 0; Zj



2.23 The Black-Litterman Model:

The Black- Litterman model is also an asset allocation model which
provides a tool for investors to calculate the optimal portfolio weights under
specified parameters. It was first developed in 1990 by Fischer Black and Robert
Litterman at Goldman Sachs. This model combines ideas from the Capital Asset

Pricing Model (CAPM) and the Markowitz’s mean-variance optimization model.

Before the Black-Litterman came out, investors used historical returns as
estimates. However, the complex model often returns weights that does not
make sense. The great thing about the Black-Litterman is that it produces
relatively neutral weights for the investors and investors are able to add their

personal opinions into the model by translating their own options into matrices.

There are two main assumptions behind the model. First, the model
assumes that all asset returns follow the same probability distribution (usually
normal distribution is selected, but investors can choose any distribution that
seems fit). Second, variance of the prior and the conditional distribution about

the true means of the assets and investor views are unknown.

Assuming there are N-assets in the portfolio, IT is implied returns which is

a Nx1 vector. The model states,

IM=862w

0= Risk aversion coefficient. It can either be an arbitrary assumption or can be

given by 8 = (E(R) - R¢)/0?

E(R) = Return of the market portfolio (a portfolio that includes all the assets in



the market or any other index benchmark that the investor decide to choose)

R¢=Risk free market rate

02 = Variance of the market portfolio

¥ = A covariance matrix of the assets (NxN matrix)

w= Weights of assets according to their market capitalization.

If the investor is happy about this market assessment he can stop right there. But
if not, the investor’s opinion can be incorporated under Black-Litterman. The
approach produces optimal portfolios that start at a set of neutral weights and
then the views of the investor are tilt in. The investor can control how strongly
his or hers views influence the portfolio weights and also which views are
expressed most strongly in the portfolio (Black & Litterman, 1992). However,
this thesis is not going to implement the part of adding investor’s opinion.
Otherwise, it depends to much on my personal views which does not conform to

the goal of this thesis.

2.3 Extension of MPT and Estimation Problems

Although MPT has been widely used over 60 years, it has retained
theoretical problems on which a large amount of work has been done. One of the
major problems is how the single-period problem should be modified if the
investor's true problem is multi-period in nature. Fama (1970), Hakansson
(1970, 1974) have issued papers solving this problem by discussing it under
various assumptions. A second major problem is that concerns about the

appropriate length of a single period is still vague and has never been defined.



Little research has been done on the issues of length. A third major problem
involves two types of theoretical research which are the analysis of portfolio
problems in continuous time and intentions to understand how current holding
and transaction costs affect portfolio rebalancing. Those two have received
substantial attention in the literature but have not had a major impact on the
implementation of portfolio management. The final area that has received great
attention is the accuracy of estimation of the inputs to the portfolio selection. As
we come closer to the present date, the emphasis of the critique has increasingly
been on the error in estimating means, variances and covariances in security
returns. Frankfurter, Phillips and Seagle (1971) argued that their experiment on
the matter showed that the impact of estimation error was so strong as to bring

into question the usefulness of mean variance approaches to portfolio selection.

3 Research Design

The main goal of this research is to see if MPT is realistic by solving the
three questions brought up in the introduction. They are
1. Do the models predict accurate future returns, namely expected returns?
2. Are the optimal portfolio weights realistic for investors?
3. When applying optimal allocations to real returns, what is the monthly
return?
The first part of the research concerns stock selections. Since this paper is
not mainly focusing on how to choose the best stocks, I will simply use P/E ratios
as a standard to filter 6 sectors and 30 stocks out of the market. P/E ratio is

developed to analyze the market's stock valuation of a company and its shares



relative to the income the company is actually generating. It is regarded as a
good guide to use. Then the efficiency of the portfolio has to be assured. In other
words, the portfolio should consist of 30 normal stocks, not a set of stocks with
enormous returns or losses. This can be assured by testing alpha of each stock.
Once finished with choosing stocks, the next step is to answer the questions.

3.1 Expected Returns Vs. Actual Returns:

In order to answer the first question, historical prices from these stocks are
collected and returns are calculated. The data is applied to the three models
which are SIM, Multi Group Model, and Black-Litterman. The application gives us
the predictions of expected returns so that we can compare expected returns
with actual returns. T-statistic, p values and 95% confidence interval will be used
as tool to analyze. The significance level for p is 1%. Historical prices are
collected from two 5 years’ periods, Jan 2001-Jan 2006 and Jan 2007 to Jan 2012.
3.2 Optimal Portfolio Allocations:

First of all, data is applied to the three models to generate three different optimal
weights of the portfolio under short sales allowed, and then the absolute values
of these weights are added up to see if their sum is too large. If it is, then it is not
realistic for investors to implement because raising fund is difficult. For example,
if the sum is three, it means investing with short sales allowed needs a fund three
times larger than it would be when investing without short sales. The capital is

always considered to be one.

3.3 Optimal Portfolio Monthly Returns

In order to get monthly return, I apply the optimal portfolio allocations got from

3.2 to real return. The multiplication of these two 30X 1 matrices will give us

10



monthly return. If monthly returns are positive then it is realistic to use, and

larger monthly returns are better.

The three means will be applied to each model separately, so it can be

identified which model performs best.

4 Empirical Results

Models will be discussed one by one. Two periods’ historical prices will be
used, and each period’s data is a five years’ monthly return.
Period 1: 2001-1-1 to 2006-1-1

Period 2: 2007-1-1 to 2012-1-1
Portfolio Efficiency

Before getting to the actual tests, question may be raised if those stocks in
the portfolio perform normally? Is that possible that stocks in the portfolio have
abnormal returns which may cause the models unable to function properly? This
can be solved by finding each stock’s alpha. Statistical tests can be conducted to
see if each alpha is equal to zero or not. Also, normal QQ plots and residuals

versus fits plots are drawn to see how each stock fitted.

Alpha, or Jensen‘s alpha (1968), in connection to constructing optimal
portfolio is a risk adjusted performance measure that adjusts expected or
average returns for beta risk (Nielsen & Vassalou, 2004). Alpha in the regression
equation is, put in simple terms, a return a portfolio is attaining over a
comparing investment, an index, taking risk also into consideration. Alpha is the

active components of an investment and typically represents either market

11



timing or security selection (Scott, 2009). Alpha of a security is therefore the
component of a securities return that is independent of the market's
performance, or a random variable. In other words it represents that component
of return insensitive to the return on the market (Elton, Gruber, Brown, &

Goetzmann, 2007).

In order to see if all the alphas are zero, the following hypothesis is tested:

HO: True value of alpha (a) =0

H1: True value of alpha (a) # 0

Alphas and tests for period 1:

Stocks Alpha p-value 95% C.I. mean
#1 The Ultimate Software Group, In [ULTI] 0.0389 0.33|(-0.02192135, 0.06123169) 0.02
#2 CGI Group, Inc. Common Stock [GIB] 0.0105 0.06|(-0.001060855, 0.069743861 ) | 0.03
#3 Keynote Systems, Inc. [KEYN] 0.0005 0.19|(-0.05729284, 0.25827869) 0.10
#4 Sina Corporation [SINA] 0.0532 0.74|(-0.2642588, 0.1918148 -0.04|
#5 Eastern Virginia Bankshares, In [EVBS] 0.0109 0.38((-0.0535918, 0.1310123 0.04
#6 MidSouth Bancorp Common Stock [MSL] 0.0295 0.84|(-0.07797702, 0.06455211 -0.01
#7 ROEBLING FIN CP NEW [RBLG] 0.0202 0.25|(-0.03284307, 0.11638938, 0.04
#8 Crescent Financial Bancshares, [CRFN] 0.0279 0.14|(-0.01739619, 0.11528662 0.05
#9 BARRATT DEV PLC [BDEV.L] 0.0281 0.08|(-0.01359092, 0.24103824) 0.11
#10 HENRY BOOT [BHY.L] 0.0251 0.85|( -0.1526568, 0.1269883) -0.01
#11 BOVIS HOMES GROUP [BVS.L] 0.0181 0.09] (-0.02110115, 0.26537289) 0.12
#12 REDROW [RDW.L] 0.0202 0.04|(0.005636362, 0.186165598 ) 0.10
#13 PERSIMMON PLC [PSN.L] 0.0326 0.03(0.01684226, 0.22431526) 0.12
#14 BELLWAY [BWY.L] 0.0243 0.10|(-0.02053632, 0.19913276) 0.09
#15 BERKELEY GRP [BKG.L] 0.0129 0.58(-0.3799410, 0.2215237) -0.08|
#16 TAYLOR WIMPEY [TW.L] 0.0209 0.14|(-0.0404299, 0.2627955 ) 0.11
#17 GENUS [GNS.L] 0.0335 0.66|(-0.06988985, 0.10655407) 0.02
#18 SHIRE [SHP.L] 0.0000 0.09|(-0.007423066, 0.100838749) | 0.05
#19 Heska Corporation [HSKA] 0.0294 0.14|(-0.1055864, 0.6491936) 0.27
#20 Neogen Corporation [NEOG] 0.0193 0.79|(-0.10604074, 0.08188898) -0.01
#21 ABAXIS, Inc. [ABAX] 0.0325 0.30|(-0.0934946, 0.2808018 ) 0.09
#22 International Business Machines [IBM] -0.0005 0.70(-0.02254974, 0.03264746) 0.01
#23 Cray Inc [CRAY] 0.0215 0.35| (-0.1473147, 0.3900820) 0.12
#24 AVEVA GROUP [AVV.L] 0.0167 0.67|(-0.07121139, 0.04744711) -0.01
#25 CGI GROUP INC CL A SV [GIB-A.TO] 0.0046 0.03(0.003513459, 0.081645112 ) 0.04
#26 MARKS & SPENCER [MKS.L 0.0130 0.42|(-0.06580619, 0.14849093) 0.04
#27 DairyFarm 900 USS$ [DO1.5I 0.0370 0.77|(-0.1679706, 0.1275630 ) -0.02
#28 BRIT LAND CO REIT [BLND.L] 0.0176 0.19|(-0.01158030, 0.05347369 0.02
#29 HAMMERSON REIT [HMSO.L] 0.0178 0.25|(-0.01229115, 0.04426101 0.02
#30 Equity One, Inc. Common Stock [EQY] 0.0211 0.48|(-0.02074538, 0.04206827 0.01

There are three stocks whose alphas, being zero, does not fall into the 95%

confident intervals. However, their p values are not too small and they are all

above .1, which means all 30 stocks are basically normal.
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alphas being zero do not fall into the 95% confident intervals. Also, p values are not

Alphas and tests for period 2 appears to be very similar, only two stocks whose

too small. These numbers indicate the portfolio is on the right track.

Normal QQ plots for Period 1:
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All the plots are normal with most points lying on the center straight line. The 12®
plot(which has a blue arrow pointing to it) may be a little off the line but it is still
approximately normal. The 17" plot(which has a red arrow pointing to it) has one or
two large outliers, but it is still basically normal. The graphs for period 2 are very
similar. They have few outliers but approximately normal. All the stocks are normal

under normal qq plots.

Residuals Vs. Fits Plot for Period 1
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The plots are normal though we cannot say they are perfect. A good sign is that there
exists no trend of increasing residuals in any of the plots. All of them are approximately
normal. The graphs for period 2 are very similar, which also indicating all the stocks

perform normally.

Combining the results from alpha test, normal qq plot and residual versus fits plot, we

can conclude that all those stocks in the portfolio are normal.

4.1 Single Index Model:

4.11 Expected returns Vs. Actual returns

First of all, period 1’s data is applied to the Single Index Model and
expected returns for the next period are calculated. A following period after
historical period could be the following month or the following year. I think
using the following month is more proper because the historical returns are
based on monthly returns. But still I do both to see if any one works.

For Period 1:

18



From the table below we can see the expected returns versus real returns.
The second column “Rbar” is the expected return obtained using historical
period’s data, and the third column “Return” is the actual return for the following

period from 2006-01-01 to 2006-02-1. If the model works, they should match.

stock Rbar Return
[1,] 1 0.0388024638 0.0173913043
[2,] 2 0.0102596436 -0.0025740026
[3,] 3 0.0003643798 -0.0728033473
[4,] 4 0.0528124708 -0.0322303395
[5,] 5 0.0108876960 -0.0306748466
[e,] 6 ©0.0294505146 0.0005402485
[7,] 7 0.0202024789 0.0000000000
[8,] 8 0.0277847314 -0.0032653061
[9,] 9 0.0279464115 0.0546312896
[19,] 10 0.0250493247 0.0000000000
[11,] 11 0.0180818230 0.0762976384
[12,] 12 0.0200945071 0.0622532645
[13,] 13 09.0325691522 0.1065995066
[14,] 14 0.0242226650 0.0653344378
[15,] 15 0.0128074176 0.0406129710
[16,] 16 0.0208787276 0.0647532155
[17,] 17 ©0.0333702098 0.0960947539
[18,] 18 -0.0001706517 -0.0182828525
[19,] 19 0.0291164474 0.0000000000
[20,] 20 0.0191177486 -0.0246791708
[21,] 21 0.0323137409 0.0659793814
[22,] 22 -0.0007961612 -0.0047202554
[23,] 23 0.0213011796 -0.0577777778
[24,] 24 ©.0164251585 0.0038549793
[25,] 25 0.0044007775 -0.08235955056
[26,] 26 ©.0129227817 ©.9432157700
[27,] 27 ©0.0369533036 -0.0157728707
[28,] 28 0.0175298626 0.0309043287
[29,] 29 0.0176817403 0.0363971610
[30,] 30 0.0210285596 0.0012828736

Obviously, they do

make sure. Let’s assume

not look alike. However, a statistical test is used to

HO: Difference in mean return = 0

H1: Difference in mean return # 0

Doing t —test on their differences gives us the following:

t=-5.4698, df = 29, p-value = 6.88e-06,
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95 percent confidence interval:

(-4.177094e-18, -1.903473e-18)

The extremely small p value suggests strong rejection to the null
hypothesis, which is not a good sign. Vasicek’s technique is developed to make an
more accurate prediction by using adjusted betas. The following statistics is

generated under Vasicek’s technique.

t=3.3581, df = 29, p-value = 0.002208

95 percent confidence interval:

0.01083223 0.04458149

P value goes up compared to original SIM’s, but it still does not reach 1%

significance level.

For Period 2:
The following is the expected returns and actual returns on the second historical

period.
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stock Rbar Return

[1,] 1 0.924941859 0.034637877
[2,] 2 0.018838542 0.036174430
[3,] 3 0.015816496 0.025065274
[4,] 4 0.022500083 -0.036003985
(5,7 5 -0.027013942 0.166666667
[6,] 6 -0.005191985 ©.053948397
7,1 7 -9.913534025 0.022857143
[8,] 8 -0.013445565 0.411575563
[9,] 9 -0.0907811541 9.190476199
[19,] 190 9.041199772 -0.020565355
[11,] 11 -9.006459705 0.156897613
[12,] 12 -9.9015323714 0.051094891
[13,] 13 -0.004734522 9.156712559
[14,] 14 -0.002361089 0.109905359
[15,] 15 9.001356292 90.076555176
[16,] 16 -9.005261776 ©.149773432
[17,] 17 9.013173301 0.088322196
[18,] 18 9.014441417 0.069326469
[19,] 19 0.003269183 0.070221066
[209,] 20 0.024399315 0.089346024
[21,] 21 9.011095582 -0.031095942
[22,] 22 0.014241387 0.008164564
[23,] 23 0.010513833 0.063087248
[24,] 24 9.017012354 9.065312205
[25,] 25 9.015541195 0.028641975
[26,] 26 -0.004011186 0.093042669
[27,] 27 0.020744218 0.047866805
[28,] 28 -0.011903338 -0.009635074
[29,] 29 -0.012446700 0.065238799
[39,] 30 0.002161833 0.050969529

Making similar assumptions as period 1, we got the t-test result as follows:

t=-4.1361, df =29, p-value = 0.0002761

95 percent confidence interval:

-0.10674296 -0.03610652

The small p value suggests the high possibility of rejecting the null
hypothesis. The t-test result also indicates their differences are significant. 0
does not fall into the 95 percent confidence interval. Adjusted betas under

Vasicek’s technique’s also do not indicate good stats.

Below are the results from changing the following period from month to year.
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stock Rbar Return 4 4 Stoc: 0.02494522; 0‘031§§§;33
[1,] 1 0.0388024638 0.0117516997 '3 O O.18835E40 & BISIECO10
2,7 2 0.0102506436 -0.0066166917 3’7 S 6. BIERICI0E <6, 011780TE
[3,] 3 0.0003643798 -0.0125524931 7’3 o 0627500083 -6, 611620024
4,7 4 0.0528124708 0.0384697707 , : :
[s,] ? -0.027013942 0.065955399
[5,] 5 0.0108876060 0.0025304242 L' b b 005101985 0 026843033
6,7 6 0.0294505146 0.0253288292 , : :
7, 7 0.0202024780 0.9210338438  L7] 9 -0.013534025 0.086898645
[8,] 8 0.0277847314 0.0035697033  [8,1 0 -0.013445565 0.045781751
[9.] 9 0.0279464115 0.018596433¢  [9.] 0 -0.007811541 0.070929215
[16,] 10 0.0250493247 ©.0358739836 L[19.] @ 0.041199772 9.018765149
[11,] 11 0.0180818230 p.@320756560 L[11.] 0 -0.006459705 0.032467410
[12,] 12 0.9200945071 0.0221821979 [12,] 9 -0.015323714 0.042731134
[13,] 13 0.8325691522 0.0145859496 [13.] 0 -0.904734522 0.049547492
[14,] 14 0.0242226650 0.0250319389 [14,] 0 -0.0902361989 0.040868353
[1s,] 15 0.0128076732 0.0290563588  [15.] 0 0.901356314 0.033248132
[16,] 16 0.0208787276 0.0103326135 [16,] 9 -0.005261776 ©.054015016
[17,] 17 0.9333702098 0.9382360596 [17,] 9 0.013173301 0.036496332
[18,] 18 -0.0001706517 0.0184791499 [18,] 0 0.014441417 0.001268390
[19,] 19 0.0291164474 0.0202981653 [19,] 9 0.003269183 0.014561235
[20,] 20 0.0191177486 -0.0009747788  [20,] ? 0.024399315 0.032872162
[21,] 21 ©.0323137409 0.0040040298 [21,] ® 0.011095582 0.036442996
[22,] 22 -0.0007961612 0.0161008416 [22,] ® 0.014241387 0.002921423
[23,] 23 0.0213011796 0.0397884900  [23,] ? 0.010513833 0.089225379
[24,] 24 0.0164251585 0.2501630820 [24,] 9 0.017012354 0.028186563
[25,] 25 0.0044007775 -0.0053509305  [25,] ® 0.015541195 0.017475526
[26,] 26 0.0129227817 0.0308756691 [26,] 0 -0.004011186 0.014970054
[27,] 27 0.0369533036 0.0013490807 [27,] ? 0.020744218 0.919499699
[28,] 28 0.0175297413 0.0277697033  [28,] 9 -0.011903362 0.016651307
[29,] 29 0.0176817403 0.0322125711 [29,] 0 -0.012446700 0.024786780
[30,] 30 0.0210285596 0.0209636400 [39,] ? 0.002161833 0.017850225
Period 1:

t=-0.5223, df = 29, p-value = 0.6054

95 percent confidence interval:

-0.02158787 0.01280476

Period 2:

t=-4.2116, df = 29, p-value = 0.0002246

95 percent confidence interval:

-0.03988524 -0.01380973

It seems the prediction for the first period is fine, but the small p value

and t-test for the second period indicate the predictions are negative.
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Only the prediction of yearly return for the first period works among the
four. These results indicate that SIM does not work properly on predicting next

period’s returns.

4.12 Optimal Portfolio Allocations

Period 1:

The following is the portfolio allocations obtained from period

1. For the factors to be realistic, we may expect the sum of absolute

values to not be too large.

> x_short

[1] 0.042174668 0.118214643 0.071325584 0.069011603 0.148798686 0.043708389

0.053060612 0.064563089

[9] 0.043032507 0.030555316 0.024812963 0.050531474 0.083674321 0.099539551

0.067128451 0.064485398

[17] 0.074514973 0.016819485 0.012437527 0.015078383 0.007555466 0.002840237

0.001592218 -0.009149037

[25] -0.026397726 -0.046728697 -0.053708719 -0.127004980 -0.028554833 0.086088443

The factors look good. The sum of absolute values is under 2. It is good for
investing. [ also did the following 4 months’ assets allocations, and they all look

normal. It seems that the SIM worked out very well for this part.

Period 2:

x_short
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[1] 0.498328854 0.377603480 0.486980521 0.044682346 0.289366396 0.370547038

0.591352334 0.794891569

[9] 0.313107494 0.129857848 0.145181030 0.169114490 0.053234752 0.005884417 -

0.051011541 -0.294640510

[17] -0.045602667 -0.054924122 -0.099836926 -0.065210338 -0.226204490 -0.104756179 -

0.184983813 -0.175642674

[25] -0.466185981 -0.177104819 -0.499783394 -0.171019045 -0.236897287

-0.416328782

The sum of absolute values for period 2 is over 6, which makes it very
expensive and unrealistic for investors to deal with. I conduct a few more
months and all ends up with sums over 5. This indicates the factors are not

realistic for using. It seems SIM is not very steady for generating optimal weights.

4.13 Optimal Portfolio Returns

Period 1:

monthly return when short sales allowed: 0.03879937

monthly return when short sales not allowed: 0.02541904

2/1/086 3/1/086 4/1/06 5/1/06 6/1/06
Shorts 0.0388 0.0379081| 0.0025381| -0.0532001| -0.0015289
No shorts 0.02542 0.0336944| -0.0009133 | -0.0503337| -0.0195242
GSPC 0.00045 0.011095841| 0.01215566| -0.0309169| -0.01401

Unfortunately, it seems that the returns are going down month by month. After
April, it has even negative returns. If an investor actually had used SIM in 2006, he or
she would be losing money. But a fact I may need to disclose is that the whole market

was not doing very well during those months in 2006. The portfolio without short
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sales does not perform well possibly due to a bad market, and it could have nothing to
do with the system of SIM. If every stock is going down, how can you expect to make
money? However, we should expect the portfolio with short sales allowed still
performs good. As a matter of fact, it does not, which points out that SIM may not to

be a good choice for this part.

Period 2:

The following is the monthly return for 1-1-2012 to 2-1-2012 by using the the

assets allocations calculated from period 2 under SIM.

Monthly returns for Short sales allowed: 0.03325059

Monthly returns for Short sales not allowed: 0.02850477

The returns appear to be good. Here are a few more months.

2/1/12 3/1/12 4/1/12 5/1/12 6/1/12
Shorts 0.033251 -0.06941917| -0.1055408| -0.1957767 | 0.00845925
No shorts 0.028505 0.01854021| -0.0169288| -0.0404443| 0.0273504
GSPC 0.040589 0.031332377| -0.0074975| -0.0626507 | 0.03461723

If investors used SIM to make predictions, then unfortunately they would
lose money. For 4/1/12 and 5/1/12, the whole stock market is negative which
can explain that it is very hard to make money without allowing short sales. But
for the other time, if SIM work properly, investors should be making money

which is not the case here.

Single Index Model does not predict the accurate returns, and it creates
very large weights and negative monthly returns. Combining all these numbers,

SIM appears to not be functioning properly.
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4.2 Multi-group Model

The same analysis conducted above will be applied to the Multi Group
Model. The only difference is that short sales are always allowed in the Multi

Group Model.

4.21 Expected Returns VS. Real Returns

The following table combines the expected returns obtained from the

model and the following period’s real returns.

Expected Returns Real Returns

[1,] 0.03900 0.070938215
[2,] 0.01000 -0.033462033
[3,] 0.00036 -0.110460251
[4,] 0.05300 -0.038676407
[5,] 0.01100 -0.037321063
[6,] 0.02900 -0.004862237
[7,] 0.02000 0.040456432
[8,] 0.02800 -0.018775519
[9,] 0.02800 0.035580256
[19,] 0.02500 0.000000000
[11,] 0.01800 0.060386437
[12,] 0.02000 0.053576851
[13,] 9.03300 0.110571172
[14,] 0.02400 0.020904949
[15,] 0.01300 0.005414358
[16,] 0.02100 0.066653995
[17,] 0.03300 0.226297559
[18,] -0.00017 -9.012738634
[19,] 0.02900 0.000000009
[29,] 0.01900 -0.003948667
[21,] 0.03200 0.103608247
[22,] -0.00080 -9.010551159
[23,] 0.02100 -0.128888889
[24,] 0.01600 -0.012482799
[25,] 0.00440 -0.041573034
[26,] 0.01300 0.066887566
[27,] 0.93700 -9.915772871
[28,] 0.01800 0.053096724
[29,] 0.01800 0.091952717
[39,] 0.02100 -0.060936498

Our goal is to see if the predictions are accurate. Let’s assume

HO: Difference in mean return = 0

H1: Difference in mean return # 0
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Furthermore, we will do a t-test. The following is the result:

t=-0.4291, df = 29, p-value = 0.671

95 percent confidence interval:

-0.03015852 0.01969754

The t-test and the large p-value tell us that these two lists of numbers are
very similar which means Multi Group Model predicts the accurate returns for

the next period. Here are the results for the second period.

Period 2:

Expected Returns Real Returns

[1,] 0.924941859 0.046933573
[2,] 0.0918838542 0.062438057
[3,] 0.915816496 0.020887728
[4,] 0.922500083 -9.031450121
[5,] -9.027013942 0.100000000
[e,] -9.005191985 -0.014073495
7,1 -9.013534025 0.022857143
[8,] -9.013445565 0.292604502
[9,] -9.007811541 0.347985348
[19,] 9.941199772 0.007394285
[11,] -0.006459705 0.137747076
[12,] -9.015323714 9.025952960
[13,] -9.004734522 0.283015608
[14,] -9.002361089 0.107185479
[15,] 0.001356354 0.095501469
[16,] -9.005261776 ©.171953255
[17,] 9.913173301 9.342491424
[18,] 0.014441485 0.043681673
[19,] 0.003269183 9.232769831
[29,] 9.924399315 0.065397605
[21,] 9.911095582 -9.019340159
[22,] 0.014241387 0.025394974
[23,] 9.910513833 0.069798658
[24,] 9.917012354 0.086239345
[25,] 9.915541195 9.045925926
[26,] -9.004011186 0.119797188
[27,] 0.0920744218 0.045785649
[28,] -9.011993330 -0.037453668
[29,] -9.012446709 0.038979156
[39,] 0.002161833 0.009418283
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t=4.2032, df = 29, p-value = 0.0002298

95 percent confidence interval:

0.04440953 0.12858920

Obviously, the result is negative. The model does not make good predictions
for period 2. Combining the results from period 1, we may conclude that the Multi

Group Model sometimes works perfectly in predicting returns but not all the time.

4.22 Optimal Portfolio Allocations

For short sales’ weights to be realistic, the sum of their absolute values is
supposed to be small as is previously explained. This table below shows the

optimal portfolio’s weights based on the data from period 1:

weights
[1,] ©.082491819
[2,] -0.019722527
[3,] -90.971606882
[4,] ©0.027246414
[5,] ©0.072976705
[6,] 0.227589035
[7,] ©.186212959
[8,] ©0.213477613
[9,] ©0.061804303
[19,] 9.135926237
[11,] -9.855947182
[12,] -9.023113880
[13,] 9.066022553

[14,] ©.030348708
[15,] -0.121933940
[16,] -0.017281136
[17,] ©.046708920
[18,] -0.031894222
[19,] ©.004839531
[20,] ©.031475441
[21,] ©.832239148
[22,] -0.105987445
[23,] -0.019800634
[24,] ©0.014514415
[25,] -0.857707698
[26,] ©.069411039
[27,] ©.147535487
[28,] -0.032446603
[29,] -0.811425195
[30,] ©.109047019
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The sum of the weights’ absolute values is 2.1 which is acceptable. It is

possible for investors to use the weights for investing.

Period 2:

The following is the second period’s optimal portfolio’s allocation.

weights
[1,] ©.060897566
[2,] ©0.231913582
[3,] -90.112533947
[4,] -0.064757778
[5,] -9.737595107
[6,] -9.445779120
[7,] -90.237681589
[8,] -9.133721209
[9,] -0.024014320
[10,] ©.125136300
[11,] -9.121638449
[12,] -9.214443345
[13,] -9.046081861
[14,] -9.011812499
[15,] ©.113748449
[16,] -9.007116936
[17,] ©.285752485
[18,] ©.382344179
[19,] -9.0865517968
[20,] ©.401469866
[21,] -9.023889931
[22,] 1.117733099
[23,] 0.078225223
[24,] ©.304959473
[25,] ©.773919144
[26,] -9.467916415
[27,] ©.294931780
[28,] -9.540953586
[29,] -9.3092883349
[30,] 9.387297271

The sum of the weights’ absolute values is 8.116657. This is too large and

would cost investors too much money to implement.

4.23 Optimal Portfolio Returns

Applying calculated optimal portfolio allocations to both periods

following 6 months, we got 6 monthly returns. GSPS is the market index.
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6 months after Period 1

2/1/06| 3/1/06| 4/1/06| 5/1/06| 6/1/06| 7/1/06|Total
Monthly Returns | 0.0294| 0.0245| 0.0604| -0.0307| -0.0088 0.0636| 0.1385
GSPC 9.0005| 0.0111| 0.0122| -0.0309| -0.0140 0.0051| -0.0161

6 months after Period 2
2/1/12| 3/1/12| 4/1/12| 5/1/12| 6/1/12| 7/1/12|Total

Monthly Returns | 0.0660| -0.1138(-0.0223| -0.0413 0.1664| -0.1982( -0.1431
GSPC | 0.0406| 0.0313|-0.0075| -0.0627 0.0346 0.0126| 0.0490

We have the conclusion that the model makes good predictions for period
one. As a result, the model performs well for the six months after period one. If
an investor used the multi-group model in 2006, then he or she would make a
good amount of money. A 13.85% return for a half of a year is a very good return.
Unfortunately, if an investor used this model in 2012, then he or she would lose
money. All in all, the Multi Group model is not steady, namely not realistic.

Investors cannot rely solely on this model.

4.3 Black-Litterman Model

The same analysis conducted for the previously two models will be

applied to Black-Litterman Model as well.

4.31 Expected returns Vs. Actual returns

The following table combines the real returns and implied returns for the
period 1/1/2006 -2/1/2006. If the model works, they are statistically the same.

Period 1: 1/1/2001 - 1/1/2006
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RealReturns ImpliedReturns
[1,] ©0.0173913043 -0.0022695512
[2,] -0.0025740026 -0.0062516995
[3,] -9.8728033473 -0.0043856120
[4,] -0.0322303395 -0.0085404457

[5,] -0.0306748466 0.0004572246
[6,] ©.0005402485 -0.0008656703
[7,] ©.0000000000 0.0004250575
[8,] -0.0032653061 -0.0018757944
[9,] ©0.9546312896 -0.0023877241
[19,] ©.0000000000 -0.0001202709
[11,] ©.0762976384 -0.0003163813
[12,] ©.0622532645 -0.0013539894
[13,] ©.1065995066 -0.0010449949
[14,] ©.0653344378 -0.0011876936
[15,] ©.9406161573 -0.0007308699
[16,] ©.0647532155 -0.0004169908
[17,] ©.0960947539 -0.0006647032
[18,] -9.0182747530 -0.0033989087
[19,] ©.0000000000 -0.0047621662
[20,] -9.0246791708 -0.0033028290
[21,] ©.0659793814 -0.0032502978
[22,] -0.0577777778 -0.00803808517
[23,] ©.0038549793 -0.0047713286
[24,] -9.0235955056 -0.0035563318
[25,] ©.0432157700 -0.0055939779
[26,] -9.0157728707 -0.0016316999
[27,] ©.0308974644  0.0002556419
[28,] ©.0363971610 -0.0003496745
[29,] ©.0012828736 -0.0011402579
[30,] ©.0173913043 -0.0006066205

Now, let’s do a t-test to see if the mean of their differences equal to zero.

t=2.4314, df = 29, p-value = 0.02145

95 percent confidence interval:

0.003036391 0.035200906

Since we set the significance level to be 1%, we don’t reject the null
hypothesis here. So far, Black-Litterman functions great. Its implied returns are

almost the same as the following period’s return.

For Period 2,
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RealReturns ImpliedReturns

ULTI 9.097325103 -0.0006923944
GIB 0.033748702 -0.0005779726
KEYN 9.117960877 -0.0008927066
SINA 9.003167155 -0.0007822844
EVBS -9.195789474 -0.0003722678
MSL 0.060559006 -0.0003722406
RBLG 0.092342342 -0.0003439895
CRFN -9.061135371 -0.0004021426
BDEV.L 0.082474227 -0.0015209275
BHY.L 0.061603716 -0.0010782257
BVS.L 0.008001123 -0.0005422688
ROW. L 9.095197978 -0.0002770182
PSN.L 9.976853367 -0.0008552401
BWY.L 0.031834474 -0.0005256669
BKG.L 9.117020185 -0.0002857939
TW.L 0.098862642 -0.0014085986
GNS.L -9.009003615 -0.0003036319
SHP.L 0.052824715 -0.0003986741
HSKA 9.199575372 -0.0011068169
NEOG 9.029477197 -0.0004192084
ABAX 0.007404521 -0.0004961181
IBM 0.021601179 -0.0007347084
CRAY 0.008021390 -0.0007008113
AVV.L 9.031477944 -0.0009460146
GIB-A.TO 9.016614746 -0.0002498239
MKS.L 0.002805006 -0.0003519629
D@1.SI  -9.995953757 -0.0004929095
BLND.L 0.086785304 -0.0005296569
HMSO. L 0.042628467 -0.0006495512

9.022981732 -0.0005839876

EQY

t=4.9684, df = 29, p-value = 2.769e-05
95 percent confidence interval:
0.04583731 0.10997780

The extremely small p value leads us to reject the null hypothesis. These
are two different set of numbers. It seems Black-Litterman is not steady as well.
Nevertheless, investors can have their financial views incorporated in the model,

which may lead to a more accurate result.
4.32 Optimal Portfolio Allocations

Period 1 and Period 2:
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ULTI 2.
GIB -9.
KEYN 9.
SINA -9.
EVBS 9.
MSL -9.
RBLG 9.
CRFN -9.
BDEV.L  -@.
BHY.L -9.
BVS.L 9.
RDW. L 9.
PSN.L -9.
BWY.L -9.
BKG.L 9.
TW.L 9.
GNS.L 9.
SHP.L 9.
HSKA -9.
NEOG 2.
ABAX -9.
IBM 9.
CRAY 9.
AVV.L -9.
GIB-A.TO Q.
MKS.L 2.
D@1.SI  -@.
BLND.L 9.
HMSO. L 9.
EQY 9.

weights
042624562
585687077
155992392
080870150
314786668
010116348
134135564
122185158
296860428
923395403
217756566
036864190
067672047
104800020
110097808
152201444
106142956
918370979
046694075
120271631
957957713
080792880
004819015
095929628
816518653
039866258
024663228
014480165
076611305
002276049

ULTI -9.
GIB -9.
KEYN -9.
SINA -9.
EVBS 9.
MSL 9.
RBLG 9.
CRFN 9.
BDEV.L  -0.
BHY.L -9.
BVS.L -9.
RDW.L 9.
PSN.L 9.
BWY.L -9.
BKG.L 9.
TW.L -9.
GNS.L 9.
SHP.L -9.
HSKA -9.
NEOG -9.
ABAX 9.
IBM 2.
CRAY -9.
AVV.L 9.
GIB-A.TO Q.
MKS.L 9.
D91.SI 9.
BLND.L 9.
HMSO. L 9.
EQY 9.

weights
107837277
568361391
939163546
968573573
975798660
104088759
044976891
109648625
973273209
900256569
0923609438
910341756
949235975
923013799
109443479
922706456
108410331
935892959
949608204
921710114
0959742637
319927047
930540377
915896216
643858030
950592129
180163101
960371611
947729552
087321724

For period 1 and 2, the sums of their absolute values are 3.8 and 3 which

are fairly large. But compared to the results in SIM, they are still smaller.

4.33 Optimal Portfolio Returns

1year after Period 1

Monthly Returns

2/1/96(3/1/06

4/1/06] 5/1/06

6/1/06] 7/1/06

8/1/06

9/1/06

10/1/06

11/1/06

12/1/06

1/1/07

Total

Shorts

-0.023] 0030

0.043) -0.044

0.040) -0.019

0.042

0.032

0.069

0.048

0.024

0.029

0.176

1year after Period 1

2/1/12[3/1/12

4/1/12] 5/1/12

6/1/12| 7/1/12

§/1/12

g1

10/1/12

11/1/12

12/112

1/1/13

Shorts

0.004| -0.001

0001 0.003

0.003[ 0.025

0.020

0.047

0.068

0.036

0.040

0.018

0.174

If you are using Black-Litterman during 2006 and 2012, then you have

made a considerable amount of money. This is a positive sign.
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5 Conclusions

[ would say none of these models are realistic, but there must be a reason
that Markowizts’s Modern Portfolio Theory has been popular for over 60 years.
These models do work sometimes, but not all the time. From my research, Single
Index Model appears to be the last one you would choose. It does not make
accurate predictions of return for both periods. Undoubtedly, the most important
function of those models is to predict future returns because optimal portfolio
allocation is calculated based on the model’s prediction of returns. Everything
can possibly be wrong if prediction of returns goes wrong. SIM also has more
negative monthly returns than positive ones. It may be due to that SIM is the
‘oldest” one and has least considerations. For example, Multi Group Model takes
correlations between sectors into account but SIM does not. The result of
applying data to Multi Group Model shows it has a good forecast during the first
period. It has an impeccable prediction of returns which is proved by the large p
value, realistic allocations, and more positive monthly returns than negative
ones’. It is perfect if we stop right there. However, the forecast for period two
appears to be a totally opposite side of period one’s. The result is not exceptional
at all. In terms of performance, Black-Litterman has similar results compared to
Multi Group Model. The first period’s prediction works excellently. It foresees
the future returns, makes good portfolio allocation, and has much more positive
monthly returns than negative ones’. Nevertheless, same thing happens to
Black-Litterman Model as well. It has terrible predictions in period two, such as

not accurate return predictions and negative monthly returns.

However, being realistic, it must have good predictions most of the time
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since we are dealing with money. Clearly, none of these models achieves it when
looking at my research. But, | have to admit my dataset is quite limited and lacks
of historical periods and stocks. If conditions allowed, the results generating
from doing 100 stocks and 50 historical periods instead of 30 stocks and 2
periods will be more convinced. Based on my research, the answer to the thesis’
main question is clearly negative. I believe the main reason leading to the
negative answer is that those models are oversimplified approximations of
reality. Possibly, they would be more accurate by adding more complex
calculations and considerations. Also, using historical returns to predict future
returns is not reliable. Especially for relatively small companies which are the
majorities of my portfolio, their stock price goes up and down all the time. It is

very difficult to say how the return is going to be for the next month.

[ would not suggest any one to use those models as tools for making
money. But when investors have ideas in mind, it is a smart choice to use these

models including graphs for testing and decision.
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