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ABSTRACT OF THE THESIS 

 

Spin dynamics in nanomagnetic structures 

 

by 

 

Shihao Zhuang 

 

Master of Science in Materials Science and Engineering 

 

University of California San Diego, 2018 

 

Professor Vitaliy Lomakin, Chair 

The development of the spintronic-based data storage devices such as spin transfer 

torque magnetoresistive random access memory (STT-MRAM) is being driven by the surging 

data consumption and demand for faster data processing. The advantages of nonvolatility, 

higher data processing speed, lower power consumption and scalability hold the promise of the 

popularity of STT-MRAM in the future, of which spin transfer torque (STT) effect is the key. 

This thesis develops a spin diffusion model to study the spin dynamics in nanomagnetic 

structures and the corresponding STT effect acting on local magnetic moments. Chapter 2 

provides an introduction to micromagnetic modeling, dominant magnetic interactions, and 
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domain walls. Chapter 3 presents spin diffusion model, in which two approaches are discussed 

for handling the boundary conditions and we demonstrate their good performance in solving 

spin diffusion equation in finite element models. Chapter 3 also shows solutions for the spin 

accumulation in multi-layered magnetic structures at equilibrium and in dynamics. It also 

studies the case of spin transfer torque in magnetic nanostructures with the Néel wall, 

comparing it to the simplified Zhang & Li model. At the end of the chapter 3 we simulate the 

magnetization dynamics under STT effect using the FastMag micromagnetic simulation 

software coupled with the spin diffusion model.  
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Chapter 1 

Introduction 

 In twentieth century the mainstream electronic devices were based on the electron 

charge. While it was known for long that electrons possess angular momentum and the 

associated magnetic moments, no practical application made use of this property until recently. 

The technology that exploits electron spins and its influences on electrical conduction and 

magnetic states emerged in late twentieth century when the spin polarized current injection from 

a ferromagnetic material to a normal metal was observed by Mark Johnson and R. H. Silsbee 

[1], and the giant magnetoresistance was discovered by Albert Fert [2] and Peter Grünberg in 

1988 [3]. Nowadays, the development of spintronics based devices is envisioned by scientific 

community and industry. Among them, data storage devices such as magnetoresistive random 

access memory (MRAM), spin transfer torque MRAM (STT-MRAM) and domain wall based 

racetrack memory, are the main market of spin electronics due to the surging demand for storage 

capacity and speed following the increasing data consumption. The advantages of nonvolatility, 

higher data processing speed, lower power consumption, and scalability hold the promise of 

popularity of spintronics based data storage devices [4, 5]. 

 Numerical simulations provide a great insight and prediction of experiment, which 

improves efficiency and reduces the cost of research and design. The FastMag code developed 

https://journals.aps.org/search/field/author/Mark%20Johnson
https://journals.aps.org/search/field/author/R.%20H.%20Silsbee
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at UCSD is such a computational framework, which contains several modules that make it fit 

to the simulation of many types of physical models and devices in nanomagnetism. The 

computations are based on micromagnetic modeling and take advantage of efficient algorithms, 

parallel computing, and high-performance Graphics Processing Units (GPUs) in order to 

efficiently solve magnetization dynamics in complex magnetic systems.  

 This thesis presents how spin dynamics in nanomagnetic structures can be solved in a 

finite element model and coupled with micromagnetic models to simulate spin transfer torque 

effects. Chapter 2 reviews the basic knowledge of micromagnetic modeling in terms of the 

expressions of the variables and the most important magnetic interactions in a finite element 

scheme. The brief introduction of domain wall is also present. Chapter 3 reiterates some 

concepts and phenomena in spintronics related to this work and introduces Slonczewski’s 

model, Zhang & Li’s model, and spin diffusion model. Different computational methods of 

solving spin diffusion equation are compared and the capability of the spin diffusion model to 

study spin dynamics and spin transfer torque effect is demonstrated. The model has advantages 

over the models of Slonczewski and Zhang & Li.  
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Chapter 2 

Micromagnetic modeling 

All interactions between magnetic moments can be in principle described by atomistic 

formulations taking atomistic and electronic consideration. Micromagnetics is a discipline that 

deals with magnetic phenomena at mesoscale, i.e. the length scale large enough for materials 

structure to be thought of as continuous but small enough to solve magnetic behaviors such as 

domain wall formation, motion, and magnetization dynamics. Micromagnetics was introduced 

in W. F. Brown’s work [6] through treatments of magnetic interaction energies, in which 

magnetic moments density and materials parameters were assumed to be continuous. While the 

magnetization configuration at equilibrium can be found by solving Brown’s equation, the 

Landau-Lifshitz-Gilbert (LLG) equation [7, 8] is typically used to describe the magnetization 

dynamics. The magnetization dynamics in the LLG equation is driven by the effective field, 

which describes various physical interactions. This chapter introduces major interactions in 

micromagnetics and magnetic domain wall relevant to this work. 
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2.1    Finite element modeling 

The first step in solving magnetization dynamics in a part of material or a device is to 

discretize all volumes of the system into finite elements. In our case, the systems to be studied 

are discretized into tetrahedrons, each node in the mesh is linked to the neighboring tetrahedral 

elements and their nodes. A magnetization vector 𝑴 is assigned to each mesh node (tetrahedron 

vertex) (figure 2.1). To comply with continuum approximation of micromagnetics, 𝑴 must be 

continuous throughout the system, thus, we define 𝑴𝑙(𝒓) in each tetrahedron l, and represent it 

using 

𝑴𝑙(𝒓) = ∑𝑴𝑘
𝑙 𝝃𝑘
𝑙

4

𝑘=1

(𝒓), (2.1) 

where 𝑴𝑘
𝑙  is the magnetization vector at each of the four vertices of the tetrahedron l, and 𝝃𝑘

𝑙 (𝒓) 

is a linear basis function, which is equal to unity at vertex k and linearly goes down to zero 

toward the opposite face. The relation between neighboring nodes is mathematically described 

by linear basis function, which is the foundation of the expressions of variables, material 

parameters and mathematical operations such as gradient and Laplacian matrices in discretized 

scheme. 

Generally, the distance between the adjacent nodes ranges from less than a nanometer 

to tens of nanometers, which depends on the size of specific system and is limited by critical 

scales, the typical one is critical length induced by exchange interaction, defined as 𝑙𝑒𝑥 =

√𝐴𝑒𝑥/𝐾, where 𝐴𝑒𝑥 is exchange stiffness constant and 𝐾 is anisotropy energy density. 

 



5 

 

 

Figure 2.1: a) A mesh of an elliptical cylinder divided into tetrahedrons in finite element 

model. b) A typical tetrahedral element with four unit magnetization vectors prescribed at 

each vertex. The unit magnetization is expressed throughout the system using linear basis 

function. 

2.2    Landau-Lifshitz-Gilbert equation 

The Landau-Lifshitz-Gilbert equation is written as 

𝑑𝑴

𝑑𝑡
= −𝛾𝑴×𝑯𝒆𝒇𝒇 + 𝛼𝑴 ×

𝑑𝑴

𝑑𝑡
, (2.2) 

where γ is the gyromagnetic ratio, α is the damping constant, M is the magnetization, and 𝑯𝒆𝒇𝒇 

is the effective magnetic field. Two driving forces are taken into consideration in this equation: 

the first term on the right side of (2.2) represents the total torque applied by 𝑯𝒆𝒇𝒇 and it leads 

to a precessional motion of magnetic moment about the effective magnetic field. The second 

term represents the damping during the precession due to loss of energy, with most of the lost 

energy transferred to the lattice in the form of heat [9] (figure 2.2). 

 However, the derivative terms with respect to M are present on both sides of the 

equation, that is, the LLG equation in this form is implicit. The equation can be cast into an 

a) b) 
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explicit form by replacing 𝑑𝑴/𝑑𝑡 in the right-hand side with the entire right-hand side of the 

LLG equation: 

𝑑𝑴

𝑑𝑡
= −𝛾𝑴×𝑯𝒆𝒇𝒇 + 𝛼𝑴× (−𝛾𝑴×𝑯𝒆𝒇𝒇 + 𝛼𝑴 ×

𝑑𝑴

𝑑𝑡
) , (2.3) 

It can be shown that 

𝑴×𝑴×
𝑑𝑴

𝑑𝑡
= −

𝑑𝑴

𝑑𝑡
, (2.4) 

which leads to the LLG equation in the explicit form: 

𝑑𝑴

𝑑𝑡
= −

𝛾

1 + 𝛼2
𝑴×𝑯𝒆𝒇𝒇 −

𝛼𝛾

1 + 𝛼2
𝑴×𝑴×𝑯𝒆𝒇𝒇 (2.5) 

 

Figure 2.2: Precession of magnetic moment about effective magnetic field as axis. 

Damping term favors the magnetic moment in precession to align with the effective field. 

In this work, an additional term representing spin transfer torque should be added to the 

LLG equation to describe the interaction between magnetic moments and spin accumulation. 

Spin polarized current, spin accumulation and spin transfer torque are introduced in more detail 

in chapter 3. 



7 

 

2.3    Dominant interactions in micromagnetics 

The effective field 𝑯𝒆𝒇𝒇 in equation (2.2) is the sum of the magnetic fields exerted on 

the magnetic moments by various interactions. There are many kinds of interactions that can be 

encountered in micromagnetics, however, compared to those dominant interactions that occur 

in most of situations, the rest of them are relatively negligible except under special situations 

[10, 11, 12, 13]. To speed up computation and save memory, generally, we only take into 

account the most dominant interactions: the Zeeman interaction, the magnetostatic interaction, 

the magnetocrystalline anisotropy, and the exchange interaction. 

The corresponding fields can be derived through the derivative of their potential energy 

densities with respect to the magnetization: 

𝑯 = −
𝜕𝐸

𝜕𝑴
. (2.6) 

2.3.1    Zeeman interaction 

 The Zeeman interaction is the one acted by externally applied magnetic fields 𝑯𝑎𝑝𝑝 and 

the associated potential energy, Zeeman energy, on magnetization M is written as (in CGS 

system of units): 

𝑬𝑧 = −∫𝑴 ∙ 𝑯𝑎𝑝𝑝 𝑑
3𝒓

 

𝑉

(2.7) 

The Zeeman energy has its minimum when 𝑴 and 𝑯𝑎𝑝𝑝 are oriented in the same direction, 

meaning that the Zeeman interaction favors to align the magnetization parallel to the externally 

applied field. 

https://en.wikipedia.org/wiki/Derivative
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 Generally, 𝑯𝑎𝑝𝑝  is a variable input by users and added to the effective field 𝑯𝒆𝒇𝒇 

directly. 

2.3.2    Magnetostatic interaction 

Intrinsic magnetic moments are mainly contributed by electronic spin and its orbital 

motion around the nucleus [14], the field generated by one magnetic moment has the same form 

as that of electric dipole with the associated magnetic dipole field (figure 2.3) expressed as: 

𝑯𝑚𝑠 =
1

4𝜋
(
3(𝑴 ∙ 𝒓)𝒓

𝑟5
−
𝑴

𝑟3
) . (2.8) 

where 𝑴 is magnetization and 𝑟 is the distance from the dipole to the considered point. 

 

Figure 2.3: The magnetic field generated by a magnetic dipole moment. 

Each dipole in the magnetic system generates such a magnetic field in the entire space, 

so each magnetic moment interacts with each other ones through its dipole field, in this case, 

also called magnetostatic field or demagnetizing field, and the interaction is called the 

+ 

- 
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magnetostatic interaction. The field can be regarded as externally applied field whose source is 

inside the system, so the magnetostatic potential energy can be written as: 

𝑬𝑚𝑠 = −
1

2
∫𝑴 ∙ 𝑯𝑚𝑠 𝑑

3𝒓 ,
 

𝑉

(2.9) 

or in the discretized form: 

𝑬𝑚𝑠 = −
1

2
∑ ∑ 𝑉𝑖𝑴𝑖𝑯𝑚𝑠,𝑗|𝑖

𝑁

𝑗=0,𝑗≠𝑖

𝑁

𝑖=0

(2.10) 

where N is the number of the vertices in the system of tetrahedrons and 𝑉𝑖 is effective volume 

of the mesh node. 

                               

Figure 2.4: a) Calculate demagnetizing field by integrating or summing up all dipole fields 

over the entire system. b) Calculate demagnetizing field using potential approach, in which 

positive and negative magnetic charges are distributed on the surface of the system. 

However, the approach is computationally expensive for numerical computation, 

because the magnetic system is composed of a large number of magnetic moments and we need 

to calculate each pair of magnetic moments in the system, which can significantly slow down 

a） b） 
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the simulations. To directly calculate the demagnetizing filed, we can use the potential approach 

(figure 2.4 b) that replace the magnetic dipoles by an assumed distribution of magnetic charge: 

𝑯𝑚𝑠 = −∇∫
−∇ ∙ 𝑴′

|𝒓 − 𝒓′|
𝑑3𝒓′ − ∇∮

𝑛̂ ∙ 𝑴′

|𝒓 − 𝒓′|
𝑑2𝒓′

 

𝑆

 

𝑉

. (2.11) 

Better methods can be applied to the systems whose magnetization within a part of 

volume is uniform. In these cases, the positive and negative magnetic charges cancel out inside 

the volume and they only separately appear at the surfaces, generating a demagnetizing field, 

which can be computed using the demagnetizing tensor [15] The relation between 𝑯𝑚𝑠 and 𝑴 

can be expressed as: 

𝑯𝑚𝑠,𝑖 = −𝑁𝑖𝑗𝑴𝑗   (𝑖, 𝑗 = 𝑥, 𝑦, 𝑧), (2.12) 

where 𝑁𝑖𝑗  is the demagnetizing tensor, which is generally a 3×3 matrix, whose diagonal 

elements  𝑁𝑥𝑥, 𝑁𝑦𝑦, 𝑁𝑧𝑧  are known as demagnetizing factors and only two of them are 

independent because the demagnetizing tensor has unit trace: 

𝑁𝑥𝑥 + 𝑁𝑦𝑦 + 𝑁𝑧𝑧 = 1 . (2.13) 

In the case in which the system has one or more axis or plane of symmetry, the non-

diagonal elements 𝑁𝑖𝑗,𝑖≠𝑗 = 0.  For example, there is no preferential orientation of the 

magnetization in a magnetic sphere, so the only non-zero elements of the demagnetizing tensor 

are 𝑁𝑥𝑥 = 𝑁𝑦𝑦 = 𝑁𝑧𝑧 =
1

3
 . In the case of a long magnetic needle, the 𝑁𝑖𝑖  for magnetization 

directing perpendicular to the axis is 0.5. As for a magnetic thin film, there is only one non-

zero element which represents the magnetization perpendicular to the plane.  

However, in many general cases without uniform magnetization configuration, 

demagnetizing field cannot be computed accurately using demagnetizing factors, so the field at 
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each point has to be computed directly through summing up all magnetic dipole fields (equation 

2.8) generated by other magnetic moments (figure 2.4 a). In micromagnetic simulations, each 

node represents a magnetic moment and the coordinates of all nodes are known in advance, so 

we can precompute the demagnetizing tensor 𝑇𝑖𝑗 for each pair of nodes (i, j), based on distance 

vector 𝒓𝑖𝑗 between nodes i and j to save simulation time. The tensor for pair (i, j) is written as: 

𝑇𝑖𝑗 =
1

4𝜋|𝒓𝑖𝑗|
3 [

3𝑟𝑥,𝑖𝑗
2 − 1 3𝑟𝑥,𝑖𝑗𝑟𝑦,𝑖𝑗 3𝑟𝑥,𝑖𝑗𝑟𝑧,𝑖𝑗

3𝑟𝑦,𝑖𝑗𝑟𝑥,𝑖𝑗 3𝑟𝑦,𝑖𝑗
2 − 1 3𝑟𝑦,𝑖𝑗𝑟𝑧,𝑖𝑗

3𝑟𝑧,𝑖𝑗𝑟𝑥,𝑖𝑗 3𝑟𝑧,𝑖𝑗𝑟𝑦,𝑖𝑗 3𝑟𝑧,𝑖𝑗
2 − 1

] (2.14) 

and the demagnetizing field exerted on node i by the magnetic moment on node j is: 

𝑯𝑑𝑒𝑚𝑎𝑔,𝑗→𝑖 = 𝑇𝑖𝑗𝑴𝑗 (2.15) 

The total demagnetizing filed applied on the node i is then the sum of 𝑯𝑑𝑒𝑚𝑎𝑔,𝑗→𝑖: 

𝑯𝑑𝑒𝑚𝑎𝑔,𝑖 = ∑ 𝑇𝑖𝑗𝑴𝑗

𝑁

𝑗=0,𝑗≠𝑖

(2.16) 

where N is the number of mesh nodes. 

2.3.3    Magnetocrystalline anisotropy 

Magnetocrystalline anisotropy means that one or more axes leading to preferential 

magnetization orientation lie in ferromagnetic or antiferromagnetic sample. The axes in 

preferential direction are called easy axes, and those that are disfavored by magnetocrystalline 

anisotropy are called hard axes. Possessing strong easy axes is a prerequisite for hard magnets 

and near zero anisotropy for soft magnets [16]. Magnetocrystalline anisotropy is an intrinsic 

material property that indicates the crystal symmetry and it originates from crystal-field 

interaction, spin-orbit interaction and interatomic dipoles interaction [17]. 
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Materials with different lattice structure have different numbers and directions of 

anisotropy easy axes [18]. The most common type is the uniaxial anisotropy for which there 

exists one easy axis and thus two preferential orientation of magnetization (figure 2.5 a). This 

property is used in practical applications such as data storage [19]. 

 An expression for the first-order uniaxial anisotropy potential energy density with the 

axis 𝒌𝑎 and unit magnetization M is given by: 

𝐸𝑎 = −𝐾(𝑴 ∙ 𝒌𝑎)
2 (2.18) 

with K being anisotropy coefficient. 

The corresponding effective field then can be derived as: 

𝑯𝑎 =
2𝐾

𝑀𝑠
(𝑴 ∙ 𝒌𝑎)𝒌𝑎. (2.19) 

 

Figure 2.5: a) Uniaxial anisotropy: hexagonal close packed crystal structure with a single 

magnetocrystalline anisotropy easy axis. b) Cubic anisotropy: body centered cubic crystal 

structure with three anisotropy easy axes. 

a) b) 
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Uniaxial anisotropy usually occurs in the crystal systems which have an axis of high 

symmetry, such as threefold, fourfold and sixfold symmetry [20, 21]. 

Another anisotropy type is cubic anisotropy, which is defined in cubic crystals that have 

three crystal axes (figure 2.5 b) [22]. The corresponding energy density is: 

𝐸𝑎 = 𝐾1(𝛼
2𝛽2 + 𝛽2𝛾2 + 𝛾2𝛼2) + 𝐾2(𝛼

2𝛽2𝛾2) , (2.20) 

where α, β, γ are respectively cosines of the angles between the magnetization and the three 

crystal axes, which are called direction cosines, the three axes are perpendicular to each other. 

2.3.4    Exchange interaction 

Pierre Weiss proposed the first modern theory of ferromagnetism in 1906 [23]. The idea 

was that there is a ‘molecular field’ proportional to the ferromagnetic magnetization in the 

sample, leading to spontaneous alignment of the neighboring magnetic moments. In fact, such 

field does not really exist, the origin of ferromagnetism is the exchange interaction, it is a short-

ranged interaction which reflects the electronic Coulomb repulsion and Pauli exclusion 

principle [24]. Two electrons are forbidden from occupying the same quantum state and there 

is an energy difference between the ↑↑ and ↑↓ configuration of spins of neighboring atoms. We 

can write the exchange interaction energy using the Heisenberg Hamiltonian [25]: 

𝐸𝑒𝑥 = −𝐽𝑒𝑥𝑺1 ∙ 𝑺2 , (2.21) 

where 𝑺1  and 𝑺2  are dimensionless spin operators and 𝐽𝑒𝑥  is exchange constant that 

characterizes the strength of exchange interactions. The exchange type and the magnetic 

property of the material are determined by 𝐽𝑒𝑥. The sign of 𝐽𝑒𝑥 > 0 indicates a ferromagnetic 

interaction, i.e. a parallel alignment of two spins minimizes the exchange energy and 𝐽𝑒𝑥 < 0 
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indicates an antiferromagnetic interaction, i.e. antiparallel spin alignment. The exchange 

interaction also leads to the generation of magnetic domains.  

 

Figure 2.6: a) Ferromagnetic interaction, 𝐽𝑒𝑥 > 0 favors parallel alignment of neighboring 

spins. b) Antiferromagnetic interaction, 𝐽𝑒𝑥 < 0  favors antiparallel alignment of 

neighboring spins. 

 In micromagnetic simulations, we assume continuous energies and compute 

magnetization at the mesh nodes of the finite element model rather than simulate the behaviors 

of atomic and electronic scale. The continuous form of the exchange interaction energy is 

derived from (2.21): 

𝐸𝑒𝑥 = ∫𝐴(∇𝑴)
2

 

𝑉

𝑑3𝒓 , (2.22) 

where A is the exchange stiffness constant dependent to 𝐽𝑒𝑥. Then we take the derivative of the 

energy relative to magnetization to get the exchange field: 

𝑯𝑒𝑥 =
2𝐴

𝑀𝑠
 ∇2𝑴, (2.23) 

where 𝑀𝑠 is saturation magnetization. 

2.4    Domain walls 

A region in which the magnetization orientation is uniform is called magnetic domain, 

and domain walls are the interfaces that separate different domains. Domain walls are a result 

of the competition between exchange energy, anisotropy, and magnetostatic interactions. 

a) b) 

https://en.wikipedia.org/wiki/Derivative
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Imagine that the magnetic moments change their direction abruptly, occurring from one atom 

to the next one, and both are parallel and antiparallel to the anisotropy easy axis (figure 2.7 a). 

As discussed in section 2.3.4, the exchange energy in ferromagnets is maximized when adjacent 

spins are antiparallel, therefore, the wall has a large exchange energy and it can be decreased if 

the 180° change in magnetic moment direction occurs gradually over several atoms. However, 

in such a case, more magnetic moments point away from the easy axis and the 

magnetocrystalline anisotropy energy within the wall is higher. In addition, magnetostatic 

interactions tend to misalign the spins. Domain wall is the result of this competition, and it ends 

up an interfacial region with definite width and structure when the total energy reaches the 

minimum (figure 2.7 b). 

 

Figure 2.7: Domain wall in a system with uniaxial anisotropy. a) Hypothetical 180° 
domain wall with abrupt magnetization change. b) Structure of a 180° domain wall, gradual 

change of magnetization orientation where anisotropy energy and exchange energy balance 

each other. 

Domain walls have two major categories, called Bloch and Néel domain walls. Bloch 

wall was named for Felix Bloch, who conducted the first theoretical examination of domain 

walls [26]. In Bloch walls, the axis about which the magnetization varies from one direction of 

easy axis to the other is in the plane of magnetization on both sides, meaning that the 

a) b) 
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magnetization within the wall points out of the plane (figure 2.8 a). When the thickness of the 

sample and the domain wall in it are comparable, the potential energy generated by the free 

dipoles on the surface of the domain wall becomes significant. This energy makes the 

magnetizations rotate in the plane of the thin sample, which means that the magnetization 

vectors in and out of the domain wall are in the same plane (figure 2.8 b). Such a wall structure 

is called Néel wall, after French physicist Louis Néel [27].  

Like other kinds of interfaces, domain wall has energy per unit area of its surface. It is 

expressed by the sum of the exchange energy density and anisotropy energy density, then 

integrated over the wall thickness: 

𝜎𝑑𝑤 = ∫ [𝐴 (
𝑑𝜃

𝑑𝑥
)
2

+ 𝐸𝑎(𝜃)] 𝑑𝑥
∞

−∞

(2.24) 

where 𝜃 is the angle between magnetization orientation and the easy axes, 𝐸𝑎 is the anisotropy 

energy density. 

 

Figure 2.8: Two kinds of magnetic tracks in domain wall with a single anisotropy easy 

axis in y direction. a) Example of a 180° Bloch domain wall, the magnetization rotates 

between two opposite directions of the easy axis about the x axis. b) Example of a 180° 
Néel domain wall, the magnetization rotates between two opposite directions of the easy 

axis about the z axis. 

a) b) 
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Domain wall naturally minimizes its total energy, until that the exchange and anisotropy 

energies balance each other everywhere within the wall, 𝐴 (
𝑑𝜃

𝑑𝑥
)
2

= 𝐸𝑎(𝜃)  where uniaxial 

anisotropy 𝐸𝑎(𝜃) = 𝐾𝑎 sin
2 𝜃, then we can get the relation between x and 𝜃 (figure 2.9): 

𝑥 = √
𝐴

𝐾𝑎
In (tan

𝜃

2
) , (2.25) 

the effective wall thickness: 

𝛿𝑑𝑤 = 𝜋√
𝐴

𝐾𝑎
, (2.26) 

and the energy per unit area of wall surface at equilibrium: 

𝜎𝑑𝑤 = 4√𝐴𝐾𝑎. (2.27) 

Typically, the wall thickness spans from a sub-nanometer to hundreds of nanometers [28]. 

 

Figure 2.9: Variation of the angle between magnetization and the easy axis with respect to 

the position in the domain wall, x, in unit of √𝐴/𝐾𝑎 , the position x = 0 is the center of the 

wall.  

𝑥 (√𝐴/𝐾𝑎) 

θ (°) 
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Chapter 3 

Spin dynamics in nanomagnetic structures  

The new generation of non-volatile random-access memory, magnetoresistive random-

access memory(MRAM), began its development in the 1960s [29] and research on it surged 

after the introduction of giant magnetoresistance in 1988 [2][3]. Different from other 

conventional RAMs, data in MRAMs is stored in magnetic elements instead of electric charge 

or current. In the basic configuration, the magnetic elements include two ferromagnetic layers 

separated by a thin non-magnetic layer, one of which is a permanent magnet whose 

magnetization is fixed in a particular orientation, while the other layer’s magnetization can be 

changed by an applied magnetic field. 

Applying magnetic field is the way to write MRAM and reading is accomplished 

through measurement of the electrical resistance of the storage element. Due to the tunnel 

magnetoresistance effect, the electrical resistance changes depending on the relative states of 

the references and free layers. Because of MRAM’s fast switching, reliability, scalability, and 

nonvolatility, its proponents believe that it may dominate the future memory market. 

Spin transfer torque MRAM(STT-MRAM) is a new advanced memory type that uses 

spin-polarized current to write MRAM instead of magnetic field, as was proposed by 

Slonczewski [30] and Berger [31] in 1996. The STT effect is the key of this technology. When 
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current flows through a magnetically inhomogeneous structure, the current is spin polarized 

and this polarization exerts a spin toque on the local magnetic moments, leading to the 

magnetization reversal. 

In micromagnetics, the Slonczewski’s model [32] is frequently used for the simulation 

of STT effects in multi-layer structure and Zhang & Li model [33] is used for structures with 

domain walls. However, both models do not describe the spin dynamics in magnetic structures. 

In this chapter, spin diffusion model, a physical model that enables explicit calculation of spin 

accumulation dynamics, is introduced. Brief introduction of spin-polarization, spin valve and 

STT is also presented before that. Finally, the numerical implementation of spin diffusion 

model is examined through numerical experiments. 

3.1    Spin polarization 

An electron carries not only its charge, but also an angular momentum ħms, where ms = 

±1/2 for the spin down and up states, ↓ and ↑, respectively. The corresponding magnetic 

moment is proportional to the angular momentum, μ𝑠 =  𝛾ħ𝑚𝑠, where γ is gyromagnetic ratio. 

Electronic spin can be flipped between ↓ and ↑ states by scattering processes. The spin flipping 

scattering is relatively rarer than normal momentum changing scattering [34] so that the 

conduction of electrons can be thought of going through two parallel channels for ↓ and ↑ 

separately, this two-current model was proposed by Mott in 1936 [35]. 
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Figure 3.1: Schematic representation of the density of states function in 3d and 4s energy 

band of nickel where blue part is for ↑ state and red part is for ↓ state. Exchange energy 

splitting occurs in 3d band, ↑ states are fully occupied while ↓ states with higher energy 

are incompletely occupied. 

In normal metals, both the electronic band structure and the occupancy of spin up and 

spin down states are equal. However, due to a strong exchange interaction, the electronic band 

structure of ferromagnets splits. As an example, for nickel, which is a ferromagnetic metal, 

exchange splitting exists in the 3d band [36], 3d↑ band is fully occupied, but the ↓ electrons can 

be excited into empty 3d↓ states at the Fermi level (figure 3.1). This population imbalance of 

spin up and spin down electrons results in a non-zero spin polarization. Also, since the 

frequency of spin flipping scattering is proportional to the density of unoccupied states at the 

Fermi surface [37], ↓ electrons are more likely to be scattered and their transport is more 

impeded, further reinforcing the spin population imbalance. The polarization, P, of an ensemble 

of electrons can be described in terms of the population density of the electrons in spin up 

state 𝑛 ↑ and spin down state 𝑛 ↓: 
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𝑃 =
𝑛 ↑ − 𝑛 ↓

𝑛 ↑ + 𝑛 ↓
 . (3.1) 

When all electrons are in the same spin state, P=1, they are completely spin polarized. When ↑ 

and ↓ states are equally likely to be occupied, P=0, the electrons are unpolarized. The definition 

of spin polarization can also be used in electric current, a spin-polarized current is a flow of 

electrons whose spin population is in imbalance. 

3.2    Spin valve and spin transfer torque 

Consider a normal metal / ferromagnet / normal metal junction (NM1/FM/NM2) 

through which electrons flow from left to right (figure 3.2). When the electrons exit the left-

hand-side normal metals(NM1) and enter the ferromagnets, the initially unpolarized current is 

spin polarized due to the density imbalance of spin states and the spin dependent difference of 

scattering frequency in ferromagnets. As they exit the ferromagnet and enter the right-hand-

side NM2, the spin polarization builds up at the interface. This is referred to as spin 

accumulation [34, 38, 39] and it is usually measured as spin splitting voltage in experiments. 

The polarization then declines with increasing distance from ferromagnet because majority spin 

carriers scatter more in normal metals until the population of two spin states goes back to 

balance [40].  

Spin polarized current also exists in NM1. The difference in scattering frequency of spin 

up and spin down electrons between normal metals and ferromagnets makes minority spin 

carriers more likely to be reflected at the interface [40], which results in a spin accumulation 

that declines with increasing distance from ferromagnet. 
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The total angular momentum of the electrons and lattice system must be conserved, 

which means that a gain of angular momentum of electric current must be balanced by the loss 

of angular momentum of lattice. Therefore, the underlying physics of the polarization of electric 

current is, in fact, the transfer of angular momentum from ferromagnet lattice to electron flow. 

It implies that angular momentum can also be transferred from spin polarized current to lattice, 

switching the magnetization of the ferromagnet. This effect is known as spin transfer torque 

(STT) effect [30, 31]. 

 

Figure 3.2: A normal metal / ferromagnet / normal metal junction in which the electrons 

flow from the left to the right. The electrons are spin polarized in both metallic layers. 

Now we add two more layers to the junction to make it a normal metal / ferromagnet / 

normal metal / ferromagnet / normal metal spin valve (figure 3.3). Generally, one of the 

ferromagnets is set to be thicker (FM1) and the other one is thinner (FM2). The magnetization 

in thicker ferromagnet FM1 is large enough to resist the influence from the STT effect, so FM1 

is only used to polarize the electric current. When a voltage is applied to this spin valve, the 

current polarized in appropriate orientation by FM1 switches the magnetic state of FM2 and the 

rate of the supplementation of angular momentum from spin current must be able to compensate 

the dissipation in Larmor precession of moments.  
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Figure 3.3: A normal metal / ferromagnet / normal metal / ferromagnet / normal metal spin 

valve where FM1 layer is magnetized in x direction and FM2 layer is magnetized in y 

direction. The electrons polarized by FM1 transfer angular momentum to the lattice of FM2, 

changing its magnetization orientation. 

For example, we can assume that FM1 is initially magnetized in the x direction and FM2 

in the y direction. Suppose the electrons are moving in the z direction from FM1 to FM2, at the 

interface between FM1 and the normal metal, the randomly polarized incident electrons are 

either reflected or transmitted, but those with majority spins of FM1 are more easily transmitted. 

The electrons that enter FM1 are subject to a strong exchange field in the x direction, forcing 

them to precess at Larmor frequency. At the time they leave FM1, their y and z component of 

the spin magnetic moment are dephased [41, 42, 43], or in other words, the corresponding 

momentum is transferred to the lattice. The transfer rate can be expressed as 𝑗ħ𝑃 sin 𝜃 /(2𝑒), 

where j is current density and 𝜃  is the angle between the moment and the magnetization. 

Another mechanism is based on the great difference between the mean free path of majority 

and minority spin electrons. The minority spin electrons’ angular momentum is transferred by 

scattering within the first nanometers while the majority ones can transport much longer before 

scattering [44].  



24 

 

When the electrons with angular momentum in the x direction arrive at FM2, their 

momentum is absorbed by the lattice and they precess about the y axis as was just described. 

Differently, the torque exerted on FM2 tends to rotate the magnetization toward the orientation 

of the incoming current polarization, leading to the parallel configuration of FM1 and FM2.  

3.3    Spin transfer torque in micromagnetics 

 When the STT effect is taken into consideration, an additional term must be added to 

the LLG equation: 

𝑑𝑴

𝑑𝑡
= −

𝛾

1 + 𝛼2
(𝑴 × 𝑯𝒆𝒇𝒇) −

𝛼𝛾

1 + 𝛼2
𝑴×𝑴×𝑯𝒆𝒇𝒇 + 𝑳, (3.2) 

in which 𝑳 represents the effective spin transfer torque acted on the magnetization 𝑴.  

 

Figure 3.4: Tetrahedral finite element mesh of two magnetic layers separated by a metallic 

spacer (not shown) for calculation of STT in Slonczewski model, a pair of nodes i and j is 

shown. 

 There are two frequently used models for the STT effect in micromagnetics: one is 

Slonczewski’s model and the other is Zhang & Li’s model. In Slonczewski’s model [32] (figure 
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3.4), the magnetization in the layer for polarization (FM1) is assumed to be fixed, spin transfer 

torque is computed at each node i on the interface of free layer (FM2) by the equation: 

𝑳𝑖
𝑆𝑇𝑇 = 𝜂(𝜃𝑖𝑗)

ħ

2𝑒

𝐽𝑒
𝑡𝑖
𝑴𝑖 ×𝑴𝑖 ×𝑴𝑗 , (3.3) 

where node j is directly opposed to the node i across the spacer layer,  𝐽𝑒 is electric current 

density, 𝑡𝑖 is the effective depth over which spin transfer torque is distributed at node i, 𝑴𝑖 and 

𝑴𝑗 are unit magnetization at node i and j respectively, 𝜂(𝜃𝑖𝑗) is angular coefficient related to 

the angle 𝜃𝑖𝑗 between magnetization orientation at node i and j: 

𝜂(𝜃𝑖𝑗) =
𝑞+

𝐴 + 𝐵 cos 𝜃𝑖𝑗
+

𝑞−

𝐴 − 𝐵 cos 𝜃𝑖𝑗
 , (3.4) 

coefficients A, B, 𝑞+, 𝑞− all depend on the geometry of the system. 

 Slonczewski model is a straightforward way to deal with spin transfer torque in multi-

layered structures, but its fixed magnetization in pinned layer makes it not fit for varying 

magnetization configuration such as domain wall motion, while Zhang & Li model [33] is good 

for describing spin transfer torque in the domain wall case. The model is a simplified version 

of the spin diffusion model discussed in section 3.4 with the assumptions that the spin 

accumulation varies slowly in space and that the spin transfer torque is computed under spin 

equilibrium. The torque exerted by current of density 𝑱𝒆 is expressed as: 

𝐿𝑆𝑇𝑇 =
1

1 + 𝜉2
𝜆𝐽
2𝛽𝜇𝐵

2𝐷0𝑒
(−𝑴× [𝑴 × (𝑱𝒆 ⋅ 𝛁)𝑴] − 𝜉𝑴 × (𝑱𝒆 ⋅ 𝛁)𝑴), (3.5) 

where 𝜆𝐽
  =√2ℎ𝐷0/𝐽𝑒𝑥  with  𝐽𝑒𝑥  being exchange constant between conducting electrons and 

magnetization, 𝐷0  is electron diffusion constant, β is spin polarization parameter for the 
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conductivity, and 𝜉 = 𝜆𝐽
2/𝜆𝑠𝑓

2  with 𝜆𝑠𝑓
  being related to spin flipping relaxation time τ𝑠𝑓  via 

𝜆𝑠𝑓
 = √2𝐷0τ𝑠𝑓. 

 Zhang & Li model loses its accuracy when dealing with magnetic multi-layer structure 

since the assumption that the spin accumulation varies little in space is violated at the interfaces 

between non-magnetic and magnetic layers where the spin polarization is built up abruptly. 

 Whichever model is used to solve for the magnetization dynamics equation, we only 

need to directly compute the spin transfer torque without knowing spin polarization. Another 

explicit way is to get spin accumulation of each iterative step first and then calculate the spin 

transfer torque. A spin diffusion model is required to accomplish this task. 

3.4    Spin diffusion model 

3.4.1 Continuous formulation 

 A spin diffusion model was first presented in 2002 [45]. In this model, spin 

accumulation is a vector variable that represents the spin polarization acting torque on 

background magnetization in semiclassical physical models. Spin accumulation is measured in 

the unit of a magnetic field and the spin transfer torque can be calculated as 𝒔 ×𝑴, similar to 

an applied magnetic field. 

  The equation that describes the motion of spin accumulation 𝒔 in three dimensions is: 

𝜕𝒔

𝜕𝑡
= −∇ ∙ 𝑱𝑠 − 2𝐷0 [

𝒔

𝜆𝑠𝑓
2 +

𝒔 ×𝑴

𝜆𝐽
2 ] , (3.6) 

for a given electric current density 𝑱𝑒 , the matrix-valued spin current 𝑱𝑠 is expressed as: 
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𝑱𝑠 =
𝛽𝜇𝐵
𝑒
𝑴 ⨂𝑱𝑒 − 2𝐷0[∇𝐬 − ββ

′𝑴⨂((∇𝒔)𝑇𝑴)], (3.7) 

where 𝜆𝐽
  =√2ℎ𝐷0/𝐽𝑒𝑥 and 𝜆𝑠𝑓

 = √2𝐷0τ𝑠𝑓, which are same as those in (3.5), 𝐷0 is diffusion 

constant, β and 𝛽′  are defined as spin polarization parameters for electric conduction and 

electron diffusion, respectively. Here, 𝒂 ⨂ 𝒃 = 𝒂𝒃𝑇 is the outer product of two vectors, ∇𝐬 is 

Jacobian matrix of s, that is: 

∇𝐬 =

(

 
 
 
 

𝜕𝑠𝑥
𝜕𝑥

      
𝜕𝑠𝑥
𝜕𝑦

      
𝜕𝑠𝑥
𝜕𝑧

𝜕𝑠𝑦

𝜕𝑥
      
𝜕𝑠𝑦

𝜕𝑦
      
𝜕𝑠𝑦

𝜕𝑧
𝜕𝑠𝑧
𝜕𝑥

      
𝜕𝑠𝑧
𝜕𝑦

      
𝜕𝑠𝑧
𝜕𝑧 )

 
 
 
 

, (3.8) 

and divergence of a 3×3 matrix 𝐴̿ is defined as: 

∇ ∙ 𝐴̿ =

(

 
 
 
 

𝜕𝐴11
𝜕𝑥

+
𝜕𝐴21
𝜕𝑦

+
𝜕𝐴31
𝜕𝑧

𝜕𝐴12
𝜕𝑥

+
𝜕𝐴22
𝜕𝑦

+
𝜕𝐴32
𝜕𝑧

𝜕𝐴13
𝜕𝑥

+
𝜕𝐴23
𝜕𝑦

+
𝜕𝐴33
𝜕𝑧 )

 
 
 
 

. (3.9) 

 We can find that the left-hand side of (3.6) is the time dependence of the spin 

accumulation and the right-hand side has the Laplacian of spin accumulation ∇2𝒔  after 

replacing 𝑱𝑠 in (3.6) with (3.7), so (3.6) is a diffusion equation of spin accumulation. The term 

𝑴 ⨂𝑱𝑒 represents the source of spin accumulation, describing the build-up process in varying 

magnetization. The terms 2𝐷0𝒔/𝜆𝑠𝑓
2  and 2𝐷0(𝒔 × 𝑴)/𝜆𝐽

2 are contributed by the polarization 

dissipation resulted from spin flipping scattering and by the STT effect between background 

magnetization respectively. 
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3.4.2 Discrete node-based formulation 

One approach to discretize the continuous spin diffusion equations is to obtain all terms 

at the nodes of the mesh and have equations defined at the nodes. First, we can make use of 

tensor identities about vectors u, v and matrix 𝐴̿: 

∇ ∙ (𝒖 ⨂𝒗) = (∇𝒖)𝒗 + (∇ ∙ 𝒗)𝒖 (3.10) 

and 

∇ ∙ (𝐴̿𝒖) = 𝒖 ∙ (∇ ∙ 𝐴̿𝑇) + 𝑡𝑟[𝐴̿(∇𝒖)] (3.11) 

to rewrite (3.6) and (3.7) into: 

                
𝜕𝒔

𝜕𝑡
= −

𝛽𝜇𝐵
𝑒
[(∇𝑴)𝑱𝑒 + (∇ ∙ 𝑱𝑒)𝑴] + 2𝐷0∇

2𝒔 − 2𝐷0𝛽𝛽
′(∇𝑴)[(∇𝒔)𝑇𝑴]

−2𝐷0𝛽𝛽
′{𝑴 ∙ (∇2𝒔) + 𝑡𝑟[(∇𝒔)𝑇(∇𝑴)]}𝑴− 2𝐷0

𝒔

𝜆𝑠𝑓
2 − 2𝐷0

𝒔 ×𝑴

𝜆𝐽
2 . (3.12)

 

 In our formulation, the spin accumulation is represented via finite element model with 

linear basis functions 𝜉. It can be shown that the Laplacian of a vector variable can be derived 

into element discretized form via the box method [46, page 57-59]: 

∇2𝒔│𝑝 = −
1

𝑉𝑝
∑∑(∇𝜉𝑝

𝑙 ∙ ∇𝜉𝑘
𝑙 )𝑉𝑙𝒔𝑘

𝑙

4

𝑘=1

𝑀

𝑙=1

, (3.13) 

the calculation of ∇2𝒔 at node p iterates over all M elements surrounding this node, and in each 

element l, all its vertices are gone through from k = 1 to 4. Here, 𝑉𝑝 is the effective volume of 

node p defined as: 

𝑉𝑝 =
1

4
∑𝑉𝑙

𝑀

𝑙=1

, (3.14) 
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with 𝑉𝑙 being the volume of element l. Based on the geometry, the general expression of the 

gradient of linear basis function is formulated as: 

∇𝜉𝑞
𝑙 =

𝒗𝑞
𝑙

|𝒗𝑞
𝑙 |
2 . (3.15) 

The vector 𝒗𝑞
𝑙  points to node q from a point on the opposing tetrahedral face to which the vector 

is perpendicular, it is written as: 

 𝒗𝑞
𝑙 = [(𝒓𝑞

𝑙 − 𝒓𝑟
𝑙 ) ∙ 𝐧𝑟𝑠𝑡

𝑙 ] 𝐧𝑟𝑠𝑡
𝑙 (3.16) 

with position vectors 𝒓𝑞
𝑙 , 𝒓𝑟

𝑙 , 𝒓𝑠
𝑙 , 𝒓𝑡

𝑙  of the four vertices of tetrahedron l, and 

 𝐧𝑟𝑠𝑡
𝑙 =

(𝒓𝑟
𝑙 − 𝒓𝑠

𝑙 ) × (𝒓𝑟
𝑙 − 𝒓𝑡

𝑙)

|(𝒓𝑟
𝑙 − 𝒓𝑠

𝑙 ) × (𝒓𝑟
𝑙 − 𝒓𝑡

𝑙)|
. (3.17) 

 

Figure 3.5: Tetrahedron l with four vertices q, r, s, t, appearing in (3.15) to (3.17). The 

vector 𝒗𝑞
𝑙  is perpendicular to the plane rst. 

In our work, we use implicit Euler scheme to solve for the spin accumulation 𝒔𝑘+1 at 

the next time-step. Assuming the right-hand side of the equation (3.12) to be 𝒇(𝑴, 𝒔𝑘+1), we 

get its temporally discretized form: 
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𝒔𝑘+1 − 𝒔𝑘

𝜏
=  𝒇(𝑴, 𝒔𝑘+1) (3.18) 

with τ being timestep, or 

𝒔𝑘+1 − 𝜏𝒇(𝑴, 𝒔𝑘+1) = 𝒔𝑘 (3.19) 

after reorganization. 

 It is easy to find that the left-hand side of (3.19) is the linear combination of sx, sy, sz at 

the time-step k+1 and that the right-hand side is a known vector, so we are solving a large 

system of linear equations, which can be expressed as: 

𝐴̿3𝑁×3𝑁

(

 
 
 
 
 
 
 

𝑠1𝑥
𝑠2𝑥
⋮
𝑠𝑁𝑥
𝑠1𝑦
⋮
𝑠𝑁𝑦
𝑠1𝑧
⋮
𝑠𝑁𝑧)

 
 
 
 
 
 
 

3𝑁×1

𝑘+1

= 𝒃3𝑁×1
𝑘 , (3.20) 

where 𝐴̿3𝑁×3𝑁 is a sparse matrix. 

Besides the description of the diffusion of spin accumulation, a continuity condition that 

spin current 𝑱𝑠 is continuous across the interface [47], must be added at the interfaces between 

two different materials as well, the condition is expressed by the equation: 

𝑱𝑠,𝑖
𝑖𝑛 ∙ 𝒏𝑖 = 𝑱𝑠,𝑖

𝑜𝑢𝑡 ∙ 𝒏𝑖 , (3.21) 

or in more detail: 

2𝐷0
𝑖𝑛 [(∇𝒔𝑖𝑛)

𝑖
𝒏𝑖] − 2𝐷0

𝑜𝑢𝑡[(∇𝒔𝑜𝑢𝑡)𝑖𝒏𝑖] − 2𝐷0
𝑖𝑛𝛽𝛽′ {𝑴𝑖

𝑖𝑛 ∙ [(∇𝒔𝑖𝑛)
𝑖
𝒏𝑖]}𝑴𝑖

𝑖𝑛

=
𝛽𝜇𝐵
𝑒
(𝑱𝑒,𝑖 ∙ 𝒏𝑖)𝑴𝑖

𝑖𝑛, (3.22)
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where superscripts in and out means the s, M or D0 inside and outside the magnetic material 

respectively, subscript i indicates the variable at the node i and it goes over all nodes on all 

interfaces between ferromagnetic and nonmagnetic layers. 𝒏𝑖  is the unit normal vector that 

perpendicular to the interface at node i. 

The spin current continuity equation implies the generation of the polarization at the 

interfaces, the difference between the spin accumulation on the both sides of the interface 

compensates the value of term 
𝛽𝜇𝐵

𝑒
(𝑱𝑒,𝑖 ∙ 𝒏𝑖)𝑴𝑖

𝑖𝑛.  

 

Figure 3.6: Schematic representation of (3.21). Spin current 𝑱𝑠  flows from the 

nonmagnetic layer to the magnetic layer, 𝒏𝑖 is the unit vector perpendicular to the interface 

at the node i. 

In order to simulate the spin dynamics, we must solve (3.19) and (3.22) simultaneously. 

Assuming there are N nodes in the system, we will need 3N equations to solve 3N unknown 

variables for the three components in the x, y, z directions of the spin accumulation at each node. 

These equations are composed of the equation (3.22) applied on all nodes on the interfaces and 

of the equation (3.19) applied on the others inside the volumes.  
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3.4.3 Discrete element-based formulation ― weak formulation 

Another discretization approach is based on each element. It solves the weak form of 

the spin diffusion equation using Galerkin method. We multiply both sides of the equation (3.6) 

by a test vector function φ and integrate it over the entire system. The new equation is called 

weak formulation and its solution is called weak solution. Weak solutions are not necessarily 

differentiable, so the weak formulation of the differential equations can be solved more easily 

and conveniently, especially for those that do not admit completely smooth solutions.  

Then invoking the identities 

𝛼∇𝜙 ∙ ∇𝜓 = ∇ ∙ (𝛼𝜓∇𝜙) − 𝜓∇ ∙ (𝛼∇𝜙) (3.23) 

∇ ∙ (𝜓𝝋) = 𝜓(∇ ∙ 𝝋) + 𝝋 ∙ (∇𝜓) (3.24) 

and Gauss’s theorem 

∭∇ ∙ 𝝋
 

𝑉

𝑑𝑟3 =∬𝝋 ∙
 

𝑆

𝒏𝑑𝑟2, (3.25) 

we can convert equation (3.6) into the weak formulation without second order differential [48]: 

∭
𝜕𝒔

𝜕𝑡

 

𝑉

∙ 𝝋 𝑑𝒓3 +
2𝐷0

𝜆𝑠𝑓
2 ∭𝒔 ∙ 𝝋

 

𝑉

𝑑𝒓3 + 2𝐷0∭∇𝒔:∇𝝋
 

𝑉

𝑑𝒓3

−2𝐷0𝛽𝛽′∭ {𝒎⨂[(∇𝒔)𝑇
 

𝑉𝑚𝑎𝑔

∙ 𝒎]}: ∇𝝋 𝑑𝒓3 +
2𝐷0

𝜆𝐽
2 ∭ (𝒔×𝒎)

 

𝑉𝑚𝑎𝑔

∙ 𝝋 𝑑𝒓3

=
𝛽𝜇𝐵
𝑒
∭ (𝒎⨂𝑱𝑒): ∇𝝋

 

𝑉𝑚𝑎𝑔

 𝑑𝒓3 −
𝛽𝜇𝐵
𝑒
∬ (𝑱𝑒 ∙ 𝒏) ∙ (𝒎 ∙ 𝝋)𝑑𝒓2

 

𝑆𝑚𝑎𝑔
𝑜𝑢𝑡𝑒𝑟

, (3.26)

 

where 𝑉𝑚𝑎𝑔 indicates the integral over only magnetic volumes and 𝑆𝑚𝑎𝑔
𝑜𝑢𝑡𝑒𝑟 indicates the integral 

over all outer surfaces of the magnetic volumes, 𝑨:𝑩 = ∑ 𝑨𝑖𝑗 ∙ 𝑩𝑖𝑗
3
𝑖,𝑗=1  is the Frobenius inner 

product of two matrix. 
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 Similarly, we also use implicit Euler scheme here, and choose the spin accumulation to 

be solved sk+1 as the test function then interpolate it over each finite element. The spin 

accumulation inside the element e is expressed as: 

𝒔𝑒
𝑘+1 =∑𝑁𝑖

𝑒 ∙

4

𝑖=1

𝒔𝑒,𝑖
𝑘+1, (3.27) 

where 𝑁𝑖
𝑒 is the linear interpolation formula at the i-th node of the element e. Now we use 

equations (3.18) and (3.27) to rewrite the equation (3.26) in discretized form: 

∑∑𝒔𝑒,𝑖
𝑘+1 ∙ 𝒔𝑒,𝑗

𝑘+1

4

𝑗=1

4

𝑖=1

∭(
1

𝜏
+

 

𝑉

2𝐷0

𝜆𝑠𝑓
2 ) 𝑁𝑖

𝑒 ∙ 𝑁𝑗
𝑒 + 2𝐷0∇𝑁𝑖

𝑒 ∙ ∇𝑁𝑗
𝑒𝑑𝒓3

−2𝐷0𝛽𝛽
′∑∑{(𝒔𝑘+1)𝑗 ∙ 𝒎⨂𝒎} 

𝑒
4

𝑗=1

4

𝑖=1

𝒔𝑒,𝑖
𝑘+1∭ ∇𝑁𝑖

𝑒 ∙ ∇𝑁𝑗
𝑒

 

𝑉𝑚𝑎𝑔

𝑑𝒓3

+
2𝐷0

𝜆𝐽
2 ∑∑𝒔𝑒,𝑖

𝑘+1 ∙ (𝒔𝑘+1 ×𝒎)𝑗
𝑒

4

𝑗=1

4

𝑖=1

∭ 𝑁𝑖
𝑒 ∙ 𝑁𝑗

𝑒
 

𝑉𝑚𝑎𝑔

𝑑𝒓3

=
𝛽𝜇𝐵
𝑒
∑[(𝑱𝑒⨂𝒎) ∙ 𝒔𝑒,𝑖

𝑘+1]

4

𝑖=1

∙∭ ∇𝑁𝑖
𝑒

 

𝑉𝑚𝑎𝑔

 𝑑𝒓3

−
𝛽𝜇𝐵
𝑒
∑(𝑱𝑒 ∙ 𝒏) ∙ (𝒎 ∙ 𝒔𝑘+1)𝑖

𝑒

4

𝑖=1

∬ 𝑁𝑖
𝑒𝑑𝒓2

 

𝑆𝑚𝑎𝑔
𝑜𝑢𝑡𝑒𝑟

+
1

𝜏
∑(𝒔𝑘 ∙ 𝒔𝑘+1)𝑖

𝑒∭ 𝑁𝑖
𝑒

 

𝑉𝑚𝑎𝑔

 𝑑𝒓3
4

𝑖=1

(3.28)

 

where the integrals of the interpolation formulas and their gradient terms can be calculated 

using Ritz method [49, page 167-173]. 

Mathematically, equation (3.28) can be simply expressed as: 

(𝐬𝑘+1)𝑒
𝑇 ∙ 𝑲̿12×12

𝑒  𝐬𝑒
𝑘+1 = (𝐬𝑘+1)𝑒

𝑇 ∙ 𝒃12×1
𝑒 , (3.29) 



34 

 

then iterate equation (3.29) over all M elements to assemble matrix 𝑲̿3𝑁×3𝑁
 = ∑ 𝑲̿12×12

𝑒𝑀
𝑒=1  

and vector 𝒃3𝑁×1 = ∑ 𝒃12×1
𝑒𝑀

𝑒=1  for all N nodes, eventually, solve the system of linear 

equations: 

𝑲̿3𝑁×3𝑁
  𝐬𝑘+1 = 𝒃3𝑁×1. (3.30) 

 In this work, we use an iterative method, generalized minimal residual method 

(GMRES), to solve the system of linear equations. Since the eigenvalues of the matrix differ a 

lot, the incomplete LU factorization, including ILU(0) and ILUT, and the inverse of the matrix 

are calculated before computation, respectively as preconditioners to speed up the convergence. 

The computational performance of the preconditioners is presented in the next section. Also, it 

is shown that node-based and element-based computational methods are both able to solve spin 

diffusion equation, the difference between their solutions is numerically acceptable. 

3.4.4    Spin diffusion model coupled with the LLG equation 

 The magnetization dynamics with the spin transfer torque effect is governed by the LLG 

equation coupled with spin accumulation s: 

𝑑𝑴

𝑑𝑡
= −𝛾𝑴× (𝑯𝒆𝒇𝒇 +

𝐽

ħ𝛾𝑀𝑠
𝒔) + 𝛼𝑴 ×

𝑑𝑴

𝑑𝑡
(3.31) 

where 𝐽 is exchange constant between the conducting electrons and magnetization, and 𝑀𝑠 is 

saturation magnetization.  
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3.5    Numerical experiments 

3.5.1    Multi-layered structure  

We consider a multi-layered spin valve system depicted in figure 3.7. The system 

consists of two ferromagnetic layers separated by a 5 nm long nonmagnetic spacer, the lengths 

of two ferromagnetic layers are 10 nm and 5 nm respectively, two 4nm long nonmagnetic leads 

are set at the ends of the cuboid valve. Since the magnetization configurations in magnetic 

volumes are homogeneous, the lateral dimensions of the system have no impact on the solutions, 

we set it 1nm. For the magnetic layers, we choose typical parameters of Heusler alloy, 

𝐷0=1×10-3 m2/s, β = β’=0.8, λsf = 8nm and λJ = 1nm. 𝐷0=5×10-3 m2/s for both spacer and leads, 

λsf = 100nm for spacer and λsf = 11.6nm for two leads which are simulated to be infinite [50], 

and λJ is unnecessary for nonmagnetic layers.  

 

Figure 3.7: Multi-layer spin valve 

In the micromagnetic simulation, the 10nm long magnetic layer is thought of as the 

pinned layer and is homogeneously magnetized into x direction, the other magnetic layer is free 

layer and it is homogeneously magnetized into y direction. An electric current whose current 

density is set to be Je = 1012 A/m2 flows through the system in z direction. The reaction time of 
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the magnetization is two orders of magnitude greater than the time needed for the spin 

accumulation to reach the equilibrium [45], hence we solve the spin accumulation at each node 

every timestep τ = 0.5fs with the magnetization being fixed in the process. 

Table 3.1: Timing statistics – solution in multi-layered structure by node-based method 

Timing statistics for multi-layered structure  

Node-based method 

No 

preconditioner 
ILU(0) ILUT 

Inverse 

matrix 

Preprocess 

Get geometry and initialize (s) 17.636 17.177 16.94 16.884 

Update magnetization (s) 0.001 0.002 0.001 0.001 

Create matrix (s) 3.237 3.298 3.176 3.285 

Total preprocessing time (s) 20.874 20.477 20.117 20.17 

Compute   

(10 time-

steps) 

Fill matrix (s) 0.639 0.631 0.615 0.634 

Compute preconditioner matrix (s)   0.162 0.2 0.543 

Update right-hand side(RHS) (s) 0.003 0.001 0.002 0.001 

RHS by preconditioner (s)   0.027 0.025 0.273 

GMRES solver (s) 19.664 8.538 7.833   

Total iterations in GMRES 2042 288 156   

Total computation time (s) 20.306 9.359 8.675 1.451 

Total time (s) 41.18 29.836 28.792 21.621 

Table 3.2: Timing statistics – solution in multi-layered structure by element-based method 

Timing statistics for multi-layered structure  

Element-based method 

No 

preconditioner 
ILU(0) ILUT 

Inverse 

matrix 

Preprocess 

Get geometry and initialize (s) 11.526 11.466 11.429 11.399 

Update magnetization (s) 0 0 0 0 

Create matrix (s) 2.271 2.295 2.266 2.251 

Total preprocessing time (s) 13.797 13.761 13.695 13.65 

Compute   

(10 time-

steps) 

Fill matrix (s) 0.466 0.451 0.45 0.451 

Compute preconditioner matrix (s)   0.093 0.569 0.475 

Update right-hand side(RHS) (s) 0.068 0.067 0.067 0.066 

RHS by preconditioner (s)   0.022 0.035 0.219 

GMRES solver (s) 11.489 8.177 7.516   

Total iterations in GMRES 1133 311 86   

Total computation time (s) 12.023 8.81 8.637 1.211 

Total time (s) 25.82 22.571 22.333 14.861 
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First, we compare the solutions of the two computational methods in figure 3.8 and three 

components of the spin accumulation at t = 5fs are solved for. The blue and red curves represent 

the Galerkin method weak solution and the node-based method solution, respectively. We can 

find they mostly overlap each other and the differences between them in the spacer and leads 

are small enough to be accepted. Therefore, the both computational methods introduced in 

section 3.4 can solve the spin diffusion model well.  

 

Figure 3.8: Comparison between node-based method solution (red) and Galerkin method 

weak solution (blue), a), b) and c) are x, y, z component spin accumulation respectively 

along z axis when t = 5fs. 

In addition, timing statistics of node-based method and element-based method are 

presented in table 3.1 and 3.2 respectively. They include the total time used to achieve the 

solution after 10 time-steps and the partial time for some important steps, note that the model 

mesh has about 7000 nodes. We can find that the preconditioners effectively decrease the total 

iterations number in GMRES solver for both discretization approaches, improving the 

computational performance. 

a) b) c) 
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Figure 3.9: a) Variation of the x component of the spin accumulation in the valve along 

the z axis from 9 to 24 nm, four successive points in time are chosen. b) Variation of the z 

component of the spin accumulation in the valve along the z axis from 9 to 24 nm, four 

successive points in time are chosen. 

The x and z components of the spin accumulation in the free layer, spacer and the right 

half of the pinned layer at t = 2.5, 5, 7.5, 10 fs are shown in figure 3.9 a) and b), respectively. 

The x component of the spin accumulation is generated at the interface (z=14 nm) between the 

pinned layer that is magnetized in x direction and the spacer and it then diffuses rapidly from 

the source, resulting in the build-up of the spin accumulation on the both sides.  

However, the spin accumulation tapers off with increasing distance from the interface as 

discussed in section 3.2, until reaching the interface between the free layer and the spacer where 

a sharp downward turning occurs. This decrease in spin polarization is due to the strong 

interaction between the spin accumulation and the y-oriented magnetization in free layer. The 

interaction is represented by the term (𝒔 ×𝒎)/𝜆𝐽
2 in equation (3.6), which is also the reason 

for the generation of the z component spin accumulation, which accumulates in both pinned 

and free layers and then diffuses as depicted in figure 3.9 b). 

― t = 2.5fs 

― t = 5fs 

― t = 7.5fs 

― t = 10fs 

 

a) 

― t = 2.5fs 

― t = 5fs 

― t = 7.5fs 

― t = 10fs 

 

b) 
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Figure 3.10: a) Evolution of spatially averaged y and z component of the spin accumulation 

in the pinned layer. b) Evolution of spatially averaged x and z component of the spin 

accumulation in the free layer. 

In order to further study the evolution of the spin accumulation in longer period, we 

compute the spatially averaged spin accumulation of the discrete components: average Sy and 

Sz in pinned layer, average Sx and Sz in the free layer, at every single timestep from 0 to 175 fs 

(figure 3.10). We can find that the spin accumulation builds up rapidly before peaking in about 

20 fs, the following relaxation process takes about 120 more femtoseconds to reach equilibrium. 

The spin accumulation in equilibrium state can be obtained by solving the equations (3.12) or 

(3.26) when 𝜕𝒔/𝜕𝑡 = 0, the solutions are depicted in figure 3.11. 

 

Figure 3.11: a) Spin accumulation in equilibrium along the z axis, components in all 

directions are shown. b) Zooming in of a) from 9 to 24 nm, x and z components of the spin 

accumulation are shown. 

 ۄSyۃ ―

 ۄSzۃ ―
 

a) 

 ۄSxۃ ―
 ۄSzۃ ―
 

b) 

― Sx 
― Sy 

― Sz 
 

a) 

― Sx 
― Sz 
0 

b) 
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3.5.2    Néel domain wall 

The second model is a thin bar with dimensions 600×100×1 nm. The material 

parameters are 𝐷0=1×10-3 m2/s, β = β’=0.8, λsf = 8nm and λJ = 4nm. A Néel domain wall is 

initially set in the middle of the thin bar, the magnetization rotates in the plane from the left to 

the right (figure 3.12), the spin accumulation at equilibrium is solved, 𝜕𝒔/𝜕𝑡 = 0  with 

homogeneous current density 2.5×1011 A/m2 pointing in positive x direction in the entire system. 

Since the magnetization varies only in the x-y plane, two-dimensional vector plots are enough 

to display the configurations of the magnetization and the spin accumulation in the system 

(figure 3.13). 

 

Figure 3.12: The Néel domain wall in the 600×100×1 nm bar, the magnetization vectors 

whose x component is positive are colored red, otherwise blue. 

 

Figure 3.13: Spin accumulation vectors in the bar from x = 200 to 400 nm, the vectors 

whose y component is positive are colored red, otherwise blue.  
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Similarly, timing statistics for node and element based methods are presented in table 

3.3 and 3.4 respectively. In Néel domain wall case, the preconditioners also speed up the 

convergence of the solution, i.e. computation by GMRES solver. 

Table 3.3: Timing statistics – solution in Néel wall case by node-based method 

Timing statistics for Néel wall  

Node-based method 

No 

preconditioner 
ILU(0) ILUT 

Inverse 

matrix 

Preprocess 

Get geometry and initialize (s) 10.61 10.439 10.394 10.385 

Update magnetization (s) 0.001 0.001 0.001 0.001 

Create matrix (s) 2.043 2.198 2.062 2.196 

Total preprocessing time (s) 12.654 12.638 12.457 12.582 

Compute      

(1 time-

step) 

Fill matrix (s) 0.323 0.32 0.32 0.325 

Compute preconditioner matrix (s)   0.074 0.595 0.311 

Update right-hand side(RHS) (s) 0 0 0 0 

RHS by preconditioner (s)   0.004 0.005 0.016 

GMRES solver (s) 0.734 0.704 0.683   

Total iterations in GMRES 49 10 4   

Total computation time (s) 1.057 1.102 1.603 0.652 

Total time (s) 13.711 13.74 14.06 13.234 

 

Table 3.4: Timing statistics – solution in Néel wall case by element-based method 

Timing statistics for Néel wall  

Element-based method 

No 

preconditioner 
ILU(0) ILUT 

Inverse 

matrix 

Preprocess 

Get geometry and initialize (s) 6.063 6.065 5.952 6.034 

Update magnetization (s) 0 0 0 0 

Create matrix (s) 1.598 1.583 1.548 1.566 

Total preprocessing time (s) 7.661 7.648 7.5 7.6 

Compute      

(1 time-

step) 

Fill matrix (s) 0.412 0.398 0.39 0.396 

Compute preconditioner matrix (s)   0.069 0.648 0.309 

Update right-hand side(RHS) (s) 0.006 0.007 0.006 0.006 

RHS by preconditioner (s)   0.004 0.005 0.015 

GMRES solver (s) 0.922 0.684 0.669   

Total iterations in GMRES 106 12 4   

Total computation time (s) 1.34 1.162 1.718 0.726 

Total time (s) 9.001 8.81 9.218 8.326 



42 

 

The spin transfer torque, m × s can be calculated directly using the spin accumulation 

solved above. The comparison with the spin transfer torque calculated by Zhang & Li model 

(equation 3.5) is depicted below: 

         

Figure 3.14: Comparison between the magnitude of the spin transfer torque |m × s| 

calculated by Zhang & Li model and spin diffusion model. 

We can find that the spin transfer torques calculated by these two models always have 

difference, which results from the omission of the gradient of the spin accumulation in Zhang 

& Li model. However, it is shown in the spin diffusion model that the spin accumulation in the 

system is not a constant vector. 

3.5.3    Magnetization dynamics with STT effect 

 Consider an MRAM structure (figure 3.15) which is equally divided into five 2-nm-tall 

layers, the cross section is an ellipse whose long and short axis are 4 and 3 nm respectively. 

(nm) 

× Zhang & Li model 

× spin diffusion 

model 
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The blue layer is magnetized in the positive z direction as pinned layer, and the magnetization 

in the red layer (free layer) is initially aligned to the pinned layer. 

 

Figure 3.15: MRAM – stacked-layer structure 

The magnetic layers’ material parameters are set as 𝐷0 = 1×10-3 m2/s, β = 0.9, β’= 0.8, 

λsf  = 10 nm and λJ  = 2nm, in addition, K = 13600000 erg/cm3, saturation magnetization Ms = 

1432 emu /cm3, A = 1×10-6 erg/cm, and α = 0.008. As for the nonmagnetic layers, 𝐷0 = 5×10-3 

m2/s, β = 0.9, β’= 0.8, λsf  = 35 nm for the leads and λsf  = 100 nm for the spacer. The 

magnetization in the free layer is flipped by the spin-polarized electric current whose density is 

3×1011 A/m2 and its dynamics is solved by the FastMag with the maximum timestep = 2 ps. At 

each time-step of the LLG solution, we assume the spin accumulation to be at equilibrium. The 

evolution of the magnetization in the free layer is depicted in figure 3.16: 
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Figure 3.16: Evolution of the magnetization in the free layer, from left to right, top to 

bottom  

the blue and red colors respectively represent the negative and positive z component 

magnetization, and only magnetic layers and spacer are shown in the figure. 

  



45 

 

 

Chapter 4 

Conclusion 

In this work, we introduced two computational methods and demonstrated their good 

performance in solving spin diffusion equation in finite element model. The node-based method 

is straightforward and intuitive, and does not need interpolation of variables, it can be applied 

in most of the magnetic models except the one whose interface geometry is complex, while the 

Galerkin method which solves weak formulation based on each element is more general. As for 

computational performance, the preconditioners can effectively accelerate convergence of the 

solutions. Then we exploited the spin diffusion model to study the spin dynamics in 

nanomagnetic structures. The evolution of the spin accumulation in a multi-layer magnetic 

structure and the spin accumulation under equilibrium state are solved and discussed. We also 

solved for spin accumulation generated by a Néel wall, the corresponding spin transfer torque 

was calculated and compared with that calculated by Zhang & Li model. Finally, we coupled 

the micromagnetic LLG equation with the spin diffusion equation to study the impact of the 

spin transfer effect on magnetization dynamics. 

The spin diffusion model is powerful and comprehensive, different from other models 

for spin transfer effect, it can solve both dynamic and steady spin accumulation. In addition, 

the model is not limited to multi-layer magnetic structures and domain walls, it can be applied 
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in more situations than Slonczewski and Zhang & Li model. Coupled with the spin diffusion 

model, micromagnetics can deal with more problems. The micromagnetic simulation is the 

cheapest and the most efficient tool for the design of magnetic devices, its development is 

essential to scientific researches and industrial applications. 
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