UC San Diego

UC San Diego Electronic Theses and Dissertations

Title
GENOME-SCALE STUDIES OF DYNAMIC DNA METHYLATION IN MAMMALIAN BRAIN CELLS

Permalink
https://escholarship.org/uc/item/9v48s054

Author
Keown, Christopher Lee

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/9v48s054
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

GENOME-SCALE STUDIES OF DYNAMIC DNA METHYLATION IN MAMMALIAN
BRAIN CELLS

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy
in
Cognitive Science
by

Christopher L. Keown

Committee in charge:

Professor Eran A. Mukamel, Chair
Professor Andrea A. Chiba
Professor Paula A. Desplats
Professor Joseph R. Ecker
Professor Fred H. Gage

Professor Lara M. Rangel
Professor Terrence J. Sejnowski

2018



Copyright
Christopher L. Keown, 2018
All rights reserved.



The dissertation of Christopher L. Keown is approved, and it
is acceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California San Diego

2018

iii



DEDICATION

I would like to dedicate this to my mother and father, Ruth Ann and Joe Keown.
They taught me right from wrong and made endless sacrifices so I could have the
opportunities they didn’t. They gave me the space to follow my dreams and have
been by my side to encourage me along the way. I would also like to dedicate
this to Ms. Purviance, my 10th grade English teacher, who believed in
challenging her students, even if that meant copious amounts of grading. You

took the time to care and challenged me to go beyond my limits.

v



EPIGRAPH

It doesn’t matter how beautiful your theory is,
it doesn’t matter how smart you are.
If it doesn’t agree with experiment, it’s wrong.

—Richard Feyman

You can’t even begin to understand biology, you can’t understand life,
unless you understand what it’s all there for, how it arose

—and that means evolution.

—Richard Dawkins
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ABSTRACT OF THE DISSERTATION

GENOME-SCALE STUDIES OF DYNAMIC DNA METHYLATION IN MAMMALIAN
BRAIN CELLS

by

Christopher L. Keown

Doctor of Philosophy in Cognitive Science

University of California San Diego, 2018

Professor Eran A. Mukamel, Chair

Developmental processes, genes and environmental factors interact to produce changes in
cognition and behavior over the lifespan of an individual. However, the underlying molecular
genetic mechanisms that mediate these changes remain to be fully elucidated. DNA methylation
is an epigenetic mechanism that defines cell identity and helps regulate gene expression. DNA
methylation is dynamic over development and has been shown to mediate experience-dependent
changes, including those resulting from learning and memory and early life adversity. Although
methylation mainly occurs at genomic cytosines in the CG dinucleotide context, methylation at

non-CG sites was recently found in brain tissue. Non-CG methylation is specifically enriched in
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neurons and accumulates during the early childhood stages of brain development. The biological
impact of non-CG methylation in regulating gene expression and regulating cellular function, if
any, remains unclear. A major challenge for addressing this question is the complexity and scale
of the DNA methylation landscape, which includes nearly one billion cytosines throughout the
genome that are potential sites of modification in every cell. Targeted studies of specific candidate
genes and genomic loci do not elucidate the overall configuration of the cellular epigenome.
Techniques for comprehensively mapping the genome-wide distribution of DNA methylation
are powerful, but they require sophisticated new computational methods of analysis that can
reliably distinguish and statistically validate epigenomic differences related to developmental and
environmental factors.

In this thesis we develop new approaches to comprehensively analyze DNA methylation
throughout the genome and with single base resolution in order to better characterize the role
of CG methylation and elucidate the potential role of CH methylation in mammalian brain
cells. First, we consider the impact of enriched early life (peri-pubertal) experience on DNA
methylation and gene expression in the dentate gyrus of the hippocampus. In addition to its
role in experience-dependent gene regulation, DNA methylation also plays a key role in innate
developmental processes, including female X chromosome inactivation. We provide the first
allele-specific DNA methylomes from the active and inactive X chromosomes in female brain,
and use comprehensive genomic analyses to gain insight into the functional relationship between
allele-specific DNA methylation and transcription. These two studies provide new evidence of
the dynamic changes in DNA methylation in whole brain tissue caused by environmental and
innate developmental factors. However, they do not address the heterogeneity of brain cell types,
a hallmark of mammalian brain organization. To address the role of DNA methylation in brain
cell diversity, we develop computational methods to analyze data from a new assay that measures
single cell methylomes. Using these data, we show that brain cell methylomes can be clustered

and used to assess neuronal heterogeneity in the frontal cortex of mouse and human. Upon

Xvil



clustering cells, we are able to gain insight into the role of methylation in the establishment and
maintenance of cellular identity in neuronal types.

Overall, this thesis adds to the increasing evidence that DNA methylation is a cell type-
specific, dynamic epigenomic modification of brain cells that is impacted by, and may in turn
help to regulate, neuronal development and adaptation. In addition, this thesis provides new
computational methods for analyzing large-scale, whole-genome DNA methylation data sets and

demonstrates their use in uncovering new insights into the mammalian brain epigenome.
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Chapter 1

Introduction

The inception of the field of cognitive science resulted from efforts to synthesize informa-
tion and approaches across disparate fields studying the same object, the brain. At one end of the
spectrum, neuroanatomists had largely focused on describing the physical structure, and more
recently, the cellular and molecular architecture of the brain. At the other end, fields including
behavioral psychology had focused on studying behavior without necessarily grounding their
theories in considerations of the physical brain. At the same time, advances in molecular biology,
genetics, and genomics have revealed the critical roles and, in some cases, the mechanisms by
which genetic and environmental factors influence cognition. Today, cognitive scientists taking
advantage of recent progress in high-throughput genome sequencing have the opportunity to
produce a new, multi-scale understanding of the key neurobiological processes that shape the
brain and support cognitive function. A healthy brain is the product of an extended process of
development, the process that shapes the physical brain and underpins a well-defined emergence
of specific cognitive functions. For example, children under the age 3.5 do not have the ability
to deceive others, whereas adolescents and adults possess this cognitive ability [1]. At the same
time, cognition relies on plastic changes to the brain resulting from experiences that can modify

the brain and lead to memory and learning. The role of genetic and molecular mechanisms in



mediating developmental and environmental changes in cognition remain unclear.

In this dissertation, I focus on the potential role of epigenetic mechanisms in mediating
changes in the brain and adapting cognitive behavior. Formally, epigenetics is the study of
mitotically heritable changes in gene function not resulting from changes in DNA sequence.
Epigenetics generally includes covalent modifications of DNA and post-translational modification
of amino acids on the amino-terminal tail of histone proteins, known as histone modifications [2].
Here, I focus on DNA methylation, which is a covalent modification of a genomic cytosine by the
addition of a methyl group to form 5-methylcytosine. DNA methylation is generally hypothesized
to suppress gene expression because of its overall negative correlation with transcription across
the genome; however, recent work suggests this view is overly simplistic and may need to be
revised [3]. Because DNA methylation is a stable modification to the genome that modulates
transcription, it could serve as a mechanism for mediating biological changes in neurons that
underpin developmental and environmentally-induced changes in cognition. Previous work has
indeed shown a global remodeling of DNA methylation in neurons during early childhood and
adolescence, coincident with synaptogenesis [4]. Furthermore, neuron types in the adult brain
have distinct methylation profiles that correlate with cell type-specific transcriptional profiles
[5]. In addition, previous work suggests that environmental factors during development, such as
nursing behavior in a mother rat, can alter DNA methylation in offspring that ultimately leads to
behavioral changes [6, 7, 8]. However, additional work is required to better understand the role of
DNA methylation in development and plasticity.

In mammals, DNA methylation primarily occurs at cytosine nucleotides followed by
guanines, referred to as CpG or CG sites. However, recent work has uncovered an abundance of
methylation at cytosines followed by bases other than guanine (non-CG sites, denoted CH) in
neurons [9, 4] and in embryonic stem cells [10, 11]. Non-CG methylation (mCH) is negatively
correlated with transcription in neurons, yet positively correlated with expression in stem cells,

suggesting its function is highly contingent upon its interaction with cell type-specific factors.



Whereas developmental changes in CG methylation occur primarily at gene promoters and distal
regulatory regions such as enhancers, non-CG methylation has a cell type-specific distribution
throughout the whole gene body of many genes. mCH accrues in neurons over development
coincident with synaptic proliferation and shows distinct profiles between excitatory, VIP+ and
PV+ inhibitory neurons [5]. However, the potential function of mCH in modulating transcription
factor binding and regulating gene expression remains to be characterized. Changes in CG
methylation may mediate the impact of environmental factors on brain function [12], but mCH
has not been examined in this context.

A broad range of assays have been developed for measuring DNA methylation with
different trade-offs between resolution, breadth of the genome measured, ability to distinguish
between CG and non-CG methylation, and cost. A primary goal of this dissertation was to
measure non-CG methylation, which required base-resolution assays that could distinguish
methylcytosines occuring in different local sequence contexts. Micro-array approaches, such as
the Infinium Human Methylation 450K BeadChip and Infinium MethylationEPIC array, contain
probes for a substantial fraction of the 25 million CG sites throughout the genome. However,
these platforms contain only a few thousand probes for non-CG sites, which cannot adequately
represent the ~950 million CH positions in the genome. Immunoprecipitation-based assays
such as methylated-DNA immunoprecipitation followed by sequencing (MeDIP-Seq) [13] cannot
discriminate between CG and non-CG methylation, and their affinity for non-CG methylation in
general remains unclear. Bisulfite sequencing (methylC-seq) allows for the distinct measurement
of CG and non-CG methylation with a very low rate of error (typically < 0.5% false positives)
[14, 15]. In methylC-Seq, DNA is treated with sodium bisulfite, converting unmethylated cytosine
to uracil but leaving methylcytosine intact. Bisulfite-treated DNA fragments are then subjected
to next generation sequencing. Computational procedures map the fragments to their genomic
position through comparison to a reference genome, and methylated cytosines can be identified.

Both the quality and the cost of methylC-Seq data are proportional to the amount of sequencing,



as each sequenced fragment represents an independent measurement of the methylation status of
a particular set of positions in a particular cell. Targeted methylC-Seq and reduced representation
bisulfite sequencing (RRBS) [16] allow specific regions of the genome to be selected and assayed
with high coverage. Here, however, we were interested in broadly characterizing non-CG
methylation across the whole genome to better understand the landscape of non-CG methylation.
Therefore, we focused on data from whole genome methylC-Seq (WGBS), the gold standard for
measurement of DNA methylation [15].

A limitation of WGBS is that genome-wide data sets have limited sequencing depth (num-
ber of mapped reads) at each genomic location. WGBS is also suited to population scale analysis,
and data sets are typically limited to a handful of biological replicates. These considerations
reduce the statistical power of WGBS data, while at the same time the large number of statistical
tests required to examine the whole genome creates a challenging problem of multiple compar-
isons. Despite these challenges, WGBS has been successfully used to find hundreds of thousands
of sites throughout the genome, called differentially methylated regions (DMRs), where DNA
methylation is significantly different across tissues, cell types, and developmental ages. Optimal
computational and statistical procedures for detecting and characterizing epigenomic differences
using WGBS data are still a target of active research. This thesis contributes to the field by
developing new analysis procedures for WGBS data and demonstrating how they may be used
to address three key questions. In what follows, I introduce each of the three research questions
that motivate the three main chapters of the thesis. In each case, I will highlight the specific

computational analysis challenges that my work addressed to enable our research findings.



1.1 What are the effects of early life experience on DNA methy-
lation and gene expression in the dentate gyrus of the hip-
pocampus?

My research here begins by first examining the role of DNA methylation in mediating
environmental effects on cognition and behavior. Early life adversity (ELA), in which an
individual experiences a traumatic event early in life during development, is strongly associated
with negative mental health outcomes in adults [7]. Because DNA methylation is dynamic during
development yet largely stable in adults, it is an appealing mechanism for mediating long-lasting
transcriptional changes in ELA. For example, a high level of maternal care during early life in rats,
as defined by a large amount of the mother’s time spent on licking, grooming and arched-back
nursing, is associated with reduced fear and an attenuated stress response by the HPA axis later in
life. Using maternal care as a model of ELA, Weaver et al. examined if DNA methylation could
mediate the aforementioned behavioral changes [6]. These authors measured methylation in the
hippocampus at the promoter of the glucocorticoid receptor (GR) gene, Nr3cl, whose expression
dampens the hypothalamic-pituitary-adrenal (HPA) axis response to stress [17]. Their results
showed increased methylation at the GR gene promoter in the stressed group that emerged over
development and was retained into adulthood.

These studies catalyzed research into behavioral epigenetics and inspired many additional
experiments. Changes in methylation at the GR gene promoter resulting from ELA have been
identified in mice and humans, and additional research suggests GR promoter methylation is also
modified in offspring of mothers stressed during pregnancy in both mouse and humans [7]. In a
separate but complementary line of work, researchers have identified changes in methylation at
synaptic plasticity genes that may mediate memory formation [18, 19]. Although this research

has identified experience-dependent changes in DNA methylation that correlate with behavioral



and cognitive consequences, additional research is required to better understand the scope of
these changes and their role in other behavioral contexts.

To address this challenge, I use WGBS in Chapter 2 of my dissertation to comprehensively
analyze the effects of early life experience on DNA methylation and gene expression in the
dentate gyrus of the hippocampus. The experimental work for this project was carried out
by Tie-Yuan Zhang, Michael Meaney and their colleagues at McGill University, while I was
primarily responsible for computational analysis and interpretation of the large-scale epigenomic
and transcriptomic data. Our study examined mice raised in an enrichmented environment (EE),
an experimental paradigm in which animals are exposed to a rich and dynamic environment
during development, starting on postnatal day 22. In contrast to ELA, EE confers a positive
outcome in adults and may confer a resilience to stress [20], making it of clinical interest. EE can
induce dramatic changes in the brain and behavior in rodents, including enhanced synaptogenesis
and cognitive improvements in spatial memory, working memory, and contextual fear memory
[21]. Furthermore, EE leads to differential expression of neuronal activity and synaptic plasticity
genes [22, ?], as well as adult neurogenesis in the dentate gyrus (DG)[23]. The mechanisms that
mediate these effects, however, are not fully understood. Just as DNA methylation may play a
role in mediating the negative effects of ELA, it may also provide a mechanism for mediating the
positive effects of EE in DG of the hippocampus.

In contrast with prior studies focusing on specific candidate genes, we aimed to com-
prehensively assess the effect of EE on the landscape of DNA methylation and gene expression
throughout the genome. Because the effects of EE on individual animals are variable, we used
five cohorts of mice in each condition (EE or SH) to generate independent biological replicates of
DNA methylome (WGBS) and transcriptome (RNA-Seq) data. We separately examined the dorsal
and ventral poles (dDG and vDG, respectively) because despite their molecular, functional and
connectivity differences [24], their relative contributions to EE remain unknown. Comprehensive

epigenomic and transcriptomic mapping is virtually unprecedented at this scale in studies of



behavior and gene regulation. To take full advantage of the power of these data, we could not rely
on existing bioinformatic techniques for statistical analysis of differential expression and differ-
ential methylation that perform separate comparisons of each gene or genomic region. Instead,
I designed and implemented a new approach to analyze differential methylation across many
regions of the genome, and to relate these to the activity of specific DNA-binding transcription
factors.

Consistent with previous literature, we found large transcriptional changes between the
dorsal and ventral DG including upregulation of neurogenesis-associated genes in the dorsal
region. DNA methylation also showed large regional differences, including at developmental
patterning genes such as Nr2fl and Nr2f2. I observed a large asymmetry in regional DMRs,
with most hypomethylation occuring in the dorsal DG. Comparison of EE and SH showed
smaller, although pronounced, transcriptional differences. Although detecting differences in DNA
methylation between EE and SH treated animals was one of our main aims, standard bioinformatic
analyses identified a very small set of differentially methylated regions (DMRs) which were not
clearly interpretable. I therefore developed a new computational method, which took advantage of
the clearly identifiable DMRs from our comparison of dorsal and ventral DG to perform a focused
analysis of EE-dependent differences in methylation at those regions. Comparison of methylation
at regional DMRs between EE and SH showed increased hypomethylation in the dorsal region.
Importantly, these DMRs were enriched enriched for the binding motif of NeuroD1, an important
neurodevelopmental factor in adult neurogenesis, which may play a role in mediating the effects

of EE.



1.2 What is the role of neuron-specific non-CG DNA methy-
lation in epigenetic silencing of a large chromatin domain
during female X chromosome inactivation?

My dissertation work was largely motivated by the discovery of non-CG methylation
in neurons [4] and aimed at understanding the functional significance, if any, of this unique
epigenetic marker. Therefore, it was important to study the effects of mCH in a well-characterized
system of gene regulation that could provide clear insight while minimizing the number of
unknown variables. The process of X chromosome inactivation (XCI) provides a well-studied
model system, and therefore, we examined the connection between mCH profiles and transcription
in neurons under XCI in Chapter 3.

Females have two copies of the X chromosome, whereas males only have one. XClI is the
process in mammals that inactivates one of the two X chromosomes in each cell in females to
avoid a potentially deleterious difference in gene dosage for the nearly ~1,000 X-linked genes
[25]. In many species, including humans and mice, the inactivated allele is selected during
early development at random and independently across cells, thus leading to a mosaic pattern
of inactivation. Importantly, some genes on the inactive X chromosome escape the process of
inactivation and remain expressed from the inactivated allele. The proportion of genes escaping
XClI is estimated to be around 3% of X-chromosome genes in mouse and 15% in humans
[26, 27]. These escape genes are hypothesized to be critical in healthy brain development. For
example, females with Turner syndrome (45,X), who have only a single X chromosome, lack
the inactive allele (Xi) and thus escape genes are not expressed. Turner syndrome individuals
have ADHD-like symptoms and nonverbal learning disabilities [28]. Thus the mechanisms that
modulate expression on the inactive X chromosome (Xi) may help us understand how healthy

brain development unfolds and also how sex differences in cognition arise.



Sharp et al. compared CG methylation on the X chromosome in human blood between
Turner syndrome and typical females [29]. Promoter mCG was reduced at escape genes yet
increased at genes that do not escape XCI, consistent with the role of promoter mCG as a
transcriptional repressor. In their paper on the discovery of non-CG methylation in neurons, Lister
et al. compared non-CG methylation in gene bodies on the X chromosome between females
(aggregate levels on Xa and Xi) and males [4]. They found a 50% reduction of mCH on the X
chromosome in females relative to males, except at escape genes, which show increased mCH in
females. However, the stochastic nature of X-inactivation prevented the group from distinguishing
between methylation on Xa and Xi explicitly. Thus, additional work is required to control for the
stochasticity of XCI and to identify the source of the methylation and its associated functional
significance.

To address this question, we used a model of deterministic X-inactivation [30] to measure
levels of mCG and mCH on Xa and Xi separately. Through a collaboration with Christine Disteche
and Joel Berletch (University of Washington), we obtained samples of frontal cortex from mouse
F1 offspring resulting from a cross of a wild-type father and a mutant mother carrying a deletion
in the XCl-initiating long non-coding RNA, Xist [30]. The paternal allele in the heterozygous
offspring animals is always inactivated, thus circumventing the difficulties of studying random
XCI. In addition, the mother and father are from different mouse species, C57/B16 maternal and
Mus. spretus paternal, whose genomes differ at approximately 42 million single nucleotides.
These genetic variants allowed us to assign most sequencing reads back to the allele of origin,
thereby obtaining mCG and mCH for the maternal X (Xa) and the paternal X (Xi). For this
experiment, we collected tissue from the frontal cortex of two replicate mice at eight weeks of
age (in collaboration with Christine Disteche and Joel Berletch at University of Washington) and
performed whole genome bisulfite sequencing to measure DNA methylation and RNA-seq (in
collaboration with the Joseph R. Ecker and Rosa Castanon at The Salk Institute for Biological

Sciences).



A major computational challenge in this project was the need for allele-specific analysis of
DNA methylome (WGBS) and transcriptome (RNA-Seq) data. Standard bioinformatic approaches
do not distinguish the two alleles, obscuring the allele-specific differences in gene expression and
DNA methylation that we aimed to observe. Allele-specific analysis can take advantage of genetic
variants between the two parental strains (heterozygous sites) to map sequencing fragments to
their parent of origin. At the same time, we had to ensure that our analysis did not erroneously
infer differences in DNA methylation due to what were, in fact, genetic differences between the
mouse strains used in our study. Following the model of a previous allele-specific study in a
different mouse model [9], I developed and validated a bioinformatic pipeline that accurately
assessed DNA methylation and gene expression on each allele.

Our analysis identified an intriguing and complex relationship between DNA methylation
and XCI in the brain. mCG recapitulated the patterns previously observed in blood [29]: mCG
was high throughout Xi except at the promoters of escape genes, where it was depleted. In stark
contrast to mCG, however, mCH was largely absent throughout Xi except at the gene bodies of
escape genes, where it was highly enriched. We hypothesized that this difference between mCG
and mCH may result from the timing of their appearance with respect to when XCI occurs. CG
methylation is present before XCI occurs and can thus be utilized to help silence transcription
on Xi. However, mCH in neurons does not appear until after the peak of expression of the DNA
methyltransferase DNMT3A, around 1-2 weeks after birth in mice. By this time, XCI has already
occurred, thus mCH does not accumulate because chromatin in Xi may be inaccessible to the
methyltransferase. By contrast, escape genes reside in loops of open chromatin with a higher
degree of accessibility, thus enabling DNMT3A to mediate mCH accumulation at these genes.

Future work is required to examine this hypothesis directly.

10



1.3 How does DNA methylation differ among the many types
of excitatory and inhibitory neurons in the frontal cortex?

In the final chapter of my dissertation, I focus on understanding how DNA methylation
can help resolve the challenge of cellular heterogeneity in brain tissue. One challenge for tissue-
based molecular biology research is resolving the underlying source of an effect of interest in
heterogeneous tissue. Typically, brain tissue is dissected and analyzed as an aggregate of the
underlying cells composing the tissue, and therefore the signal is dominated by majority cell types.
For example, in our XCI project described above, the tissue was dissected from whole mouse
frontal cortex, which comprises many types of neurons and glial cells. The signal in the RNA-seq
and WGBS data is thus likely dominated by excitatory neurons and glial cells given their high
abundance in the tissue, whereas inhibitory neurons will have a small contribution to the signal
given their relatively low abundance. In the case when a priori knowledge suggests the effect of
interest is specific to particular cell types, transgenic mouse lines coupled with flow cytometry-
based cell sorting can be used to isolate the population interest (e.g., VIP+ neurons, SST+ neurons,
etc.). Often, however, we do not have a priori information about the effect of interest and would
like an unbiased approach to examine all cell types separately but in parallel. In other cases,
genetic tools for targeting a particular cell population may not exist, making cell type specific
analysis a challenge. In these situations, assaying many thousands of individual cells followed by
computational analysis to cluster them based on similarity could provide information about all
cell types. This insight has lead to the development of single cell technologies, such as single cell
RNA-seq, which allows for measuring the transcriptome in individual cells [31, 32, 33, 34].

In Chapter 4, we develop and apply a single cell DNA methylation assay to characterize
neuronal heterogeneity across thousands of neurons in the cortex of both mouse and human.
This work was a a close collaboration with Chongyuan Luo and Joseph R. Ecker (Salk Institute)

and Swift Biosciences, who developed and optimized the biochemical procedures for efficiently
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performing bisulfite sequencing in single nuclei. The data were generated in collaboration with
the neurobiology lab of M. Margarita Behrens (Salk Institute). My role in this project was to
lead the computational analysis of large-scale single cell DNA methylome data sets. Although
there have been several recent studies of single cell RNA-Seq data from which we could draw
inspiration, there were no existing tools or procedures that were appropriate for analysis of single
cell epigenomes.

Identification of neuron types is essential for understanding how the brain functions in
typical individuals and how this goes awry in disorders such as autism and schizophrenia. Fur-
thermore, understanding neuron type-specific disruption of molecular pathways in neurocognitive
disorders can provide targets for their treatment. Neurons can be classified using attributes such
as morphology, connectivity profiles, molecular markers, and physiological properties, such as
axon potentials [35]. An exhaustive assessment of cell types requires a scalable approach that can
randomly sample thousands or even millions of cells in a tissue to provide a sufficient quantity
to detect minority cell types. Recent advances in the isolation of single cells or single nuclei
allows the molecular marker approach to neuron type identification to achieve this scale, whereas
anatomical and physiological approaches are currently more limited in their throughput. Several
groups have examined neuronal heterogeneity using single-cell (scRNA-seq) or single-nucleus
(snRNA-Seq) approaches to obtain transcriptomic profiles in individual cells. Zeisel et al. exam-
ined mouse somatosensory cortex and hippocampus and identified 47 cells types [36]. Tasic et
al. examined visual cortex in mouse and identified 49 cell types including glia [37], and more
recently examined two cortical regions, identifying 116 cell types [38]. In humans, Lake et al.
examined six regions of the cortex and identified a total of 16 cell types [39]. Examining the
transcriptome can give insight into short term changes of the molecular profile of cells. However,
these approaches are highly sensitive to tissue handling and library preparation, and they may
also be affected by factors such as circadian rhythms and activity-dependent changes in gene

expression. Furthermore, the transcriptome represents < 5% of the genome, and other regions of
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the genome may contain additional information essential for cell type identity.

Single cell DNA methylation can address the limitations of scRNA-seq approaches. First,
whole genome methylomes assays, such as WGBS, measure methylation throughout the entire
genome. Therefore, they can provide information about how cell identity is established and
maintained, such as the location of enhancers and super-enhancers and their methylation status.
Furthermore, DNA methylation is a stable covalent modification of DNA. Consequently, it
provides a more stable representation of cell identity and is also less sensitive to alteration during
sample processing and library preparation. Previous to our work, large-scale single cell analyses
focused on RNA, and therefore, analytical methods were specific to the statistical properties of
RNA data. snmC-seq, however, differs fundamentally in comparison to scRNA-seq data, requiring
the development of novel analysis pipelines. sSCRNA-seq detects the presence of RNA transcripts
and reports the total number of transcripts per gene. The data follows a Poisson or negative
binomial distribution and cannot distinguish between a gene not being expressed and a gene not
being measured due to so-called dropout. On the other hand, snmC-seq measures the presence of
methylation at cytosines in the genome. The data is binomially distributed for some methylation
level, p, and a number of trials, n (known as base calls). Unlike with scRNA-seq, snmC-seq can
distinguish between absence of methylation (p=0, n >0) and the lack of measurement at a given
cytosine (n = 0). In addition, a large portion of the genome is destroyed by bisulfite treatment,
yielding an average of ~5-10% coverage distributed randomly throughout the genome for each
cell. Finally, snmC-seq data measures two types of methylation, mCG and mCH, which have
differing statistical properties that must be carefully considered in our analyses. Given these
unique characteristics of snmC-seq, we must develop custom processing and analysis pipelines.

Formal identification of cell types is an unsupervised clustering problem. Because we lack
ground truth data for comparison and validation of our clustering results, we faced the challenge of
devising unsupervised clustering techniques that identify biologically and statistically meaningful

clusters without a clearly defined objective point of reference. On one hand, choosing parameters
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that will completely divide all true clusters into their respective types can also lead to the
appearance of false clusters that were driven by noise in the data, e.g. due to sparse coverage of
the genome. On the other hand, under-clustering the data by grouping cells into a small set of
overly broad cell types may also lead to inaccurate conclusions. Although it is difficult to identify
the perfect clustering procedure, we relied on specific statistical and biological criteria to guide
our choices and provide reproducible results. First, to ensure that our clusters were statistically
valid (i.e. that they do not reflect technical noise), we performed clustering on a downsampling
of cells and reads. We also performed clustering using differing types of clustering algorithms
and compared their similarity. Second, to biologically validate our clusters we used an entropy
measure to identify marker genes whose methylation was correlated with the clustering. These
genes could then be compared to the literature and also to existing sSCRNA-seq datasets.

To address these challenges, we modified an existing scRNA-seq clustering approach
called backSPIN to work on snmC-seq data [36]. BackSPIN is a divisive algorithm, where all
cells start in the same cluster and are recursively divided into sub clusters, and thus provides
a hierarchy for how the clusters were generated. We chose parameters that would initially
over-cluster the cells. We then merged pairs of clusters that did not differ significantly at 7
or more marker genes (genes strongly hypomethylated [mCH in the bottom 2nd percentile] in
one cluster and hypermethylated [mCH above the 80th percentile] for the other cluster). The
next objective was to interpret our clusters against known characteristics of cortical neurons.
We clustered our cells alongside WGBS data from purified VIP+, PV+, SST+, and Camk2a+
(pan-excitatory) populations in mouse in order to identify excitatory and specific inhibitory
subpopulations. Cortical layer markers such as Cux2, Rorb, Deptor, and Tle4 nicely corresponded
with our clusters and were useful for discerning excitatory layers, whereas GABAergic markers,
such as Satb2, Gadl and Slc6al, further validated inhibitory and excitatory differences. In
addition, for mouse the cortex was sliced into a top, middle and deep layer, and the cells were

sequenced separately. These control layers strongly corresponded with the layers as predicted by

14



marker genes.

Our results identified 16 cell types in the mouse frontal cortex and 21 in human. We
observed an expansion of the deep layers in both mouse and human. Whereas we only detected
one layer 2/3 cluster and layer 4 cluster in mouse and human, we detected many more subtypes in
the deep layers 5 and 6. This deep layer expansion was further increased in human compared to
mouse. Although we would not expect a perfect match between scRNA-seq and snmC-seq, our
neuron types were relatively consistent with previous scRNA-seq studies in both mouse and human
[36, 37, 39]. Our results recapitulated numerous well-known marker genes and also identified new
markers. We identified super-enhancers-like domains for each of the cell types, provided evidence
for how the cell type identity is established and maintained. Finally, comparison of methylation
in similar cell types between mouse and human show strong conservation of methylation and
sequence in inhibitory neurons compared to excitatory neurons. Recent research has shown the
excitatory neurons are different throughout the cortex, whereas inhibitory neurons are largely
the same [38]. Therefore, inhibitory neurons may be generalists with more selective pressures
and are thus constrained by all cortical regions, whereas excitatory neurons able to adapt and

processing specific types of data in the cortex, and are thus under selective pressure to evolve.
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Chapter 2

Environmental enrichment increases
transcriptional and epigenetic
differentiation between mouse dorsal and

ventral dentate gyrus

2.1 Introduction

The hippocampus is implicated in learning and memory as well as the processing of
emotional stimuli and regulation of stress responses. Dorsal and ventral hippocampal regions
exhibit distinct connectivity and functional roles despite similar cell type composition [24].
The dorsal hippocampus, corresponding to the posterior hippocampus in primates, associates
closely with cognitive functions and age-related cognitive impairments. In contrast, the ventral
hippocampus, (anterior region in primates) is implicated in the regulation of emotional states
and vulnerability for affective disorders. This functional specialization is reflected in patterns

of gene expression. Gene expression in the dorsal hippocampus correlates with that in cortical
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regions involved in information processing, while genes expressed in the ventral hippocampus
correlate with expression in limbic regions involved in emotion and stress [24]. In addition,
transcriptomic analysis reveals profound molecular differences, even within a uniform cell type
population such as dorsal and ventral DG granule cells [40]. Epigenetic regulation may underlie
these molecular differences and is also a potential mechanism for environmental influences on
hippocampal development [41].

Early life experience has a profound, lifelong impact on emotional health due, in part,
to environmental factors that influence gene expression in brain regions critical for cognitive-
emotional stress responses. Epigenetic mechanisms such as DNA methylation, demethylation,
and chromatin remodeling, have been linked to adult neurogenesis in the DG [42] and to neuronal
plasticity underlying learning and memory [43, 44]. DNA methylation could likewise play a role
in mediating long-term effects of early life experience [45]. Epigenetic modifications of DNA and
histone proteins also define tissues and cell types during development [46, 5, 47], complicating
the interpretation of epigenomic data from heterogeneous samples.

To elucidate the role of region-specific epigenetic regulation in the DG, we generated
transcriptomes and base-resolution, whole-genome DNA methylation and hydroxymethylation
profiles for the dorsal and ventral DG. Our data and analyses reveal substantial asymmetries be-
tween the DNA methylomes of the two hippocampal poles, and suggest that enriched environment

(EE) enhances dorsal-specific epigenomic signatures.

2.2 Results

2.2.1 Environmental enrichment promotes hippocampal neurogenesis

Using high-resolution in vivo structural magnetic resonance imaging (MRI) [48, 49],
we found that hippocampal volume is enlarged in mice raised in an enriched environment (EE)

compared with standard housing (SH) in both the dorsal (8.5% greater volume, p = 0.001, ¢-
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test) and ventral poles (6.1%, p = 0.039; significant interaction between region and condition,
p =0.017) (Fig. 2.1A). EE also associates with >60% more newborn neurons labeled by 5’-
bromo-2’-dexoyuridine (BrdU), a marker of proliferating cells [50], in the DG (dorsal, p = 0.0097;
ventral, p = 0.028; Appendix A.1A, B). These results are consistent with previous findings that

enrichment increases hippocampal volume and neurogenesis in the dentate gyrus [48, 49].

2.2.2 Specialization of gene expression in dorsal and ventral DG

To address the molecular basis for the effect of EE on hippocampal function, we used
RNA-Seq to profile gene expression in dorsal and ventral DG. Dentate granule cells have distinct
gene expression patterns at the two poles [40], and single-nucleus transcriptome profiling has
been used to link patterns of gene expression with the developmental trajectory of newborn
neurons [51] and the activation of immediate early genes in a novel environment [34]. However,
the impact of environmental enrichment on the specialized gene expression programs of the
dorsal and ventral DG has not been examined. To increase the statistical power of our gene
expression analysis and to limit variability due to single-nucleus isolation or microdissection,
we performed RNA-Seq in carefully dissected whole-tissue samples of dorsal and ventral DG
from 5 independent biological replicates in each condition (each replicate used pooled tissue
from n = 10 — 12 animals; see STAR methods). Compared with microdissection-based RNA-Seq
data [40], our gene expression profiles showed high correlation between samples (Spearman
correlation for replicates, r = 0.988 compared with r = 0.785, Appendix A.2A-F). This level of
quantitative precision in our data allowed us to comprehensively detect gene expression changes
due to EE in the dorsal and ventral DG. Although our samples from whole tissue comprise
multiple neuronal and glial cell types, the gene expression profiles we observed were most
strongly correlated with expression from purified neurons compared to non-neuronal brain cell
types, suggesting the tissue is primarily composed of neurons (Appendix A.2P) [52].

Transcriptome-wide analysis showed that dorsal-ventral differences in gene expression
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account for nearly half of the total data variance (Fig. 2.1B, Appendix A.2G). Over 28% of genes
expressed in the DG were differentially expressed by region (3,497 out of 12,247 genes; false
discovery rate (FDR) < 0.05, TPM>1, fold-change > 20%, Fig. 2.1C; Supplementary Data),
including 244 genes (2%) with >2-fold difference in expression. Genes that were previously
reported to show skewed expression in dorsal vs. ventral dentate granule cells [40] were similarly
skewed in our data (Appendix A.2F), including dorsally enriched Lct, Abcbl10 and Spatal3
and ventrally enriched Trhr, Grp, and Cpne7. This consistency further supports the substantial
contribution of granule neurons to our RNA-Seq data.

We found similar numbers of genes upregulated in the dorsal and the ventral regions.
Although differential expression was widespread, the magnitude of expression differences was
4-fold smaller than the differences between distinct cortical cell types [5] (Appendix A.2H). We
found notable differences between dorsal and ventral expression of key developmental factors
such as ventrally-upregulated Nr2f1/2 and dorsally-upregulated Epha7. Transcription factors
that mark radial glia-like (RGL) stem cells (e.g. Sox2, Hes5) were enriched in the ventral DG,
whereas maturing neuron markers (e.g., NeuroD1, DCX) were enriched in the dorsal DG (Fig.
2.1D,E) [42, 53], consistent with more active neurogenesis in the dorsal DG [54]. These data
suggest specialized transcriptional regulation of neurogenesis in the dorsal and ventral DG.

Gene expression was more affected by EE in dorsal than ventral DG (Fig. 2.1B, greater
separation of EE and SH samples on PC3 for dorsal than ventral, Appendix A.21,J), and dorsal
DG has twice as many differentially-expressed genes (152 dorsal, 72 ventral; FDR<0.05 and fold
change > 20%; Fig. 2.1F; Supplementary Data). The 37 genes upregulated in both regions were
enriched for learning and memory function and included genes induced during neuronal activation
(Junb, Arc, Fos, Npas2/4) that play critical roles in contextual memory formation [55]. Gadd45b
was upregulated by EE in both regions and is implicated in activity-induced demethylation of gene
promoters associated with neurogenesis [55]. Overall, our transcriptome analyses based on RNA

sequencing, which we validated with amplification-free digital RNA quantification (Appendix
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A.2K-N), are consistent with enhanced neurogenesis following EE, particularly in the dorsal DG.

2.2.3 DNA methylation differences between dorsal and ventral DG

DNA methylation is a stable epigenetic mark that could mechanistically support enduring
transcriptional differences between dorsal and ventral DG and mediate the lifelong effects of
early experience. Neuronal cell types show unique patterns of both CG and non-CG methylation
(denoted mCG, mCH) [5], as well as hydroxymethylation (hmC) [56, 4]. However, methylation
differences have not been examined within relatively homogenous cell types such as dentate gran-
ule cells arrayed along the longitudinal axis of the DG. Our RNA-Seq data showed that enzymes
involved in DNA methylation (Dnmtl, Dnmt3a,b) and demethylation (Tet1,2,3, Gadd45a) are
enriched in the dorsal compared to the ventral pole of the DG (Appendix A.20). To examine mCG,
mCH and hmC with single base resolution genome-wide, we performed bisulfite sequencing
(MethylC-Seq) and Tet-assisted bisulfite sequencing (TAB-Seq) [57] on each of 20 samples (5
independent samples per condition from dorsal and ventral DG; 14.8-fold genome coverage per
sample), a dataset unprecedented in its scale.

Each of the three forms of methylation exhibited a distinct genomic distribution in
dorsal and ventral DG, leading to clear separation of dorsal and ventral samples in terms of
methylation principal components (Appendix A.3A). A striking example is the locus containing
Nr2f2 (COUP-TF2), a developmental factor upregulated in ventral DG [40, 58]. The gene
body of Nr2f2 is surrounded by a large, 50 kbp DNA-methylation valley (DMV) that is dorsally
hypomethylated in terms of mCG, mCH and hmCG (Fig. 2.2A, boxes 1,i1,1v). The opposite pattern,
ventral hypomethylation, prevails within the gene body of the shorter isoform, Nr2f2.2 (box iii),
consistent with the strong ventral-specific expression of this gene (>4-fold). The presence of
large DM Vs with both dorsal and ventral hypomethylation signatures at this locus illustrates the
complex, region-specific relationship between DNA methylation and gene expression. We found

additional DM Vs associated with differentially expressed transcription factors such as Nr2f1, as
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well as the developmental patterning factor Pax7 (Appendix A.4).

Non-CG methylation (mCH) accumulates within neurons during post-mitotic maturation
in the first 4 weeks of life in mouse frontal cortex [4] and accounts for 25% of methylcytosines in
adult mouse DG [59]. Genome-wide, we found nearly twice as much mCH in ventral compared
with dorsal DG (p < 0.01, Fig. 2.2B). This finding could be explained if increased neurogenesis
in dorsal DG leads to a higher proportion of immature neurons, which may lack mCH. Global
mCG and hmCG levels were equivalent in dorsal and ventral DG, and EE had no effect on global
methylation levels. We did not detect significant hydroxymethylation at non-CG sites, consistent
with cortical neurons and embryonic stem cells [4, 60].

A key advantage of whole-genome DNA methylation profiling is the ability to identify
differentially methylated regions (DMRs), often far from any gene body, that mark tissue-specific
gene regulatory elements [5, 47]. We found 23,000 DMRs that were hypomethylated in the
dorsal relative to ventral DG [61] (hereafter called dorsal DMRs; mean methylation difference
26% + 4.5% s.d.; Appendix A.3H, Supplementary Data), covering 4.45 Mbp or 0.16% of
the genome in total (Fig. 2.2C). In contrast, we found only 587 DMRs hypomethylated in
ventral relative to dorsal DG (hereafter called ventral DMRs), covering 84 kbp. This strong
bias, with 40-fold more hypomethylated regions in the dorsal DG, contrasts with the balanced
number of differentially expressed genes in dorsal and ventral DG (Fig. 2.2C,D), suggesting an
asymmetric role for DNA methylation in region-specific gene regulation. Despite their small
number, ventral hypomethylated DMRs marked key developmental patterning transcription factors
(Nf2f1/2, Pax3/7), as well as Efna5 and Fgfr3 (Fig. 2.2C), which are linked to the proliferation,

maintenance and survival of neural stem cells [62, 63].

2.2.4 DNA methylation correlates with repression at some genes

CG and non-CG DNA methylation are associated with reduced gene expression, while

hmC associates with increased expression, as previously observed for frontal cortical neurons
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[5, 4] (Appendix A.3B, C, F, G). We therefore examined whether dorsal-ventral differences
in methylation correlated with region-specific expression. Genes upregulated in the dorsal
DG were enriched for dorsal DMRs near the transcription start site (TSS) and throughout
the gene body (Fig. 2.2D, green curve). These DMRs were also enriched at genes that are
differentially expressed in EE compared to SH treated mice (Fig. 2.2E). Ventrally-upregulated
genes showed a significant depletion of dorsal DMRs (Fig. 2.2D, purple curve) and an enrichment
of ventral DMRs near the TSS (Appendix A.3D). Interestingly, dorsal DMRs were also enriched
at genes that were up- and down-regulated in EE, although over half of dorsal up-regulated
genes, and >98.5% of ventral up-regulated genes, contained no DMRs that could explain their
region-specific differential expression (Fig. 2.2F, G, Appendix A.3D). These DMR-independent,
differentially expressed (DE) genes included some with strong (>6-fold) regional specificity (e.g.
Grp, Cyp26b, Appendix A.3E). DNA methylation may thus play a targeted role in controlling
regional differentiation through key transcription factors. These factors could then sustain

differential expression programs in a methylation-independent manner.

2.2.5 Impact of enrichment on DNA methylation in DG

EE enhanced the epigenetic distinction between dorsal and ventral DG, leading to detection
of nearly 60% more dorsal DMRs in EE (16,156 DMRs) compared with SH-reared (10,185)
animals (Fig. 2.2C). However, only a small number of regions were statistically significant DMRs
when using the same criteria to directly compare SH and EE conditions (390 hypo-methylated,
595 hyper-methylated in EE). These DMRs did not overlap between the dorsal and ventral
regions. We reasoned that EE-dependent changes in DNA methylation may be enriched within the
relatively abundant dorsal DMRs, and thus focused our analysis on these sites. Upon averaging
over all dorsal DMRs, we found lower dorsal DNA methylation levels in EE compared with SH at
both CG (p = 0.032) and non-CG (CA, p = 0.049; CT, p = 0.017) sites (Fig. 2.3A, B, Appendix

A.5). Ventral DNA methylation was not significantly different between EE and SH. Dorsal DMRs

22



were highly methylated in the fetal mouse cortex [4] and subsequently began losing methylation
by one week of age (Fig. 2.3C). Dorsal DMRs thus mark regions that become demethylated
during neuronal development. The decreased methylation of these regions in EE-reared mice is
consistent with a higher proportion of immature neurons due to enhanced neurogenesis in the
dorsal DG [54]. Further supporting this interpretation, we observed that most genes up-regulated

by EE were also up-regulated in dorsal relative to ventral DG (Fig. 2.3D).

2.2.6 NeuroDI binding sites enriched at dorsal DMRs

To address the functional significance of DG DMRs, we analyzed the enrichment of
transcription factor DNA sequence motifs [64] (Fig. 2.3A-D). Dorsal DMRs were strongly
enriched for binding motifs of NeuroD1 (p < 10729 hypergeometric test), a basic helix-loop-
helix transcription factor that is essential for maturation of newborn hippocampal neurons [65,
66, 67]. Dorsal DMRs were also enriched in motifs of the MEF2 family of transcription factors
involved in neuronal differentiation [68] (Fig. 2.4A). By contrast, treatment-related DMRs
hypomethylated in EE relative to SH were enriched for AP-1 family motifs, indicating activation
of binding sites for the immediate early genes Fos and Jun (Fig. 2.4C). This is consistent with our
transcriptomic data (Appendix A.2LJ) showing up-regulation of Fos and Fosb in EE treated mice,
and implicates AP-1 signaling as a target for the effects of EE.

Treatment-related DMRs, including both those that are hypo- and hyper-methylated in
EE, are enriched with binding motifs for Grhl2 (Fig. 2.4C,D), a developmental factor that
may contribute to survival of neuronal progenitors via its expression in non-neuronal cells [69].
Consistent with a potential glial role, Grhl2 mRNA is expressed at a low level in our data from
dentate gyrus (0.087 £0.3 TPM), as well as in data from dentate granule cells [40].

To validate the motif analysis, we examined DNA methylation in the dorsal DG at
experimentally determined NeuroD1 binding sites from a previous study of in vitro neuronal

differentiation [67]. We found a significant overlap of NeuroD1 ChIP-Seq peaks with dorsal
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hypomethylated DMRs (67 peaks within 500 bp of a DMR; p = 1.8x10~!!, hypergeometric test;
Supplementary Data). 48 genes contained NeuroD1 peaks collocated with a DMR (Fig. 2.4E).
The vast majority of these genes, including Tmem?2 and Epha8, were significantly differentially
expressed between dorsal and ventral DG (41/48); however, we also found NeuroD1 peaks
overlapping DMRs in non-DE genes such as Cogl/ (Fig. 2.4E). Consistent with the motif
enrichment analysis, we found lower mCG in dorsal compared with ventral DG at NeuroD1
ChIP-Seq peaks (Fig. 2.4F). Although we found no effect of EE on mCG levels at these sites,
there was a significant reduction in mCA at these sites specifically in the dorsal, but not ventral,
DG (p=0.0006, Fig. 2.4G). The EE-associated differences in mCA were highly localized to
the NeuroD1 binding site (Fig. 2.4H). Thus, subregion-specific, environmental influences on
dentate gyrus appear to reflect dynamic epigenetic modifications at non-CG sites within NeuroD1

transcription factor binding regions that are linked to neuroplasticity, including neurogenesis.

2.3 Discussion

Our study integrates whole-genome, base-resolution DNA methylation and hydroxymethy-
lation data with gene expression (RNA-Seq), in vivo structural MRI and immunohistochemistry,
in a mouse model of peripubertal environmental enrichment. Environmental enrichment is a
form of early experience that stably alters neural development and behavior in rodent models
[70]. Using these multi-modal datasets we have identified subregion-specific transcriptomic and
epigenomic influences of enriched experience in the dorsal and ventral DG. We find that the
magnitude of the molecular differentiation of the dorsal and ventral hippocampus is influenced
by early experience. Based on our data and analysis, we can begin to propose a unified model
of epigenomic and transcriptional regulation in the DG integrating both region-specific and
environmental enrichment effects (Fig. 2.5).

Lesion studies and connectivity profiles of the hippocampus have suggested that the
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dorsal hippocampus is critical for spatial cognition, whereas the ventral region is associated with
emotional processing and stress responses [24]. There are substantial expression differences
along the dorsal-ventral axis of the DG, as well as hippocampal subregions CA1, CA2 and
CA3 [24, 40, 34]. However, regulatory mechanisms that could support these differences remain
unexamined. Our data bridge this gap, linking dorsal-ventral DNA methylation differences with
transcription. For example, we identified hypomethylated regions in the ventral DG at Pax3 and
Pax7. These transcription factor genes restrict ventral fate in the spinal cord and could play a
similar role in the hippocampus [71]. These results extend our knowledge of the substantial
epigenomic and transcriptional differences that parallel the functional specialization of the dorsal
and ventral DG [24, 40, 51, 72].

The high level of correlation (r = 0.988) among transcriptomes from our five independent
samples allowed us to detect 3,497 differentially expressed genes with high statistical confidence,
far more than were previously reported in purified granule cells [40]. This illustrates that gene
expression profiling in intact tissues is a valuable complement to cell type specific approaches,
which may perturb the cellular transcriptome in the course of cell type purification. While the
transcriptional differences we observe between dorsal and ventral DG are substantial, they are
of a smaller magnitude than differences among cortical cell types (Appendix A.2B) [5]. For
example, there are 4.7-fold more DE genes (using a cutoff >2-fold differential expression) when
comparing cortical excitatory neurons with PV- or VIP-positive fast-spiking interneurons.

In contrast with the widespread differential gene expression between dorsal and ventral
DG, we found a more limited number of DNA methylation and hydroxymethylation differences
(mCG and hmCG). We did find a 2-fold higher abundance of mCH throughout the genome
in the ventral compared with dorsal DG. While notable DNA methylation differences at key
transcription factor and ventral patterning genes were negatively correlated with gene expression,
overall our data suggest that many dorsal-ventral gene expression differences cannot be directly

linked to DNA methylation differences.
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Adult neurogenesis in the DG is enhanced by EE [70], but the molecular mechanisms
mediating this process remain unknown. Brain-derived neurotrophic factor (BDNF) is upregulated
at the mRNA level in mouse hippocampus following 3-4 weeks of exposure to EE [73], while
EE-induced adult neurogenesis was blocked in a heterozygous knockout (Bdnf+/-) [74]. Similarly,
mRNA for vascular endothelial growth factor (VEGF) is upregulated in hippocampus upon
exposure to EE, and manipulations that increase or decrease VEGF levels cause corresponding
increases and decreases in neurogenesis [75]. We did not detect differential expression of
Bdnf or Vegf in the dorsal or ventral DG, suggesting these factors may be upregulated in other
hippocampal regions. We did identify up-regulation in EE of mRNA for dopamine receptor D1
(Drdl), which is expressed in dentate granule cells [76] and gates long-term changes in synaptic
strength [77, 78], and the opioid neuropeptide Penk that is expressed in a subpopulation of DG
granule cells [51]. We also found activation of immediate early genes (IEGs), consistent with
increased synaptic activity. Exposure to a novel environment activates IEG transcription in DG
granule cells that can be detected by single nuclei sorting followed by RNA-Seq [34]. Our data
suggest IEGs are also activated by long-term exposure to an enriched environment, which includes
continuous introduction of novel objects as well as social and physical stimulation. Importantly,
by performing 5-fold replicate experiments on independent biological samples, each drawn from
10-12 animals, we could stringently assess the reproducibility and robustness of gene expression
changes.

Changes in DNA methylation can mediate long-lasting environmental effects on gene
expression and behavior [41]. EE induces stable behavioral changes [21], yet the role of DNA
methylation has not been examined. In our EE cohort, we observed a 31% upregulation of
Gadd45b, involved in activity-induced DNA demethylation [55]. We found few DMRs in a
direct comparison of EE and SH raised animals, indicating that individual DNA methylation
changes in this paradigm may fall below the detection threshold for whole genome bisulfite

sequencing. We did observe an effect of EE in modulating DNA methylation at dorsal-ventral
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DMRs. There were 59% more dorsal DMRs (methylation significantly lower in dorsal compared
to ventral DG) in our EE cohort compared to SH. These DMRs were enriched for binding sites of
the neurodevelopmental transcription factor, NeuroD1, which is upregulated in maturing adult
newborn neurons. These genomic regions also showed significantly lower methylation in EE
compared to SH at CA and CT dinucleotides, suggesting an effect of early experience on a
largely brain-specific form of methylation. These findings could be explained by changes in
methylation within existing cells, changes in the proportion of maturing newborn neurons, or
a combination of both. We also examined the role of 5-hydroxymethylcytosine (ShmC) in EE.
Ten-eleven translocation (TET) family of enzymes can catalyze the conversion of 5-mC to 5-hmC
[79]. Although its function is not fully understood, 5-hmC may represent an intermediate state
produced during demethylation. We found 5-hmc was positively correlated with transcription,
supporting the idea that 5-hmC mediates transcription.

Previous work suggests a functional distinction between the dorsal and ventral DG,
and our work shows the two poles are differently affected by EE [24]. We detected 80 more
differentially expressed genes in the dorsal than the ventral DG in response to EE. In addition,
as noted above, the EE-reared animals showed many more dorsal DMRs (16,156) compared
to SH treated animals (10,185). These regional differences may be consistent with a greater
enhancement of neurogenesis by EE in the dorsal as compared to ventral DG [80].

Although our data are unprecedented in resolution and sample size, there are still some
challenges to identifying the source of transcriptional and methylation changes in tissue from
a heterogeneous and dynamic cell population like the DG. For example, we cannot distinguish
between changes in DNA methylation occurring in a stable population of mature neurons, and
changes to the proportion of immature and newborn neurons due to increased neurogenesis.
Neurons in all stages of the maturation process coexist within the adult DG, and our data represent
a mixture of signals from stem cells and immature and mature neurons. Similarly, the dorsal-

ventral differences in DNA methylation could be driven by differences in cell type composition
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between the two regions, or a discrete or graded difference between the DG neurons in the dorsal
and ventral poles. Here we attempted to better understand the heterogeneity of our tissue by
correlating our RNA-seq data with known neuron type transcriptional profiles (Appendix A.2P)
[52]. Although the strongest correlation between our dDG and vDG bulk tissues was with neurons
(r = .89), we also found substantial correlations with gene expression patterns in other cell types.
Thus, it remains difficult to determine to what extent regional differences and EE-induced changes
in cellular heterogeneity may account for our results. Future studies, including single cell assays,
could address these limitations and better characterize transcription and DNA methylation in
maturing newborn neurons and adult DG neurons [51, 34, 81, 82].

Overall, our transcriptome and DNA methylation data support a model of regional and
environmental effects on the molecular profile of DG neurons (Fig. 2.5). First, assuming only
mature neurons have mCH [4] and that the mCH levels in mature dorsal and ventral dentate
granule cells are similar, our finding of lower mCH in dorsal DG suggests a higher proportion
of immature neurons in this region. Second, regional differences in expression of RGL and
NSC markers suggest an increased proportion of NSCs in dDG and increased RGLs in vDG.
This distinction is further supported by the preponderance of dorsal DMRs over ventral DMRs
and their enrichment for the binding of the neuronal differentiation factor, NeuroD1. Finally,
by promoting neurogenesis in the dDG, EE has the effect of further increasing the proportion
of immature neurons in this region, leading to low mCG and mCA levels at dorsal DMRs and

NeuroD1 binding sites.

2.4 Methods

2.4.1 Animals and environmental enrichment

All procedures were performed in accordance with the guidelines established by the

Canadian Council on Animal Care (CCAC) with protocols approved by the McGill University
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Facility Animal Care Committee (FACC). Male C57/Bl/6 mice were bred at the Douglas Institute
to avoid transportation stress. Mice were weaned on postnatal day 22, and siblings were assigned
to either standard or enriched housing conditions. Standard housed animals were raised in groups
of three male mice from different mothers in a 30 x 18 cm cage. The enriched group contained
12 male mice, housed in a larger rectangular plexiglass cage (78 x 86 cm) with a plexiglass top,
which contained a variety of toys such as running wheels, a bridge, and novel objects. Toys
were changed weekly. For animals in both conditions, food and water were provided ad libitum,
and bedding was changed biweekly, cleaning the cages with a Peroxyguard solution. Animals
remained in the respective housing conditions for eight weeks. Mice were sacrificed on age day 80
(post sexual maturation) between 10:30 am to 12 pm. A cohort of 10 mice per housing condition
was used for magnetic resonance imaging (MRI). A separate cohort was used for sequencing
assays with five samples per housing condition, and each sample was composed of tissue from
10-12 mice. A separate cohort of male mice (n = 20) was used for hippocampal neurogenesis

study.

2.4.2 Tissue collection for MRI

Mice were perfusion-fixed on postnatal day 80 as previously described [83]. Briefly, mice
were perfused via the left ventricle using 30 ml of room-temperature (25°C) phosphate-buffered
saline (PBS) (pH 7.4), 2 mM ProHance (gadoteridol, Bracco Diagnostics Inc., Princeton, NJ),
and 1 ul/ml heparin (1000 USP units/ml, Sandoz Canada Inc., Boucherville, QC) at a rate of
approximately 1 ml/minute. Next, 30 ml of 4% paraformaldehyde (PFA) in PBS containing 2
mM ProHance was infused at the same rate. After fixation, the heads, skin, ears, and lower jaw
were removed and the skull was allowed to postfix in 4% PFA at 4°C for 24h. The samples were
then placed in a solution of PBS, 2 mM ProHance, and 0.02% sodium azide (sodium trinitride,

Fisher Scientific, Nepean, ON) and stored at 4°C until imaging.

29



2.4.3 Magnetic resonance imaging and analysis

Anatomical whole-brain images were acquired 16 at a time using a multi-channel 7.0-T
scanner and custom-built 16-coil solenoid array (Varian Inc., Palo Alto, CA) [84, 85]. Brains
were imaged using a T2-weighted, 3D fast spin-echo sequence at 56-micron isotropic resolution
(MRI parameters: TR = 2000 ms, echo train length = 6, TEeff = 42 ms, field-of-view (FOV) =
25 x 28 x 14 mm? and matrix size = 450 x 504 x 250, imaging time = 11.7 h). To correct for
small geometric distortions resulting from imaging in coils not in the centre of the magnetic
field, coil-specific MR images of precision-machined phantoms were registered to a computed
tomography (CT) scan of the same phantom. The resulting distortion correcting transformations
were then applied to all acquired images in a coil-specific manner.

To determine the effect of housing condition on brain anatomy, all images in the study
were aligned using an automated image registration pipeline as described previously [84, 86].
All registrations were performed with a combination of mni_autoreg tools [87, ?] and Advanced
Normalization Tools (ANTS) [88]. Briefly, the images were first linearly aligned using a series of
global rotations, translations, scales, and shears. They were then locally aligned via an iterative
nonlinear process which brings all images into precise anatomical alignment in an unbiased
fashion [86, 89]. The output of this automated registration process is a study-specific consensus
average, representing the average anatomy of all mice in the study, along with deformation fields
that encode how each individual image differs from the study average [84, 86]. After registration,
a manually labeled MRI atlas delineating dorsal and ventral hippocampus was aligned to the study
average. This was used in combination with the deformation fields to calculate the volume of the
dorsal and ventral hippocampus for each subject in the study in an automated and unbiased fashion
[84, 86]. The effect of housing condition on dorsal and ventral hippocampal volume was assessed
using Student’s 7-tests. The interaction effect between housing condition and region on volume
was assessed using a linear mixed effects model with random intercepts for each mouse using

the ImerTest package [90]. Image analysis was performed using the R statistical language (R
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Core Team, 2016, https://www.R-project.org) and the RMINC library (https://github.com/Mouse-

Imaging-Centre/RMINC). Error bars represent 95% confidence intervals.

2.4.4 Immunohistochemistry

Animals were intraperitoneally injected with BrdU (100 mg/kg, 20 mg/ml, Cat# B5002,
Sigma-aldrich) twice on 2 consecutive days at postnatal day 80. 30 days following the last
injection, the animals were sacrificed via transcardial paraformaldehyde (4% in 1x phosphate-
buffered saline) perfusion. The sliced brain sections were processed for immunohistochemistry
using Anti-BrdU antibody (Abcam, Cat# ab6326, 1:400) and visualized with DAB (Cat# SK-4100,
Vector Laboratories). BrdU immunoreactive cells were counted in the subgranular zone and
granule cell layer region in dorsal (8-12 section, 80 um apart, bregma -1.34 to bregma -2.30)
and ventral (8-10 sections, Bregma -2.92 to Bregma -3.64) [91] hippocampus per animal under
VS120 virtual slide microscope (Olympus). The number of labeled cells per dentate gyrus was
statistically tested using a two-way analysis of variance (ANOVA) with housing condition and

marginal region as main effects.

2.4.5 Tissue collection for sequencing assays

Tissue collection consisted of rapid removal of the brain, followed by flash freezing and
storage at -80°C. Frozen brains were sliced coronally at 200 ym thickness until reaching bregma
-2.30. The brains were then removed from mounting position, rotated, and remounted to the
mounting position for horizontal slicing ventral dentate tissue. Horizontal sections were sliced
from interaural 3.24 mm to 0.92 mm [91]. A 300 um diameter puncher was used to punch dorsal

and ventral dentate gyrus region separately.
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2.4.6 RNA and DNA extraction

RNA and DNA extraction were performed from the same sample using Qiagen Allprep
DNA/RNA Mini kit (Qiagen, Cat# 80204.). We performed on-column DNase I treatment during
RNA extraction and on-column RNaseA treatment during DNA extraction. RNA was examined

by Bioanalyzer 2100 (Agilent technologies, Santa clara, USA).

2.4.7 RNA-Seq collection

The RNA libraries were prepared in McGill University and Genome Quebec Innovation
Centre using Illumina TruSeq Stranded total RNA LT set (Cat# RS-122-2301, Illumina Canada
Ulc.). Paired-end, 100bp read-length RNA-seq was collected using HiSeq 2000 at a depth of 30

M sequencing.

2.4.8 Validation of RNA-Seq results by digital Nanostring

Housing differences in RNA-seq were validated with Nanostring on 48 randomly selected
differentially expressed genes. 100ng of tissue were sent to Jewish General Hospital (Montreal,
Quebec, Canada) for expression quantification using NanoString nCounter XT-GX (NanoString
Technologies, Inc., Seattle, WA, USA). Probes were designed to hit the maximum number of
validated transcript variants while minimizing the cross-reactivity of the probes. Scanned data was
normalized using Nanostring-provided housekeeping genes and analyzed using nSolver Analysis
Software 2.6 (NanoString Technologies, Inc., Seattle, WA, USA). Comparison of mRNA fold

change between RNA-seq and NanoString shows consistent results (Appendix A.2, K-N)

2.4.9 TAB-Seq and MethylC-Seq

DNA from the same samples was separated for TAB-seq and MethylC-seq library prepa-

ration. TAB-seq measures levels of 5 hydroxymethylation (5-hmC). Protection and oxidation
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portions of library preparation were performed in-house using the Wisegene kit as described in
Yu et al [57]. Three spike-in control DNAs, lambda DNA (Cat# D1501, Promega), 5SmC (Cat#
S001, Wisegene) and ShmC (Cat# S002, Wisegene) were added to each sample (2.5 ug of total
DNA) before DNA shearing, in order to evaluate the bisulfite conversion efficiency, the protection
rate of 5 hmC, and the oxidation rate of TET. In 5ShmC control spike-in DNA, due to the impurity
of commercial ShmdCTP and slow oxidation of ShmC upon exposure to air, the actual abundance
of ShmC at each cytosine site is not 100% hydroxymethylated. Therefore, we ran the same batch
of ShmC spike-in control in another bisulfite sequencing to examine its real ShmC abundance.
Bisulfite conversion was then performed at the Genome Quebec Innovation Centre on the
processed TAB-seq sample, as well as 1 ug of DNA for the MethylC-seq library. Methylated and
unmethylated DNA sets (Cat# D5017, pUC19 DNA set, Zymo research) were added as spike-in
controls (2 ng spike-in control in 1 ug DNA) to evaluate bisulfite conversion efficiency. The
whole genome bisulfite sequencing (WGBS) libraries were prepared using NimbleGen SeqCap
Epi Enrichment System (Cat# 07145519001, Roche NimbleGen, Inc.). Library amplification was

done using KAPA HiFi Hotstart Uracil + DNA polymerase (Cat# KK2802, Kapa Biosystems).

2.4.10 Data analysis

All analyses were conducted in either Matlab or Python with packages including Numpy,
Scipy, Pandas, Matplotlib and Sklearn. All data were aligned to the mm10 (GRCm38) ref-
erence genome, and genes were defined using Gencode annotation vM7 level 3 transcrip-
tome (http://www.gencodegenes.org/). Browser representations were created using AnnoJ
(http://www.annoj.org) [10]. Pearson correlations were used except where stated otherwise.

P-values were j0.01 unless otherwise stated.
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2.4.11 Differential expression

RNA-Seq data were aligned using STAR Aligner in quantMode to obtain gene counts
[92]. Differentially expressed genes were identified using generalized linear models and contrasts
in EdgeR [93]. We only retained genes with counts > 10 in at least two samples for the analysis.
In addition, we excluded one SH sample due to high expression of the long noncoding RNA,
Xist, which is only expressed in females. We then tested the below null hypotheses to identify
differentially expressed genes by region (1) and treatment in the dorsal (2) and ventral (3) dentate

gyrus. Benjamini Hochberg was used to control the false discovery rate (g < .05).

DorsalSH — VentralSH = DorsalEE — Ventral EE

DorsalEE — DorsalSH = 0

Ventral EE — VentralSH = 0

2.4.12 Differential methylation analysis

Whole genome bisulfite sequencing data were mapped using Methlypy [4]. The non-
conversion rate (NCR) was estimated using a fully unmethylated phage lambda DNA spike-in.
NCR was found to be low across all samples (.43% =+ .021%). Methylation values were corrected
for the NCR using the following maximum likelihood formula, where m is the number of
methylated base calls and c is the total number of base calls:

m/c—NCR]

C= [
=81 CNCR

glx] = max[x,0]
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Differentially methylated regions (>15% methylation difference, p < .05) at CG dinucleotides
were identified using DSS [61, 94]. To examine the link between differential expression and
DMRs, we computed an enrichment score (the density of DMRs per gene per 1 MB) as a function
of distance from the transcription start site (TSS). Enrichment scores were compared between
differentially expressed and non-differentially expressed genes using a hypergeometric test.
Tet-assisted bisulfite sequencing (TAB-Seq) is a methodology for measuring genome-wide
5-hydroxymethylation that consists of three main steps: protection, the binding of a glycosyl
group to hydroxymethylated cytosines; Tet oxidation, the demethylation of non-glycosylated
methylated cytosines; and bisulfite treatment, conversion of all unmethylated cytosines to uracils
[57]. Upon sequencing, only 5-hydroxymethylated cytosines should still be cytosines. To measure
the inefficiency of each of these steps, a fully hydroxymethylated (pUC19) and a fully methylated
(lambda phage) spike in are included. Corrected hydroxymethylation levels were computed using
the below formula with variables rr4p(bisulfite non-conversion in the TAB-Seq data, estimated
via Lambda DNA in the CH context), s74p(non-oxidation in the TAB-Seq data, estimated using
Lambda DNA in the CG context), t74p(non-protection in the TAB-Seq data, estimated using

pUC19), and p,,¢ (the fraction of mC+hmC):

q1AB — STABPmC — rTAB(1 — me)]

g [C]TAB —rrap — (STaB — rTAB)PmC)]
I —traB

Finally, we examined DMRs for enrichment of transcription factor binding sequence
motifs using Homer [64]. For this analysis, sequences within 200 bp of each DMR center were

included. We examined the overlap of DMRs with ChIP-Seq data [67].
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2.4.13 Gene ontology analysis

Functional examination of gene sets was performed via gene ontology analyses include

EnrichR (http://amp.pharm.mssm.edu/Enrichr/) and Metacore 6.27 (build 68571).

2.4.14 Data availability

Raw and processed data reported in this study are available via the Gene Expression
Omnibus with accession GSE95740, https://www.ncbi.nlm.nih.gov/geo/. A browser visualization

of genomic data is at http://brainome.ucsd.edu/mouse_dentategyrus.
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Figure 2.1: Transcriptional effects of enriched environment (EE) are greater in dorsal than
ventral dentate gyrus (DG). (A) High-field structural MRI shows enlarged hippocampus in
EE-treated animals. (B) DG transcriptome principal components separate dorsal and ventral
samples (PC1), as well as standard housing (SH) vs. EE reared animals (PC3). Dorsal and
ventral samples from the same mice are connected by lines. (C) The cumulative number of genes
differentially expressed in dorsal vs. ventral DG (FDR < 0.05) as a function of the minimum
expression difference cutoff. Here we consider all genes with > 10 RNA-Seq read counts in
> 2 samples (solid lines), or with TPM > 1 in > 3 samples (dashed). (D) Maturing neuron and
radial glia like (RGL) markers [42, 53] are enriched in dorsal and ventral DG, respectively (gray
bars: not significant). (E) Clusters of genes active in RGL or immature neurons in Div-Seq data
[51] are enriched in dorsal and ventral DG, respectively. NSC: neuronal stem cell; NPC: neural
progenitor; NB: neuroblast. (F) Twice as many genes are differentially expressed in EE vs. SH
in dorsal compared with ventral DG.
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Figure 2.2: Reduced DNA methylation in dorsal dentate gyrus associated with expression
differences. (A) Browser view of the locus containing development factor Nr2f2 (Coup-TF2)
shows bidirectional differentially methylated regions (DMRs) and corresponding differences
in DNA methylation (mCG, mCH), hydroxymethylation (hmCG), and mRNA expression. (B)
The genome-wide mCH level is 50% lower in dorsal compared with ventral DG; mCG and
ShmCG did not differ (+ symbols indicate levels for individual samples). (C) The vast majority
of region-specific DMRs are hypomethylated in dorsal (dDG<vDG). The smaller number of
ventral hypomethylated DMRs (vDG<dDG) includes many key developmental transcription
factors. (D,E) DMRs are enriched at differentially expressed (DE) genes. Gray shaded region:
95% confidence interval from control genes with equivalent mean expression. (F,G) Over half
of DE genes contain no DMR.
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Figure 2.3: Greater dorsal-ventral differentiation of DNA methylation in enriched environment.
(A) At DMRs hypomethylated in dDG, dorsal DNA methylation is lower in EE compared
with SH reared animals at CG, CA and CT sites (p < 0.05, ANOVA). Ventral methylation is
unaffected. (B) Median difference in mCG between EE and SH samples across all genomic
bins (1kbp) stratified by regional (dorsal-ventral) difference in mCG shows a strong effect in the
dorsal, but not ventral, DG. (C) Mean mCG profile centered on dorsal DMRs in DG, as well
as in fetal and 1 week old frontal cortex [4]. (D) Genes that are up-regulated in EE are also
enriched in dDG.
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Figure 2.4: Transcription factor binding sites are enriched at DMRs. (A-D) Known transcription
factor binding site sequence motifs are significantly enriched within DMRs. (A) Dorsal DMRs
are enriched for motifs of developmental and neuronal differentiation TFs, including NeuroD1.
Inset: sequence logo of de novo sequence motif matching the NeuroD1 binding motif. (C) EE
DMRs are enriched for binding sites of AP-1 family immediate early genes. (C-D) EE and
SH DMRs are enriched for GRHL2 motifs. (E) Dorsal DMRs significantly colocalize with
experimentally determined binding sites of NeuroD1 [67] at dorsally enriched genes (Tmem?2,
Epha8) and at some genes with no significant differential expression (Cogl). (F-H) mCA is
significantly reduced in dDG at NeuroD1 binding sites.
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Figure 2.5: A model for epigenetic regulation of dorsal and ventral DG. (A): The cell stages
occurring within the subgranular zone of the dentate gyrus are shown together with a schematic
illustration of possible relative proportions consistent with our data. RGL: Radial glia-like
progenitor; NSC: Neural stem cell. (B) Key genes associated with the RGL stage are up-
regulated in ventral DG relative to dorsal DG. (C) We propose that mCH accumulates mainly in
mature neurons.
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Chapter 3

Allele-specific non-CG DNA methylation
marks domains of active chromatin in

female mouse brain

3.1 Introduction

In diploid mammals, the equivalence of the two parental alleles is violated by allele-
specific epigenetic regulation in a small, but critical, subset of the genome. Genomic imprinting,
or parent-of-origin-dependent gene regulation [95], is critical for embryonic development and
plays a role in neuronal differentiation [96]. In females, epigenetic inactivation of one X chro-
mosome silences transcription of most genes to equalize gene expression with males [25]. Both
imprinting and X-chromosome inactivation (XCI) are critical to healthy brain development
[28, 97]. Despite the importance of allele-specific gene regulation in the brain, the epigenetic
mechanisms controlling these patterns are not completely known, in part, due to the challenge of
allele-specific epigenomic profiling. In particular, DNA methylation patterns can reflect allelic

asymmetries in autosomal gene regulation [9], but their correlation with XCI has not been fully

42



addressed.

XCI has unique advantages as a case study for the investigation of allele-specific epige-
nomic regulation. The inactivated allele is selected stochastically during early development and
maintained through subsequent cell divisions [98], yielding a mosaic pattern of allelic expression
in adult female tissues. Despite extensive inactivation of one X chromosome, some genes escape
silencing and are expressed from the inactive X chromosome (Xi): ~ 3% of X-linked genes in
mice [99] and 15% in humans [27]. Analysis of peripheral blood showed that XCI and escape
from XCI are correlated with high or low levels of DNA methylation at CG dinucleotides (mCG)
in promoter regions, respectively [29]. However, different epigenetic profiles may be associated
with XCI and escape from XCI in the brain because the DNA methylation landscape of neurons
is distinct from other cell types. In particular, neurons accumulate methylation at millions of
genomic cytosines in CA and CT dinucleotides during postnatal brain development beginning at
1 wk of age in mice [9, 4]. This non-CG methylation correlates with reduced gene expression and
inactivation of distal regulatory elements in a highly cell type-specific manner [5]. Although the
functional relevance of non-CG methylation (mCH) is unclear, it is bound by the transcriptional
repressor methyl-CpG binding protein 2 (MeCP2) as neurons mature, and is enriched at genes
that are up-regulated in Rett syndrome [100, 101].

Mosaic XCI prevents discrimination of methylation on the active X chromosome (Xa) and
Xi alleles by conventional methylome profiling. We reasoned that understanding the allele-specific
distribution of neuronal mCH in the context of X inactivation and imprinting could yield new
insights into this unique aspect of the brain epigenome. Therefore, we profiled allele-specific
DNA methylation, as well as transcription, in mouse frontal cortex using a Xist mouse mutant
hybrid in which the paternal allele was deterministically inactivated in all cells [99]. To assign
sequencing reads to alleles, we used female F1 mice from crosses between C57BL/6 Xist mutant
and Mus spretus wild-type mice [99], and analyzed species-specific genetic variants (~ 42 million

single-nucleotide polymorphisms (SNPs), including 1.95 million SNPs on the X chromosome).
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Our data reveal distinct allele-specific patterns of mCG and mCH at X-linked genes that reflect
the accessibility of chromosomal domains during brain development. At autosomal imprinted
regions, we found large domains of differential methylation that show a dissociation between

mCG and mCH and point to independent regulation of these features of the neuronal epigenome.

3.2 Results

3.2.1 Allele-Specific Global Levels of CG and Non-CG DNA Methylation

on Female X Chromosomes

Using female interspecific F1 transgenic mice with deterministic X inactivation [99, 30],
we examined global levels of mCG and mCH on Xa and Xi in the adult frontal cortex. mCG
is present throughout nonpromoter regions of the genome from the earliest stages of brain
development, whereas mCH accumulates gradually during postnatal development starting at 1 wk
of age in mice [4]. We therefore reasoned that the silencing of Xi, established during random XCI
in the embryonic inner cell mass [98], may block the accumulation of mCH on Xi. By contrast,
nonpromoter mCG may be less affected by the chromosomal inactivation because it is established
and epigenetically inherited from the early embryonic stage [102].

Consistent with this reasoning, we found significantly increased levels of mCG at promot-
ers on Xi (69.4%) compared with Xa (40.4%; P = 0.003, paired t test) and autosomes (30-33%;
p = 0.006) (Fig. 3.1A). By contrast, mCG at nonpromoter regions was lower on Xi (75.6%)
compared with Xa (85.6%; p = 0.013) and autosomes (84-85%; p = 0.012). Strikingly, Xi is
nearly devoid of mCH (0.02%) compared with Xa and autosomes (1.01%; p < 0.001). Xi thus
resembles mCH deserts: large regions (median size of 1.8 Mbp) on autosomes that lack mCH, are
transcriptionally silent, and are marked by inaccessible chromatin [4]. The pattern of methylation

is likewise less correlated across the two X alleles (mCG: r = 0.27, mCH: r = —0.08; correlation
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using 10-kb bins) compared with the autosomes (mCG: r = 0.90, mCH: r = 0.91). These results
suggest that Xi is largely inaccessible to the de novo DNA methyltransferase Dnmt3a, which

is responsible for establishing mCH in neuronal genomes starting in the second postnatal week

[101].

3.2.2 Differential Methylation Patterns at Genes Known to Escape XCI

A subset of X-linked genes escapes from XCI, allowing expression from Xi. Comparison
of male and female brain samples from both mice and humans showed a striking enrichment
of mCH in females within the gene bodies of several escape genes [4, 103]. Our allele-specific
analyses show that this mCH signature of escape genes derives exclusively from the Xi. The
pattern is exemplified by the allele-specific expression and methylation profiles of a known
escape gene, Kdm5c, and two neighboring nonescape genes, Igsec2 and Kantr (3.1B). By sorting
reads based on the presence of SNPs that vary between C57 and spretus genomes (Methods),
we identified sequencing reads originating from Xa and Xi for both expression and methylation
data. As expected, Igsec2 and Kantr were monoallelically expressed from Xa, whereas Kdm5c
escaped XCI and showed diallelic expression (Fig. 3.1B, mRNA tracks). These expression
patterns correlated with a differentially methylated region (DMR) at the promoter of Kantr that is
hypermethylated at CG sites (repressed) on Xi (Fig. 3.1B, box 1). In contrast, we observed CG
hypomethylation on both Xi and Xa in the CpG island at the promoter of the escape gene Kdm5c,
as expected [29] (Fig. 3.1B, box 2).

Gene body mCH has been associated with transcriptional repression in mammalian brain
cell types [9, 4, 5]. Consistent with this repressive association, mCH on Xa is highest in the
intergenic region upstream of Igsec2 and relatively lower in gene bodies of expressed genes
Igsec2, Kdm5c, and Kantr. This pattern is similar to the distribution of mCH on the male X
(r =0.94). In contrast, mCH on Xi presents an opposite (positive) correlation with transcription:

Xi 1s remarkably void of mCH except in the gene body of the escape gene, Kdm5c, where mCH
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is enriched (3.09%) and more abundant than on Xa (0.26%; p = 0.001).

Allele-specific mCH is also evident within the X-inactivation center (XIC), a 10- to 20-Mb
region that controls the establishment and maintenance of XCI [98, 104]. As expected, Xist, the
long noncoding RNA (IncRNA) that triggers inactivation in cis, is monoallelically expressed
from Xi; the escape gene, Ftx, is diallelically expressed; and Chicl is monoallelically expressed
from Xa (Fig. 3.1C). Promoter mCG is consistent with this pattern of expression: Chicl is
hypomethylated on Xa, Xist is hypomethylated on Xi, and Ftx is hypomethylated on both Xa and
Xi (no DMR) (Fig. 3.1C, boxes 1-3). Gene body mCH is relatively high throughout the XIC on
Xa, particularly in bodies of unexpressed genes (Cdx4, Tsx, Tsix, and Xist), and lowest in bodies
of expressed genes (Chicl and Ftx). Once again, this pattern is very similar to male X (r = 0.96).
By contrast, mCH on Xi is associated with transcriptional activity. It is enriched throughout a
region upstream of Xist that includes the escape genes Jpx and Frx and, to a lesser extent, within
Xist itself.

At the XIC, allele-specific regulation of expression on the X chromosome is maintained, in
part, through physical segregation of epigenetically defined chromatin regions called topologically
associated domains (TADs) [105]. We found that the start of the mCH-enriched region upstream
of Xist aligns precisely with the boundary between two TADs identified by ~ 20-kb-resolution
chromosome conformation capture [105]. We further examined this correspondence throughout
the ~ 5-Mb region surrounding Xist and found an additional block of enriched mCH on Xi
(Appendix B.1). This region coincides with the boundaries of a TAD comprising two escape
genes, Pbdcl and 5530601 HO4Rik [105] (Appendix B.1). This correspondence suggests that
mCH accumulates within topologically defined domains of accessible chromatin (i.e., active
TADs) on Xi.

These results demonstrate mCH at escape genes, and the XIC is positively correlated with
expression from Xi, in contrast to the repressive association observed for both mCG and mCH on

Xa and autosomes.
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3.2.3 Differential mCH and mCG Between Xa and Xi Predict Escape Genes

To examine the relationship between escape genes and DNA methylation more broadly,
we profiled our MethylC-Sequencing (Seq) and RNA-Seq data across all X-linked genes. The
distribution of RNA, mCG, and mCH was dramatically different on Xi and Xa (Appendix B.2).
First, we identified escape genes in mouse frontal cortex using a binomial model that detects
genes with a significant proportion of mRNA-Seq reads from Xi (Methods). In all, we found
11 genes that escaped inactivation (Fig. 3.2A and Table 1). Nine of these escape genes (Xist,
Ddx3x, Kdm6a, Kdm5c, Eif2s3x, 5530601 HO4Rik, Ftx, Slc16a2, and Gpmo6b) are consistent
with a previous survey in whole mouse brain samples [99]. In addition, we detected diallelic
expression of Tceal5 and Gpr34, suggesting they may be novel escape genes in frontal cortex.

We then compared gene body mCH between Xa and Xi for all X-linked genes. On Xa, the
median mCH level of gene bodies was 0.88% (range: 0.00-4.53%), and the pattern was similar
to the male X (r = 0.93; Appendix B.3). In contrast, mCH was statistically undetectable on Xi
within the majority of gene bodies covered by our data (980 genes; Fig. 3.2B). In all, we identified
13 genes with statistically significant gene body mCH on Xi (Table 1). These genes included
seven known escape genes (Ddx3x, Xist, Eif2s3x, Kdm5c, Kdm6a, 5530601 HO4Rik, and Ftx),
representing a statistically significant overlap (p < 10~!°, hypergeometric test). In addition, three
genes with gene body mCH on Xi had significant expression from Xi in one of our two replicates
and have been previously reported as escape genes in whole brain (Firre and Pbdcl) [99] or eye
(Tmem?29) [106]. One other gene, Jpx, with mCH enrichment is located within the XIC and plays
a direct role in XCI but is not significantly expressed from Xi. Finally, we identified significant
mCH at the IncRNA 4933407K13Rik, which is expressed from the macrosatellite locus Dxz4, a
region that binds CTCF on Xi and plays a role in organizing the topology of Xi [107, 108].

In contrast to the enrichment of mCH on Xi at gene bodies of escape genes, we found
strong depletion of mCG at the promoters of many of these genes (Fig. 3.2C) as previously

observed for human escape genes in blood [29]. Whereas the promoters of most X-linked
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genes are marked by increased mCG on Xi, seven of the escape genes showed significant
hypomethylation on Xi. Pbdcl was also significantly hypomethylated on Xi, consistent with
being an escape gene as previously reported [99]. Xist was the only escape gene hypermethylated
at its promoter on Xa, which is consistent with its silencing on Xa.

Integrating our findings for mCG, mCH, and gene expression (Fig. 3.2D), we observe the
following pattern: Seven escape genes (Ddx3x, Xist, Eif2s3x, Kdm5c, Kdmb6a, 5530601 HO4Rik,
and Ftx), and possibly Pbdcl, have distinct methylation patterns with hypomethylated CG promot-
ers and hypermethylated CH gene bodies, and four other escape genes (Slc16a2, Gpm6b, Gpr34,
and Tceal5) have Xi methylation patterns similar to nonescape genes with CG hypermethylation
and CH hypomethylation. Considering prior surveys of escape from XCI [99], we observe that all
CG-hypomethylated and CH-hypermethylated genes escape XCI across multiple tissues. Gpm6b
was reported to escape XCI only in brain and lacks the unique DNA methylation signatures we
observed at genes that ubiquitously escape XCI. Comparisons of DNA methylation and expression
levels show that escape genes form a highly distinctive compartment in which a relative increase

in mCH on Xi compared with Xa marks genes that escape X inactivation (Fig. 3.2D).

3.2.4 Analyses of Intergenic Regions

To include intergenic regions in our analysis, we next examined DNA methylation in
2.5-kb bins across the X chromosome. Fig. 3.3A shows the location of escape genes on the
X chromosome (triangles), of significantly methylated bins on Xi (blue ticks), and of genes
identified as CH-hypermethylated (stars), highlighting the chromosome-wide distribution of these
genes. On Xi, mCH is absent throughout most intergenic regions, punctuated by 12 significant
peaks of enriched mCH corresponding to the previously identified CH-methylated genes (Fig.
3.3B). In contrast, mCG is high throughout Xi, with a few exceptions corresponding to escape
genes and the XIC (Fig. 3.3D). To quantify these patterns, we used MethylSeekR [109] to call

CG unmethylated regions (CG-UMRs), which typically correspond to promoters of expressed
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genes. We identified 437 significant CG-UMRs on Xa but only 37 on Xi [false discovery rate
(FDR) < 0.05, coverage by five or more reads in < 30% of CG sites; Dataset S1]. Thirty-two
CG-UMRs on Xi correspond to genes located in the XIC and to escape genes.

We noted that 14% of CG-UMRs on Xi fall within or proximal to Bcor, which does not
appear to escape in brain based on our RNA-Seq analyses but was listed as an escape gene in
a cell line in a previous study [99] (Fig. 3.3D, arrowhead and Appendix B.4). Bcor, a gene in
which mutations can lead to oculofaciocardiodental (OFCD) syndrome, was previously shown to
be half as methylated in females (Xa + Xi) as in males in human blood and buccal tissue [110].
This pattern runs counter to the pattern at other nonescape genes, where males show lower mCG
compared with females, suggesting a unique pattern at Bcor. Our results reveal that Bcor contains
multiple CG clusters hypomethylated on Xi on the paternal allele. This finding is consistent
with the previous finding in humans, suggesting a conserved epigenomic pattern. Wamstad et al.
[111] suggested that Bcor is unlikely to be a maternally expressed imprinted gene because the
observed mother-to-daughter transmission of Bcor mutations in OFCD is not lethal. Here, we
further reason that Bcor is unlikely to be imprinted to express only the paternal allele because we
should not observe a phenotype in mother-to-daughter transmission if the maternal allele is not
expressed. Therefore, the allele-specific methylation observed at Bcor is most likely specific to

the activation state of the chromosome rather than the parental origin.

3.2.5 Allele-Specific Methylation and Imprinting

In addition to its role in XCI, allele-specific DNA methylation plays a key role in regulating
autosomal imprinted regions. A previous study profiled DNA methylation using MethylC-Seq in
brain samples from male Cast/129 F1 hybrid mice and identified imprinted autosomal methylation
in both CG and CH contexts [9]. The C57/ spretus F1 female mice in our study have twice as
many SNPs (41.7 million compared with around 20 million for Cast/129 hybrids). Although our

Xist mutant mouse line could not be used to produce a reciprocal cross (i.e., maternal spretus
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x paternal C57) to distinguish species-of-origin vs. parent-of-origin effects, we nevertheless
analyzed maternal vs. paternal differences in methylation at known imprinted regions to confirm
and extend prior observations using a different genetic background. We compared maternal and
paternal mCG levels at promoters of all autosomal genes (Fig. 3.4A). As expected, most genes
have equal mCG levels on the two alleles. We then identified genes with allelic differences in
mCQG (allelel > 75% and allele2 < 25%) and a significant DMR in the promoter. Our results
recapitulate the imprinted loci previously identified [9]. In addition, we found maternal mCG at
the imprinted Nnat promoter, a gene Xie et al. [9] could not examine due to a lack of SNPs in
their cross.

We next sought to connect allelic differences in methylation with expression. We found
77 autosomal genes that were differentially expressed between alleles in both replicates (FDR
< 0.05 and log2-fold change > 1.5). Differential expression of these genes was significantly
correlated with allelic differences in both promoter mCG (r = —0.558, p < le — 6) and gene
body mCH (r = —0.312, p = 0.0027) (Fig. 3.4B). Focusing on DMRs previously reported to be
imprinted in a parent-of-origin-dependent manner using reciprocal crosses [9], we found largely
consistent mCG differences. Several imprinted DMRs identified in the Cast/129 F1 hybrids
(Cascl intragenic, 6330408a02Rik 3° end, FR149454 promoter, FRO85584 promoter, Myol0
intragenic, Vwde promoter, and Pvt/ promoter) fail to show allele-specific CG methylation in our
data, suggesting they might not be conserved across mouse species (Fig. 3.4C and Dataset S2).

Whereas CG DMRs were localized to discrete regions (900-bp median size), we found
substantial allele-specific differences in autosomal mCH that extended over much larger domains
encompassing one or more gene bodies, as observed previously [9]. Surprisingly, we found
that allele-specific mCH could exhibit either the same asymmetry as allele-specific mCG or the
reverse asymmetry. For example, the imprinting control region for the Kcngl gene, located at
the promoter of the antisense transcript Kcnglotl, is a 2.5-kb DMR with allele-specific mCG on

the maternal allele. However, there is a much larger mCH DMR, spanning the entire Kcnglot!
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transcript (87.6 kb), that is also hypermethylated on the maternal allele (Fig. 4D). A reciprocal
example is the maternally imprinted locus on chromosome 12 containing Meg3, Rian, and Mirg,
where the paternal allele is marked by discrete allele-specific mCG and more diffuse mCH (Fig.
3.4E).

In contrast, we observed the reverse asymmetry (i.e., lower mCG on the paternal allele and
lower mCH on the maternal allele) at the ~ 3.6-MB region of chromosome 7 containing imprinted
Snrpn, Snurf, and Magel2 (Fig. 3.4F). Genetic variants in this region can cause Prader-Willi or
Angelman syndrome, depending on which allele is affected. This locus contains a large CH DMR
spanning ~ 3.6 MB that is hypomethylated on the maternal allele, whereas CG hypomethylation
is restricted to the paternal allele and occurs mainly at the promoters of imprinted genes within the
locus. Another example of a reverse asymmetry between allele-specific mCG and mCH occurs
within the Nesp/Gnas/Nespas locus (Appendix B.5). Together, these patterns of allele-specific
autosomal mCG and mCH suggest a complex relationship between the two types of methylation,
with both positive and negative correlations.

As with X inactivation, our analysis of methylation at imprinted autosomal loci reveals that
mCG and mCH have contrasting allele-specific distributions indicating at least partly independent

roles in gene regulation.

3.3 Discussion

Allele-specific regulation of domains of active and inactive chromatin is critical for
healthy brain development in mammals, yet the landscape of DNA methylation within these
domains has largely been studied without allele-specific resolution. Using MethylC-Seq and
RNA-Seq in the frontal cortex of female transgenic mice with deterministic XCI, we obtained
allele-specific, base-resolution DNA methylation and transcription profiles. In all, we identified

11 genes escaping XCI. Methylation profiling showed that the Xi chromosome was largely devoid
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of CH methylation, whereas most gene promoters showed CG hypermethylation. Seven escape
genes (plus Pbdcl, a previously reported escape gene that escaped in one of our replicates)
showed a pattern of CH hypermethylation in gene bodies and CG hypomethylation at promoters
on Xi. Findings of hypo-mCG at promoters of escape genes are consistent with previous studies
that analyzed CG methylation across multiple tissues in humans [29, 112]. However, mCH had
not been previously examined on Xi and Xa. Although the only genes with hypo-mCG on Xi were
also CH-hypermethylated, there were three additional genes with only hyper-mCH, suggesting
distinct roles for the DNA methylation in these contexts.

mCH accumulates during postnatal development of frontal cortical neurons, reaching
high levels in the adult mouse and human brain [9, 4]. Indeed, the abundance of mCH is
comparable to the abundance of mCG in adult neurons, and mCH is found in both excitatory and
inhibitory neuron types [5]. Our findings show that mCH is a high-fidelity epigenomic marker of
allele-specific active chromatin domains, such as genes escaping X inactivation, which can be
used for functional genomic annotation. However, the functions of mCH, if any, are unknown
[113]. Promoter mCG and gene body mCH are associated with transcriptional repression and are
generally correlated. Our findings in genomic regions affected by XCI and parental imprinting
demonstrate a partial dissociation between the CG and CH contexts of DNA methylation.

First, we identified hypo-mCG and hyper-mCH at a subset of escape genes. Most of
these escape genes have been reported to escape across multiple tissues, so it is unclear if the
presence of mCH, which is specific to the brain, is necessary for escaping inactivation or if it is a
consequence of chromatin accessibility. Second, we identified three genes with hyper-mCH on Xi
that lacked allele-specific CG hypomethylation. Because these cells are postmitotic and there is no
known active mechanism for removing mCH, the presence of mCH at these regions may serve as a
marker of previously active chromatin. Tissue type-specific or cell type-specific differential mCG
in adult cells has been shown to reflect early developmental processes at so-called vestigial DMRs

[5, 114]. Third, we examined numerous imprinted genes and identified a complex and variable
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relationship between mCG and mCH. Although CG and CH sites are often hypomethylated on
the same allele, as in the case of Kcgnlotl and Meg3, we also identified a striking pattern in the
Prader-Willi/Angelmann syndrome-associated region of chromosome 7, where allele-specific
mCG and mCH were oppositely regulated.

A previous study that identified escape genes in whole brain reported 17 escape genes [99],
and nine of the escape genes we found in frontal cortex overlap with these results. Our results
demonstrate the presence of a DNA methylation signature at the large majority of escape genes.
The absence of a methylation signature at other escape genes suggests there may be more than
one pathway to escape from XCI. For example, Gpm6b has been previously reported to escape
inactivation only in the brain. The characteristic escape gene hypo-mCG, which presumably
occurs early in development in a precursor cell type, would be inconsistent with its escape only
in brain. Therefore, there may exist a brain-specific mechanism to support the later escape of
Gpmo6b. In addition to tissue specificity, our results may suggest temporal dynamics to escape
genes in the brain, as has been previously reported in mouse embryo [115]. If mCH on Xi indeed
marks active chromatin, then the nonescape genes with mCH may escape earlier in development
and be downregulated in adults. Alternatively, it is possible these genes are expressed from Xi
continuously over brain development at levels too low to achieve significance in our analysis.

Finally, our findings also contribute to the evidence of sex differences in the epigenome
[116, 117]. Sex chromosomes and XCI are genetic drivers of sex differences that, together with
the effect of sex hormones, result in sexually dimorphic brain structure and cognition. Sex-specific
DNA methylation can help us to understand how genes are regulated differentially between sexes
and to develop efficacious treatments for disease in both sexes, an important objective set forth by
the NIH [118]. To this point, our analysis shows that DNA methylation on female Xa and male
X is largely similar in both CG and CH contexts (Appendix B.3). The differences we identified
here are specific to Xi and support a role for escape genes in the development of sex differences,

particularly in humans, where escape genes are far more numerous than in mice [119]. The
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results may also shed light on the nonverbal learning disabilities and attention deficit hyperactivity
disorder-like symptoms exhibited in Turner syndrome (45,X) females missing the Xi [28]. If
differences between typical females and those females with Turner syndrome are restricted to
escape genes and the nonescape genes with hyper-mCH, then these genes likely play a critical

role in healthy female brain development.

3.4 Methods

3.4.1 Mouse Model/Animals

Xist is an IncRNA that initiates inactivation in cis. Previous work has shown that deletion
of a proximal A repeat inhibits Xist transcription and prevents inactivation [30]. To profile
allele-specific DNA methylation and transcription in a deterministic model of XCI, we used
14-wk-old female F1 progeny of C57BL/6 Xist mutant female mice and M. spretus wild-type
male mice (The Jackson Laboratories) [99]. Due to the deletion, the maternal X chromosome
(C57) failed to inactivate and was the Xa in all cells, whereas the paternal chromosome (spretus)
was ubiquitously inactivated (Xi). Furthermore, the genetic variability between the two mouse
species allowed us to assign sequencing reads to the parent of origin. We collected samples from
four biological replicates at 14 wk of age. Animals were weaned in groups of three to five per
cage. Female F1 pups were genotyped at weaning to confirm the presence of the mutant allele.

Animals were anesthetized with CO2, followed by cervical dislocation. Brains were
removed and rinsed in cold PBS. For dissection, whole brains were placed in cold DMEM
supplemented with 10% (vol/vol) FBS. The prefrontal cortex (PFC) was obtained by first removing
the cerebellum, followed by slicing coronally 1 mm at the bregma and carefully isolating the
frontal cortical tissue under a dissecting microscope. PFC samples were rapidly frozen on dry
ice until processing. DNA and RNA were isolated from pooled PFC samples obtained from two

individuals from separate litters. All protocols were approved by the University of Washington’s
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Institutional Animal Care and Use Committee.

3.4.2 MethylC-Seq

Libraries were sequenced as single-end reads and prepared using the following procedure:
Genomic DNA was extracted from ground, frozen tissue using the DNeasy Blood and Tissue Kit
(Qiagen, Valencia, CA). Two micrograms of genomic DNA was spiked with 10 ng of unmethylated
cl857Sam7 Lambda DNA (Promega). The DNA was fragmented with a Covaris S2 instrument to
150-200 bp, followed by end repair and addition of a 3’ A base. Cytosine-methylated adapters
provided by Illumina were religated to the sonicated DNA at 16 °C for 16 h with T4 DNA
ligase (New England Biolabs). Adapter-ligated DNA was isolated by two rounds of purification
with AMPure X P beads (Beckman Coulter Genomics). Adapter-ligated DNA (<450 ng) was
subjected to sodium bisulfite conversion using the Methyl Code Kit (Life Technologies) as per
the manufacturer’s instructions. The bisulfite-converted, adapter-ligated DNA molecules were
enriched by four cycles of PCR with the following reaction composition: 25 ul. of Kapa Hi Fi
Hotstart Uracil+Readymix (Kapa Biosystems) and 5 uLL of TruSeq PCR Primer Mix (Illumina)
(50 uL final). The thermocycling parameters were 95 °C for 2 min; 98 °C for 30 s; and then four
cycles of 98 °C for 15 s, 60 °C for 30 s, and 72 °C for 4 min, ending with one 72 °C 10-min step.
The reaction products were purified using AMPure X P beads. Two separate PCR reactions were
performed on subsets of the adapter-ligated, bisulfite-converted DNA, yielding two independent
libraries from the same biological sample for subsequent sequencing using a HiSeq 2500 system

(Illumina).

3.4.3 mRNA-Seq Library Preparation

Ribosomal RNA was removed from samples using a Ribo-Zero rRNA Removal Kit

(Illumina). mRNA-Seq libraries were then generated using the TruSeq Stranded RNA LT Kit
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(Illumina) according to the manufacturer’s instructions. Samples were sequenced using the HiSeq

2500 system.

3.4.4 Reference Genomes

The mm10 reference genome is the reference for the C57BL/6]J strain. For M. spretus, we
created a pseudo-reference genome by updating the mm10 reference with known C57-spretus
SNPs as reported by the Sanger Institute [120] (www.sanger.ac.uk/science/data/mouse-genomes-
project). We only retained high-confidence SNPs that passed all quality filters (denoted in the
file as FI = 1), resulting in ~ 1.95 million SNPs on chromosome X. Before allele sorting, our
reads covered 89.1% of the genome. We were able to assign 68.6% of reads to one of the alleles,
yielding broad and deep coverage for C57 (78.2% covered, 11.93 average read depth) and spretus
alleles (70.1% covered, 9.79 average read depth). High coverage (at least five reads) was achieved

at 67.0% of the genome in C57 and at 51.6% of the genome in spretus.

3.4.5 Mapping of MethylC-Seq Data

Sequencing reads were mapped separately to both the C57 and spretus reference genomes
using Methylpy [4]. Unmethylated phage lambda DNA was spiked into each sequencing run,
allowing us to estimate the bisulfite nonconversion rate directly (0.36% and 0.40% for the two
replicates, respectively). Reads that mapped to one or both of the reference genomes were then
pooled and assigned to the parent of origin, corresponding to Xa (C57) and Xi (spretus). Only
reads containing one or more SNPs that matched 100% to one parental reference or the other were
retained and used in the analysis. We noted that a small proportion (~2.5%) of CH sites were
covered by reads that contained sequence mismatches potentially consistent with a CG position.

To prevent contamination from these ambiguous sites, we excluded them from our analysis.
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3.4.6 Mapping of mRNA-Seq Data

The mRNA-Seq data were mapped as previously reported [99]. The mRNA-Seq reads
were mapped separately to both the C57 and spretus reference genomes using TopHat2 [121]
with default parameters. The transcriptome included only exons as defined in the GENCODE
release M7 (level 3) comprehensive gene annotation file (www.gencodegenes.org). High-quality
reads (mapping quality score MAPQ > 30) that mapped to one or both of the reference genomes
were then pooled and assigned to the parent of origin, corresponding to Xa (C57) and Xi (spretus).
Only reads containing SNPs that matched 100% to one parental reference or the other were

retained for analysis.

3.4.7 Data Analysis

Browser representations were created using Anno-J (www. annoj.org) [10]. Pearson
correlations were used except where stated otherwise. P values were < 0.01 unless otherwise

stated.

3.4.8 MethylC-Seq Analysis

Methylation was analyzed separately for the CG and CH (i.e., CA, CC, CT) contexts. We
examined mCG at promoters and mCH in gene bodies, both of which correlate with transcriptional
repression in the brain [9, 4, 5]. Gene transcription start and end sites were taken from GENCODE
release M7 (level 3), and promoters were defined as 4+-1,000 bases from the transcription start
site. Methylation was quantified as the number of methylated cytosine base calls (m) divided by
total cytosine base calls (c¢), and was corrected for the nonconversion rate (NCR; calibrated using

spike-in lambda DNA) using the maximum likelihood formula:

m/c—NCR]

C= [
=8I NCR
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glx] = max[x,0]

Importantly, MethylC-Seq cannot distinguish between methylcytosine and hydroxymethyl-
cytosine, which is present at significant levels in brain in the CG context [4, 56]. However, prior
studies using Tet-assisted bisulfite sequencing have shown that there is no detectable hydrox-
ymethylation at non-CG sites [4, 60]. Therefore, although differences in CG methylation could
be driven by changes in one or more types of methylation, our analyses regarding CH methylation

are not affected by this ambiguity.

3.49 mRNA-Seq Analysis

Identification of escape genes using mRNA-Seq adhered to previously published methods
[99]. First, reads that mapped to C57, spretus, or both reference genomes were aggregated and
used to quantify diploid expression in fragments per kilobase of transcript per million mapped
reads (FPKM) with Cufflinks [122]. Next, reads were assigned to the Xa or Xi only if all SNPs
within a read corresponded to either the C57 (Xa) or spretus (Xi) reference. Reads that did
not meet these criteria or that contained no SNPs were discarded. We then quantified haploid
expression as allele-specific reads per 10 million mapped reads (SRPM). Finally, a binomial
model was used to compute a confidence interval for the expression of each gene on Xi [99].
A gene was said to escape inactivation significantly if diploid expression FPKMs were >1,
Xi-SRPM was >1, and the lower bound of the 99% confidence interval from the binomial model

was > 0.

3.4.10 Definition of CH-Hypermethylated and CG-Hypomethylated Genes

We modeled the methylation of genes on Xi using a mixture distribution that we fit using an
iterative procedure. We first fit a beta-binomial distribution for the apparent CH methylation levels

of all gene bodies on the inactive Xi by maximum likelihood. We then used this beta-binomial
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distribution to compute a p value for each gene (i.e., the likelihood of observing that gene’s mCH
level, given the null distribution) and marked any genes with significantly greater mCH (FDR
< 0.05 using the Benjamini- Yekutieli correction) as “hyper-mCH” genes. We then repeated our
fitting procedure using only genes that were not marked as hyper-mCH. This procedure was
repeated until it converged on a set of hyper-mCH genes. Only genes with significant mCH in
both replicates were reported in our results. The same analysis was applied on CG methylation in

promoters to identify significantly CG hypomethylated genes on Xi.

3.4.11 Additional Datasets

MethylC-Seq data for 6-wk-old male mouse frontal cortex and fetal brain tissue (em-
bryonic day 13.5, mixed male and female) were from a previously published study [4]. These

datasets were mapped to mm10 and processed using the same methods described above.

3.4.12 Data Access and Browser

Data are accessible in the Gene Expression Omnibus (GEO) database (accession no.

GSES83993). Data are also displayed via a web-based browser at brainome.ucsd.edu/mm_xist_hybrid.
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Table 3.1: Escape genes and CH-hypermethylated genes

Gene body, %

Gene

promoter, %

Allele-specific RNA

mCH mCG abundance, SRPM
Diallelic RNA
Gene Xa Xi Xa Xi abundance, FPKM Xa Xi
Escape genes with mCH on Xi
5530601HO04Rik 0.19 2.40 3.7 2.1 6.49 36.9 12.3
Ddx3x 0.17 1.89 0.2 6.3 44.8 84.9 44.5
Eif2s3x 0.10 1.67 3.4 14 22,5 30.5 244
Ftx 0.42 2.47 11.6 10.1 6.05 67.0 7.65
Kdm5c 0.28 3.11 1.2 3.0 7.40 57.9 25.0
Kdme6a 0.39 2.22 0.4 0.02 5.43 227 8.25
Xist 1.79 0.79* 86.0 0.5 24.9 5.74 546
Firre 0.94 1.16 7.8 73.6 6.25 64.2 1.91*
Pbdc1 0.52 3.27 3.7 2.1 4.40 17.2 4.02*
Tmem29 0.43 1.52 6.1 27.8 10.2 28.8 3.52*
Escape genes without mCH on Xi
Gpméb 0.57 0.04 13.7 79.1 121 252 27.2
Gpr34 1.15 0.04 65.9 59.8 3.62 13.9 4.01
Slc16a2 1.15 0.16 0.1 743 5.31 341 3.91
Tceal5 0.00 0.12 33.2 67.9 16.7 235 9.93
Other CH-hypermethylated genes
Gm38020" 0.07 3.85 93.5 934 2.76 43.7 4.99
Jpx* 0.77 3.46 6.8 26.5 1.21 7.51 0.815
4933407K13Rik* 0.25 1.05 5.9 51.2 0.565 8.40 0.10

Bold italic values indicate significant gene body mCH on Xi, significant CG promoter hypomethylation on Xi,

or Xi RNA abundance (FDR < 0.05 in both replicates).
*Genes significant in one replicate only.

"Occurs within the XIC. Gm38020 overlaps the escape gene Ftx, and Jpx has previously been reported to

escape (42).

*Located at the Dxz4 macrosatellite, which is involved in Xi chromosome topology.
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Figure 3.1: Ultrasparse mCH on Xi correlates with escape domains. (A) Allele-specific mCG
and mCH levels on autosomes and chromosome X. Browser view of methylation and expression
for the Kdm5c locus (B) and the XIC (C). Ticks show the methylation level at individual cytosine
positions (CG, green; CH, blue) on the forward (upward ticks) and reverse (downward ticks)
strands. Combined tracks show both alleles, whereas the Xa and Xi tracks include only reads
sorted using SNPs between C57 and spretus. Monoallelically expressed genes (Igsec2 and
Chicl) and intergenic regions harbor mCH on Xa only, whereas diallelically expressed escape
genes (Kdm5c) and the Xi-expressed noncoding RNA Xist contain dense mCH on Xi. Male X
data are from 6-wk-old frontal cortex ??. chrX, chromosome X; R1, replicate 1; R2, replicate 2.
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the density of genes. Genes with a significant number of reads originating from Xi in both
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genes.
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Figure 3.4: Imprinted genes marked by allele-specific mCG and mCH. (A) Allelic differences
in promoter mCG in autosomal genes recapitulate previously identified imprinted genes [9],
indicated by red circles, including maternally imprinted Peg/3 and paternally imprinted Gnas,
Meg3, and Cdknlc, and suggest that Nnat has allele-specific methylation or is imprinted. (B)
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Chapter 4

Single-cell methylomes identify neuronal
subtypes and regulatory elements in

mammalian cortex

4.1 Article

Mammalian neuron types are identified by their structure, electrophysiology, and con-
nectivity [123]. The difficulty of scaling traditional cellular and molecular assays to whole
neuronal populations has prevented comprehensive analysis of brain cell types. Sequencing
mRNA transcripts from single cells or nuclei has identified cell types with unique transcriptional
profiles in the mouse brain [36, 37] and human brain [39]. However, these methods are restricted
to RNA signatures, which are influenced by the environment. Epigenomic marks, such as DNA
methylation (mC), are cell type-specific and developmentally regulated, yet stable across individ-
uals and over the life span [5, 124, 4]. We theorized that epigenomic profiles using single-cell
DNA methylomes could enable the identification of neuron subtypes in the mammalian brain.

During postnatal synaptogenesis, neurons accumulate substantial DNA methylation at
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non-CG sites (MCH) and reconfigure patterns of CG methylation (mCG) [4]. Patterns of mCG
and mCH at gene bodies, promoters, and enhancers are specific to neuronal types [5, 124, 4, 125].
Gene body mCH is more predictive of gene expression than mCG or chromatin accessibility [82].
Because mCH is modulated over large domains, single-neuron methylomes with sparse coverage
can be used to accurately estimate mCH levels for more than 90% of the genome by using
coarse-grained bins (100 kb) (Appendix C.1). Whereas single-cell RNA sequencing mainly yields
information about highly expressed transcripts, single-neuron methylome sequencing assays any
gene or nongene region long enough to have sufficient coverage.

We developed a protocol for single-nucleus methylcytosine sequencing (snmC-seq) and
applied it to neurons from young adult mouse (age 8 weeks) and human (age 25 years) frontal
cortex (FC) (Fig. 4.1 1A). snmC-seq provides a high rate of read mapping relative to published
protocols [126, 127, 81] and allows multiplex reactions for large-scale cell type classification
(Appendix C.2). Like other bisulfite sequencing techniques [128], snmC-seq measures the sum of
5-methyl- and 5-hydroxymethylcytosines. Single neuronal nuclei labeled with antibody to NeuN
were isolated by fluorescence-activated cell sorting (FACS) from human FC and from dissected
superficial, middle, and deep layers of mouse FC. We generated methylomes from 3377 mouse
neurons with an average of 1.4 million stringently filtered reads, covering 4.7% of the mouse
genome per cell (Fig. 4.1, B and C, and table S1). We also generated methylomes from 2784
human neurons with an average of 1.8 million stringently filtered reads, covering 5.7% of the
human genome per cell (Fig. 4.1, B and C, and table S2).

We calculated the mCH level for each neuron in nonoverlapping 100-kb bins across the
genome, followed by dimensionality reduction and visualization using t-distributed stochastic
neighbor embedding (t-SNE [129]). The two-dimensional tSNE representation was largely invari-
ant over a wide range of experimental and analysis parameters (Appendix C.3). A substantially
similar tSNE representation was obtained using CG methylation levels in 100-kb bins, which

suggests that snmC-seq could be effective for cell type classification of nonbrain tissues without
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high levels of mCH (Appendix C.3F).

The mammalian cortex arises from a conserved developmental program that adds excita-
tory neuron classes in an inside-out fashion, progressing from deep layers (L5, L6) to middle (L4)
and superficial layers (L 2/3) [123]. Inhibitory interneurons arise from distinct progenitors in the
ganglionic eminences and migrate transversely to their cortical locations [130]. We used mCH
patterns to identify a conservative and unbiased clustering of nuclei for each species. Cluster
robustness was validated by shuffling, downsampling, and comparison to density-based clustering
(figs. S3 and S4) [131]. In addition, clustering was not significantly associated with experimental
factors (e.g., batches; false discovery rate > 0.1, %2 test; Appendix C.5).

We applied identical clustering parameters to mouse and human cortical neuron mCH
data and identified 16 mouse and 21 human neuron clusters (Fig. 4.2, A to D). Assuming an
inverse relationship between gene body mCH (average mCH across the annotated genic region)
and gene expression [4], we annotated each cluster on the basis of depletion of mCH at known
cortical glutamatergic or GABAergic neuron markers (e.g., Satb2, Gadl, Slc6al), cortical layer
markers (e.g., Cux2, Rorb, Deptor, Tle4), or inhibitory neuron subtype markers (e.g., Pvalb,
Lhx6, Adarb2) [123, 130, 132] (Fig. 4.2, E and F, and figs. S6 and S7). For most clusters, mCH
depletion at multiple marker genes (figs. S6 and S7) allowed us to assign cluster labels indicating
the putative cell type. For example, we found a cluster of mouse neurons with ultralow mCH at
Rorb (Fig. 4.2E and Appendix C.16), a known marker of L4 and L5a excitatory pyramidal cells
[132]. Combining this information with markers such as Deptor (Appendix C.6), which marks
L5 but not L4 neurons, we labeled the cluster by species and layer (e.g., mL4 for mouse L4).
Similarly, we used classical markers for inhibitory neurons such as Pvalb to label corresponding
clusters (e.g., mPv for putative mouse Pvalb+ fast-spiking interneurons) [130]. We confirmed the
accuracy of these classifications by comparison to layer-dissected cortical neurons (Appendix C.8,
A and B) and coclustering with high-coverage methylC-seq data from purified populations of PV+

and VIP+ [5], as well as SST+ inhibitory neurons (Appendix C.8C). Aggregated single- neuron
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methylomes showed consistent mCH and mCG profiles relative to bulk methylomes of matching
cell populations (Appendix C.8, D and E, and Appendix C.15F). Neuronal cluster classification for
each of the major cell subtypes in mouse and human cortex based on single-nuclei methylomes
(Fig. 4.2G and Appendix C.9, A and B) was in good agreement with annotations based on
single-cell RNA sequencing [36, 37, 39]. Gene body mCH was anticorrelated with expression
levels for corresponding clusters (Appendix C.9, C to E), validating our mCH marker gene-based
annotation.

We found a greater diversity of excitatory neurons in deep layers than in superficial layers
for both mouse and human (Fig. 4.2). In both species, we identified one neuronal cluster for
cortical L2/3 (mL2/3, hL.2/3) and L4 (mL4, hLL4), whereas L5 and L6 contained seven clusters in
mouse (mL5, mL6, and mDL, where DL denotes deep-layer neurons) and 10 clusters in human
(hL5, hLL6, and hDL). Mouse L5 excitatory clusters (mL5-1, mL5-2) were hypomethylated at
Deptor and Bcl6, which mark cortical L5a and L5b, respectively (Appendix C.6) [133]. L6
excitatory clusters included subtypes with low mCH at the L6 excitatory neuron marker 7le4
[mL6-1, mL6-2; hL6-1, hL6-2, hL6-3 [123]]. Interestingly, several deep-layer neuron clusters
(mDL-2, hDL-1, hDL-2, hDL-3) were not hypomethylated at 7/e4. We identified marker genes
for each neuron type on the basis of cell type-specific mCH depletion (table S3). Although
many marker genes were either classically established [123, 132] or recently identified neuron
type markers (Appendix C.10, A and B) (2-4), we identified a number of markers with no prior
association to neuronal cell types (Appendix C.10, D and E, and table S3). mCH signature genes
were hypomethylated in homologous clusters in mouse and human, with a few notable exceptions.
For example, the mouse L5a marker Deptor showed no specificity for human L5 neurons (figs.
S6, S7, and S10, A and B).

Most clusters were associated with classical cell type markers, but the identity of some
clusters such as mDL-2 was less clear. We found that mDL-2 shares 24 marker genes with

mL6-2, whereas 93 marker genes distinguish these clusters (table S3). To validate the distinction
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between the two cell types, we selected a shared marker (Sulfl) and one unique to mL6-2
(Tle4) and performed double in situ RNA hybridization experiments in mouse FC (Appendix
C.11). The result confirmed the mCH-based prediction of a substantial proportion of L6 neurons
expressing Sulf1 but not Tle4; these neurons likely correspond to mDL-2 (Appendix C.11, A to
D). The proportion of L6 neurons expressing both Sulf1 and Tle4 likely represents a subset of
mL6-2 (Appendix C.11, A to D). Tle4-expressing neurons in somatosensory cortex project to
the thalamus, whereas Sulf1 is expressed by both corticothalamic and corticocortical projecting
neurons [133]; hence, the projection targets of neurons in cluster mDL-2 may be different from
those of neurons in clusters showing hypomethylation of 7le4 (e.g., mL6-2). We also observed
extensive overlap of in situ hybridization signals when we used probes for a classical inhibitory
neuron marker gene, Pvalb, and Adgra3, a predicted mCH signature of PV inhibitory neurons
(Appendix C.11, E to G), further validating the specificity of marker prediction using mCH.

We paired homologous mouse and human neuron clusters by correlating mCH levels at
homologous genes and found expanded neuronal diversity in human FC relative to mouse FC (Fig.
4.2H and Appendix C.12A) [134]. Multiple human neuron clusters showed homology to mouse
L5a excitatory neurons (mL5-1), L6a pyramidal neurons (mL6-2), or VIP, PV, and SST inhibitory
neurons (Fig. 4.1H). We found a unique gene-specific mCH pattern and superenhancer-like mCG
signatures in a potential human-specific inhibitory population (hPv-2; figs. S12B and S16J).

Although we detected substantial mCH in all human and mouse neurons, cell types varied
over a wide range in terms of their genome-wide mCH level (1.3 to 3.4% in mouse, 2.8 to 6.6%
in human) (Appendix C.13, A to F). The sequence context of mCH was similar across all neuron
types and consistent with previous reports (Appendix C.13, I and J) [5, 4]. Interestingly, global
and gene-specific mCH differences were found in PV and SST inhibitory neurons located in
different cortical layers (Appendix C.14). Genes with low mCH in superficial-layer PV+ neurons
are enriched in functional annotations including neurogenesis, axon guidance functions, and

synaptic component (Appendix C.14, F to H), suggesting layer-specific epigenetic regulation of
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synaptic functions in inhibitory neurons.

A key advantage of single-cell methylome analysis is the ability to obtain regulatory
information from the vast majority of the genome (>97% [134]) not directly assessed by RNA
sequencing. By pooling reads from all neurons in each cluster, we could find statistically
significant differentially methylated regions with low mCG in specific neuronal populations
(CG-DMRs), which are reliable markers for regulatory elements [5]. We found 575,524 mouse
(498,432 human) CG-DMRs with average size of 263.6 bp (282.8 bp), covering 5.8% (5.0%) of
the genome (Fig. 4.3A, Appendix C.15A, and tables S5 and S6). Most CG-DMRs (73.2% in
mouse, 68.6% in human) are located >10 kb from the nearest annotated transcription start site
(Appendix C.15, B to E). mPv and mVip CG-DMRs showed the strongest overlap with ATAC-seq
peaks and putative enhancers identified from purified PV+ and VIP+ populations, respectively
(Appendix C.15, G and H) [135]. Hierarchical clustering of mCG levels at CG-DMRs grouped
neuron types by cortical layer and inhibitory neuron subtypes (Appendix C.15, I and J). Thus,
neuron type classification is supported by the epigenomic state of regulatory sequences.

We inferred transcription factors (TFs) that play roles in neuron type specification by
identifying enriched TF-binding DNA sequence motifs in CG-DMRs (Fig. 4.3, B and C, and
Appendix C.15K). We identified known transcriptional regulators and observed that several TF-
binding motifs were enriched in human but depleted in mouse CG-DMRs in homologous clusters
(Fig. 4.3C). The binding motif of NUCLEAR FACTOR 1 (NF1) was enriched in CG-DMRs for
two human inhibitory neuron subtypes (hVip-2, hNdnf) but was depleted in homologous mouse
clusters (mVip, mNdnf-2), suggesting a specific involvement of NF1 in human inhibitory neuron
specification. Thus, although the TF regulatory circuits governing tissue types are conserved
between mouse and human [136], fine-grained distinctions between neuronal cell types may be
shaped by species-specific TF activity.

Superenhancers are clusters of regulatory elements, marked by large domains of mediator

binding and/or the enhancer histone mark H3K27ac, that control genes with cell type-specific
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roles [137]. Extended regions of depleted mCG (large CG-DMRs) are also reliable markers of
superenhancers (Appendix C.16, A to C) [103]. Therefore, we used our neuron type-specific
methylomes to predict superenhancers for each mouse and human neuron type (Appendix C.16,
D to I, and tables S7 and S8). For example, superenhancer activity was indicated by a large
CG-DMRs at Bcll1b (Ctip2) in a subset of deep-layer neurons (Appendix C.16, F and G) and
broad H3K27ac enrichment in mouse excitatory neurons (Appendix C.16F). Superenhancers
overlap with key regulatory genes in the associated cell type, such as ProxI in VIP+ and NDNF+
neurons (Appendix C.16, H and I).

Global mCH and mCG levels were correlated between homologous clusters across mouse
and human (Pearson r = 0.698 for mCH, r = 0.803 for mCG; P < 0.005), suggesting evolutionary
conservation of cell type-specific regulation of mC (Fig.4.4A and Appendix C.13, G and H).
Examining 12,157 orthologous gene pairs, we found stronger correlation of gene body mCH
between homologous clusters in mouse and human (median Spearman r = 0.236; Fig. 4.4, B
and C) than between different cell types within the same species (r = -0.050, mouse; r = -0.068,
human). For homologous clusters, we found shared and species-specific CG-DMRs based on
sequence conservation (liftover; Appendix C.17, A and B). Cross-species correlation of mCG
at CG-DMRs was significantly greater for inhibitory than for excitatory neurons (P < 0.001,
Wilcoxon rank sum test; Fig. 4.4D and Appendix C.17C). Greater sequence conservation at
inhibitory neuron CG-DMRs could partly explain the greater regulatory conservation (P < 0.001,
Wilcoxon rank sum test; Fig. 4.4E). Sequence conservation was observed only within 1 kb of
the center of inhibitory neuron CG-DMRs and did not extend to the flanking regions (Appendix
C.17G). These results support conservation of neuron type-specific DNA methylation, with
greater conservation of inhibitory than of excitatory neuron regulatory elements.

Single-cell methylomes contain rich information enabling high-throughput neuron type
classification, marker gene prediction, and identification of regulatory elements. Applying a uni-

form experimental and computational pipeline to mouse and human allowed unbiased comparison
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of neuronal epigenomic diversity in the two species. The expanded neuronal diversity in human,
revealed by DNA methylation patterns, is consistent with more complex human neurogenesis,
such as the presence of outer radial glia and the potential dorsal origin of certain interneuron
subtypes [130, 138, 139]. Further anatomical, physiological, and functional experiments are
needed to characterize the DNA methylation-based neuronal populations defined by our study.
Single-neuron epigenomic profiling allowed the identification of regulatory elements with neuron
type-specific activity outside of protein-coding regions of the genome. We expect that the single-
nucleus methylome approach can be applied to studies of disease, drug exposure, or cognitive
experience, thereby enabling examination of the role of cell type-specific epigenomic alterations

in neurological or neuropsychiatric disorders.
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Figure 4.1: High-throughput single-nucleus methylome sequencing (snmC-seq) of mouse
and human frontal cortex (FC) neurons. (A) Workflow of snmC-seq. (B and C) Number of
single-neuron methylomes (B) and distribution of genomic coverage per data set (C).
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Figure 4.2: Non-CG methylation (mCH) signatures identify distinct neuron populations in
mouse and human FC. (A and B) Hierarchical clustering of neuron types according to gene
body mCH level. (C and D) Two-dimensional visualization of single neuron clusters (tSNE).
Mouse and human homologous clusters are labeled with similar colors. (E and F) Gene body
mCH at Rorb for each single neuron (top) and the distribution for each cluster (bottom); hyper-
and hypomethylated clusters are highlighted in red and blue, respectively. (G) Comparison of
human neuron clusters defined by mCH with clusters from single-nucleus RNA sequencing
[39]. (H) Fraction of cells in each human cluster assigned to each mouse cluster based on mCH
correlation at orthologous genes. Mutual best matches are highlighted with black rectangles.
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Figure 4.4: Gene body mCH and CG-DMRs conserved between mouse and human. (A) Global
mCH and mCG levels are strongly conserved within homologous cell types between mouse
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CG-DMRs. (E) Sequence conservation at neuron type-specific DMRs.
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Chapter 5

Conclusions

In this dissertation, we examined the dynamics of DNA methylation in in mammalian
brain cells. A key aim was to further examine the role of the recently discovered CH methylation
in the brain. In the XCI study, we observed that mCH on Xi was primarily at genes escaping
XCI, whereas mCH was virtually absent from the remainder of Xi. These results suggest that
mCH marks active chromatin regions and that chromatin accessibility may be required for the
deposition of mCH. Our examination of methylation in the dorsal and ventral regions of the DG
identified a remarkable asymmetry between two structurally similar regions, with large regions of
hypomethylation in the dorsal relative to ventral DG. The large methylation and transcriptional
differences we identified suggest that methylation can alter anatomically similar regions and
could underpin known functional differences between these regions. Finally, our analysis of
single cell methylomes further support that mCH profiles are cell type specific and strongly
correlated with transcriptional results from scRNA-seq studies. Furthermore, we observed large
DNA methylation valleys at putative super-enhancers, supporting an association between mCH
and the establishment and maintenance of cell identify. Our studies are largely correlation and a
thorough examination of the functional consequences of mCH remains to be seen. As methylation

assays using CRISPR or related technologies emerge, DNA methylation could be manipulated in
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a systematic and targeted fashion and thereby clarify the true functional role of mCH.

The heterogeneity of tissues has long been a challenge for fully understanding molecular
mechanism of neurobiological phenomenon. The development of single cell assays, including
our snmC-seq and single cell RNA-seq assays, increase the resolution of our scientific lens and
allow us to isolate molecular mechanisms involved in development and disease. For example,
Williams syndrome emerges from the deletion of a region on chromosome 7 in humans that
impacts visual-spatial and social cognition, yet the role individual genes from this genomic
region play in the cognitive phenotype is poorly understood. Our data illuminates cell type
specific association of these genes that may hone in on the source of these cognitive changes. By
understand the role of these genes in Williams syndrome, we further understand the role of cell
types in typical cognition. Single cell methylomes could be used to address limitations in our
other two studies. In our examination of EE in DG, we found a small signature of methylation
differences between EE and SH that overlapped with binding sites of NeuroD1, an important
neurodevelopmental transcription factor. Given known differences in the underlying cell types
composition of SH and EE animals in DG, at least in part from neurogenesis, future studies
using single cell methylomes could identify the source of this effect and discriminate between
underlying changes in cell populations and actual changes in methylation. In additional, single
cell methylomes could identify which cell types within the DG underpin the dorsal and ventral
differences we observe. In the X-inactivation experiment, we used whole brain tissue and our
signal was thus largely dominated by excitatory neurons. Follow up single cell methylomes
could provide a neuron type-specific characterization of escape genes and imprinting that could
illuminate the role neuron types play in sex differences in cognition and imprinting disorders
such as Prader-Willi and Angelman syndromes.

Finally, in this dissertation we generated single cell methylomes in order to characterize
the neuronal heterogeneity in mouse and human. We found an expansion of deep layer cortical

neurons relative to superficial layers in both mouse and human. In humans we found an increased
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expansion of both excitatory and inhibitory neuron types relative to mouse. Although it is
premature to fully understand the significance of these differences, our study does provide
putative targets for the development of experimental models that can isolate and interrogate
the role of neuron types in the context of cognition. Key questions remain unanswered about
the architecture of cortex including the heterogeneity of cell of types across cortical regions,
the role of genetic variability plays in neuron types across individual, and the extent individual
experiences alter the molecular profile of neurons. Importantly, our snmC-seq provides an

experimental technique for addressing these questions.
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Figure A.1: Increased adult neurogenesis in dorsal and ventral DG following environmental
enrichment. (A) BrdU immunoreactive cells in coronal section of dorsal and ventral dentate
gyrus of mice. (B) Mean = SEM BrdU-positive cells in dorsal and ventral dentate gyrus of mice
(n =9-14 per group, F (1,44) = 13.33, p = 0.0007).

81



Dorsal DG Ventral DG

MRNA-Seq Present study Hippo-Seq
(TPM) ,, (Cembrowski et al., 2016)
A o B2
z 1=0.988 8 Tross
= o 2
Biological & 100 g |3
Replicates ) / H | "
k £
oor 1255 5 - ’
EE VDG - R2 > Ventral DG granule cells
I Dz n
C r=0.911 o | r=0638
100 H
8 ’ §
Dorsalvs. 2 100 . °
Ventral DG & 3 |l
oo1 125 5 k-
oot o 10 1o Soor 6 w0 w0
EE dDG Dorsal DG granule cells
Present study vs. Hippo-Seq . - B
mRNA expression fold-change = B
E¢ 4
8 1=0473 -
g 10 o o W] | =
8 3
5w ? X = -
g8 Ll & '
g . "4 121 2 4EEJDG SHADG 14121 2 ¢ EE VDG SHVDG
8 o MRNAFC ey MRNAFC e
001 0 10 1ot - s 3
EE/SH) 1eee T ok 2 EE/SH) wees T am:
P’*”"‘:‘““Y { ]Na'mahzed mANA abundance ( ) Normalized mRNA abundance
Prosent study
DG (DorsalNVentra)
G 8 T 1 J
Dentate gyrus mRNA-Seq e 1
. 9 g, 4000 — Excvs. VP + DE I dDG ony (114
N 5 — Excus. PV o[ ¢ oE oG oy s
O& y 3000 — Dorsal vs. Ventral DG g DE n both (39)
a~ Eé J H
— 5 2000 z 2 R
® EEdDG < \ G s N
® EEVDG 2 1000 8 15 |Tmemz2 .
O SHdDG 2 " 5
E o = Emnz i~
O SHWG|| o 3 T2 4 6 8 10 12 g B
Absolute value of log, fold-change 2 1 <TPal, Frelna!
(48% of total variance) between frontal cortex cell types or DG regions w2 211215 2 3
FC treatment (EE/SH) in dDG
K L M N
, oRegional FC (dorsal/ventral) , gDorsal treatment FC (EE/SH) , Ventral treatment FC (EE/SH)
r=0.831 JET r=0.700 i r=0.713 -
R . C £
2 10 . 1.0 » 1.0 . 35 60
£ e H
H v K 8 40
2 B v S
) 00 o =%
-0.4 0

0.0 15 0.0 15 0.0 15
RNA-seq RNA-seq RNA-seq

Methylation readers Comparison of DG RNA-Seq with
0O % P purified brain cell types (Zhang et al., 2014)

b= Dnmt1 Dnmt3a Dnmt3b Mbd1 Mbd2 Mecp2

& 6.5 75 0.2 5.0 17.0 - 14.0 5 B [—

§ 31% 33% 01 Z.S 85 7.0% _SSI

= -l

E 0.0 0.0 0.0 0.0 0.0 0.0 ° g )

g Demethylation enzymes 8 g

S

2 Gadd45a GaddASb(nsi Gadd45g(ns) Tet1 Tet2 Tet3 S<

B 28 6.0 0.0 28 35 35 EZN.

£ oo 0.0 0.0 0.0 0.0 0.0 @

Dorsal
Ventral

Figure A.2: Transcriptome analysis of dorsal and ventral DG in enriched environment. (A,B)
Comparison of biological replicates shows the consistency of gene expression estimates (TPM)
in ventral DG in the present study (A) and for ventral DG granule cells in Hippo-Seq2 (B). (C,D)
Dorsal vs. ventral expression estimates for the present study (C) and hippo-seq (D). (E) Direct
comparison of individual replicates from the present study with hippo-seq granule cells. (F)
Comparison of regional differences in expression between the present data set (DG tissue) and
purified granule cells from Hippo-Seq [40] shows highly consistent differential expression for
markers of dorsal and ventral DG granule cells. (G) Effects of EE on gene expression are larger
in dDG compared with vDG. (H) Dorsal and ventral DG expression differences are ~4-fold
smaller than the differences between distinct cortical cell types. (I) The top DE genes include
immediate early genes (Fos, Egr2, Npas4). (J) More genes are upregulated (EE;SH) than
downregulated (EE;SH). (K-N) Nanostring digital quantification validates RNA-Seq results.
(O) Expression of genes associated with (de)methylation and methylation readers in dorsal
and ventral DG. All genes are significantly upregulated in dorsal DG over ventral (FDR ; .05)
except Gadd45b, which is significantly upregulated in ventral DG, and Gadd45g, which is not
differentially expressed. Not significant (ns). (P) Correlation of expression levels between DG
tissue and purified brain cell types [52] reveals expression in DG is most strongly correlated
with neurons. Oligodendrocyte progenitor cells (OPC), newly formed oligodendrocytes (NFO),
mature oligodendrocytes (MO).

82



non-CG

A H éoé
-~ =g} —— dDG<VDG in EE
_ 5 <E] 3000 - - -~ VDG<dDG in EE
g g g & 1000 ——dDG<VDG in SH
~ 2 & an - - -vDG<dDG in SH
< 8 e Sg awopzzzz:
o o - c
2. 82w
T
S £ e
Ez 01 02 03 04 05 06
o S
B PC1 (13.6%) Minimum methylation difference, AmCG
min
o4 z 0.04 £
£o E 00 Grp Cyp2ehs
>
> )
3 3
3o. 8002
® o i I l
2 5 AR
§ 0. S 001 i I I
5 ‘ AL
1)
2
1 2 3 1 2 3
c o T e S
p=0.0012 p=6.1e8 p =0.00021 B A
i ] T ] S 11 LA
0 4
] 1 -
2@ 4 @ 5}
B 2os E
! <
w5 i5
B2 < 0
g ®
8 ®©
05 Q
<0505 1 2>2<0505 1 2> <0505 1 2> &
D mRNA fold-change (dorsal / ventral)
53%” £g 18 s
23 B 4
< v 28 1 £
2 o4 gg
;m S 58 05
2 55
cc 22
28 0T e 0

Al €Xpressed

genes mmm Expressed

== Dorsal up-regulated genes mmm EE up-regulated
mmmm \/entral up-regulated genes G mmm EE down-regulated
-100kb »+100kb — — — 100
100

% mCG
a
3

TTTT T

15
3 4
E
205
0
20
020
(5]
E
£ 10
2
1] (%] (2] (%] [2] (2] 12 [%2] 12 1] 1] (%] (2] (%] [2] (2]
(2] w (2] w 12 w 12 w 12 w (2] w (2 w 12 w
- o [ (-~

(S o o (S
SH EE SH EE SH EE SH EE
Dorsal Ventral Dorsal Ventral

- o

% mCA
o
o

% hmCG
>

o

Figure A.3: (A) Transcriptome principal components separate dorsal and ventral samples using
mCG, mCH or 5ShmCG. Dashed lines connect dorsal and ventral DG from the same group of
mice. (B) Gene body mCH is associated with transcriptional repression, whereas ShmCG is
positively correlated with expression [4, 60]. (C) Genes up-regulated in dorsal vs. ventral DG
have lower promoter mCG, gene body mCH, and higher gene body ShmCG compared with
down-regulated genes. (D) Ventral hypo-methylated DMRs are enriched within the gene body
of genes up-regulated in ventral DG. (E) Browser shots showing examples of genes up-regulated
in ventral (Grp) or dorsal (Cyp26b1) DG, but which lack DMRs. (F,G) Mean mCG, mCA and
hmCG levels within gene bodies 100 kb are shown for all expressed genes, as well as genes
differentially expressed in dorsal or ventral DG. mCA is depleted, and hmCG is enriched, within
the gene bodies of dorsal expressed genes (green lines); the opposite pattern prevails within
the bodies of ventral expressed genes (purple lines). (H) Number of hypomethylated DMRs in
dorsal (solid lines) and ventral (dashed lines) DG as a function of the methylation difference
threshold.
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Figure A.4: Browser views of examples of genes hypomethylated in ventral DG. (Left) Nr2f]
is differentially expressed in adult ventral DG, consistent with the lower mCG level in the gene
body and surrounding region. (Right) Pax7 is not expressed in the adult DG, but is expressed
during development and helps to define dorsal fate [71]. Interestingly, we find that Pax7 is more
methylated in the dorsal DG, which may be a vestigial signature of its early developmental
activity in the dorsal DG similar to vestigial DMRs observed in other neuronal cell types [5].
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Figure A.5: Cross-validated analysis of the correlation of region- and treatment-based effects on
DNA methylation. Each panel shows the result of analyzing regional DNA methylation in one
of the five biological replicates (samples A-E, x-axis) vs. the treatment-based effects estimated
using the remaining four samples. DNA methylation was estimated within 1kb bins across all
autosomes; we excluded bins with < 10 CG basecalls in any sample, or < 100 basecalls after
summing all samples. Binned mCG levels were used to compute the dorsal-ventral and EE-SH
difference in methylation for each bin. We then grouped all bins according to their level of

A mCG (dDG - vDG)

dorsal-ventral difference in mCG, and computed the median EE-SH difference.
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Appendix B

Supporting Information Chapter 3

B.1 SI Discussion: Validation of Allele-Specific Methylation
Accuracy

Our allele-specific analyses are based on assignment of reads containing one or more SNPs
differing between C57 and Spretus reference genomes. This threshold was chosen to maximize
genomic coverage, and resulted in > 70% coverage of each allele. Here, we describe two analyses
that we performed to validate the accuracy of our allele-specific computational pipeline. First, we
reanalyzed our data using a more stringent criterion for allele assignment: We required at least
two SNPs per read, instead of one SNP per read as used in our paper. As expected, because many
reads cover just one SNP, this requirement resulted in a lower rate of allele assignment (33.5%
instead of 68.6% using all reads with one or more SNPs). Nevertheless, we found that our results
were quantitatively unchanged when using this more conservative analysis, with high Pearson
correlations between the two analyses for gene body mCH on Xa (r = 0.981) and Xi (r = 0.986),
as well as for promoter mCG on Xa (r = 0.996) and Xi (r = 0.990).

A second line of reasoning allows us to provide a stringent bound on the possible rate of

allele misassignment for our pipeline. Any misclassification of reads (i.e., incorrect assignment
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of C57 reads to Spretus or vice versa) should lead to apparently more similar methylation levels
on the two alleles. In particular, within regions of the X chromosome that lack escape genes,
we found apparent mCH levels of 0.93% on Xa and 0.017% on Xi (after correcting for the
bisulfite nonconversion rate). The maximum possible rate of misclassification consistent with
these observations would occur if the true methylation levels were 0% (Xi) and 0.947% (Xa),
which would correspond to a false assignment rate of 0.017/0.947 = 1.8%. Even allowing for
a possible ~ 10% overestimation of the nonconversion rate, we still find that the false allele
assignments are < 5% in the worst case. The true false assignment rate is likely lower than this
bound because of the robustness of our results when we used a more stringent allele-assignment

procedure (discussed above).
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Figure B.1: Topologically associated domains correlate with mCH. Coordinates for the TADs
on Xi at the XCI [105] were converted to mm10 using liftOver [140] and superimposed on a
browser view of mCH. Boundaries between domains are shown as black lines and overlap with
regions of hyper-mCH on Xi, particularly in TADs E and G.
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Figure B.2: Asymmetrical expression and methylation distinguish Xa from Xi. Histograms

of gene expression on Xa and Xi in SRPMs (A), CG methylation in promoters (B), and CH
methylation in gene bodies (C) are shown.
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Figure B.3: Methylation on Xa and the male X chromosome are similar. Methylation levels on
Xa and the male X chromosome for mCG in promoters (A, r = 0.96) and mCH in gene bodies

(B, r = 0.94). Points correspond to individual genes, and the point color indicates the density of
genes in that region.
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Figure B.5: Bidirectional allele-specific methylation at the Nesp/Gnas/Nespas locus. A browser
view of mCG and mCH shows three neighboring DMRs with opposite polarity. The promoter
of Nesp (1) lacks mCG on the maternal allele, whereas the promoters of Gnas (3) and the
antisense transcript Nespas (2) lack mCG on the paternal allele. These CG-DMRs are consistent
with reported maternal and paternal imprinted expression of Nesp and Nespas, respectively
[141]. Overall, this region demonstrates lower mCH on the paternal allele, showing a consistent
asymmetry with the Nesp gene but the reverse asymmetry compared with Nespas. M, maternal;
P, paternal.

91



Appendix C

Supporting Information Chapter 3

C.1 Materials and Methods

C.1.1 Animal samples

For the production of single neuron methylomes from layer dissected mouse frontal cortex
tissue, eight week old C57BL/6J male mice were purchased from Jackson Laboratories, Bar
Harbor ME, and allowed a week of acclimation in our animal facility with 12 h light/dark cycles
and food ad libitum before sacrificing and dissecting.

Nuclei were also isolated from frontal cortex of the CLSun1-G35-Cre line with no layer
dissection. This line was produced by crossing the transgenic line B6;129-Gt(ROSA)26Sortm5
(CAG-Sunl1/sfGFP)Nat/J (described in [5], but backcrossed into a C57BL/6J background for 9
generations), with the G35-Cre line [142].

Nuclei of SST+ inhibitory neuron population was isolated from frontal cortex of CLSunl-
SST-Cre line. This line was generated by crossing B6;129-Gt(ROSA)26Sortm5(CAG-Sun1/stGFP)
Nat/J backcrossed into C57BL/6J with SST-Cre line (Jackson Labs).

All protocols were approved by the Salk Institute’s Institutional Animal Care and Use

Committee (IACUC).
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C.1.2 Human samples

The human brain specimen was obtained from the NICHD Brain and Tissue Bank for
Developmental Disorders at the University of Maryland, Baltimore, MD. The frozen middle

frontal gyrus tissue belonged to a 25-year-old Caucasian male (UMB#4540) with a PMI of 23 h.

C.1.3 Mouse tissue dissections

To produce the frontal cortex tissue, mouse brains were sectioned coronally at Bregma 2.5
and 0.5 with a razor blade in dissection media [20 mM Sucrose, 28 mM D-Glucose (Dextrose),
0.42 mM NaHCO3, in HBSS]. For cortical layer dissection, the tissue block (devoid of non-
cortical tissue) was then dissected under a microscope (SZX16, Olympus). The cortical region
was divided parallel to the meninges into three sections of approximately equal width such that
“superficial layers” contained layers 1-3 with part of layer 4, and “deep layers” contained mainly

layers 6 and part of 5.

C.1.4 Nuclear isolation

Nuclear isolation from mouse and human cortical tissues was performed as described in
[4] with the following modifications: Proteinase inhibitor (11836153001, Roche) and RNAse
inhibitor (30 U/ml, PRN2611 from Promega) were added to the lysis buffer and sucrose gradients.
After centrifugation, nuclei were resuspended in 0.5% BSA (AM2616, Ambion) and PBS (Cay+

and Mg, free, 14190-144 from Life Technologies) with protein and RNAse inhibitors.

C.1.5 Flow cytometry based nuclei sorting

Isolated nuclei from mouse and human tissues were labeled by incubation with 1:1000
dilution of AlexaFluor488 conjugated anti-NeuN antibody (MAB377X, Millipore) at 4°C for

1 hour. Nuclei isolated from CLSun1-G35-Cre line were incubated with AlexaFluor647 conju-

93



gated anti-NeuN antibody (anti-NeuN antibody MAB377 labeled using Apex Alexa Fluor 647.
A10475, Life Technologies) and AlexaFluor488 conjugated anti-GFP antibody (A21311, Life
Technologies). Fluorescence-activated nuclei sorting (FANS) of single nuclei was performed
using a BD Influx sorter with an 85 um nozzle at 22.5 PSI sheath pressure. Single nuclei were
sorted into each well of a 384-well plate preloaded with 2 ul of Proteinase K digestion buffer (1 ul
M-Digestion Buffer, 0.1 ul 20 ug/ul Proteinase K and 0.9 ul H,O). The alignment of the receiving
384-well plate was performed by sorting sheath flow into wells of an empty plate and making
adjustments based on the liquid drop position. Single cell (1 drop single) mode was selected to

ensure the stringency of sorting.

C.1.6 Preparation of single nucleus methylome library

Steps of library preparation prior to SPRI purification were performed in a horizontal
laminar flow hood to minimize environmental DNA contamination. Bisulfite conversion of
single nuclei was carried out using Zymo EZ-96 DNA Methylation-DirectTM Kit (Deep Well
Format, cat. #D5023) following the product manual with reduced reaction volume. 384-well
plates (ThermoFisher Armadillo PCR Plate cat. # AB2384) containing FACS isolated single
nuclei were heated at 50°C for 20 min. 25 ul CT Conversion Reagent was added to each well,
followed by pipetting up and down to mix. Plates were treated with the following program using
a thermocycler: 98°C for 8 min, 64°C for 3.5 hours and 4°C forever.

Each well of Zymo-Spin 1-96 Binding Plates was preloaded with 150 ul M-binding
buffer. Bisulfite conversion reactions were transferred from 384-well plates to I-96 Binding Plates
followed by pipetting up and down to mix. [-96 Binding Plates were centrifuged at 5,000g for 5
min. Wells were washed with 400 ul of M-Wash Buffer, followed by centrifugation at 5,000g for
5 min. 200 ul of M-Desulphonation Buffer were added to each well and incubated for 15 min
at room temperature before removed by centrifugation at 5,000g for 5 min. Each well was then

washed with 400 ul of M-Wash Buffer twice. 12 ul of M-Elution Buffer were added to each well
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and incubated for 5 min at room temperature. [-96 Binding Plate was placed above a 96-well
PCR plate (Applied Biosystems MicroAmp EnduraPlateTM cat. # 4483348) and was centrifuged
at 5,000g for 3 min. 9 ul of eluted DNA were commonly collected in each well of the PCR plate.

Each of the four indexed random primers (PSL-AD002-N9, PSL-AD006-N9, P5SL-ADO00S-
N9 and P5L-ADO010-N9) was used for indexing a 96-well plate containing bisulfite converted
single nuclei. The four plates would be combined during a later SPRI step. 1 ul of 5 uM indexed
random primer was added to each well of 96-well plate, followed by mixing with vortexing. All

DNA oligos were purchased from Integrated DNA Technologies (IDT).

P5L-AD002-N9
/55pC3/TTCCCTACACGACGCTCTTCCGATCTCGATGT (N1:25252525)
(N1) (N1) (NI)(NI)(N1) (N1) (N1) (N1)

P5L-AD006-N9
/55pC3/TTCCCTACACGACGCTCTTCCGATCTGCCAAT (N1:25252525)
(N1) (N1) (NI) (N1) (N1) (N1) (NI) (N1)

P5L-AD008-N9
/5SpC3/TTCCCTACACGACGCTCTTCCGATCTACTTGA (N1:25252525)
(N1) (N1) (NI) (N1) (N1) (NI) (NI) (N1)

P5L-AD010-N9S
/55pC3/TTCCCTACACGACGCTCTTCCGATCTTAGCTT (N1:25252525)
(N1) (N1) (NI) (NI) (NI1) (N1) (N1) (N1)

96-well plates were heated at 95°C using a thermocycler for 3 min to denature sample
and were immediately chilled on ice for 2 min. 10 ul enzyme mix containing 2 ul of Blue Buffer
(Enzymatics cat. # BO110), 1 ul of 10mM dNTP (NEB cat. # N0447L), 1 ul of Klenow exo-
(50U/ul, Enzymatics cat. # P7010-HC-L) and 6 ul H20, was added to well. After mixing with
vortexing, plate was treated with the following program using a thermocycler: 4°C for 5 min, ramp
up to 25°C at 0.1°C/sec, 25°C for 5 min, ramp up to 37°C at 0.1°C/sec, 37°C for 60 min, 4°C.
2 ul of Exonuclease 1 (20U/ul, Enzymatics cat. # X8010L) were added to each well, followed
by mixing with vortexing. Plate was incubated at 37°C for 30 min and then 4°C forever using a
thermocycler. u 17.6 ul of home-made SPRI beads were added to each well. Sample/bead mixture

from four plates, indexed using distinct indexed random primers, was combined and followed by

95



pipetting up and down to mix. Sample/bead mixture was incubated at room temperature for 5 min
before being placed on a 96-well magnetic separator (DynaMag-96 Side Magnet, ThermoFisher
Cat. # 12331D. DynaMag-96 Side Skirted Magnet, ThermoFisher Cat. # 12027). Supernatant
was removed from each well, followed by three rounds of washing with 180 ul of 80% ethanol.
After air drying beads at room temperature, 10 ul M-Elution buffer were added to each well to
fully resuspend the beads. Eluted samples were transferred to a new 96-well PCR plate.

PCR plate was heated at 95°C for 3 min using a thermocycler to denature sample and
was immediately chilled on ice for more than 2 min. 10.5 ul Adaptase master mix (2 ul Buffer
G1, 2 ul Regent G2, 1.25 ul Reagent G3, 0.5 ul Enzyme G4, 0.5 ul Enzyme G5 and 4.25 ul
M-Elution buffer; Accel-NGS Adaptase Module for Single Cell Methyl-Seq Library Preparation,
Swift Biosciences, cat. # 33096) was added into each well, followed by mixing with vortexing.
Plates were incubated at 37°C at 30 min and then 4°C using a thermocycler. 30 ul PCR mix (25 ul
KAPA HiFi HotStart ReadyMix, KAPA BIOSYSTEMS, cat. # KK2602, 1 ul 30 uM PS5 indexing
primer and 5 yl 10 uM P7 indexing primer) were added into each well, followed by mixing with
vortexing.

PS5 Indexing primers:

P5L_D501
AATGATACGGCGACCACCGAGATCTACACTATAGCCTACACTCTTITCCCTACACGACGCTCT
P5L_D502
AATGATACGGCGACCACCGAGATCTACACATAGAGGCACACTICTTITCCCTACACGACGCTICT
P5L_D503
AATGATACGGCGACCACCGAGATCTACACCCTATCCTACACTICTITCCCTACACGACGCTCT
P5L_D504
AATGATACGGCGACCACCGAGATCTACACGGCTCTGAACACTCTTITCCCTACACGACGCTCT
P5L_D505
AATGATACGGCGACCACCGAGATCTACACAGGCGAAGACACTICTITCCCTACACGACGCTICT
P5L_D506
AATGATACGGCGACCACCGAGATCTACACTAATCTTAACACTCTTITCCCTACACGACGCTCT
P5L_D507
AATGATACGGCGACCACCGAGATCTACACCAGGACGTACACTICTTITCCCTACACGACGCTCT
P5I_D508
AATGATACGGCGACCACCGAGATCTACACGTACTGACACACTICTITCCCTACACGACGCTICT
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P7 indexing primers:

P7L_D701
CAAGCAGAAGACGGCATACGAGATCGAGTAATGTGACTGGAGTTCAGACGTGIGCICTT
P7L_D702
CAAGCAGAAGACGGCATACGAGATTCICCGGAGTGACTGGAGTTICAGACGTGIGCICTIT
P7L_D703
CAAGCAGAAGACGGCATACGAGATAATGAGCGGTGACTGGAGTTCAGACGTGTGCTCTT
P7L_D704
CAAGCAGAAGACGGCATACGAGATGGAATCTCGTGACTGGAGTTCAGACGTGIGCICTT
P71_D705
CAAGCAGAAGACGGCATACGAGATTTCTGAATGTGACTGGAGTTICAGACGTGIGCICTIT
P7L_D706
CAAGCAGAAGACGGCATACGAGATACGAATTCGTGACTGGAGTTCAGACGTGTGCTCTT
P7L_D707
CAAGCAGAAGACGGCATACGAGATAGCTTCAGGTGACTGGAGTTCAGACGTGIGCICTIT
P71_D708
CAAGCAGAAGACGGCATACGAGATGCGCATTAGTGACTGGAGTTCAGACGTGIGCTICTT
P7L_D709
CAAGCAGAAGACGGCATACGAGATCATAGCCGGTGACTGGAGTTCAGACGTGIGCTICTT
P7L_D710
CAAGCAGAAGACGGCATACGAGATTTCGCGGAGTGACTGGAGTTICAGACGTGIGCICTIT
P7L_D711
CAAGCAGAAGACGGCATACGAGATGCGCGAGAGTGACTGGAGTTCAGACGTGTGCTCTT
P7L_D712
CAAGCAGAAGACGGCATACGAGATCTATCGCTGTGACTGGAGTTCAGACGTGIGCICTT

PCR plate was treated with the following program using a thermocycler: 95°C for 2 min,
98°C for 30 sec, 17 cycles of (98°C for 15 sec, 64°C for 30 sec, 72°C for 2min), 72°C for 5 min
and then 4°C. PCR products were cleaned up using 0.8x SPRI beads and were combined into one
tube for each 96-well plate. Pooled PCR product was resolved on 2% agarose gel, smear between
400 bp and 2 Kb were excised and purified using QIAquick Gel Extraction Kit (Qiagen cat. #
28706). Library concentration was determined using Qubit dsSDNA HS (High Sensitivity) Assay

Kit (Invitrogen cat. # Q32851).
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C.1.7 Sequencing of single nucleus methylome library

Pooled library concentration was adjusted to 700 - 800 pM for cluster generation and was

sequenced on Illumina HiSeq 4000 instrument using RTA 2.7.7.

C.1.8 Single cell methylome mapping and data analysis

Sequencing reads were first trimmed to remove sequencing adaptors using Cutadapt 1.11
[143] with the following parameters in paired-end mode: -f fastq -q 20 -m 62 -a AGATCG-
GAAGAGCACACGTCTGAAC -A AGATCGGAAGAGCGTCGTGTAGGGA. For singleplex
samples, -m parameter was set to 40. For multiplexed samples, 16 bp were further trimmed
from both 5’- and 3’- ends of R1 and R2 reads to remove random primer index sequence and
C/T tail introduced by Adaptase, with the following parameters: -f fastq -u 16 -u -16 -m 30.
Trimmed reads for mouse and human single nuclei were mapped to mm10 and hg19 reference
genomes, respectively. R1 and R2 reads were mapped separately as single-end reads using
Bismark v0.15.0 with parameter —bowtie2. —pbat option was activated for mapping R1 reads
[144]. Resulting bam files were sorted using SAMtools 1.3 sort [145], followed by removal of du-
plicate reads using Picard 1.141 MarkDuplicates with the option REMOVE_DUPLICATES=true
(https://broadinstitute.github.io/picard/). Non-clonal reads were further filtered for minimal map-
ping quality (MAPQ > 30) using samtools view with option -q30. To prevent regional mCH
level estimation from being skewed by rare reads that failed to be bisulfite converted, reads with
read-level mCH level greater than 0.7 were excluded.

The calling of unmethylated and methylated base calls was performed by

call_methylated_sites of Methylpy (https://github.com/yupenghe/methylpy/) [4, 5, 103].

C.1.9 MethylC-seq of mouse SST+ inhibitory neurons

MethylC-seq library was constructed following the protocol described in detail in [146].
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C.1.10 Genomic sequencing of the human sample

Genomic DNA was extracted from the human specimen using DNeasy Blood & Tissue
Kit (Qiagen cat. # 69504). Genomic sequencing library was constructed using the same procedure

as MethylC-seq library except bisulfite conversion was not performed.

C.1.11 Calling sequence variants for the human sample

Adaptor sequence was trimmed from sequencing reads using Cutadapt 1.11 with the fol-
lowing options: -f fastq -q 20 -m 50 -a AGATCGGAAGAGCACACGTCTGAAC -A AGATCG-
GAAGAGCGTCGTGTAGGGA. Trimmed reads were mapped to human hg19 reference genome
using Bowtie2 2.2.5 with option -X 2000. Mapped reads were filtered for minimal mapping
quality (MAPQ > 20) using samtools view with option -q20. For calling sequence variants, a
filtered bam file was processed using samtools mpileup with option -ug with the outputs piped

into bceftools called with option -vmO v [147].

C.1.12 Data cleaning

Data were cleaned by excluding low-quality cells using the following set of conservative
criteria, ultimately yielding 3376 cells in mouse and 2784 cells in human for analysis. First,
non-conversion rate was required to be low (<1% in mouse and <2% in human). We set a
minimum on the number of non-clonal mapped reads to eliminate contaminated samples (400K
in mouse; 500K in human). We also set an upper limit on coverage to protect against wells with
multiple cells (<15% of cytosines).

In order to minimize contamination in the human data from exogenous human DNA
fragments, we identified potentially contaminated samples using a genomic sequence variant
(SNP) matching process. Single nucleotide variants identified from genomic sequencing (g) of

the human sample were compared to variants observed in each single human nucleus methylome
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(m), with hg19 serving as the reference genome for mapping both data types. SNP compatibility
between g and m was scored for all homozygous variant sites identified in g that were covered by
methylome reads in m. A compatible site between g and m required identical genotype between g
and m at all sites where the variant sequence was A or T in g. For a site with variant sequence C
in g, sequence = C or T in m was considered compatible. For a site with variant sequence G in g,
sequence = G or A in m was considered compatible. For each single human nucleus methylome,
compatible SNP rate was defined as the fraction of all scored sites showing compatible genotype

between g and m, and we only retained cells with >0.99 compatible SNP rate.

C.1.13 Clustering analysis

CH methylation data were grouped into non-overlapping 100 kb bins across the whole
genome for each cell. Due to the sparsity of the snmC-seq data, few bins had sufficient coverage
(>100 base calls) across all cells to be retained in the analysis. We therefore imputed data at bins
with coverage in 99.5% or more of cells, replacing missing values with the average methylation
across all cells for that bin. This allowed us to include 76.2% of bins in the mouse genome and
63.4% of bins in the human genome in our analysis.

To cluster cells, we adapted an iterative, hierarchical and unsupervised clustering method
called BackSPIN that had been previously applied to single cell transcriptome data [36]. At each
iteration, the top 2,000 bins with the greatest variance across cells were selected. The SPIN
algorithm was then used to arrange cells in a linear order, with similar cells located near each
other [148]. Next, cells were split into two new clusters at the optimal cut point, where the
average correlation within the two new clusters was highest. To retain the split, at least one of the
two new subclusters must have > 15% increase in the average correlation value over the average
of all cells in the original cluster. This procedure was applied recursively to each new cluster, and
terminated when no clusters met the splitting criterion. To avoid producing clustering with too

few cells for us to confidently analyze, we prevented further splitting of clusters with 50 or fewer
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cells.

Because BackSPIN can produce different results depending on the initial order of cells,
we ran the algorithm with 160 random initializations of the cell order. We selected the clustering
that had the highest Dunn Index. The result had 23 clusters for mouse and 40 clusters for human.
Initial inspection of the cluster results using tSNE revealed that one of the human clusters, which
comprised 44 cells, was highly dissimilar from the other clusters. Cells in this cluster had little
detectable mCH (global median: 0.0104), significantly lower than the cluster with the next lowest
mCH level (0.0201) and the median across all cells (0.0438). We surmised that this cluster may
correspond to non-neuronal cells, and we therefore excluded these cells from subsequent analysis.

To conservatively define neuronal cell types based on robust and biologically interpretable
differences in DNA methylation, we next merged clusters with highly similar mCH patterns. Our
heuristic choices of criteria for merging clusters does impact the final number and configuration
of clusters. Rather than try to accurately determine how many cell types exist in each species, our
emphasis was on using consistent clustering parameters and methods in both human and mouse
to allow a rigorous cross-species comparison.

To do this we defined a set of mCH marker genes. For this analysis we profiled the mCH
level across all gene bodies for each cell, requiring coverage of at least 100 CH bases. We retained
genes that were covered in >20% of cells in each of the clusters, and in >50% of cells in at least
one cluster. We further required coverage in at least 10 cells for each cluster. We then combined
reads from all cells in each cluster to estimate the mCH level for each cluster at each gene; these
mCH levels were then normalized by the average over all cells at each gene. Marker genes for
each pair of clusters were defined as those which were strongly hypomethylated (mCH in the
bottom 2nd percentile) in one cluster and hypermethylated (mCH above the 80th percentile) for
the other cluster. The top 10-20 marker genes with largest methylation difference were identified
for each pair of clusters. We then tested the statistical significance of the difference in normalized

methylation between the two clusters (2-sample ¢-test, one-sided, p < 0.05). If any pair of clusters
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was separated by fewer than 7 significant marker genes, we merged the pair of clusters with the
fewest markers and repeated the procedure (define marker gene, test significance). This process
was continued until all cluster pairs had at least 7 marker genes with significantly different mCH.

For visualization purposes, we performed dimensionality reduction using t-Stochastic
Neighbor Embedding (tSNE) [129], reducing all cells to a point in 2D space. TSNE requires a
perplexity parameter that is analogous to how many nearest neighbors to consider in manifold
learning algorithms. We examined results using a range of perplexity values (10-1000) and
found largely consistent patterns for all perplexity values >50 (Appendix C.3G), and all tSNE
visualizations shown in this study used perplexity = 150. Importantly, our tSNE results were only
for visualization purposes and did not affect the clustering of neurons, although it strongly agreed
with the clusters we identified using BackSPIN adapted for DNA methylation data. To illustrate
how mCH levels of marker genes vary across individual cells and clusters, we computed gene
body methylation as the average mCH level of annotated genic region (from TSS to TES) (Fig.

2E,F) and normalized across cells by dividing by the mean of all cells (Appendix C.6 - C.7).

C.1.14 Validation of clustering

We examined the robustness of our neuronal clusters with respect to several experimental
and analytic parameters (Appendix C.3). First, we downsampled the number of reads per cell
to 10%, 20% and 40% of the full dataset using samtools view -s, followed by tSNE (Appendix
C.3A). To examine whether CG methylation could be used to determine cell types consistent with
those estimated using mCH, we summarized CG methylation into 100kb bins followed by tSNE
(Appendix C.3F). Because CG sites are more sparse than non-CG sites, we lowered the coverage
cutoff to > 20 base calls for this analysis.

Because backSPIN can produce different clustering outputs given different input order of
cells, we compared 200 backSPIN results with independently randomized initializations against

our identified neuronal clusters. We did not perform marker-gene based merging on shuffled data
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as performed to obtain our original clustering, and consequently, we would expect some level of
difference between our clusters and the shuffled runs. Using the adjusted Rand index [149] and
adjusted mutual information [150] to quantify similarity, we found clusterings produced from
shuffled inputs were highly consistent with our final clustering for mouse and human (Appendix
C.3H-I). The adjusted Rand index was more variable in human, likely because we had to merge
more clusters in the original backSPIN output to obtain our final human clustering.

To quantify how read downsampling affected the presence of our neuronal clusters, we
downsampled the number of reads per cell. We quantified the presence of our neuronal clusters in
the downsampled results using the inverse of the Davies-Bouldin index [151], mean Silhouette
coefficient [152], and Calinski-Harabasz metrics [153] (all implemented in the MATLAB function,
evalclusters; Appendix C.3J-L, left). These metrics reflect the separation between clusters, relative
to the variability within each cluster. All three measures showed that cluster quality remains
consistently high even with 20-40% of the full reads, corresponding to an average of 280,000-
560,000 mapped reads per cell. Cluster quality declines upon further downsampling to 10%. We
also used these metrics to quantify how well CG methylation can recapitulate our CH-defined
clusters (Appendix C.3J-L, right). The quality of clusters is similar when using CG or CH
methylation, and in both cases it is significantly greater compared to a shuffled control in which
cells were randomly re-assigned to a different cluster. Finally, we applied density-based clustering
(DBSCAN, [131]) to the data using the tSNE coordinates as input, and found generally consistent,
though not identical, results compared with backSPIN (Appendix C.3M-N). For DBSCAN, we
chose parameters that produced clusters most consistent with the visual separation of cells in the
tSNE space (epsilon of 0.6 in mouse and 0.8 in human; minimum points of 5 for mouse and 10
for human).

Next, to examine how many cells are required to identify neuronal clusters, we ran tSNE
on a random subsample of 500 or 1,000 cells (Appendix C.3B). Even with as few as 500 cells, the

cell type structure is clearly present in the tSNE output and there is little mixing of different cell
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types. As expected, reducing the number of cells has the greatest impact on the least numerous
cell types. We also examined how reducing (10kb) or increasing (1Mbp) the bin size, and thus
changing the scale of corresponding genome features, affected the clustering results (Appendix
C.3C). Although tSNE results are altered at these two binning levels, the overall cell type structure
is still present.

Furthermore, we examined whether mCH information from intra- or inter-genic regions is
sufficient to estimate neuronal cell types. After including only reads from within gene bodies
(intragenic) or which fall at least 10kb away from the nearest gene body (intergenic), we repeated
the binning and tSNE procedure and found similar results (Appendix C.3D). There is therefore
sufficient information in both genic and intergenic compartments for cell type classification,
although we did find that the ratio of inter-cluster variance to intra-cluster variance for individual
genomic bins is generally larger for genic regions (Appendix C.3E).

Finally, we examined the relationship between experimental factors (e.g. batches, random
primer index) and our clusters to identify any potential experimental confounds. We used a
chi-squared test for categorical variables and an ANOVA with scalar variables. Clustering was

not significantly associated with experimental factors (adjusted p-value > 0.1, Appendix C.5).

C.1.15 Processing of single cell and nucleus RNA-seq datasets

Single cell RNA-seq dataset of mouse somatosensory cortex was downloaded from
NCBI GEO accession GSE60361 [36]. Single cell RNA-seq dataset of mouse visual cortex
was downloaded from NCBI GEO accession GSE71585 [37]. Processed data (transcripts per
million table) of single nucleus RNA-seq of human cortex was downloaded from http://genome-
tech.ucsd.edu/public/Lake_Science_2016/ [39]. Mouse single cell RNA-seq datasets were mapped
to gencode VM10 reference followed by computing TPM (transcripts per million) for each

annotated genes using RSEM 1.2.3 rsem-calculate-expression [154].
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C.1.16 Cross-species comparison of single neuron clusters

For comparing a given human neuron cluster to mouse clusters, we computed cross-
specific spearman correlation, for mCH level of marker genes showing homology between the
two species [134]. Correlations were computed between gene mCH level of each individual
human neuron and median gene mCH level of each mouse cluster (e.g. mL2/3). Marker genes
were identified as described above - marker genes for each pair of clusters were defined as those
which were strongly hypomethylated (mCH in the bottom 2nd percentile) in one cluster and
hypermethylated (mCH above the 80th percentile) for the other cluster. The homologous mouse
neuron type for a single human neuron was defined by the mouse cluster showing strongest
correlation of gene mCH level with the single human neuron. The process effectively assigns
each human single neuron to a most likely mouse homologous cluster. Comparison of mouse

neuron clusters to human neuron clusters were performed similarly.

C.1.17 Comparison of single cell clusters defined by single cell/nucleus

RNA-seq and single cell methylome

For comparing a given neuron cluster defined by DNA methylation to clusters defined
by RNA-seq, we computed the Spearman correlation between marker gene mCH level (average
mCH across annotated genic region) of each individual neuron and the median gene expression
level (TPM) for each cluster defined by RNA-seq. Each single neuron was assigned to the
cluster defined by RNA-seq showing minimum correlation coefficient since gene body mCH and

transcripts abundance are generally inversely correlated.

C.1.18 In situ hybridization (ISH) and image analysis

Wild type 8wk old C57BL/6J male mice (Jackson Laboratory) were anesthetized with

isoflurane and brains were removed. Mouse brains were fixed in 10% neutral buffered formalin
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for 16 hours at room temperature, and were subjected to paraffin embedding at the UCSD Moores
Histology & Sanford Consortium Histology Core lab. The sections were cut by at 5 um thickness
and mounted onto Superfrost Plus Slides (Thermo Fisher) and baked at 60°C for 1 hour. Double
ISH was performed using RNAscope technology by Advanced Cell Diagnostics Pharma Assay
Services. ISH slides were imaged with Olympus VS120 Virtual Microscopy Slide Scanning
System using a 20x objective. Images in TIFF format were extracted using ImageJ BIOP VSI-
Reader plugin [155]. Images were analyzed using a custom Matlab script. Pixel intensities were
first centered around zero by subtracting the average pixel intensity from the entire image. Since
RNAscope? assay labels individual RNA molecules, the overlap between co-stained probes was
computed at the cell body level. In order to identify neuronal cell bodies, a 30 x 30 pixel sliding
window (equivalent to 9.7 x 9.7 um),similar to the size of a neuronal cell body, was used to scan
the image with a step size of 10 pixels. Average pixel intensity was quantified for each sliding
position and was standardized by converting to z-score. Probe specific z-score thresholds (Sulfl
- 3, Tle4 - 3, Adgra3 - 7, Pvalb - 7) were defined for the selection of sliding window positions
that overlapped with a cell body and showed fluorescent intensity greater than the threshold.
Connected sliding window positions were merged to create a list of regions of interests (ROIs),
each corresponding to a cell body. The overlap between ROIs of the two imaging channels were

counted to determine the co-expression of probed genes.

C.1.19 Identification of CG-DMR and superenhancer-like large CG-DMRs

Files containing unmethylated and methylated cytosine base calls for each cytosine
position (allc files) were merged across single cells within each cluster to generate aggregate
methylation data for each neuronal cluster. For each CpG site, base calls for the two cytosines
located on opposite strands were combined to increase the power of DMR calling. CG-DMRs
were then called using Methylpy DMRfind with false discovery rate cutoff = 0.01. Differentially

methylated sites (DMSs) located within 250 bp of one another were combined into differentially
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methylated regions (DMRs). DMRs containing at least two DMSs were retained for subsequent
analyses.

For the identification of large CG-DMRs, CG-DMRs were first merged allowing 1kb
distance between each other using bedtools merge -d 1000. Merged CG-DMRs with size greater
than 5kb were considered large CG-DMRs. Large CG-DMRs were ranked by their size in Tables

S7-8.

C.1.20 Comparison of single cell methylome methods

scBS-seq dataset was downloaded from NCBI GEO accession GSE56879 [126], scM&T-
seq dataset was downloaded from NCBI GEO accession GSE74535 [81]. Since sc-WGBS data
deposited to NCBI SRA contains non-redundant mapped reads from [127], we were not able to
determine mapping rate and library complexity using our processing pipeline. sScWGBS libraries
were generated in-house from single mouse cortical nuclei using Illumina Truseq Methylation
kit as described in [127]. Sequencing reads were first trimmed to remove sequencing adaptors
using Cutadapt 1.11 [143] with the following parameters in paired-end mode: -f fastq -q 20 -m
62 -a AGATCGGAAGAGCACACGTCTGAAC -A AGATCGGAAGAGCGTCGTGTAGGGA.
For singleplex samples, -m parameter was set to 40. 10 bp were further trimmed from both 5’-
and 3’- ends of R1 and R2 reads to remove random primer index sequence with the following
parameters: -f fastq -u 16 -u -16 -m 30. R1 and R2 reads were mapped separately as single-end
reads using Bismark v0.15.0 with parameter —bowtie2. For mapping scBS-seq data, —pbat option
was activated for mapping R1 reads [144]. For mapping sc-WGBS data, —pbat option was
activated for mapping R2 reads. Library complexity was estimated using R1 reads with Preseq
gc_extrap function with options -e 5e+09 -s 1e+07 [156].

To determine the enrichment of CpG islands (CGI) in single cell methylome data, the
fraction of CGI on mouse chromosome 1 covered by a single cell methylome was compared

to shuffled regions with matching sizes. The shuffling was carried out using bedtools shuffle
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and was repeated five times and the average fraction of regions covered by reads was used.
Bulk MethylC-seq data was downsampled to 1 million non-clonal reads for this anlsysis. For
computing the amount of genomic regions covered by reads at different sequencing coverage,
1kb and 10kb bins were generated using bedtools makewindows across mouse genome. The bins
were intersected with bulk MethylC-seq and single cell methylomes downsampled to 100,000 to

1 million reads.

C.1.21 Transcription factor (TF) binding motif enrichment analysis

TF binding motif enrichment analysis was performed as described in [5, 157] with the
following modifications. The analysis of TF binding motif enrichment in mouse and human CG-
DMRs only considered TFs with median TPM > 10 in any clusters defined by single cell/nucleus
RNA-seq of mouse visual cortex and human cortex, respectively [37, 39]. To summarize en-
riched or depleted TF binding motifs to TF classes, classification of TFs was downloaded from
http://tfclass.bioinf.med.uni-goettingen.de/tfclass [158]. The folds of enrichment or depletion for

TF classes were defined as the strongest enrichment or depletion shown by TF class members.

C.1.22 Prediction of putative enhancers

The enhancers of three major brain cell types (excitatory neurons, PV neurons and VIP
neurons) were predicted using Regulatory Element Prediction based on Tissue-specific Local
Epigenetic marks (REPTILE) [135]. REPTILE integrates DNA methylation and chromatin
accessibility data to delineate the location of enhancers. REPTILE formulates enhancer prediction
as a supervised learning task - it learns the chromatin signatures of enhancers (i.e. enhancer
model) using known enhancers and then makes predictions across the whole genome in various
cell types and tissues. A unique feature of RETPILE is that it is able to incorporate the data of

cells and tissues besides the target sample (as outgroup) and utilize the variation of epigenomic
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data to improve prediction accuracy.

To generate the putative enhancers of the three brain cell types, we first downloaded
the bulk WGBS and ATAC-seq data of excitatory neurons (EXC), PV neurons (PV) and VIP
neurons (VIP) from Gene Expression Omnibus (GEO). The accessions of ATAC-seq data are:
EXC (GSM 1541964, GSM1541965), PV (GSM 1541966, GSM1541967) and VIP (GSM 1541968,
GSM1541969). The accessions of WGBS are EXC (GSM 1541958, GSM1541959), PV (GSM 1541960,
GSM1541961) and VIP (GSM1541962, GSM1541963). In order to train a mouse enhancer
model, we also obtained the EP300 ChIP-seq data (GSM723018) and its corresponding input
(GSM723020) in mouse embryonic stem cells (mESCs) as well as the bulk ATAC-seq data
(GSM2156965) and bulk WGBS (GSM1162043 and GSM1162044) of mESCs.

Next, The WGBS and ChIP-seq data were processed as previously described [135].
ATAC-seq data were processed in the same way as [5]. Data of replicates were combined. EP300
binding sites were identified using MACS2 [159] similar to [135]. DMRs were called across the
methylomes of mESCs and three brain cell types as previously stated [135].

Then, we trained a mouse enhancer model in mESCs. The construction of training
dataset as described in [135] - the EP300 binding sites were treated as positive instances, whereas
promoters and randomly chosen genomic bins were used as negative instances. During the training
process, the data of three brain cell types were used as outgroup. After training, we obtained a
mouse enhancer model, which is able to distinguish enhancers from genomic background based
on the mCG and open chromatin signatures.

Lastly, we applied this model to generate enhancer predictions for three brain cell types.
During this process, when REPTILE made enhancer predictions for one brain cell type, mESCs

and the other two brain cell types were used as outgroup.
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C.1.23 Prediction of excitatory neuron super-enhancers

Excitatory neuron super-enhancers were identified with ROSE ([137]) using the list of
H3K27ac peaks identified from cortical excitatory neurons with parameters -s 12500 -t 2500.

Excitatory neuron H3K27ac ChlP-seq data and peaks were reported in [5].

C.1.24 Comparative analysis of regulatory elements

CG-DMRs were categorized based on the conservation of sequences and methylation
states between human and mouse. First, UCSC liftOver [140] was used to project CG-DMRs
between species based on sequence conservation (minimum ratio of remapped bases = 0.1).
CG-DMRs that could be mapped to the other species and mapped back were referred to as
mappable CG-DMRs. All other CG-DMRs were called unmapped DMRs. Next, we further
divided mappable CG-DMRs into two categories: CG-DMRs located within 1kb of a CG-DMR
in the other species (shared CG-DMRs), and CG-DMRs located further than 1 kb away from any
DMR in the other species after liftover (specific CG-DMRs).

We then used a hypergeometric test to examine whether mappable CG-DMRs from one
species preferentially overlap with CG-DMRs in the homologous cell type from the other species.
Specifically, to calculate the expected number of shared DMRs between human cluster 1 and
mouse cluster j, we mapped (via liftover) human cluster i DMRs to the mouse genome and found
how many were shared with any mouse DMR (i.e. overlap within 1kb of merged mouse DMRs,
N;j). Then this number was divided by the total number of merged human DMRs (V) and
multiplied by the number of DMRs in human cluster i (NVy;), to get the expected number of shared
DMRs: E;j = %Nhi. This was compared with the observed number of shared DMRs between
human cluster i and mouse cluster j, N;;.

To quantify the regulatory conservation of CG-DMRs between human and mouse, we

computed the correlation of methylation levels at mappable DMRs for each homologous cluster
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pair. The higher cross-species correlation of inhibitory clusters suggests that inhibitory neurons
have greater regulatory conservation between the two species (Fig. 4E, Appendix C.17C, p <
0.001, Wilcoxon rank-sum test). This finding was further corroborated by examining cross-
species enrichment of shared CG-DMRs represented by the fold-change between observation
and expectation, which again showed stronger overlap between the two species in inhibitory than
excitatory neuron clusters (Appendix C.17D-E).

To measure sequence conservation of CG-DMRs, we computed 100-way PhastCons
score for human CG-DMRs and 60-way PhastCons score for mouse CG-DMRs by taking the
average PhastCons score across all bases in each DMR. Missing values were skipped rather than
treated as zero. We observed higher PhastCons scores at CG-DMRs in inhibitory neuron clusters
than in excitatory (Fig. 4E, p < 0.001, Wilcoxon rank-sum test), suggesting greater sequence
conservation of inhibitory neuron regulatory elements across species. We then performed the
same analysis at putative enhancers identified by REPTILE from purified neuronal populations
[135], and also found greater sequence conservation in inhibitory than excitatory neuron putative
enhancers (Appendix C.17F).

We calculated average PhastCons score across the region surrounding (+/- 10kb) of
excitatory or inhibitory neuron CG-DMRs with 100 bp resolution. The conservation of inhibitory
neuron CG-DMREs is greater than in excitatory only within 500bp around the CG-DMR (Appendix
C.17G). Then we investigated whether genes preferentially expressed in inhibitory neurons are
more conserved at their gene body. We used nuclear RNA-seq data [5] to find genes with at least
2 fold over-expression in one cell type against the other two cell types. Excitatory neuron specific
genes showed greater sequence conservation than PV and VIP specific genes at their TSS and
similar conservation in flanking regions (Appendix C.17H). This result indicates that the higher
conservation of inhibitory cells may be restricted to the regulatory elements.

We further divided mappable CG-DMRs into two categories: those proximal to a TSS

(within 25kb) and those distal to a TSS, computing the PhastCons score for each. Results showed
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greater conservation of inhibitory neuron CG-DMRs, with the difference being more pronounced
for distal CG-DMRs (Appendix C.171).

Finally, we examined whether excitatory and inhibitory neuron CG-DMRs associated with
the same gene (within 25kb of TSS) show different conservation. For each gene, we compared the
PhastCons score between DMRs in excitatory cells and inhibitory cells that associated with the
genes, and again we observed a significant higher conservation in inhibitory DMRs (Appendix

C.14], p < le — 6, Wilcoxon signed-rank test).

C.2 Supplementary texts

C.2.1 snmC-seq shows reliable sample multiplexing and high reads map-
ping rate

Our snmC-seq protocol starts from separating single nuclei using fluorescence-activated
cell sorting (FACS) and dispense into wells of 384- well PCR plates followed by proteolytic
digestion and bisulfite conversion. snmC-seq is compatible with both fresh and frozen tissues. We
incorporated 5’- sequencing adaptors through indexed random primer-initiated DNA synthesis.
(Fig. 1A) After pooling four indexed random priming reactions, 3’- sequencing adaptors were
incorporated using AdaptaseTM technology. The majority of multiplexed pools were constructed
by combining two mouse and two human nuclei. Mapping of sequencing reads to both mouse and
human reference genomes showed negligible cross-species mapping (Appendix C.2A), confirming
the fidelity of the multiplexing strategy.

We have compared snmC-seq with published methods for single cell methylome including
scBS-seq [126], scWGBS [127], scM&T-seq [81]. We specifically examined fraction of reads
retained after adaptor trimming, unique mapping rate and library complexity (Appendix C.2B-

D). We generated scWGBS libraries from single mouse cortical nuclei using Illumina Truseq

112



Methylation kit as described in [127]. snmC-seq shows significantly greater mapping rate
(median = 52.7%) compared to scM&T-seq (median = 19.8%, [81]) and scBS-seq (median =
22.5%, Appendix C.2C [126]). The mapping rate of snmC-seq is comparable to scWGBS libraries
(median = 55.4%). However, snmC-seq library contains approximately four times more unique
molecules than scWGBS libraries (Appendix C.2D).

Reads coverage pattern was compared between downsampled traditional bulk MethylC-
seq data, snmC-seq, scBS-seq [126] and sc-WGBS [127]. It was previously shown that the
coverage of CpG islands (CGI) is enriched in single cell methylome [126, 127]. CGI enrichment
was determined relative to shuffled genomic regions with matching sizes (Appendix C.2E). snmC-
seq showed similar enrichment of CGI (mean fold change = 1.65x) as sc-WGBS (mean fold
change = 1.54x), while scBS-seq showed moderately higher CGI enrichment (mean fold change
= 2.02x). Traditional MethylC-seq showed depletion of CGI with a mean fold change of 0.52x.

To quantify the evenness of single cell methylome coverage, the fraction of non-overlapping
1kb and 10kb genomic bins covered by sequencing reads were plotted as a function of sequencing
depth for each method (Appendix C.2F). With a given number of sequencing reads, traditional
MethylC-seq data always covers most genomic bins, suggesting less coverage bias than single
methylome methods. Single cell methylome methods show moderate difference between their
coverage evenness, with snmC-seq showing intermediate evenness between sc-WGBS and scBS-
seq measured with 1kb bin coverage, and near identical evenness with sc-WGBS measured with

10kb bin coverage.

C.2.2 hPv-2 is a potentially human specific PV+ inhibitory neuron popu-

lation

hPv-2 represented a potential human-specific inhibitory population. The strong hy-
pomethylation of GAD1 and LHX6 genes in hPv2 suggests these are inhibitory neurons derived

from the medial ganglionic eminence (MGE) (Appendix C.12B); however, hPv-2 was the only
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inhibitory neuron cluster in either mouse or human showing hypermethylation of GAD2. Notably,
hPv-2 cells have low mCH at CCK and high methylation at GRIK3, similar to caudal gan-
glionic eminence (CGE) derived interneurons, such as VIP cells, and distinct from MGE-derived
inhibitory cells.

Unique large CG-DMRs were also found in hPv-2 (Appendix C.16E,J). Gene bodies of
NACC2, UNCS5B, FAM20C and FAM222A were demethylated in hPv-2 but not in any other
human or mouse inhibitory neuron clusters (Appendix C.16E, J). Thus, these observations
suggest hPv-2 is a unique human PV neuron population defined by both marker gene mCH and

super-enhancer mCG signatures.

C.2.3 Inhibitory neurons show layer-specific DNA methylation signatures

We found that global mCH level differed among inhibitory neurons within a clusters but
located in different cortical layers (Appendix C.14A). For example, PV+ interneurons located
in superficial layers had significantly less global mCH than middle and deep layer PV+ neurons
(p < 1x107>, Wilcoxon rank sum test). Significant global mCH layer differences were also
found between superficial and middle layer SST+ neurons (p < 1x10~3, Wilcoxon rank sum
test). Moreover, we identified 406 genes with layer specific mCH in PV+ neurons (Appendix
C.14B, one way ANOVA g-value < 0.01; Table S4). The vast majority (358) of these genes were
hypomethylated in superficial layer PV+ neurons. In addition, MGE-derived inhibitory popula-
tions, including PV+ and SST+ but not CGE-derived VIP+ neurons, shared a significant fraction
of genes showing hypomethylation in superficial layers (hypergeometric p-value=8.7x107>,
Appendix C.14E), suggesting that layer-specific gene regulation in mature inhibitory neurons may
be defined by their progenitor zones. Genes with low mCH in superficial layer PV+ neurons are
enriched in functional annotations including neurogenesis, axon guidance functions and synapse
part (Appendix C.14F-H), suggesting layer-specific epigenetic regulation of synaptic functions in

inhibitory neurons.
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We identified human PV+ and SST+ neurons that putatively located in different layers by
comparing to mouse superficial or deep layer neurons (Appendix C.14I). Human PV+ and SST+
neurons putatively located in different layers were separated by tSNE (Appendix C.14J and K).
Superficial and deep layer human SST+ neurons were also separated by clustering, with hSst-2
correlated with superficial layer mSst-1 whereas hSst-1 and hSst-3 correlated with deep layer
mSst-1 (Appendix C.141). Superficial layer human PV+ and SST+ neurons had less global mCH
compared with neurons of the same type located in deep layers (Appendix C.14M). A group of
genes, including Cux2, Nignl, Grin2a and Shank2, showed similar layer specific mCH patterns

between mouse and human (Appendix C.14N-0O).

C.2.4 Large CG-DMR is a reliable marker for superenhancer

We tested the specificity of superenhancer prediction with large DMR using CG-DMRs
found in mL.2/3. Putative excitatory neuron superenhancers were predicted using enhancer histone
mark H3K27ac profile of purified Camk2a+ excitatory neurons with software ROSE [5, 137].
mlL2/3 has a high-coverage aggregated methylome from 690 single neurons, which allowed
sensitive CG-DMR calling for this cluster. We first merged mL2/3 CG-DMRs located within 1kb
from one another and then ranked merged CG-DMRs by their size. We found that the enrichment
of H3K27ac over merged CG-DMRs increases along with the size of CG-DMRs (Appendix
C.16A), suggesting large CG-DMRs are associated with strong regulatory activity. A greater
portion of large DMRs (e.g. > 15kb) were overlapped with putative superenhancers, compared to
DMRs with smaller sizes (Appendix C.16B). For example, 90.3% of merged DMRs larger than
15kb, whereas only 24.8% of merged DMRs with size greater than 2kb were overlapped with

putative superenhancers.
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Figure C.1: mCH can be accurately estimated within 100kb bins using sparse snmC-seq data.
(A) Theoretical model estimates the relative RMS error in mCH in genomic bins e = sqrt((1-
p)/(preb)), where p ~ 0 — 0.2 is the true methylation level, r /= 0.05 is the genomic coverage,
¢ ~ 0.2 is the fraction of CH positions in the genome, and b is the genomic feature size. (B)
Downsampling a deeply sequenced single cell methylome shows that > 95% of the genome
can be covered with > 100 CH basecalls per 100 kb bin, assuming ~ 500,000 reads or ~5%
genomic coverage. (C) The rRMS error is estimated by comparing the mCH estimated using
the full coverage data with downsampled data.
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Crossover mapping rate of multiplexed samples
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Figure C.2: snmC-seq is compatible with multiplexing and demonstrates efficient read mappa-
bility. (A) Mapping of 100 randomly selected multiplexed snmC-seq samples to both human and
mouse reference genomes showed no species crossover between pooled indexed random priming
reactions. (B) Percentage of sequencing reads retained after trimming of generic Illumina adap-
tors, random primer index and low complexity tail introduced by AdaptaseTM for snmC-seq.
(C) Percentage of trimmed sequencing reads that were uniquely mapped. (D) Complexity of
single cell methylome libraries estimated using R1 reads. (E) Enrichment of CpG islands in
DNA methylome generated by traditional MethylC-seq, snmC-seq, scBS-seq and sc-WGBS.
(F) Fraction of 1kb and 10kb non-overlapping bins covered by single cell methylome data as a
function of the number of sequencing reads.
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Downsampling cells o

F Clustering by mCG

Figure C.3: Single nuclei are consistently clustered by cell type using multiple methylome
features across a wide range of genomic length scales. (A) Cell types can be clearly separated in
tSNE space despite downsampling reads to 20% of the full mouse dataset (~280,000 uniquely
mapped reads per cell); the quality of clustering begins to break down at 10% downsampling
(140,000 reads). tSNE analysis was performed using mCH levels in 100kb bins (minimum
coverage, 100 base calls), and each cell was colored according to the cluster identity assigned
in our analysis of the full dataset. (B) Major cell types are well separated by tSNE analysis
using as few as 500 or 1,000 cells; increasing the number of cells increases the representation
of minority cell types. (C) Cell type clusters can be identified by tSNE analysis using mCH in
bins as small as 10kb or as large as 1Mb. (D) Comparison of tSNE representation of mouse
clusters based on mCH in intragenic regions (including all bases between each TSS and TES)
vs. intergenic regions (;,10 kb away from any gene body). (E) The cumulative distribution over
all 100 kb bins of the ratio of between-cluster variance (i.e. the variance of the mean mCH
for each cluster) vs. the within-cluster variance (i.e. the variance of all cells, after subtracting
the cluster mean) for inter- and intra-genic reads. (F) Cell type clusters can be identified by
tSNE analysis using mCG in 100 kb bins. (G) tSNE representation of single mouse neuron
methylome with different perplexity values shows consistent patterns. (H-L) The quality of
backSPIN clustering is shown for mouse and human using the adjusted Rand index (H), adjusted
mutual information (I), inverse of the Davies-Bouldin index (J), mean silhouette index (K)
and Calinski-Harabasz index (L). For indices shown in (H-K), a value close to 1 indicates that
clusters are well separated relative to the variability within each cluster, while a value close
to 0 indicates poor cluster separation. Box plots show the distribution of each index over 200
clustering runs with random initialization, and they are compared with the results for randomly
shuffled cluster assignments. (M-N) Comparison of BackSPIN clustering results to clusters
generated from tSNE and DBSCAN for mouse and human.
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Figure C.4: Cluster robustness. (A) 160 independent clusterings were generated with backSPIN
using random initialization. Each backSPIN run converged to one of 7 different clusterings;
we selected the clustering with the highest Dunn’s Index as a reference clustering (red circle).
(B) tSNE plot showing the reference clustering. (C) For each pair of cells, the color shows the
fraction of backSPIN runs in which those two cells were co-clustered. (D) Average co-clustering
for all cell pairs in two different clusters. (E) For every cell pair in each cluster, we plot the %
stability, i.e. the % of runs in which the cells are co-clustered. We also plot the % unstable, i.e.
the % of cell pairs that are not in the same cluster which are co-clustered.
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Association between human neuron clusters and experimental factors
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Figure C.5: Absence of strong association between neuron clusters and experimental factors.
Statistical comparison of clustering to sequencing experimental factors for human neurons (A),
dissected mouse superficial layer (B), middle layer (C) and deep layer (D) neurons.
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Figure C.6: Mouse marker genes. For each gene, single cells are shown in tSNE representation
colored according to the normalized mCH level. Box plots below each tSNE show the distribu-
tion of absolute (not normalized) mCH level across all cells within each cluster. For each gene’s
box plot, we highlight clusters that are significantly hypermethylated (red) or hypomethylated
(blue). Hypermethylated (hypomethylated) clusters are defined to be clusters for which at least
75% of cells have higher (lower) methylation than the top (bottom) 25% of cells in all other
clusters.
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Figure C.7: Human marker genes. For each gene, single cells are shown in tSNE representation
colored according to the normalized mCH level. Box plots below each tSNE show the distribu-
tion of absolute (not normalized) mCH level across all cells within each cluster. For each gene’s
box plot, we highlight clusters that are significantly hypermethylated (red) or hypomethylated
(blue). Hypermethylated (hypomethylated) clusters are defined to be clusters for which at least
75% of cells have higher (lower) methylation than the top (bottom) 25% of cells in all other
clusters.
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Figure C.8: Single neuron clusters are correlated with layer dissection and bulk methylome
generated from purified neuron populations. (A) Single neurons isolated from undissected
and dissected superficial, middle and deep layer frontal cortex tissue are separately visualized
using tSNE. (B) Enrichment/depletion of cells from mouse dissected superficial, middle and
deep cortical layers in neuron clusters. (C) Immunologically (NeuN+) and genetically labeled
(Exc - Camk2a+, PV - PV+, VIP - VIP+, SST - SST+) neuron populations are co-clustered
and visualized together with mouse single neurons using tSNE. (D) Consistent mCH profiles
between bulk methylome and aggregated single neuron methylomes for nonoverlapping 100
kb bins across the mouse genome. Bulk methylome generated from purified mouse neuronal
populations (VIP+, PV+ and SST+) were compared with aggregated single neurons methylomes
of corresponding clusters (mVip, mPv and mSst-1). (E) Browser tracks showing concordance of
snmC-seq data pooled from neuronal cell type clusters (top tracks) with bulk DNA methylation
profiling of purified neuronal cell types. Arrows indicate corresponding single cell clusters and
bulk cell types with low methylation levels at these cell-type specific loci.
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Comparison of mouse neuron clusters defined by mCH and scRNA-seq
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Figure C.9: Correlation between single neuron clusters defined by snmC-seq and single
cell/nucleus RNA-seq. Comparison of mouse neuron clusters to mouse somatosensory cortex
single cell clusters defined by scRNA-seq (A, [36]) and mouse visual cortex single cell clusters
defined by scRNA-seq (B, [37]). For (A) and (B), color represents the fraction of cells in each
snmC-seq cluster having the best match (strongest inverse correlation) for an RNA-seq cluster.
The best RNA-seq cluster match for each of snmC-seq clusters was highlighted with a black
rectangle. (C-E) Normalized Spearman correlation coefficients between gene body mCH level
in snmC-seq clusters and median transcript abundance (TPM) of RNA-seq clusters. Mouse
snmC-seq clusters were compared to mouse somatosensory cortex single cell clusters defined
by scRNA-seq (C, [36]) and mouse visual cortex single cell clusters defined by scRNA-seq
(D, [37]). (E) Human snmC-seq clusters were compared with human cortical neuron clusters
defined by snRNA-seq [39]. Spearman correlation coefficients were normalized by subtracting
the mean value of each row in the matrix.
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Figure C.10: Prediction of neuron type marker genes with single cell methylomes. (A-B) mCH
level of known markers for mouse (A) and human (B) neuron clusters. (C) Gene expression of
known markers for Camk2a+ (Exc), PV+ and VIP+ neuron populations. (D-E) mCH level of
newly predicted markers for mouse (D) and human (E) neuron clusters. (F) Gene expression of
newly predicted markers for Camk2a+, PV+ and VIP+ neuron populations.
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Figure C.11: Double ISH experiments validate novel markers predicted by mCH. (A-B) Relative
mCH level (mCH Z-score) of Sulfl and Tle4. The z-score is defined as the mCH value minus
its mean over all cells, divided by the standard deviation across cells. (C-D) Double in situ
RNA hybridization results using probes for Sulfl and Tle4 in mouse FC. (C) and (D) show two
coronal sections both in mouse FC with (C) located more rostral than (D). (E-F) Relative mCH
level (mCH Z-score) of Adgra3 and Pvalb. (G) Double in situ RNA hybridization results using
probes for Adgra3 and Pvalb.
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Cross-species comparison

of mouse to human neuron clusters

Unique mCH pattern of neuronal marker genes for hPv-2
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Figure C.12: Expanded neuronal diversity in human FC. (A) Cross-species cluster similarity
computed by comparing mouse to human clusters. Color indicates the fraction of neurons in
mouse cluster showing strongest correlation (Spearman correlation at homologous gene bodies)
with each human cluster. Human and mouse cluster pairs that are mutual best matches are
highlighted with black rectangles. (B) hPv-2 shows unique mCH pattern of neuronal marker
genes. Boxplots show the distribution of gene body mCH of individual single human neurons,
normalized by dividing gene body mCH by global mCH for each cell.
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Figure C.13: Global mC levels are conserved between mouse and human neuron types. (A and
B) Global mCH level for single mouse (A) and human (B) neurons. (C-D) Genome-wide mCH
(C) and mCG (D) levels for mouse neuron clusters. (E-F) Genome-wide mCH (E) and mCG
(F) levels for human neuron clusters. (G-H) Cross-species comparison of genome-wide mCH
and mCG level between homologous clusters. (I) Percentage of mCH basecalls located in each
trinucleotide context for mouse neuron clusters. (J) Normalized mCH level of each trinucleotide

context for mouse neuron clusters.
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Figure C.14: Inhibitory neurons possess global and gene level cortical-layer-specific mCH
signatures. (A) Global mCH level shows layer-specific differences in PV and SST neurons.
(B-D) A subset of genes show layer-specific gene body mCH in inhibitory neurons. (E) Overlap
of genes showing layer-specific mCH in PV and SST neurons. (F-H) Gene ontology term
enrichment for genes showing hypo-mCH in PV neurons located in superficial layer. (I) Cross
species similarity computed by comparing human to mouse clusters, with mouse inhibitory
clusters divided into sub-clusters containing neurons located in dissected superficial, middle
and deep cortical layers. Cyan rectangle indicates human neuron showing strongest correlation
to mouse superficial layer PV neurons, magenta rectangle indicates correlation to mouse deep
layer PV neurons, blue rectangle indicates correlation to mouse superficial SST neurons, and
green rectangle indicates correlation to mouse deep SST neurons. (J) tSNE visualization of
mouse PV and SST neurons located in superficial or deep layers. Colors indicate the cell type
and layer for each cell based on layer-specific dissections. (K) tSNE visualization of human PV
and SST neurons that were putatively located in superficial or deep layers. (L,M) Global mCH
of mouse (L) and human (M) PV and SST neurons. (N,0) mCH level of mouse (N) and human
(O) genes showing layer-specific mCH in PV and SST neurons. The z-score is defined as the
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Figure C.15: Neuron-type-specific CG-DMRs reveal regulatory diversity in human and mouse
brains. (A) Distribution of CG-DMR size. Note that the DMR calling software (methylpy)
merges CG positions spaced closer than 250 bp to call DMRs, which accounts for the drop in
the frequency of DMRs around 250 bp. (B) Distance between closest TSS and mouse regulatory
sequences defined by CG-DMRs, enhancers predicted by Regulatory Element Prediction based
on Tissue-specific Local Epigenetic marks (REPTILE, (20)), ATAC-seq peaks and H3K4me3
peaks. The curve shows the cumulative percentage of DMRs within a certain distance to the
closest TSS. (C) Distance between human CG-DMRs and closest TSS. (D-E) Distribution
of mouse (D) and human (E) CG-DMRs in genomic compartments. (F) Consistent mCG
across CG-DMRs between bulk methylome and aggregated single neuron methylomes. Bulk
methylome generated from purified mouse neuronal populations (VIP+, PV+ and SST+) were
compared with aggregated single neurons methylomes of corresponding clusters (mVip, mPv and
mSst-1). (G) Overlap between neuron-type-specific CG-DMRs and ATAC-seq peaks identified
from purified neuronal populations. (H) Overlap between neuron-type-specific CG-DMRs and
putative enhancers predicted from purified neuronal populations. For (G) and (H), the percentage
of row features overlapping with column features was shown. I-J) Hierarchical clustering of
neuron clusters by mCG level at CG-DMRs. (K) Comparison of TF binding motif enrichment
with TF expression level across human neuron clusters. Median TF expression of the best
matching snRNA-seq cluster (indicated on the top) identified in (4) for each snmC-seq clusters
was shown.
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Figure C.16: Identification of neuron type specific large CG-DMRs with super-enhancer like
properties. (A) Average H3K27ac signal was plotted as a function of CG-DMR size. (B and
C) The fraction of large CG-DMRs overlapping with putative super-enhancers was examined
for different DMR size thresholds for identifying large CG-DMRs (blue line). Green line
indicates the number of large CG-DMRs found with each DMR size threshold. The overlap
between excitatory neuron (Camk2a+) super-enhancers and Layer 2/3 excitatory neuron and
PV+ inhibitory neuron large CG-DMRs was shown in (B) and (C), respectively. (D and E) mCG
levels near TSS for super-enhancer-like DMRs in excitatory (D) and inhibitory (E) neurons
in mouse and human. (F,G) Large gene body CG-DMRs and H3K27ac ChIP-seq signal from
mouse excitatory neurons at Bcll1b (Ctip2) locus in mouse (F) and human (G). The height of
green ticks represents mC level at CG dinucleotides. (H-J) Browser view of large CG-DMRs
for excitatory neurons (H), inhibitory neurons (I) and hPv-2 (J). For F-J, the height of green
ticks represents mC level at CG dinucleotides.
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Figure C.17: Regulatory conservation of neuron types. (A and B) Fractions of human (A)
and mouse (B) CG-DMRs that overlapped with CG-DMR of the homologous cluster in the
other species (shared) had no overlap with CG-DMRs of the homologous cluster in other
species (specific), or had no sequence homology in other species (unmapped). (C) Cross-species
Spearman correlation of mCG at CG-DMRs between homologous clusters. (D-E) Enrichment
of shared DMRs between all human and mouse clusters (D) and for homologous clusters (E).
(F-J) Sequence conservation at putative enhancers predicted from purified neuronal populations
(F), regions surrounding CG-DMRs identified in excitatory and inhibitory neuron clusters (G),
genes with preferential expression in purified neuronal populations (H), proximal and distal
mouse CG-DMRs (I), and excitatory and inhibitory CG-DMRs associated with the same set of

genes (J).
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