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Abstract: The steady increase in computational power in the last 50 years is opening unprecedented
opportunities in biology, as computer simulations of biological systems have become more accessible
and can reproduce experimental results more accurately. Here, we wanted to test the ability of
computer simulations to replace experiments in the limited but practically useful scope of improving
the biochemical characteristics of the abN48 antibody, a nanomolar antagonist of the CXC chemokine
receptor 2 (CXCR2) that was initially selected from a combinatorial antibody library. Our results
showed a good correlation between the computed binding energies of the antibody to the peptide
target and the experimental binding affinities. Moreover, we showed that it is possible to design
new antibody sequences in silico with a higher affinity to the desired target using a Monte Carlo
Metropolis algorithm. The newly designed sequences had an affinity comparable to the best ones
obtained using in vitro affinity maturation and could be obtained within a similar timeframe. The
methodology proposed here could represent a valid alternative for improving antibodies in cases
in which experiments are too expensive or technically tricky and could open an opportunity for
designing antibodies for targets that have been elusive so far.

Keywords: in silico affinity maturation; MM-PBSA (Molecular Mechanic/Poisson-Boltzmann Surface
Area); CXCR2; monoclonal antibodies

1. Introduction

Antibodies are large, Y-shaped molecules used by the immune system to identify and
neutralize foreign objects such as pathogenic bacteria and viruses. They are composed of
two proteins of different molecular weights (heavy chain and light chain) linked together by
disulfide bonds. They recognize a unique molecule of the pathogen (the antigen) through
their variable region, which is composed of six relatively short loops: three belonging to the
heavy chain and three to the light chain. The six variable loops are called complementary
determining regions (CDRs), and the possible number of theoretical combinations for
such loops can be on the order of 1020 [1]. In a healthy individual, the antibody diversity
available to the circulating repertoire is vast, perhaps in the region of 1016–1018, and the
number of peripheral blood B cells in a healthy adult human is on the order of 5 × 109, so
the circulating B cell population samples only a tiny fraction of this diversity [2]. The large
diversity in antibody sequences assures that it is theoretically possible to find at least one
antibody that recognizes and tightly binds to any given protein, including those produced
by the organism itself. Antibodies can regulate proteins on the cell surface [3–6] or inside
the cell [7], and thanks to these properties, they have been engineered to become not only
powerful biotechnological tools but also, more importantly, the largest and fastest-growing
class of therapeutic proteins [8,9].

The selection of antibodies for a specific target has been facilitated by the development
of monoclonal antibodies (mABs) from combinatorial phage-display libraries [10–13], a
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technology that earned the 2018 Nobel Prize for Chemistry. Monoclonal antibodies have
several benefits, such as fewer off-target adverse effects, fewer drug–drug interactions,
higher specificity, and potentially increased efficacy through targeted therapy. The selection
of antibodies from a phage-display library can be performed on cells overexpressing the
target protein [14] or using the purified protein or part of it, such as extracellular domains
or peptides in the hypothetical or desired binding regions [4,5]. The library is screened
for phage binding to the antigen through its expressed surface mAb by a technique called
(bio-)panning. Multiple rounds of phage binding to the antigen, washing, elution and re-
amplification of the phage binders in E. coli improve the chances of pulling out potentially
very rare and potent antigen-binding clones [15].

To further improve the biochemical and biophysical properties of the mAB, a new
library can be built from the most promising binders by allowing random mutagenesis of the
heavy- and light-chain variable regions by using error-prone PCR. This library undergoes
the same panning process described above, and antibodies with desirable characteristics
can be extracted from it. This technique is called antibody affinity maturation [16].

Phage-display panning and affinity maturation are potent tools for selecting antibodies
with the desired biochemical properties. However, limitations still exist that are essentially
linked to the ability (or lack of) to express and purify the target of choice. Alternative
strategies based on computer simulations for the improvement of antibodies [17–25] or
small peptides [26,27] have been successfully explored. However, no golden standard
has emerged: accurate calculation of binding free energy between proteins requires long
molecular dynamics simulation to accurately sample the phase space [28], while simplified
scoring functions [29] produce results that often are system-dependent. The issue is further
complicated by the need to explore the vast sequence space of antibody CDR regions.

Nevertheless, the possibility of substituting at least part of the experimental procedure
with computer calculation is appealing and worth exploring due to the consequential
reduction in cost and time to find a good antibody candidate. In this paper, we propose a
method to improve the affinity of an antibody to a target in silico. The binding energy of
each antibody was evaluated using the Molecular Mechanics/Poisson–Boltzmann Surface
Area (MM-PBSA) method [30–32], while the sequence space was explored by using a Monte
Carlo method in which the new proposed sequences were accepted or rejected according to
the Metropolis algorithm [33,34].

As a proof of concept, we tested our method to improve an antibody that binds to
the extracellular N-terminus of the interleukin 8 receptor beta (CXCR2) in the G-protein-
coupled receptor family. This antibody was obtained by panning a combinatorial antibody
library of phages expressing the single-chain variable fragment (scFv) [35] and using part
of the extracellular N-terminus of the CXCR2 as a bait peptide [4]. Our results showed that
affinity maturation in silico can be achieved and that the newly designed antibodies could
improve the original one, even when the starting antibody had a nanomolar affinity.

2. Materials and Methods
2.1. Molecular Dynamics Simulations and MM-PBSA

All MD simulations were carried out using the Gromacs 2018 package (University of
Groningen, Uppsala University, Uppsala, Sweden, version 2018.8) [36] and the Amber14SB
force field [37] following simulation protocols similar to those we used in our previous
works [38,39]. System preparation and equilibration were the same for each different
antibody–antigen pair. Specifically, each model was solvated with TIP3P water containing
Cl− and K+ ions at a concentration of ∼0.15 M to mimic the physiological ionic strength.
After energy minimization, we performed 200 ps of simulated annealing to allow the side
chains to equilibrate (this is important when mutations are introduced). We then performed
two short simulations lasting 100 ps, first in the NVT and then in the NPT ensembles,
with positional restraints (the position restraint constant was KPR = 500 kJ/mol·nm2) on
the heavy atoms of the protein. During production runs, temperature (T) and pressure
(P) were kept constant at 300 K and 1 atm, respectively, using Berendsen thermostat and
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barostat [40]. Fast smooth particle–mesh Ewald summation [41] was used for long-range
electrostatic interactions with a cut-off of 1.0 nm for the direct interactions.

The structure of abN48 (fragment antigen binding or FAB format) in complex with the
CXCR2 N-terminal peptide from residue 9 to 19 (pepN9-19) was derived from the X-ray
crystal structure PDB ID 6KVF. CDRs sequences were determined according to the Kabat
numbering scheme [42].

This complex was simulated for 26 ns in an unconstrained MD simulation to allow
for a proper equilibration of the side chains in the interacting region. We observed that
the RMSD of the antibody variable region reached equilibrium after 10 ns, and we chose a
random frame after this point as the starting point for the following simulations.

All the mutants of abN48, including those generated by the Monte Carlo method de-
scribed below, were generated from the equilibrated structure of the complex of abN48 and
pepN9-19 by using CHIMERA (Resource for Biocomputing, Visualization, and Informatics
(RBVI), University of California, San Francisco (UCSF), CA, USA) [43].

To obtain accurate configuration samplings for calculating the binding free energy
given a fixed amount of computational power it is preferable to run independent replicas of
short simulations rather than a single longer one [30]. This also proved true in our system
by comparing the results obtained from a single 25 ns MD trajectory with those obtained
from 10 replicas of a 2 ns MD trajectory (Figures S1 and S2 and Results section).

For this reason, in the production runs, free energy calculations were based on con-
figurations obtained from 10 replicas of a 2 ns equilibrium MD simulation under periodic
boundary conditions at constant pressure. Configurations were extracted every 10 ps from
the second half of the trajectory, accounting for a total of 1000 configurations and 10 ns of
dynamics for each of the systems considered.

We computed the binding free energy (∆G) for every configuration using MM-PBSA in
the single-trajectory approximation [30] as ∆G = Gcomplex − (Gligand + Gprotein). Every free en-
ergy term was calculated as an average over the considered structures: 〈G〉 = 〈GMM 〉 + 〈GSolv〉,
where the entropic term is omitted. The vacuum potential energy GMM was calculated based
on the molecular mechanics (MM) force-field parameters (GCoul and GVdW). The solvation
term GSolv was split into polar and non-polar contributions (GPolSolv and GnonPolSolv) and was
computed with the Adaptive Poisson–Boltzmann Solver (APBS) program [44]).

The 10 different replicas could produce, in principle, significantly different trajectories,
but we did not expect large deviations within each of the trajectories. For this reason, errors
were calculated as standard errors of the set of the 10 different average ∆G coming from
each of the simulations’ replicas, and the errors of ∆∆G were obtained from the formula of
propagation of errors.

2.2. Monte Carlo Simulations

To force the sampling of sequences toward a binding energy minimum, we relied
on the Monte Carlo multi-dimensional search method with the Metropolis algorithm [33].
Mutants were designed with the same protocol of the in vitro maturation performed in [4]:
mutations were allowed only in the CDR3 of the heavy chain of the antibody excluding
Gly100, Cys102, and Cys107. Furthermore, no amino acid could be mutated into Gly, Leu,
Met, Trp, Tyr, Cys, or His. Given a starting sequence of the antibody (antibody S), we
randomly selected with equal probability one of the residues and mutated it into another
random residue, obtaining a new antibody (antibody M). We then computed the binding
free energies between the antibody and the pepN9-19 using the MM-PBSA method based
on the MD simulations described above. If the binding free energy of antibody M to pepN9-
19 was lower than that of antibody S (∆∆G = ∆GM − ∆GS < 0), M was accepted and became
the new antibody S in the following Monte Carlo cycle. If the binding energy of antibody
M was higher than that of S (∆∆G > 0), antibody M was accepted with a probability equal
to the Boltzmann factor of the variation of binding free energy (e−∆∆G/KT). If the change
was not accepted, antibody S kept its role in the next cycle.
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2.3. Antibody Expression and Purification

DNA sequences of the corresponding VHs were cloned in the pFuse heavy-chain
vector (#pfusess-hchg1, InvivoGen USA, San Diego, CA, USA) of a human IgG1 antibody.
The VL sequence, which was the same for all studied antibodies, was cloned in the pFuse
light-chain vector (#pfuse2ss-hcll2, InvivoGen USA, San Diego, CA, USA). Plasmids of
the heavy-chain and light-chain vectors were co-transfected into 293F cells that were
maintained in FreeStyle 293 medium (#12338-026, Thermo, Life Technologies Corporation,
Grand Island, NY, USA) at 37 ◦C with 5% CO2, using 293fectin (#12347500, Gibco) according
to the manufacturer’s instructions. The resulting cells were cultured for 5 days for antibody
expression and secretion. The medium was harvested for purification with the HiTrap
Protein A HP column (#17-0403-03; GE Healthcare Bio-Sciences AB, Uppsala, Sweden)
using an ÄKTAxpress purifier (GE Healthcare Bio-Sciences AB, Uppsala, Sweden). Purified
antibodies were concentrated and stored in PBS buffer (pH 7.4) at 4 ◦C for up to 1 month or
at −80 ◦C for up to 1 year.

2.4. Measurement of Binding Affinity Using Surface-Plasmon-Resonance

Biotin-labeled human CXCR2 N-terminal extracellular peptide (pepN48, the antigen
for all the antibodies, which corresponds to the first 48 residues in the CXCR2 protein) was
immobilized on the streptavidin-coated surface of a Series S Sensor Chip SA (#BR100531;
GE Healthcare, Cytiva, Uppsala, Sweden). A Biacore T200 system (GE Healthcare) was
employed for the measurement. The antibodies were serially diluted to the indicated
concentrations in a running buffer (HBS-EP + buffer pH 7.4 (BR100669; GE Healthcare))
and injected as the analytes. The kinetics of association/dissociation were measured and
fitted to an appropriate protein–protein interaction model to calculate the corresponding
binding constant (KD).

2.5. Measurement of the Antibody Binding to CXCR2 Expressed on Live Cell Surface

The Chinese hamster ovarian cell line (CHO-K1) was transduced with the lentivirus
carrying a full-length human CXCR2 coding DNA sequence (NM_001557) under the EF1a
promoter, after which a stable hCXCR2 expressing the CHO cell line was selected and used
in this study. An empty CHO-K1 cell line was used as a control. The stable cell line and
CHO-K1 were maintained in Ham’s F-12K medium (#21127022; Gibco Life Technologies
Corporation, Grand Island, NY, USA) containing 10% (v/v) FBS at 37 ◦C with 5% CO2.

Cells cultured at about 70% confluency were detached using 0.01% trypsin and washed
with PBS. Then, 5 × 105 cells were incubated with 2 µg/mL of each antibody in 100 µL
of PBS with 0.5% BSA for 15 min on ice followed by a PBS wash. Secondary Alexa Fluor
488 antibody binding to human IgG (#A11013, Invitrogen, Life Technologies Corpora-
tion, Eugene, OR, USA) was used for flowcytometry detection (1:1000) according to the
manufacturer’s instructions (CytoFLEX S, Beckman Coulter Life Sciences, Suzhou, China).

3. Results
3.1. Computed Binding Free Energies Correlated with Experimental Binding Affinity

To provide a proof of concept that in silico affinity maturation is possible in a practical
setup, we considered the pool of antibodies obtained in [4] by phage panning and in vitro
affinity maturation using a peptide corresponding to the first 48 residues of the N-terminus
of CXCR2 (pepN48) as bait.

Calculating free energies is a mature tool that can produce reliable results, but it also
has well-known shortcomings. Its sensitivity might not be high enough to distinguish
between data points with low binding-affinity differences. The quality of the results
is possibly system-dependent and strongly depends on the quality of the initial model,
especially if experimental structures are not available.

It is commonly accepted that an accurate sampling of the configuration space is
necessary to produce reliable results. This was particularly true in our case because
mutated residues needed to find a new equilibrium position.
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The sampling is generally done using MD simulations; however, the accuracy of the
results depends on their length, as MD trajectories can become trapped in local minima
that do not correspond to the most probable configuration.

Our method of choice for free energy calculations was MM-PBSA [44], which provided
reliable results in our previous study on an antibody–antigen system [38].

Previous works reported that when using the MM-PBSA method for calculating the
binding free energy, longer simulations tended to produce less accurate results [32,45,46],
but this is not a general rule, as it can depend on the system in consideration [47].

For this reason, we tested the accuracy of MM-PBSA calculation using two different
sampling schemes. In the first case, we extracted 2000 configurations from the last 20 ns
of a single 25 ns MD trajectory; in the second case, we produced 10 replicas of a 2 ns
trajectory and extracted 100 configurations from the last 1 ns of each of them for a total
of 1000 configurations. Comparison with the experimental binding affinity (Figure S2)
showed that both sampling schemes produced results with a fair correlation with experi-
mental data, but the latter was slightly better. Therefore, for the data production runs, we
abandoned longer simulations in favor of the second sampling scheme.

Despite the fact that all the experimental binding affinities were on the order of nano-
or sub-nanomolar, we noticed that the computed binding energy was precise enough to
distinguish between high-affinity and very-high-affinity antibodies (Figure 1 and Table 1)
and that the correlation was sufficiently high to use computer simulations as a screening
methodology (R2 = 0.57, Table 2). It is also important to note that in the simulation setup,
we considered only a shorter version of the bait peptide (pepN9-19) that was used to obtain
the crystal structure of the antibody-peptide complex and that we considered only the FAB
portion of the antibody, while in the experiments, the antibodies were in the full-length
IgG1 format.
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Figure 1. Correlation between experimental binding affinity and computed binding free energy.
(A) Illustration of the abN48-CXCR2 system. The light chain and heavy chain of abN48 in FAB format
are shown in in red and green, respectively. The CXCR2 protein is shown as a ribbon; the color goes
from pink (N-terminal) to blue (C-terminal). Phe14 (gray) and Trp15 (purple) of CXCR2 are the main
contributors to the interaction with the pepN9-19. The structure of the N-terminal of CXCR2 is not
known except for the crystalized residues and is modeled here as a random coil. (B) Correlation
between the binding affinity ∆∆G and the log10 of the experimental KD. The correlation coefficient
between the two sets of data was R2 = 0.57.

The primary computational bottleneck in the proposed procedure was calculating the
binding free energy using the MM-PBSA algorithm, which in our MD dedicated GPU cluster
took 8 h for each GPU node. The method scales linearly with the number of nodes but
would still not be feasible for researchers with limited computational resources. We recently
tested the accuracy of the PRODIGY web server [38,45,46] in predicting binding affinities
and found that we could qualitatively reproduce the results but with a much-reduced
computational cost. However, the quality of the results appeared to be system-dependent
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because the binding score of the PRODIGY web server for the antibody against CXCR2 did
not correlate with the experimental data (R2 = 0.07) and poorly correlated with the binding
energy computed using the MM-PBSA method (R2 = 0.32, Figure 2).

Table 1. Different contributions to the binding for the various antibodies produced by in vitro affinity
maturation. Absolute values for ∆G were obtained from the sum of the other contributions; the
relative ∆∆Gs were obtained as differences with the absolute ∆G of abN48.

∆∆GMM-PBSA ∆GMM-PBSA ∆Gcoul ∆Gvdw ∆GPolSolv ∆GnonPolSolv
(kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol)

abN48 0 ± 22 −323 ± 16 −2971 ± 42 −334 ± 5 3015 ± 35 −33 ± 0.5
abN48-1 −77 ± 23 −400 ± 16 −3849 ± 57 −360 ± 3 3845 ± 47 −36 ± 0.4
abN48-2 −123 ± 21 −446 ± 15 −3809 ± 48 −362 ± 2 3760 ± 38 −36 ± 0.3
abN48-3 6 ± 14 −317 ± 10 −3034 ± 36 −347 ± 4 3099 ± 36 −35 ± 0.3
abN48-8 −120 ± 26 −443 ± 19 −3851 ± 45 −354 ± 3 3799 ± 39 −36 ± 0.4
abN48-10 −141 ±17 −464 ± 12 −3861 ± 46 −356 ± 3 3790 ± 42 −36 ± 0.4
abN48-28 −94 ± 18 −417 ± 12 −3499 ± 47 −367 ± 3 3484 ± 42 −35 ± 0.4
abN48-29 −173 ± 31 −496 ± 22 −4196 ± 66 −348 ± 2 4083 ± 50 −35 ± 0.3
abN48-38 −65 ± 21 −388 ± 15 −3751 ± 54 −351 ± 2 3749 ± 51 −36 ± 0.4

Table 2. Comparison between the ∆∆Gs evaluated with the MM-PBSA method or PRODIGY web
server and the experimental values of the KD.

Exp. Values ∆∆GMM-PBSA ∆∆GPRODIGY
(M) (kJ/mol) (kJ/mol)

abN48 1.3 × 10−9 0 ± 22 0.00 ± 0.07
abN48-1 2.6 × 10−10 −77 ± 23 0.97 ± 0.06
abN48-2 1.1 × 10−10 −123 ± 22 −0.64 ± 0.06
abN48-3 2.0 × 10−9 6 ± 19 −0.65 ± 0.06
abN48-8 8.3 × 10−10 −120 ± 24 −1.00 ± 0.06

abN48-10 2.7 × 10−10 −141 ± 20 −1.01 ± 0.06
abN48-28 6.5 × 10−10 −94 ± 20 0.03 ± 0.06
abN48-29 1.3 × 10−10 −173 ± 27 −2.31 ± 0.06
abN48-38 2.3 × 10−10 −65 ± 22 −0.36 ± 0.06
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Figure 2. Binding affinity using the PRODIGY web server. The binding affinity of abN48 and all its
mutants in complex with pepN9-19 was computed using PRODIGY. Calculations were done using
the same configurations used in the MM-PBSA method. Results obtained with PRODIGY web server
did not correlate with the log10 of the experimental KD ((A), R2 = 0.07) and poorly correlated with
MM-PBSA results ((B), R2 = 0.32).

In an attempt to understand the differences at the molecular level between the various
antibodies, we present a detailed analysis of abN48 and abN48-2 antibodies in Figure 3.
The latter was chosen as the more promising candidate for follow-up experimental work
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due to its biochemical properties, especially when converted into the IgG format [4]. The
MM-PBSA calculations showed that the mutations of the two serines in arginines improved
the binding affinity, as expected from the experiments.
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Figure 3. Details of molecular dynamics simulation of abN48 and abN48-2. (A) Illustration of abN48
and abN48-2 FABs and their interaction with pepN9-19 (colored in pink; Phe14 and Trp15 are shown
in gray and purple, respectively). The two antibodies shared the same light chain (in red) while the
heavy chains differed only for two residues (two serines of CDR3 of abN48 were mutated in arginines
in abN48-2). (B) Histogram of the binding energy computed using MM-PBSA on the abN48-pCXCR2
complex (black) and abN48-2-pCXCR2 complex (red). The two distributions had clear separate picks
and the t-test showed a p-value < 0.05. Root-mean-square fluctuation (RMSF) of abN48 and abN48-2
heavy chains (C) and light chains (D). The maturated antibody showed higher fluctuations than the
original one, in agreement with the β factor of the crystal structure.

However, it was difficult to pinpoint the contribution of these mutations by looking at
the structure alone or even after a careful analysis of the trajectories, as the two arginines
are not directly interacting with the peptide. The more significant difference between
the two antibodies appears to be the increased flexibility of the antibody CDR regions for
abN48-2, as shown by the root-mean-square fluctuation (RMSF) spectra in Figure 3C,D. As a
consequence, the peptide can fit better into the binding pocket and improve its electrostatic
interaction with the antibody (−3809 kJ/mol for abN48-2 vs. −2971 kJ/mol for abN48).
On the other hand, the non-polar solvation contribution to the binding energy become
worse (+3760 kJ/mol for abN48-2 vs. +3015 kJ/mol for abN48). Overall, these energy
contributions account for a net improvement of ∆∆G = −123 kJ/mol for the maturated
antibody. Such differences are very difficult to predict, even by experienced structural or
computational biologists, and make the design of a similar antibody virtually impossible
using only human intuition.

3.2. Monte Carlo Sampling of the Sequence Space Rapidly Converged to Antibodies with
Improved Affinity

In addition to producing accurate binding energy predictions, it is equally important
to explore the incredibly large space sequence to ensure that improved antibodies can be
found in a reasonable amount of time. While the procedure can be easily parallelized and
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scaled up by increasing the number of nodes in a computational cluster, MM-PBSA remains
a computationally expensive tool. As a consequence, only a few antibody sequences can be
tested with the desired accuracy per day per single node.

To explore the chemical space in a sensible way and reduce the risk of falling into
entropic traps, we decided to generate Markov chains [48] of antibody sequences using a
Metropolis algorithm aimed at maximize the affinity between the antibody and the target
peptide. As we explained in the Materials and Methods section, at each step of the Monte
Carlo simulation, a new sequence was derived from the previous by introducing a single
point mutation on the CDR3 of the antibody. The new antibody’s binding energy was
computed using the MM-PBSA algorithm; the new antibody replaced the previous one if it
was a better binder or with a probability proportional to the Boltzmann factor of the energy
difference if it was worse (Figure 4A).
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Figure 4. In silico affinity maturation predictions. (A) Schematic representation of the Metropolis al-
gorithm. At each step, a new sequence was proposed; if the binding energy of the new configuration
was lower than that of the previous one, the new configuration was always accepted; otherwise, the
new configuration was accepted with a probability equal to e−∆∆G/KT. (B) data obtained using the
three Markov chain replicas: at each step we indicated whether the mutation was accepted (acc.) or
declined (dec.). The best binders for each Markov chain are highlighted with red borders and were
selected for experimental validation. (C) Maximum likelihood phylogenetic tree constructed using
MEGA version 11. The scale bar below indicates the distance (amino acid substitution per site). In
silico designed antibodies are represented with red dots. (D) Histogram of all the ∆∆Gs computed
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during the three Markov chain repetitions. (E) Time course of the energy evaluated during the three
different Markov chain repetitions. The starting points are represented with black squares; the energy
is shown in blue if the mutation was accepted and in red if it was declined.

We ran three replicas of the Markov chain simulation, each starting from the same
initial antibody (abN48). Each replica lasted for 26 attempted steps (corresponding to
about 10 days of simulations on three different nodes of the computational cluster, a time
comparable with that necessary to perform antibody maturation in vitro). Due to the
stochastic nature of the Monte Carlo method, the replicas produced sequences significantly
different from the initial one after the very first step of the Markov chain. In all three cases,
the Markov chain rapidly found an antibody sequence with an improved binding energy,
despite the starting point already being in the sub-nanomolar affinity (Figure 4B). In most
cases, a single point mutation produced an antibody with a binding affinity close to the
previous one in the Markov chain. Still, it was also possible to find particularly favorable
or unfavorable mutations. The values of ∆∆G of the attempted mutations are skewed
toward negative values (Figure 4D), a result expected from a Metropolis algorithm that
had not yet converged to a minimum. The antibodies generated in this way appears to
belong to an entirely new branch in the phylogenetic tree if compared with those produced
using in vitro maturation (Figure 4C), indicating that in silico maturation could be used in
parallel to the experimental methods to improve the sampling of the sequence space.

3.3. In Vitro Test of Antibodies Showed the Efficacy of the Method

Finally, we wanted to test whether the newly designed sequences were better binders
also in the experiments. This was done using the Surface Plasmon Resonance (SPR) method
to test the binding between the antibodies and the N-terminal peptide. The results showed
that two out of three antibodies (S1-M22 and S2-M12) were better binders compared to
abN48, both with a binding affinity (KD = 4.6 × 10−10) about three times better than that
of the abN48 antibody (KD = 1.3 × 10−9) and in the same order of magnitude of the best
antibody obtained from the experiments (abN48-2, KD = 1.1× 10−10, Figure 5A and Table 3).
More importantly, flowcytometry experiments showed that both antibodies could recognize
and bind to CXCR2 proteins expressed on the Chinese hamster ovarian (CHO-K1) cell
surface (Figure 5B and Table 3). Instead, the third in-silico-designed antibody did not
bind to the pepN48 peptide in the SPR experiment, but displayed some residual binding
on the CHO-K1 cells that expressed CXCR2. This could indicate that the third antibody
had poor biophysical properties or a binding affinity much lower than predicted from the
simulations. Even though the affinities of the two functioning antibodies to the peptide
were the same, the KON and KOFF were notably different, showing that the three Markov
chains found three antibodies that were very different in their biochemical properties.

Table 3. Experimental binding assays on the antibodies resulting from in silico maturation. KON,
KOFF, and KD values were obtained using SPR. After fitting the data in Figure 1, the predicted values
for the KD were 2.8 × 10−10, 1.0 × 109, and 2.6 × 10−10 for S1-M22, S2-M12, and S3-M20, respectively.
The geometric mean fluorescence intensity and positive cell percentage (gated by the dashed line) of
each group shown in Figure 5B are shown in the last two columns.

KON (1/Ms) KOFF (1/s) KD (M) Mean Fluorescence
Intensity

% of Positive
Cells

abN48-2 2.5 × 106 2.7 × 10−4 1.1 × 10−10 174.7 × 103 98.6

S1-M22 4.0 × 107 1.8 × 10−2 4.6 × 10−10 40.8 × 103 40.9

S2-M12 7.2 × 105 3.3 × 10−4 4.6 × 10−10 43.1 × 103 43.0

S3-M20 n/a n/a n/a 6 × 103 0.2
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Figure 5. Experimental validation of theoretical predictions. (A) Binding kinetics and affinity of
abN48-2, S1-M22, and S2-M12 to the peptide of extracellular N-terminal domain of human CXCR2
were determined using the SPR method (Biacore T200 system). Lines of different colors correspond
to raw data obtained for different antibody concentrations (red curve: 0.5 nM, green curve: 1 nM,
blue curve: 2 nM, magenta curve: 5 nM, cyan curve: 10 nM), while the black lines correspond to
the best global fit). S3-M20 binding to the antigen was not detected in the experiment. (B) The
binding ability of abN48-2, S1-M22, S2-M12, and S3-M20 to the native human CXCR2 on the surface
of CXCR2-overexpressing CHO cells were evaluated using cytoflowmetry (CytoFlex). The bottom
panel represents the control experiment with CHO cells not expressing CXCR2. Histograms represent
the distribution of cells bound with antibodies as cell number vs. the amount of bound antibody (FL
intensity—fluorophore-labeled antibody).

4. Discussion

In this article, we tested the possibility of substituting an antibody-maturation experi-
ment with computer simulations under the requirement of using a similar timeframe to
produce the results. There is no lack of applications for such methodology, as computer
simulations are considerably cheaper than experiments and can also be used for targets that
are difficult to study experimentally, leading to an increasing payoff for the pharmaceutical
industry [49].

As our test model, we chose an antibody characterized in a previous work by our
collaborators [4] that binds to the CXCR2. This system was chosen because its structure is
known and because we already had preliminary data to test the quality of our predictions.
It remained a challenging task, as the starting antibody already has a good affinity (in the
nanomolar range) to its peptide target.

We faced two critical problems, and both had to be solved to produce reliable results,
i.e., the ability to accurately compute the binding free energy in a reasonably short amount
of time and the ability to explore the space of antibody sequence in a sensitive way.

We showed that it is possible to obtain a good correlation between experimental
binding affinities and theoretical values for the ∆∆G even within the small range of the
explored KD.

More importantly, we managed to refine the starting sequence in about 20 random
attempts using a Monte Carlo method based on the Metropolis algorithm. While one
of the predicted antibodies did not appear to bind to the target at all, the other two
improved the binding affinity threefold and were comparable to the best one selected by
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the in vitro methodology. The sequences produced by our computational methodology are
very different from the experimental ones in the phylogenetic tree. This could indicate that
good binders to a given target are not rare and that we can use computational approaches
to complement experimental methodologies, increasing the chances that one of the hits has
the desired biochemical and biophysical properties.

Our methodology can be improved and refined in future iterations. MM-PBSA is not
the only possible choice for the computation of the binding free energies. Other methodolo-
gies such as alchemical transformation, free energy perturbation (FEP) [50,51] or computing
the potential of mean force (PMF) necessary to pull apart the two proteins [28,51,52] have
proved their feasibility, and can be used as valid alternative.

It is also possible to use simplified methods based on coarse-grained force fields [52–54]
to obtain a faster evaluation of the binding free energy or, vice versa use more computation-
ally expensive quantum chemistry calculations to obtain more accurate predictions [55,56].
In a recent work [38], we showed that it was possible to find a good correlation between
the results obtained using the PRODIGY web server [57] and MM-PBSA results [44], but
this was not the case for the system of this study, indicating that the results of simplified
methods could be system-dependent. The difference in the performance could be due to
the lack of sensitivity of the PRODIGY score function in the range of the experimental
KD or because the interaction between the antibody and the peptide was mainly due to
hydrophobic contacts. Unfortunately, this also means that the accuracy of similar approx-
imated methodologies needs to be experimentally validated for each specific system, de
facto eliminating the advantage of a purely computational method.

Despite the correlation between the simulations and experiments not being perfect,
the methodology we proposed was revealed to be precise enough to clearly distinguish
antibodies with a very high affinity from those with a lower affinity. Screening methods are
not meant to be extremely precise. False positives and negatives produced by a screening
method are well tolerated as long as the same method can also produce true positives that
can move on in the experimental pipeline. Indeed, both experimental and computational
determinations of binding affinities are prone to high relative uncertainties. Computed or
measured binding affinities only indicate the possibility that an antibody will bind to the
target on the cell surface. These techniques are meant to increase the number of hits before
obtaining the best lead for the follow-up experiments. It is also important to note that an
excellent binding affinity is only the first step toward selecting a valuable antibody for
therapeutic purposes; the more suitable antibody should have other important biochemical
properties (e.g., stability, sensitivity, or specificity to the desired target, and so on) before
becoming a biotechnological tool or a real drug candidate.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12091285/s1, Figure S1: SPR traces used to calculate KD
values for the antibody in Figure 1. Figure S2: Comparison between experimental binding affinities
(Figure S1) and binding free energies computed from configurations sampled according to two
different schemes. Table S1: Sequences of the antibody used for data in Figure 1.
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