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ABSTRACT 

 

Assessing Marine Resources Using Ecology, Fisheries Science, and Expert Judgment 

 

by 

 

Sarah Joanne Teck 

 

Proquest Abstract (150 word limit) 

One of the most challenging issues facing resource managers is how to prioritize 

conservation goals within ecosystems. Firstly, I found experts primarily used percent change 

and trophic impact as the basis for assigning ranks to ecosystem impacts. Mudflats, beach, 

salt marshes, and rocky intertidal were judged most vulnerable, and the highest stressor 

rankings included invasive species, ocean acidification, sea temperature change, and 

demersal destructive fishing. Secondly, I investigated how demographic metrics of the red 

sea urchin Mesocentrotus franciscanus varied in response to protection, temperature, and the 

giant kelp Macrocystis pyrifera. Thirdly, I demonstrated that urchin reproduction can predict 

fishing industry’s standard quality ratings, price, effort, and landings. Understanding the 

spatiotemporal dynamics of urchin’s reproduction is not only useful in understanding the 

ecology and population biology of this species, but also it is essential for managers and 

policymakers to direct efficient management and ensure sustainability, particularly under 

future climate change scenarios.   

  



 

 x 

General Abstract (no word limit) 

One of the most challenging issues facing resource managers is how to prioritize 

conservation goals within ecosystems. Although opinion does not replace empirical data, 

synthesizing expert opinion can reveal areas of agreement, where scientific data may be vast, 

and areas of disagreement, often where scientific information is lacking. In Chapter 1 (Using 

expert judgment to estimate marine ecosystem vulnerability in the California Current), using 

the California Current as a case study, I gathered, quantified, and critically examined expert 

opinions evaluating potential stressors (n=53) within marine ecosystems (n=19). Experts 

(n=107) ranked human activities and performed an exercise to help quantify how they use 

particular vulnerability criteria to rank impacts. Results indicated that experts primarily 

(89%) used percent change and trophic impact as the basis for assigning ranks. Four intertidal 

ecosystems (mudflats, beach, salt marshes, and rocky intertidal) were judged most vulnerable 

to the stressors evaluated. The highest stressor rankings included invasive species, ocean 

acidification, sea temperature change, and demersal destructive fishing. These results provide 

a quantitative, transparent, and repeatable assessment of relative vulnerability across 

ecosystems to any ongoing or emerging human activity. Combining these results with data on 

the spatial distribution and intensity of human activities could offer a systematic foundation 

for ecosystem-based management.  

Focusing on a smaller spatial scale and investigating empirical data of particular impacts 

are necessary to support management decisions with greater certainty. Marine protected areas 

arrayed over a biogeographic cline provided an opportunity to test the potentially interactive 

effects of protection from fishing with other spatial drivers of demographic variability. In 

Chapter 2 (Disentangling the effects of fishing and environmental forcing on demographic 

variation in an exploited species), I used a network of MPAs established in 2003 in the 
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Channel Islands to investigate the effects of fishing on one of the most important exploited 

species in California, the red sea urchin Mesocentrotus franciscanus (previously 

Strongylocentrotus A. Agassiz, 1863). This multi-million dollar industry relies on the 

reproductive organ of the species as a fresh sushi product both domestically and 

internationally. Since spatially explicit ecological information is essential to understand for 

proper management, I described spatial demographic patterns in red sea urchins within the 

northern Channel Islands, where almost half of California’s landings and value originate. I 

investigated how reproductive condition and other urchin demographic metrics varied in 

response to protection (MPA vs unprotected areas), sea temperature, and the main food 

source, the giant kelp Macrocystis pyrifera. Biomass and mean size of red sea urchin adults 

were greater within MPAs, and consequently reproductive biomass was elevated in non-

fished locations. Kelp density was an important explanatory variable of all red sea urchin 

demographic traits (size, gonadosomatic index [GSI], density, biomass, and reproductive 

biomass) and as a main effect accounted for a significant amount of variability in size and 

GSI. In addition, red sea urchin adult size and reproductive biomass were higher in the 

western, cooler region. A number of complex interactions were observed, notably urchin 

adult biomass and reproductive biomass were positively related with kelp but only in warmer 

areas within the region. Our results underscore the significant impacts from humans as 

predators and that marine protected areas can benefit fished herbivores, but herbivore 

demographics are also tightly linked with macroalgal dynamics embedded in a complex 

temperature gradient.   

Within this multi-million dollar red sea urchin fishing industry, the primary driver of 

fishing as in many other fisheries is price, which is in turn determined by gonad quality. A 

relatively simple measure of the fraction of the body mass that is gonad, the GSI, provides 
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important insight into the ecological and environmental factors associated with spatial and 

temporal variability in reproductive quality, and hence the value of the fishery. In Chapter 3 

(Quality of a fished resource: Assessing spatial and temporal dynamics), I examined patterns 

of GSI showing a clear annual cycle and revealed GSI as a tool to predict the industry’s 

standard quality ratings, price, fishing effort, and fishing landings. Understanding the 

spatiotemporal dynamics of urchin’s reproduction is not only useful in understanding the 

ecology and population biology of this species, but also it is essential for managers and 

policymakers to direct efficient management and ensure sustainability, particularly under 

future climate change scenarios.   

Changes in climate (e.g., increases in temperature, storm severity, and storm frequency) 

may result in both profound ecological ramifications and varying human behavior. For 

example, if storms increase during the winter, fishing effort during the high quality resource 

season may be more limited. If the higher frequency of storms and increased wave action 

reduces macroalgal density, the quality of a fished resource may be degraded in certain areas 

that were once important fishing grounds. In addition, since climate and fishing both 

influence species’ distribution and abundance, it is important to understand their combined 

effects on the system may be synergistic. Examining phenological changes in species, which 

may include tracking reproduction over seasons and years, is not only important for resource 

management but also may be a simple ecological indicator of climate change. 
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I. Using expert judgment to estimate marine ecosystem 

vulnerability in the California Current1 

Collaborators: Benjamin S. Halpern, Carrie V. Kappel, Fiorenza 

Micheli, Kimberly A. Selkoe, Caitlin M. Crain, Rebecca Martone, 

Christine Shearer, Joe Arvai, Baruch Fischhoff, Grant Murray, Rabin 

Neslo, and Roger Cooke 

1 Published in 2010. Ecological Applications 20: 1402-1416. 

 

Abstract  

As resource management and conservation efforts move towards multi-sector, 

ecosystem-based approaches, we need methods for comparing the varying responses 

of ecosystems to the impacts of human activities in order to prioritize management 

efforts, allocate limited resources, and understand cumulative effects.  Given the 

number and variety of human activities affecting ecosystems, relatively few 

empirical studies are adequately comprehensive to inform these decisions.  

Consequently, management often turns to expert judgment for information.  Drawing 

on methods from decision science, we offer a method for eliciting expert judgment to 

(1) quantitatively estimate the relative vulnerability of ecosystems to stressors, (2) 

help prioritize the management of stressors across multiple ecosystems, (3) evaluate 

how experts weight different criteria to characterize vulnerability of ecosystems to 

anthropogenic stressors, and (4) identify key knowledge gaps. We applied this 

method to the California Current region in order to evaluate the relative vulnerability 
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of 19 marine ecosystems to 53 stressors associated with human activities, based on 

surveys from 107 experts.  We found that 89% of the variance in experts’ judgments 

of vulnerability across all 19 ecosystems can be explained by two criteria: the 

ecosystem’s resistance to the stressor and the number of species or trophic levels 

affected.  Four intertidal ecosystems (mudflats, beach, salt marshes, and rocky 

intertidal) were judged most vulnerable to the suite of human activities evaluated 

here. The highest vulnerability rankings for coastal ecosystems were invasive 

species, ocean acidification, sea temperature change, sea level rise, and habitat 

alteration from coastal engineering, while offshore ecosystems were assessed to be 

most vulnerable to ocean acidification, demersal destructive fishing, and shipwrecks.  

These results provide a quantitative, transparent, and repeatable assessment of 

relative vulnerability across ecosystems to any ongoing or emerging human activity.  

Combining these results with data on the spatial distribution and intensity of human 

activities provides a systematic foundation for ecosystem-based management.  

 

Keywords: anthropogenic impact; coastal and offshore ecosystems; ecological 

recovery; ecosystem-based management; ecosystem stressor; ecosystem 

vulnerability; human impact; resilience; threat assessment 

 

Introduction 

Conservation and management efforts must prioritize where to spend resources 

on mitigating impacts of human activities on the environment. This need has become 
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increasingly apparent in the California Current, a region that stretches roughly from 

the U.S.-Canada border to central Baja California, Mexico, due to both increasing 

human population size (and associated environmental impacts) and increased 

political will and funding for improving ocean management. Recent efforts to 

address human impacts to the marine ecosystems of this region include the West 

Coast Governors’ Agreement on Ocean Health, California Ocean Protection Council 

(OPC) and Marine Life Protection Act (MLPA) Initiative, Oregon’s Ocean Policy 

Advisory Council (OPAC), and Washington’s Puget Sound Partnership and State 

Oceans Caucus (SOC) and Ocean Policy Advisory Group. 

The process of assessing threats to species and the environment and prioritizing 

actions to mitigate them has a long history.  Many methods have been developed by 

academics, agencies and conservation NGOs; indeed entire journals and agencies are 

dedicated to the topic.  In the United States, relevant legislation includes the Coastal 

Zone Management Act, National Environmental Protection Act, Endangered Species 

Act, Marine Mammal Protection Act, and National Marine Sanctuary Act.  All 

require evaluating the potential negative impacts to species and ecosystems from 

stressors associated with human activities.  Together, these methods have been the 

focus of thousands of research projects, analyses and reports (e.g., Smit and Spaling 

1995, Council on Environmental Quality 1997, Wilcove et al. 1998).  Analogous 

efforts have been conducted by regional and global conservation organizations such 

as World Wildlife Fund’s ecoregional plans (Olson and Dinerstein 1998) and 

Conservation International’s biodiversity hotspots (Myers et al. 2000). 



 

 

 

 4 

Nonetheless, despite mandates for comparing impacts from multiple stressors, 

these efforts have largely focused on specific ecosystems, species, or issues.  This 

focus limits their ability to inform the emerging demand for cross-ecosystem, cross-

sector comparisons of ecosystem-stressor interactions that are necessary for 

ecosystem-based management (EBM) (Spaling and Smit 1993, Council on 

Environmental Quality 1997, U.S. Environmental Protection Agency 1999, Crowder 

et al. 2006).  Indeed, a key challenge for such efforts is that most marine ecosystems 

are subjected to many different human activities, making it difficult to disentangle 

the unique contribution and relative importance of each, especially when each 

ecosystem likely responds differently to the stressors associated with each activity 

(Halpern et al. 2007).  What is needed, then, is a method for assessing vulnerability 

that is ecosystem-scale and can directly compare across multiple stressors and 

multiple ecosystems. 

Unfortunately, the methods and metrics to quantify ecosystem vulnerability to 

stressors that have been developed for a single issue, such as pollution, do not 

provide a means to compare levels of ecosystem vulnerability to stressors across a 

diversity of issues or ecosystem types.  For example, ecotoxicology emerged as a 

field primarily in order to evaluate how water quality affects species and 

communities, yet these tools cannot be generalized to other issues. In marine 

systems, comparative evaluations have tended to focus on particular species (e.g. fish 

stocks, marine mammals, sea turtles) or issues (e.g., water quality, fishing, habitat 

loss) where a common currency, such as population size, toxin load, or habitat area 
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can be used to quantify effects.  There are notable exceptions, such as the recent 

rezoning process on the Great Barrier Reef Marine Park (Fernandes et al. 2005) and 

The Nature Conservancy and World Wildlife Fund’s marine ecoregional assessment 

processes.  

There is growing consensus that ecological vulnerability is a function of 

exposure, sensitivity, and resilience to stressors (Metzger et al. 2004, Millennium 

Ecosystem Assessment 2005).  This shared framework creates the opportunity to 

inform and guide EBM through the integration of specific knowledge about 

vulnerability into an overall assessment of how human activities affect the marine 

ecosystems within a region.  Ideally, assessments of overall vulnerability would be 

based on empirical data quantifying the expected impact of each stressor on each 

ecosystem. However, such data are available for only a fraction of the stressor-

ecosystem combinations (Halpern et al. 2007).   

Because of the lack of comprehensive empirical information on ecosystem-

stressor interactions, expert interpretation and synthesis are needed to make existing 

research directly useful to management. The complexity of these processes is a 

common challenge in other fields such as engineering, sociology and economics, 

where expert judgment is often used to predict failure in complex machines (e.g., 

nuclear power reactors) and understand societies that defy controlled experiments 

(Morgan and Henrion 1990, Morgan et al. 2000, Fischhoff et al. 2006, O'Hagan et al. 

2006).  Halpern et al. (2007) presented results from applying a recently developed 

method for eliciting expert judgments on the vulnerability of marine ecosystems to 
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anthropogenic stressors. In a quantitative model, experts estimated values of five 

components of ecosystem vulnerability: spatial scale, frequency, trophic impact, 

percent change (resistance), and recovery time. The five components, called 

vulnerability criteria, were based on metrics of exposure and sensitivity to stressors 

(Table 1). Because ecological vulnerability is a fairly abstract concept, structuring the 

collection of expert knowledge on vulnerability into these five more concrete factors 

creates more consistency and transparency to the use of expert opinion. The values 

for the five criteria are then combined to create a single score, which expresses the 

relative vulnerability of each ecosystem to each stressor. These quantitative 

vulnerability scores can be used to rank stressors or rank ecosystems to guide 

management or conservation priorities in mitigating human impacts. Rather than 

seeking group consensus, assessments are based on the distributions of expert 

judgments, allowing users to see the range of opinion.  

The Halpern et al. (2007) method has two important shortcomings that are now 

addressed in this study.  First, the five vulnerability criteria were weighted equally 

when combined into a single score. However, it is possible that experts are more 

concerned with one criterion, such as recovery time, than another, such as frequency 

of exposure, when judging what makes an ecosystem vulnerable to a stressor.  

Although equal weights often approximate more complex weighting schemes 

(Dawes 1979, Camerer 1981, Dawes et al. 1989), the stakes are high enough in 

marine resource management to assess weights empirically. Second, experts assessed 

their uncertainty with verbal quantifiers having no clear quantitative equivalent. 
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Without a more explicit representation of uncertainty, policy makers cannot know 

how much faith to place in the judgments, and scientists cannot fairly evaluate their 

predictions (Morgan and Henrion 1990, O'Hagan et al. 2006, Fischhoff in press).  

Our work here takes advantage of a long history in the decision sciences of 

assessing how to set priorities (e.g., rank threats) when data are scarce and 

uncertainty exists by using the best available scientific judgments (e.g., Morgan and 

Henrion 1990, Fischhoff 2005, Willis et al. 2005).  Basic research in human 

judgment has documented many ways in which unaided judgments (e.g. off-the-cuff 

assessments such as simply listing the rankings of threats) can produce results that do 

not stand up to more careful validation (Payne et al. 1992, Lichtenstein and Slovic 

2006).  One common approach to aid the elicitation of expert judgment is to use 

discrete choice tasks to help experts to summarize their beliefs (Cooke and Goossens 

2004). Here we apply one such approach based on ranking hypothetical scenarios of 

human impact to determine the relative importance of the five vulnerability criteria 

to expert judgment on how human activities in the California Current affect 19 

different marine ecosystems. Variants on this approach have been used to assess 

risks in other complex, uncertain situations where empirical knowledge is limited, 

such as complex engineered systems and disaster management (Cooke and Goossens 

2004). 

In this study we elicited judgments from scientific experts who study marine 

ecosystems within the California Current region to develop a deeper understanding 

of marine ecosystem vulnerability to a diversity of anthropogenic stressors.  Even in 
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this data-rich part of the world, critical and numerous gaps in empirical research 

remain, and our methods help fill these gaps in a low-cost, repeatable, and 

transparent manner until empirical data are available.  Our approach generates a 

matrix of relative vulnerability scores for every stressor by ecosystem combination 

that can be useful for management decisions and tools requiring detailed, 

information about multiple human uses of the oceans at regional scales. Elsewhere 

we use results from this study to inform a concurrent project mapping human 

activities across ecosystems in order to identify areas of particularly high or low 

cumulative impact (Halpern et al. 2009). In addition to informing management 

efforts dealing with these specific stressors within the California Current, we hope to 

demonstrate the utility of methods that can be applied elsewhere in the world.  

 

Methods 

Generating a matrix of vulnerability scores for all ecosystem-stressor 

combinations requires three components: 1) a comprehensive list of the relevant 

ecosystems and human stressors for the region, 2) estimated values for the five 

vulnerability criteria for every stressor-ecosystem combination, and 3) the weights 

determining how to combine the criteria values into a single score.    

For the first component, ecosystem and stressor lists were based on a previous 

list (Halpern et al. 2007), refined with input from two experts on California Current 

ecosystems (personal communication: M. Beck, The Nature Conservancy and M. 

Ruckelshaus, NOAA Fisheries Service). We included 19 distinct ecosystem types 
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and 53 anthropogenic stressors. We acknowledge that there are additional historical 

stressors that humans have not imposed upon the system within the past five years, 

and some of these stressors have had a lasting effect on the system through to 

present-day. We ignored these historical stressors and focused only on present-day 

stressors, which the system has been exposed to within the past five years. To 

achieve the second and third component, we designed an expert survey focused on 

estimating the values for the five vulnerability criteria and eliciting their relative 

importance in judging vulnerability using a discrete choice approach (Appendix A). 

The five vulnerability criteria were developed previously (Halpern et al. 2007) in a 

workshop of conservation scientists and ecologists to represent whole-ecosystem 

vulnerability to a stressor (Table 1; see Appendix A, Part III for more detailed 

criteria definitions). We use these same five criteria, but with resistance now defined 

as a continuous variable: percent change. Criteria values take into account both direct 

effects (e.g. species mortality) and indirect ones (e.g. loss of nursery habitats).  The 

mathematical basis for deriving the vulnerability model and the process of 

determining the criterion weights using a discrete choice survey are described below. 

  

Multi-criteria decision model  

The vulnerability model treats vulnerability as a weighted sum of the five criteria 

(Table 1) represented mathematically as: 

 

Vulnerability(stressor i, ecosystem j) = Σk=1,..5 Wk S(j)
i, k ,                             (1)  
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where S(j)
i, k is the value of stressor i on criterion k in ecosystem j and Wk is the 

weight assigned to criterion k, such that Wk ≥ 0, Σk=1,…5 Wk = 1. The coefficients, or 

weights, are normalized so that they sum to unity.  The weights are assumed to be the 

same for all ecosystems and stressors under consideration. This assumption allows 

for a single model to be applied to all ecosystem-stressor combinations, in turn 

allowing for direct comparison among them.  While many mathematical models exist 

for combining the weights to create a single value (e.g. linear, logarithmic, 

polynomial), because environmental vulnerability is expected to be monotonic for all 

criteria (i.e., higher values denote greater impacts), it can be reasonably 

approximated by a simple linear model with positive coefficients.  

To derive the relative weights Wk of each vulnerability criterion we used a type of 

discrete choice task in which the expert is presented with a list of hypothetical 

scenarios of anthropogenic stressors in a specified region and ecosystem type (Table 

2; see Part III of the survey instrument in Appendix A). Each scenario represents a 

different stressor, and hypothetical but realistic values for the five criteria are 

provided next to each scenario name. The expert must rank the top five scenarios 

they judge to produce the largest negative human impact at the ecosystem level.  The 

choice of five here is unrelated to the fact that there are five vulnerability factors; it is 

simply a large enough number to provide necessary data on the expert’s decision 

making process. Ranking the remaining scenarios is not only cognitively challenging 

but also unnecessary for the statistical analysis (Coombs 1964, Fischhoff 2005, 
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Lichtenstein and Slovic 2006).  The data on the expert’s rankings are used in a 

statistical technique called ‘probabilistic inversion’ (explained below) to derive the 

relative weights (summing to one) of the five criteria (Cooke and Goossens 2004, 

Fischhoff 2005, Du et al. 2006, Neslo 2008; see ‘Analyses’ section below).  

The derivation of the model weights uses a multi-criteria decision model 

(MCDM), a type of random utility model common to economic theory of utility.  The 

MCDM treats the vulnerability criteria weights as random variables whose joint 

distribution is chosen to represent a population of experts, from which the elicited 

experts may be regarded as a random sample. Thus, the confidence intervals on the 

estimated weights reflect disagreement among the experts. To determine the joint 

distribution over the weights we used a technique called probabilistic inversion, 

which inverts a mathematical model at a distribution or set of distributions and is 

analogous to maximum likelihood estimate methods. Conceptually, the process 

returns values for the weights that reflect the importance of each weight in the 

expert’s decision making. For instance, if scenarios with large values for recovery 

time tend to be given high rankings, recovery time would get a large weight, and if 

trophic impact values show no relationship to the rankings, it would get a small 

weight.  

Operationally and more accurately, probabilistic inversion finds a distribution for 

a function which maps onto the target distribution for the set of five vulnerability 

weights. Thus, given potential weights, we may define a function using Eq. (1) which 

says, in effect, “scenario 20 is ranked first, scenario 7 is ranked second” and so forth. 
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Our expert elicitation data might in turn indicate, for example, “10% of the experts 

ranked scenario 20 first, 35% ranked scenario 7 second…”  We search for a 

distribution over the weights which, when pushed through our function, realizes 

these probabilities. We assume that each expert’s ranking is determined by equation 

(1) but with weights Wk that are specific to that expert. The expert population is 

represented as a distribution over possible weight vectors (W1,…W5). This 

distribution should be such that, continuing the above example, when sampled a 

large number of times scenario 7, comes in second place 35% of the time. This 

correspondence must hold for all scenarios and all rank positions, from first ranked 

to fifth ranked. Scenarios with both low and high values for each criterion must be 

included to properly test their relationships to the rankings. Consequently, we chose 

criteria values for the 30 scenarios to capture the full range of possible combinations.  

The method used here to search for this distribution is based on the Iterative 

Proportional fitting algorithm, which finds a constrained maximum likelihood 

estimate of a joint distribution based on the sorts of constraints discussed above 

(Csiszar 1975, Kurowicka and Cooke 2006).  Analyses were conducted with a 

program scripted in C+ because no software currently exists for these analyses; one 

could use other programs separately for the MCDM and probabilistic inversion. 

Random utility models allow for internal validation of the model, providing a 

more explicit and quantitative representation of consensus.  Validation is based on: 

(1) the number of inconsistencies, defined as cases where a hypothetical scenario 

(ecosystem-stressor combination) with lower scores on all five criteria is ranked as a 
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greater stressor than a scenario with higher values on all five criteria and (2) the 

ability of a model built with a subset of the expert discrete choice data to predict the 

remaining scenario rank orders.  

 

The survey instrument 

In May 2007, a preliminary draft of the survey instrument was tested and revised, 

based on input from a sample group of seven experts, none of whom participated in 

the final survey.  The revised survey (see Appendix A) was then provided to 

respondents for completion by hand, phone, online, or in-person interview from June 

to October 2007.  We asked experts to focus on one or more of six subregions, 

delineated to represent jurisdictional and biogeographic regions, and one or more of 

19 marine ecosystem types (see Appendix A, Part I). The subregions are 

Washington, Oregon, northern California (San Francisco and North), central 

California (South of San Francisco to Point Conception), southern California (South 

of Point Conception), and Baja California, Mexico (North of Punta Eugenia). 

Respondents could expand or narrow their focal subregion(s) and ecosystem(s) in 

different parts of the survey. 

The survey had four parts. In Part I, participants provided biographical 

information, such as professional affiliation(s) (academic, agency, non-governmental 

organization, or private company), age, and years of scientific experience within each 

ecosystem and within each geographic subregion. These data were used to test for 

possible drivers (i.e. bias) of expert judgment. In Part II, participants reviewed the 
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list of 53 stressors, divided into 22 categories, and ranked the five stressors with the 

greatest negative impact on their chosen ecosystem and subregion. The 53 stressors 

were the same on every survey, but the order of the list was randomized by category 

to minimize potential order biases. Respondents could add or revise stressors.  These 

“stated rankings” were obtained so that we could assess 1) whether we had captured 

all important stressors and 2) whether the rankings would come out differently when 

simply stating them directly (i.e., unaided judgments), with no information on 

vulnerability criteria values and no statistical framework, in comparison to the 

process of deriving rankings with the MCDM.  Part III elicited expert rankings for an 

individual’s top five hypothetical scenarios where criteria values were supplied for 

example stressors (Table 2), providing the information necessary for the random 

utility model to derive the weights in Eq. (1).  Labels such as “dredging” or 

“recreational fishing” were provided for the 30 scenarios, even though the values 

were hypothetical, to provide examples. In order to test the influence of the scenario 

names on the ranking process, we produced two versions of Part III, one for offshore 

ecosystems and one for coastal ecosystems, such that eight of the 30 scenarios had 

different labels but identical criteria values. We used these two expert groups (i.e., 

offshore and coastal) to compare if weighting values differed by system.  

Part IV provided participants with default vulnerability criteria estimates for each 

stressor affecting their chosen ecosystem, based on values from a global survey 

(Halpern et al. 2007) or our own judgment (when a stressor was not in the global 

survey).  Stressors not thought to exist or to have no relevant impact in that 
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ecosystem were assigned 0 for all vulnerability criteria.  Participants then used their 

judgment to accept or revise each estimate, or indicate that they did not know what it 

should be. These data were used to estimate values for S(j)
i, k in the vulnerability 

model. 

 

Survey respondent pool  

For inclusion in the potential respondent pool, we identified scientific experts 

with personal experience in marine science, conservation, management or policy 

within the California Current and affiliated with academic institutions, governmental 

agencies, non-governmental organizations (NGO), or private environmental 

consulting firms (most scientific experts fall within these four affiliations). Potential 

respondents were identified via web-based searches using ecosystems, stressors, and 

location as keywords, based on our knowledge of the field and literature, and by 

requesting that respondents identify other experts possibly missing from our original 

list.  Invitations were sent to 525 people, including 27 based in organizations located 

outside of the California Current (in Australia, Canada, mainland Mexico and Baja 

California Sur, Panama, and Spain).  One hundred fifty-five invitees self-identified 

themselves as non-experts (i.e., inappropriate or mistaken contacts), resulting in 370 

potential expert respondents (see Table 3 for expert attributes). An additional 130 of 

these never responded so it is unclear whether they received the invitation or were 

truly appropriate experts, leaving a pool of 240 confirmed potential experts. 
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Analyses 

Producing vulnerability criteria weights 

Prior to all analyses, scale and frequency measures were transformed (i.e., scale = 

ln[scale*100] and frequency = ln[frequency*360]) to produce positive values on 

roughly equivalent scales as the other three criteria.  This rescaling helps avoid a 

single criterion driving results simply because it has higher values from which to 

choose.  For each hypothetical scenario in Part III, we calculated the percentage of 

experts who ranked the scenario first, second, third, fourth, and fifth and then used 

probabilistic inversion to calculate the weights that best reproduced these observed 

percentages.  Results were compared for model runs using the first ranking, the first 

two rankings, the first three, and the first four ranks in order to evaluate if number of 

ranks used affected the weighting values. We calculated these weights for all 

respondents (N = 102; five experts did not fill out this part of the survey) and for 

coastal (N = 66) and offshore (N = 36) versions of the survey to evaluate if system 

(coastal vs. offshore) affected weight values.   

To test the validity of our multidimensional vulnerability model we first assessed 

the degree to which our five vulnerability criteria capture what factors experts use to 

rank vulnerability.  To do this we compared the number of inconsistencies in 

scenario rankings (e.g., a case where a scenario with high values for all vulnerability 

criteria and one with low values are both ranked highly) with the number of 

inconsistencies generated by a null hypothesis that experts rank scenarios randomly 

without regard for the criteria values. If more inconsistencies emerge than would be 
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expected at random, either experts used criteria beyond the five provided and/or 

experts did not understand or correctly execute the task.  This method is one way to 

quantify the degree of consensus in expert judgment using a measure of internal 

validity.  We also used criteria weights from the model based on the first four ranked 

scenarios to predict experts’ fifth-ranked scenario and compared these to actual fifth 

ranks from expert judgment to assess how well our model captured expert judgment. 

 

Ecosystem vulnerability scores   

Vulnerability criteria values from Part IV were averaged across replicates (i.e., 

surveys completed by participants) for each ecosystem to estimate S(j)
i, k and 

combined with the weights Wk in (Eq. 1) to produce a vulnerability score for each 

stressor-by-ecosystem combination.  We also calculated an overall average score for 

each stressor from the average scores for the 19 ecosystems and an average 

ecosystem vulnerability score from the scores for the 53 stressors for each ecosystem 

and used these averages to compare among subregions and between coastal and 

offshore ecosystems. We were unable to rigorously test whether ecosystem 

vulnerability scores differed by subregion because this test requires the sample size 

for an ecosystem to be large in all six subregions and in no case did this occur.  

However, sample size was large enough for 17 ecosystem-subregion comparisons 

(see Table 4 for specific pairwise comparisons) to allow for a partial test of 

subregional differences. To compare vulnerability scores between subregions for a 

given ecosystem we (1) averaged stressor vulnerability scores across respondents 
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within a single subregion (instead of lumping subregions), (2) used two-tailed paired-

sample t-tests to test for significant differences across subregions, and (3) used 

correlations to measure the strength of simple linear relationships between ranking 

values for sub-regions for the full set of stressors. Stressors were excluded from 

individual surveys when one or more of the vulnerability criteria were not provided 

or when a subregion had only a single response for the stressor (e.g., some 

respondents did not fill in values for all 53 stressors). 

 

Potential respondent bias 

We used chi-square tests to evaluate potential differences between responders 

and non-responders based on gender or affiliation. Within the responder group, we 

examined possible differences in experts’ assessment of criteria values (Part IV) 

based on demographic information collected in Part I, using ANOVA (for 

affiliation), t-test (for gender), and least squares regression (for years of experience). 

For these tests we averaged all criteria values from all stressors, transformed as 

described above, for each respondent. Seven experts did not complete this section, 

resulting in a sample size of 95. 

 

Comparing directly stated and modeled ranks 

We also compared experts’ directly stated ranks, collected in Part II, to the ranks 

produced by the model using Spearman’s rank correlation analysis.  Because 

ecological vulnerability to stressors is a fairly abstract concept, we expected little 
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consistency in top rankings from Part II across experts, and substantial deviation of 

these rankings from those generated by the statistical model, which breaks down the 

abstract concept into more concrete, specific subcomponents that are each quantified 

separately. To rank directly stated responses, we counted how often each stressor was 

among experts’ top five ranks regardless of ecosystem. This method was chosen over 

a strict average rank because it is less sensitive to unusual high rankings. We used 

average ranks to break ties.  

 

Results 

Survey pool 

Out of the 240 confirmed potential expert respondents, 107 responded (45% 

response rate) by completing one or more surveys (N = 160 surveys). Respondents 

were from academic institutions (52%), government agencies (31%), NGOs (15%), 

and private consultants (2%) and included 80 males (75%) and 27 females (25%) 

(Table 3). Thirty-nine respondents (36%) filled out more than one survey, 49 surveys 

addressed more than one subregion (average = 1.6 subregions ± 0.1 SE; maximum = 

6), and 9 surveys addressed more than one ecosystem (average = 1.1 ecosystems ± 

0.1 SE; maximum = 9).  One survey was eliminated due to unclear responses.  The 

completed surveys covered 95 of the 120 possible ecosystem-by-subregion 

combinations, with one to 13 surveys per combination (see Appendix B).  As no 

expert evaluated vents/seeps, this ecosystem was excluded from all analyses. 

Respondents’ maximum reported years of experience within the marine ecosystems 
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or subregions averaged 18.6 yrs ± 1.1 SE. On average respondents had 14.4 years of 

experience ± 0.9 SE within their chosen ecosystem and 13.9 years of experience ± 

0.6 SE within their chosen subregion (see Appendix C for average years of 

experience per ecosystem per subregion).  Additionally, offshore ecosystems tended 

to be evaluated by fewer experts (3.2 ± 1.0 SE) than coastal ecosystems (7.2 ± 1.4 

SE). Of the 263 potential respondents who did not complete a survey, 130 never 

responded (after at least three reminders), 115 did not respond after initially 

accepting the invitation (and after at least three reminders), 12 declined but gave no 

reason, and six declined because they did not feel comfortable filling out the survey.  

 

Potential survey bias 

Affiliation and gender did not significantly differ between invited experts who 

completed the survey (responders) and those who did not (non-responders) 

(affiliation: χ2 = 6.75, df = 3, P = 0.08, gender: χ2 = 0.121, df = 1, P = 0.728; Table 

3).  The marginal significance for affiliation is due to the higher rate of response 

from academic experts.  Vulnerability criteria values S(j)
i, k (Part IV) showed no 

significant differences associated with affiliation (ANOVA: F3,93 = 0.36; P = 0.78), 

gender (t-test: t = 1.86; P = 0.07), or years of experience (bivariate linear regression: 

R2 = 0; P = 0.88). The marginally significant result for gender reflected a single 

extreme outlier; when removed, gender showed no trend (t-test: t = -0.058; P = 0.95).   

 

Vulnerability criteria weights and model validation 
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The MCDM produced highly uneven weightings for the five vulnerability 

criteria.  Percent change in biomass (resistance) and trophic impact together 

explained 89% of the overall weights of ecosystem vulnerability (66.5% and 22.1%, 

respectively). Recovery time had a small contribution to the overall vulnerability 

score (Table 5). These weights were highly consistent regardless of the number of 

ranks used to develop the model (one, two, three, or four). Using the top four ranks 

produced good predictions of the stressor ranked fifth by the experts; the frequency 

of each scenario being predicted to be fifth was highly similar to the frequency of 

experts selecting it as their fifth-ranked scenario (mean difference 0.001 ± 0.01 SE). 

Furthermore, there were significantly fewer inconsistencies than expected by 

random.  Twenty-three of the 30 scenarios could produce inconsistencies, i.e. ranking 

one of these scenarios higher than the other seven would be ‘inconsistent,’ and of the 

102 experts only 15 chose one of these inconsistent scenarios as rank 1. The 

probability of observing so few inconsistencies is extraordinarily low (7 x 10-40), 

suggesting that experts generally understood the ranking task. 

 

Vulnerability scores 

Vulnerability scores for all ecosystem-stressor combinations are provided in 

Table 6. Sample sizes for the criteria values used to produce these scores ranged 

from 0 to 17.  Across all values experts assigned to the five criteria, 25.5% were 

marked zero (i.e., stressor was not a threat to the ecosystem), 21.0% marked “don’t 

know,” 12.9% left blank, and 0.3% marked “disagree” (i.e., experts disagreed but did 
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not provide an alternate value).  If a stressor-ecosystem combination had no expert 

responses, we used default criteria values from previous analyses (Halpern et al. 

2007).  There is a significant relationship between average sample size and average 

vulnerability score per ecosystem (linear regression: R2 = 0.30, P = 0.02), suggesting 

that low response rates for some ecosystems may have resulted in lower vulnerability 

scores. However this relationship has a low R2 and is not significant when 

ecosystems with an average sample size of less than four (Table 6) are excluded (R2 

= 0.02, P = 0.76).  Stressors were evaluated by 88.9 ± 0.6 SE experts on average. 

Ocean acidification in soft slope, hard slope, and in hard deep ecosystems had the 

highest vulnerability score observed (3.4) and scores for this stressor exceeded 1.2 

for all ecosystems (Table 6).  On average, scores were greater in coastal than 

offshore ecosystems, most notably higher (>1.0 difference) for sea level rise, UV 

change, altered flow dynamics, habitat alteration, and invasive species.  Only 

demersal destructive fishing was notably higher in offshore ecosystems.  Coastal 

ecosystems were judged most vulnerable to (in decreasing order) invasive species, 

ocean acidification, sea temperature change, sea level rise, and habitat alteration 

from coastal engineering, while the stressors with the highest scores for offshore 

ecosystems were (in decreasing order) ocean acidification, demersal destructive 

fishing, shipwrecks, military activity, and lost fishing gear (Table 6). On average, 

coastal ecosystems were judged to have some degree of vulnerability (scores > 0.0) 

to nearly all of the 53 stressors evaluated here (43.7 stressors ± 2.2 SE), while 
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offshore ecosystems were estimated to be vulnerable to less than half of the stressors 

(24.6 ± 3.7 SE).  

There were over 30 additional stressors that experts felt were not appropriately 

captured by our 53 stressors (see Appendix D). Some of these include: alteration of 

tributaries and watersheds, altered oceanographic regimes (e.g., wind, circulation, or 

upwelling) due to climate change, global temperature change (not just sea 

temperature change), non-toxic algal blooms, illegal harvesting (poaching or 

harvesting by public), kelp harvesting, wave energy development, and oil exploration 

and drilling (as distinguished from oil rigs and ocean mining).  

 

Subregional comparisons 

Overall, the four middle subregions (Oregon and the 3 California subregions) had 

no significant differences in vulnerability scores for the ecosystems for which 

comparisons could be made, except for the central California and Oregon rocky reef 

ecosystem comparison (Table 4).  For the one ecosystem for which comparisons 

could be made to Washington (rocky intertidal), the Washington subregion differed 

significantly from all other subregions except central California but had highly 

correlated values in all of these cases (R2 > 0.72).  Baja California was significantly 

different from northern and southern California in vulnerability scores for seagrass 

ecosystems (as well as Washington in rocky intertidal ecosystems) and also had low 

correlation values. Vulnerability scores for rocky intertidal ecosystems in Baja did 

not differ significantly from central and southern California. 
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Comparing directly stated and modeled ranks 

Spearman's rank correlation between directly stated ranks (Part II) and model-

derived average vulnerability scores (average values across ecosystems from Part IV) 

is significant (P = 0.001) but relatively low (ρ = 0.44).  The five most commonly 

directly stated top five stressors were sea temperature change (42% of respondents 

ranked it in their top five), recreational fishing (33%), habitat alteration from coastal 

engineering (32%), increasing sediment loads (22%), and invasive species (22%), yet 

of these only sea temperature change and invasive species were among the top five 

modeled vulnerability ranks (Table 7) and recreational fishing and sediment increase 

were not among the top 10 modeled ranks.  Ocean acidification received the highest 

modeled vulnerability score, yet was included in only 11% of respondents’ stated top 

five stressors. Additionally, UV change, sea level rise, benthic structures, 

shipwrecks, and hypoxic zones caused by nutrient input were only included in ≤ 7% 

of stated top five stressors, yet all appeared among the top 10 modeled ranks. 

Remarkably, all but three of the 53 stressors were ranked by at least one expert in 

their top-five stated stressors (across all ecosystems).  

 

Discussion 

Decision theory approach to assessing ecosystem vulnerability 

Our approach moves beyond previous methods for assessing environmental risk 

in several key ways.  The decision rules (criteria) and relative importance of those 
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criteria (weights) are explicit and quantified, rather than implicit and qualitative as is 

the case for most Delphi processes.  The structured approach to assessing these 

criteria and weights compels experts to take an ecosystem-level perspective when 

evaluating the importance of stressors and explicitly consider (and quantify) 

exposure and sensitivity aspects of vulnerability, rather than, for example, focusing 

only on a single species within the ecosystem they study. Vulnerability is an abstract 

concept and defining it at an ecosystem-level scale adds further complexity to the 

concept. This complexity challenges an individual’s cognitive ability to compare the 

vulnerability of ecosystems to various stressors in a consistent and fair manner 

without the aid of a model built from concrete subcomponents.  Indeed, experts’ 

directly stated top stressors showed little correlation with the modeled top stressors.  

When experts simply list key stressors, there is no way to know why they chose those 

stressors, with responses potentially subject to biases that cannot be tested (Payne et 

al. 1992, Slovic and Lichtenstein 2006).  Using a mathematical model, however, 

requires knowing which subcomponents to use in building the model and how to 

combine subcomponents in a way that matches expert’s decision-making process.  

The subcomponents (i.e. vulnerability criteria) come from a long history of research 

on the topic; the MCDM fills the latter role of combining subcomponents. The 

MCDM revealed that experts primarily used percent change (i.e. resistance) and 

trophic impact when evaluating ecosystem vulnerability to stressors, despite that 

vulnerability is thought to also be a function of exposure, not just measures of 

sensitivity (Metzger et al. 2004, Millennium Ecosystem Assessment 2005).   
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The MCDM also allowed us to test how consistently experts used the 

vulnerability criteria in their assessments (i.e., internal model validity) by comparing 

results from two versions of the survey based on different systems (coastal vs. 

offshore), calculating model weights using different numbers of scenario rankings, 

and using the model to predict the next-ranked stressor.  These comparisons do not 

allow us to test the uncertainty of individual experts but do provide several methods 

for testing and quantifying variability (i.e. degree of consensus) among experts, a key 

improvement over our previous approach (Halpern et al. 2007).  We found high 

model validity in all cases: model weights were consistent between systems and with 

different numbers of ranks used to build the model, and the ecosystem vulnerability 

model predicted well the next-ranked stressor. This ability to evaluate model validity 

is rare among methods for eliciting expert judgment. The robustness of the model 

suggests that the vulnerability model can be used with the same values for the criteria 

weights to evaluate new stressors and ecosystems not included here.   Thus, the 

model provides a rapid way to consider expert opinions on additional and emerging 

ocean uses, such as wind and wave farms or liquefied natural gas (LNG) terminals, 

and quickly ‘slide’ them into the appropriate rank order once their vulnerability 

scores are estimated. However, especially with new ocean uses, these opinions 

cannot replace actual empirical data on ecological effects, but they can be used to 

direct research to assess potential ecological impacts. 

The vulnerability model solves the ‘apples to oranges’ problem of making 

comparisons between very different types of systems, and the use of expert judgment 
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allows filling knowledge gaps temporarily until empirical data is generated or 

improved. The vulnerability model, in particular, differentiates our work from other 

efforts to rank stressors to ecosystems (Olson and Dinerstein 1998, Myers et al. 

2000, Pew Oceans Commission 2003, Metzger et al. 2004, Millennium Ecosystem 

Assessment 2005).  In this structured framework, judgment is a means to incorporate 

knowledge efficiently and understand the world.  We do not suggest that expert 

judgment is a replacement for empirical data. The approach presented here benefits 

from greater transparency and repeatability than most other expert judgment 

elicitation procedures.   

 

Ecosystem vulnerability in the California Current 

Ecosystem-based approaches to resource management require knowledge of how 

each ecosystem responds to the stressors associated with human uses of the ocean, 

yet empirical information on such responses is limited. Using a decision theory 

method for eliciting expert judgments, we have evaluated the vulnerability of 19 

marine ecosystems within the California Current region to 53 different stressors, a 

total of 1007 stressor-by-ecosystem combinations.  There are both expected and 

unanticipated aspects to the vulnerability assessments for the California Current.  

Averaged across all ecosystems, stressors with high vulnerability scores were 

associated with climate change, invasive species, habitat destruction (benthic 

structures, coastal engineering), and pollution, all of which have been previously 

highlighted as key issues (Vitousek et al. 1997).  Coastal ecosystems were assessed 
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to be more vulnerable to human stressors, and to a higher number of stressors, than 

offshore systems.  At the ecosystem level, rank order of stressors by vulnerability 

scores varies greatly with ecosystem type, as is expected.  More unexpectedly, ocean 

acidification topped the rankings for many ecosystems.  This result highlights the 

urgent need to develop strategies for addressing this climate stressor.  However, very 

few experts listed ocean acidification, UV change, and sea level rise among their top 

five stated ranks, yet these all fell within the top 10 modeled ranks. This 

inconsistency between the two methods of ranking highlights the need for greater 

awareness of these climate stressors; experts agree that these stressors rank highly 

based on the vulnerability criteria, however, it did not occur to experts to rank these 

stressors highly in the stated-rank exercise.  On the other hand, sea temperature 

change and invasive species ranked high for both ranking methods, thus experts 

categorize these stressors as high based on the vulnerability criteria and are aware of 

the importance of these stressors without necessarily considering the vulnerability 

criteria.  Modeled results ranked commercial fishing as a top stressor in most 

offshore ecosystems (Tables 6, 7), as has been found by many others (e.g., Pauly et 

al. 1998, Myers and Worm 2003, Worm et al. 2006), but across all ecosystems the 

five types of commercial fishing showed lower vulnerability scores than many other 

stressors.  This is because experts judged pelagic fishing to have very little or no 

impact on many ecosystems and land-based sources of stress to have larger impacts 

on a suite of coastal ecosystems.  Fishing may have ranked lower as well because our 
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approach focuses on present-day stressors and therefore ignores the historical, 

accumulated stress of fishing (in particular overfishing) on ecosystems. 

Although many of these expert opinions on the top stressors or most vulnerable 

systems may seem expected or known, it is extremely valuable to test these expert 

opinions with a rigorous scientific approach and assess the level of consensus on 

rankings among experts. Results from a rigorous survey can provide support to 

management decisions, and although decisions should ultimately be made based on 

scientific evidence, the value of the supporting role of expert opinion should not be 

underestimated given the politically-charged environment in which these decisions 

are often made.   

 Although these relative stressor rankings are valuable for aiding conservation 

and management prioritization efforts, another useful result is the matrix of 

quantitative vulnerability scores that is produced (Table 6).  These scores not only 

give a quantitative, relative estimate of vulnerability of an ecosystem to each stressor 

(e.g., kelp forests are judged to be five times as vulnerable to ocean acidification as 

they are to shellfish aquaculture) but also allow direct and quantitative comparisons 

of stressor vulnerability among ecosystem types (e.g. rocky reefs are judged to be 

30% more vulnerable to recreational fishing than seagrass beds are to organic 

pollution).  This ability to compare very different entities in a quantitative manner 

has broad potential application and relevance to various cost-benefit analyses of how 

and where to prioritize management, mitigation, and conservation effort. 
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A key challenge for any effort to evaluate cross-ecosystem, cross-sector 

vulnerability is to decide how much to lump or split categories of stressors and 

ecosystems.  Fishing can be considered as a single stressor, as five categories of 

stress (as we have done here), or as many categories in which each species and gear 

type is evaluated separately.  Similarly, habitats can be classified according to any 

number of physical and biological attributes (e.g., sediment grain size or type, tidal 

flux, depth, relief, wave exposure, upwelling characteristics, temperature, salinity, 

species composition and diversity) (Carlton 2007), which can lead to few or many 

habitat types depending on these decisions.  For example, one could choose to lump 

all salt marshes together as a single ecosystem type or split them into estuarine and 

coastal salt marshes. Here we strove to focus on a level of habitat classification that 

was general enough to likely be addressed by management efforts in the California 

Current but fine enough to capture important differences, and a level of stressor 

classification that captures important differences in potential impact to ecosystems 

from subdivisions of a stressor class but is general enough to match typical 

management focus. Additionally, we have assumed that experts take into account the 

temporal dynamics of oceanographic and climatic processes (e.g., El Niño Southern 

Oscillation cycle, the Metonic cycle, the Pacific decadal oscillation (Halpin et al. 

2004)) when assessing the influence of a particular stressor on an ecosystem. 

However, our survey focused on assessing the present-day (within the past five 

years), so longer temporal dynamics could be the focus of future studies. In 

summary, our method for assessing ecosystem vulnerability can easily be adapted to 
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assess a different classification scheme, spatial scale/extent, or time period and 

directly compared to our output here.  

Our assessment of the differential vulnerability of ecosystems does not account 

for potential synergistic effects among stressors, where some combinations of 

stressors may lead to greater impacts than our estimates here, resulting in higher 

scores. These synergisms are currently poorly understood (Crain et al. 2008, Darling 

and Cote 2008), so it is difficult to account for them in the vulnerability model.  

Also, the default vulnerability criteria values provided in Part IV may have 

influenced experts, or experts may have been reluctant to modify defaulted values 

unless they felt them to be radically wrong. An alternative would have been to leave 

these values blank, but experts tend to skip blank values (Halpern et al. 2007).  

Ultimately the accuracy of the vulnerability scores depends on the quality of 

expert judgment.  We were careful to include only experts with empirical knowledge 

and experience in marine ecosystems within the California Current but recognize that 

this does not ensure accuracy.  In order to attempt to quantify reliability of expert 

judgment and examine the basis upon which experts form their opinions, future 

studies could assess (1) whether vulnerability estimates were based on actual data, 

(2) if vulnerability estimates were based on actual data, the spatial extent of these 

data, (3) if experts had peer-reviewed research published within the field of study 

evaluated (both stressor and ecosystem combination), and (4) the degree of 

confidence in each vulnerability estimate. However, we recognize that there is no 

way to objectively quantify the degree of accuracy of expert opinion before empirical 
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data exist. Carefully controlled experiments that clearly show the relative 

vulnerabilities of ecosystems to different stressors are the gold standard for 

environmental risk assessment. When these data are available for a particular region 

or set of stressors, they should be compared to the expert opinions to examine the 

degree of accuracy. The day is far off when such data exist for the numerous 

ecosystem-stressor combinations, so perhaps researchers should prioritize gathering 

these data before relying solely on expert opinion for any management decisions. 

Until then expert judgment elicitation can provide some guidance to management 

efforts, and our methods offer a quantitative alternative to setting priorities based on 

a simple task of ranking threats. 

 

Management implications 

 Our approach and results can be used in a number of ways to inform and aid 

management efforts and particularly address the fundamental question of how and 

where to prioritize stressor and ecosystem management.  Our results alone cannot 

answer that question, as there are many dimensions (socio-economic, opportunities, 

etc.) that drive such decisions, but our quantitative vulnerability scores can provide a 

key piece of the answer. The matrix of vulnerability scores based on expert judgment 

informs which stressors are likely most important to address, which ecosystems are 

likely most vulnerable, and which factors (i.e. criteria) likely drive that vulnerability. 

Even if these results are believed to be known, having a quantitative and transparent 
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method for assessing vulnerability is of enormous value to anyone or any 

organization that must explain and defend their management decisions.   

Our analyses provide results most appropriate for state- and federal-level 

management or conservation organizations focused on large biogeographic regions 

or the California Current as a planning unit.  At this scale, the high vulnerability 

scores of most ecosystems for climate change stressors point to the immediate need 

for local, state, federal, and international action to address this key stressor for nearly 

all ecosystems. Two of the high-scoring stressors revealed by our analysis, invasive 

species and coastal engineering, highlight management challenges that might be most 

successfully addressed at different spatial scales. Although removal of existing 

invasive species may be possible by local action, it is generally very difficult, and the 

risk of new species invasions can only be reduced by state, federal, and even 

international regulations that control the movement of species (i.e., vectors such as 

ballast water, hull fouling, aquaculture, and aquarium trade) (Bax et al. 2001, Ruiz 

and Carlton 2003). Given the difficulty of eradicating invasive species and reversing 

their impacts on local ecological communities, prioritizing the reduction of invasive 

species risks at the regional level may have a high ecosystem-wide payoff. Habitat 

alteration due to coastal engineering also had high scores in several coastal 

ecosystems. Although it is difficult to reverse fully, it can be regulated and managed 

locally at the scale at which it occurs, and there are some options for local habitat 

restoration.  For local-scale management, vulnerability rankings could be different.  

Fortunately, our framework is fully scalable, with the model weights expected to be 
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consistent across scales and locations, and the output allows for quantitative, relative 

vulnerability assessments that are often not intuitive or known. The model also 

provides a rapid method for assessing the potential impact of new stressors relative 

to existing stressors, and in theory the same stressors in new locations where one 

would simply need to gather new criteria scores (Part IV of the survey). 

These results provide a critical piece of information for moving towards marine 

ecosystem-based management (EBM) and ocean zoning, but they are clearly not all 

that is needed for effective management.  Among other things, EBM requires 

consideration of spatial patterns of cumulative impacts of human activities on 

ecosystems (McLeod et al. 2005, Halpern et al. 2008a), and in order to map 

cumulative impacts, one needs information on the relative vulnerability of 

ecosystems to those stressors, as presented here, along with information on the 

intensity of each stressor (Crowder et al. 2006, Halpern et al. 2008b, Halpern et al. 

2009). Such mapping also allows one to assess the realized impact of each stressor 

on each ecosystem, rather than the expected vulnerability as is captured here.  

Ultimately, effective management and conservation also require assessments of the 

costs and benefits of any management action, recognition of logistical and financial 

constraints, compromises for political feasibility, and the flexibility to manage 

adaptively as new information becomes available.  Without knowledge of relative 

ecosystem vulnerability to different human activities, however, ecosystem-based 

management will be difficult if not impossible to achieve. 
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Tables  
Table 1. Description of the five vulnerability criteria used to evaluate ecosystem 

vulnerability to each stressor. 
 

 
 

 
Table 2. In Part III of the survey, each respondent received either a coastal or 
offshore version of the table below with 30 hypothetical scenarios (only a subset is 
presented here). All criteria values were identical between the coastal and offshore 
versions, but some scenario names were different. 
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Table 3. Number of survey responders and nonresponders per affiliation and gender 
category. 
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Table 4. Subregional comparisons of four ecosystems (kelp forest, rocky intertidal, 
rocky reef, and seagrass) based on linear correlations of all stressor values and two-
tailed paired-sample t tests. 

 

 
 
 
Table 5. Mean weighting values for vulnerability criteria based on model results 
from the first stressor, and the first two, three, and four stressors ranked. 
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Table 6. Vulnerability scores for 53 stressors in 19 ecosystems. 
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Table 6. Extended. 
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Table 7.  Scores and rank orders for directly stated top stressors (Part II) and the 
multi-criteria decision model (MCDM) (based on Parts III and IV). 
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Appendix A 
Sample survey for a kelp forest ecosystem is provided, except that 

Part III for both coastal and offshore ecosystems is included to show 
where scenario names were changed between these two expert 
groups. 
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Appendix B 
Number of surveys completed per ecosystem per region and 

subtotals per ecosystem and region. 
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Appendix C 
Respondents’ average years of experience ±SE per chosen 

ecosystem (Table C1)and per chosen subregion (Table C2). The sample 
size, N, represents the number of respondents reporting years of 
experience within that chosen subregion or ecosystem (note: some 
respondentsapplied surveys to more than one ecosystem or 
subregion). 

 
Table C1. 
 

  average N ±SE 
kelp 17.5 19 2.7 
rocky reef 11.1 14 2.6 
seagrass 13.6 15 2.7 
shallow soft 13.8 7 5.1 
suspension reefs 8.0 1 -- 
beach 15.2 9 3.6 
mud flats 12.6 11 2.8 
rocky intertidal 17.9 22 2.2 
salt marsh 8.0 14 1.8 
soft shelf 13.7 11 3.1 
soft slope 20.3 3 7.6 
soft deep 24.5 4 4.9 
hard shelf 12.8 5 6.7 
hard slope 17.5 2 12.5 
hard deep 5.0 1 -- 
canyons 16.8 2 10.8 
seamounts 6.5 2 3.5 
vents/seeps -- -- -- 
surface waters 14.5 15 2.9 
deep waters 26.0 2 6.0 

 
Table C2.  
 

  average N ±SE 
Washington 15.7 41 1.7 
Oregon 10.5 42 1.0 
northern California 12.1 37 1.2 
central California 15.3 56 1.4 
southern California 15.8 59 1.4 
Baja California 10.4 17 1.3 
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Appendix D 
Threats listed by participants in the survey that were not on our 

stressor list. 
 

aircraft: general disturbance 
benthic structures: underwater cables 
boating: anchor damage 
boating: general disturbance 
climate change: altered oceanographic regimes (e.g., wind, circulation, or upwelling)  
climate change: global temperature change (not just sea temperature change) 
coastal and inland engineering: alteration of tributaries and watersheds 
coastal engineering: agricultural diking and ditching 
coastal engineering: beach grooming 
coastal engineering: clearing vegetation for agriculture or development  
coastal engineering: housing particularly on dunes and cliffs 
energy development: oil exploration and drilling (as distinguished from oil rigs and 
ocean mining) 
energy development: wave and tide driven power plants 
fires, charcoal, fireworks 
fishing: causing trophic cascades 
fishing: commercial (as a broad category) 
hypoxia not exclusively caused by nutrient input 
illegal harvesting (poaching or harvesting by public) 
kelp harvesting 
mining for sand 
non-toxic algal blooms 
nutrient input: due to upwelling 
overpopulation 
pollution: heavy metals 
pollution: pesticides 
scientific research: non-destructive surveys (e.g., ROVs or AUVs) 
sea temperature change from El Nino events 
sea temperature change from power plant effluent 
tourism: all-terrain  and off-road vehicles 
tourism: beach recreation 
tourism: unleashed dogs 
tourism: whale watching 
trophic interactions (e.g., predation from recovered marine mammals) 
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II. Disentangling the effects of fishing and environmental 

forcing on demographic variation in an exploited species 

 

Collaborators: Julio Lorda, Thomas Bell, Jorge Cornejo-Donoso, 

Jenn E. Caselle, Scott L. Hamilton, Nick T. Shears, Steven D. Gaines 

 

Abstract 

Species targeted by fishing activities often recover in abundance and size 

structure when afforded protection within marine protected areas (MPAs). The 

associated increase in reproductive potential within MPA boundaries has been 

suggested as one mechanism by which MPAs can enhance population replenishment 

and thereby benefit fisheries. However, in some situations, concomitant changes in 

the abundance of predators, competitors, or prey within MPAs or strong gradients in 

the surrounding environmental seascape may counteract the purported benefits, 

which can make it more difficult to predict how the demography of key species will 

respond to protection. Marine protected areas arrayed over a biogeographic cline 

provide an opportunity to test how demographic variability may be shaped by the 

potentially interactive effects of protection from fishing and spatial differences in 

environmental forcing. We used a network of MPAs established in 2003 in 

California’s Northern Channel Islands to investigate the drivers of demographic 
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variability on one of the most important exploited species in California, the red sea 

urchin Mesocentrotus franciscanus. The MPA network exists across a striking east-

west biogeographic gradient. Given this setting, we investigated how reproductive 

condition and other urchin demographic metrics varied geographically in response to 

protection (MPA vs unprotected areas), temperature, and the main urchin resource, 

the giant kelp Macrocystis pyrifera. Biomass and mean size of red sea urchin adults 

were greater within MPAs, and consequently reproductive biomass was elevated in 

reserve locations. Kelp density was an important explanatory variable of all red sea 

urchin demographic traits (size, gonadosomatic index [GSI], density, biomass, and 

reproductive biomass). Kelp density was positively correlated with GSI and urchin 

size, but the relationships with density, biomass, and reproductive biomass were 

complex and the directionality changed depending on the region (or environmental 

setting) examined. In addition, red sea urchin adult size and reproductive biomass 

were higher in the western, cooler region. We observed a number of complex 

interactions, notably that urchin adult biomass and reproductive biomass were 

positively related with kelp but only in warmer areas within the region. Our results 

demonstrate that kelp, red sea urchin reproduction, and consequently protection from 

fishing are tightly coupled with the varying oceanographic regime across the Channel 

Islands. We not only provide key baseline demographic data for an important fished 

species within a heavily fished region but also underscore both the major impacts 

from humans as predators and the significant benefits from species protection. 
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Keywords: kelp forest; marine protected area; marine reserves; Channel Islands; 

sea urchins; sea urchin fishery; Mesocentrotus franciscanus; Macrocystis pyrifera   

 

Introduction  

Understanding the ecological, environmental, and anthropogenic factors that 

control spatial variation in population demography allows for more accurate 

forecasting that can benefit resource management. Marine species are fished from 

wild populations that typically span broad spatial expanses over which biological 

traits of the species often vary. Biological variation in life history and demographic 

traits can occur in response to geographic or temporal shifts in temperature, 

productivity, resource availability, competition, and predation (including fishing 

pressure) (Paine 1980; Menge & Sutherland 1987; Polis & Hurd 1996; Castilla 1999; 

Menge 2000; Ruttenberg et al. 2005; Rogers-Bennett 2007; Darimont et al. 2009; 

Bolnick et al. 2010; Lorda & Lafferty 2012; Bonel et al. 2013; Lorda 2014; Bonel & 

Lorda 2015). While stock assessments have usually assumed that biological 

parameters such as growth, maturation or reproductive output are consistent across 

space, recent studies have shown that incorporating spatial variation in life histories 

into fisheries models and assessments can be useful for resource management 

(Wilson et al. 2010; Wilson et al. 2012; Caselle et al. 2011; Hamilton et al. 2011; 

Teck et al. in preparation). Understanding the drivers that may lead to spatial 

variation in key population parameters allows for better predictions concerning how 
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species will respond in the future to changes that may result from climate change or 

new management regulations (Harley et al. 2006). 

Previous research has shown that reproduction of targeted species often is greater 

within reserves. Similar to effects from natural predation (Chesness et al. 1968; 

Magnhagen 1991; Schwarzkopf & Shine 1992; Durant 2000), harvesting by humans 

can reduce the reproductive success of targeted species. Harvesting wild species may 

result in lower reproductive rates than in adjacent non-harvested regions within many 

different global ecosystems, from terrestrial habitats (Witkowski et al. 1994; Novaro 

et al. 2000; Hackney & McGraw 2001) to subtidal marine habitats (Beukers-Stewart 

et al. 2005). Reproductive potential is often higher within marine protected areas 

(MPAs) due to the presence of larger and older individuals (Allison, Lubchenco & 

Carr 1998; Rogers-Bennett et al. 2002; Gell & Roberts 2003; Tetreault & Ambrose 

2007; Wilson et al. 2014). Reproductive effort has also been shown to increase with 

greater resource availability (Claisse et al. 2013). However, spatial gradients in 

environmental conditions, such as temperature, may modify both resource 

availability and reproductive rates (Durant et al. 2007). Elevated temperatures can 

positively influence the reproductive capacity of invertebrates, yet depressed 

reproductive rates may occur above and below windows of optional thermal 

tolerance (Bennett & Giese 1955). While food quality and availability are 

hypothesized to be more important than temperature in driving variation in 

reproductive output (Brockington & Clarke 2001), the relative importance of three 
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major driving factors – protection from fishing, resource availability, and 

temperature – on the demography of a marine species are virtually unknown.  

A network of MPAs in the four Northern Channel Islands – situated along the 

southern California coast – offers an ideal setting for research focused on teasing 

apart the effects of environmental forcing on demographic variability in areas with 

and without fishing pressure. Eleven MPAs have been established around the 4 

islands: the Anacapa Island State Marine Reserve (SMR) established in 1978 and ten 

established in 2003 

(www.wildlife.ca.gov/Conservation/Marine/MPAs/Network/Southern-California; 

Hamilton et al. 2010). Previous studies within this region have documented changes 

in fish communities in response to the establishment of MPAs (Tetreault & Ambrose 

2007; Hamilton et al. 2010) and the recovery of fished predatory species within 

many of the MPAs (Kay et al. 2012; Hamilton & Caselle 2014; Caselle et al. 2015).  

The red sea urchin Mesocentrotus franciscanus (previously Strongylocentrotus) 

is heavily exploited as a commercial fishery across this biogeographically diverse 

region (Kalvass & Hendrix 1997; Kalvass & Rogers-Bennett 2004; Shears et al. 

2012). While there is extensive knowledge of the basic ecology of southern 

California marine subtidal ecosystems (Tegner & Dayton 2000; Graham 2004; Foster 

& Schiel 2010; Shears et al. 2012), spatially-explicit patterns and drivers of variation 

in red sea urchin demographics remain poorly understood. Previous studies have 

reported greater size, biomass, and reproductive biomass of red sea urchins within a 

decades old reserve established in 1978 (Behrens & Lafferty 2004; Shears et al. 
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2012). Here, we explore how urchin populations respond to the broader network of 

MPAs that now span the region, following up to eight years of protection from 

fishing. Both urchin predators and the primary resource for urchins, the giant kelp 

(Macrocystis pyrifera, hereafter kelp) may increase in protected areas. Thus, the 

direct and indirect effects of MPAs on urchin populations may result in complex 

spatial patterns of urchin mortality and urchin grazing pressure, depending on the 

strength of species interactions throughout the food web (Behrens & Lafferty 2004; 

Lafferty 2004; Lafferty & Behrens 2005; Caselle et al. 2015; Foster et al. 2015).  

The red sea urchin commercial fishery extracts over 5,000 metric tons (11 

million pounds) of biomass annually (California Department of Fish and Wildlife 

[CDFW] catch data for 2004-13; www.wildlife.ca.gov). This multi-million dollar 

industry harvests urchins for their roe and targets individuals of high gonad quality. 

The fishery ranks within the top two coastal fisheries in California in annual landed 

weight, bringing in on average 7 million US dollars per year (2004-2013 prices paid 

to fishermen; CDFW [www.wildlife.ca.gov]). More than half of the state’s landings 

and value (2002-2011) come from within the Northern Channel Islands, which 

represent only 5% of the state's coastline. Stocks were considered “fully exploited” 

after a peak in landings in the late 1980s and 20 years later, managers have 

provisionally classified the fishery as “over-fished” (Andrew et al. 2002; Kalvass & 

Rogers-Bennett 2004). Red sea urchin populations are doing poorly in some regions 

in southern California. For example, densities are believed to have further declined 

by approximately 50% between 2004 and 2008 around San Diego (Schroeter et al. 
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2009). No formal stock assessments have been performed since 2008. Thus to aid 

future management efforts, one goal of this study was to provide baseline data on red 

sea urchin demographics from the core region contributing to the fishery.  

The coastal ecosystems of the Northern Channel Islands span a steep gradient in 

temperature (Fig. 1), productivity, and wave exposure, that results in dramatic 

biogeographic variation in community composition over a small spatial scale (Harms 

& Winant 1998; Blanchette et al. 2007; Hamilton et al. 2010).  Rocky subtidal 

habitat is dominated by patches of dense stands of macroalgae largely made up of 

giant kelp, which supports a diverse fauna. Kelp stipe density is a strong indicator of 

drift kelp availability, an important sea urchin resource (Harrold & Reed 1985). Kelp 

is generally more abundant in the western than the eastern region of the islands, 

largely due to cooler temperatures, higher nutrients, and a reduced frequency of 

urchin barrens (Zimmerman & Kremer 1984; Behrens & Lafferty 2004; Cavanaugh 

et al. 2011; Palacios et al. 2013; Bell et al. 2015). Thus, resources for urchins are 

lower in the eastern part of our study area, and furthermore, the warmer temperatures 

there may exacerbate the negative effects of reduced resource availability on sea 

urchin reproductive output and mortality (Ebert et al. 1999; Tegner et al. 2001). 

Consequently, the western portion of the study region consistently experiences 

higher commercial red sea urchin landings than the eastern region (Shears et al. 

2012, Teck et al. in preparation). However, there are areas of low kelp density in the 

cooler region and areas of high kelp density in the warmer region. Thus, we take 

advantage of the natural gradient in sea surface temperature and variation in kelp 
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density to decouple the relative importance of kelp density versus temperature 

variation as biological and physical drivers of red sea urchin demographics. While 

previous work found no significant spatial differences in size, density, biomass, and 

reproductive biomass of red sea urchins across this region (Shears et al. 2012), we 

improve (as discussed below) upon estimates of red sea urchin biomass and 

reproductive biomass and greatly increase the spatial resolution of sampling. 

To explore the direct and interactive effects of protection from fishing, kelp 

density, and temperature in driving red sea urchin demography, we ask: (1) what are 

red sea urchin demographic patterns within and outside of MPAs across this region, 

and (2) what environmental factors may explain the variability in these patterns?  

 

Methods  

Biological surveys  

To explore potential ecological factors associated with spatial variation in red sea 

urchin demographics, we conducted diver surveys of benthic kelp forest community 

structure throughout the four northern Channel Islands: Anacapa, Santa Cruz (SCI), 

Santa Rosa (SRI), and San Miguel Islands (SMI) (Fig. 1) during three northern-

hemisphere summers (June-August in 2009 and 2011 and June-October in 2010). 

The sampling effort was a part of the Partnership for Interdisciplinary Studies of 

Coastal Oceans’ (PISCO) benthic subtidal monitoring program (Hamilton et al. 

2010; Caselle et al. 2015).  
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We sampled from two depth zones (6 and 13 m) at an average of 11 sites within 

MPAs and 13 unprotected areas (open to fishing) per year across the northern 

Channel Islands (n=30 unique sites across the three years). Although some sites were 

located within the same reef complex, sites were separated by at least 500 m. We 

considered each sampling event (n=143) as a separate replicate. Protected sites were 

located within seven MPAs (listed from west to east, Fig. 1): Harris Point State 

Marine Reserve (SMR), South Point SMR, Painted Cave State Marine Conservation 

Area (SMCA), Gull Island SMR, Scorpion SMR, Anacapa Island SMCA, and 

Anacapa Island SMR. Although recreational and commercial fishing of a limited 

number of species are allowed within the SMCAs, fishing for sea urchins is 

prohibited and thus SMCAs can be considered no-take marine reserves with respect 

to urchins. In comparison to unprotected areas, no-take marine reserves may have 

greater ecological differences than partially-protected conservation areas (Lester & 

Halpern 2008), but we found no consistent urchin demographic differences between 

SMCAs and SMRs (see Appendix A for selected ecological patterns across all seven 

MPAs). Thus, all SMRs and SMCAs were categorized together (hereafter, MPAs) for 

the purposes of our analyses.  

Divers recorded densities of red sea urchins greater than 25 mm in test diameter 

along two 30 m × 2 m belt transects at each depth zone per site. To estimate sea 

urchin density, divers counted sea urchins within 10 m-segments along the belt 

transects. If divers counted 30 individuals before reaching the end of a 10-m 

segment, the length of the segment surveyed to that point was recorded, and densities 
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of the entire segment were estimated based on the number counted in the subsampled 

segment (i.e., variable area subsampling). Within these transects, we counted the 

number of kelp plants and the number of stipes per plant (for all stipes greater than 1 

m in height) and summed the total stipes as our estimate of kelp density. For each 

site, density data for sea urchins and kelp were averaged across the two transects 

within the same depth zone.  

Size-frequency data on red sea urchins were gathered through PISCO’s program 

and the kelp forest monitoring program (KFMP) at the Channel Islands National 

Park (Shears et al. 2012; Kushner et al. 2013). We measured the first 150 urchins 

(comprehensively removing all urchins present in a given 2 m by 4 m swath until the 

desired number of urchins was reached) within a 50-100 m radius (depending on the 

density of urchins) of PISCO transects that had already been sampled. For sites 

(n=19) where PISCO did not collect size-frequency data, we used size-frequency 

data from nearby Channels Islands NPS KFMP sites (perpendicular to the fixed 

transects in a series of 2 m by 5-10 m swaths).  

 

Sea urchin collections for individual-based and population-based analyses 

We investigated red sea urchin demographic metrics that are both ecologically 

important and relevant to the fishery. To examine individual urchin characteristics, 

we haphazardly collected adult red sea urchins (n=15-20) per depth zone per site on 

each sampling date. We focused solely on adults greater than 50 mm (n=2216) 
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because red sea urchins reach sexual maturity between about 51 and 76 mm (Tegner 

1989). 

We examined two individual-based metrics of adult red sea urchin: size (test 

diameter) and gonadosomatic index (GSI – a strong metric of reproductive stage and 

value to the fishery – Unuma 2002; Teck et al. in preparation): 

 

GSI = gonad wet weight / total wet weight (1) 

 

(i.e., the fraction of the organism mass that is gonad). We examined GSI separately 

for males and females. 

To understand detailed regional variability in population-based characteristics of 

red sea urchins, we examined the patterns in: density (juvenile and adult individuals 

>25 mm per m2), adult biomass, and reproductive biomass as a proxy for potential 

reproductive output. Biomass is a useful metric for assessing the population in both 

ecological and management terms. We examined adult biomass, since the fishery is 

based on harvesting adults (see Appendix B for information on juveniles and total 

biomass). We first estimated the proportion of adult red sea urchins (>50 mm) per 

site for each year using size-frequency collections from PISCO or KFMP. To 

estimate adult red sea urchin density (for the adult biomass metric), we multiplied 

the proportion of adult red sea urchins by the density (individuals >25 mm) per depth 

zone per site. Adult biomass per unit area within a site was estimated as: 
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adult biomass = adult density * mean adult whole weight (g) (2). 

 

Reproductive biomass per unit area within a site was estimated as: 

 

reproductive biomass = adult density * mean gonad weight (g) (3). 

 

Previous estimates of biomass and reproductive biomass within this region were 

based on average weight and gonad measurements from a single site (Shears et al. 

2012), whereas we calculated site-specific weights. 

 

Environmental data 

To examine the effect of spatial variation in temperature on red sea urchin 

demographics, we averaged satellite sea surface temperature (SST) records at each 

site from the previous year from the MODIS Terra and Aqua sensors 

(spg.ucsd.edu/Satellite_data/California_Current) at a 1-km spatial resolution (the 

closest pixel to each site). The data were daily images that were averaged into 15-day 

means (there is often cloud cover on any one daily image) and then averaged across 

the prior year to each site’s sampling date.  

 

Data analyses 

First, we described the geographic patterns of sea urchin demographic variables. 

Since the islands are oriented west to east, the environmental gradient in 

http://spg.ucsd.edu/Satellite_data/California_Current
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temperature, productivity, and wave exposure is strongly correlated with longitude 

(r=0.96, P<0.0001) (Fig. 1). Thus, longitude is a convenient proxy for multiple 

interrelated environmental forcing variables. We used general linear models (GLMs) 

to examine how the sea urchin demographic variables (Table 1) changed as a 

function of protection from fishing, longitude, depth, and among years. We initially 

executed full-factorial designs for each model and then sequentially removed all non-

significant interaction terms.  

Second, we examined the relative importance and interactions among three 

predictor variables (Table 1: protection from fishing [MPA versus unprotected area], 

mean kelp density, and mean sea surface temperature [over the previous year]) in 

driving red sea urchin demographics. We performed full-factorial GLMs for each of 

our five red sea urchin response variables (Table 1). All models were performed 

using JMP® 12.0.0, SAS Institute Inc. Transformations for predictor variables were 

performed to normalize the residuals of the models and are shown in Table 1. Since 

SMI contains a red sea urchin barren unique to the entire study region, we explored 

excluding sites within this island to see if drivers were different. 

 

Results 

Spatial and temporal variation in red sea urchin demography  

Individual-based metrics: GSI and adult test diameter  

There were no consistent spatial differences in GSI as a function of gender and 

thus males and females were pooled for further analyses (Appendix C). Sea urchins 
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had higher GSI and were larger in the west (Table 2; Fig. 2; Appendix D). On 

average red sea urchins had 28% higher GSI and were 14% larger at the two western 

islands than at the two eastern islands. Gonadosomatic index was also greater at 

unprotected than protected sites but only in the west, whereas there were no 

differences among protected and unprotected sites in the East. The lack of a 

consistent regional pattern within MPAs was largely driven by the very low GSI 

levels at the SMI MPA. There were no year-to-year differences in GSI. 

Adult test diameter (TD) was on average 6% greater (5.2 mm) within MPAs 

across the region than at unprotected sites (Table 2; Fig. 2). In addition, there was a 

significant interaction between the east-west gradient (longitude) and depth; adult red 

sea urchins in the west were larger at deeper sites, but there was no clear relationship 

with adult size and depth in the east.  Finally, adult red sea urchins were significantly 

larger in 2009 by on average 11 mm (88 mm) than in 2011 (77 mm), and were of 

intermediate size in 2010 (85 mm). 

 

Population-based metrics: density, adult biomass, and reproductive biomass 

Red sea urchin densities were highly variable across the region. There were 

significant two-way interactions between the east-west gradient (longitude) and year, 

protection from fishing, and depth (Table 2; Fig. 3). In 2009, densities were greater 

in the east. Generally, unprotected sites were no different in red sea urchin density 

across the east-west gradient, but within MPA sites, red sea urchin densities were 
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greater in the west. In addition, within the west, densities were negatively related to 

depth.  

Both adult red sea urchin biomass and reproductive biomass were significantly 

greater within MPA sites than unprotected sites (by 16% and 23%, respectively) and 

within shallower depth zones (Table 2; Fig. 3). Reproductive biomass also was 

significantly greater in the west than the east (on average red sea urchins had 9% 

higher reproductive biomass at the two western islands than at the two eastern 

islands) (Table 2; Fig. 3). There were no year-to-year differences in biomass and 

reproductive biomass. 

 

Drivers of red sea urchin demography 

Individual-based metrics: GSI and adult test diameter  

Kelp density was the strongest predictor of both GSI and size among sites (Table 

3); sites with more kelp tended to have red sea urchins with greater GSI and of larger 

size (Fig. 4a and b). The positive relationship between kelp density and size was 

even stronger within MPAs than within unprotected sites (there was a significant 

interaction between protection from fishing and kelp density) (Table 3; Fig. 4). The 

only other significant predictor of individual urchin characteristics was SST. Both 

red sea urchin size and GSI declined with increasing SST, following the longitudinal 

patterns described above.  

 

Population-based metrics: density, adult biomass and reproductive biomass 
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Red sea urchin density varied significantly across the islands, however the spatial 

patterns were complex due to a significant 3-way interaction between three factors: 

protection from fishing (MPA versus unprotected area), kelp density, and SST (Table 

3; Fig. 4c).  Kelp density was negatively related to red sea urchin density, but this 

relationship only occurred within protected areas in the western, cooler region (Fig. 

4c).  

Protection from fishing was the strongest individual predictor of urchin adult 

biomass (Table 3; Fig. 4d), with 16% higher biomass within MPAs. In addition, 

there was a significant interaction between kelp density and SST, where adult 

biomass was positively associated with kelp density in the warmer (eastern) region 

and negatively associated with kelp density within the cooler (western) region (Fig. 

4d). The western region also receives the greatest fishing pressure (Shears et al. 

2012, Teck et al. in preparation). 

Overall, reproductive biomass was 23% greater within MPAs than in unprotected 

areas (Table 3; Fig. 3, 4e). In general, reproductive biomass was positively related to 

kelp density and negatively related to SST. However, these two drivers interacted — 

there were slightly higher levels of reproductive biomass in areas with higher 

densities of kelp within the warmer and less fished eastern region (Fig. 4e). The 

opposite pattern occurred in the cooler (western) region (Fig. 4e), where reproductive 

biomass declined with kelp density, similar to the pattern for adult biomass.  

 

Drivers of sea urchin demography excluding sites within SMI 
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If we exclude SMI from these analyses, kelp and SST are the only significant 

drivers of variation in red sea urchin adult density with no significant interactions. In 

addition, without sites in SMI, SST is no longer an important predictor of variation 

in GSI or reproductive biomass but otherwise results are similar. Finally, drivers of 

TD and biomass are statistically similar with the exclusion of SMI (Appendix D, 

Table D2). 

 

Discussion 

Similar to studies from South Africa, Chile, New Zealand, the Mediterranean, 

and elsewhere around the globe (Babcock et al. 2010; Ling et al. 2015), we also 

found that protection from fishing, kelp density, and temperature interact to explain 

the complexity of sea urchin demographics across the Channel Islands (see Table 4 

for a summary of the key results). Although the majority of the MPAs within the 

region had only been designated six years prior to this beginning of this study, we 

detected significant differences in red sea urchin demographics between MPA and 

unprotected sites. Kelp density was the most important direct driver of red sea urchin 

GSI and adult size and this factor was included in all the significant interaction terms 

in statistical models investigating the effects of protection from fishing and 

environmental forcing on red sea urchin population-based metrics. In addition, as 

described below, we found several prominent regional differences in sea urchin 

demographics, which help explain the regional differences in fishing pressure and 

fishermen behavior across the northern Channel Islands (e.g., Shears et al. 2012). 



 

 78 

While previous research reported no significant spatial differences across this 

same region in red sea urchin reproductive biomass (Shears et al. 2012), we detected 

large spatial variation in reproductive characteristics. One potential explanation for 

this discrepancy is that Shears and colleagues (2012) calculated reproductive 

biomass from average weight and gonad measurements from a single site and applied 

those relationships broadly to data collected on surveys in other locations, whereas 

we calculated site-specific demographic variables. If the relationship between urchin 

size and reproductive condition (GSI) varies from place to place in response to 

environmental forcing (as our results indicate), assumptions of spatial invariance 

may result in errors when applied over large geographic scales.  

Despite higher fishing mortality rates in the west (Shears et al. 2012; Teck et al. 

in preparation), red sea urchins were still larger and had greater reproductive 

potential in the western (colder) region. This result is partially due to the enhanced 

primary productivity and greater kelp resource availability in the western region 

(Shears et al. 2012; Appendix E), and for many species including red sea urchins 

more food availability can result in higher reproduction (Claisse et al. 2013). We not 

only detected greater total reproductive biomass in western sites but also greater size-

specific individual reproductive potential (GSI) in this region. Both reproductive 

measures were higher in the west, also partially due to the higher frequency of larger 

red sea urchins in this region. While some invertebrates typically senesce at a certain 

age and size, long-lived species may not show reductions in reproductive capacity; 



 

 79 

larger sea urchins typically have higher reproductive output and higher GSI than 

smaller conspecifics (Gonor 1972; Ebert 2008).  

Furthermore, GSI was marginally significantly higher within unprotected western 

(colder) sites where kelp densities were significantly higher and purple sea urchin 

(Strongylocentrotus purpuratus) densities were lower (Appendix E). Purple sea 

urchins are prime space and resource competitors with red sea urchins (Dewees 

2003; Rogers-Bennett 2007). More resource availability in the western region likely 

supports higher per-capita gonad growth; larger and heavier sea urchins found at 

western islands are consistent with this hypothesis (Ebert 1968). In addition, the 

significant decline in many reproductive measures between MPA and unprotected 

locations within the western (colder) region is partially due to (1) a unique red urchin 

barren that formed at SMI (Harris Point) in years prior to the implementation of the 

MPA network (Kushner et al. 2013; Appendix A) and (2) the heavier fishing 

pressure outside of this MPA (Teck et al. in preparation) that alleviates resource 

competition for the remaining urchins.  

Depth was an important indicator of variability in red sea urchin density, adult 

biomass, and reproductive biomass. Shallower areas (6 m) had higher levels of all of 

the red sea urchin population-based metrics than deeper areas (13 m). Shallower 

areas (5-8 m) are associated with greater accumulation of drift kelp (Rogers-Bennett 

et al. 1995; Basch & Tegner 2007), a primary resource for sea urchins, than deeper 

areas (14-23 m). In addition, standing kelp is a good indicator of drift kelp 
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availability (Harrold & Reed 1985), and on many California rocky reefs kelp density 

is higher within shallower areas (Appendix E; Young et al. in press).  

Evidence from this study can help to explain the presence of a strong gradient in 

fishing pressure across the Channel Islands, with significantly higher landings in the 

west versus the east (Shears et al. 2012; Teck et al. in preparation). Partly due to the 

higher probability of finding larger red sea urchins in the west, the western region 

has been among the most productive regions for the commercial sea urchin fishery in 

recent decades (CDFW data [www.wildlife.ca.gov]). In addition, higher GSI is an 

indicator of superior gonad quality, which translates to higher prices (Kalvass & 

Hendrix 1997; Unuma 2002; Teck et al. in preparation). We found that red sea 

urchins were larger with higher quality gonads in the western region even though 

these sites experience consistently higher commercial fishing pressure (Teck et al. in 

preparation.).  

Previous research has indicated that red sea urchin size structure and 

reproductive potential has benefitted from protection in the older marine reserve at 

Anacapa Island, which was established in 1978 (Tuya, Soboil & Kido 2000; Behrens 

& Lafferty 2004; Shears et al. 2012). (see Appendix F; Behrens & Lafferty 2004; 

Shears et al. 2012).The newer reserves of the Channel Islands network (established 

in 2003) are already showing similar trends in conservation benefits. Adult red sea 

urchins were significantly larger (by 5.2 mm), had greater biomass, and greater 

reproductive biomass within MPA sites. Our findings corroborate previous research 

and catch data (CDFW) that show fishermen are removing large amounts of biomass 
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outside of MPAs and altering the size distributions by focusing harvest on sea 

urchins above the minimum size limit of 83 mm (Behrens & Lafferty 2004). 

In summary, protection from fishing was an important driver of red sea urchin 

density, adult size, biomass, and reproductive biomass. All red sea urchin 

demographic metrics were higher within protected areas versus unprotected areas. 

Protection from fishing was the most important predictor of population levels of 

adult biomass, underlining effects of MPAs and fishing within this region. We found 

that kelp density was the most important driver of individual-based red sea urchin 

metrics: GSI and adult size. In addition, larger adult red sea urchins were associated 

with cooler temperatures in the west but were more strongly determined by regional 

differences in kelp density than temperature.  

Sea surface temperature (SST) alone was not the most important predictor of any 

of the sea urchin metrics. However, there were significant interactions between SST 

and other predictors for all of our red sea urchin population-based metrics. In 

particular, kelp density was positively related to red sea urchin adult biomass and 

reproductive biomass but only within the warmer (eastern) region. We thus found 

that regardless of temperature, there were significant differences in red sea urchin 

demographics across MPA and unprotected areas in the entire northern Channel 

Islands region (farthest right column of Table 4). Similarly, regardless of the level of 

protection from fishing, there were regional differences associated with variation in 

temperature (bottom row of Table 4). Through these investigations, we have been 

able to estimate the relative importance of these regional temperature differences, 
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protection from fishing, and availability of resource on demographic variability in a 

fished species. 

 

Implications 

Species targeted by fishing activities frequently recover in density, size, and 

biomass inside well-designed marine protected areas (MPAs) (Lester et al. 2009; 

Babcock et al. 2010; Ling & Johnson 2012; Coleman et al. 2015; Munguía-Vega et 

al. 2015). As we have shown here, the corresponding higher reproductive potential 

within MPAs can be a key benefit to species protection (Allison et al. 1998; Gell & 

Roberts 2003; Tetreault & Ambrose 2007) and may contribute to enhancing fisheries 

outside MPAs (Gaines et al. 2010; Rossetto et al. 2015). Despite this, in some 

situations the simple prediction that more protection leads to greater abundance, 

larger size, and greater reproductive potential of a fished species is not realized; other 

species may compensate for the reduced mortality from fishing via predation 

(Allison et al. 2003; Shears et al. 2012).  

Both of our statistical models that tested (1) the importance of geographic 

proxies for environmental variables (i.e., longitude) or (2) specific environmental 

forcing variables (temperature and kelp abundance) on red sea urchin demographics, 

indicated that larger sizes, greater biomass, and reproductive potential of red urchins 

occurred within MPAs versus unprotected areas. Although urchin predators have 

recovered within protected areas of this region (Kay et al. 2012; Hamilton & Caselle 

2014; Caselle et al. 2015), there were significant population-level responses by 
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urchins to the elimination of fishing pressure. It remains to be seen whether these 

patterns will change as the predator populations continue to grow or individual 

predators achieve larger sizes. When fished predators increase within protected areas, 

such as in southern California, Australia, New Zealand, the Caribbean, the 

Mediterranean, and elsewhere, they can drive classic trophic cascades, resulting in 

lower densities of herbivores (Sala 1997; Babcock et al. 1999, 2010; McClanahan 

2000; Shears & Babcock 2002, 2003; Micheli et al. 2005; Pederson & Johnson 2006; 

Guidetti 2006; McClanahan et al. 2007; Barrett et al. 2009; Harborne et al. 2009; 

Salomon et al. 2010; Leleu et al. 2012; Berriman et al. 2015; Ling et al. 2015) even 

when they are targeted by fishing (Shears et al. 2012; Nichols et al. 2015). Thus, 

protection from fishing across all trophic levels may, in some cases, result in lower 

herbivore density and consequently lower recruitment. However, the older reserve at 

Anacapa Island suggests that red sea urchins within MPAs may remain at population 

levels that are well above unprotected sites even in the long term, and the net gains 

from reduced fishing mortality are not entirely offset by increases in natural 

mortality. Thus, future research could address the relative roles of predation (by 

humans and other predators) and competition (mainly from the purple sea urchin, 

Strongylocentrotus purpuratus) as drivers of red sea urchin population dynamics. 

While predation pressure is an important structuring force for herbivores and 

their algal prey in nearshore coastal waters (Hamilton & Caselle 2014; Ling et al. 

2015), our results underscore the significant impacts from humans as predators 

(Castilla 1999; Pinnegar et al. 2000; Darimont et al. 2009; Ling et al. 2009) on 
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herbivores that are themselves an important ecological engineer. Our results show 

that the alleviation of human predation through marine protected areas can benefit 

fished herbivores, but herbivore demographics are also tightly linked with 

macroalgal dynamics embedded in a complex thermal regime.   
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Tables 
Table 1. List of all variables, abbreviations, and their transformations for statistical 

models, if any.  
 

Variable  
Variable 
abbreviation Transformation 

Response variables:   
Mean red sea urchin (SU) gonadosomatic index GSI none 
Mean adult red SU test diameter TD none 
Mean red SU density density ln (x+1) 
Mean adult red SU biomass biomass ln (x+1) 
Mean red SU reproductive  biomass reprod ln (x+1) 
   
Predictor variables:   
Protection from fishing (MPA versus unprotected area) MPA binary variable 
Mean kelp density kelp ln (x+1) 
Mean sea surface temperature (over previous year) SST none 

 
 
Table 2. General linear models examining spatial variability (year, longitude, 

protection from fishing, and depth) across individual-based and population-
based response variables: red sea urchin gonadosomatic index (GSI), adult size 
(TD), density, adult biomass, and reproductive biomass: (a) overall model R2, 
F-ratio, DF, and P-values and (b) effect tests. All non-significant interaction 
terms were sequentially removed.   

 
(a) 

 
individual metrics population metrics 

Response Variable GSI TD density biomass reprod 
R2 0.120 0.285 0.324 0.142 0.167 

F-ratioDF F6,142 F6,142 F9,142 F5,142 F5,142 
3.10 9.02 7.09 4.54 5.48 

P 0.007 <0.0001 <0.0001 0.0007 0.0001 
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(b)       
  individual metrics population metrics 

     GSI   TD   density   biomass   reprod  

Source DF  F  P 
 

 F  P    F  P 
 

 F  P    F  P 
 

year 2 
   

0.38  0.683 
 

      
7.18  0.0011 ** 

      
0.45  0.6365 

 

      
0.08  0.9222   

      
0.16   0.8504 

 
long 1 

   
9.99  0.0019 **    25.04  

<0.000
1 *** 

      
0.26  0.608 

 

      
1.31  0.2543   

      
6.82  0.01 * 

year*long 2   
 

    
      

5.78  0.0039 **       
 

MPA 1 
   

0.03  0.8619 
 

      
9.70  0.0022 ** 

      
4.70  0.0319 *‡    13.20  0.0004 *** 

   
11.74  0.0008 *** 

long*MPA 1 
   

3.89  0.0507 †     
      

7.54  0.0069 **       
 

depth 1 
   

0.67  0.414 
 

      
2.28  0.1335      31.49  

<0.000
1 *** 

      
9.25  0.0028 ** 

   
12.46  0.0006 *** 

long*depth 1   
 

      
6.37  0.0128 *‡ 

      
4.84  0.0295 *       

 † marginally significant p-value 
‡ p-values were >0.05 when all interaction terms remained in the analysis 
*p≤0.05 
**p≤0.01 
***p≤0.001 
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Table 3. General linear models examining spatial drivers (protection from fishing, kelp density, SST, and interactions) 

across individual-based and population-based response variables: red sea urchin GSI, adult TD, density, adult 
biomass, reproductive biomass: (a) overall model R2, F-ratio, DF, and P-values and (b) effect tests.  

 
(a) 

 
individual metrics population metrics 

Response Variable GSI TD density biomass reprod  
R2 0.459 0.430 0.262 0.163 0.259 

F-ratio7,142 16.35 14.53 6.84 3.75 6.73 
P <0.0001 <0.0001 <0.0001 0.001 <0.0001 

 
(b) 

  
individual metrics population metrics 

  
 GSI   TD   density   biomass   reprod  

Source DF F P F P F P F P F P 
MPA 1  0.1    0.7813 10.1    0.0018 **   4.2    0.0415 * 10.8  0.0013 ** 10.8  0.0013 ** 
kelp 1 82.7  <0.0001 *** 55.8  <0.0001 *** 19.6  <0.0001 ***   0.0  0.8458   7.1  0.0085 ** 
MPA*kelp 1   1.7    0.1993 4.5    0.0002 **   1.8    0.1816   0.2  0.6236   1.0  0.3226 
SST 1   5.3    0.0229 * 13.7    0.0003 **   0.5    0.4776   1.2  0.2668   4.2  0.0417 * 
MPA *SST 1   1.1    0.3049   0.6    0.4218   2.7    0.0996   0.0  0.8578   0.2  0.6951 
kelp*SST 1   0.3    0.5792   0.6    0.4548   4.6    0.0343 *   8.3  0.0047 ** 10.9  0.0012 ** 
MPA*kelp*SS
T 1   1.2    0.2798   0.4    0.5546 18.0  <0.0001 ***   2.2  0.1398   2.9  0.0887 

*p≤0.05 
**p≤0.01 
***p≤0.001 
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Table 4. Red sea urchin metrics across western (colder SST) and eastern (warmer SST) regions within the northern 
Channel Islands and MPAs versus unprotected areas (2009-2011). Unless otherwise noted, metrics refer to mean red sea 
urchin values. 
 

REGION STATUS 

 
WESTERN REGION 

(colder) 
 

 
EASTERN REGION 

(warmer) 
 

ENTIRE REGION 
(colder or warmer) 

 
MPA 
 
 

**   densities higher 
       (largely due to sites within Harris 
       point SMR, SMI) 
 
*** urchin density negatively related  
       with kelp density 
       (largely due to sites within Harris 
       point SMR, SMI) 
 

 

**  adult size larger 
 
**  adult biomass higher  
 
**  reproductive biomass higher 
 
**  adult size positively related  
      with kelp density 
 

 
UNPROTECTED 
 
 

†     GSI marginally higher 
       (largely due to sites within Harris 
       point SMR, SMI) 

  
 

MPA 
or 
UNPROTECTED 
 

*     adults larger and  
*     densities lower 
       at deeper sites 
 
**   GSI higher 
 
*     reproductive biomass higher 
        
**   adult biomass and 
       reproductive biomass 
       negatively related with kelp 
       density 

**  densities higher in 2009  
      
**  adult biomass and 
      reproductive biomass 
      positively related with  
      kelp density 
 

**   adult biomass and 
*** adult reproductive biomass 
       higher at shallower sites 
 
**   adult size in 2009 larger than in 2011  
       (intermediate in 2010) 
 
*** GSI positively related with 
       kelp density 
 
*     GSI and  
**   adult size  
       negatively related with SST 

† marginally significant p-value; *p≤0.05; **p≤0.01; ***p≤0.001 
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Figures 

 
Figure 1. Map of the Santa Barbara Channel and northern Channel Islands with sites 
(white dots) and mean long-term satellite sea surface temperatures (SST) represented 
by colors from blue to green (25-year average Advanced Very High Resolution 
Radiometer data from 1985-2009). All marine protected areas (MPAs) are outlined 
in black. The sites examined in this study are within seven MPAs (1) Harris Point 
State Marine Reserve (SMR), (2) South Point SMR, (3) Painted Cave State Marine 
Conservation Area (SMCA), (4) Gull Island SMR, (5) Scorpion SMR, (6) Anacapa 
Island SMCA, and (7) Anacapa Island SMR. Islands from west to east are shown: 
San Miguel Island (SMI), Santa Rosa Island (SRI), Santa Cruz Island (SCI), and 
Anacapa Island (AI). Twenty-five-year and one-year averages of SST are highly 
correlated with longitude (r=0.949, P<0.0001; r=0.959, P<0.0001, respectively). 
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Figure 2. Mean red sea urchin (SU) (a) gonadosomatic index (GSI) and (b) adult red 
SU test diameter (TD) per site per year across longitude from west to east (left to 
right) and grouped across MPA and unprotected areas. Vertical dotted lines separate 
the islands: San Miguel, Santa Rosa, Santa Cruz, and Anacapa Islands. Lines show 
linear regressions across longitude and between MPA and unprotected areas (GSI: 
R2=0.11, F3,142=5.92, P=0.0008; TD: R2=0.16, F3,142=9.08, P<0.0001). 
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Figure 3.  Mean red sea urchin (SU) (a) density, (b) adult biomass, and (c) 
reproductive biomass (showing log-transformed values) across longitude from west 
to east (left to right) and grouped by MPA and unprotected areas. Vertical dotted 
lines separate the islands: San Miguel, Santa Rosa, Santa Cruz, and Anacapa Islands. 
Lines show linear regressions across longitude and between MPA and unprotected 
areas (density: R2=0.08, F3,142=3.80, P=0.0118; adult biomass: R2=0.09, F3,142=4.33, 
P=0.0060; reproductive biomass: R2=0.09, F3,142=4.56, P=0.0044). 
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Figure 4. Results from the GLMs examining spatial drivers (protection from fishing, 
kelp density, sea surface temperature [SST], and interactions) on urchin 
demographics. Figures depict the relationship between kelp density (m-2) and each 
sea urchin demographic metric: (a) gonadosomatic index (GSI) and (b) adult test 
diameter (TD) (mm), (c) density (m-2), (d) adult biomass (above 51 mm) (g m-2), (e) 
reproductive biomass (g m-2) (reprod). The black lines show the predicted value of 
each metric across a range of kelp density within the western region (left two 
columns) and the eastern region (right two columns) across both unprotected and 
MPA sites. The blue dashed lines show the 95% confidence interval for the predicted 
values. Red dotted lines show the predicted value of each sea urchin demographic 
metric (horizontal lines) at the highest kelp level (vertical lines).  
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Appendix A  

Variation across seven MPAs with a description of regulations  
 
Except for the two Marine Conservation Areas (SMCAs), all other MPAs are 
designated as State Marine Reserves, where the “take of all living marine resources 
is prohibited” (CDFW website). At the Painted Cave State Marine Conservation 
Area (SMCA), the “take of all living marine resources is prohibited except for the 
recreational take of spiny lobster and pelagic finfish1.” At the Anacapa Island SMCA 
(north coast of Anacapa Island)2 the “take of all living marine resources is prohibited 
except for the recreational take of spiny lobster and pelagic finfish and the 
commercial take of spiny lobster.” 
 
ANOVAS across sites within the seven MPAs for mean red sea urchin (SU) 
gonadosomatic index (GSI), adult red SU test diameter, density, juvenile biomass 
(25-50 mm), adult biomass (above 51 mm), total biomass, reproductive biomass 
(reprod), mean kelp density, and purple sea urchin density are presented below 
(Table A1, Figure A1). We expected to see greater sea urchin density (both red and 
purple sea urchins Strongylocentrotus purpuratus) and greater red sea urchin adult 
biomass and lower kelp density within SMCAs versus SMRs due to fewer lobsters 
from fishing for lobsters (Behrens & Lafferty 2004; Lafferty 2004; Lafferty & 
Behrens 2005; Caselle et al. 2015; Foster et al. 2015). We also predicted that red sea 
urchin density and adult biomass would be lowest and kelp density highest at the old 
SMR in Anacapa since predator populations have had the longest time to recover in 
comparison to other SMRs. However, there may be spatial differences, for instance 
north versus south side of the islands have different temperature and ocean 
circulation regimes. 
 
In addition, there is a historical presence of high densities of adult red sea urchins in 
the western Harris Point State Marine Reserve (SMI), which existed prior to reserve 
establishment (1985-2003 data from Shears et al. 2012; Kushner et al. 2013). 
Persistence of this red “sea urchin barren” may be explained by a lack of fishing 
within this MPA, the slow recovery of urchin predators of sufficient size to attack 
adult urchins, and adult sea urchins providing protection from predation on juveniles 
(<40 mm) with their spine canopies (Tegner & Dayton 1977, 1981; Breen et al. 
1985; Zhang et al. 2011). In addition, predators may prefer consuming sea urchins 
living among kelp beds rather than in barren areas (Eurich et al. 2014). 
____________________________________________________________________ 
1“Pelagic finfish (CCR Title 14, Section 632(a)(3)), as defined for purposes of MPA regulations, are a subset of finfish defined 
as: northern anchovy (Engraulis mordax), barracudas (Sphyraena spp.), billfishes3 (family Istiophoridae), dolphinfish 
(Coryphaena hippurus), Pacific herring (Clupea pallasii), jack mackerel (Trachurus symmetricus), Pacific mackerel (Scomber 
japonicus), salmon (Oncorhynchus spp.), Pacific sardine (Sardinops sagax), blue shark (Prionace glauca), salmon shark 
(Lamna ditropis), shortfin mako shark (Isurus oxyrinchus), thresher sharks (Alopias spp.), swordfish (Xiphias gladius), tunas 
(family Scombridae), including Pacific bonito (Sarda chiliensis), and yellowtail (Seriola lalandi).”  
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2“The state conservation area and federal conservation area share identical regulations. For complete state boundaries and 
rules, see California Code of Regulations Title 14, Section 632. For federal MPAs see Code of Federal Regulations, Federal 
Register 15 Part 922 and 50 CFR Part 660.” 
 
3“Marlin is not allowed for commercial take.” 
 
California Department of Fish and Wildlife website. Available: 
https://www.wildlife.ca.gov/Conservation/Marine/MPAs/Network/Southern-California (accessed 2015 August 18) 
 
 
Table A1. ANOVAS across sites within the seven MPAs for mean red sea urchin 
(SU) gonadosomatic index (GSI), adult red SU test diameter (TD), density, juvenile 
biomass (25-50 mm) (juv bio), adult biomass (above 51 mm) (ad bio), total biomass 
(total bio), reproductive biomass (reprod), mean kelp density (kelp), and purple sea 
urchin density (purple). 
 

 
indiv. metrics pop. metrics 

Response 
Variable GSI TD density juv bio ad bio total bio reprod 

R2 0.312 0.480 0.289 0.405 0.224 0.144 0.232 
F-ratio6,65 4.46 9.08 4.00 6.69 2.83 1.65 2.97 

P      
0.0009  <0.0001 0.002 <0.0001 0.0172 0.1499 0.0134 

 
Response 
Variable kelp purple 

R2 0.383 0.290 
F-ratio6,65 6.10 4.02 

P <0.0001 0.0019 
 

http://www.wildlife.ca.gov/Conservation/Marine/MPAs/Network/Southern-California%20(Accessed%202015%20Aug%2018
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Figure A1. Mean red sea urchin (SU) (a) gonadosomatic index (GSI) and (b) adult 
red SU test diameter (TD), (c) density, (d) juvenile biomass (25-50 mm), (e) adult 
biomass (above 51 mm), (f) total biomass, (g) reproductive biomass, (h) mean kelp 
density, and (i) purple sea urchin density across the seven MPAs.  
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Appendix B  

Variation in juvenile and total biomass of red sea urchins across the 
northern Channel Islands  
 

We explored spatial variation in juvenile (25-50 mm) and total biomass (above 25 
mm) between MPA and unprotected sites across the Channel Islands, among years, 
and across longitude and depth using GLM. We also explored the relative 
importance and interactions among our three main predictor variables (Table 1: 
protection from fishing (MPA versus unprotected area), mean kelp density, and mean 
sea surface temperature [over the previous year]) in driving variation of juvenile and 
total biomass. 
 
For juvenile biomass, there were significant two-way interactions between longitude 
and year, longitude and protection from fishing, and longitude and depth (GLM: 
Table B1, Figure B1). In 2009, juvenile biomass increased from west to east; in 
2010, this positive relationship was weaker; and in 2011, there was no difference 
across longitude. Within unprotected areas, there was a slightly positive relationship 
from west to east, however, within MPAs there was no difference across longitude. 
Finally, in shallow areas there were no differences in juvenile biomass across the 
region, but in deep areas there was high variability and higher juvenile biomass from 
west to east. 
 
For total biomass, there was an interaction between longitude and protection from 
fishing; within unprotected areas there were slightly higher levels of total biomass 
from west to east, and the opposite relationship occurred within MPAs (slightly 
negative relationship between longitude and total biomass) (Table B1, Figure B1). In 
addition, there was a three-way interaction between longitude, year, and depth. In 
general there were no large differences in total biomass across longitude except for 
within shallow areas in 2009 and deeper areas in 2011, there were slightly higher 
levels of total biomass from west to east. In addition, within shallow areas in 2011, 
there were slightly lower levels of total biomass from west to east.  
 
When exploring the drivers of variation in juvenile and total biomass of red sea 
urchins, we found significant three-way interactions among protection from fishing, 
temperature, and kelp density (Table B2). Within unprotected areas, kelp did not 
explain a significant amount of variability in juvenile biomass or total biomass of red 
sea urchins nor did temperature. However, within MPAs, in colder regions (in the 
west) there was a negative relationship with kelp density and red sea urchin juvenile 
biomass and a weaker negative relationship with kelp density and red sea urchin total 
biomass. Within MPAs in warmer regions (in the east) there was no difference in 
juvenile biomass across varying levels of kelp density and a slightly positive 
relationship with kelp density and total red sea urchin biomass. 
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Table B1. General linear models examining spatial variability (year, longitude, 
protection from fishing, and depth) across log-transformed mean red sea urchin  
juvenile biomass (between 25 and 50 mm) (juv bio) and total biomass (above 25 
mm) (tot bio): (a) overall model R2, F-ratio, DF, and P-values and (b) effect tests. All 
non-significant interaction terms were sequentially removed.   
 
(a) 

Response 
Variable juv bio tot bio 

R2 0.367 0.255 

F-ratioDF F9,142 F13,142 

8.58 3.40 

P <0.000
1 0.0002 

 
(b) 

     juv bio   tot bio  

Source DF  F  P 
 

 F  P   

year 2 0.63 0.5337 
 

0.1112 0.8949   

long 1 6.12 0.01 * 0.0121 0.9126   

year*long 2 4.17 0.0176 * 1.9172 0.1512   

MPA 1 0.10 0.757 
 

10.498 0.0015 * 

year*MPA 2   
 

    

long*MPA 1 14.53 0.0002 * 5.9072 0.0165 * 

depth 1 18.70 
<0.000
1 * 14.7051 0.0002 * 

year*depth 2   
 

0.6626 0.5172   

long*depth 1 7.90 0.0057 * 2.969 0.0873 * 

MPA*depth 1   
 

    

long*MPA*depth 1         

long*year*depth 2     3.4424 0.035 * 
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Table B2. General linear models examining spatial drivers (protection from fishing, 
kelp density, SST, and interactions) across log-transformed mean red sea urchin 
juvenile biomass (between 25 and 50 mm) (juv bio) and total biomass (above 25 
mm) (tot bio): (a) overall model R2, F-ratio, DF, and P-values and (b) effect tests. 
 
(a) 

 
indiv. metrics 

Response Variable juv bio tot bio 
R2 0.332 0.161 

F-ratio7,142 9.59 3.69 
P <0.0001 0.0011 

 
(b) 

   
indiv. metrics 

   
 juv bio   total bio  

Source Nparm DF  F  P  F  P 
MPA 1 1   0.13   0.7195 8.43 0.0043* 
kelp 1 1 21.31 <0.0001* 1.12 0.2914 
MPA*kelp 1 1   6.97   0.0093* 0.27 0.6063 
SST 1 1 16.12 <0.0001* 0.33 0.5691 
MPA *SST 1 1 10.08   0.0019* 1.74 0.1899 
kelp*SST 1 1   0.0005   0.9823 3.84 0.0521† 
MPA*kelp*SST 1 1 6.16 0.0143* 6.30 0.0133* 
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Figure B1. Mean red sea urchin (SU) (a) juvenile biomass (between 25 and 50 mm) 
and (b) total biomass (above 25 mm) (showing log-transformed values) across 
longitude from west to east (left to right) and grouped across MPA and unprotected 
areas. Vertical dotted lines separate the islands: San Miguel, Santa Rosa, Santa Cruz, 
and Anacapa Islands. Lines show linear regressions across longitude and between 
MPA and unprotected areas (for viewing purposes only; juvenile biomass: R2=0.19, 
F3,142=10.95, P<0.0001; total biomass: R2=0.10, F3,142=4.87, P=0.0030). 
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Appendix C  

Variation in gonadosomatic index as a function of gender in red sea 
urchins 
 

We did not find any consistent spatial differences in GSI across gender. Across all 
urchins examined, GSI was not significantly different between genders while 
controlling for test diameter. Nor were there differences in GSI between genders 
within each island. 
 
We did identify some differences in GSI between males and females within a few 
sites. However, the magnitude of differences was low (see below), and the direction 
of the differences was not consistent.  More importantly, these differences may be 
spurious because after FDR correction due to multiple testing, none of these p-values 
was significant (but see Table CI for the GSI averages per gender within those four 
of 30 sites with potential but non-significant differences). 
 
When we included gender as an additional predictor within the GLM models for GSI 
performed in this study, it did not explain a significant amount of variation. In 
addition, we performed separate driver models per gender and results were very 
clear: kelp was the most important driver in both genders. 
 
Table C1. The GSI averages per gender within those sites (4 of 30 sites) with 
potential but non-significant differences. 
 
Site Female GSI Male GSI n 
Anacapa East Fish Camp 0.03 0.04 28 
SCI Coche Point 0.03 0.02 29 
SCI Scorpion Point 0.05 0.07 121 
SCI Valley Point 0.08 0.11 77 
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Appendix D 
Parameter estimates for GLMs and spatial driver GLMs excluding SMI 
 

Table D1. Parameter estimates for general linear models examining (a) spatial patterns of variability (year, longitude, 
protection from fishing, and depth) and (b) spatial drivers of variability (protection from fishing, kelp, and SST) across red sea 
urchin response variables: mean red sea urchin (SU) gonadosomatic index (GSI), mean adult red SU test diameter (TD), mean 
red SU density  (density), mean adult red SU biomass (biomass), and mean red SU reproductive  biomass (reprod). For each 
model term, we display the parameter estimate (Est), standard error (SE), t Ratio, p-value (Prob>|t|), and the standardized beta 
coefficients (Beta). 
 
(a) 

 
GSI TD density 

Term Est SE t Ratio Prob>|t| Beta Est SE t Ratio Prob>|t| Beta Est SE t Ratio Prob>|t| Beta 
Intercept -3.213 1.039 -3.09 0.0024 0.000 -2056.15 426.23 -4.82 <0.0001 0.000 -7.55 18.40 -0.41 0.6821 0.000 
year[2009] -0.002 0.004 -0.40 0.6891 -0.035 5.39 1.55 3.47 0.0007 0.272 -0.01 0.06 -0.22 0.8286 -0.017 
year[2010] 0.004 0.004 0.87 0.385 0.077 0.18 1.78 0.10 0.9209 0.008 -0.06 0.07 -0.77 0.4421 -0.061 
longitude -0.027 0.009 -3.16 0.0019 -0.266 -17.82 3.56 -5.00 <0.0001 -0.379 -0.08 0.15 -0.51 0.608 -0.041 
MPA [unprotected] 0.000 0.003 0.17 0.8619 0.014 -3.66 1.18 -3.12 0.0022 -0.230 -0.10 0.05 -2.17 0.0319 -0.158 

depth -0.001 0.001 -0.82 0.414 -0.067 0.43 0.28 1.51 0.1335 0.111 -0.06 0.01 -5.61 
<0.000

1 -0.405 
(longitude+119.8)*MPA[unprotected] -0.017 0.009 -1.97 0.0507 -0.161   0.40 0.14 2.75 0.0069 0.200 
(longitude+119.8)*(depth-9.6)   -2.26 0.90 -2.52 0.0128 -0.184 0.08 0.04 2.20 0.0295 0.158 
year[2009]*(longitude+119.8)     0.65 0.19 3.39 0.0009 0.271 
year[2010]*(longitude+119.8)     -0.29 0.21 -1.38 0.1699 -0.108 

 

 
biomass reprod 

Term Est SE t Ratio Prob>|t| Beta Est SE t Ratio Prob>|t| Beta 
Intercept -44.34 44.44 -1.00 0.3201 0.000 -95.40 38.03 -2.51 0.0133 0.000 
year[2009] -0.05 0.16 -0.33 0.7423 -0.028 -0.07 0.14 -0.48 0.6288 -0.041 
year[2010] 0.06 0.19 0.34 0.7354 0.029 0.07 0.16 0.46 0.6457 0.039 
longitude -0.43 0.37 -1.14 0.2543 -0.094 -0.83 0.32 -2.61 0.01 -0.212 
MPA [unprotected] -0.45 0.12 -3.63 0.0004 -0.292 -0.36 0.11 -3.43 0.0008 -0.272 
depth -0.09 0.03 -3.04 0.0028 -0.243 -0.09 0.03 -3.53 0.0006 -0.278 
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(b) 

 
GSI TD density 

Term Est SE t Ratio Prob>|t| Beta Est SE t Ratio Prob>|t| Beta Est SE t Ratio Prob>|t  Beta 
Intercept 0.084 0.017 4.99 <0.0001 0.000 103.89 7.89 13.16 <0.0001 0.000 1.26 0.37 3.38 0.0009 0.000 
MPA[unprotected] 0.001 0.002 0.28 0.7813 0.019 -3.52 1.11 -3.18 0.0018 -0.221 -0.11 0.05 -2.06 0.0415 -0.162 
kelp 0.029 0.003 9.10 <0.0001 0.621 11.13 1.49 7.47 <0.0001 0.523 -0.31 0.07 -4.43 <0.0001 -0.353 
MPA[unprotected]*(kelp)-0.80) -0.004 0.003 -1.29 0.1993 -0.088 -5.67 1.49 -3.81 0.0002 -0.266 0.09 0.07 1.34 0.1816 0.107 
SST -0.002 0.001 -2.30 0.0229 -0.157 -1.77 0.48 -3.71 0.0003 -0.259 0.02 0.02 0.71 0.4776 0.057 
MPA[unprotected]*(SST-15.6) -0.001 0.001 -1.03 0.3049 -0.069 0.38 0.48 0.81 0.4218 0.056 0.04 0.02 1.66 0.0996 0.130 
(kelp-0.80)*(SST-15.6) 0.001 0.001 0.56 0.5792 0.037 0.48 0.64 0.75 0.4548 0.051 0.07 0.03 2.14 0.0343 0.167 
MPA[unprotected]*(kelp-
0.80)*(SST-15.6) 0.001 0.001 1.09 0.2798 0.073 0.38 0.64 0.59 0.5546 0.041 -0.13 0.03 -4.24 <0.0001 -0.333 

 

 
biomass reprod 

Term Est SE t Ratio Prob>|t| Beta Est SE t Ratio Prob>|t| Beta 
Intercept 6.75 0.92 7.37 <0.0001 0.000 4.31 0.75 5.77 <0.0001 0.000 

MPA[unprotected] -0.42 0.13 -3.29 0.0013 -0.276 -0.34 0.10 -3.29 0.0013 -0.260 
kelp -0.03 0.17 -0.19 0.8458 -0.017 0.38 0.14 2.67 0.0085 0.213 
MPA[unprotected]*(kelp-0.80) -0.08 0.17 -0.49 0.6236 -0.042 -0.14 0.14 -0.99 0.3226 -0.079 
SST -0.06 0.06 -1.12 0.2668 -0.094 -0.09 0.05 -2.06 0.0417 -0.164 
MPA[unprotected]*(SST-15.6) -0.01 0.06 -0.18 0.8578 -0.015 -0.02 0.05 -0.39 0.6951 -0.031 
(kelp-0.80)*(SST-15.6) 0.21 0.07 2.87 0.0047 0.239 0.20 0.06 3.31 0.0012 0.259 
MPA[unprotected]*(kelp-
0.80)*(SST-15.6) -0.11 0.07 -1.49 0.1398 -0.124 -0.10 0.06 -1.71 0.0887 -0.135 
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Table D2. General linear model results excluding SMI examining spatial drivers of variability (protection from fishing, kelp, 
and SST) across red sea urchin response variables: mean red sea urchin (SU) gonadosomatic index (GSI), mean adult red SU 
test diameter (TD), mean red SU density  (density), mean adult red SU biomass (biomass), and mean red SU reproductive  
biomass (reprod).  
 

 
individual metrics population metrics 

 
GSI TD density biomass reprod 

Source  P  P  P  P  P 
MPA  

 
 **  

 
 **  ** 

kelp  ***  ***  ***  
 

 ** 
MPA*kelp  

 
 **  

 
 

 
 † 

SST  
 

 **  *  
 

 
 MPA *SST  

 
 

 
 

 
 

 
  

kelp*SST  
 

 
 

 †  **  *** 
MPA*kelp*SST  †  

 
 

 
 

 
 

 † marginally significant p-value 0.05-0.10 
*p≤0.05 
**p≤0.01 
***p≤0.001 
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Appendix E 
Details on patterns in kelp density, purple sea urchin density 
 
To help understand trends in the above red urchin metrics, we also examined  

kelp (Macrocystis pyrifera) density, since kelp is an important resource to sea 
urchins, and purple sea urchin (Strongylocentrotus purpuratus) density, as this 
species is a prime space and resource competitor to red sea urchins (Dewees 2003; 
Rogers-Bennett 2007). The densities of both species of sea urchins (reds and purples) 
were included in the model predicting kelp density, as they both likely negatively 
affect kelp density through grazing pressure. 

 
Spatial patterns of kelp and purple sea urchin density 
Kelp density tended to be greater in the west but only within unprotected sites 

(Fig. E1, Table E1). However, there was a three-way interaction among longitude, 
protection from fishing, and depth. Within unprotected areas kelp density decreased 
with depth, but within the western MPA sites kelp density increased with depth; in 
the east kelp density was similar across depths within our sites. Kelp density was 
significantly greater in 2011 than in 2009 and 2010, which were statistically similar. 
The strongest spatial model (R2 0.51) was with purple sea urchin density, with 
significantly greater densities eastward and no differences across MPA and 
unprotected areas. Purple sea urchin densities also were significantly greater in 
shallower sites.  

Note: Variation in kelp density across MPA and unprotected areas should be 
explored in the future, as more time since MPA establishment increases. Hamilton 
and Caselle (2014) did not detect differences in kelp between MPA and unprotected 
areas per island (in 2003-2012 data), whereas our examination (of 2009-2011 data) 
across longitude did reveal significant differences within the western region, where 
red sea urchin fishing pressure is higher. 

 
Table E1. General linear models examining spatial variability (year, longitude, 

protection from fishing, and depth) across response variables: kelp density and 
purple sea urchin density: (a) overall model R2, F-ratio, DF, and P-values and 
(b) effect tests. All non-significant interaction terms were sequentially removed.  

 
(a) 

 
kelp purple 

R2 0.250 0.508 

F-ratioDF F9,142 F5,142 
4.92 28.31 

P <0.0001 <0.0001 
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(b)      
     kelp   purple  

Source DF  F  P    F  P 
 

year 2 
      
4.16  0.0178 * 

      
1.38  0.2544 

 
long 1    12.97  0.0004 *    57.15  <.0001 * 

year*long 2       
 

MPA 1 
      
0.34  0.5585   

      
0.74  0.3924 

 
year*MPA 2       

 
long*MPA 1 

      
8.82  0.0035 *   

 
depth 1 

      
0.12  0.7265      54.72  <.0001 * 

year*depth 2       
 

long*depth 1 
      
2.39  0.1248     

 
MPA*depth 1 

      
5.88  0.0166 *   

 
long*MPA*depth 1 

      
4.91  0.0284 *   

  *denotes significant P-value 
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Figure E1.  Mean (a) kelp density and (b) purple sea urchin density (showing log-
transformed values) across longitude from west to east (left to right) and grouped by 
MPA and unprotected areas. Vertical dotted lines separate the islands: San Miguel, 
Santa Rosa, Santa Cruz, and Anacapa Islands. Lines show linear regressions across 
longitude and between MPA and unprotected areas (for viewing purposes only; kelp 
density: R2=0.14, F3,142=7.46, P<0.0001; purple sea urchin density: R2=0.31, 
F3,142=20.99, P<0.0001). 
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Appendix F  

Comparing sites by MPAs-status and MPA-age 
 
Previous work has acknowledged the difficulty in generalizing the effects of 

MPAs due to varying time since protection (Shears et al. 2012). We compared sites 
within the older reserve, the newer reserves, and unprotected sites to examine 
differences across MPA-age. 

 
Table F1. Summary of statistical tests (t-tests and one-way ANOVAs) 

examining differences in our response variables (Table 1) among MPA and 
unprotected sites, where unprotected sites were clustered near MPAs. We examined 
the MPAs: South Point SMR (protected since 2003) in SRI, Scorpion SMR 
(protected since 2003) in SCI, and Anacapa Island SMCA (protected since 2003) and 
Anacapa Island SMR (protected since 1978). Within Anacapa Island, we also 
compared across MPA-age, comparing among sites within the unprotected area, the 
newer MPA, and the older MPA. The q-value is the false discovery rate (FDR) 
adjusted P-value due to multiple statistical tests. 

 

 
SRI SCI Anacapa 

  t(18) P q-value t(26) P q-value F2,34 P q-value 
GSI 0.89 0.3863 0.4198 2.51 0.0186 * 0.0558 † 0.89 0.4198 0.4198 
TD 2.32 0.0322 * 0.0966† 0.39 0.6986 0.6986 1.28 0.2911 0.43665 
density 1.12 0.2769 0.4154 0.74 0.4662 0.4662 4.06 0.0269 * 0.0807 † 
biomass 1.54 0.1407 0.2111 0.31 0.7555 0.7555 2.84 0.0732 † 0.21105 
reprod 1.84 0.0824 0.1629 1.31 0.2014 0.2014 2.38 0.1086 0.1629 
kelp 2.08 0.0525 † 0.0610† 2.04 0.0516 † 0.0610 † 4.71 0.0610 † 0.061† 
purp 1.53 0.1440 0.2160 0.84 0.4061 0.4061 8.40 0.0012 * 0.0036 * 

 
* significant P or q-values 
† marginally significant P or q-values 
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Figure F1. Mean red sea urchin (SU) (a) gonadosomatic index (GSI) and (b) adult 
red SU test diameter (TD), (c) density, (d) adult biomass, (e) reproductive biomass, 
(f) mean kelp density, and (g) purple sea urchin density (the latter five variables 
show log-transformed values) across MPA and unprotected areas within islands 
Santa Rosa Island (SRI), Santa Cruz Island (SCI) and Anacapa Island. New MPAs 
are South Point SMR (protected since 2003) in SRI, Scorpion SMR (protected since 
2003) in SCI, and Anacapa Island SMCA (protected since 2003), the old MPA is 
Anacapa Island SMR (protected since 1978).  
† denotes marginally significant differences  
* denotes significant differences 
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Figure F1. continued (caption previous page).  
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Figure F1. continued (caption previous page).  
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III. Quality of a fished resource: Assessing spatial and 

temporal dynamics  

Collaborators: Julio Lorda, Tal Ben-Horin, Rebecca E. Toseland, 

Sarah T. Rathbone, Nick T. Shears, Steven D. Gaines 

 

Abstract  

Understanding the spatio-temporal variability in the demography of harvested 

species is essential to improve sustainability if there is large geographic variation in 

demography. Reproductive patterns commonly vary spatially, and this is particularly 

important for management of “roe”-based fisheries, since profits depend on both the 

number and reproductive condition of individuals. The reproductive organ of the red 

sea urchin, Mesocentrotus franciscanus (previously Strongylocentrotus A. Agassiz, 

1863), is harvested in California for the domestic and international sushi market. The 

primary driver of red sea urchin price within this multi-million dollar industry is 

gonad quality. A relatively simple measure of the fraction of the body mass that is 

gonad, the gonadosomatic index (GSI), provides important insight into the ecological 

and environmental factors associated with spatial and temporal variability in 

reproductive quality, and hence the value of the fishery. We used fishery-dependent 

samples of red sea urchins over three years to identify the seasonality of the 

reproductive cycle and to determine whether reproductive condition varied 

geographically across a heavily fished region in southern California. We also 

examined the responses of fishermen to the spatial and temporal dynamics of red sea 
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urchin reproduction using both catch and processor data. Fishermen were predictable 

in collecting urchins according to the seasonal reproductive dynamics of urchins, and 

focused their harvesting efforts in those locations where gonad quality was greatest. 

We demonstrate the use of red sea urchin GSI as a simple quantitative tool to predict 

quality, effort, landings, price, and value of the fishery. We find that current 

management is not effectively realizing objectives for the southern California 

fishery, since the reproductive cycle does not match the cycle in northern California, 

where management guidelines were originally shaped. Although management may 

not be meeting their goals, the scheme may in fact provide conservation benefits by 

curtailing effort during part of the high quality fishing season right before spawning. 

 

Keywords: gonadosomatic index; Channel Islands; sea urchins; sea urchin fishery; 

Mesocentrotus franciscanus; reproduction; management 

 

Introduction 

Quality plays an important role in the price of all fish products, especially when 

the product is served raw. High-grade fresh fish can be worth 4 to 20 times the price 

of lower-grade fish (Bartram et al. 1996; McConnell et al. 1998). The manner in 

which a fish is caught, handled and stored affects quality and thus price (Murphy et 

al. 1995; Monfort 2002; Babcock & Weninger 2004). In addition, quality is also 

often related to a species’ reproductive cycle. For example, in several fisheries 

(scallop, herring, sturgeon, squid, and salmon) quality peaks before the spawning 
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season (Taylor & Venn 1979; Smith 1985; Racotta et al. 1998; Stephenson 1999; 

Babcock & Weninger 2004; Iwata et al. 2010). Reproductive condition can vary 

across seasons, years, and regions due to many environmental and ecological factors, 

such as resource availability and quality, spawning or nursery habitat availability and 

quality, temperature, climate, and upwelling regime (Tegner & Dayton 1991; 

Montgomery & Galzin 1993; Nilo et al. 1997; Collins et al. 2000; Kreiner et al. 

2001; Fiedler 2002; Hilborn et al. 2003; Babcock & Weninger 2004; Ruttenberg et 

al. 2005; Wright & Trippel 2009; Hamilton et al. 2011; Ebert et al. 2012). 

Understanding how reproduction in a marine resource varies can not only inform 

population models but also can provide insight into the value of a fished product. 

When a fished species is roe-based and served raw, such as sea urchins, quality 

dominates product price (Unuma 2002). In recent decades, hundreds of millions of 

pounds of red sea urchins have been hand collected by commercial fishermen diving 

in California’s coastal waters (California Department of Fish and Wildlife [CDFW] 

data www.wildlife.ca.gov/Conservation/Marine/Invertebrates/Sea-Urchin). This 

multi-million dollar industry relies on a consistent, fresh product, and is marketed as 

the sushi product uni. The principal sea urchin species exploited in California is the 

red sea urchin, Mesocentrotus franciscanus (previously Strongylocentrotus A. 

Agassiz, 1863). Currently California supplies about 80% of the domestic market for 

uni, but more than 50% of the annual harvest (by volume) is exported (D. Rudie, 

pers. comm.; see Appendix A for more details). Once sea urchin divers bring their 
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catch to shore, the gonads are typically processed, packaged into bamboo boxes, and 

shipped overnight to buyers.  

Knowledge about spatial and temporal variability in sea urchin reproduction has 

been used previously to inform management, resulting in seasonal closures that serve 

to limit harvest during a particular reproductive season.  The seasonal management 

scheme in California was modeled after the state of Washington’s fishery, where 

harvest is closed during the season with low gonad quality. The rationale was that it 

would be economically advantageous to limit effort during the period of lowest 

gonad yield (P. Kalvass pers. comm.). The California Department of Fish and 

Wildlife (CDFW) partially based California’s state-wide seasonal regulations on data 

from a two-year period (1991-1992) of red sea urchin processor gonad and price data 

from northern California (Kalvass & Hendrix 1997). Managers in California 

advocated a complete summer closure, when gonad quality, size, and thus prices 

were low due to spawning activity during the spring and summer (Ebert et al. 1994). 

However, managers compromised with the industry and instead established partial 

seasonal closures (P. Kalvass pers. comm.). Currently the fishery is limited to four 

days per week from June through October across the entire state of California and is 

open the rest of the year. The key question is whether a single seasonal regulation 

makes sense for a state with such diverse ecological regions, spanning two marine 

provinces (Spalding et al. 2007). Because the majority of the state’s red sea urchin 

landings originate from Southern California, regulations based on the reproductive 

dynamics in Northern California may be inappropriate. In this study, we investigated 
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the fishery within the northern Channel Islands where the majority of the state’s 

fishing occurs (CDFW data). Our research focused on three objectives: (1) to 

evaluate the spatial and seasonal dynamics of the red sea urchin reproductive cycle 

and its impact on the industry’s revenues; (2) to assess fishing patterns across the 

regulatory time periods, seasons, and region; and (3) to quantify how fishermen 

respond to urchin reproductive dynamics, relating fishing effort, landings, price, and 

value to spatial and temporal variation in red sea urchin reproductive condition.  

Our first objective focused on the evaluation of the annual reproductive cycle for 

sea urchins and how it varied across the northern Channel Islands. In the ecological 

literature, reproductive condition (i.e., a proxy of potential reproductive output) is 

often measured as gonadosomatic index (GSI); i.e., the ratio of wet gonad weight to 

wet whole weight (Ebert et al. 2011). This metric is simple and objective. It can be 

easily measured in the laboratory or on a boat or dock. It is also quantitative, rather 

than the qualitative processor grading scale that is typically employed by buyers in 

the industry. Gonadosomatic index is predictable across the various stages in the 

reproductive cycle (Kreiner et al. 2001; Ebert et al. 2011), so it is a simple way to 

compare demographics among seasons and areas.  

The price differential paid for sea urchin roe across varying reproductive stages 

can be substantial (Kalvass & Hendrix 1997; Unuma 2002), which creates a strong 

incentive for selectively harvesting in the best locations and at the best times during 

the year. Before the sea urchin spawns, its gonad is firm. The gonad reaches its 

maximum size (highest GSI) just before spawning begins and subsequently shrinks 
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as more gametes are released (Lasker & Giese 1954; Unuma 2002; Ebert et al. 2012; 

Arafa et al. 2012). Once a sea urchin has spawned (lowest GSI), the gonad is 

characterized by a grainy and watery texture, resulting in poorer quality for 

consumers.  In this study, we investigate whether GSI can also be an effective 

indicator of gonad quality, and thus the quality component of price. Although price 

may reflect the seasonal demand and supply, the grade of a sea urchin has a large 

influence on its price. When grading the quality of sea urchin for sushi, processors 

consider size and several qualitative measures, such as taste, shape, color, texture, 

and firmness (Unuma 2002; see Appendix A for more details on sushi grades). If 

GSI is a good proxy for the industry’s quality metric, it can be used as a quantitative 

measure to predict the potential seasonal value of sea urchins. 

To examine our second objective, we investigated how management restrictions 

influence fishing behavior. To this end, we compared effort and landings during the 

period of limited fishing (four days per week during June-October) and the period 

with unlimited fishing (November-May). We also assessed seasonal differences in 

red sea urchin price and total value. Historical effort data showed that the western 

region was more heavily fished than the eastern region (Shears et al. 2012), and we 

suspected this was largely due to geographic differences in roe quality and value.  

Finally, our third objective was to investigate how fishermen respond to variation 

in reproductive condition of red sea urchins. We explored patterns in fishing 

behavior, including whether fishermen on average harvest more in peak quality 

seasons and locations to garner better prices. We tested whether the industry’s effort, 
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total landings, and value were correlated with the seasonal patterns in the 

demographic measure of GSI. If global prices vary widely, local quality in the 

product may play a minor role in determining prices. Conversely, if variation in 

urchin prices is driven mostly by urchin quality, as measured by GSI, rather than 

global fluctuations in supply and demand, seasonal and geographical patterns of GSI 

could give insight into both sea urchin demographics and the resulting behavior of 

fishermen.  

 

Methods 

Red sea urchin seasonal reproductive cycle 

To examine spatial and seasonal variability in red sea urchin reproductive 

condition, we sampled catch from commercial fishermen at the port of Santa Barbara 

approximately once per month from December 2008 to December 2011. We 

purchased between 10 and 30 haphazardly selected red sea urchins per haphazardly 

selected boat per sampling date (total n=2759 urchins). On average we sampled from 

nine boats per month (n=40 unique boats total; on average 24 boats per year). All sea 

urchins were harvested from San Miguel Island (SMI), Santa Rosa Island (SRI), and 

Santa Cruz Island (SCI) (Fig. 1).  

Gonadosomatic index (GSI) reflects the degree of gonadal development and is 

defined as the ratio of gonad weight to the total sea urchin weight: 

GSI = gonad wet weight / total wet weight. (1) 
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We calculated mean GSI per boat sampled per month as an independent replicate 

(n=258 sampling events). 

To explore whether reproductive seasonality differed across gender and regions, 

we performed a three-way ANOVA with gender, island, and month predicting GSI 

for the ten months where we had samples across all three islands. Since two months 

did not include port-sampled red sea urchins from all three islands, a single model 

testing differences across all months and islands was not possible. Therefore, we 

assessed differences in GSI among islands for the two months with missing data 

(January and November) as a separate analysis and corrected for multiple tests using 

false discovery rate (FDR) adjusted p-values. For both ANOVAs, we sequentially 

removed non-significant interaction terms (above P>0.05). 

Finally, we fitted a polynomial regression to each island in order to describe the 

functional forms of seasonal variation in GSI across islands. 

 

Red sea urchin industry quality 

We requested data from seven processor companies who buy urchins from the 

Port of Santa Barbara. Only one processor was willing to provide data. We asked 18 

divers for permission to use their fishing data from the single processor. Ten divers 

agreed to the use of their data, and these divers were responsible for providing 53% 

of our port samples. To compare GSI with the industry’s measure of sea urchin 

quality, we obtained data from the processor that included: date landed, price (USD) 

paid to the diver per load, weight of the highest quality sea urchin gonads (grade A 
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and grade B uni; see Appendix A for more details on processor grading system and 

patterns), and weight of total load (whole sea urchins weighed at the dock). Using 

these data, we calculated the processor quality index (PQI) per fishing trip:  

PQI = (grade A total gonad weight + grade B total gonad weight) /  

total load weight.       (2) 

The PQI is commonly referred to as yield or gonad yield within the sea urchin fishing 

industry and indicates the fraction of high valuable product extracted from the entire 

catch. 

Since price can fluctuate based on supply and demand of both domestic and 

international markets, we evaluated if local quality predicts price of red sea urchins 

despite temporal fluctuations in prices driven by global variation in supply and 

demand. We used linear regression to predict mean price per kilogram from the 

monthly mean PQI. In addition, we tested whether the seasonal variability in red sea 

urchins’ gonads relate to processor’s perceptions of gonad quality. We tested how 

well the red sea urchin’s reproductive cycle (monthly mean port-sampling GSI) 

predicts the quality of sea urchin uni (monthly mean PQI) using linear regression.  

 

Comparing fishing metrics between regulatory time periods 

To examine potential differences in fishing behavior across regulatory time 

periods, we examined total effort and total landings (kg). The CDFW requires 

commercial sea urchin fishermen to submit a landing receipt for each trip containing 

information including fishing location and weight of the entire catch landed at the 
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dock before sea urchins are processed. Total effort was measured as the sum of 

landing receipts submitted to CDFW per month. Since there are no comprehensive 

data on hours spent diving per trip, CDFW often uses the number of receipts as a 

proxy for effort. Since divers occasionally report multi-day trips on one landing 

receipt, this estimate of effort is likely an underestimate of total days of fishing. Total 

landings were the sum of landings (in kilograms) reported to CDFW per month.  

In order to compare fishing effort during the limited versus the unlimited fishing 

time periods, we examined statistical differences (using ANOVA) in CDFW monthly 

total effort and total landings during 2009-2011 within the Channel Islands. We also 

included CDFW data from the port of Fort Bragg to assess whether there were 

fishing behavior differences across management time periods within the region 

where the limited-fishing season was initially based. 

 

Regional and seasonal fishing patterns 

To examine regional and seasonal fishing patterns, we examined four fishing 

metrics (total effort, total landings, mean price, and total value) per month during 

2009-2011 in the Channel Islands (Fig. 1). Effort and landings are explained in the 

section above. Mean price was the average price (per kilogram) of landed red sea 

urchins reported to CDFW per month. Total value was calculated as the monthly 

sum ($US) paid to all sea urchin fishermen as recorded by CDFW.  

The Channel Islands region was divided into 4 subregions based on location, as 

recorded in the CDFW landing receipts, using 10 x 10 minute numbered blocks: west 
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included all of SMI and the western tip of SRI, central included the majority of SRI 

and the western tip of SCI, east included the majority of SCI, and Anacapa included 

the entire island of Anacapa. All subregions included four CDFW blocks, except 

Anacapa, which only included two blocks.   

To evaluate regional variability in the red sea urchin commercial fishing data, we 

performed a series of ANOVAs, using the four monthly fisheries metrics across 

subregions. We corrected for multiple tests using false discovery rate (FDR) adjusted 

p-values. 

Finally, to evaluate fishing effort and landings across regions during the times of 

peak and trough of the red sea urchin reproductive cycle, we performed ANOVAs 

across the subregions during the months when GSI is lowest (April through June) 

and highest (September through December). We included region, season, and the 

region by season interaction to predict effort and landings. 

 

Relating commercial fishing data to red sea urchin reproduction  

We tested whether the seasonal reproductive stage, measured as GSI, was a good 

predictor of fishing behavior (effort and landings), red sea urchin price, and value 

using CDFW metrics. We used the fisheries data across the same years of our GSI 

samples (2009-2011) and across all available data from previous years of the fishery 

(1978-2008) with the rationale that seasonal fishing behavior was likely to be driven 

by knowledge of red sea urchin reproductive dynamics and the assumption that the 

red sea urchin’s reproductive cycle has remained relatively consistent over the years. 



 

 132 

We have evidence from a limited 7-month study performed in the Channel Islands 

that GSI had a similar cycle (Kato & Schroeter 1985). 

Since the majority (72%) of our port sampling came from the western four blocks 

within the northern Channel Islands, we had more consistent monthly data from this 

area. We compared the average monthly GSI from these western samples to the 

monthly total effort, total landings, mean price, and total value data from these same 

locations using linear regression.  

 

Results 

Red sea urchin seasonal reproductive cycle 

Red sea urchin GSI was highest in the fall (November GSI = 0.157 ± 0.0045) and 

lowest in the spring (April GSI = 0.080 ± 0.002; May GSI = 0.085 ± 0.003) (Table 1, 

Fig. 2; see Appendix B for a detailed summary of port-sampled red sea urchins). 

Based on the three years of our sampling, red sea urchins tend to take longer to build 

up their gonads from the late spring to the fall (around May-November) than to 

spawn (around December-April) (see Appendix B, Table B4 for details on evidence 

of spawning during our dissections).  

Gonadosomatic index varied among regions in a marked, but complex, seasonal 

pattern (ANOVA: F30,2496=34.7, P<0.0001, R2=0.30; Appendix B). When we 

examined the 10 months of GSI means across the three islands, GSI differences 

among the islands were greatest during the two extreme periods of the reproductive 

cycle – the peak of GSI (September through December) and the trough of GSI (April 
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and May) (Fig. 2, Appendix B). The GSI gradient among islands flipped directions 

during these periods. At its peak, GSI decreased from west to east (by about 13% in 

December), while at the trough of the reproductive cycle, GSI increased from east to 

west (by about 32% in April). The GSI of sea urchins from the most easterly island 

(SCI) was the least variable across seasons. Within the two months (January and 

November) when we had samples only from SMI and SRI, there were no differences 

between the two islands, but GSI in November was significantly higher than in 

January (ANOVA: F3,210=22.3, P<0.0001, R2=0.24; Appendix B). Gender was not a 

significant predictor in either model (nor were there significant interactions with 

month or island) and was not considered further.  

The quartic polynomial regressions characterized the seasonal changes in red sea 

urchin GSI and how GSI varied from island to island (Fig. 2; all P-values <0.0001). 

 

Red sea urchin industry quality 

The reproductive cycle of red sea urchins, processor gonad quality, and price 

were tightly correlated. Monthly mean red sea urchin GSI was a significant positive 

predictor of our processor quality index (PQI) (linear regression: R2=0.87; Fig. 3a). 

In addition, PQI was a strong positive predictor of mean processor price per kg 

(US$) (linear regression: R2=0.90; Fig. 3b). Price is largely determined by quality 

rather than fluctuations in global market drivers. 

 

 Comparing fishing metrics between regulatory time periods 
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Monthly total effort and total landings did not differ significantly between the 

limited versus the unlimited fishing management season (limited: June-October and 

unlimited: November-May) within either the Channel Islands or Fort Bragg regions 

(Table 2; Fig. 4). In the model examining differences in total effort, there was a 

marginally significant interaction term with region and management season. Within 

Fort Bragg there were clearly no differences in either metric between seasons, but 

within the Channel Islands there was a trend of greater total effort (number of 

receipts) during those months limited to a four-day work-week compared to the 

unlimited period. Both fishing metrics were higher within the Channel Islands than 

in Fort Bragg. 

 

Regional and seasonal fishing patterns 

Although there were no significant differences among metrics between the two 

regulatory time periods, we found significant regional and seasonal variability in  

fishery metrics (monthly total effort, total landings, mean price, and total value) 

during 2009-2011 (Fig. 4, Table 3). Among the three subregions, the most heavily 

fished west subregion, showed the greatest seasonal variation in monthly total effort, 

total landings, and total value (based on the higher CVs, Table 3a). Levels of these 

three fishery metrics generally were lower in the spring and higher in the fall and 

winter (Fig. 4). Mean prices of red sea urchins from the two western subregions 

showed a similar magnitude of intra-annual variability (the CVs were comparable, 

Table 3a). In addition, within all three subregions, mean prices generally increased 
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from February through the end of the year (Fig. 4c). Since total effort, landings, and 

value from Anacapa were very low, we excluded this subregion from further 

analyses. Within the Channel Islands region, all fishery metrics (other than price) 

decreased from west to east (ANOVAs, Table 3b). Total effort, landings, and value 

in the west were on average about 48% higher than in the central subregion and 70% 

higher than in the east subregion (Table 3b). On average prices within the west and 

central subregions were 11% higher than in the east subregion (Table 3b). False 

discovery rate (FDR) indicated that the p-values for these four tests did not need to 

be adjusted. 

Finally, when we evaluated regional fishing effort and landings during the times 

of the peak red sea urchin reproductive cycle (the months of September through 

December), we found significant differences across the three subregions (Table 4). 

Regional patterns in effort and landings during the months of peak GSI were similar 

to the average annual differences, with the west on average 52% higher than the 

central subregion, and 73% higher than the east subregion (Table 4). However, 

during the months when GSI is lowest (April through June), the three subregions 

were more similar in effort, landings, and price. Despite this, the west subregion had 

effort and landings that were higher than the other subregions, but the central and 

east subregions were not significantly different and were on average only 44% lower 

than the west subregion. 

 

Relating commercial fishing data to red sea urchin reproduction  
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Not surprisingly, within the most heavily fished subregion (the west) on a 

monthly basis, sea urchin fishermen predictably harvest red sea urchins according to 

their reproductive cycle. As red sea urchin gonadosomatic index (GSI) increased, 

monthly total effort, total landings, mean price, and total value significantly 

increased during 2009-2011 (linear regressions: all P-values<0.007; Fig. 5). These 

patterns were mirrored in the historical time period (1978-2008). When red sea 

urchin gonad condition was greatest, fisherman on average expended greater effort 

and produced larger landings, which is consistent with the higher prices paid to 

fishermen during the peak season. Conversely, when gonad quality was poorer, 

fishermen tended to fish less for urchins, and they received lower prices. 

 

Discussion 

We observed spatial and temporal differences in red sea urchin reproduction, 

which explained much of the seasonal and spatial variation in fishing effort, 

landings, and urchin value. Red sea urchins exhibited a pronounced annual 

reproductive cycle in the northern Channel Islands that differed substantially from 

patterns in northern California. As a result, the efficacy of a fishing regulations 

developed based on seasonal dynamics in northern California may be compromised. 

A better understanding of the linkages between sea urchin reproduction and fishing 

behavior could help managers make more effective decisions.  

No previous studies have described in detail the entire annual reproductive cycle 

of the red sea urchins in the heavily fished region of the Channel Islands. Our results 
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show the spawning period in the northern Channel Islands occurred over roughly five 

months (December-April), and the building, or gonad growth, period occurred over 

roughly seven months (May-November) (Fig. 2). The seasonal patterns we found in 

the reproductive cycle (GSI) and processor gonad-yields (PQI) generally match those 

reported in a limited 7-month study that took place in the early years of the fishery 

(1970’s) on San Miguel and Santa Cruz Islands (Kato and Schroeder, 1985). In 

addition, Ebert and colleagues (1994) reviewed literature reporting a similar winter 

to spring timing of spawning for red sea urchins in southern California. Furthermore, 

spawning in northern California was noted to be later, occurring in the spring to 

summer seasons (Ebert et al. 1994). In addition, previous research on the co-

occurring purple sea urchin Strongylocentrotus purpuratus reports a similar annual 

cycle (Gonor 1972; Pearse, Pearse & Davis 1986; Lester et al. 2007). 

Typically, urchins spawn just after they reach their peak in gonad size. When 

they are done spawning, they reach their minimum size. Urchins increase in gonad 

size due to the growth of nutritive phagocytes (NPs) (Unuma 2002; Walker et al. 

2007), for red sea urchins this occurs during the summer as they consume abundant 

drift kelp. Then these NPs support the growth and development of the germ cells 

(GCs) just before and during the spawning season (Unuma 2002; Walker et al. 2005, 

2007). Spawning generally indicates lower quality. Uni (urchin sushi) buyers do not 

like the texture of spawning gonads (Bernard 1977; Unuma 2002). During, the first 

month of the spawning season (December) prices are still relatively high but then 

they drop rapidly as spawning continues January through April. The reproductive 
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“ripeness,” or fully mature gonads at the end of gametogenesis, occurs during the 

spawning season when most of the nutritive phagocytes have shrunken (Unuma 

2002). This is the season when sushi quality declines as GSI declines. 

As in many species, these seasonal patterns of reproduction may be driven by 

seasonal patterns in resource abundance or quality for adults or larval stages (Lasker 

& Giese 1954; Bennett & Giese 1955; Ebert 1968; Bernard 1977; Bronstein & Loya 

2015). Previous studies have shown that food availability and quality for adult sea 

urchins influences gonad quality (Keats et al. 1984; Vadas Sr. et al. 2000; Claisse et 

al. 2013). In the spring months, kelp begins to recover from winter storm disturbance 

(Cavanaugh et al. 2011), which is synchronous with the increase in red sea urchin 

allocation to reproductive growth. There is high inter-annual variability in kelp 

canopy biomass, but it generally peaks at SMI, SRI and SCI around June through 

August (Cavanaugh et al. 2011; Bell et al. 2015b) during the period of peak GSI 

increase. In addition, drift kelp, an important resource for sea urchins, tends to be 

higher in the summer and fall, when kelp biomass is higher and water movement is 

lower (Harrold & Reed 1985). Following the timing of high abundance of drift kelp, 

purple sea urchins have shown subsequent peaks in gonad indices (Basch & Tegner 

2007). Within our study region, kelp canopy biomass is generally lowest in the 

winter months due to age-dependent mortality (Rodriguez et al. 2013) and 

disturbance in response to increased wave heights from winter storms (Reed et al. 

Arkema 2008; Cavanaugh et al. 2011; Bell et al. 2015a).  The spawning period of 

red sea urchins coincides with the period of minimum kelp biomass. Thus, spawning 
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occurs in the months when resources for adults are more limited, so there is less 

opportunity to garner new resources to support gonadal growth.  

As with other urchin species, if food is limiting to larval success, we would 

expect spawning to coincide also with phytoplankton blooms (the primary resource 

for the larval stages of sea urchin), rather than temperature (Himmelman 1978; Starr 

et al. 1990; Bronstein & Loya 2015). Recent data (1997-2010) suggest that the Santa 

Barbara Channel experiences extreme inter-annual variability in the timing of 

chlorophyll peaks, but in general blooms begin between March and June, with some 

years starting in February and some peaking in September (Otero & Siegel 2004; F. 

Henderikx Freitas, pers. comm). However, red sea urchin spawning begins and peaks 

in December and January and appears to continue through June (Appendix B). While 

the timing of peaks in phytoplankton and red sea urchin spawning do not appear to 

be perfectly aligned, the month of lowest levels of chlorophyll and highest sea 

surface temperatures in September coincides with the lowest spawning levels 

(Appendix B; Otero & Siegel 2004). Sea urchin larvae begin to feed within the first 

week of life and remain in the water column for about 40 days (ranging from 27 to 

131 days depending on food and temperature; Hinegardner 1969; Rogers-Bennett 

2007). The reproductive timing of red sea urchins is likely tightly linked with both 

adult resources (kelp) and larval resources (phytoplankton) (Giese 1959). However, 

further studies are needed to disentangle the relative influence of temperature and 

food availability (specific to various life-cycle stages) on the reproductive timing of 

sea urchins. 
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Fishermen respond to red sea urchin reproductive variability due to differences in 

roe quality and price. Our results indicate that red sea urchins are more valuable in 

the western channel, especially during peak GSI in the fall. Consistent with this 

pattern, fishermen harvest more in western locations than eastern locations, 

especially during this period (Fig. 4; Table 4; Shears et al. 2012). By contrast, during 

the trough of the reproductive season, GSI showed the opposite spatial pattern – 

lower in the west than in the east (Table 1, Appendix B). Fishermen changed their 

regional fishing behavior during the trough of the reproductive season; fishermen 

still fished more in the west subregion, but the regional differences in fishing effort 

and landings were not nearly as pronounced during this time of year (Table 4). There 

were no significant differences in effort and landings between the central and east 

subregions (Table 4). Fishermen likely do not more aggressively switch to harvesting 

in east during the period of low GSI because of the higher abundance of larger and 

potentially more valuable urchins in the western regions (Teck et al, in prep). 

When we examined the most heavily fished subregion, the west, we found that 

high temporal variation in the quality of a fished resource drove predictable seasonal 

patterns of fishing. We found that quality, total effort, total landings, mean price, and 

total value in sea urchins harvested from the Channel Islands are highly predictable 

based on the reproductive cycle, measured here as GSI. These relationships between 

the fishery metrics and GSI during our sampling period (2009-2011) were highly 

significant. In addition, we used these GSI data to predict historical metrics of the 

fishery (1978-2008). These relationships were similar and stronger indicating that the 
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red sea urchin’s reproductive cycle has been a strong driver of the sea urchin industry 

patterns over those 30 years of the fishery. Our results from southern California 

agreed with historical data from northern California showing gonad yield and price 

to be positively correlated (Figs. 3 and 5; Kalvass & Hendrix, 1997). However, 

historically the catch in northern California was inversely related to price (data 1985-

1994; Kalvass & Hendrix, 1997), which was contrary to our findings. Fishermen may 

have been somewhat limited by unsafe boating conditions in the winter, when prices 

tended to be higher in northern California (Kalvass & Hendrix 1997), and because of 

these constraints they fished more during the season of low prices.  

Management restrictions were established in California in order to limit harvest 

during the low gonad quality season with the rationale that if effort needs to be 

limited to regulate overall catch, the costs would be smaller if sea urchin fishermen 

had greater effort during a season of higher quality. This statewide management 

scheme was based on the cycle of the northern California red sea urchin; managers 

attempted to limit effort during the season with low quality and prices (in the late 

spring to fall months) (Fig. 6). Currently, fewer work-days are allowed during the 

months of June through October, but in southern California this is the middle 

through nearly the end of the gonadal growth period (Fig. 2 and 6). These months of 

restricted fishing include several months when fishermen received some of the 

highest prices (see Appendix C, Table C1).  

We found that despite these attempted effort restrictions, fishermen followed the 

sea urchin reproductive cycle and countered the effort restrictions. The time of the 
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year with a limited number of allowable fishing days did not result in significantly 

lower monthly effort (number of days fished) than the rest of the year (Table 2). If 

anything, there was a weak trend that effort and prices were lower within the 

Channel Islands during the unlimited season, which reflects the fact that this 

unlimited time-period contained the months with the lowest GSI (Fig. 2). Part of the 

unlimited time-period also coincides with more frequent storms and high wind 

speeds of winter and spring (Harms & Winant 1998; Byrnes et al. 2011), which may 

also limit fishing trips statewide. Our results show that the period of low prices, low 

quality, and spawning at the Channel Islands (winter to spring) generally did not 

coincide with the period during which managers attempt to curtail effort through 

limiting allowable days fishing (summer to fall) (Fig. 6). These findings clearly show 

that manager’s interest in curtailing effort when it was purportedly least costly is 

ineffective in reducing effort to levels below the unmanaged season. As with other 

open access fisheries, there is little incentive to conserve or limit harvest (Berkes et 

al. 2006), especially during a highly-profitable season. Sea urchin processors and 

buyers have specifically recommended adding one more open day per week to the 

summer to early fall months when demand is also high in the US market (California 

Sea Urchin Commission (CSUC) 2014) to enhance the profitability of the fishery. 

However, it is unknown whether the resource could sustain up to 14% more intense 

fishing (by adding one day) during this season, which occurs right before sea urchins 

spawn. The current restrictions in southern California, may in fact be providing a 

conservation benefit to the fishery. 
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Our results, while underscoring the tight link between variability in a resource 

and fishing, are not embedded in a static world. We have quantified the extent to 

which reproductive cycles can drive seasonal quality in a resource, which in turn can 

influence price and thus fishing effort. Future key research should include a 

consideration of how climate may influence both resource dynamics and fishing 

behavior. Changes in climate (e.g., increases in temperature, storm severity, and 

storm frequency) may result in both profound ecological ramifications (Mos et al. In 

press; Hughes 2000; Harley et al. 2006) and varying fishing behavior (Chollett et al. 

2014). For example, if storms increase during the winter, fishing effort during the 

high quality gonad season may be more limited. If the higher frequency of storms 

and increased wave action reduces kelp density, gonad quality may be degraded in 

certain areas that were once important fishing grounds. In addition, since climate and 

fishing both influence species’ distribution and abundance, it is important to 

understand their combined effects on the system may be synergistic (Harley & 

Rogers-Bennett 2004). Examining phenological changes in species, which may 

include tracking reproduction over seasons and years, is not only important for 

resource management but also may be a simple ecological indicator of climate 

change (Edwards & Richardson 2004).  
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Tables  
Table 1. Summary of port sampling of red sea urchins: mean gonadosomatic index 
(GSI) per month, sample size of boats (Nb) and individual red sea urchins (Nu), and 
one standard error (SE), which was calculated using Nu. Total shows average GSI 
across all months and the sum of each sample size type. (See Appendix B for month 
by island differences.)   
 

  SMI SRI SCI† overall 

month GSI Nb Nu SE GSI Nb Nu SE GSI Nb Nu SE GSI SE 

1 0.1068 3 40 
   
0.0049  0.1120 5 55 

   
0.0046  . 

 
0  .  0.110 0.003 

2 0.0963 1 10 
   
0.0087  0.0998 3 30 

   
0.0057  0.1046 3 61 

   
0.0046  0.102 0.003 

3 0.0879 6 61 
   
0.0033  0.0884 11 126 

   
0.0031  0.0982 2 23 

   
0.0049  0.089 0.002 

4 0.0663 7 80 
   
0.0026  0.0869 12 131 

   
0.0025  0.0834 3 30 

   
0.0034  0.080 0.002 

5 0.0664 2 28 
   
0.0052  0.0947 6 76 

   
0.0039  0.0757 2 25 

   
0.0068  0.085 0.003 

6 0.0917 2 20 
   
0.0058  0.0886 13 130 

   
0.0032  0.1067 5 50 

   
0.0057  0.093 0.003 

7 0.0966 11 110 
   
0.0032  0.0941 20 200 

   
0.0023  0.0939 13 130 

   
0.0026  0.095 0.002 

8 0.1280 7 70 
   
0.0052  0.1187 10 104 

   
0.0041  0.1195 9 88 

   
0.0047  0.121 0.003 

9 0.1349 11 116 
   
0.0041  0.0909 3 30 

   
0.0103  0.0893 2 20 

   
0.0083  0.121 0.004 

10 0.1439 17 170 
   
0.0034  0.1416 16 162 

   
0.0030  0.1189 7 70 

   
0.0054  0.139 0.002 

11 0.1568 8 80 
   
0.0054  0.1561 4 39 

   
0.0082  . 

 
0  .  0.157 0.005 

12 0.1499 13 170 
   
0.0032  0.1302 17 182 

   
0.0029  0.1419 4 39 

   
0.0081  0.140 0.002 

total 0.1105 88 955   0.1085 120 1265   0.1032 50 536   0.113 .001 
 
† There were no sea urchins sampled from fishermen at SCI during January and November. 
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Table 2. (a) Two-way ANOVA results testing the differences in commercial red sea 
urchin total effort (number of receipts) and total landings (thousands of kg) during 
2009-2011, between management seasons, months with no management restrictions 
(unlimited access) and months with 4-day work weeks (limited access) and between 
the two regions, Channel Islands (14 CDFW blocks) and the port of Fort Bragg. 
Mean total effort and total landings per management season and region and one 
standard error are displayed. (b) Effect tests for ANOVAs. 
(a) 

    
 CI FB 

  R2 F3,23 P season mean SE mean SE 

total 
effort 0.88 48.4 <0.0001 

limited (June-Oct) 1325 94 367 47 

unlimited (Nov-May) 1113 79 418 40 

total 
landings 0.83 33.3 <0.0001 

limited (June-Oct) 710 62 221 26 

unlimited (Nov-May) 628 53 242 22 

 
(b) 
Effect Tests   total effort total landings 

Source DF 
F 
Ratio P F 

Ratio P 

management season 1 1.4 0.2535 0.5 0.4979 

region 1 143.8 <0.0001 99.1 <0.0001 

management season*region 1 3.7 0.0702 1.4 0.2537 
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Table 3. Regional variation in commercial fishing data (CDFW) from the Channel Islands (2009-2011): total effort (number 
of receipts), total landings (kg), mean price per kg (US$), and total value (US$). (a) seasonal variation summary statistics of 
monthly (n=12) data: mean, standard error (SE), and coefficient of variation (CV), and (b) Regional variation among the three 
western subregions within the Channel Islands (Fig. 1) ANOVA results, post hoc Student’s t-test, and comparing subregion 
monthly means using percentages (e.g., total effort in the west subregion were 47% greater than the central subregion). 
(a) 

 
west central east Anacapa 

  mean SE CV mean SE CV mean SE CV mean SE CV 

total effort 631 51 27.8 334 21 21.7 228 12 17.6 8 1  
57.6 

total 
landings  366,464 30,758 29.1 188,801 13,360 24.5 104,634 5,810 19.2 2,626 584 77.0 

mean price  $1.46 $0.04 9.4 $1.38 $0.04 9.4 $1.27 $0.02 5.5 $2.53 $0.54 74.2 

total value $493,517 $53,143 37.3 $251,213 $23,823 32.9 $130,497 $7,801 20.7 $3,158 $556 61.0 

 
(b) 

     Post hoc Student's t-test 
   

 R2 FDF P west central east west  >  
central 

west  >  
east 

west >  mean 
(central, east) 

total effort 0.652 F2,35=30.9 <0.0001 A B B -- -- 55% 

total landings 0.681 F2,35=35.3 <0.0001 A B C 48% 71% -- 

mean price  0.092 F2,35=1.7 0.2049 A A A -- -- -- 

total value 0.591 F2,35=23.8 <0.0001 A B C 49% 74% -- 
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Table 4. Regional and seasonal variation in commercial fishing effort and landings 
(CDFW) from the three western subregions within the Channel Islands (2009-2011): 
total effort (number of receipts) and total landings (kg) across two seasons (months 
of lowest [trough: April through June] and highest [peak: September through 
December] red sea urchin gonadosomatic index). (a) ANOVA results and (b) post 
hoc Student’s t-tests. Highest GSI season per region are highlighted in gray for ease 
of comparison. 
 
(a) 

Response 
Variable Effort Landings 

R2 0.892 0.926 
F5,20 24.8 37.8 

P <0.0001 <0.0001 
 
Effect Tests 

 
Total effort Total landings 

Source DF F Ratio P F Ratio P 
region 2 37.9 <0.0001 58.3 <0.0001 
season 1 20.6 0.0004 30.4 <0.0001 
region*season 2 7.9 0.0046 11.9 0.0008 

 
(b) 

 
Total effort Total landings 

    region, GSI season LS Mean SE LS Mean SE 
    west,highest 862 40 514,576 20,613 A 

   west,lowest 470 46 263,765 23,802 
 

B 
  central,highest 420 40 241,766 20,613 

 
B 

  central,lowest 266 46 148,999 23,802 
  

C 
 east,highest 261 40 121,816 20,613 

  
C 

 east,lowest 258 46 118,579 23,802 
  

C 
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Figures 

 
Figure 1. Map of the Santa Barbara Channel with California Department of Fish and 
Wildlife (CDFW) 10 x 10 nautical mile fishing blocks surrounding the northern 
Channel Islands from west to east: San Miguel Island (SMI), Santa Rosa Island 
(SRI), Santa Cruz Island (SCI), and Anacapa Island (AI). All subregions include 4 
CDFW 10 x 10 nautical mile blocks, except Anacapa only includes 2 blocks: west 
includes all of SMI and the western tip of SRI, central includes the majority of SRI 
and the western tip of SCI, east includes the majority of SCI, and Anacapa includes 
the entire island of Anacapa. Marine reserves are outlined in black.  
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SMI: GSI = -0.02 + 0.02* month + 0.0009*(month-7.4)2 - 0.0004*(month-7.4)3 - 0.00002*(month-7.4)4 
SRI: GSI = 0.002 + 0.01* month + 0.002*(month-7.4)2 - 0.0005*(month-7.4)3 - 0.00006*(month-7.4)4 
SCI: GSI = 0.06 + 0.006* month - 0.0005*(month-7.4)2 - 0.00004*(month-7.4)3 + .00005*(month-7.4)4 

 
Figure 2. Monthly mean gonadosomatic index per boat sampled from red sea 
urchins landed at the port of Santa Barbara from December 2008 to December 2011 
per island: San Miguel Island (SMI), Santa Rosa Island (SRI), and Santa Cruz Island 
(SCI); error bars show one standard error.  Lines show the quartic polynomial fits 
(for viewing purposes only; see Table 1 and Appendix B for statistical analyses) of 
the monthly means per island. The gray box highlights the months when fishing is 
limited to four-days per week. 
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Figure 3. Processor data regressions: (a) mean port-sampling GSI predicting mean 
PQI and (b) mean processor quality index (PQI) predicting mean processor price per 
kg (US$). Error bars show one standard error. 
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Figure 4. (caption next page) 
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Figure 4. Monthly data from CDFW in commercial red sea urchin (a) total effort 
(number of receipts), (b) total landings (thousands of kg), (c) mean price per kg ± 
one SE (US$), and (d) total value (thousands of US$) for the northern Channel 
Islands fishery per year (2009-2011). West includes all of SMI and the western tip of 
SRI, central includes the majority of SRI and the western tip of SCI, east includes 
the majority of SCI, and Anacapa includes the entire island of Anacapa which is 
minimally fished. All subregions include 4 CDFW 10 x 10 nautical mile blocks, 
except Anacapa only includes 2 blocks (see Fig. 1). (Note: Anacapa was excluded 
from plot (c) mean price per kg due to extreme outliers and since less than 1% of the 
receipts, landings, and value came from Anacapa.) The gray box highlights the 
months when fishing is limited to four-days per week. Summary statistics are 
provided in Table 2.  
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Figure 5.  Mean port-sampling gonadosomatic index (GSI) predicting average 
monthly CDFW data for 2009-2011 and for 1978-2008 in (a, e) effort (number of 
receipts), (b, f) total landings (millions of kg), (c, g) mean price per kg (US$), (d, h) 
total value (millions of US$) within the west subregion (see Fig. 1). Error bars show 
one standard error (note: many error bars are smaller than marker size). 
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Figure 6. Comparing months across the California sea urchin fishery within Fort 
Bragg in northern California and the Channel Islands in southern California. Gray 
highlights: (a) the five months with limited fishing across the state of California 
(commercial sea urchin fishermen are allowed to fish four-days per week during 
these months); the rest of the year there is unlimited fishing; (b) the six months with 
the lowest quality (yield) from a processor in Fort Bragg 1991-1992 (Table C3), the 
location and time-frame which was examined to establish the four-day work weeks; 
July is excluded due to the fishery being closed during this period; (c) the six months 
with the lowest prices in Fort Bragg 1991-1992 (Table C2); (d) the four months with 
the lowest prices in Fort Bragg 2002-2011 (Table C4), (e) the six months with the 
lowest prices in the Channel Islands 2002-2011 (Table C1); (f) the six months with 
the lowest quality in the Channel Islands 2009-2011 (Table B2) and (g) the five 
months with the highest spawning levels in the Channel Islands 2009-2011(Table 
B3). 
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Appendix A 
Processor quality evaluation and seasonal processor quality index 

 
The California Sea Urchin Commission developed grade names and guidelines to 

assist in standardizing uni quality within the industry. “California Gold” is the 
highest quality, or grade A uni, and the gonads have a bright color, firm texture, and 
are fresh and intact. Sea urchins are graded as “Premium California,” or grade B uni, 
if the gonads are slightly duller in color, firm texture, fresh and mostly intact. Grade 
A and grade B uni are sold fresh to distributors and restaurants, largely to be 
consumed raw. “Select California” is also known as vana, or grade C; gonads from 
these sea urchins vary in color (often darker), have softer texture, are watery and are 
broken in pieces. Vana is usually shipped frozen and makes up about 5-10% of the 
gonads extracted (D. Rudie, pers. comm.). For each trip per boat, processors in 
California categorize the sea urchin product within these three grades. Recently retail 
values of grade A, B, and vana are approximately $225/kg, $158/kg, and $41/kg (or, 
$102/lb, $72/lb, and $19/lb), respectively as of 2015.  

In recent years, grade A is mostly sold in the USA, and grade B is largely 
exported to Japan (D. Rudie, pers. comm.). Currently about 80-95% of grade A 
remains in the domestic market and the rest largely is shipped to Japan for auction. 
However, 30 years ago about 95% of grades A and B was exported to Japan. By 
volume California exports around 50% of the landings (mostly to buyers in Japan) 
making up about 10-15% of Japanese supply. However by value only about 25-35% 
is exported (D. Rudie, pers. comm.).  

The sea urchin industry also uses these grades to calculate the overall gonad yield 
to convey a general measure of quality per fishing trip. Yield is often calculated as 
the percentage of high-grade uni (grades A and B) that was extracted from a 
fisherman’s load. In other words, from the entire load weighed at the dock, yield is 
the percentage of uni which is most valuable to the industry. While yield (grades 
A+B, based on instantaneous qualification) is an important factor the industry uses to 
set the price of a batch of sea urchins, we investigated whether GSI (based on a 
quantitative index) can adequately capture the variability in price. 

We expected yield to be less than GSI because gonad weight measured by 
processors is often lower and total weight is often higher for several reasons: 

(1) processor gonad weight does not include the vana or any pieces of gonad that 
were discarded due to low quality or breakage; 

(2) processors use the total weight of the sea urchins as the entire load weighed at 
the dock which occasionally could include undersized sea urchins, purple sea 
urchins, debris from the sea urchin nets (e.g. other organisms, small rocks attached to 
the sea urchins, or pieces of kelp);  

(3) we weighed the whole weight of sea urchins on an individual basis typically 
12-24 hours after collection, when some water weight may have been lost from the 
sea urchin; and 
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 (4) processors soak gonads in an anhydrous potassium alum, KAl(SO4)2, 
solution that will draw some of the water weight out of the gonads. In addition, after 
soaking in the solution, gonads are placed on towels to soak up any dripping water. 

The seasonal processor data showed a fall peak in price per kg and in percent 
grade A and B of total landings, which roughly matches the November peak GSI 
(Fig. A1). In addition, we examined processor price records, since in recent years a 
practice of reporting an arbitrary price in the CDFW landing receipts has resulted in 
inaccurate CDFW data. Since our analyses with both processor and CDFW price 
datasets were similar, we used CDFW price data since the sample size was larger. 
Processor price was the lowest in February. Finally, we examined the pattern of 
quality across season by calculating the percent grade A and B gonad extracted from 
the total landings. Percent grade B of the total landings was lowest in April, 
coinciding with the GSI minimum both in port and processor samples.    
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Figure A1. Monthly (a) mean port-sampling gonadosomatic index (GSI) and 
processor quality index (PQI), and monthly data from red sea urchin data from a 
processor (b) mean price per kg (US$) and (c) percent grade A and B gonad weight 
of total landings weight. Error bars for price, GSI, PQI, and percent grade show one 
standard error (note: many error bars are smaller than marker size). Processor quality 
index does not include the weight of the vana or any gonads that were discarded due 
to low, unmarketable quality (because these data were unavailable). 
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Appendix B 
Summary of port-sampled red sea urchins and month-to-month within-
island and overall differences in GSI and spawning levels 

 
 
 
Table B1. For the ten months we had samples from all three islands, summary of red 
sea urchin gonadosomatic index (GSI) differences across gender, island, and month 
(a) overall ANOVA effect tests (F30,2496=34.7, P<0.0001, R2=0.30) and (b) post-hoc 
using Student’s t (levels not connected by same letter are significantly different) for 
month differences and (c) island by month differences. 
(a) 
Source DF F Ratio Prob > F 
gender 1 2.6 0.1075 
island 2 0.4 0.6935 
month 9 68.6 <0.0001 
island*month 18 6.7 <0.0001 

 
(b) 
Month 

       
 LS Mean  Mean   SE  

12 A 
      

         0.141  0.141  0.002  
10 

 
B 

     
         0.135  0.138  0.002  

8 
  

C 
    

         0.123  0.122  0.002  
9 

   
D 

   
         0.108  0.123  0.004  

2 
   

D E 
  

         0.101  0.103  0.005  
6 

    
E 

  
         0.096  0.094  0.003  

7 
    

E 
  

         0.096  0.095  0.002  
3 

    
E F 

 
         0.092  0.090  0.003  

5 
     

F G          0.085  0.088  0.004  
4 

      
G          0.079  0.080  0.003  
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(c) 
Island, month 

            
 LS Mean  

SMI,12 A 
           

0.151  
SMI,10 A B 

          
0.143  

SCI,12 A B C 
         

0.142  
SRI,10 

 
B 

          
0.142  

SMI,9 
 

B C 
         

0.135  
SRI,12 

  
C 

         
0.131  

SMI,8 
  

C D 
        

0.128  
SCI,8 

   
D E 

       
0.120  

SRI,8 
   

D E 
       

0.120  
SCI,10 

   
D E F 

      
0.119  

SCI,6 
     

F G 
     

0.107  
SCI,2 

      
G H 

    
0.105  

SRI,2 
      

G H I J 
  

0.102  
SCI,3 

      
G H I J 

  
0.098  

SMI,7 
      

G H I 
   

0.098  
SMI,2 

    
E F G H I J 

  
0.097  

SCI,7 
      

G H I J 
  

0.096  
SRI,5 

      
G H I J 

  
0.096  

SRI,7 
       

H I J 
  

0.094  
SRI,9 

      
G H I J 

  
0.094  

SCI,9 
      

G H I J 
  

0.093  
SMI,6 

      
G H I J 

  
0.092  

SCI,5 
      

G H I J 
  

0.090  
SRI,6 

        
I J 

  
0.090  

SRI,3 
        

I J 
  

0.089  
SMI,3 

        
I J 

  
0.088  

SRI,4 
         

J 
  

0.087  
SCI,4 

        
I J K 

 
0.084  

SMI,5 
          

K L 0.068  
SMI,4 

           
L 0.066  
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Table B2. For January and November, we had samples from only SMI and SRI, 
summary of red sea urchin gonadosomatic index (GSI) differences across gender, 
island, and month (a) overall ANOVA effect tests (F3,210=22.3, P<0.0001, R2=0.24) 
and (b) mean GSI differences. 
 
(a) 
Source DF F Ratioo Prob > F 
gender 1  0.1 0.7548 
island 1  0.3 0.6147 
month 1 64.6     <0.0001 

 
(b) 
Month Mean SE 

1 0.110 0.004 
11 0.158 0.004 

 
Table B3. Summary of red sea urchin port sampling: within-island and overall 
month-to-month mean gonadosomatic index (GSI) differences: (a) ANOVA results 
and (b) post-hoc using Student’s t (levels not connected by same letter are 
significantly different). 
 (a) 
  n R2 F Ratio P 
SMI 955 0.369 50.1 <0.0001 
SRI 1265 0.258 39.7 <0.0001 
SCI 536 0.161 11.2 <0.0001 
Overall 2756 0.272 93.3 <0.0001 
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(b) 
Mo SMI Mo SRI Mo SCI 

11 A 
      

0.1568 11 A 
     

0.1561 12 A 
     

0.1419 

12 A B 
     

0.1499 10 
 

B 
    

0.1416 8 
 

B 
    

0.1195 

10 
 

B C 
    

0.1439 12 
  

C 
   

0.1302 10 
 

B 
    

0.1189 

9 
  

C D 
   

0.1349 8 
   

D 
  

0.1187 6 
 

B C 
   

0.1067 

8 
   

D 
   

0.1280 1 
   

D E 
 

0.1120 2 
  

C D 
  

0.1046 

1 
    

E 
  

0.1068 2 
    

E F 0.0998 3 
  

C D E 
 

0.0982 

7 
    

E F 
 

0.0966 5 
     

F 0.0947 7 
   

D E 
 

0.0939 

2 
    

E F 
 

0.0963 7 
     

F 0.0941 9 
  

C D E F 0.0893 

6 
    

E F 
 

0.0917 9 
     

F 0.0909 4 
    

E F 0.0834 

3 
     

F 
 

0.0879 6 
     

F 0.0886 5 
     

F 0.0757 

5 
      

G 0.0664 3 
     

F 0.0884   
      

  

4             G 0.0663 4           F 0.0869                 
 

Mo Overall 

11 A 
       

0.1566 

12 
 

B 
      

0.1399 

10 
 

B 
      

0.1386 

9 
  

C 
     

0.1215 

8 
  

C 
     

0.1215 

1 
   

D 
    

0.1098 

2 
   

D E 
   

0.1023 

7 
    

E F 
  

0.0947 

6 
    

E F 
  

0.0934 

3 
     

F G 
 

0.0894 

5 
      

G H 0.0849 

4               H 0.0796 
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Table B4.  (a) Summary of gender and presence of spawning from port-sampled red 
sea urchins per month (2009-2011). Spawning levels are highlighted according to the 
degree of spawning: 50% or > is light gray, 60% or > is medium gray, and 70% or > 
is black. Note: presence of spawning was indicated when active spawning was 
observed during dissections. Some individuals at the spawning stage may have gone 
undetected, thus these percentages may be biased downward. (b) ANOVA results 
comparing differences in percent spawning levels per month within each island and 
overall within the entire region. (c) Post hoc Student’s t-test showing monthly 
differences in spawning levels within the region (levels not connected by same letter 
are significantly different).  
(a) 

Month 

% 
female 
collecte

d 

Percent spawning 
per gender Percent spawning per island Overall 

% 
spawning Female Male SMI SRI SCI 

1 48% 72% 57% 58% 79% -- 69% 
2 55% 39% 44% 10% 20% 56% 29% 
3 53% 64% 47% 65% 48% 85% 63% 
4 54% 58% 56% 61% 56% 53% 57% 
5 59% 46% 50% 36% 57% 17% 37% 
6 62% 34% 36% 60% 33% 56% 47% 
7 61% 22% 45% 23% 31% 45% 33% 
8 59% 16% 38% 24% 22% 31% 26% 
9 59% 9% 34% 23% 17% 0% 13% 

10 52% 19% 49% 37% 31% 23% 30% 
11 53% 23% 48% 36% 29% -- 33% 
12 54% 66% 65% 71% 59% 70% 66% 

overall 56% 
       

(b) 

Region SMI SRI SCI Overall 

R2 0.78 0.66 0.69 0.51 

F-
ratioDF 

F11,21 F11,26 F9,19 F11,68 
3.25 2.70 2.46 5.39 

P 0.0369 0.0383 0.0881 <0.0001 
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(c) 

Month         

Mean % 
spawning 
overall 

1 A 
  

  69% 
12 A 

  
  66% 

3 A 
  

  63% 
4 A B 

 
  57% 

6 A B C   47% 
5   B C D 37% 
7   

 
C D 33% 

11   B C D 33% 
10   

 
C D 30% 

2   
 

C D 29% 
8   

  
D 26% 

9   
  

D 13% 
 

Month           

Mean % 
spawning 
SMI Month         

Mean % 
spawning 
SRI Month       

Mean % 
spawning 
SCI 

12 A 
    

71% 1 A 
   

79% 3 A 
  

85% 

3 A B 
   

65% 12 A B 
  

59% 12 A B 
 

70% 

4 A B C 
  

61% 5 A B C 
 

57% 6 A B C 56% 

6 A B C D 
 

60% 4 A B C 
 

56% 2 A B C 56% 

1 A B C 
  

58% 3 A B C D 48% 4 A B C 53% 

10 
 

B C D E 37% 6 
 

B C D 33% 7 A B C 45% 

11 A B C D E 36% 7 
 

B C D 31% 8 
 

B C 31% 

5 
 

B C D E 36% 10 
 

B C D 31% 10 
  

C 23% 

8 
  

C D E 24% 11 
 

B C D 29% 5 
  

C 17% 

9 
  

C D E 23% 8 
   

D 22% 9 
  

C 0% 

7 
   

D E 23% 2 
 

B C D 20%   
   

  

2 
    

E 10% 9 
  

C D 17%   
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Figure B1. (a) Mean gonadosomatic index (GSI) per boat sampled from red sea 
urchins landed at the port of Santa Barbara from December 2008 to December 2011 
per island: San Miguel Island (SMI), Santa Rosa Island (SRI), and Santa Cruz Island 
(SCI); error bars show one standard error. (b) Modeled GSI using a sinusoidal 
function for viewing purposes only. 
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Appendix C 
Monthly variation of red sea urchins  

 
Table C1. Monthly variation in mean price per kg of red sea urchins; post-hoc using 
Student’s t (levels not connected by same letter are significantly different) from 
ANOVA test (F11,117359=52.3, P<0.0001, R2=0.0048). CDFW data summarized from 
2002-2011 from the 14 blocks surrounding the Channel Islands. The six months with 
the lowest prices are February through April and August and November. 
 

 
Month 

        Mean price  
per kilogram 

12 A        $1.63 
7  B       $1.59 

10  B C      $1.58 
9  B C D     $1.57 
1   C D E    $1.56 
6    D E    $1.55 

11     E F   $1.54 
8      F   $1.52 
4       G  $1.46 
2       G  $1.46 
3       G H $1.44 
5        H $1.42 
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Table C2. Monthly variation in mean price per kg of red sea urchins; post-hoc using 
Student’s t (levels not connected by same letter are significantly different) from 
ANOVA test (F11,8976=109.4, P<0.0001, R2=0.118). CDFW data summarized from 
1991-1992 from the port of Fort Bragg, in northern California. This region is where 
management examined price data (and GSI data) to set reduced effort during the 
months where prices were the lowest due to low quality. The timeframe examined by 
management was 1991-1992. The six months with the lowest prices are June through 
October and January (highlighted in gray). 
 

month 
        

Mean 
price  

per 
kilogram 

12 A 
       

2.33 
3 

 
B 

      
1.83 

2 
 

B 
      

1.82 
4 

  
C 

     
1.59 

11 
  

C D 
    

1.49 
5 

  
C D 

    
1.46 

1 
   

D E 
   

1.36 
10 

    
E F 

  
1.24 

9 
     

F G 
 

1.19 
6 

      
G H 1.07 

8 
       

H 0.95 
7 

    
E F G H 0.51 
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Table C3. Monthly variation in mean gonad yield of red sea urchins; post-hoc using 
Student’s t (levels not connected by same letter are significantly different) from 
ANOVA test (F10,496=6.84, P<0.0001, R2=0.123). Data acquired from the CDFW 
originally from processors in 1991-1992 from Fort Bragg, California (Kalvass and 
Hendrix 1997). This region is where management examined price data (and GSI 
data) to set reduced effort during the months where prices were the lowest due to low 
quality. The timeframe examined by management was 1991-1992. The six months 
with the lowest yield are highlighted in gray, however there is a lot of overlap in 
yield among months. July was not included, as the fishery is closed during this 
month in this location during these years. 
 
Month       Mean 

gonad 
yield 

1 A B     10.62 
2 A      10.61 
3 A      10.52 
12 A B C    9.87 
4 A B C    9.70 
10  B C    9.54 
11 A B C D   9.40 
9   C D   9.11 
5   C D   8.84 
8    D E  8.14 
6     E  7.54 
 
Levels not connected by same letter are significantly different. 
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Table C4. Monthly variation in mean price per kg of red sea urchins; post-hoc using 
Student’s t (levels not connected by same letter are significantly different) from 
ANOVA test (F11,12527=70.5, P<0.0001, R2=0.058). CDFW data summarized from 
2002-2011 from commercial red sea urchins landing into the port of Fort Bragg. The 
seven months with the lowest prices are March through September (highlighted in 
gray). 
 
Month      Mean 

price  
per 

kilogram 
12 A     1.67 
1  B    1.54 
11   C   1.40 
2   C   1.40 
10   C   1.37 
3    D  1.32 
9    D  1.32 
4    D  1.29 
7     E 1.23 
6     E 1.21 
5     E 1.19 
8     E 1.18 
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