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QUESTION AND ANSWER Open Access

Bacterial microcompartments: catalysis-
enhancing metabolic modules for next
generation metabolic and biomedical
engineering
Henning Kirst1,2 and Cheryl A. Kerfeld1,2,3*

Abstract

Bacterial cells have long been thought to be simple
cells with little spatial organization, but recent research
has shown that they exhibit a remarkable degree of
subcellular differentiation. Indeed, bacteria even have
organelles such as magnetosomes for sensing magnetic
fields or gas vesicles controlling cell buoyancy.
A functionally diverse group of bacterial organelles
are the bacterial microcompartments (BMCs) that
fulfill specialized metabolic needs. Modification and
reengineering of these BMCs enable innovative
approaches for metabolic engineering and
nanomedicine.

What are bacterial microcompartments?
Bacterial microcompartments (BMCs) are organelles in
prokaryotic cells. In contrast to those of eukaryotes, BMCs
are not circumscribed by a phospholipid membrane. In-
stead, the barrier between the lumen of the organelle and
the cytosol is formed by conserved families of proteins
that assemble into a selectively permeable shell [1–5].
While the shell architecture is broadly conserved across
all BMCs, the encapsulated enzymes vary widely [6]. In
general, BMCs are metabolic modules, with the enzymes
carrying out a sequence of biochemical reactions, and the
shell serving as the interface with the cytosol.
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What defines the BMC shell?
BMCs are defined by the structural proteins that compose
their “membranes”. There are three structural groups of
shell proteins: BMC-H (Pfam00936), which form hex-
agonal hexamers [1]; BMC-P (Pfam03319), which from
pentagonal pentamers [7, 8], and BMC-T (a tandem fu-
sion of the Pfam00936), which subdivide into two types:
trimers (BMC-TS) [9–12], and stacked dimers of trimers
(BMC-TD) (Fig. 1a) [13–15]. Pores, typically at the cyclic
axis of symmetry in the hexamers, vary in size (4–7 Å in
diameter) and charge, thereby contributing to selective
permeability (Fig. 1a) [1, 13–19]. It has been shown that
some BMC-H proteins are specifically permeable to an-
ions like HCO3

− [20]. The BMC-TD trimers can have
gated pores, meaning they have an open and closed con-
formation (closed conformation shown in Fig. 1a) [13, 14,
18]. The stacking of BMC-TD trimers creates an internal
chamber with pores to the lumen of the shell and to the
cytosol [9, 13, 15, 18]. Their gated pores have been pro-
posed to operate in an airlock fashion with opening and
closure controlled by ligand binding [13–15, 18, 21], ap-
parently in a coordinated fashion across the surface of the
shell [21]. These structural proteins assemble into a poly-
hedral shell (Fig. 1b). BMC-H proteins tile into a single
layer, but some BMC-H proteins also appear to stack,
similar to the BMC-TD proteins [19, 22]. Recently, this
has been suggested to be potentially physiologically rele-
vant by dynamically attenuating the shell’s permeability
depending on environmental conditions [22].

How diverse are BMCs?
BMCs are encoded in gene clusters containing the genetic
information necessary to form the BMC and integrate its
function with the rest of cellular metabolism [4–6, 23]. This
typically includes substrate sensors (regulatory proteins),
plasma membrane-associated transporters, enzymes, shell
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proteins, and cytoskeletal elements presumed to control
positioning of the organelle (Fig. 2a). The compact ar-
rangement of genes for organelle components and ancil-
lary proteins that support the metabolic integration of the
BMC with the rest of a cell’s metabolism likely accounts
for their apparent widespread horizontal gene transfer
(evident by the same type of BMC being present in very
similar genetic arrangements in distantly related bacteria
[4–6, 23]), illustrating the concept of “plug and play” de-
vices in evolution.
BMC loci have been identified in 23 out of the 29

established bacterial phyla [6], and can be divided meta-
bolically into anabolic carboxysomes and catabolic metabo-
losomes (recently reviewed by [5, 24, 25]). There are two
distinct carboxysomes (alpha- and beta-carboxysomes),
which differ in the type of RuBisCO and the conserved

carbonic anhydrase they encapsulate. The carbonic anhy-
drase converts bicarbonate to CO2, the substrate for Ru-
BisCO. The co-localization of the enzymes, and the barrier
provided by the BMC shell, increases the local concentra-
tion of CO2, enhancing the efficiency and selectivity of Ru-
BisCO (Fig. 2b) [26, 27].
Metabolosomes are functionally diverse. The types

that have been experimentally characterized are propa-
nediol utilizing (PDU and GRM3) [28–30], ethanol-
amine utilizing (EUT) [31], fucose and rhamnose
utilizing (GRM5 and PVM) [32, 33], 1-amino-2-pro-
panol utilizing (RMM) [34, 35] and choline utilizing
(GRM2) [36, 37]. Even though these metabolosomes
have different substrates, they share a common core
biochemistry which consists of a substrate-defining sig-
nature enzyme, an aldehyde dehydrogenase (AldDH),

Fig. 1. The BMC structural proteins forming a polyhedral shell. a The four different types of building blocks: BMC-P (pentamer monomer in yellow);
BMC-H hexamer (monomer in blue); BMC-TS trimer (monomer in green), and the double stacked BMC-TD hexamer (monomer in each layer in green).
A top view and a side view are shown, as well as a close up of the center for the BMC-P, BMC-H, and BMC-TS. The BMC-TD pore can have an open or
closed conformation (closed conformation is shown). The shell proteins have a concave and a convex side, the concave side faces outward (towards
the top of the side view), while the convex side faces the BMC lumen (towards the bottom of the side view). b The structure of a BMC shell from
Haliangium ochraceum and a schematic of the icosahedral symmetry (BMC-H in blue; BMC-TS and BMC-TD in green; BMC-P in yellow)
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an alcohol dehydrogenase (AlcDH), and a phosphotran-
sacylase (PTAC) (Fig. 2c). The signature enzyme gener-
ates an aldehyde which is then processed by the AlcDH
and the coenzyme A-dependent AldDH to from an al-
cohol and a coenzyme A derivate of a carboxylic acid.
The PTAC regenerates the coenzyme A, producing a
phosphate ester that is used by a kinase to generate
ATP. The aldehyde intermediate is a volatile toxin,

impairing protein functions and damaging DNA, which
can ultimately lead to cell death [38]. The metabolo-
some sequesters and detoxifies aldehyde intermediates
[33, 39–41] and additionally prevents carbon loss due
to its volatility [42].
Our group is now updating our survey of BMC loci

found in sequenced genomes. We find that the numbers
and diversity of BMCs have expanded substantially since

Fig. 2 BMC genetic and metabolic modularity. a Schematic of a BMC gene locus containing a transcriptional regulator (orange) presumably
controlling the expression of the BMC operon, the enzymatic core (purple and red), the structural shell proteins (blue, green, and yellow) forming
the BMC and the ancillary proteins positioning and metabolically integrating the BMC into the cell (gray). b Schematic function of the carboxysome.
The shell acts as a barrier to concentrate the CO2 and potentially exclude the competitive inhibitor oxygen within the BMC, enabling RuBisCO to
operate more efficiently. 3-PGA 3-phosphoglycerate. c Schematic function of metabolosomes. The toxic aldehyde intermediate is contained and
detoxified within the BMC. CoA coenzyme A, Pi inorganic phosphate
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2014 [6], due at least in part to the recent emphasis on
sequencing the genomes of microbial “dark matter” [43,
44]. Some are novel BMC loci of unknown function that
do not fit the metabolosome or carboxysome paradigm
(unpublished data) [6], indicating that BMCs are meta-
bolically more diverse than previously thought and func-
tion in unexplored ways to give the organism a
competitive advantage.

How do the enzymes get into the BMC lumen?
There is no known mechanism for proteins to cross the
BMC shell. Studies of carboxysome assembly have
shown that enzymatic cargo coalesces and then is encap-
sulated by the shell proteins (Fig. 3a) [45], or cargo and
shell assemble simultaneously (Fig. 3b) [46]. Some core
proteins of beta-carboxysomes and metabolosomes con-
tain an encapsulation peptide, which are typically found
at the N- or C-terminus of a cargo protein. Encapsula-
tion peptides are composed of one or more segments of
~ 20 amino acids that are predicted to form an amphi-
pathic α-helix [47]. These encapsulation peptides seem
to facilitate aggregation of the core enzymes, and also
interact with the shell proteins to form a complete as-
sembled BMC in a core-first process (Fig. 3a) [48–53].
In the case of the alpha-carboxysomes, complete BMC
formation is facilitated by an intrinsically disordered
protein, CsoS2, which interacts with the cargo enzymes
as well with the shell proteins [54–56]. This leads to
concurrent assembly of shell and enzymatic core in
alpha-carboxysomes which has been observed in detail
using cryo-electron tomography (Fig. 3b) [57].

How are BMCs being adapted for bioengineering?
The first reports of bioengineering of BMCs focused on
transplanting the PDU BMC locus from Citrobacter freun-
dii to Escherichia coli [58]. The BMC genes were expressed,
enabling the transgenic E. coli to grow on propanediol.
More recently a PDU locus was transferred to a variety of
species (E. coli, Salmonella bongori, Klebsiella pneumoniae,
Cronobacter sakazakii, Serratia marcescens, and Pseudo-
monas spp.), likewise resulting in propanediol catabolism
and BMC formation [59]. In two different studies, the genes
of an alpha-carboxysome have been transferred to E. coli
and Corynebacterium glutamicum and their expression re-
sulted in RuBisCO activity [60, 61].
BMC bioengineering efforts have extended to plants,

with the aim to enhance CO2 fixation by installing car-
boxysomes in chloroplasts (recently reviewed by [62]).
Beta-carboxysome genes [63] and an engineered alpha-
carboxysome operon [64] have been transferred to chlo-
roplasts of Nicotiana benthamiana and Nicotiana taba-
cum, respectively. Carboxysome-like structures formed
in the chloroplasts of these transgenic plants and even

allowed for photo-autotrophic growth of plant RuBisCO
knockout mutants in the latter case.
Taking advantage of the self-assembly process, BMC

shells can be generated by expressing the shell proteins
without the cargo proteins [65–67]. Such shells can be
utilized for “bottom up” approaches to construct syn-
thetic BMCs carrying out entirely novel functions. This
approach was applied to take up and store polyphos-
phate in C. freundii [68]. A polyphosphate kinase tagged
with an encapsulation peptide was introduced into a
PDU BMC shell. The higher amount of cellular poly-
phosphate in the transgenic cells was presumably caused
by preventing exophosphatases access to the encapsu-
lated polyphosphate.

What innovative technologies are being developed
to enable the full potential of bioengineering
BMCs?
There are many potential applications for engineered
BMCs, including serving as nano-factories for biochem-
ical production or as novel drug delivery devices. How-
ever, methods need to be developed enabling the
modification of every aspect of the shell, like loading
heterologous cargo, engineering the permeability of the
pores, and controlling the assembly process.

Encapsulation of non-endogenous cargo
Being able to control which enzymes are encapsulated
by the shell enables metabolically repurposing the BMC
or the use of shell for entirely new applications, like bio-
remediation or chemical storage.
Native encapsulation peptides have been fused to

heterologous cargo in order to target them into the
lumen of the shells. However, this has been inefficient,
with only very little cargo successfully incorporated into
the BMC [66, 67, 69], indicating that we do not fully
understand the determinants of enzyme encapsulation.
However, engineered solutions have been developed that
allow efficient and effective encapsulation of cargo. For
example, the SpyTag/SpyCatcher bacterial split adhesin
domains [70] have been adapted to bind cargo covalently
to the inside of the shell. The SpyCatcher component
was inserted into a lumen-facing loop of a BMC-TS pro-
tein, and fusing the SpyTag to heterologous cargo en-
abled it to be specifically and efficiently encapsulated
[71]. In another approach, a BMC-H protein was circu-
larly permuted to project the N- and C-termini, which
are naturally on the external side of the shell, into the
lumen for fusion of cargo [72, 73]. This can be com-
bined with using the specific interaction of two coiled-
coil domains, one fused to a circularly permuted BMC-
H and the other fused to the heterologous cargo to load
the BMC shell [72]. Cargo can also be loaded into the
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shell based on electrostatic attraction. The luminal sur-
face of a BMC-H protein was modified to be positively
charged to promote the encapsulation of negatively
charged biotic or abiotic cargo [74].

Engineering shell permeability
In order to construct effective synthetic BMCs, the shell
permeability would need to be tuned to fit its catalytic
function. The feasibility of pore engineering has been

demonstrated; changing the residues that surround the
pores alters their size and permeability, without interfering
with the shell assembly [17, 66, 75]. But manipulation of
shell permeability is not limited to metabolite selectivity; a
redox active FeS cluster has been incorporated into a
BMC-TS pore to enable electron flow across the shell [12].
This enables the potential for designing BMCs that re-
quire or generate electrons. A key challenge for BMC en-
gineering is the development of tools for directly

Fig. 3. Assembly process of BMCs. a Core-first assembly (beta-carboxysomes and metabolosomes). Aggregation of the core enzymes is facilitated
by the encapsulation peptide in combination with other assembly proteins. After aggregation the encapsulation peptide interacts with the shell
proteins to from a complete BMC. b Concomitant assembly (alpha carboxysomes): simultaneous core aggregation and shell protein recruitment
is enabled by the intrinsically disordered protein CsoS2
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measuring shell permeability to enable rapid prototyping
of shell designs.

In vitro assembly of BMC shells
The recently developed method of assembling BMC
shells in vitro will facilitate rapid prototyping [74].
Moreover, in vitro assembly allows encapsulation of
toxic and/or abiotic cargo into BMCs, which is not pos-
sible in vivo; that greatly expands the versatility of BMCs
to function in cell-free chemical catalysis or in nano-
medicine to deliver cytotoxins to cancer cells. Further-
more, mixing functional groups carrying structural pro-
teins in different stoichiometries allows for rapid, high-
throughput screening of the most effective combination
or most robust BMC shell assembly.

What are the emerging applications of BMCs?
Increasing efficiency in metabolic engineering
The enormous complexity of metabolic pathways, their
regulation, and their crosstalk creates major obstacles
for metabolic engineering, because small changes made
to the system, can often have unpredictable conse-
quences [76]. Thus, effective production strains need to
go through many rounds of time-consuming
optimization (recently reviewed in [77]). Ideally, an au-
tonomous metabolic module is introduced decoupled
from the cell’s regulatory and metabolic networks. Self-
assembling, easy-to-modify and interspecies transferable
BMCs are potential devices for the next generation of
metabolic engineering (Fig. 4).

Avoiding metabolite cross-talk
The components of the cell and its bioproducts are
synthesized from a small set of precursors that feed
into many different pathways [77]. If a large flux
through a pathway is desired for maximum product
yield, it requires a steadily available supply of precur-
sors. Thus, metabolic cross-talk of the production
pathway with existing endogenous metabolic pathways
is unavoidable. Deletion of the competing pathways is
not possible if these pathways are essential to the cell
and downregulation needs to be fine tuned not to
interfere with growth. In fact, identification of meta-
bolic cross-talk and its effective solution is one reason
for the protracted development times of efficient pro-
duction strains [77]. An example of such unwanted
cross-talk in metabolic engineering occurs in the syn-
thesis of isoprenoids. Isoprenoids are a large and di-
verse group of natural compounds some of which are
used as performance materials or as therapeutics and
thus are often targeted in metabolic engineering ef-
forts [78, 79]. All isoprenoids are synthesized by the
basic building blocks isopentyl-pyrophosphate (IPP)
and dimethylallyl-pyrophosphate (DMAPP). They are

condensed to form the monoterpene geranyl pyro-
phosphate and the addition of another IPP forms the
sesquiterpene farnesyl pyrophosphate (FPP). These
pyrophosphate intermediates are branching off into
many different isoprenoids, all of which need to be
controlled for efficient production of the isoprenoid
of interest. Synthetic BMCs encapsulating the produc-
tion pathway can spatially insulate the intermediates
from the rest of the cell, thus providing a private sub-
strate pool for the enzyme that would otherwise need
to compete for substrates with off-branching pathways
if located in the cytosol.

Improving enzyme kinetics through scaffolding and
substrate concentration
Simulations indicate that compartmentalization of en-
zymes and the consequent local increase in intermediate
substrate concentration can significantly improve catalytic
turnover rates [80]. A metabolite intermediate is more
likely to interact with a downstream enzyme in the com-
partment rather than diffusing away [81]. This concept

Fig. 4. Schematic of possible synthetic BMC functions in metabolic
engineering. The semipermeable shell allows a substrate to diffuse
into the lumen that is then processed by enzyme A. The intermediate
(red) can be a toxin that needs to be contained, an unstable molecule
that requires fast processing, or a metabolite that can be used by
off-branching metabolic pathways. In all these cases encapsulation of
the enzymes into a BMC would eliminate such problems. Enzyme B
can be a promiscuous or slow enzyme, operating more efficiently
when given only one specific substrate in high concentrations. The
shell also can act to stabilize proteins by preventing proteolytic
degradation and decouples the pathway from endogenous regulation
by preventing inhibitors from accessing the encapsulated enzymes
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has been used in synthetic enzyme scaffolds to increase
flux through a biosynthetic pathway, recently reviewed by
[82]. BMCs have naturally evolved to function as three-
dimensional enzyme scaffolds and improve metabolic flux.
In contrast to synthetic scaffolds developed to date, they
offer a more sophisticated means of controlling metabolite
flux by providing a semi-permeable shell. Because they are
structurally precisely defined, loading strategies and modi-
fications can be made accurately with a predictable out-
come and thus might offer an advanced alternative to the
existing synthetic enzyme scaffolds.

Containment of cytotoxic metabolic intermediates
Bioengineering efforts are increasingly revealing issues with
toxicity of intermediates due to higher steady state concen-
trations of metabolic intermediates when directing large
amounts of carbon into the production pathway [83, 84].
One example is pyrophosphates like IPP and DMAPP
needed for the generation of isoprenoids. These have been
reported to be toxic to the cell when accumulated after en-
gineering a host strain [83]. Nature’s solution to such prob-
lems is the compartmentalization of the toxic intermediate-
generating metabolic step, e.g., containment of the aldehyde
intermediate in metabolosomes (Fig. 3c). Next-generation
metabolic engineering can take existing metabolosomes as
blueprints and refunctionalize them to contain and process
a specific toxic intermediate. Furthermore, they will likely
prove useful for structuring metabolism in the context of
cell-free metabolic engineering [85].

Maximizing substrate specificity and minimizing metabolite
damage
Like carboxysome-encapsulated RuBisCO (Fig. 3b), many
enzymes are not entirely substrate specific, and damaged
metabolites can be generated when an enzyme mistakenly
uses a wrong substrate [86]. This is wasteful and can even
be cytotoxic. The BMC shell can function to enrich the
desired substrate in the vicinity of promiscuous enzymes
to increase the yields of the product. This can be done by
either engineering the permeability of the pores or by en-
capsulation of substrate-specific upstream metabolic steps.
Another form of metabolite damage is caused by spon-

taneous chemical reaction of the substrate with itself or
with other molecules [86]. In metabolic engineering, me-
tabolite damage remains a challenge because often little
is known about spontaneous reactions of the metabolic
intermediates within the chemically complex environ-
ment of the cytosol. Compartmentalizing reactions that
require chemically sensitive cofactors is a natural func-
tion of metabolosomes (Fig. 3c).

BMCs as a tool to engineer microbial communities
Many metabolosomes enable microbes to utilize specific
energy, carbon, and nitrogen sources that are niche specific.

Accordingly, BMCs contribute to both forming and distort-
ing bacterial communities. An environment in which
BMC-containing strains are common and potentially shape
the community are hydraulically fractured shales [87, 88].
Recent studies indicate that these communities impact gas
and oil production. Negative impacts arise from corrosion
which is attributed to the most abundant members in these
shales, Halanaerobium bacteria [87, 89–91]. These organ-
isms utilize ethanolamine and the trimethylamine (TMA)
produced by them is then taken up by Methanohalophilus
bacteria [88]. The EUT (ethanolamine utilizing) BMC and
many other BMC types are frequently found in the se-
quenced genomes of Halanaerobium prevailing in shales
[88], suggesting that these BMCs could play a major role in
shaping the subterranean bacterial community. Clearly,
more research is needed to investigate the connection of
the BMCs to the success of Halanaerobium species, which
in turn might offer a potential to reshape these communi-
ties to alleviate the negative corrosiveness associated with
Halanaerobium.
BMC-containing bacteria can also have an influence on

human health by allowing a harmful species to succeed in
nutrient poor environments of our body. For example, a
pathogenic E. coli encoding a EUT BMC is able to
metabolize ethanolamine and thus gains a competitive ad-
vantage over the normal intestinal flora when other nutri-
ents are limited [92]. This can distort the bacterial
community in the intestine in favor of the pathogen. A
similar competitive advantage was found for the pathogen
Salmonella enterica serovar typhimurium, also expressing
a EUT BMC [93]. More recently, a choline-utilizing BMC
has been characterized in uropathogenic E. coli [37]. Pro-
liferation of such pathogens could potentially be prevented
or treated upon introduction of a competitor to the patho-
gens carrying a transgenic BMC utilizing the same sub-
strates. Such a probiotic strain could help shift the
bacterial community back to a healthy intestinal flora.

What potential do BMCs have in biomedicine?
Nanomedicine includes the development of nanoparti-
cles to serve as drug-delivery systems and platforms for
designer vaccines [94–97]. Nanoparticles that can encap-
sulate therapeutic cargo have been extensively studied in
recent years, yielding a diverse arsenal of useful nano-
structures ranging from virus-like particles to inorganic
silica nanoparticles [98]. BMC shells also have the po-
tential to function as nanoparticle chassis for nanomedi-
cine. For example, shell proteins could be engineered to
incorporate an array of suitable peptides already devel-
oped for existing nanoparticles to facilitate active target-
ing of the shell to pathogens or cancer cells, tumor and
cell penetration, and endosomal escape (Fig. 5a) [99].
Additionally, in vitro BMC assembly permits the encap-
sulation of cytotoxic therapeutics used in cancer therapy
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(Fig. 5b). A concern may be antigenicity of the BMC
shell, limiting its application; this has yet to be tested.
However, existing methods to modify the antigenicity of
nanoparticles could also be used for BMCs such as the
widely used PEGylation [100].

BMCs as chassis for designer vaccines
Multiple parameters are important to trigger potent im-
mune responses, including the size and geometry of the

pathogen as a whole, as well as antigen density and dis-
tribution [101]. Modern vaccines can mimic these prop-
erties by utilizing nanoparticles as chassis to present
antigens from a pathogen, recently reviewed by [102,
103]. BMC shells are geometrically comparable to icosa-
hedral viruses and also have roughly the same size, ran-
ging from 40 to 200 nm in diameter depending on the
type of BMC [104, 105]. The model BMC shell from
Haliangium ochraceum forms homogeneous particles of

Fig. 5. Possible applications of BMC in vitro assembly for nanomedicine. a High throughput testing of different combinations and densities of
functional groups on a BMC. The structural proteins carrying various functional groups can be mixed together in different stoichiometries to generate
many different versions of nanoparticles. b In vitro BMC assembly in a solution of therapeutic toxin can be used for the development of novel drug
delivery systems
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40 nm diameter [104], which is very similar to virus-like
particles currently used as scaffolds in biomedical engin-
eering (Fig. 6). The Haliangium ochraceum BMC shell
can tolerate peptide fusions to its constituent proteins,
allowing for its efficient assembly [71, 74], and permit-
ting the presentation of a diverse set of antigens. This
flexibility in modifying different shell proteins in com-
bination with the in vitro assembly method would allow
high throughput sceening of different combinations and
densities of antigens for the most potent immune re-
sponse (Fig. 5b).
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