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ABSTRACT OF THE DISSERTATION 

 

Functional Characterization of Oncogenic Driver FGFR3-TACC3 

 

by 

 

Katelyn N. Nelson 

Doctor of Philosophy in Chemistry 

University of California San Diego, 2018 

Professor Daniel J. Donoghue, Chair 

 

 Fibroblast Growth Factor Receptors (FGFRs) are critical for cell proliferation and 

differentiation. Mutation and/or translocation of FGFRs lead to aberrant signaling that often 

results in developmental syndromes or cancer growth. As sequencing of human tumors 

becomes more frequent, so does the emergence of FGFR translocations and fusion proteins. 

The research conducted in this work will focus on a frequently identified fusion protein 

between FGFR3 and transforming acidic coiled-coil containing protein 3 (TACC3). As 

detailed in this dissertation, it is apparent that the fused coiled-coil TACC3 domain results in 



 

xv 

constitutive phosphorylation of key activating FGFR3 tyrosine residues. The presence of the 

TACC coiled-coil domain leads to increased and altered levels of FGFR3 activation, fusion 

protein phosphorylation, MAPK pathway activation, nuclear localization, cellular 

transformation, and IL3-independent proliferation. Introduction of K508R FGFR3 kinase 

dead mutation abrogates these effects, except for nuclear localization which is due solely to 

the TACC3 domain. We further demonstrate that the oncogenic effects initiated by FGFR3-

TACC3 are dependent on the overactivation of the MAPK pathway and localization of 

FGFR3-TACC3 to the secretory pathway or the plasma membrane. The activation of the 

MAPK pathway is essential for cell transformation but involvement in the cell cycle via the 

canonical TACC3 pathways is not. Additionally, we have shown that kinase inhibitors for 

MEK (Trametinib) and FGFR (BGJ398) are effective in blocking cell transformation and 

MAPK pathway upregulation. The need for precision medicine is evidenced by the different 

effects these inhibitors have against various FGFR3-TACC3 breakpoints. The existence of 

FGFR3-TACC3 fusions in human cancers creates additional challenges and opportunities for 

identifying effective treatment strategies. The development of such personalized medicines 

will be essential in treating patients who harbor oncogenic drivers such as FGFR3-TACC3.  
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CHAPTER 1 

 

Functions of Fibroblast Growth Factor Receptors in Cancer Defined by Novel 

Translocations 

 

 

 

 

 

ABSTRACT 

The four receptor tyrosine kinases (RTKs) within the family of Fibroblast Growth 

Factor Receptors (FGFRs) are critical for normal development but also play an enormous role 

in oncogenesis. Mutations and/or abnormal expression often lead to constitutive dimerization 

and kinase activation of FGFRs, and represent the primary mechanism for aberrant signaling. 

Sequencing of human tumors has revealed a plethora of somatic mutations in FGFRs that are 

frequently identical to germline mutations in developmental syndromes, and has also 

identified novel FGFR fusion proteins arising from chromosomal rearrangements that 

contribute to malignancy. This chapter reviews approximately 40 different fusion proteins 

created by translocations involving FGFRs that have been identified in human cancer. This 

chapter discusses the effects of these genetic alterations on downstream signaling cascades, 

and the challenge of drug resistance in cancer treatment with antagonists of FGFRs.  
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1.1 OVERVIEW OF CANONICAL FGFR SIGNALING 

 Receptor tyrosine kinases (RTKs) represent important signal transducers in the cell 

membrane and are comprised of nearly twenty families of homologous proteins in humans, 

with almost 60 distinct members (1). In the FGFR family, four homologous human receptors 

have been identified: FGFR1, FGFR2, FGFR3 and FGFR4. All of the FGFRs exhibit three 

extracellular immunoglobulin (Ig)-like domains, a membrane-spanning segment and a split 

tyrosine kinase domain. Fibroblast growth factors (FGFs), a large family of related growth 

factors, act in concert with heparin sulfate proteoglycans (HSPGs) as high-affinity FGFR 

agonists (2, 3). The splicing of FGFRs results in further distinction of ligand specificity 

accompanied by altered biological properties, in which the most studied splicing isoforms 

involve the third immunoglobulin-like domain of the receptors (4). For FGFR2 and FGFR3, 

the first half of third Ig domain consists of an invariant exon (IIIa), and splicing of the second 

half of third Ig domain results in either IIIb isoform (exons 7 and 8) or IIIc isoform (exons 7 

and 9). Generally, the IIIb isoforms of FGFRs are expressed in tissues of epithelial origin 

whereas the IIIc isoforms are expressed in mesenchymal tissues (5).  

 Binding of FGF/HSPG to FGFR induces the dimerization of receptor monomers in the 

plasma membrane, followed by trans-autophosphorylation of tyrosine residues located in the 

cytoplasmic kinase domain. This tyrosine phosphorylation triggers the binding of Src 

homology (SH2) domain of phospholipase C gamma (PLC) to the receptor, resulting in the 

activation of PKC. Activation also induces RAS-MAPK and PI3K-AKT signaling via FRS2 

and GRB2 adaptor proteins. Additional pathways activated by FGFRs include Jun N-terminal 

kinase and JAK/STAT pathways. FGFR signaling results in cellular proliferation and 

migration, anti-apoptosis, angiogenesis and wound healing (Figure 1) (6). 
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Figure 1. FGFR Signaling Pathways. FGF ligand binds to FGFR monomers, leading to the 

dimerization and subsequent tyrosine autophosphorylation of the receptor. This event leads to 

activaton of FGFRs and various downstream proteins, resulting in cellular proliferation, 

differentiation, survival, anti-apoptosis and angiogenesis. 
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1.2 FGFR TRANSLOCATIONS AND FUSION PROTEINS IN CANCER 

FGFR fusion protein discovery across a variety of cancers 

Fusion proteins are continually being discovered in a variety of human cancers. 

Particularly, fusions involving FGFRs are prevalent in hematological cancers and solid 

tumors. The existence of translocations involving FGFRs has been known since the late 

1990s, when a patient with T-cell lymphoblastic lymphoma was found to harbor a ZNF198-

FGFR1 fusion, now also referred to as ZMYM2-FGFR1. Lymphoma or leukemia cases from 

the 1970s and 1980s described disease characteristics similar to the now well-defined disease, 

8p11 myeloproliferative syndrome (EMS). This correlation may arise because FGFR1 fusions 

in leukemia and lymphoma often originate as EMS. According to the World Health 

Organization, EMS is classified as “myeloid and lymphoid neoplasms with FGFR1 

abnormalities,” and has also been called “stem cell leukemia/lymphoma” (7).  

In EMS, FGFR1 located at 8p11.22 is often disrupted by chromosomal translocation, 

resulting in a fused coding region. The fusions in EMS consistently result in FGFR1 fused to 

an N-terminal dimerization domain (Figure 2), an alteration that has also been found in breast 

cancer, lung squamous cell carcinoma, phosphaturic mesenchymal tumor, rhabdomyosarcoma 

and leukemia (Table 1) (8-11). With FGFR as the 3’ partner, the ligand-binding extracellular 

domain and transmembrane domain are excluded from the fusion protein, with only the FGFR 

kinase domain attached to the 5’ protein partner. Dimerization of this fusion type would result 

only from the N-terminal oligomerization domain, not FGF ligand binding. In solid tumors, it 

is more common to find FGFR as the 5’ fusion gene, with the breakpoint consistently found 

in exons 17, 18, or 19, leaving the extracellular, transmembrane and kinase domains intact. 

When the extracellular domain is present, dimerization is thought to increase with the addition 
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of FGF ligand. Although the domains present in fusion proteins vary, the intact FGFR kinase 

domain is always retained, indicating this domain is critical for a functioning fusion protein 

and cancer progression. It is rare to see an FGFR fusion protein with an additional FGFR 

activating mutation. The reason may be that either event alone may be sufficient for cancer to 

progress, although the dual activation of an FGFR both by mutation and translocation could 

provide additional oncogenic potential. Additionally, while some FGFR fusions occur with 

high tissue specificity, others occur across many cancer types (12). 

 

Dimerization of FGFR induced by the fusion partner  

In FGFR fusion proteins, almost all fusion partners contribute a known dimerization 

domain which allows the FGFR to dimerize and autophosphorylate the kinase domain, 

leading to activation and downstream signaling, increased cell proliferation and cancer 

progression (Figure 1). Recently, an FGFR3 fused to transforming acidic coiled-coil 

containing 3 (TACC3) has been discovered in glioblastoma, bladder cancer, lung cancer, oral 

cancer, head and neck squamous cell carcinoma and gallbladder cancer (8, 9, 13-19) (Table 

1). Additionally, FGFR1-TACC1 has been identified in glioblastoma (18, 20). The coiled-coil 

domain of TACC3 is assumed to bring the FGFR3 portion of the fusion proteins close 

together, inducing activation. FGFR3-TACC3, FGFR3-BAIAP2L1, and FGFR2-CCDC6 

have been shown to dimerize presumably through their coiled-coil domains (8). The FGFR2-

BICC1 gene fusion has been found in cholangiocarcinoma, colorectal cancer and 

hepatocellular carcinoma (8, 21-23). The self-associating sterile alpha motif domain (SAM) of 

BICC1, containing a helix-loop-helix domain, fused 3’ to FGFR2, is believed to instigate 

constitutive dimerization of FGFR2 in order to produce an active receptor (12) (Figure 2).  
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Figure 2. Structural Organization of Select FGFR Fusion Proteins. Schematic representations 

are presented for the more common (n>5) FGFR fusions identified in human cancers and cell 

lines. The most common breakpoint of each fusion is shown. Occurrence numbers (n) indicate 

the total number of times the fusion has been identified, including breakpoints not shown in 

the figure. See Table 3 for full list of FGFR fusions and translocations.  

 

 

Other dimerization domains found in FGFR fusion proteins are believed to have the 

same function. FGFR fusion partner domains include zinc-finger, leucine zipper, coiled-coil, 

SAM, LIS1-homologous (LIsH), IRSp53/MIM (IMD), BAG, FN1, AFF3, and 

stomatin/prohibitin/flotillin/HflK/C (SPFH) domains (also known as the prohibitin PHB 
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domain) (Table 1). Other fusions thought to dimerize by self-association domain include 

FGFR2-CASP7 in breast cancer, which dimerizes through active site loops, and CPSF6-

FGFR1, which dimerizes through a RNA recognition motif (7, 8, 24). The most frequent 

fusion partner domain is the coiled-coil, occurring in the proteins mentioned above; in 

addition, the other coiled-coil fusion proteins are BCR-FGFR1 (25),  CEP110-FGFR1 (7), 

CUX1-FGFR1 (26), FGFR1OP2-FGFR1 (27), FGFR2-AHCYL1 (21), FGFR2-CIT (28), 

FGFR2-FAM76A (29), FGFR2-KIAA1598 (22), FGFR2-KIAA1967 (8), FGFR2-OFD1 (8), 

FGFR2-PPHLN1 (30), FGFR2-TACC3 (23), LRRFIP1-FGFR1 (7), MYO18A-FGFR1 (7), 

TRIM24-FGFR1 (7), and TPR-FGFR1 (31). 

In order for autophosphorylation to occur, RTKs need to be exactly aligned. It has 

been shown that dimerization of the intracellular domain alone will not activate the receptor. 

Ligand binding rotates and aligns the extracellular juxtamembrane domain and 

intramembrane α-helices, leading to intracellular kinase domain alignment, dimerization and 

activation (24). To create an active FGFR fusion protein, the dimerization domain must 

provide the correct alignment. The most common FGFR1 fusion in EMS is ZNF198-FGFR1, 

which contains either 4 or 10 zinc finger domains and a proline-rich domain from ZNF198, 

followed by the tyrosine kinase domain of FGFR1 (Figure 2) (7). The proline-rich domain is a 

self association domain and is essential for dimerization and activation of FGFR1 (32).  

An exception to the activation-by-oligomerization theme is an internal tandem 

duplication (ITD) of FGFR1 in a patient with pilocytic astrocytoma, resulting in a duplication 

of the FGFR1 kinase domain. ITD has previously been observed in Acute Myeloid Leukemia 

with FLT3, another receptor tyrosine kinase. This ITD, which occurs in the juxtamembrane 
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domain of FLT3, leads to enhanced receptor activation and increased downstream signaling of 

MAPK and STAT5 (33).  

 

Altered cellular localization of FGFR by the fusion partner  

Often, the creation of FGFR fusion proteins not only activates FGFR and its canonical 

pathways, but results in an incongruous FGFR localization as well. Some partner proteins can 

lead to localization of FGFR to a cellular compartment other than the plasma membrane. 

Fusion proteins that have been shown to have irregular localization include FGFR1OP-

FGFR1, CEP110-FGFR1, ZNF198-FGFR1, and TEL-FGFR3 in lymphoma and FGFR3-

TACC3 in glioblastoma. Wild-type FGFR1OP (FGFR1 oncogenic partner) and CEP110 

(centriolin) are centrosomal proteins. Once engaged in a fusion with FGFR1, FGFR1OP 

localizes the kinase domain to the centrosome through a CAP350 interaction (34). CEP110 is 

involved in centriole maturation and localizes to the centrosome via an 170-amino acid region 

in the C-terminus, a region retained in the CEP110-FGFR1 fusion. Instead of the expected 

localization to the centrosome, cytoplasmic expression of the fusion protein was observed 

(35). Continuous kinase activity and inappropriate cytoplasmic localization due to CEP110-

FGFR1 fusion formation may result in increased cell viability and hematopoietic stem cell 

growth. The fusion proteins ZNF198-FGFR1 and TEL-FGFR1 have been identified as 

cytoplasmic proteins (7, 11). The translocation of ZNF198 and FGFR1 genes removes the 

FGFR1 transmembrane domain and the C-terminal nuclear localization signal of ZNF198, 

which most likely leads to cytoplasmic localization.  
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Expressed FGFR3-TACC3 has been shown to localize to the mitotic spindle poles in 

dividing mouse astrocytes, most likely due to recruiting effects of TACC3. In addition, the 

fusion protein increased the percentage of aneuploidy by greater than 2.5-fold (18). As 

TACC3 is an important component of mitotic spindle assembly and is involved with the 

attachment of chromosomes to microtubules, it is most likely playing a role in chromosomal 

segregation errors. During mitosis, wild-type TACC3 is strongly diffused around 

centrosomes, due to the localizing effects of the C-terminal coiled-coil (36). As this domain is 

present in the FGFR3 fusion, multiple effects could be implicated by the fusion protein such 

as localization of FGFR3-TACC3 to the centrosome or a novel biochemical activity. During 

interphase, wild-type TACC3 has been found to be concentrated in the nucleus (36). The 

location of the FGFR3-TACC3 fusion in non-dividing cells has not yet been identified.  

Although the localization of ERLIN2-FGFR1 has not yet been investigated, wild-type 

ERLIN2 anchors to the ER membrane via an N-terminal binding motif. This motif is still 

present when ERLIN2 is fused to FGFR1, and may be affecting fusion protein location (37). 

The fusion results in the SPFH oligomerization domain of ERLIN2 fused 5’ to exon 4 of 

FGFR1, and was detected in breast cancer.  

Thus, for these and other FGFR fusion proteins discussed: is the salient biological 

feature the localization of the FGFR kinase domain to a novel cellular compartment? Or, is it 

the constitutive dimerization and activation of the FGFR kinase domain, regardless of the 

localization of the normal fusion partner, that is determinative? Much further experimental 

research will be required to arrive at a definitive answer. 
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Downstream signaling impacts of fusion proteins 

FGFR fusion proteins have been shown to activate the normal FGFR pathways, 

specifically the PI3K/AKT, MAPK, and JAK/STAT pathways (Figure 1). FGFR3-TACC3, 

FGFR3-BAIAP2L1, and FGFR2-CCDC6 increase activation of PI3K/AKT and MAPK 

pathways (12). FGFR2-TACC3 has also been shown to increase MAPK activation, but only a 

moderate increase of FRS2 phosphorylation of the PI3K pathway has been seen (23). In wild-

type FGFR1, FRS2 normally binds to the juxtamembrane domain between amino acids 407 

and 433. In many FGFR1 fusions, this domain is either fully or partially disrupted by 

translocation of the fusion partner, which results in an inability to recruit FRS2. This has been 

shown to occur in ZNF198-FGFR1, but may occur in other fusion proteins with FGFR as the 

3’ partner. However, although FRS2 interaction with ZNF198-FGFR1 was undetectable, the 

PI3K pathway remained active (7).  

In addition to the activation of MAPK and PI3K pathways, cells expressing 

FGFR1OP-FGFR1 exhibit increased phosphorylation of STAT1 and STAT3, but not STAT5 

(38). Furthermore, ZNF198-FGFR1 activates STAT5, FGFR3-TACC3 activates STAT3, and 

FGFR3-BAIAP2L1 and FGFR2-CCDC6 increase STAT1 activation (12, 34). ERLIN2-

FGFR1 and CEP110-FGFR1 have been shown to be biologically active through tyrosine 

phosphorylation of the respective fusion proteins, but further downstream signaling activation 

has not been explored (8, 35). Despite an overall increase in cell proliferation pathway 

activation, a contrasting study reports a failure to over-activate MAPK and AKT by FGFR3-

TACC3 (18). Studies exploring FGFR2-AHCYL1 and FGFR2-BICC1 fusions report an 

absence of AKT and STAT3 phosphorylation, although the MAPK pathway remained active 

(21). Additionally, TEL-FGFR3 directly interacts with and activates STAT3 and STAT5, 
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presumably through the FGFR3 portion of the protein, an interaction that has not been shown 

with other fusion proteins (11).  

Fusions with FGFR as the 5’ partner usually result in a deletion of the last exon of 

FGFR, which includes the tyrosine residue important for PLC binding (39). In bladder 

cancer, cells transfected with FGFR3-TACC3 or FGFR3-BAIAP2L1 were unable to activate 

PLC, due to a deletion of the last exon of FGFR3 in both fusion proteins (14) (Figure 2) 

Chromosomal rearrangements such as these also result in the loss of the 3’ UTR (untranslated 

region) of FGFR, significant as a region that contains various microRNA (miRNA) regulation 

sites. MiR-99a is normally present at high levels in the brain and results in a downregulation 

of FGFR3 translation. The formation of FGFR3-TACC3 fusion in glioblastoma results in a 

loss of the miR-99a site, which leads to the overexpression of FGFR3-TACC3. This miRNA 

site is unique to FGFR3, but overexpression due to a loss of miRNA regulation could occur in 

any FGFR fusion where the 3’ UTR region contains a regulatory miRNA site (17). 

Interestingly, nuclear pore complex proteins have been identified in fusion proteins 

with FGFR1. RANBP2-FGFR1, TPR-FGFR1, and NUP98-FGFR1 have all been identified in 

EMS (7, 31, 40). Mechanistically, these may be similar to other fusion proteins discussed 

previously in that two of these possess dimerization domains, with RANBP2 (RAN binding 

protein 2, also NUP358) containing a leucine zipper domain and TPR (Translocated Promoter 

Region) containing a coiled-coil domain (Table 1). A dimerization motif in NUP98 has not 

yet been identified, however. Also mechanistically unclear is the fusion partner AFF3 

(AF4/FMR2 Family, Member 3, also known as LAF4), a nuclear transcriptional activator, 

which has been identified as the 3’ fusion partner with FGFR2 (Table 1). AFF3 has also been 

found fused to the MLL gene in acute lymphoblastic leukemia (41). It is unclear whether the 
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significant biochemical consequence of these fusion proteins is manifested in the dimerization 

and activation of the FGFR partner, or whether the abnormal nuclear localization of the FGFR 

component represents the key event. 

All EMS cases with FGFR1 fusions have thus far been negative for the BCR-ABL 

fusion gene, which occurs in 85-90% of CML. The remaining cases either contain other 

translocations or are classified as BCR-ABL negative CML, or atypical CML. Some of these 

atypical CML cases are now linked to the broad spectrum of EMS cases, due to the presence 

of a translocation involving the 8p11 region (42). Patients with BCR-FGFR1 

[t(8;22)(p11;q11)] fusion are often referred to as CML-like due to their greater resemblance to 

CML than to EMS. BCR has been shown to interact with Grb2 by phosphorylation of Y177 

(7). This interaction is thought to be important for BCR-ABL signaling in CML patients, and 

may be playing a role in EMS patients with BCR-FGFR1 as well.  

 

Inhibition of FGFR fusion proteins 

Through the use of various drug treatments, a reduction of cell proliferation and FGFR 

fusion protein activity has been accomplished. Studies indicate that an active FGFR kinase 

domain drives cancer progression, thus the goal of many cancer treatments is to inhibit the 

FGFR portion of the fusion (18) (21). FGFR inhibitors have been used in vitro to reduce 

phosphorylation of FGFR and subsequent downstream signaling proteins. FGFR kinase 

inhibitors AZD4547, BGJ398, and PD173074 have inhibited growth of FGFR3-TACC3-

expressing Rat1A and glioma stem-like cells (GSC-1123). PD173074 and AZD4547 both 

resulted in tumor shrinkage during in vivo mouse xenograft studies as well (18). For fusions 

FGFR2-AHCYL1 and FGFR2-BHCC1, both BGJ398 and PD173074 were successful in 
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reducing in vitro fusion activity and cell growth (21). In bladder cancer, sensitivity of FGFR3-

TACC3 and FGFR3-BAIAP2L1 to the kinase inhibitors PD173074, dovitinib, SU5402, and 

BGJ398 has been reported (14). BGJ398 and dovitinib are currently involved in numerous 

clinical trials (clinicaltrials.gov).  

FGFR3 translocations were also targeted using the heat shock protein 90 (HSP90) 

inhibitor, ganetespib (STA-9090). By inhibiting HSP90, hundreds of proteins soon become 

degraded, which disrupts oncogenic signaling pathways. Ganetespib treatment of bladder 

cancer cell line RT112, which contains FGFR3-TACC3, resulted in a decrease of fusion 

protein expression and cell viability. Expression of the apoptosis facilitator protein BIM 

(BCL2-Like 11, or BLC2L11) was induced, indicative of apoptotic pathway activation. 

Combination of ganetespib with BGJ398 proved to be the most effective in causing cell death. 

However, ganetespib had differential effects on protein expression and cell viability in RT4 

and SW780 cell lines, which contain FGFR3-TACC3 and FGFR3-BAI1AP2L1, respectively. 

While HSP90 inhibitors 17-AAG and 17-DMAG reduced cell viability, resistance to 

ganetespib was exhibited. This discrepancy may be due to differences in drug movement or 

metabolism (43). Other HSP90 inhibitory compounds were effective in killing cells 

expressing BCR-ABL in vitro (34). These results collectively indicate the potential of HSP90 

inhibitors against fusion positive cases.  

In cholangiocarcinoma, pazopanib (GW786034B) followed by ponatinib (AP24534) 

treatment, both RTK inhibitors, induced anti-tumor activity in a patient with FGFR2-TACC3. 

Ponatinib treatment also led to anti-tumor activity in a patient exhibiting FGFR2-MGEA5 

fusion. Ponatinib has been FDA approved for treatment of the drug resistant T315I mutation 

in BCR-ABL fusion protein in CML (23).  
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In EMS, the small number of patients who have achieved long term remission have 

received hematopoietic stem cell transplantation. Many therapies used for acute lymphoblastic 

leukemia, acute myeloid leukemia, and myeloproliferative neoplasms have proven 

unsuccessful or display only short term remission against EMS. FGFR1 kinase inhibitor 

SU5402 has shown promise, demonstrating inhibitory effects in cells expressing BCR-FGFR1 

or ZNF198-FGFR1. Interestingly, PI3K, farnesyltransferase, and p38 inhibitors were also 

successful in reducing growth of these cells, whereas MEK inhibitor PD98059 was not (130). 

This is distinct from the MEK inhibitor U0126, which was shown to inhibit growth of cells 

expressing FGFR3-TACC3 (17). While dovitinib has been successful in inhibiting the 

proliferation of Ba/F3 cells transfected with ZNF198-FGFR1 or BCR-FGFR1 and cell lines 

expressing FGFR1OP2-FGFR1, a push for effective FGFR1 inhibitors is needed for EMS 

cases (44). 

 

Translocations leading to FGFR overexpression  

Some translocations do not create a novel fusion protein; rather, these result in 

overexpression of FGFR. In the translocations of SLC45A3-FGFR2 in prostate cancer and 

IgH-MMSET-FGFR3 in Multiple Myeloma (MM), the partner gene promoter now controls 

FGFR transcription, which alters the expression levels of the receptor. SLC45A3-FGFR2 

translocation results in the endogenous promoter and exon 1 noncoding region of SLC45A3 

attached 5’ to the FGFR2 gene, which places FGFR2 transcription under the control of an 

androgen-regulated promoter. This leads to FGFR2 overexpression and oncogenicity (8). 

Multiple Myeloma (MM) is characterized by a growth of malignant cells in the bone 

marrow. In approximately 20% of MM cases, a t(4;14) (p16.3;q32) translocation places 
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MMSET and FGFR3 under the control of the IgH promoter, leading to overexpression of 

FGFR3 (45). The overexpressed FGFR3 often contains an additional mutation, resulting in 

functional changes such as resistance to tyrosine kinase inhibitors (V557M), constitutive 

dimerization (Y375C), or constitutive kinase activation (K652E) (95). However, one third of 

cases with this translocation lose FGFR3 expression while IgH is overexpressed. 

Additionally, although rare, translocations between FGFR3 and an immunoglobulin gene 

enhancer have been found in chronic lymphocytic leukemia (CLL), including t(4;14) 

(p16;q32) between FGFR3 and IgH, and t(4;22) (p16;q11.2) involving FGFR3 and IgL (46, 

47).  

MM cases with the t(4;14) translocation have shown partial responsiveness to the 

FGFR3 inhibitor PD173074 and RTK inhibitor sunitinib (SU-11248). During in vitro studies, 

both inhibitors halted cell growth and inhibited FGFR3 activity, inducing an apoptotic 

response. However, during in vivo studies, tumor growth in the translocation-positive model 

was not inhibited by sunitinib, even though sunitinib was active in the translocation-negative 

tumors. The difference between the in vitro and in vivo data may be due to a difference in 

tumor microenvironment (45). These studies also revealed that RTK inhibitors PD173074, 

sunitinib, and vandetanib (ZD6474) inhibited viability of Ba/F3 cells transformed with 

ZNF198-FGFR1. Sunitinib, which inhibits many RTKs, is approved for metastatic renal cell 

carcinoma treatment (45), and is being examined in clinical trials for relapsed multiple 

myeloma patients. Additionally, masitinib (AB1010, a TK inhibitor) has entered phase II 

clinical trials for MM patients with the t(4;14) translocation. [clinicaltrials.gov]  
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Genomic events that contribute to FGFR fusion proteins  

Although the occurrence of FGFR fusion proteins may be rare, there are similarities 

between fusions. Fusions with FGFR as the 5’ partner have only been found in solid tumors 

so far. In contrast, fusions with FGFR as the 3’ partner have consistently been found in EMS, 

which predisposes patients to either lymphoma, leukemia, or both. A few exceptions have 

been ERLIN2-FGFR1 found in breast cancer (8), BAG4-FGFR1 in lung squamous cell 

carcinoma (LUSC) (8), FOXO1-FGFR1 in rhabdomyosarcoma (48), TEL-FGFR3 in 

lymphoma (11), FN1-FGFR1 in phosphaturic mesenchymal tumor (49), and SQSTM1-

FGFR1 in leukemia (50) (Table 1). 

While the mechanism and cause of gene rearrangements is unknown, both 

intrachromosomal and interchromosomal rearrangements have been identified. 

Rearrangements in the form of tandem duplication, inversion, deletion, or translocation have 

all been identified as FGFR fusion formation events. Translocations occur when two double 

stranded breaks on different chromosomes rearrange and repair (12). Fusion genes joined by a 

translocation can result in the formation of a reciprocal gene (i.e. FGFR2-BICC1 and BICC1-

FGFR2 genes). This has been reported in some cases, such as BCR-FGFR1, CEP110-FGFR1, 

FGFR1OP-FGFR1, FGFR2-AHCYL1, FGFR2-BICC1, HERVK-FGFR1, LRRFIP1-FGFR1, 

RANBP2-FGFR1, SQSTM1-FGFR1, TIF1-FGFR1, and ZNF198-FGFR1 fusions (7, 21-23, 

35, 40, 50, 51). However, reciprocal translocations have not been shown to be translated into 

functional proteins. The majority of these studies do not report the presence of a reciprocal 

fusion gene, and this may be indicative of another genetic alteration, such as an insertion or 

complex rearrangement, which would preclude the formation of the reciprocal gene (7). 
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The formation of these chromosomal rearrangements may occur due to common 

chromosomal fragile sites (CFSs). An increasing number of studies have identified CFSs as 

areas commonly affected by deletions, amplifications, and rearrangements in cancer (52). 

CFSs have become linked to genomic instability, the driving force of cancer. Chromosomal 

breakpoints identified in cancer match to 67% of fragile sites induced in vitro (52). All 

individuals posses CFSs, and these regions have been identified as evolutionarily conserved. 

CFSs contain tandem repeat sequences, often flexible AT-rich repeats and the formation of 

non-B-DNA secondary structures. Additionally, the fragile nature of CFSs has been linked to 

a lack of replicating origins within the CFS region, which may lead to incomplete replication. 

CFS expression is also specific to tissue or cell type. An investigation should be made into the 

correlation between CFS and tumor-specific gene rearrangements, as seen with some FGFR 

fusion protein expression. Mutagens and carcinogens often target CFS regions. Regulation of 

CFS occurs by DNA damage response proteins, including the ataxia telangiectasia mutated 

(ATM) pathway. This pathway is downregulated in cholangiocarcinoma patients with FGFR2 

fusions (30). 

CFS FRA10F has been identified at 10q26, a region which contains the FGFR2 gene 

(23), though some indicate FGFR2 is proximal to FRA10F (52). FGFR2 is also surrounded by 

ribosomal protein pseudogenes (RPS15AP5 and RPL19P16), which contain repetitive bases, 

leading to genomic instability (23). Although not thoroughly investigated, these factors could 

be an indication of the high level of genomic rearrangements seen in the FGFR2 region. In 

this regard, it may be noteworthy that 10 of 107 cholangiocarcinoma patients simultaneously 

exhibited two different fusions, FGFR2-BICC1 and FGFR2-PPHLN1 (30). CFS regions have 

also been identified on the X chromosome, in regions flanking the ODF1 gene, which has 
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been identified in a FGFR2-ODF1 fusion in thyroid cancer (8, 52). As seen (Table 1), FGFR1, 

FGFR2, and FGFR3 rearrangements predominate while, for unknown reasons, FGFR4 

fusions are strikingly absent.  
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1.3 CONCLUDING REMARKS 

Aberrant FGFR signaling, either due to activating mutations or the presence of fusion 

proteins, supports cellular proliferation, tumorigenesis, and cancer progression. Although 

extensive research has shown that targeting FGFRs with small molecule inhibitors halts 

receptor activation, downstream signaling and results in tumor shrinkage, secondary 

mutations that contribute to drug resistance in tumors are challenges to successful clinical 

treatment. In addition, FGFRs fused to dimerizing partners brings a new level of complexity 

in terms of receptor activation and the specificity of small-molecule inhibitors. The 

development of FGFR therapeutics with personalized specificity will advance treatments of 

patients whose tumors harbor activated FGFRs via mutation or fusion protein.  
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CHAPTER 2 

 

Oncogenic Gene Fusion FGFR3-TACC3 Regulated by Tyrosine Phosphorylation 

 

 

 

 

 

ABSTRACT 

 The discovery of translocations and fusion proteins involving Fibroblast Growth 

Factor Receptors (FGFRs) are becoming increasingly common in human cancers. Their 

presence leads to aberrant signaling that contributes to cell proliferation and cancer growth. A 

fusion protein between FGFR3 and transforming acidic coiled-coil containing protein 3 

(TACC3) has become frequently identified in glioblastoma, lung cancer, bladder cancer, oral 

cancer, head and neck squamous cell carcinoma, gallbladder cancer, and cervical cancer. 

Through extensive analysis of the FGFR3-TACC3 fusion protein by titanium dioxide-based 

phosphopeptide enrichment (TiO2)-liquid chromatography (LC)-high mass accuracy tandem 

mass spectrometry (MS/MS), it was demonstrated that the fused coiled-coil TACC3 domain 

results in constitutive phosphorylation of key activating FGFR3 tyrosine residues. The 

presence of the TACC coiled-coil domain leads to increased and altered levels of FGFR3 

activation, fusion protein phosphorylation, MAPK pathway activation, nuclear localization, 

cellular transformation, and IL3-independent proliferation. Introduction of K508R FGFR3 

kinase-dead mutation abrogates these effects, except for nuclear localization which is due 
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solely to the TACC3 domain. These results demonstrate that FGFR3 kinase activity is 

essential for the oncogenic effects of the FGFR3-TACC3 fusion protein and could serve as a 

therapeutic target, but that phosphorylated tyrosine residues within the TACC3-derived 

portion are not critical for activity. 

 

 

2.1 INTRODUCTION 

A subset of the Receptor Tyrosine Kinase (RTK) family is the Fibroblast Growth 

Factor Receptor (FGFR) family, which contains four homologous receptors: FGFR1, FGFR2, 

FGFR3, and FGFR4. FGFR activation results in changes in cellular proliferation and 

migration, anti-apoptosis, angiogenesis, and wound healing. All FGFRs contain three 

immunoglobulin-like (Ig) domains, a transmembrane (TM) domain, and a split tyrosine kinase 

(TK) domain. Binding of Fibroblast Growth Factors (FGFs) and heparin sulfate proteoglycans 

(HSPGs) to the extracellular Ig domains collectively induces FGFR activation through 

dimerization of receptor monomers and trans-autophosphorylation of kinase domain 

activation loop tyrosine residues. Tyrosine phosphorylation of the kinase domain initiates 

activation of RAS-MAPK, PI3K-AKT, and JAK/STAT pathways (1). 

 Mutations in FGFRs have been linked to numerous human cancers and somatic 

disorders, many of which have been extensively studied. More recently, FGFR fusion proteins 

have also begun to emerge in multiple cases of human cancers (1). Since their initial 

discovery in the late 1990s, the detection of these fusion proteins has steadily increased at an 

alarming rate. The focus of this chapter is a fusion protein consisting of FGFR3 fused to 

transforming acidic coiled-coil containing protein 3 (TACC3) that has been identified in 
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glioblastoma, lung cancer, bladder cancer, oral cancer, head and neck squamous cell 

carcinoma, gallbladder cancer, and cervical cancer (1,2). The FGFR3-TACC3 fusion protein 

is a consequence of a 70 kb tandem duplication at 4p16.3 (3). This causes a reversal of the 

two genes, as TACC3 is normally upstream of FGFR3. TACC3 is a member of the TACC 

family, which consists of 3 known human proteins, TACC1, TACC2, and TACC3, all of 

which are involved in key roles of microtubule organization during mitosis. TACC3 is 

believed to be essential for the stabilization of kinetochore fibers and the mitotic spindle.  A 

particularly important domain of this family is the C-terminal coiled coil domain (named 

TACC domain), which is highly conserved in all family members. This domain is believed to 

play an important role in localization of the protein during mitosis (4).  

The frequent occurrence of this fusion protein across many cancer types leads to the 

question of how this protein is contributing to cancer progression. Is FGFR3 becoming 

constitutively activated due to the presence of the TACC domain? Is the presence of the 

coiled-coil domain able to stimulate activation loop phosphorylation in the FGFR3 kinase 

domain? Does the TACC3 domain play an important role in advancing cancer progression, or 

is its key role to activate the tyrosine kinase? While studies have investigated FGFR3 and 

TACC3 as separate entities, little has been defined about the FGFR3-TACC3 fusion protein. 

This chapter investigates various properties of this fusion protein and its contribution to 

cancer progression, including mass spectrometry analysis of phosphorylation of key tyrosine 

residues, downstream signaling, cell transformation, and localization. 
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2.2 RESULTS 

Constitutive phosphorylation of FGFR3-TACC3 fusion protein 

In the FGFR3-TACC3 fusion protein, tyrosine kinase domain dimerization and 

autophosphorylation may be elevated by the presence of the TACC3 coiled coil domain, 

which could be crucial to cancer progression. To investigate changes in phosphorylation and 

biological activity, various FGFR3-TACC3 DNA derivatives were constructed. All fusion 

constructs contain the breakpoint between exon 18 of FGFR3 to exon 11 of TACC3 as shown 

in Figure 3, chosen due to the high occurrence of this particular fusion breakpoint (3,5). This 

fusion is predicted to contain the extracellular, transmembrane, and intracellular kinase 

domains of FGFR3 fused 5’ to the coiled-coil domain of TACC3 (6). Constitutively activated 

FGFR3 clones were produced by the K650E mutation. This mutation is known to cause 

Thanatophoric Dysplasia type II (TDII), a lethal form of achondroplasia, and is a highly 

activating and pathogenic FGFR3 mutation (1). The kinase activity of FGFR3 was abrogated 

by K508 to R mutation, known as the “kinase-dead” (KD) mutant (Figure 3A). 

To examine the phosphorylation of each fusion construct compared to FGFR3 WT, 

FGFR3(K650E), and FGFR3(K508R), constructs were expressed in HEK293 cells, collected 

and immunoprecipitated with an N-terminal FGFR3 antibody (Figure 3B, top panel). An 

increase in tyrosine phosphorylation was seen in FGFR3-TACC3 compared to FGFR3 WT 

(lanes 2 and 6). No phosphorylation signal could be detected for the kinase-dead FGFR3 with 

or without the fused TACC3 (Figure 3B). These results show that tyrosine phosphorylation of 

the fusion protein was increased by the presence of dimerizing TACC3 coiled coil and can be 

amplified by the presence of the activating K650E mutation. Quantitation of phosphorylation 
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levels shows a 2-fold increase in tyrosine phsophorylation on the FGFR3-TACC3 fusion 

protein compared to FGFR3 WT (Figure 3C).  
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Figure 3. Increase in tyrosine phosphorylation by introduction of the TACC domain. (A) 

Schematic of FGFR3-TACC3 fusion protein. The N-terminal extracellular ligand-binding 

domain, transmembrane (TM), kinase, and kinase insert (KI) domains of FGFR3 are followed 

by a 3 amino acid linker (residues ASM), and fused to TACC3 starting at exon 11, which 

contains a coiled-coil domain. The location of K508 and K650 are shown. (B) Various 

mutation and fusions with FGFR3 were expressed in HEK293 cells, immunoprecipitated with 

FGFR3 antibody, and immunoblotted with phosphotyrosine antibody (top panel). Expression 

of the constructs were visualized in the lysates by immunoblotting with FGFR3 antisera 

(middle panel) and TACC3 antisera (bottom panel). (C) Quantification of tyrosine 

phosphorylation showing the standard error of the mean for 3 independent repeats, normalized 

to FGFR3(K650E). 
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LC-MS/MS analysis identifies elevated and novel phosphorylation sites  

The strong increase in tyrosine phosphorylation seen by Western blot led to the 

question of whether TACC3 leads to a constitutively phosphorylated FGFR3 kinase and if 

additional or novel phosphorylation sites exist on the fusion protein. In order to explore this 

possibility, titanium dioxide-based phosphopeptide enrichment (TiO2)-liquid chromatography 

(LC)-high mass accuracy tandem mass spectrometry (MS/MS) was used with samples from 

HEK293T cells expressing FGFR3 or FGFR3-TACC3 derivatives to identify significant 

phosphorylation sites. Immunoprecipitation with the FGFR3 N-terminal antibody and on-bead 

tryptic digestion revealed strong FGFR3 activation loop phosphorylation at residues Y647 and 

Y648 in both fusion proteins and non-fused FGFR3 and FGFR3(K650E) (Figure 4B), 

indicating the receptor was constitutively active in all samples. Mass spectrometry analysis 

performed on the FGFR3 (K508R) derivatives detected no phosphorylated tyrosine residues 

(data not shown). All tyrosine phosphorylation sites detected on the fusion protein are 

indicated in Figure 4C.  

By comparing non-fused FGFR3 to FGFR3-TACC3, the effect of the coiled-coil 

domain on receptor phosphorylation and activation can be seen (Figure 4A, 4B). Not only are 

phosphorylation levels more robust, but additional phosphorylation sites can be detected in 

the FGFR3 portion of the fusion, such as Y577, Y599, and Y607 (Figure 4B, 1st and 3rd 

panels), indicating that receptor phosphorylation is over-stimulated in a ligand independent 

manner due to the presence of the TACC domain. The presence of the activating mutation 

K650E in FGFR3-TACC3 shows that the presence of the TACC domain leads to higher 

phosphorylation intensity levels of the receptor (Figure 4A, 2nd and 4th panels).  
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Figure 4. Phosphorylated tyrosine residues in FGFR3, FGFR3(K650E), FGFR3-TACC3, and 

FGFR3(K650E)-TACC3 identified by mass spectrometry analysis. (A) The intensity of the 

phosphotyrosine residues detected are presented normalized to 2 phosphoserine residues 

(S424 and S444) which were found to be constitutively phosphorylated across all samples. 

Duplicate, independent samples were subjected to mass spectrometry analysis. (B) For each 

phosphotyrosine residue detected, the percentage of intensity within the total protein is 

presented. (C) Schematic of FGFR3-TACC3 with the location of all tyrosine phosphorylation 

sites identified by LC-MS/MS.  
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Representative phosphorylated spectra are shown in Figure 5. A commonly identified 

FGFR3 WT peptide containing double phosphorylation of Y647 and Y648 in the activation 

loop is shown in panel A. In FGFR3-TACC3 fusion protein constructs, this double 

phosphorylated peptide becomes less frequent, with detection of peptides containing single 

Y647 phosphorylation becoming more common (Figure 4, 5B, 7C). Also shown are spectra 

containing primary phosphorylation sites Y577, Y798, and Y867 in FGFR3-TACC3 and 

FGFR3(K650E)-TACC3 (Figure 5D, 5E, 5F).  
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Figure 5. Representative spectra of selected peptides. The relative intensity of select ions of 

major phosphorylation sites are shown. Due to space constraints, not all identified ions are 

labeled. Identification of samples are as follows: (A) FGFR3 WT (B) FGFR3-TACC3 (C) 

FGFR3(K650E)-TACC3 (D) FGFR3-TACC3 (E) FGFR3-TACC3 (F) FGFR3(K650E)-

TACC3. 
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There are four tyrosine residues in the TACC3 portion of the FGFR3-TACC3 fusion 

protein: Y798, Y853, Y867, and Y878, corresponding to residues Y684, Y739, Y753, and 

Y764 in TACC3 WT. In FGFR3-TACC3, it was previously unknown if these tyrosine 

residues were also phosphorylated, possibly by the fused kinase domain, and if they play a 

role in cancer development. Through MS analysis, phosphorylation sites Y798, Y853, and 

Y867 were identified in FGFR3-TACC3 (Figure 4C). Due to tryptic digest peptide size, Y853 

was only recovered by a peptide miscleavage and Y878 was unable to be recovered. 

Increasing receptor activation by K650E mutation led to an increase in intensity levels of 

TACC3 tyrosine phosphorylation (Figure 4A, 3rd and 4th panels).  

Of the phosphorylation sites detected in the TACC3 portion of the fusion protein, 

Y798 and Y853 have been previously identified as a phosphorylation sites in TACC3 WT. 

The function of these sites is unclear and these residues are not conserved in the TACC family 

(7,8). However, Y867 is a conserved tyrosine residue in the TACC family and our data has 

identified it as a novel phosphorylation site for the FGFR3(K650E)-TACC3 fusion protein.  

As mentioned above, mass spectroscopy of HEK293T cells expressing 

FGFR3(K508R)-TACC3 (kinase dead mutation) revealed no phosphorylated peptides within 

the FGFR3 or TACC3 domains. This indicates that receptor activation is required for tyrosine 

phosphorylation of the fusion proteins, and the TACC domain is most likely phosphorylated 

by the FGFR3 kinase domain, not another tyrosine kinase.  
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Cell transforming ability of FGFR3-TACC3 by focus assay  

To examine the transforming activity of FGFR3-TACC3 and subsequent mutants, 

focus-forming assays with NIH3T3 cells were performed. FGFR3-TACC3 and 

FGFR3(K650E)-TACC3 produced extremely high foci formation and cell transformation 

compared to FGFR3 WT or FGFR3(K650E) (Figure 6). Expression of PR/neu*, a focus assay 

positive control, displayed less transformation than FGFR3-TACC3, the latter of which also 

consistently produced much larger foci. PR/neu* is a Platelet-Derived Growth Factor 

Receptor, Beta (PDGFR-β) with a Neu receptor transmembrane domain with the activating 

V664E mutation (p185
neu*

) (9). Despite the previously demonstrated elevated activation of 

PR/neu*, its transforming ability was dwarfed by the foci formation seen by FGFR3(K650E)-

TACC3. As a result, samples were normalized to FGFR3(K650E)-TACC3 (Figure 6). 

Expression of FGFR3(K508R)-TACC3 (kinase-dead mutation) and TACC3 WT in NIH3T3 

cells did not produce significant foci formation, indicating that an active FGFR3 kinase 

domain is essential for cell transforming ability of FGFR3-TACC3.  

Within the coiled-coil domain in FGFR3-TACC3, there are four tyrosine residues. 

Three of these residues were found to be phosphorylated by MS analysis, as discussed above, 

and the fourth tyrosine, Y878, undetectable by trypic digest, is believed to be phosphorylated 

as well (10). In order to assess the importance of these FGFR3-TACC3 phosphorylation sites, 

all four TACC3 tyrosine residues were mutated to phenylalanine (Y798F, Y853F, Y867F, 

Y878F) with and without the activating FGFR3 K650E mutation by site-directed mutagenesis 

and analyzed for  focus forming ability. NIH3T3 cells expressing the fusion constructs with 

all four tyrosine mutations, FGFR3-TACC3 4xYF and FGFR3(K650E)-TACC3 4xYF, 



 

 

41 

displayed high foci formation when compared to FGFR3-TACC3 or FGFR3(K650E)-TACC3 

with no additional mutations (Figure 6).  

 

 
Figure 6. Transformation of NIH3T3 cells by FGFR3 and FGFR3-TACC3 derivatives. 

Representative plates from a focus assay are shown, with transfected constructs indicated. 

Number of foci were scored, normalized by transfection efficiency, and quantitated relative to 

FGFR3(K650E)-TACC3 +/- standard error of the mean. PR/neu* is a positive control. Assays 

were performed a minimum of three times per DNA construct. 
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To assess the effects of each individual phosphorylation site, single Y to F mutants 

were made in combination with activating mutation K650E. As shown in Figure 6, three of 

the mutations (Y853F, Y867F, Y878F) increased foci formation at an even higher rate than 

K650E mutation alone, indicating an inhibitory role on cell growth when phosphorylated in 

the FGFR3-TACC3 fusion. An exception may be FGFR3(K650E)-TACC3(Y798F), which 

displayed a slightly lower transformation ability than FGFR3(K650E)-TACC3, indicating this 

phosphorylation site may be important to cell proliferation.  

 

FGFR3-TACC3 promotes IL-3 independent cell growth 

The transforming potential of select fusion proteins was also examined in the murine 

myeloid cell line 32D which is dependent on Interluekin-3 (IL-3) for growth (11-13). FGFR3 

WT, FGFR3-TACC3, FGFR3(K650E), FGFR3(K650E)-TACC3, FGFR3-TACC3(4xYF) and 

PR/neu* were electroporated into the 32D cell line and selected as described in the Materials 

and Methods. As seen in Figure 7A, in the absence of IL-3 all the clones expressed were able 

to lead to IL-3 independent growth indicating their transforming potential. Interestingly, the 

FGFR3-TACC3(4xYF) clone had the highest proliferation even without the activating K650E 

mutation. This could support the suggestion of the TACC3 tyrosine residues as being 

inhibitory. In addition, even in the presence of IL-3 (Figure 7B) the expression some of the 

clones enhanced the proliferation of the 32D cells compared to nonexpressing cells. The 

viability assays performed on days 3 and 7 shown in Figure 7C support the cell population 

assay results. All transfected constructs display cell viability, whereas 32D control cells do 

not, indicating that FGFR3-TACC3 and other constructs promote cell proliferation. 
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Figure 7. IL-3 independent growth and MTT viability assay in 32D cells expressing FGFR3 

or FGFR3-TACC3 derivatives. PR/neu* is a positive control. (A) 32D cells selectively 

expressing FGFR3, FGFR3-TACC3, FGFR3(K650E), FGFR3(K650E)-TACC3, FGFR3-

TACC3(4xYF), or PR/neu* were cultered in the absence of IL-3. The total number of viable 

cells were determined by trypan blue exclusion. Experiments were performed in triplicate, 

standard deviation is shown. (B) Cell counts of cultures in (A) in the presence of IL-3. 

Experiments were performed in triplicate, standard deviation is shown. Inset of growth from 

(A) without IL-3 is shown for comparison. (C) Cell viability as determined by MTT assay by 

3 independent repeats on days 3 and 7. Relative absorbance was obtained by ratio of –IL-3 to 

+IL-3 absorbances read at 570 nm. Standard deviation is shown.  
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FGFR3-TACC3 displays nuclear localization 

The presence of TACC3, a nuclear localizing protein (4), led to the question of 

whether a delocalization of the over activated FGFR3 kinase to the nucleus was occurring. 

Indeed, fractionation of MCF7 cells expressing FGFR3 WT, FGFR3(K650E), 

FGFR3(K508R), and their fusion counterparts displayed a clear difference in localization 

(Figure 8A). All three fusions, FGFR3-TACC3, FGFR3(K650E)-TACC3, FGFR3(K508R)-

TACC3 (nuclear fraction, lanes 5, 6 & 7) displayed strong nuclear localization. The non-fused 

tyrosine kinase domains (lanes 2, 3 & 4) were present mainly in the cytoplasmic fraction. 

Perinuclear localization of FGFR3(K650E) has been demonstrated previously (14), but fusion 

of FGFR3(K650E) to TACC3 dramatically increased nuclear localization. These results 

indicate the presence of the TACC3 coiled coil domain is responsible for nuclear localization 

of the FGFR3 kinase, regardless of receptor activation. Immunoblotting for nuclear localizing 

mSin3A and cytoplasmic β-tubulin confirmed separation of nuclear and cytoplasmic 

fractions.  

 

Downstream signaling activation by FGFR3-TACC3 

 It has been shown previously that FGFR3 WT and FGFR3(K650E) activate the signal 

transducer and activator of transcription (STAT) pathway and mitogen activated protein 

kinase (MAPK) pathway, but it is not clear how this activation compares to our constructed 

FGFR3-TACC3 or FGFR3(K650E)-TACC3 fusions. HEK293 cells expressing these fusions 

and their non-fused counterparts were analyzed for STAT1 and STAT3 activation. Both 

FGFR3(K650E) and FGFR3(K650E)-TACC3 led to phosphorylation of STAT1 and STAT3, 

but a significant increase in phosphorylation was not seen for the fusion constructs (Figure 
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8B). However, MAPK phosphorylation was strongly elevated by FGFR3-TACC3 and 

FGFR3(K650E)-TACC3 (Figure 8C, lanes 6 & 7), compared to non-fused FGFR3 WT and 

FGFR3(K650E) (lanes 2 & 3), indicating that FGFR3-TACC3 induces MAPK pathway 

activation. The kinase-dead FGFR3(K508R)-TACC3 did not display this activation (lane 8), 

indicating that FGFR3 kinase activity in the fusion protein is essential to downstream 

signaling activation.  

 
Figure 8. Localization and signaling of FGFR3-TACC3 fusions. (A) Fractionation of MCF7 

cells expressing FGFR3 or FGFR3-TACC3 derivatives. Cells were separated into cytoplasmic 

(left) and nuclear (right) fractions. Immunoblotting with FGFR3 antibody shows nuclear 

localization of FGFR3-TACC3 fusions (top panels). Immunoblotting for mSin3A and β-

Tubulin confirm fractionation (2nd and 3rd panels). (B) Lysates of HEK293 cells expressing 

FGFR3 or FGFR3-TACC3 derivatives were immunoblotted for Phospho-STAT1 (Y701) 

(top), STAT1 (2nd panel),
 
Phospho-STAT3 (Y705) (3rd panel), STAT3 (4th panel), and 

FGFR3 (bottom). (C) HEK293 cell lysates expressing FGFR3 or FGFR3-TACC3 derivatives 

were immunoblotted for Phospho-MAPK (T202/Y204) (top), MAPK (2nd panel), and FGFR3 

(bottom).  
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2.3 DISCUSSION 

 We extensively analyzed the FGFR3-TACC3 fusion protein by tyrosine residue 

phosphorylation changes and the impacts on cancer progression. We demonstrate that 

introduction of a 3’ TACC3 coiled-coil domain results in constitutive activation and 

phosphorylation of key residues in FGFR3. Clearly, the TACC domain over-stimulates kinase 

activity, as shown by the additional phosphorylation sites detected by LC-MS/MS. Activation 

by this coiled coil domain has a more severe impact on cell transformation and downstream 

signaling than the activating K650E mutation alone, which causes the lethal syndrome 

Thanatophoric Dysplasia type II. By focus, proliferation, and viability assay, the high cell 

transformation, proliferation, and oncogenic potential of the fusion protein was demonstrated. 

The absence of biological activity shown by FGFR3(K508R)-TACC3 kinase dead mutant 

indicates that kinase activity is required for gain of function and cancer progression, but not 

required for nuclear localization of the fusion protein, as shown by cellular fractionation.  

 Examining the nonfused FGFR3 proteins, the analysis by LCMS/MS indicates key 

FGFR3 residues are being phosphorylated, primarily residues Y647 and Y648 as part of the 

YYKK activation loop motif essential to FGFR kinase activity (15). In the fusion protein 

FGFR3-TACC3, Y647 was the major site of phosphorylation within the activation loop, and 

phosphorylation of additional sites such as Y577, Y599, Y607, Y724, and Y798 was also 

observed. Introduction of the K650E mutation into the fusion protein FGFR3(K650E)-

TACC3 resulted in increased phosphorylation of all the sites seen in the FGFR3-(K650E) as 

well as the sites seen in the FGFR3-TACC3 sample, with the additional appearance of 

phosphorylation at Y867 in the TACC3 domain. Residue Y724 has been shown to be critical 
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for activation of downstream signaling pathways, such as MAPK, STAT, and PI3K, and cell 

transformation (16). 

 Although the function has not been thoroughly explored for all the phosphotyrosine 

sites detected by MS analysis (Figure 4C), all sites are highly conserved in the four FGFRs, 

with the exception of Y577 which is not conserved in FGFR4. Interestingly, it has been 

suggested that Y577 is a key residue for the activation of FGFR3(K650E). Upon 

phosphorylation at Y577 the active state confirmation of the receptor is stabilized, 

independent of activation loop phosphorylation (17). The strong peak intensity seen for Y577 

in FGFR3-TACC3 could indicate a change in the mechanism of activation in a ligand 

independent manner due to the TACC domain (Figure 6B). 

 The fusion breakpoint of exon 18 in FGFR3 excludes the binding site for PLCγ 

(Y760), thus PLCγ is no longer recruited by FGFR3-TACC3, as previously shown (5). 

Additionally, Y760 may contribute to maximal STAT activation (16). The removal of this site 

from FGFR3-TACC3 may be contributing to the absence of STAT pathway overactivation. 

However, significant increase of downstream signaling activation was seen in the MAPK 

pathway independent of FGF ligand stimulation, which correlates with previous findings and 

further indicates ligand-independent activation and cell growth (3,5,18).  

Overexpression of TACC3 WT has been shown to increase activation of MAPK 

signaling pathway and contribute to the epithelial-mesenchymal transition (EMT) (19). 

However, we found that overexpression of TACC3 alone does not lead to increased MAPK 

activity (HEK293) or cell transformation (NIH3T3). Our results indicate that the fusion of 

FGFR3 and TACC3 is required for gain of oncogenic function.  
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Also missing from the FGFR3-TACC3 fusion breakpoint is the Aurora-A 

phosphorylation sites on TACC3. Aurora-A has been shown to phosphorylate TACC3 WT at 

S558 which is required for the localization of a TACC3-chTOG-clathrin complex to mitotic 

spindle microtubules and spindle poles (6,20,21). Localization of TACC3 to kinetochore 

fibers in complex with chTOG and clathrin is believed to assist with stabilization and 

formation of the mitotic spindle (21). However, previous studies have found the FGFR3-

TACC3 fusion protein localized only to the mitotic spindle poles during mitosis, and 

relocated during late stage mitosis to the midbody. A mechanism for this change in 

recruitment and the role of FGFR3-TACC3 during interphase remains unclear (22).  

Although not analyzed in regards to the cell cycle, we show a strong indication of 

nuclear localization for the fusion protein. Additionally, localization of FGFR3-TACC3 to the 

nucleus is not dependent on kinase activity as shown by K508R mutation, indicating that this 

localization is solely due to the fused TACC domain. Since the Aurora A phosphorylation 

sites are no longer present in the fusion protein, there must be another nuclear recruitment 

mechanism occurring. This delocalized kinase could be interacting with novel proteins that 

lead to cancer progression. 

The detection of phosphorylated TACC3 residues (Y798, Y853 and Y867 

corresponding to Y684, Y739, and Y753 in native TACC3) could indicate the ability of a 

highly activated FGFR3 kinase to self-phosphorylate the TACC domain and potentially lead 

to increased downstream signaling. Phosphorylation of Y878 was unable to be recovered by 

MS, but is presumably phosphorylated as it is located in a conserved 9 amino acid tyrosine 

phosphorylation motif within the TACC family (10). Our results, in which mutation to 

phenylalanine of all four tyrosine residues within the TACC3 domain leads to increased focus 
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formation and IL3-independent cell proliferation, leads to the conclusion that phosphorylation 

at these sites, while it does occur, fails to contribute significantly to the oncogenic potential of 

the FGFR3-TACC3 fusion oncogene. 

Recently, it has been shown that chTOG (colonic and hepatic tumor overexpressed 

gene), a centrosomal localizing protein, recruits TACC3 to microtubule plus-ends during 

interphase. This localization is dependent on chTOG, not TACC3, and is independent of 

Aurora A phosphorylation (21). TACC3 residues 672-688 contain the binding site of ch-TOG 

and are present in the FGFR3-TACC3 fusion protein (at residues 786-802). Within this region 

is Y798, which we have found to be highly phosphorylated in the FGFR3-TACC3 and 

FGFR3(K650E)-TACC3 fusion proteins by LC-MS/MS. In the K650E background, when the 

phosphorylation site is removed by mutation Y798F, we did not observe a significant change 

in biologic activity, suggesting that the specific phosphorylation of Y798 occurs 

adventitiously and is extrinsic to the biological properties of the FGFR3-TACC3 fusion..  

Introduction of Tyr-to-Phe mutations at all of the retained TACC3-derived residues 

Y798, Y853, Y867, or Y878 resulted in changes in biologic activity that were statistically 

insignificant, again indicating that the phosphorylation we observed at these sites is 

biologically inconsequential. An inhibitory phosphorylation site has been shown to occur in 

FGFR3 WT at Y770 which, upon phosphorylation, inhibits cell transformation (16). Residue 

Y770 has been removed from the FGFR3-TACC3 fusion, but the significance of this change 

was not explored here. 

We have presented overwhelming evidence of the high oncogenicity of the FGFR3-

TACC3 fusion protein. The presence of the TACC coiled-coil domain leads to increased and 

altered levels of FGFR3 activation, fusion protein phosphorylation, downstream signaling, 
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and cellular transformation, proliferation, and viability. The existence of FGFR3-TACC3 

fusions in human cancers creates additional challenges and opportunities for identifying 

effective treatment strategies. Further study of novel pathways activated by the FGFR3-

TACC3 fusion protein, and a deeper understanding of the molecular details exploited by 

FGFR3-TACC3 to achieve its biologic potency, can be expected lead to novel therapeutic 

paradigms. 

 

 

2.4 MATERIALS AND METHODS 

DNA constructs 

 The TACC3 gene was purchased from Sino Biological Inc (pMD-TACC3) and was 

subcloned into pcDNA3. FGFR3, FGFR3(K650E), and FGFR3(K508R) were developed as 

previously described (23). To construct FGFR3-TACC3 fusion gene a unique ClaI site was 

introduced by PCR based site directed mutagenesis after residue 758 in FGFR3 and before 

residue 648 in TACC3. This unique site was used to subclone TACC3 3’ of FGFR3 in 

pcDNA3, creating a fusion breakpoint of FGFR3 exon 18 to TACC3 exon 11 with a 3 amino 

acid linker of residues ASM containing the ClaI site.  

Fragments containing K650E or K508R mutations were subcloned into the FGFR3-

TACC3 fusion gene. Single and multiple tyrosine mutations in the TACC3 region (Y798F, 

Y853F, Y867F, Y878F) were introduced by PCR based site directed mutagenesis. DNA 

constructs were then subcloned into pLXSN vector (24) for focus, proliferation, and MTT 

assays. All clones were confirmed by DNA sequencing.  
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Cell culture  

HEK293, HEK293T, and NIH3T3 cells were maintained in DMEM plus 10% fetal 

bovine serum (FBS) and 1% penicillin/streptomycin in 10% CO2, 37°C. MCF7 cells were 

maintained at 5% CO2 in DMEM plus 10% FBS and 1% penicillin/streptomycin in 37°C. 

32D clone 3 (ATCC CRL-11346) cells were maintained in RPMI 1640 medium with 10% 

FBS, 1% penicillin/streptomycin, and 5 ng/mL mouse IL-3 in 5% CO2 37°C.  

 

Mass Spectrometry Sample Preparation 

HEK293T cells were plated one day prior to transfection at 3.0 x 10
6 

cells per 15-cm 

tissue culture plate. 10 plates per sample were transfected by calcium phosphate precipitation 

with 9μg of FGFR3 or FGFR3-TACC3 derivatives. After 18-20 hr, cells were treated with 10 

μM MG132 for 4-6 hr, washed once in 1xPBS + 1mM Na3VO4 before being lysed in RIPA. 

Clarified lysates were immunoprecipitated with FGFR3 antisera overnight at 4°C with 

rocking. Immune complexes were collected with Pierce protein A/G magnetic beads as per 

manufactures directions. Samples were taken to The Sanford Burnham Prebys Medical 

Discovery Institute mass spectrometry facility for proteasome on bead digestion and liquid 

chromatography (LC)-high mass accuracy tandem mass spectrometry (MS/MS) analysis.  

Following immunoprecipitation, proteins were digested directly on-beads using 

Trypsin/Lys-C mix. Briefly, the samples (IP’s and controls) were washed with 50 mM 

ammonium bicarbonate, and then resuspended with 8M urea, 50 mM ammonium bicarbonate, 

and cysteine disulfide bonds were reduced with 10 mM tris(2-carboxyethyl)phosphine 

(TCEP) at 30°C for 60 min followed by cysteine alkylation with 30 mM iodoacetamide (IAA) 

in the dark at room temperature for 30 min. Following alkylation, urea was diluted to 1 M 
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urea using 50 mM ammonium bicarbonate. The samples were finally subjected to overnight 

digestion with mass spec grade Trypsin/Lys-C mix (Promega, Madison, WI). Finally, peptides 

were collected into a new tube, and the magnetic beads were washed once with 50mM 

ammonium bicarbonate to increase peptide recovery. The digested samples were partially 

dried to approximately 50% of the total volume, and desalted using a C18 TopTip (PolyLC) 

according to the manufacturer’s recommendations. The desalted peptide sample was split into 

2 aliquots, ‘Total’ and ‘Phospho’ containing 10% and 90% of the sample, respectively. Both 

aliquots were then dried using a SpeedVac system.   

The ‘Phospho’ aliquot was resuspended in 80% acetonitrile, 5% trifluoroacetic acid in 

1M glycolic acid and incubated with TiO2 magnetic beads (GE) for 30 min in a Thermomix at 

room temperature and 900 rpm. The unbound peptides were removed and the magnetic beads 

were washed twice with 80% acetonitrile, 5% trifluoroacetic acid to remove non-

phosphorylated peptides. Finally, phosphopeptides were eluted with 5% ammonium 

hydroxide and dried down using a SpeedVac system. 

 

LC-MS/MS Analysis 

Both the ‘Total’ and ‘Phospho’ were analyzed by LC-MS/MS. Fifty percent of each 

sample was used for LC-MS/MS, a 0.180 x 20 mm C18 trap Symmetry column (Waters corp., 

Milford, MA) connected to an analytical C18 BEH130 PicoChip column 0.075 x 100 mm, 

1.7μm particles (NewObjective, MA) mounted on a nanoACQUITY Ultra Performance 

Liquid Chromatography system (Waters corp., Milford, MA), directly coupled to an Orbitrap 

Velos Pro mass spectrometer (Thermo Fisher Scientific). The peptides were separated with a 

90-min non-linear gradient of 2-35% solvent B at a flow rate of 400nL/min. The mass 
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spectrometer was operated in positive data-dependent acquisition mode. MS1 spectra were 

measured with a resolution of 60,000, an AGC target of 10
6
 and a mass range from 350 to 

1400 m/z. Up to 5 MS2 spectra per duty cycle were triggered, and each precursor was 

fragmented twice by collisium-induced dissociation (with multiple stage activation enabled) 

and electron transfer dissociation (ETD), and acquired in the ion trap with an AGC target of 

10
4
, an isolation window of 2.0 m/z and a normalized collision energy of 35. Dynamic 

exclusion was set to 5 seconds to allow multiple fragmentation of phosphopeptides. 

 

Proteomics data analysis 

All mass spectra from were analyzed with MaxQuant software version 1.5.2.8 (Cox et 

al). Briefly, MS/MS spectra were searched against the cRAP protein sequence database 

(http://www.thegpm.org/crap/) indexed with corresponding FGFR3 or FGFR3-TACC3 

derivative sequences. Precursor mass tolerance was set to 20ppm and 4.5ppm for the first 

search where initial mass recalibration was completed and for the main search, respectively. 

Product ions were searched with a mass tolerance 0.5 Da. The maximum precursor ion charge 

state used for searching was 7. Carbamidomethylation of cysteines was searched as a fixed 

modification, while phosphorylation of serines, threonines and tyrosines, and oxidation of 

methionines was searched as variable modifications. Enzyme was set to trypsin in specific 

mode and a maximum of two missed cleavages was allowed for searching. The target-decoy-

based false discovery rate (FDR) filter for spectrum and protein identification was set to 1%. 

Second peptide mode of MaxQuant software was also enabled.  
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Antibodies and Reagents 

Antibodies were obtained from the following sources: FGFR3 (B-9), mSin3A (K-20), 

β-tubulin (H-235), STAT1 (E-23), STAT3 (C-20) from Santa Cruz Biotechnology; 

phosphotyrosine (4G10) from Millipore; TACC3 C-terminal (SAB4500103) from Sigma; 

Phospho-STAT1 (Tyr701) (9171), Phospho-STAT3 (Tyr705) (D3A7), Phospho-p44/42 

MAPK (Erk1/2) (T202/Y204) (E10), p44/42 MAPK (Erk1/2) (9102) from Cell Signaling 

Technology; horseradish peroxidase (HRP) anti-mouse, HPR anti-rabbit from GE Healthcare. 

Enhanced chemiluminence (ECL and Prime-ECL) reagents were from GE Healthcare. 

MG132, aFGF, and recombinant mouse Interleukin-3 (IL-3) were obtained from R&D 

systems; Heparin was from Sigma; Geneticin (G418) was from Gibco. Lipofectamine 2000 

Reagent was from Invitrogen.  

 

Transfection, Immunoprecipitation, Immunoblot 

 HEK293 were plated at a density of 1 x 10
6
 cells/100-mm plate and transfected with 3 

μg plasmid DNA using calcium phosphate transfection in 3% CO2 as previously described 

(25). 20 to 24 hr after transfection, media was changed to DMEM with 0% FBS. Cells were 

starved for 20 hr before collecting and lysis. 

Transfected HEK293 cells were collected, washed once in PBS, and lysed in 1% NP40 

Lysis Buffer [20 mmol/L Tris-HCl (pH 7.5), 137 mmol/L NaCl, 1% Nonidet P-40, 5 mmol/L 

EDTA, 50 mmol/L NaF, 1 mmol/L sodium orthovanadate, 1 mmol/L phenylmethylsulfonyl 

fluoride (PMSF), and 10 μg/mL aprotinin] or radioimmunoprecipitation assay buffer [RIPA; 

50 mmol/L Tris-HCl (pH 8.0), 150 mmol/L NaCl, 1% TritionX-100, 0.5% sodium 

deoxycholate, 0.1% SDS, 50 mmol/L NaF, 1 mmol/L sodium orthovanadate, 1 mmol/L 
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PMSF, and 10 μg/mL aprotinin]. Bradford assay or Lowry assay was used to measure total 

protein concentration. Antibodies were added to lysates for overnight incubation at 4°C with 

rocking, followed by immunoprecipitation, as described previously (24). Samples were 

separated by 10% or 12.5% SDS-PAGE and transferred to Immobilon-P membranes 

(Millipore). Membranes were blocked in 3% milk/TBS/0.05% Tween 20 or 3% bovine serum 

albumin (BSA)/TBS/0.05% Tween 20 (for anti-phosphotyrosine, anti–phospho-STAT1, and 

anti–phospho-STAT3 blots). Immunoblotting was performed as previously described (26).  

 

Focus Assay 

Focus assays were performed using NIH3T3 cells plated at a density of 2 x 10
5
 

cells/60-mm plates in DMEM with 10% FBS 24 hr before transfection. Cells were transfected 

by Lipofectamine 2000 Reagent per manufacturer directions with 10 μg plasmid DNA. 

Between 22 and 24 hr after transfection cells were re-fed with DMEM 10% FBS. Cells were 

split 1:12 onto 100-mm plates between 22 and 24 hr later. Foci were scored at 12-14 days, 

fixed in methanol, stained with Geimsa stain, and photographed. Efficiency of transfection 

was determined by Geneticin (G418, 0.5 mg/ml)-resistant colonies plated at a dilution of 

1:240.  

 

Fractionation 

MCF7 cells were plated at a density of 1.5 x 10
6
 cells/100-mm plates 24 hr before 

transfection. Immediately prior to transfection, media was changed to DMEM 0% FBS with 

no antibiotic. Cells were transfected with 8 μg of plasmid DNA using Lipofectamine 2000 

Reagent, per manufacturer’s directions. 23 hr after transfection cells were collected in PBS 
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and 1 mM EDTA for fractionation as described previously (27). Separated fractions were 

analyzed for protein content by Bradford assay, separated by 10% SDS-PAGE, and 

transferred to Immobilon-P membrane for Western Blot analysis. 

 

IL-3 independent growth in 32D cells 

1x10
6
 exponentially growing 32D cells were electroporated (1500 V, 10 ms, 3 pulse) 

by the Neon Transfection System (Invitrogen) using 30 µg of FGFR3, FGFR3-TACC3 or 

PR/neu*  derivatives in pLXSN in triplicate. Twenty-four hours after transfection cells were 

selected with 1.5 mg/ml Geneticin (G418) sulfate for 10 days to generate stable cell lines. For 

IL-3 independent proliferation assays, 2x10
5
 cells were seeded in 12 well plates in the absence 

of IL-3 or 6 well plates in the presence of IL-3.  The media also contained 1 nM aFGF and 30 

μg/ml heparin (28). Cell numbers were determined in triplicate, with a hemocytometer and 

trypan blue exclusion on days 2, 4, 6 and 7. Media was added to cultures when cell numbers 

reached ~1x10
6 

cells/mL during the assays to maintain at viable concentrations. To measure 

cell viability MTT assays were performed. A stock solution of 5mg/ml in PBS of MTT 3-(4, 

5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (Sigma) was added at 1:10 to the 

cultures. After incubation at 37°C, 5% CO2 for approximately 4 hrs equal volume of 0.04 M 

HCl in isopropanol was added and mixed well and incubated again for at least 30 min (29). 

Cultures were transferred to microfuge tubes, spun for 30 sec at room temperature and 

supernatant absorbance was measured in a Beckman DU 350 UV/Vis spectrophotometer at 

570 nm. 5x10
4
 cells per well were plated in triplicate in 24-well plates in the presence or 

absence of IL-3 and 1nM aFGF and 30ug/ml heparin and assayed 3 days later. The cell 

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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viability at day 7 was measured using the cultures from the proliferation assay. In triplicate, 

0.5 ml of the cultures were transferred to 24 well plates and treated with the MTT reagent.  

 

2.5 ACKNOWLEDGMENTS 

 Chapter 2 was published as “Oncogenic Gene Fusion FGFR3-TACC3 Is Regulated by 

Tyrosine Phosphorylation”, in Molecular Cancer Research in 2016, with the authors of 

Nelson KN, Meyer AN, Siari A, Campos AR, Motamedchaboki K, Donoghue DJ.. The 

dissertation author was the primary investigator and author of this material. 

 

2.6 REFERENCES 

1. Gallo LH, Nelson KN, Meyer AN, Donoghue DJ. Functions of Fibroblast Growth 

Factor Receptors in cancer defined by novel translocations and mutations. Cytokine 

Growth Factor Rev 2015;26(4):425-49. 

 

2. Carneiro BA, Elvin JA, Kamath SD, Ali SM, Paintal AS, Restrepo A, et al. FGFR3-

TACC3: A novel gene fusion in cervical cancer. Gynecol Oncol Rep 2015;13:53-6. 

 

3. Parker BC, Annala MJ, Cogdell DE, Granberg KJ, Sun Y, Ji P, Li X, Gumin J, Zheng 

H, Hu L, Yli-Harja O, Haapasalo H, Visakorpi T, Liu X, Liu CG, Sawaya R, Fuller 

GN, Chen K, Lang FF, Nykter M, Zhang W. The tumorigenic FGFR3-TACC3 gene 

fusion escapes miR-99a regulation in glioblastoma. J Clin Invest 2013;123(2):855-65. 

 

4. Gergely F, Karlsson C, Still I, Cowell J, Kilmartin J, Raff JW. The TACC domain 

identifies a family of centrosomal proteins that can interact with microtubules. Proc 

Natl Acad Sci U S A 2000;97(26):14352-7. 

 

5. Williams SV, Hurst CD, Knowles MA. Oncogenic FGFR3 gene fusions in bladder 

cancer. Hum Mol Genet 2013;22(4):795-803. 

 

6. Thakur HC, Singh M, Nagel-Steger L, Kremer J, Prumbaum D, Fansa EK, Ezzahoini 

H, Nouri K, Gremer L, Abts A, Schmitt L, Raunser S, Ahmadian MR, Piekorz RP. 

The centrosomal adaptor TACC3 and the microtubule polymerase chTOG interact via 

defined C-terminal subdomains in an Aurora-A kinase-independent manner. J Biol 

Chem 2014;289(1):74-88. 

 



 

 

58 

 

7. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham 

V, Sullivan M. PhosphoSitePlus: a comprehensive resource for investigating the 

structure and function of experimentally determined post-translational modifications 

in man and mouse. Nucleic Acids Res 2012;40(Database issue):D261-70. 

 

8. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox 

J, Jensen TS, Nigg EA, Brunak S, Mann M. Quantitative phosphoproteomics reveals 

widespread full phosphorylation site occupancy during mitosis. Science signaling 

2010;3(104):ra3. 

 

9. Petti LM, Irusta PM, DiMaio D. Oncogenic activation of the PDGF beta receptor by 

the transmembrane domain of p185neu*. Oncogene 1998;16(7):843-51. 

 

10. McKeveney PJ, Hodges VM, Mullan RN, Maxwell P, Simpson D, Thompson A, 

Winter PC, Lappin TR, Maxwell AP. Characterization and localization of expression 

of an erythropoietin-induced gene, ERIC-1/TACC3, identified in erythroid precursor 

cells. Br J Haematol 2001;112(4):1016-24. 

 

11. Roll JD, Reuther GW. ALK-activating homologous mutations in LTK induce cellular 

transformation. PLoS One 2012;7(2):e31733. 

 

12. Kawai H, Matsushita H, Suzuki R, Sheng Y, Lu J, Matsuzawa H, Yahata T, Tsuma-

Kaneko M, Tsukamoto H, Kawada H, Ogawa Y, Ando K. Functional analysis of the 

SEPT9-ABL1 chimeric fusion gene derived from T-prolymphocytic leukemia. Leuk 

Res 2014;38(12):1451-9. 

 

13. Tao W, Leng X, Chakraborty SN, Ma H, Arlinghaus RB. c-Abl activates janus kinase 

2 in normal hematopoietic cells. J Biol Chem 2014;289(31):21463-72. 

 

14. Ronchetti D, Greco A, Compasso S, Colombo G, Dell'Era P, Otsuki T, Lombardi L, 

Neri A. Deregulated FGFR3 mutants in multiple myeloma cell lines with t(4;14): 

comparative analysis of Y373C, K650E and the novel G384D mutations. Oncogene 

2001;20(27):3553-62. 

 

15. Webster MK, D'Avis PY, Robertson SC, Donoghue DJ. Profound ligand-independent 

kinase activation of fibroblast growth factor receptor 3 by the activation loop mutation 

responsible for a lethal skeletal dysplasia, thanatophoric dysplasia type II. Mol Cell 

Biol 1996;16(8):4081-7. 

 

16. Hart KC, Robertson SC, Donoghue DJ. Identification of tyrosine residues in 

constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, 

Stat activation, and phosphatidylinositol 3-kinase activation. Mol Biol Cell 

2001;12(4):931-42. 

 



 

 

59 

17. Huang Z, Chen H, Blais S, Neubert TA, Li X, Mohammadi M. Structural mimicry of 

a-loop tyrosine phosphorylation by a pathogenic FGF receptor 3 mutation. Structure 

2013;21(10):1889-96. 

 

18. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, Lonigro RJ, Vats 

P, Wang R, Lin SF, Cheng AJ, Kunju LP, Siddiqui J, Tomlins SA, Wyngaard P, Sadis 

S, Roychowdhury S, Hussain MH, Feng FY, Zalupski MM, Talpaz M, Pienta KJ, 

Rhodes DR, Robinson DR, Chinnaiyan AM. Identification of targetable FGFR gene 

fusions in diverse cancers. Cancer discovery 2013;3(6):636-47. 

 

19. Ha GH, Park JS, Breuer EK. TACC3 promotes epithelial-mesenchymal transition 

(EMT) through the activation of PI3K/Akt and ERK signaling pathways. Cancer Lett 

2013;332(1):63-73. 

 

20. Fu W, Tao W, Zheng P, Fu J, Bian M, Jiang Q, Clarke PR, Zhang C. Clathrin recruits 

phosphorylated TACC3 to spindle poles for bipolar spindle assembly and 

chromosome alignment. J Cell Sci 2010;123(Pt 21):3645-51. 

 

21. Gutierrez-Caballero C, Burgess SG, Bayliss R, Royle SJ. TACC3-ch-TOG track the 

growing tips of microtubules independently of clathrin and Aurora-A phosphorylation. 

Biol Open 2015;4(2):170-9. 

 

22. Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, Liu EM, Reichel J, 

Porrati P, Pellegatta S, Qiu K, Gao Z, Ceccarelli M, Riccardi R, Brat DJ, Guha A, 

Aldape K, Golfinos JG, Zagzag D, Mikkelsen T, Finocchiaro G, Lasorella A, Rabadan 

R, Iavarone A. Transforming fusions of FGFR and TACC genes in human 

glioblastoma. Science 2012;337(6099):1231-5. 

 

23. Webster MK, Donoghue DJ. Enhanced signaling and morphological transformation by 

a membrane-localized derivative of the fibroblast growth factor receptor 3 kinase 

domain. Mol Cell Biol 1997;17(10):5739-47. 

 

24. Bell CA, Tynan JA, Hart KC, Meyer AN, Robertson SC, Donoghue DJ. Rotational 

coupling of the transmembrane and kinase domains of the Neu receptor tyrosine 

kinase. Mol Biol Cell 2000;11(10):3589-99. 

 

25. Gallo LH, Meyer AN, Motamedchaboki K, Nelson KN, Haas M, Donoghue DJ. Novel 

Lys63-linked ubiquitination of IKKbeta induces STAT3 signaling. Cell Cycle 

2014;13(24):3964-76. 

 

26. Meyer AN, McAndrew CW, Donoghue DJ. Nordihydroguaiaretic acid inhibits an 

activated fibroblast growth factor receptor 3 mutant and blocks downstream signaling 

in multiple myeloma cells. Cancer Res 2008;68(18):7362-70. 

 



 

 

60 

27. Meyer AN, Drafahl KA, McAndrew CW, Gilda JE, Gallo LH, Haas M, Brill LM, 

Donoghue DJ. Tyrosine Phosphorylation Allows Integration of Multiple Signaling 

Inputs by IKKbeta. PLoS One 2013;8(12):e84497. 

 

28. Chen J, Williams IR, Lee BH, Duclos N, Huntly BJ, Donoghue DJ, Gilliland DG. 

Constitutively activated FGFR3 mutants signal through PLC{gamma}-dependent and 

-independent pathways for hematopoietic transformation. Blood, in press 2005. 

 

29. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to 

proliferation and cytotoxicity assays. J Immunol Methods 1983;65(1-2):55-63. 

 

  



 

 

61 

CHAPTER 3 

 

Oncogenic Driver FGFR3-TACC3 is dependent on membrane trafficking and ERK 

signaling 

 

 

 

 

 

ABSTRACT 

Chromosomal translocations have been identified as oncogenic drivers in many 

cancers, allowing them to serve as potential drug targets in clinical practice. The involvement 

of FGFR genes in such translocations is becoming increasingly common, with FGFR3-

TACC3 fusion protein becoming frequently identified in many cancer types. We demonstrate 

that the oncogenic effect of FGFR3-TACC3 is dependent on entrance to the secretory 

pathway or plasma membrane localization, leading to overactivation of canonical 

MAPK/ERK pathway. FGFR3-TACC3 leads to cell transformation which can be enhanced by 

the introduction of different breakpoints of TACC3 but not by association with canonical 

TACC3 interacting proteins, Aurora-A, clathrin, and ch-TOG. We have shown that kinase 

inhibitors for MEK (Trametinib) and FGFR (BGJ398) are effective in blocking cell 

transformation and MAPK pathway upregulation. The development of personalized 

medicines will be essential in treating patients who harbor oncogenic drivers such as FGFR3-

TACC3. 
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3.1 INTRODUCTION 

Oncogenic driver mutations have taken a front seat in the world of cancer research. 

These drivers are often chromosomal rearrangements resulting in fusion proteins. A recently 

identified fusion protein is FGFR3-TACC3 (R3T3), which has been discovered in 

glioblastoma, lung cancer, bladder cancer, oral cancer, head and neck squamous cell 

carcinoma, gallbladder cancer, and cervical cancer (1,2). This fusion protein is formed by a 

tandem duplication on chromosome 4 resulting in a fusion of the fibroblast growth factor 

receptor 3 (FGFR3) gene with transforming acidic coiled-coil containing protein 3 (TACC3) 

gene.  

The FGFR family exhibits homologous domains of three immunoglobulin-like (Ig) 

domains, a transmembrane (TM) domain, and a split tyrosine kinase (TK) domain. FGFRs are 

activated by binding of fibroblast growth factor (FGF) ligands and heparin sulfate 

proteoglycans (HSPG) to the extracellular Ig-like domains. This induces FGFR dimerization 

and activation by trans-autophosphorylation of tyrosine residues in the kinase domain 

activation loop. FGFR activation leads to upregulation of RAS-MAPK, PI3K-AKT, and 

JAK/STAT pathways. This upregulation results in cellular proliferation, migration, 

angiogenesis and anti-apoptosis. In cancer, oncogenic fusion proteins involving FGFRs are 

becoming increasingly prevalent, with over 40 different FGFR fusion proteins detected so far 

(1). In such fusion proteins, the FGFR becomes constitutively activated by the dimerizing 

domain of the partner protein which brings the FGFR monomers close enough together to 

induce activation. In FGFR3-TACC3, the coiled-coil domain of TACC3 allows for 

autophosphorylation and activation of FGFR3 without the need for ligand binding (3).  
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 TACC3 belongs to the TACC family, which provides stability of the mitotic spindle. 

Aurora-A phosphorylation of TACC3 results in a complex formation of TACC3, clathrin and 

ch-TOG. This complex localizes to the mitotic spindle microtubules and assists in their 

stability and cross-linking of microtubules to kinetochores. Formation of this complex is 

essential for mitotic spindle stability and proper cell division (4,5). Alteration of TACC3 

expression levels has been found in many cancer types and leads to chromosomal segregation 

errors (6,7). These mitotic defects can contribute to aneuploidy and cancer progression (8).  

It has been demonstrated that the involvement of TACC3 in the fusion protein R3T3 

leads to an increased rate of aneuploidy and severe mitotic defects. Localization of R3T3 to 

the centrosome and mitotic spindle leads to chromosomal segregation errors and a reduction 

of TACC3 presence at the mitotic spindle (9,10). R3T3 has also been found to co-localize 

with phospho-PIN4 to induce preoxisome biogenesis and protein synthesis (11). Although 

altered cellular localization and effects on mitotic defects have been well explored, it is 

unclear if these effects are the drivers of cancer progression. It has also been demonstrated 

that the fusion protein R3T3 leads to an upregulation of PI3K/AKT, STAT and MAPK 

pathways (1,12). We demonstrate that the oncogenic mechanism initiated by R3T3 is through 

the overactivation of canonical FGFR pathways by entrance of R3T3 to the secretory pathway 

or localization to the plasma membrane. 

 

3.2 RESULTS 

Exploring the contribution of TACC3 in FGFR3-TACC3 

 TACC3 has been shown to localize to spindle microtubules and centrosomes during 

mitosis and to the cytoplasm and nucleus during interphase (13,14). The presence of the C-
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terminal coiled-coil domain of TACC3 in the R3T3 fusion protein has been shown to be 

responsible for the localization of R3T3 to the nucleus and to mitotic spindle poles (3,9). 

R3T3 has been reported to increase the rate of aneuploidy and chromosomal separation errors, 

due to the presence of R3T3 at the mitotic spindle and the absence of TACC3 WT at spindle 

microtubules (9,10). These data suggest that a nuclear-localized R3T3 could significantly 

accelerate cancer progression. To further examine the function of R3T3 localization, we 

employed a bipartite Nuclear Localization Signal (NLS) from Xenopus nucleoplasmin fused 

in frame with the kinase and coiled-coil domains of R3T3 in order to direct a nuclear-

localized population of R3T3 (NLS-R3T3) (15) (Figure 9A, 9D). Additionally, mutation of 

select positively charged residues to Gln in the NLS abrogates the nuclear localizing, resulting 

in a cytoplasmic-localized population of R3T3 (Figure 9A, 9D). Using these populations, 

which are designed to mimic TACC3 wild-type (WT) behavior during interphase (14), we 

investigated the effects of each R3T3 population on oncogenicity. Surprisingly, neither the 

nuclear- nor cytoplasmic-targeted populations of R3T3 resulted in cellular transformation, as 

shown by NIH3T3 focus assay (Figure 9B, 9C). This indicates that the previously identified 

nuclear localization of an overactivated FGFR3 receptor due to R3T3 fusion formation is not 

the driving force of NIH3T3 cell transformation. During interphase, the R3T3 fusion appears 

in vesicle-like structures, which is expected for a transmembrane protein and consistent with 

previous reports (10) (Figure 9D). However, the addition of the TACC3 domain does alter 

cellular localization, as FGFR3 wild-type (WT) displays both cytoplasmic and plasma 

membrane (PM) localization (Figure 9D). While the presence of R3T3 may contribute to 

mitotic chromosomal segregation errors and aneuploidy (9,10), this may not be the initial 

oncogenic driver of focus formation. 
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Figure 9: Nuclear-localized FGFR3-TACC3 does not convey cell transformation. (A) 

Schematic of FGFR3-TACC3 and NLS-FGFR3-TACC3 fusion proteins. For the nuclear-

localized fusion construct, the extracellular and TM domains of FGFR3 are replaced with a 

bipartite Nuclear Localization Sequence (NLS) (NLS-FGFR3-TACC3). Mutation of 

underlined residues to Q results in cytoplasmic-localized FGFR3-TACC3 (NLS*-FGFR3-

TACC3). (B) Transformation of NIH3T3 cells by FGFR3 and FGFR3-TACC3 derivatives. 

Number of foci were scored, normalized by transfection efficiency, and quantitated relative to 

FGFR3-TACC3 +/- SEM. (C) Representative plates from a focus assay are shown, with 

transfected constructs indicated. (D) Representative confocal micrographs of NIH3T3 cells 

stably expressing the indicated constructs. Secondary antibodies were either donkey anti-goat 

AlexFluor488 or donkey anti-goat AlexaFluor594. Nucleus is visualized with Hoechst 33342. 
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Figure 9. Nuclear-localized FGFR3-TACC3 does not convey cell transformation, continued. 
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Membrane localization is essential for FGFR3-TACC3 oncogenic activity 

 Following our results with the NLS signal, we replaced the extracellular and 

transmembrane domains of FGFR3 in R3T3 with a  myristoylation sequence derived from the 

N-terminus of c-Src (Myr-R3T3) (16,17) (Figure 10A). The addition of this sequence results 

in myristoylation of R3T3; myristoylation is a post-translational modification that adds 

myristic acid, a 14-carbon saturated fatty acid, to an N-terminal Gly residue, which directs 

R3T3 to the inner surface of the plasma membrane, in order to mimic an integral membrane 

protein (Figure 10B). This membrane association represents a non-covalent type of interaction 

with the membrane but is distinctly different from the membrane insertion of a classic type 1 

integral membrane protein such as FGFR3. FGFR3 requires an N-terminal signal sequence to 

direct entry into the secretory pathway, eventually reaching the cell surface after post-

translation modifications such as di-sulfide bonding and glycosylation. A mutant Gly2Ala 

myristoylation signal results in cytoplasmic localization of R3T3 (18) (Figure 10A,B). 

NIH3T3 cell focus assay demonstrates that only the plasma membrane-localized R3T3 leads 

to focus formation, while the cytoplasmic localized fusion protein was negative in this assay 

(Figure 10C,D). Additionally, transfection of Myr-R3T3 into HEK293T cells leads to 

significant upregulation of the MAPK pathway, suggesting a key mechanism of cell 

transformation (Figure 10E). This increase in MAPK phosphorylation is comparable to Myr-

FGFR3-K650E, which is a constitutively active myristoylated FGFR3 produced by the 

mutation K650E. This mutation was originally discovered as the cause of Thanatophoric 

Dysplasia type II, a skeletal disorder (1). Localization to the inner membrane face can 

produce a comparable level of cell pathway activation and transformation to R3T3, suggesting 
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that the driving oncogenic force of R3T3 is connected to the localization of a highly active 

FGFR3 kinase to the membrane in order to overactivate canonical RTK pathways.  
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Figure 10. Plasma membrane-localized FGFR3-TACC3 conveys cell transformation. (A) 

Schematic of FGFR3-TACC3 and Myr-FGFR3-TACC3 fusion proteins. For the membrane-

localized fusion construct, the extracellular and TM domains of FGFR3 are replaced with a 

myristoylation sequence (Myr) derived from c-Src (Myr-FGFR3-TACC3). Mutation of 

underlined residue to A results in cytoplasmic-localized FGFR3-TACC3 (Myr*-FGFR3-

TACC3). (B) Representative confocal micrographs of NIH3T3 cells stably expressing the 

indicated constructs, using FGFR3 immunostaining directed against an intracellular kinase 

domain peptide of FGFR3. Secondary antibodies were either donkey anti-goat AlexFluor488 

or donkey anti-goat AlexaFluor594. Nucleus is visualized with Hoechst 33342. (C) 

Transformation of NIH3T3 cells by FGFR3 and FGFR3-TACC3 derivatives. Number of foci 

were scored, normalized by transfection efficiency, and quantitated relative to FGFR3-

TACC3 +/- SEM. Assays were performed a minimum of three times per DNA construct. (D) 

Representative plates from a focus assay are shown, with transfected constructs indicated. (E) 

HEK293T cell lysates expressing FGFR3 or FGFR3-TACC3 derivatives were immunoblotted 

for phospho-MAPK (T202/Y204; top), MAPK (second panel), and FGFR3 (bottom). 
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Dual-targeted membrane associated fusion protein reinstates cell transformation 

 To assess if oncogenic activity can be restored to the biologically inactive nuclear-

localized R3T3, the myristoylation sequence was fused in frame 5’ of the NLS-FGFR3-

TACC3 gene, creating the fusion construct Myr-NLS-FGFR3-TACC3 (Figure 11A). Our goal 

was to determine if it is possible to override the function of the NLS using a myristoylation 

signal to reinstate plasma membrane association and cell transformation. Immunofluorescence 

analysis determined that in this dual-targeted construct, the myristoylation signal is able to 

supersede the NLS signal, localizing R3T3 to the plasma membrane (Figure 11B). 

Consequently, shifting the biologically inactive NLS construct to the membrane restores 

biological activity and cell transformation as indicated by focus assay (Figure 11C). Also 

restored is the overactivation of MAPK pathway signaling by expression of Myr-NLS-

FGFR3-TACC3 in HEK293T cells, furthering the connection between this pathway and cell 

transformation (Figure 11D). These results indicate the importance of FGFR3-TACC3 plasma 

membrane localization and MAPK pathway overactivation to cell transformation.  
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Figure 11. Re-localization to the plasma membrane reinstates NLS-FGFR3-TACC3 

oncogenic activity. (A) Schematic of FGFR3-TACC3, NLS-FGFR3-TACC3 and Myr-NLS-

FGFR3-TACC3 fusion proteins. NLS-FGFR3-TACC3 is the same fusion construct identified 

in Fig. 1A. For the Myr-NLS derivative, the c-Src Myr sequence is fused in front of the NLS-

FGFR3-TACC3 (Myr-NLS-FGFR3-TACC3). (B) Representative confocal micrographs of 

NIH3T3 cells stably expressing the indicated constructs, using FGFR3 immunostaining 

directed against intracellular kinase domain peptide of FGFR3. Secondary antibodies were 

donkey anti-goat AlexFluor488 or donkey anti-goat AlexaFluor594. Nucleus is visualized 

with Hoechst 33342. (C) Transformation of NIH3T3 cells by the indicated constructs. 

Number of foci were scored, normalized by transfection efficiency, and quantitated relative to 

FGFR3-TACC3 +/- SEM. Assays were performed a minimum of three times per DNA 

construct. (D) HEK293T cell lysates expressing FGFR3 or FGFR3-TACC3 derivatives were 

immunoblotted for phospho-MAPK (T202/Y204; top), MAPK (second panel) and FGFR3 

(bottom). 
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Cell transformation is dependent on entrance to the secretory pathway 

 The appearance of R3T3 in vesicle-like structures (Figure 9D) could indicate secretory 

vesicles en route to the membrane and that the fusion protein is capable of being inserted in 

the membrane as an integral membrane protein. To explore this, we blocked entrance of R3T3 

to the secretory pathway by deletion of the FGFR3 signal sequence contained in the first 22 

amino acids of the receptor (named ∆SS-FGFR3-TACC3) (19). The extracellular domain, 

transmembrane domain and kinase domain of FGFR3 and the coiled-coil domain of TACC3 

remain intact (Figure 12A). The N-terminal signal peptide is homologous in the FGFR family 

and is responsible for targeting the FGFR for secretion.  

We assessed co-localization of R3T3 and ∆SS-FGFR3-TACC3with a secretory 

pathway marker for early endosomes, EEA1, by confocal microscopy. Co-localization of 

R3T3 with this marker indicates its participation in membrane trafficking (Figure 12B, white 

arrows). Contrastingly, ∆SS-FGFR3-TACC3 does not co-localize with early endosomal 

EEA1 marker, confirming that entrance to the secretory pathway is blocked (Figure 12B). 

Analysis between R3T3 and markers for lysosomes (LAMP1), recycling endosomes (Rab11), 

or clathrin did not display co-localization (data not shown). As seen in Figure 12C, the 

multiple banding pattern of R3T3 (labeled with black arrow, lane 3) indicates different levels 

of glycosylation while ∆SS-FGFR3-TACC3 does not display this. Treatment of 

immunoprecipitated R3T3 with PNGase F to remove N-linked oligosaccharides results in a 

deglycosylated form of R3T3 with an electrophoretic mobility pattern identical to ∆SS-

FGFR3-TACC3 (Figure 12C, lanes 5 and 6). This confirms that ∆SS-FGFR3-TACC3 does 

not exist as a glycosylated protein and is therefore not undergoing post-translation 

modifications of the secretory pathway.  
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As determined by focus assay and immunoblot, blocking entrance to the secretory 

pathway also blocks focus formation, cell transformation, and MAPK pathway activation by 

R3T3. This demonstrates the need for R3T3 to enter the secretory pathway and undergo post-

translational processing, presumably reaching the plasma membrane in order to show 

oncogenic effects (Figure 12D, 12E). Some detectable MAPK pathway activation by ∆SS-

FGFR3-TACC3 indicates the FGFR kinase domain is able to activate this pathway in 

HEK293T cells, but not enough to initiate to cell transformation in NIH3T3 cells (Figure 

12E). Black arrows again demonstrate R3T3 has a multiple banding pattern indicating 

different levels of post-translational processing by the secretory pathway, where as ∆SS-

FGFR3-TACC3 does not display this (Figure 12E). 
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Figure 12. FGFR3-TACC3 presence in the secretory pathway produces oncogenic effects. (A) 

Schematic of FGFR3-TACC3 with detail of signal peptide. SS-FGFR3-TACC3 indicates 

FGFR3-TACC3 with signal peptide deleted. (B) Confocal analysis of NIH3T3 cells stably 

expressing the indicated constructs reveals that FGFR3-TACC3 (red) co-localizes (yellow) 

with EEA1 early endosome marker (green) suggesting involvement in the secretory pathway. 

(C) HEK293T cell lysates expressing indicated constructs were immunoprecipitated with 

FGFR3 antibody, divided, treated with PNGase F enzyme and immunoblotted with FGFR3 

antibody. (D) Transformation of NIH3T3 cells by the indicated constructs. Number of foci 

were scored, normalized by transfection efficiency and quantitated relative to FGFR3-TACC3 

+/- SEM. Assays were performed a minimum of three times per DNA construct. (E) 

HEK293T cell lysates expressing SS-FGFR3-TACC3 or FGFR3-TACC3 were 

immunoblotted for phospho-MAPK (T202/Y204; top), MAPK (second panel), and FGFR3 

(bottom). 
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Different TACC3 breakpoints produce altered and elevated cell transformation 

   FGFR3-TACC3 has been identified in human cancer with many different breakpoints 

between the two fused genes. Breakpoints have been found to occur within exon 16 to 19 of 

FGFR3 gene and within exon 4 to 11 of TACC3 (1). The most commonly identified R3T3 

fusion breakpoint is exon 18 of FGFR3 to exon 11 of TACC3, which this manuscript has 

focused on thus far. The second most common breakpoint of R3T3 is exon 18 of FGFR3 to 

exon 8 of TACC3. The introduction of the larger TACC3 gene introduces regulatory sites 

which are key to TACC3 wild-type (WT) function, including S558 Aurora-A phosphorylation 

site and LL566/567 clathrin binding domain, corresponding to S771 and LL779/780 in fusion 

protein R3T3 (Figure 13A). Upon Aurora-A phosphorylation, TACC3 WT will coordinate 

with ch-TOG (also named CKAP5) and clathrin to form a TACC3-ch-TOG-clathrin complex 

to assist with mitotic spindle binding (4,5). Immunofluorescence shows localization of 

R3T3ex8 to be very similar to R3T3ex11 during interphase (data not shown). However, by 

focus assay, R3T3ex8 displays 3-fold higher cell transformation level than R3T3ex11 (Figure 

13B). Interestingly, R3T3ex8 and R3T3ex11 display comparable levels of MAPK activation, 

indicating the increase in cell transformation is through an additional oncogenic mechanism 

(data not shown).  

To investigate factors contributing to the difference in focus formation between the 

two fusion breakpoints, abrogation of Aurora-A phosphorylation site or clathrin binding site 

by mutation to Ala was performed (Figure 13A). While abrogation of these two sites 

individually did lead to a significant decrease by Student’s T test (*p<0.05), mutation of both 

of these sites within the same fusion protein did not lead to a significant reduction in focus 

formation (Figure 13B). This would indicate that association with clathrin or phosphorylation 
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by Aurora-A via TACC3’s canonical pathway does not significantly contribute to cell 

transformation or the oncogenic mechanism of FGFR3-TACC3.  

TACC3 has been shown to interact with ch-TOG regardless of Aurora-A 

phosphorylation. This interaction allows the TACC3-ch-TOG complex to stabilize 

microtubule dynamics by binding to growing microtubule ends during interphase (20). The 

binding domain of ch-TOG has been mapped to a break in the coiled-coil domain of TACC3, 

residues 678 to 688 in TACC3 WT. The implications of the interaction between ch-TOG and 

R3T3 have not been investigated. Previous studies have shown that deletion of the first 4 

residues of this binding domain (RFEE) successfully disrupts the ch-TOG and TACC3 

interaction and prevents TACC3 from localizing to growing microtubule ends (4,20). Deletion 

of these 4 residues in R3T3ex11 (ex11-∆ch-TOG) yielded a 3-fold increase in focus formation 

relative to non-mutated R3T3ex11 (**p<0.01). Contrastingly, the same deletion in R3T3ex8 

(ex8-∆ch-TOG) did not yield a significant change in the amount of foci formed (Figure 13B). 

This could indicate that interaction of R3T3ex11 and ch-TOG inhibits the ability of R3T3 to 

convey cell transformation. 
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Figure13. TACC domain mutations and their contribution to cell transformation. (A) 

Schematic of FGFR3-TACC3ex11 and FGFR3-TACC3ex8 with ch-TOG binding domain 

indicated. Location of Aurora-A phosphorylation site (S771) and clathrin binding site 

(L779/L780) in FGFR3-TACC3ex8 are shown. (B) Transformation of NIH3T3 cells by the 

indicated constructs. Number of foci were scored, normalized by transfection efficiency, and 

quantitated relative to FGFR3-TACC3ex11 +/- SEM. Statistical analysis by Student’s t-test 

identifies significant changes in focus counts (*p<0.05, **p<0.01). Assays were performed a 

minimum of three times per DNA construct. 
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FGFR3 kinase activity and MAPK pathway upregulation are key to oncogenicity 

Our data indicates a distinct mechanism of action, in which cell transformation by 

R3T3 corresponds with MAPK pathway upregulation. A connection between these findings is 

further demonstrated by NIH3T3 cell focus assay, transfected with FGFR3-TACC3ex11, 

FGFR3-TACC3ex8 or FGFR3 K650E activating mutation and treated with increasing 

concentrations of either MEK1/2 inhibitor Trametinib (GSK1120212) or FGFR kinase 

inhibitor  BGJ398 (Figure 14B, 14C). Both inhibitors individually block focus formation 

leading to antitumor effects, demonstrating two potential therapeutic strategies. Interestingly, 

differences in sensitivity to BGJ398 can be seen between the two most common breakpoints 

of the fusion protein, R3T3ex11 and R3T3ex8 (Figure 14C). Complete inhibition of focus 

formation was achieved with 2.5nM of BGJ398 in cells transfected with R3T3ex11, while 

complete inhibition of R3T3ex8 required 5nM of BGJ398 indicating that distinctive fusion 

breakpoints respond to the inhibitor differently. Similar effects were seen for the two fusion 

breakpoints treated with Trametinib (Figure 14B). Combination of BGJ398 and Trametinib 

was effective in reducing cell transformation, but with less sensitivity than expected, 

suggesting that these inhibitors are not additive in this assay (Figure 14D). For FGFR3 

K650E, both inhibitors were successful in reducing focus formation, although with less 

sensitivity than seen with FGFR3-TACC3ex11 and FGFR3-TACC3ex8 (Figure 14B-D).  

To further demonstrate the importance of the MAPK pathway, R3T3ex11 was 

transfected into HEK293T cells and treated with increasing concentrations of either BGJ398 

or Trametinib. Both inhibitors effectively decrease phosphorylated MAPK, as determined by 

immunoblot (Figure 14A). Collectively, this data indicates a direct link between FGFR3 

activation by fusion to TACC3, upregulation of the MAPK pathway, and cell transformation.   
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Figure 14. Effect of MEK and FGFR inhibitors on cell transformation and MAPK pathway. 

(A) HEK293T cells expressing FGFR3-TACC3ex11 were treated with Trametinib or BGJ398 

at indicated concentrations and immunoblotted for phospho-MAPK (T202/Y204; top), MAPK 

(second panel), and FGFR3 (bottom). (B) Transformation of NIH3T3 cells expressing 

FGFR3-TACC3ex8, FGFR3-TACC3ex11 or FGFR3 K650E followed by treatment with 

indicated concentrations of MEK inhibitor (MEKi) Trametinib. (C) NIH3T3 cells expressing 

FGFR3-TACC3ex8, FGFR3-TACC3ex11 or FGFR3 K650E were treated with indicated 

concentrations of FGFR inhibitor (FGFRi) BGJ398. (D) NIH3T3 cells expressing indicated 

constructs were treated with a 1.25 nM Trametinib and varying concentrations of BGJ398. 

Number of foci were scored, normalized by transfection efficiency, and quantitated relative to 

FGFR3-TACC3ex8 +/- SEM. Assays were performed three times per DNA construct. 
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3.3 DISCUSSION 

We have clarified the cellular location of R3T3 required to initiate cell transformation 

and overactivation of the canonical MAPK pathway. We have demonstrated that R3T3 must 

enter the secretory pathway and reach the plasma membrane to lead to oncogenic cell growth 

(Figure 9-12). Post-translational processing and plasma membrane localization is also 

required for the overactivation of MAPK in HEK293T cells. MAPK overactivation in 

HEK293T cells is only seen for our R3T3 derivatives that induce cell transformation in 

NIH3T3 cells, indicating a link between this pathway and cell transformation (Figure 10, 11). 

The essentiality of the MAPK pathway activation to cell transformation is demonstrated by 

the use of Trametinib, a MEK inhibitor, which blocks cell transformation by R3T3 in NIH3T3 

cells. FGFR inhibitor BGJ398 is also able to block focus formation indicating kinase activity 

is required for cell transformation. Both inhibitors display unique levels of inhibition against 

different R3T3 fusion protein breakpoints, specifically R3T3ex11 and R3T3ex8, 

demonstrating the need for personalized treatment of cancers depending on the fusion 

breakpoint (Figure 14). Additionally, R3T3 contains TACC3 functional sites, the Aurora-A 

phosphorylation site, clathrin binding site and ch-TOG binding site. However, interaction 

with these proteins does not significantly contribute to the ability of R3T3 to induce cell 

transformation (Figure 13).  

The appearance of R3T3 in vesicle-like structures by IF in NIH3T3 cells is an 

indicator of secretory vesicles en route to the membrane and that the fusion protein is capable 

of being inserted in the membrane as a type 1 integral membrane protein (Figure 9, 12). Upon 

reaching the membrane, internalization of the fusion protein could occur quickly due to its 

high level of activation without the need for ligand binding. Additionally, nuclear and 
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cytoplasmic localization of R3T3 does not contribute to cell transformation (Figure 9, 10). 

Our results indicate that in order to induce cell transformation in NIH3T3 cells, R3T3 must 

undergo post-translational processing via the secretory pathway, presumably reaching the 

membrane in order for cell transformation and MAPK pathway overactivation to occur. 

Prevention of entrance to the secretory pathway also blocks post-translational modifications, 

cell transformation and reduces MAPK overactivation (Figure 12). Myristoylation of R3T3 

indicates the importance of plasma membrane association for inducing cell transformation and 

overactivation of canonical FGFR3 pathways. Previous studies by our lab and others have 

identified R3T3-induced overactivation of MAPK and PI3K/AKT pathways, which drives of 

cell proliferation leading to acceleration of the cell cycle and cancer progression (3,21). This 

indicates that R3T3 increases oncogenic growth by overactivation of cell growth pathways, 

not by an altered localization of R3T3 by the TACC3 domain to the nucleus, centrosome, or 

mitotic spindle, as previous studies have suggested (3,9,10). 

Our work with R3T3ex8 demonstrates the fusion protein’s oncogenic effects are not 

due to mitotic involvement via TACC3’s canonical pathway. Abrogation of Aurora-A 

phosphorylation, clathrin and ch-TOG binding sites in R3T3ex8 displayed no significant 

change in focus formation demonstrating that interaction with these proteins does not effect 

the biological activity of R3T3ex8. In R3T3ex11, deletion of ch-TOG binding site increases 

focus formation, further demonstrating that interaction with ch-TOG does not contribute to 

oncogenic activity (Figure 13). Interaction between R3T3 and ch-TOG may in fact have an 

inhibitory role in cell growth. Previous studies have found that it is a removal of TACC3 from 

the mitotic spindle or a presence of R3T3 at the centrosomes that leads to chromosomal 

segregation errors during mitosis (9,10). However, incorrect cell division due to R3T3 does 
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not appear to be the key oncogenic driver in cells expressing this fusion. Consistently, studies 

analyzing the recruitment of other tyrosine kinases to the centrosome by fusion protein 

formation found centrosomal targeting to be unessential to oncogenic progression (22). We 

have demonstrated that involvement with TACC3 canonical interacting proteins is not the 

driving force of oncogenicity.  

 Interestingly, we demonstrate a difference in oncogenic activity between two 

breakpoints of R3T3 (R3T3ex8, R3T3ex11) and how those breakpoints respond differently to 

the same inhibitor treatment. The use of kinase inhibitors stresses the importance of 

personalized treatment not only for knowing if a specific RTK inhibitor is useful, but also 

how that inhibitor affects various fusion breakpoints or cancer genotypes. We demonstrated 

inhibition of MEK and FGFR as two potential therapeutic strategies for cancers that harbor 

the R3T3 rearrangement. This data is also supported by inhibition of MEK and FGFR in 

cervical cancer cell lines to reduce cell proliferation (23). Assessment of several FGFR 

inhibitors against R3T3 or other FGFR alterations in clinical trials is currently underway 

[clinicaltrials.gov]. A clinical trial enrolling patients with similar genomic alterations but 

various cancer types may prove useful in determining the efficacy of an inhibitor against 

different genomic backgrounds (23). The fact that inhibitors display different levels of 

effectiveness against varied genomic backgrounds is supported not only by our work but also 

by those exploring inhibition of R3T3 in concert with PI3K inhibition (24). This demonstrates 

a need for personalized cancer treatment and precision medicine.  

 This manuscript characterizes the need for R3T3 to be in the secretory pathway or at 

the cell membrane to induce cell transformation. The activation of the MAPK pathway is 

essential for cell transformation but involvement in the cell cycle via TACC3’s canonical 
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pathways is not. We have shown that kinase inhibitors for MEK and FGFR are effective in 

blocking cell transformation and MAPK pathway upregulation. The need for precision 

medicine is evidenced by the different inhibitory effects these inhibitors have against various 

R3T3 breakpoints. The development of such personalized medicines will be essential in 

treating patients who harbor oncogenic drivers such as FGFR3-TACC3.  

 

3.4 MATERIALS AND METHODS 

DNA constructs 

FGFR3-TACC3 gene was constructed as previously described (3). For derivation of 

plasma membrane- and nuclear-localizing constructs, myristoylation signal from c-Src or 

nuclear localization signal from Xenopus nucleoplasmin was utilized as previously described 

(18). Briefly, each sequence was ligated in place of the extracellular and transmembrane 

domains of FGFR3 resulting in fusion to residues 400 to 806 of FGFR3 or residues 400 to 

953 in FGFR3-TACC3. For deletion of signal sequence of FGFR3, residue 2 to 22 were 

deleted following the site-directed mutagenesis protocol of Liu and Naismith. Deletion of ch-

TOG domain followed the same protocol and deleted TACC3 residues RFEE, 792-795 in 

FGFR3-TACC3 or 678-681 in TACC3 (25). Aurora-A and clathrin mutations were achieved 

by Quikchange site-directed mutagenesis.  

 

Cell culture 

HEK293T cells were cultured in 10% FBS DMEM plus 1% penicillin/streptomycin in 

10% CO2 at 37°C. NIH3T3 cells were maintained in 10% CS DMEM and 1% 

penicillin/streptomycin in 10% CO2 at 37°C. 



 

 

88 

Antibodies and reagents 

Antibodies were purchased from: FGFR3 (B-9), FGFR3 (P18) from Santa Cruz 

Biotechnology; FGFR3 (OAAB11172) from Aviva Systems Biology; phospho-p44/42 MAPK 

(ERK 1/2; T202/Y204; D13.14.4E), p44/42 MAPK (ERK 1/2, 9102) from Cell Signaling 

Technology; EEA1 (610456) from BD Biosciences; Alexa Fluor 488 donkey anti-goat 

(A11055), Alexa Fluor 594 donkey anti-goat (A11058), Alexa Fluor 488 donkey anti-mouse 

(A21202) from Invitrogen; horseradish peroxidase (HRP) anti-mouse, HRP anti-rabbit, and 

Enhanced Chemiluminence (ECL) reagents were from GE Healthcare. Geneticin (G418) was 

from Gibco, and Lipofectamine 2000 was from Invitrogen. PNGase F was purchased from 

NEB (P0704S) and Pierce Protein A/G Magnetic Beads (88802) were purchased from 

Thermo Fisher. Inhibitors BGJ398 (S2183) and Trametinib (S2673) were purchased from 

Selleckchem.  

 

Immunoprecipitation and immunoblot analysis 

24 h before transfection, HEK293T cells were plated at 1x10
6
 cells/100-mm plate. 

Calcium phosphate method was used to transfect 3 μg plasmid DNA in 3% CO2 as described 

previously (3). For immunoblot analysis, after cell starvation and collection, cells were lysed 

in RIPA buffer [50 mmol/l Tris-HCl (pH 8.0), 150 mmol/l NaCl, 1% TritionX-100, 0.5% 

sodium deoxycholate, 0.1% SDS, 50 mmol/l NaF, 1 mmol/l sodium orthovanadate, 1 mmol/l 

PMSF, and 10 mg/ml aprotinin]. Total protein concentration was measured using Lowry 

assay. For immunoprecipitation, cells were lysed in 1% NP40 Lysis Buffer [20 mmol/l Tris-

HCl (pH 7.5), 137 mmol/l NaCl, 1% Nonidet P-40, 5 mmol/l EDTA, 50 mmol/l NaF, 1 

mmol/l sodium orthovanadate, 1 mmol/l phenylmethylsulfonylfluoride (PMSF), and 10 
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mg/ml aprotinin]. Protein concentration was measured by Bradford assay. Lysates were 

incubated overnight with antibodies at 4°C with rocking. Complexes were collected with 

Pierce Protein A/G Magnetic Beads (88802) according to manufacturers protocol. For 

PNGase digest, PNGase F Protocol from manufacturer NEB was followed.  

10% or 12.5% SDS-PAGE  separated samples before transfer to Immobilon-P PVDF 

membranes (Millipore). Membranes were blocked in 3% bovine serum albumin 

(BSA)/TBS/0.05% Tween 20 or 3% milk/TBS/0.05% Tween 20. Immunoblotting was 

completed as previously described (26). 

 

Immunofluorescence 

Stable cell lines were created by transfecting NIH3T3 cells with Lipfectamine 2000 

with FGFR3-TACC3 derivatives in pLXSN vector with Geneticin as the selectable marker. 

Cells were grown in 500 μg/ml G418 supplemented media for 14 days. Cell lines were 

created for all constructs except FGFR3 WT and ∆SS-FGFR3-TACC3. Stable cell lines were 

plated on 60mm plates with 6 coverslips at 1 x 10
5
 cells per plate. Coverslips were PLL 

coated (Neuvitro, GG-12-1.5-PLL). 24 h after plating, cells were starved with 0% serum 

DMEM for additional 24 h. Coverslips were fixed with 4% paraformaldehyde/PBS for 10 

min. 

For FGFR3 WT and ∆SS-FGFR3-TACC3, NIH3T3 cells were plated at 2 x 10
5
. 24 h 

after plating, cells were transfect with Lipofectamine 2000. 18-20 h after transfection, cells 

were refed with 10% CS DMEM for 6 h until media was changed to 0% serum DMEM for 24 

h. Cells were fixed with 4% paraformaldehyde/PBS for 10 min.  
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For immunofluorescence staining, cells were permeabilized with 0.1% Triton X-

100/PBS for 20 min, blocked with 5% BSA/PBS before incubation with primary antibodies, 

goat anti-FGFR3 (1:500 or 1:1500) or EEA1 (1:25). After washes, cells were treated with 

secondary antibodies, donkey anti-goat Alexafluor488 (1:2000), donkey anti-goat 

Alexafluor594 (1:1500), or donkey anti-mouse Alexafluor 488 (1:250). Nucleus is visualized 

with Hoechst 33342 (1μg/ml, 15 min). Cells were examined on Leica SP5 

Confocal/MultiPhoton microscope (UC San Diego Neuroscience Core Facility). Images were 

processed with Leica LAS Lite and FIJI software. 

 

Focus assay 

NIH3T3 cells were plated at a density of 4x10
5
 cells/60-mm plates in 10% CS DMEM 

24 h before transfection. Lipofectamine 2000 Reagent was used to transfect cells with 10 μg 

plasmid DNA. Cells were re-fed with DMEM 10% CS 22-24 h after transfection. Cells were 

split 1:12 onto duplicate 100-mm plates 24 h later with 2.5% CS DMEM. Cells were refed 

every 3-4 days. After 14 days, foci were scored, fixed with methanol, and Geimsa stained. 

Transfection efficiency was determined by Geneticin (G418, 0.5 mg/ml)-resistant colonies 

plated at 1:240 dilution. Number of foci were scored, normalized by transfection efficiency, 

and quantitated relative to FGFR3-TACC3 +/- SEM. Assays were performed a minimum of 

three times per DNA construct. Statistical analysis by Student’s t-test identifies significant 

changes in focus counts and a two-tailed P-value of 0.05 was considered significant. 

For inhibitor treatment, 24 h after splitting cells 1:12 onto 100-mm plates, cells were 

refed with 2.5% CS DMEM containing indicated concentrations of BGJ398 or Trametinib. 

Cells were refed with 2.5% CS DMEM with the same inhibitor concentrations every 3-4 days. 
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After 14 days, foci were scored, fixed with methanol, and Geimsa stained. Transfection 

efficiency was determined by Geneticin (G418, 0.5 mg/ml)-resistant colonies plated at 1:240 

dilution. 
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CHAPTER 4 

 

Receptor Tyrosine Kinases: Translocation Partners in Hematopoietic Disorders 

 

 

 

 

ABSTRACT 

Receptor tyrosine kinases (RTKs) activate various signaling pathways and regulate 

cellular proliferation, survival, migration and angiogenesis. Malignant neoplasms often 

circumvent or subjugate these pathways by promoting RTK over-activation through mutation 

or chromosomal translocation. RTK translocations create a fusion protein containing a 

dimerizing partner fused to an RTK kinase domain, resulting in constitutive kinase domain 

activation, altered RTK cellular localization, upregulation of downstream signaling and novel 

pathway activation. While RTK translocations in hematological malignancies are relatively 

rare, clinical evidence suggests patients with these genetic abnormalities benefit from RTK-

targeted inhibitors. This chapter presents a timely review of an exciting field by examining 

RTK chromosomal translocations in hematological cancers, particularly ALK, FGFR, 

PDGFR, RET, CSF1R and NTRK3 fusions, and current therapeutic options. 

 

4.1 RECEPTOR TYROSINE KINASE TRANSLOCATIONS IN CANCER 

Malignant genetic events can often be sorted in two categories: gene inactivation and 

gene activation or deregulation. Chromosomal translocations have been detected in all cancer 
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types and account for approximately 20% of all malignant neoplasms (1). Moreover, there is a 

close correlation between the translocations and the tumor phenotypes in which they occur 

(1). 

Translocations usually arise by multiple erroneous double stranded breaks (DSB) in 

chromosomes which may occur for various reasons. The translocation also relies on spatial 

proximity of the DSB and the ability of the damaged region to rearrange in the nucleus, which 

can allow the chromosomes to incorrectly repair (2, 3). These translocations can result in a 

translatable fusion protein, some of which have oncogenic potential. While the percentage of 

chromosomal translocations in hematological disorders is generally lower than solid tumors 

(1.4% of all hematological cancers) their occurrence is nevertheless significant, especially in 

diseases such as chronic myeloid leukemia (CML), where 100% of cases harbor the 

t(9;22)(q34;q11) translocation, resulting in the gene fusion of breakpoint cluster region (BCR) 

and ABL1, a non-receptor tyrosine kinase (1). CML is a classic example of a translocation-

driven disease that is amenable to treatment with a tyrosine kinase inhibitor (TKI). Imatinib, 

also known as Gleevec, has been widely used to treat CML and diseases presented by some of 

the fusion proteins discussed in this review. CML treatment with imatinib has ushered in a 

new era of rational drug development to identify TKIs with therapeutic value. 

This chapter will focus on translocations involving receptor tyrosine kinases (RTKs) 

in hematological cancers (Figure 15). Of the 58 known human RTKs, the following have been 

identified as fusion partners resulting from chromosomal translocations in hematopoietic 

cancer cells: Anaplastic Lymphoma Kinase (ALK), Fibroblast Growth Factor Receptor 

(FGFR), Platelet-Derived Growth Factor Receptor (PDGFR), REarranged during Transfection 

(RET), Colony Stimulating Factor 1 Receptor (CSF1R) and Neurotrophic Tyrosine Kinase 
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Receptor Type 3 (NTRK3). As reviewed in this chapter, the most common hematopoietic 

cancer RTK translocations include the genes that encode ALK, FGFR and PDGFR. As 

discussed, these translocations results in cancers that present with different proliferative 

effects and treatment options, which highlights the importance of determining cancer-causing 

genetic alterations in patients. 

 

 

Figure 15. General Structural Schematic of RTK Fusion Proteins. Depicted are ALK, FGFR, 

and PDGFR fusion proteins, showing a generic dimerization domain for each. A star indicates 

an alternate breakpoint; a triangle indicates kinase insert domain; TM is transmembrane 

domain; WW is WW-like domain; P is phosphorylation site. Each of these RTK fusion 

proteins displays a dimerization domain fused to a C-terminal kinase domain provided by the 

respective RTK. The dimerization domains commonly associated with each RTK fusion 

protein are shown in the outlined box. 
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4.2 ALK TRANSLOCATIONS: FUSION PROTEINS INVOLVING THE ONLY RTK 

NAMED FOR A DISEASE 

ALK regulation normally occurs by ligand binding to its extracellular domain. ALK 

expression occurs in the central and peripheral nervous system, primarily during development, 

as shown in multiple species, including human (4). After birth, as shown in mouse studies, 

ALK mRNA and protein levels reach a minimum in all tissues and remain at low levels in 

adult animals (4). As such, Alk-knockout (KO) mice display only mild behavioral phenotypes 

and ALK inhibitors appear to be well tolerated in patients presenting with ALK-positive 

lymphoma (4). ALK was initially identified in a human t(2;5)(p23;q35) translocation, fusing 

Nucleophosmin (NPM1) to ALK, expressing the fusion protein NPM-ALK leading to 

overexpression and constitutive activation of NPM-ALK kinase activity (5). This fusion 

protein occurs in 50-60% of anaplastic large cell lymphomas (ALCL) (6). The two main 

forms of ALCL are primary cutaneous, which affects the skin, and systemic, which can be 

divided into ALK-positive and ALK-negative subgroups. ALK fusion-positive ALCL tends to 

occur in younger patients and has a greater disease-free and overall survival rates than 

patients with ALK fusion-negative ALCL (7). 

ALK fusion proteins are a recurring abnormality in ALCL, accounting for 2% of adult 

non-Hodgkin’s lymphomas (NHL) and 13% of pediatric NHL (8). Some of the N-terminal 

ALK fusion partners in ALCL include clathrin heavy chain gene (CLTC), nucleophosmin 

(NPM), tropomyosin 3 (TPM3), TPM4, and TNF receptor-associated factor 1 (TRAF1) (4, 5, 

7, 9). A complete list is shown in Table 2. All ALK fusion partners contain dimerization 

domains in the N-terminal fusion partner fused to the C-terminal ALK kinase domain (4) 

(Figure 15). While NPM-ALK is the most common translocation, 15-28% of ALK fusion-
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positive cases display an alternative ALK fusion protein (5). ALK fusion proteins have also 

been detected in diffuse large B cell lymphoma (DLBCL), a rare but aggressive B cell 

lymphoma. The most common ALK translocation partner in this disease is CLTC (4). In 

addition, the translocation partner must exhibit active promoter activity, as ALK is not 

typically expressed outside of the nervous system or after birth (4, 6). The initiation of 

transcription of the fusion protein thus relies on the promoter sequence of the 5’ fusion gene. 

The most common hematological ALK fusion, NPM-ALK, arises from the 

translocation t(2;5)(p23;q35) between ALK on human chromosome 2 and NPM1 on 

chromosome 5. The ALK tyrosine kinase domain becomes constitutively activated by 

formation of homodimers mediated by the self-associating domain of nucleophosmin (NPM). 

This dimerization is essential for oncogenic transformation by NPM-ALK, which is capable 

of transformation of various cell types, IL-3 independent proliferation of Ba/F3 lymphocytes 

by interaction with PLCγ, and activation of PI3K, AKT and STAT5. Additionally, a human 

lymphoblastic Jurkat T cell line stably expressing NPM-ALK displays PI3K and PLCγ-

independent inhibition of doxorubicin-induced apoptosis (5). 

Although the NPM1 domain is essential to oncogenic activity, this domain is also 

responsible for nuclear localization of the fusion protein, as its normal role is an RNA-binding 

nucleolar phosphoprotein. NPM-ALK is the only ALK fusion protein identified so far that 

displays nuclear localization (5, 10) (Figure 16). While NPM-ALK is detected in the 

cytoplasm and the nucleus, only the cytoplasmic fusion protein exhibits an active ALK kinase 

domain (10). The nuclear population is inactivated by dimerization with WT NPM1, which 

includes nuclear (NLS) and nucleolar localization signals (NuLS) not included in the NPM-

ALK fusion protein. Formation of NPM-ALK/NPM1 heterodimers does not allow the ALK 
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kinase to become activated by trans-phosphorylation but does result in nuclear localization. 

Cytoplasmic expression appears to be a requirement for cell transformation, as this is the 

location of many other ALK fusion proteins (11) (Figure 16). Altered localization of a 

strongly activated tyrosine kinase may result in interaction with and phosphorylation of novel 

proteins and pathways. 

 

 

Figure 16. Cellular localization of various RTK fusion proteins. The identified localization of 

the parent RTKs and the resulting fusion proteins are shown. The RTK fusion proteins are 

depicted in their corresponding localization site. These RTK fusions may localize in the 

plasma membrane, centrosome, nuclear membrane, nucleus or cytoplasm.  

 

Studies have emerged identifying spatial organization of the genome as a cause for 

recurring translocations in lymphomas (12). Specifically, in ALCL there are several 

dysregulated genes surrounding the chromosomal breakpoints for ALK and NPM1. In ALK 

fusion-negative cells, the breakpoint regions of the t(2;5) translocation are in close proximity 
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within the nucleus but not yet fused. This allows for the experimental generation of this 

translocation. The spatial proximity of NPM and ALK genes does not exist in non-ALCL 

cells, such as Jurkat and KE-37 (T-cell leukemia) cell lines (13). The t(2;5) translocation may 

not be the initial transformation event for the development of ALCL, a hypothesis supported 

by the fact that not all ALCL cases display this NPM-ALK fusion protein (13). Nevertheless, 

the presence of ALK fusion proteins in cancer cells leads to increased proliferation and cancer 

viability presenting a potential therapeutic target. 

 

4.3 FGFR TRANSLOCATIONS: RELATIVELY RARE BUT PROVIDING 

IMPORTANT INSIGHTS 

FGFRs are often aberrantly activated in cancer by overexpression, mutation, or 

translocation (14). In early hematopoietic cells, FGFRs are usually poorly expressed but as 

cells mature, FGFR expression generally increases. Human leukemia cells have been shown 

to express at least one type of receptor (FGFR1, FGFR3, or FGFR4) (15, 16). 

FGFR1 is involved in 8p11 myeloproliferative syndrome (EMS), also known as stem 

cell leukemia-lymphoma syndrome (SCLL). EMS involves a chromosomal translocation that 

produces a dimerizing protein partner fused N-terminally to the kinase domain of FGFR1, 

normally encoded at the 8p11 locus. EMS is a rare, aggressive myeloproliferative disorder 

that can quickly progress into acute myeloid leukemia (AML) (17). 

FGFR1 fusion partners in EMS are many and varied (Table 2), some of which include 

breakpoint cluster region (BCR), cut-like homeobox 1 (CUX1), FGFR1 oncogenic partner 

(FGFR1OP) and zinc finger 198 (ZNF198) (14). Interestingly, many of these partners also 

contain leucine zipper, leucine rich and coiled-coil domains. The contribution of a 
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dimerization domain by each fusion partner is necessary for the phosphorylation and 

activation of the FGFR1 kinase domain, resulting in a gain-of-function fusion protein. 

Additionally, given that biologically active translocations result from the in-frame fusion of 

two coding sequences that are normally distinct, this dictates that expression of the FGFR1 

kinase domain in these fusions is reliant on the promoter sequence of the partner N-terminal 

protein. 

In patients with EMS, the presence of an 8p11 translocation does not always mean an 

FGFR1 rearrangement. Studies have identified a small subset of 8p11 translocations as 

rearrangements of the histone lysine acetyltransferase KAT6A (KAT6A gene), also located at 

the same chromosomal region as FGFR1. KAT6A has several translocation partners occurring 

in 2% of AML cases (18). FISH analysis is recommended for patients with EMS and 8p11 

rearrangements in order to identify the correct translocation, allowing treatment with TKI 

therapeutics, such as ponatinib and dovitinib, for those expressing FGFR1 fusion proteins (19-

21). 

Though not as common, FGFR3 is also involved in translocations in hematopoietic 

disorders. Ets variant 6 (ETV6, previously known as TEL, translocation-ets-leukemia) is 

fused to FGFR3, and is found in T-cell lymphomas which progress to AML. Wild type (WT) 

ETV6 contains a helix-loop-helix (HLH) domain and serves as a transcription factor. The 

fusion of ETV6 to FGFR3 arises from the t(4; 12)(p16;p13) translocation and leads to the 

HLH domain of ETV6 fused to the transmembrane domain of FGFR3. The HLH domain is a 

dimerization domain, allowing constitutive activation of the FGFR3 kinase domain. The 

ETV6-FGFR3 fusion leads to IL-3 independent growth in Ba/F3 cells, activation of STAT3, 

STAT5, MAPK and PI3K, and exhibits cytoplasmic localization (22). 
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Multiple myeloma (MM) commonly contains a t(4;14) translocation between IgH 

promoter to the MMSET and FGFR3 genes, a translocation which does not result in a novel 

FGFR3 fusion protein but rather overexpression. MMSET overexpression is observed in all 

translocation-positive cases and FGFR3 overexpression in 70% of translocation-positive 

cases, which often exhibit activating point mutations in FGFR3 as well (14, 23). This 

overexpression leads to IL-6 independent growth in murine B9 cells, upregulated MAPK and 

PI3K signaling, and induced lymphoid malignancies in mice (15, 23). In chronic lymphocytic 

leukemia (CLL), rare translocations between FGFR3 and IgH (t(4;14)(p16;q32)) and IgL 

(t(4;22)(p16;q11.2) have been identified (14, 24). These types of translocations resulting in 

altered FGFR3 expression are medically important, yet they are distinct from the other 

translocations reviewed here which fuse two distinct reading frames to create a novel fusion 

protein.  

The most commonly identified FGFR1 fusion protein is ZNF198-FGFR1, found in 

48% of EMS cases (17). Endogenous ZNF198, also known as ZMYM2, contains a zinc finger 

related motif, a proline rich domain and a MYM domain, and is suggested to serve as a 

transcription factor (17, 25). The fusion of ZNF198 and FGFR1 arises from the 

t(8;13)(p11;q12) human translocation, in which ZMYM2, the gene encoding ZNF198 on 

chromosome 13, is fused 5' to FGFR1 on chromosome 8. This fusion occurs in both myeloid 

and lymphoid cells, suggesting a multipotent hematopoietic progenitor cell origin. The N-

terminal ZNF198 domain, particularly the proline rich domain, facilitates dimerization and 

activation of the FGFR1 kinase domain (17). The ZNF198-FGFR1 fusion is oncogenic, as 

shown by IL-3 independent Ba/F3 cell proliferation, increased tyrosine phosphorylation of 

STAT1 and STAT5, as well as activation of PLC-γ, PI3K/AKT and notch signaling pathways 
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(26-28). While WT ZNF198 displays nucleolar localization, the fusion protein exhibits 

cytoplasmic localization (25) (Figure 16). 

BCR-FGFR1 is another commonly identified fusion protein in EMS. BCR contains a 

coiled-coil domain, possesses serine/threonine kinase activity and is a GTPase activating 

protein for Rac1 (29). BCR is more commonly found fused to ABL to form the BCR-ABL 

oncogene, where ABL encodes a non-receptor tyrosine kinase. This BCR-ABL fusion results 

from the Philadelphia chromosome, where exon 1 of BCR is fused to exon 2 of ABL, found in 

95% of CML patients (30, 31). Cases positive for other fusion proteins, including BCR-

FGFR1 fusion, are considered atypical CML (aCML). Both CML and aCML share similar 

phenotypes, as both are myeloproliferative disorders of hematopoietic stem cells, 

characterized by leukocytosis and a high number of immature granulocytes (30). 

The fusion of BCR and FGFR1, resulting from a t(8;22) (p11;q11) translocation, 

occurs commonly in EMS but is also observed in AML and B-cell lymphomas. The BCR-

FGFR1 fusion differs from the BCR-ABL fusion, as BCR exon 4 is fused to FGFR exon 9 

(32). This fusion gives rise to a kinase-kinase fusion product, with the serine-threonine kinase 

domain of BCR fused to the tyrosine kinase domain of FGFR1. The kinase domain of FGFR1 

becomes constitutively activated as a result of this fusion, leading to activation of STAT3, 

STAT5 and MAPK3/1 pathways and IL-3-independent proliferation of Ba/F3 cells (33). The 

BCR-FGFR1 fusion protein localizes to the cytoplasm, but it is unknown what role this plays 

in its oncogenicity (34) (Figure 16). The discovery and further characterization of FGFR 

fusion proteins arising from translocations is vital to determine the extent of signaling and 

proliferation that occurs due to different fusion partners. 
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4.4 PDGFR TRANSLOCATIONS: FUSION PROTEINS AND THEIR CANCERS 

Similar to other hematopoietic translocations, PDGFR fusion proteins express the 

RTK kinase domain as the C-terminal fusion protein partner whose expression is now reliant 

on the promoter of the gene encoding the N-terminal fusion protein. Unlike ALK receptors, 

WT PDGFRs are expressed at constant low levels in hematopoietic human and mouse cells 

(35). However, as shown using murine hematopoietic chimeras reconstituted with pdgfrb(-/-) 

fetal liver cells, PDGFR expression is not required for normal hematopoiesis (36). 

Although translocations creating PDGFR fusion proteins is low, a number of different 

fusion protein partners have been reported. Translocations have been reported that result in 

PDGFRA fused to BCR, FIP1-like 1 (FIP1L1) and striatin (STRN). For fusions with 

PDGFRB, many fusion partners have been reported including myosin 18A (MYO18A), 

Rab5A, tropomyosin 3 (TPM3) and others (Table 2). Both PDGFRA and PDGFRB have been 

found fused to ETV6. In myelodysplastic/myeloproliferative neoplasms (MDS/MPNs), 1.8% 

of cases appear to contain translocations encoding PDGFRB fusions proteins (37). As with 

ALK and FGFR translocations, most of these fusion partners contain dimerization domains 

which are essential for constitutive activation of the PDGFR receptor -- an exception being 

FIP1L1-PDGFRα. 

For WT PDGFR, dimerization alone is not enough to constitute receptor activation. 

Activation of the kinase domain also relies on reorganization and homotypic interaction of the 

extracellular Ig-like domain D4 between PDGFR receptors (38). However, in PDGFR fusion 

proteins, the extracellular domains are no longer present, yet the kinase domain is 

constitutively active (Figure 15). This indicates that an altered mechanism of activation which 

relies on the fused N-terminal dimerization domain is taking place. 
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One potentially interesting rearrangement results in the kinase domain of BCR fused 

to the kinase domain of PDGFRα, similar to the BCR-FGFR1 and BCR-ABL fusion proteins. 

This t(17;13) translocation between BCR and PDGFRA was reported in atypical CML 

(aCML), CEL, B/myeloid mixed phenotype leukemia and T acute lymphoblastic leukemia (T-

ALL). Only a few cases of BCR-PDGFRα have been reported with varying breakpoints: exon 

7, 12, or 17 for BCR fused to exon 12 or 13 of PDGFR (39, 40). In order to determine the 

extent of activation, signaling and proliferative differences contributed by the different fusion 

partners, a molecular analysis of BCR-PDGFRα with BCR-FGFR1 or BCR-ABL, comparing 

their relative extents of oncogenicity or clinical disease, may prove interesting. 

The most common PDGFRB fusion partner is ETV6, defined by t(5;12)(q33;p13) and 

identified in chronic myelomonocytic leukemia (CMML). ETV6 has also been found fused to 

PDGFRA in one patient (41). The ETV6 domain contains a HLH dimerization domain which 

allows for ligand-independent activation of the PDGFR receptor. Increased cell proliferation 

and transformation demonstrated by ETV6-PDGFRβ is reliant on increased fusion protein 

stability by reduced ubiquitination and increased STAT5 activation in Ba/F3 cells and mouse 

models (42). Murine stem cell differentiation is induced by the ETV6-PDGFRβ fusion protein 

through MAPK and STAT5 pathway activation (43). 

The ETV6-PDGFRβ fusion protein, along with FIP1L1-PDGFRα and ZNF198-

FGFR1, displays increased stability by evading ubiquinitation and degradation (44). To 

prevent overactivation, RTKs are often controlled by proteosomal degradation, negative 

feedback signals and, upon ligand binding, the complex is internalized and degraded. 

Additionally, the PDGFR juxtamembrane domain acts as an inhibitory domain by interacting 

with and inhibiting the kinase domain when ligand is not present (42, 45). The C-terminal tail 
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of PDGFR also functions as an allosteric inhibitor of the kinase domain (46). Despite these 

processes, overactivation occurs through PDGFR translocations in myeloid malignancies (47). 

Most of the PDGFR fusion proteins, including ETV6-PDGFRβ, involve a breakpoint 

occurring just before the transmembrane (TM) domain of PDGFRβ, although some contain a 

breakpoint in between the transmembrane and kinase domains (Table 2, Figure 15). 

Experimental deletion of the transmembrane domain in the ETV6-PDGFRβ fusion does not 

hinder dimerization or kinase domain activation, but does result in a decrease of cell 

proliferation and STAT5 and MAPK activation in Ba/F3 cells, suggesting that cell 

transformation relies not only on activation, but also proper alignment of the kinase domain 

(42). The inhibitory effects that the intracellular-juxtamembrane domain and C-terminal tail 

have on the WT receptor are lost or subdued in this fusion protein. 

Another common PDGFRα fusion protein is FIP1L1-PDGFRα discovered in 

myeloproliferative diseases associated with hypereosinophilia, sometimes referred to as 

chronic eosinophilic leukemia (CEL). This fusion protein is estimated to occur in 10-20% of 

eosinophilia cases (37). This chromosomal rearrangement is caused by an 800-kb deletion in 

chromosome 4 (del(4)(q12g12)), a segment including the cysteine-rich hydrophobic domain 2 

(CHIC2) locus (48). This fusion protein poses an exception to previously discussed RTK 

fusion proteins, as FIP1L1 is dispensable for PDGFRα dimerization, as shown by Ba/F3 cell 

transformation assays and by murine bone marrow transplantation using transduced bone 

marrow cells with various deletion constructs of FIP1L1-PDGFRα, where all or most of 

FIP1L1 was deleted (49). However, the FIP1 motif is involved in protein-protein interactions 

and is essential for homodimer formation of a fusion protein between FIP1L1 and retinoic 

acid receptor α (FIP1L1-RARA) in leukemia. The FIP1L1 domain does play a role in human 
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progenitor cell proliferation and contains two phosphotyrosine sites that may provide protein 

binding sites (50). The IL-3 independent proliferation of Ba/F3 cells and the dispensability of 

the FIP1L1 domain was also recently confirmed by CRISPR/Cas genome editing in Ba/F3 

cells to create the fusion at endogenous levels (51). 

The breakpoint of FIP1L1-PDGFRα lies within the juxtamembrane domain of 

PDGFRα and disrupts an inhibitory WW-like domain, which may be the key to constitutive 

receptor activation and transforming potential. The WW-like domain contains two conserved 

tryptophan residues in the juxtamembrane domain. When truncated by fusion protein 

formation, absence of one of the tryptophan residues results in constitutive receptor activation 

(49). The disruption of this domain has been noted in BCR-PDGFRα and STRN-PDGFRα 

(41, 49). Fusion proteins with the transmembrane and juxtamembrane domains intact most 

likely require an alternative dimerization and activation mechanism provided by the N-

terminal fusion partner. Although PDGFR translocations are relatively rare compared to other 

hematological translocations, their existence potentially provides an effective therapeutic 

target for cancer patients. 

 

4.5 SIGNALING ALTERATIONS RESULTING FROM RTK TRANSLOCATIONS 

ALK and ALK Fusions 

Aberrant expression of highly active RTK kinases in tissues will result in novel 

pathway activation, and may present novel therapeutic possibilities. For instance, WT ALK 

results in the activation of multiple pathways including PLCγ, JAK/STAT, PI3K/AKT, 

JUNB, MAPK, and MYCN. ALK activation of ERK and PI3K can lead to MYCN 

expression, and high MYCN levels have been linked to neuroblastoma oncogenesis (52, 53). 
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The NPM-ALK fusion protein specifically activates JUNB, Y-box transcription factor 

(YBX1), BCL2A1, matrix metalloproteinase 9 (MMP9), CDKN2A and hypoxia-inducible 

factor 1α (HIF1A) as shown in various studies using either Ba/F3 cells or ALK-positive 

ALCL human cell lines (4). 

NPM-ALK downregulates STAT1 in ALCL cells. STAT1 is known to function as a 

tumor suppressor in some cancer cell types and phosphorylation of STAT1 at Y701 leads to 

its proteasomal degradation. Tumor suppression in ALCL cells can be restored by increasing 

STAT1 by transfection with a constitutively activated STAT1 expression plasmid (54). A 

correlation is seen between invasive cell ability and the PI3K/AKT pathway activation, 

implicated in cell migration. For the fusion proteins NPM-ALK, TPM3-ALK, TFG-ALK, 

CLTC-ALK and ATIC-ALK, their ability to stimulate PI3K and AKT phosphorylation as 

shown by immunoblotting correlates with their transendothelial migration ability (55). Among 

these fusion proteins, ATIC-ALK displays the highest phosphorylation of STAT3 in mouse 

NIH3T3 cells (55).  

NPM-ALK, TPM3-ALK, TFG-ALK, CLTC-ALK and ATIC-ALK fusion proteins 

result in cell transformation, proliferation, invasion, transendothelial cell migration and tumor 

development in nude mice (55, 56). In general, the oncogenic effects of these proteins 

increase as expression levels increase; an exception is provided by the TPM3-ALK fusion 

protein, for which increased expression results in lower proliferation rates in NIH3T3 cells 

but increased invasiveness (55). Confocal microscopy and fractionation of NIH3T3 cells 

showed TPM3-ALK fusion proteins localized to the cytoskeletal fraction; thus, this effect 

may be due to the role of TPM3 as an actin filament stabilizer, potentially altering cell shape 

and movement (56). Of note, TPM3-ALK, TFG-ALK, CLTC-ALK and ATIC-ALK all 
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display cytoplasmic localization, while NPM-ALK displays both nuclear and cytoplasmic 

localization (55, 56) (Figure 16). 

 

FGFR and FGFR Fusions 

WT FGFRs result in the activation of multiple signaling pathways including PLCγ, 

PI3K/AKT, MAPK and STAT, and are important in cell proliferation and differentiation as 

demonstrated in mouse models (57). However, the signaling differences between WT FGFRs 

and FGFR fusion proteins are not completely understood. Both the ZNF198-FGFR1 and 

BCR-FGFR1 fusion proteins induce aberrant signaling through the dimerization of the kinase 

domain of FGFR1. Activation of FGFR1 through the ZNF198-FGFR1 fusion leads to 

phosphorylation or activation of FGFR1 targets such as STATs, PI3K, PLC-γ, AKT and 

MAPK as shown by expression in Ba/F3 cells. In addition, ZNF198-FGFR1 is able to activate 

a pathway involving plasminogen activator inhibitor 2 gene (PAI-2/SERPINB2), which is not 

observed in native FGFR1 signaling. The PAI-2 gene induces resistance to TNFα, which 

could suggest an alternative pathway contributing to the oncogenic potential of the ZNF198-

FGFR1 fusion, as shown by assays in HEK293 and Ba/F3 cells (58). The BCR-FGFR1 fusion 

is dependent on adaptor protein Grb2. This translocation binds Grb2 through BCR Y177, and 

was shown to induce CML-like leukemia in mice. However, BCR-FGFR1 with a mutated 

Y177 lacks Grb2 binding and causes an EMS like disease (34). 

 

PDGFR and PDGFR Fusions 

Upon activation by ligand binding, PDGFRs bind various signal transduction 

molecules via phosphotyrosine interaction motifs such as SH2 or PTB, resulting in activation 
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of downstream signaling. Some key interacting proteins include PI3K, PLCγ, Src family 

tyrosine kinases, SHP2 tyrosine phosphatase and STAT proteins (47). 

Although few PDGFR fusion proteins have been analyzed for biological function, a 

study analyzing ETV6-PDGFRβ and FIP1L1-PDGFRα found that NFκB activation was 

required for human CD34(+) cell proliferation and differentiation with a bias towards 

eosinophil lineage  (59). These fusions play a large role in human hypereosinophilia 

development in the absence of growth factors IL-3 and IL-5, whose expression usually 

supports hematopoietic stem cell differentiation to form eosinophils. IL-5 expression is 

increased in cells expressing these PDGFR fusions and, in patients, an IL-5 gene 

polymorphism was linked to a more severe disease development as shown by eosinophil 

counts and increased tissue infiltration (59).  

Multiple tyrosine phosphorylation sites (Y579/581) in PDGFRβ of ETV6-PDGFRβ 

are responsible for myeloproliferative neoplasm (MPN) development in mice. Mutation to 

phenylalanine in Y579F/Y581F mutants results in development of T-cell lymphoma, but not 

MPN (60). For FIP1L1-PDGFRα, it was identified that tyrosine 720 of PDGFRα is critical for 

SHP2 recruitment, which results in MAPK activation and Ba/F3 hematopoietic cell 

transformation. Interestingly, SHP2 recruitment represents an altered mechanism compared to 

WT PDGFR, as cell proliferation and MAPK activation occurs regardless of SHP2 interaction 

with WT receptor, as shown by expression of the human FIP1L1-PDGFRα fusion protein in 

murine Ba/F3 cells (61). Indeed, SHP2 is involved in JAK/STAT, PI3K, MAPK and other 

signaling pathway regulation, and has been implicated in leukemogenesis caused by 

mutations in KIT and FLT3 receptors (61). 
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Both ETV6-PDGFRβ and FIP1L1-PDGFRα display cytosolic expression and result in 

the activation of STAT1, STAT3 and STAT5 (Figure 16, Figure 17). STAT5 plays an 

important role in myeloproliferation by PDGFR fusion proteins as shown in both human and 

murine cell lines (59, 61, 62). STAT5 activation was also demonstrated by KANK1-PDGFRβ 

fusion protein, despite an inactivity of JAK2 and inability of JAK inhibitor to affect cell 

growth. This fusion protein is found in MPN and arises because of a t(5;9) translocation that 

results in KN Motif and Ankyrin Repeat Domains (KANK1) fused to PDGFRB. KANK1 

contributes three coiled-coil domains and an oligomerization domain, both of which are 

required for cell proliferation and upregulation of signaling (63). Interestingly, this fusion 

protein was shown to exist as a homotrimer, of which either the coiled-coil or the 

oligomerization domain may be present to allow for this motif formation (63). KANK1-

PDGFRβ also activates PLCγ and MAPK pathways, and displays cytosolic expression as 

shown in human and murine cell lines (63) (Figure 16, Figure 17). 

STAT5 activation was also shown to be essential for Ba/F3 cell transformation by the 

fusion protein Huntingtin Interacting Protein (HIP1)-PDGFRβ (64). This fusion protein also 

co-localizes with Src Homology 2-containing Inositol 5-Phosphatase (SHIP1) and displays 

cytosolic localization as shown in human HEK293T cells (64) (Figure 16). As SHIP1 is only 

expressed in hematopoietic tissues and developing spermatogonia, SHIP1 could serve as a 

potential therapeutic target (65). 
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Figure 17. Major signaling pathways activated by common RTK fusion proteins. Activation 

of STAT signaling is a commonly seen occurrence. The arrows indicate activated pathways; 

the activation of these pathways lead to cell survival and proliferation. A star indicates an 

alternate breakpoint; a triangle indicates kinase insert domain; TM is transmembrane domain; 

WW is WW-like domain; P is phosphorylation site. 

 

4.6 THERAPEUTICS FOR HEMATOPOIETIC CANCERS WITH RTK 

TRANSLOCATIONS 

There are a number of drugs that have been characterized for their potential to inhibit 

the fusion proteins discussed in this review in Table 3. These function to inhibit or reduce the 

kinase activity of the RTK fusion partner leading to reduced proliferation, increased apoptosis 

and altered downstream signaling. 
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ALK Fusions 

Crizotinib, the first ALK inhibitor to be clinically tested, is a potent, ATP-competitive, 

small molecule inhibitor initially designed against the hepatocyte growth factor receptor (c-

Met) to inhibit phosphorylation. It inhibits ALK phosphorylation and signal transduction 

leading to apoptosis in lymphoma cell lines that express the NPM-ALK fusion protein  (4, 

66). This ALK inhibitor also shows an antitumor activity in ALCL Karpas299 mouse 

xenograft models expressing the NPM-ALK fusion by inhibiting c-Met and ALK downstream 

signaling, resulting in reduction of tumor growth (66). Crizotinib has been extensively used to 

treat solid tumors containing EML4-ALK and STRN-ALK fusions in thyroid cancer and 

EML4-ALK rearrangements in non-small cell lung cancer (NSCLC) (67-69). Crizotinib is 

currently in multiple clinical trials for treating patients with ALCL (Table 3). 

Unfortunately, resistance and relapse can occur with crizotinib treatment leading to 

secondary mutations in ALK, rendering the drug ineffective (70). For instance, after treating 

human cell lines expressing the NPM-ALK fusion with high doses of crizotinib, the mutations 

L1196Q and I1171N were identified in the ALK kinase domain and shown to confer 

resistance to crizotinib in NPM-ALK expressing Ba/F3 cells (71). The L1196Q is a 

gatekeeper mutation within the ATP binding pocket, in the hinge region between the N and 

C lobes. Point mutation of this region prevents or reduces the binding of the inhibitory 

molecules and is a common occurrence in inhibitor-resistant cancers (71). The I1171N 

mutation is part of the hydrophobic spine of the kinase domain critical for tyrosine kinase 

activity (71). In RANBP2-ALK the kinase domain mutation G1269A was found in patients 

with AML and NSCLS after crizotinib treatment (70), and again this occurs in the ATP 

binding pocket and acts by decreasing TKI affinity (70). 
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An alternative selective ALK inhibitor, ceritinib, has been approved for treatment of 

NSCLC with the NPM-ALK fusion and is in a phase II trial for relapsed/refractory ALK+ 

hematologic malignancies (Table 3) (72). Another alternative, brigatinib, also leads to 

resistance through point mutations in the ALK kinase domain in NPM-ALK-amplified ALCL 

cells (73). One study finds that removal of the kinase inhibitor actually leads to apoptosis of 

the brigatinib-resistant ALCL cells by hyperactivation of the MAPK pathway (10). This 

suggests that a periodic suspension of drug treatment might potentially be beneficial for 

cancer patients with ALK translocations/amplifications. Additionally, since NPM-ALK fusion 

proteins are only active in the cytoplasm, blocking nuclear export of the fusion with selective 

inhibitors of nuclear export (SINE), such as selinexor, are currently under investigation in 

clinical trials for hematological cancers (Table 3) (10). Interestingly, a non-toxic naturally-

occurring compound found in extracts from the plant silybum marianum (milk thistle) seeds, 

silibinin, which has known anti-tumor effects, is able to inhibit NPM-ALK activation leading 

to reduced proliferation and increased apoptosis in Karpas299 and SupM2 cell lines (74). 

 

FGFR Fusions 

The importance of inhibiting aberrant FGFR signaling in FGFR-dependent 

malignancies is a well-established therapeutic target; however, specific FGFR inhibitors have 

been elusive (75). The classic FGFR inhibitor, dovitinib is a multi-targeted RTK inhibitor 

which targets FGFR, PDGFR, VEGFR, FLT3 and c-KIT. When the fusion proteins ZNF198-

FGFR1 and BCR-FGFR1 are expressed in Ba/F3 cells, treatment with dovitinib results in the 

inhibition of STAT5, MAPK, IL-3 independence and phosphorylation of the fusion proteins 

(20). Proliferation of FGFR1OP2-FGFR1 cell lines is also inhibited by dovitinib (20). A 
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phase II trial for dovitinib was recently completed in 2015 for patients with solid or 

hematologic malignancies with mutations or translocations of FGFR and other RTKs (Table 

3). The FDA-approved FGFR inhibitor, ponatinib, is also a multi-RTK inhibitor that is 

currently in multiple trials for AML and CML (75). Ponatinib shows potential for EMS 

treatment in the murine Baf3 cell lines expressing the ZNF198-FGFR1 and BCR-FGFR1 

fusions, and in the human KG1A cell line expressing the FGFR1OP2-FGFR1 fusion, leading 

to reduced proliferation, survival and phosphorylation of the FGFR1 fusion proteins and 

downstream substrates and induction of apoptosis (76). In addition, cells from EMS patients 

show reduced colony growth when treated with ponatinib (21). The specific pan-FGFR 

inhibitor, infigratinib, shows potential for EMS treatment as it is able to reduce survival and 

proliferation of TPR-FGFR1 expressing murine 32Dcl3 cells (77). It is currently in clinical 

trials for patients with FGFR genetic alterations (Table 3). 

In order to overcome the resistance that can occur with kinase inhibitors, FGFR 

irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3), have recently been developed which target 

cysteines in the ATP binding pocket. They inhibit the proliferation of transformed Ba/F3 cells 

dependent upon the gatekeeper mutants of FGFR1 or FGFR2 which often lead to drug 

resistance (78). 

 

PDGFR Fusions 

Imatinib is a multikinase inhibitor selective for ABL, PDGFR and c-Kit and is the 

most common treatment for malignancies associated with activated PDGFR. 

Hematolymphiod neoplasms associated with PDGFRα and PDGFRβ fusions such as FIP1L1-

PDGFRα and ETV6-PDGFRβ respond well to treatment with imatinib, with secondary 
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resistance being uncommon. In contrast, patients with rare and aggressive neoplasms 

containing FGFR1 fusions tend not be responsive to imatinib treatment (37). BCR-PDGFRα 

fusions found in aCML become undetectable when treated with imatinib. Diagnosing the 

difference between CML and aCML, both of which display highly similar phenotypes, is 

important to prevent treatment with an inadequate TKI (39). 

When resistance does occur, mutations have been found in the ATP binding site 

gatekeeper residue, T674I, of FIP1L1-PDGFRα. A novel TKI, S116836, has recently been 

found to be effective in inhibiting both FIP1L1-PDGFRα and FIP1L1-PDGFRα T674I 

downstream signaling, and reducing xenograft tumors in nude mice formed in response to 

BaF3 cells expressing FIP1L1-PDGFRα T674I (79). The fusion proteins driving 

hematopoietic cancers often becoming resistant, leading to additional mutations, thus 

highlighting the putative need for multiple types of drugs at various times during treatment. 
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Table 3. TKIs: Therapeutics for Hematopoietic Disorders 

RTK Drug Mechanism www.ClinicalTrials.gov  

ALK Crizotinib 

(PF02341066) 

Multi-target TKI against ALK, 

MET, ROS-1; ATP binding 

pocket 

NCT02487316; NCT01979536; 

NCT01606878; NCT02419287; 

NCT00939770; NCT00585195; 

NCT01524926 

ALK Ceritinib 

(LDK378) 

TKI against ALK; ATP 

binding pocket 

NCT01742286; NCT0729961; 

NCT02465528; NCT02186821; 

NCT02343679 

ALK Brigatinib 

(AP26113) 

TKI against ALK and EGFR; 

ATP binding pocket 

NCT01449461  

ALK Selinexor 

(KPT330) 

Selective inhibitor of nuclear 

export; modifies CRM1-cargo 

binding  

cysteine residue 

NCT02530476; NCT02573363; 

NCT02093403; NCT02416908; 

NCT02088541; NCT02299518; 

NCT02403310; NCT02249091; 

NCT02485535; NCT02212561; 

NCT02091245 

ALK Silibinin Antioxidant; biochemical 

activity under investigation 

No trials with Lymphomas 

 

FGFR Dovitinib 

(TKI258) 

Multi-target TKI against 

FGFR, PDGFR, VEGFR, 

FLT3, c-KIT; ATP binding 

pocket 

NCT01831726  

 

FGFR Ponatinib 

(AP24534) 

Multi-target TKI against 

FGFR, PDGFR, VEGFR; ATP 

binding pocket 

NCT02627677; NCT02467270; 

NCT00660920; NCT01667133; 

NCT01746836; NCT02398825; 

NCT01207440; NCT01620216 

FGFR Infigratinib 

(BGJ398) 

pan FGFR inhibitor; ATP 

binding pocket 

NCT02160041 

 

FGFR FIIN2 and 

FIIN3 

TKI against FGFR and EGFR; 

targets Cys residue(s) in ATP 

binding pocket 

No trials  

 

PDGFR Imatinib 

(STI571) 

Multi-target TKI against 

PDGFR, ABL, c-KIT; ATP 

binding pocket 

NCT00044304; NCT00038675  

PDGFR S116836 Multi-target TKI against 

gatekeeper residue of PDGFR, 

FLT, TIE2, KIT, SRC family 

kinases; ATP binding site 

No trials 
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4.7 CONCLUDING REMARKS 

Factors that influence translocations include chromosome position, DNA damage 

response pathways, transcription frequency and epigenetic factors. Transcription can be a 

driver of translocations, possibly due to DNA supercoiling and torsional stress leading to 

topoisomerase-induced breaks (6). In this review, we discussed translocations involving 

RTKs in hematopoietic disorders including ALK, FGFR, PDGFR, RET, CSF1R and NTRK3. 

Although many translocations have been identified, activation pathways and mechanistic 

insight for many of these RTK fusions in cancer pathogenesis have yet to be elucidated.  

The discovery of these translocations has already facilitated the use of novel RTK 

inhibitor therapies to treat patients who are positive for translocation-induced cancers. While 

some RTK-targeted therapies have proven to be beneficial in various malignancies, 

challenges remain as many cases result in drug resistance or relapse. Therefore, there is an 

urgent need for additional approaches to the characterization and treatment of RTK-

translocation induced cancers. The identification of chromosomal translocations occurring in 

different cancers will be essential, and the utilization of multiple drug types during different 

treatment stages may prove to be efficacious. It is crucial that the robust discovery and 

characterization of these RTK fusions continue to allow the development of finely tuned 

therapies for hematopoietic disorders. 
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