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Abstract

Hearing through the noise: biologically inspired noise reduction

by

Tyler Paul Lee

Doctor of Philosophy in Neuroscience

University of California, Berkeley

Professor Frederic Theunissen, Co-chair

Professor Bruno Olshausen, Co-chair

Vocal communication in the natural world demands that a listener perform a remarkably
complicated task in real-time. Vocalizations mix with all other sounds in the environment
as they travel to the listener, arriving as a jumbled low-dimensional signal. A listener must
then use this signal to extract the structure corresponding to individual sound sources. How
this computation is implemented in the brain remains poorly understood, yet an accurate
description of such mechanisms would impact a variety of medical and technological appli-
cations of sound processing. In this thesis, I describe initial work on how neurons in the
secondary auditory cortex of the Zebra Finch extract song from naturalistic background
noise. I then build on our understanding of the function of these neurons by creating an
algorithm that extracts speech from natural background noise using spectrotemporal modu-
lations. The algorithm, implemented as an artificial neural network, can be flexibly applied
to any class of signal or noise and performs better than an optimal frequency-based noise
reduction algorithm for a variety of background noises and signal-to-noise ratios. One po-
tential drawback to using spectrotemporal modulations for noise reduction, though, is that
analyzing the modulations present in an ongoing sound requires a latency set by the slow-
est temporal modulation computed. The algorithm avoids this problem by reducing noise
predictively, taking advantage of the large amount of temporal structure present in natural
sounds. This predictive denoising has ties to recent work suggesting that the auditory sys-
tem uses attention to focus on predicted regions of spectrotemporal space when performing
auditory scene analysis.



i

Contents

Contents i

1 Introduction 1

2 Noise-invariant neurons 5
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Results/Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 STDR based noise reduction 38
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Conclusion 81

Bibliography 86



ii

Acknowledgments

This thesis would not have been possible without the unwavering support from so many
people. For this, I must first acknowledge the HWNI for setting up such a great community
of wonderful people.

Of course, a great many thanks go to my two advisors, Frederic and Bruno. Frederic
showed me what it means to love the intricacies inherent in any complicated analysis, even,
or perhaps especially, when those intricacies don’t love you back. Science is messy and hard,
and I have never seen anyone who enjoyed those facts as much as Frederic. Bruno was
essential in keeping me going whenever my research was not working out according to plan.
Every time I came to his office with a problem, in research or life, I came out excited and
clear-headed about what to do next. The mentorship I received from each of them has been
invaluable to my growth as a scientist and as a person. Thank you to them and the rest of
my thesis committee for their guidance throughout the years.

I must also thank the rest of the Theunissen lab. Never have a I met a nicer group of
people. Wendy, Mike and Solveig were wonderful labmates and friends. Channing Moore
helped me a lot during my first year and was a great collaborator on all of the work done
in chapter 2. A very special thank you goes to Yuka Minton for all of her hard work caring
for the Zebra Finches, not to mention being a great person and a close friend to everyone in
lab. Thank you to Julie as well for being a great scientific role model. Her hard work and
breadth of knowledge is truly impressive.

I am grateful to the Jack and the rest of the Gallant lab for always being ready to advise
on confusing points in math and neural networks and for their hard work on our computer
infrastructure. The work presented here literally might not have finished if not for their help.
Additionally, I must acknowledge Fritz Sommer and the entire Redwood Center for so many
great discussions and a tremendous amount of feedback. I have learned a lot from them all.

Finally, none of this would have been possible without the support from my entire family
and my loving partner, Yasyn. I would not have made it nearly this far if it were not for
all of the love and confidence they have given me. It’s impossible to express how important
they are to me. Thank you so much.



1

Chapter 1

Introduction

The natural world is full of sound. The fluctuations in air pressure evoked by an ever-
changing array of sources interfere with each other both constructively and destructively.
It is only this linear mixture that is available to any organism attempting to make sense
of sound. It is thus a wonder that one of the primary modes of communication for many
organisms, humans included, is vocalization. As challenging as extracting information re-
garding a single sound source from a sea of sounds may seem, this problem is thought to be
solved by a surprisingly diverse set of organisms (Bee and Micheyl 2008; Hulse 2002; Fay
2008), perhaps indicating that the computational principles used to solve it are ubiquitous
in nervous systems. While these computational principles remain poorly understood, their
fundamentals have become increasingly clear. Auditory scene analysis relies heavily on the
ability to robustly extract patterns from noisy inputs and the ability to predict temporal
sequences of such patterns. Though these computations are not unique to sound processing
(Lewicki et al. 2014), the auditory system will be the focus of the present work.

Reliably recognizing sounds in noisy environments is no simple feat. Auditory scenes are
composed of sounds from a variety of sound classes, ranging from relatively unstructured
wind noise to highly structured sounds like music and speech. For organisms to survive and
communicate in the natural world, it is imperative that they are able to recognize the specific
signals of an approaching predator or a nearby loved one from within the scene. Auditory
scene analysis is the general problem of segregating a composite signal of many sound sources
into a set of signals each corresponding to a single sound source. Oftentimes the more
relevant challenge, however, is the problem of signal extraction or noise reduction. Here,
the composite signal is separated into two components: a single sound source foreground
signal and a (potentially) multi-sound source background noise. It is important to keep in
mind that the classification of individual sound sources as belonging to signal or noise is
entirely dependent on their behavioral relevance at a specific point in time. Even so, many
classes of sounds are structured more like sound textures and are more readily classified as
background noise. Among these textures are common noises of wind, rain, running water,
and large-scale summation of individual vocalizations in a crowd, which are not able to be
identified individually unless other strong cues about identity are provided (McDermott,
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Wrobleski, and Oxenham 2011). The work presented here focuses primarily on mechanisms,
both neuronal and algorithmic, for extracting vocalizations from these types of noises.

Recognizing sounds in noisy environments

Specific sounds must often be recognized in the presence of significant background noise
(Lengagne et al. 1999; Hulse 2002), necessitating the ability to filter out sounds that are
not likely to be behaviorally relevant (Bee and Micheyl 2008; Fay 2008). This build through
each stage of the auditory system, as individual neurons extract the maximally informative
features present in their inputs (for a review see Theunissen and Elie 2014). Neurons as
early as the auditory nerve compute a sparse code of incoming sound waveforms, provid-
ing a compact representation of repeated structure in this low-dimensional signal (Smith
and Lewicki 2006). Complex, behaviorally-relevant patterns have structure on many scales,
however. The auditory system gradually extracts this more complicated, slower structure as
information ascends the auditory pathway (Sarah M N Woolley, P. R. Gill, et al. 2009; Kim
and A. Doupe 2011; Sharpee, Atencio, and Schreiner 2011). Neurons in the inferior colliculus
appear to represent a sparse code of the spectrotemporal features of sound (Rodŕıguez et al.
2010; Carlson, Ming, and DeWeese 2012). Neurons in the auditory thalamus and primary
auditory cortex have been shown to efficiently code spectrotemporal features (Sarah M N
Woolley, Fremouw, et al. 2005). As tuning becomes increasingly abstracted from the low-
dimensional sound waveform, neurons in higher auditory areas like primary and secondary
auditory begin to show significant levels of robustness to background noise. This feature of
higher auditory processing is the first major thread of the present work. The build-up of ro-
bust and efficient neural codes of natural sounds is reviewed more thoroughly in sections 2.4
and 3.2.

Aiding recognition with prediction

Extending the model that the auditory system encodes a compact representation of the
informative features on incoming sounds, it seems inevitable that temporal prediction should
play a significant role in complex sound processing. Sound is an inherently temporal stimulus
with predictable structure at many time-scales (Voss and Clarke 1978). Since multiple sound
sources are often largely independent of one another, the amount with which incoming sound
features cohere with temporal predictions based on past sounds should be a reliable indicator
on which to separate sources (Daniel P W Ellis 1999). This hypothesis is consistent with
a large body of psychoacoustical evidence that demonstrates that temporal context has a
direct consequential role in the perception of noisy or ambigous stimuli (Warren 1970; G. A.
Miller, Heise, and Lichten 1951). This is most striking in the case of phonemic restoration. If
a single phoneme in a sentence is replaced with a bout of silence, the change is perceptually
salient and intelligibility of the affected word is decreased (Warren 1970). However, if the
silent period is replaced by some form of transient broadband noise (e.g. a cough), the noise
is perceived to come from a separate sound source and, most importantly, the sentence is
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perceived to have continued uninterrupted. The brain is somehow capable of filling in regions
where pattern recognition is impossible with a pattern inferred from temporal context. This
principle suggests a more general role of predictive tuning in robust pattern recognition and
forms the backbone of some computational auditory scene analysis methods (Daniel PW W
Ellis 1996; Daniel P W Ellis 1999). More recently, neurophysiological evidence suggests that
attentional selection in auditory scene analysis may be performed predictively (Bendixen
2014). Auditory cortex exhibits neuronal oscillations that encode incoming sound envelopes
(Luo and Poeppel 2007). This encoding is preferential for the attended auditory stream in a
multi-stream environment (Mesgarani and Chang 2012). These findings, combined with the
developing hypothesis of attentional selection through coherent oscillations (Lakatos et al.
2008; Charles E. Schroeder and Lakatos 2009), suggest that the ability of the auditory system
to predictively align high excitability regions of ongoing oscillations to incoming sounds from
an attended sound source is critically important in natural listening conditions. This is the
second main thread of the present work and is a burgeoning field for further research.

Noise reduction in the real world

Normal hearing individuals are remarkably good at extracting information from noisy
sounds. Speech intelligibility in noise takes advantage of a great variety of cues and is
generally extremely proficient (Bronkhorst 2000). However, not all individuals have normal
hearing, nor are all systems that must process noisy sounds individuals. As much as 5.3%
of people have some form of debilitating hearing impairment (“WHO global estimates on
prevalence of hearing loss” 2012), which has a profound effect on ones’ ability to hold a
conversation in even moderate background noise (Palmer 2009). This has a dramatic impact
on quality of life and is a principal complaint of individuals with assistive hearing devices
(Edwards 2004). Another domain that struggles with sound processing in noise is automatic
speech recognition (ASR) and related computational technologies. In recent years, ASR
has dramatically improved, approaching even human-level abilities, yet robust recogntion in
noisy environments remains a signficant challenge (J. Li et al. 2014). In the present work,
we sought to use our knowledge of how the auditory system extracts natural sounds from
background noise to create a frontend noise reduction algorithm with applications in both
hearing aid and computer perception technologies. Existing, often less biologically-inspired,
algorithms for frontend noise reduction are reviewed in sections 2.4 and 3.2.

Outline

In chapter 2 we describe one of the first neurophysiological studies into the processing of
natural sounds in background noise. This work was published as Moore, Lee, and Theunissen
2013 and built upon a strong body of literature demonstrating that the principle tuning of
higher level auditory neurons, especially beyond the inferior colliculus, is in the domain
of spectrotemporal modulations. Different categories of sounds map clearly into distinct
but overlapping regions of spectrotemporal modulations, providing a good basis in which
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to discriminate communications sounds from other naturalistic sounds. We showed that
a neuron’s tuning in the space of spectrotemporal modulations correlates with its degree
of invariance to the presence of background noise in the stimulus. Noise-invariant neurons
were more likely to be found in the CaudoMedial Nidopalium (NCM), an avian secondary
auditory region, and had receptive fields that focussed on slow temporal modulations and
fast spectral modulations. To demonstrate that an ensemble of neurons with noise invariant
responses provides a sufficient basis for separating signal from noise, we designed a real-time
noise reduction algorithm that employed artificial neurons with a variety of spectrotemporal
receptive field shapes. As with the noise-invariant neurons in area NCM, the artificial neurons
in the algorithm that were found to be most important for the task of separating signal from
noise were sensitive to fast spectral modulations and slow temporal modulations.

In chapter 3 we describe a large extension of the noise reduction algorithm introduced in
chapter 2 and published in Lee and Theunissen 2015. The algorithm was used to separate
human speech from a variety of background noises. To do so, we expanded the optimization
to learn the spectrotemporal features best suited both for detecting speech and noise struc-
ture and reconstructing discriminative gains that map noisy speech to clean speech. The
algorithm was the first, to our knowledge, to explicitly use spectrotemporal features for both
detection and reconstruction, as well as explore the role of temporal prediction in real-time
denoising. We showed that it outperformed a standard noise reduction algorithm in multiple
noise conditions and speaker conditions, across a wide range of signal-to-noise ratios.
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Chapter 2

Noise-invariant Neurons in the Avian
Auditory Cortex: Hearing the Song in
Noise

Moore, R. Channing, Lee, Tyler & Theunissen, Frederic

2.1 Abstract

Given the extraordinary ability of humans and animals to recognize com-
munication signals over a background of noise, describing noise invariant
neural responses is critical not only to pinpoint the brain regions that are
mediating our robust perceptions but also to understand the neural computa-
tions that are performing these tasks and the underlying circuitry. Although
invariant neural responses, such as rotation-invariant face cells are well de-
scribed in the visual system, high-level auditory neurons that can represent
the same behaviorally relevant signal in a range of listening conditions have
yet to be discovered. Here we found neurons in a secondary area of the avian
auditory cortex that exhibit noise-invariant responses in the sense that they
responded with similar spike patterns to song stimuli presented in silence and
over a background of naturalistic noise. By characterizing the neurons tuning
in terms of their responses to modulations in the temporal and spectral en-
velope of the sound, we then show that noise invariance is partly achieved by
selectively responding to long sounds with sharp spectral structure. Finally,
to demonstrate that such computations could explain noise invariance, we
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designed a biologically inspired noise-filtering algorithm that can be used to
separate song or speech from noise. This novel noise-filtering method per-
forms as well as other state-of-the-art de-noising algorithms and could be
used in clinical or consumer oriented applications. Our biologically inspired
model also shows how high-level noise-invariant responses could be created
from neural responses typically found in primary auditory cortex.

2.2 Introduction

Invariant neural representations of behaviorally relevant objects are a hall-
mark of high-level sensory regions and are interpreted as the outcome of a
series of computations that would allow us to recognize and categorize ob-
jects in real life situations. For example, view-invariant face neurons have
been found in the inferior temporal cortex (Freiwald and Tsao 2010) and are
thought to reflect our abilities to recognize the same face from different ori-
entations and scales. The representation of auditory objects by the auditory
system is less well understood although neurons in high-level auditory areas
can be very selective for complex sounds and, in particular, communication
signals (Rauschecker et al. 1995). It has also been shown that auditory neu-
rons can be sound level invariant (Sadagopan and Xiaoqin Wang 2008; Bil-
limoria et al. 2008) or pitch sensitive (Bendor and Xiaoqin Wang 2005). As is
the case for all neurons labeled as invariant, pitch sensitive neurons respond
similarly to many different stimuli as long as these sounds yield the same
pitch percept. Both sound level invariant and pitch sensitive neurons could
therefore be building blocks in the computations required to produce invariant
responses to particular auditory signals subject to distortions due to propaga-
tions or corruption by other auditory signals. The existence of such distortion
invariant auditory neurons, however, remains unknown. Similarly, the neu-
ronal computations required to recognize communication signals embedded in
noise are not well understood although it is known that humans (Bronkhorst
2000) and other animals (Bee and Micheyl 2008) excel at this task. In this
study, we examined how neurons in the secondary avian auditory cortical
area NCM (CaudoMedial Nidopalium) responded to song signals embedded
in background noise to test whether this region presents noise-invariant char-
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acteristics that could be involved in robust song recognition. We chose the
avian model system because birds excel at recognizing individuals based on
their communication calls (Vignal, Mathevon, and Mottin 2004), often in
very difficult situations (Aubin and Jouventin 2002). Moreover, the avian
auditory system is well characterized and it is known that neurons in higher-
level auditory regions can respond selectively to particular conspecific songs
(Knudsen and Gentner 2010). We focused our study on NCM because a series
of neurophysiological (Stripling, Volman, and D. F. Clayton 1997) and im-
mediate early gene studies (Mello, Nottebohm, and D. Clayton 1995; Bolhuis
et al. 2000) have implicated this secondary auditory area in the recognition
of familiar songs. In addition, although neuronal responses in the primary
avian auditory cortex regions are systematically degraded by noise (Narayan
et al. 2007), studies using immediate early gene activation suggested that
responses to conspecific song in NCM were relatively constant for a range of
behaviorally relevant noise levels (Vignal, Attia, et al. 2004).

2.3 Methods

Neurophysiology and Histology

All animal procedures were approved by our institutional Animal Care
and Use Committee. Neurophysiological recordings were performed in four,
urethane anesthetized adult zebra finches to obtain 50 single unit recordings
in areas NCM and potentially field L (see below). We used similar neu-
rophysiological and histological methods to characterize other regions of the
avian auditory processing stream and detailed descriptions can be found there
(Sarah M N Woolley, P. R. Gill, et al. 2009). The methods are summarized
here and differences when they exist are noted.

To obtain recordings from NCM, we used more medial coordinates than
our previous experiments. With the birds beak fixed at a 55◦ angle to the
vertical, electrodes were inserted roughly 1.2mm rostral and 0.5mm lateral
to the Y-sinus. We made extracellular recordings from tungsten-parylene
electrodes having impedance between 1 and 3 MΩ (A-M Systems). Electrodes
were advanced in 0.5µm steps with a microdrive (Newport), and extracellular
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voltages were recorded with a system from Tucker-Davis Technologies (TDT).
In all cases, the extracellular voltages were thresholded to collect candi-

date spikes. Each time the voltage crossed the threshold, the timestamp was
saved along with a high-resolution waveform of the voltage around that time
(0.29ms before and 0.86ms after for a total of 1.15ms). After the experiment,
these waveforms were sorted using SpikePak (TDT) to assess unit quality.
We sorted spike waveforms using a combination of PCA and waveform fea-
tures (maximum and minimum voltage, maximum slope, area). We assessed
clustering qualitatively and verified afterwards that the resulting units had
Inter-Spike-Interval distributions where no more than 0.5% of the intervals
were less than 1.5ms.

In each bird, we advanced the electrode in 50 µm steps until we found
auditory responses. At that point we recorded activity in 100 µm steps.
When we no longer found auditory responses, we moved the electrode 300
µm further, made an electrolytic lesion (2µA x 10s), advanced another 300
µm, and made a second identical lesion. These lesions were used to find the
electrode track post-mortem and to calibrate the depth measurements. At
the end of the recording session, the bird was euthanized with an overdose
of Equithesin and transcardially perfused with 0.9% saline, followed by 3.7%
formalin in 0.025M phosphate buffer. The skullcap was removed and the
brain was post-fixed in 30% sucrose and 3.7% formalin to prepare it for
histological procedures. The brain was sliced parasagittally in 40 µm thick
sections using a freezing microtome. Alternating brain sections were stained
with both cresyl violet and silver stain, which were then used to visualize
electrode tracks, electrolytic lesions and brain regions.

All of our electrode tracks sampled NCM from dorsal to ventral regions.
Some of the more dorsal recordings (shallower depths) could have been in
subregions L or L2b of the Field L complex as the boundary between either
of these two regions and NCM proper is difficult to establish (Vates et al. 1996;
Fortune and Margoliash 1992). It is possible therefore that the correlation
between degree of invariance and depth also reflects lower invariance observed
in the field L complex and higher invariance in NCM proper.
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Sound Stimuli

Stimuli consisted of zebra-finch songs, roughly 1.6-2.6 seconds in length,
recorded from 40 unfamiliar adult male zebra finches played either in isola-
tion or in combination with a background of synthetic noise (song+ml-noise
stimuli in main text).

The masking noise in the neurophysiological experiments was synthetic
and obtained by low-pass filtering white noise in the modulation domain fol-
lowing the procedure described in (T. M. Elliott and Theunissen 2009). This
modulation low-pass filter had cutoff frequencies of ωf = 1.0 cycles/kHz and
ωt = 50 Hz and gain roll off of 10dB/(cycle/kHz) and 10dB/10Hz. The cutoff
modulation frequencies were chosen in order to generate noisy sounds with
similar range of modulation frequencies found in environmental noise (Singh
and Theunissen 2003). In addition, most of the modulations found in ze-
bra finch song are well masked by this synthetic noise although it should be
noted that song also includes sounds features with high spectral modulation
frequencies (above 2 cycles/kHz) and high temporal modulation frequencies
(above 60Hz). The frequency spectrum of the ml-noise was flat from 250 Hz
to 8 kHz completely overlapping the entire range of the band-passed filtered
songs we used in the experiments. Thus, although, different results could be
found with noise stimuli with different statistics, we carefully designed our
masking noise stimulus to both capture the modulation found in natural envi-
ronmental noise while at the same time completely overlapping the frequency
spectrum of our signal. The frequency power spectrum of these signals can
be found in A. Hsu, Sarah M N Woolley, et al. 2004.

We have also shown that such ml-noise is an effective stimuli for midbrain
and cortical avian auditory neurons in a sense that it drives neuron with high
response rates and high information rates (A. Hsu, Sarah M N Woolley, et al.
2004). ML-noise is also very similar to the dynamic noise ripples described
in (Escab́ı et al. 2003) and used in many neurophysiological studies to char-
acterize high-level mammalian auditory neurons. We also recorded responses
to the ml-noise masker alone but these data were not analyzed for this study.

All song and ml-noise stimuli were processed to be band limited between
250Hz and 8 kHz and to have equal loudness using custom code in MATLAB.
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The sounds were presented using software and electronics from TDT. Stimuli
were played over a speaker at 72dB C-weighted average SPL in a double-
walled anechoic chamber (Acoustic Systems). The bird was positioned 20cm
in front of the speaker for free-field binaural stimulation.

Each of the combined stimuli consisted of a different ml-noise sound sam-
ple, randomly paired with one of the songs. The noise stimulus began five to
seven seconds after the previous stimulus, and the song began after a random
delay of 0.5 to 1.5 seconds after the onset of the noise. Thus for each trial
the same song is paired with a different noise sample and at a different delay.
In the combined presentations, the noise stimuli were attenuated by 3dB to
obtain a signal to noise ratio (SNR) of 3 dB.

We played four trials at each recording location, each consisting of a ran-
domized sequence of 40 songs, 40 masking noise stimuli, and 40 combined
stimuli. Stimuli were separated by a period of silence with a length uni-
formly and randomly distributed between five and seven seconds.

Neural Data Analysis

We used custom code written in MATLAB, Python and R for all of our
analyses.

We assessed responsiveness using an average z-score metric for each stim-
ulus class. The z-score is calculated as follows:

z =
µS − µBG

√

σ2S + σ2BG − 2covar(S,BG)

, where µS is the mean response during the stimulus, µBG is the mean re-
sponse during the background, σ2S is the variance of the response during the
stimulus, and σ2BG the variance of the response during baseline. The back-
ground rates were calculated using the 500ms periods preceding and following
each stimulus. Using a cutoff of z ≥ 1.5 for either ml-noise or song stimuli,
32 of the 50 single units were determined to be responsive.

To measure invariance, we evaluated the similarity between the responses
to song and song + ml-noise by computing two measures: 1) the correlation
coefficient between the PSTH for each corresponding response and 2) the
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ratio of the SNR in the neural response to song+noise and the SNR in the
response to song alone.

If the PSTH for song is called rs(t) and the PSTH obtained in response
to song+noise is called rs+n(t), then the correlation coefficient is given by:

ICC =
〈(rs(t)− r̄s)(rs+n(t)− r̄s+n)〉t

√

〈(rs(t)− r̄s)2〉t〈(rs+n(t)− r̄s+n)2〉t

, where the 〈〉 are averages across time samples. We called this correla-
tion coefficient, the correlation invariance or the invariance for short. The
correlation coefficient is bounded between -1 and 1 and measures the linear
similarity in the response after mean subtracted and scaling. Thus a response
to song+noise with a deviation from its mean rate that is similar in shape but
much smaller than the time-varying response to song alone will have a very
high CC invariance. A better measure of invariance might therefore take into
account both the mean PSTH rate as a proxy for noise and the deviations
from this rate as a measure of signal. Thus, for the response to song alone,
we define the signal power as Ss = 〈(rs(t) − r̄s)

2〉 and the noise power as
Ns = r̄2s for a signal to noise ratio of:

SNRs =
〈(rs(t)− r̄s)

2〉

r̄2s

. For the response to the song+noise, we wanted to determine the fraction
of the time varying-response that was related to the song. For that purpose,
we used rs(t) as a regressor to obtain an estimate of rs+n(t):

r̂s+n(t) = β0 + β1rs(t)

= (β0 + β1r̄s) + (β1rs(t)− r̄s)

, where β0 and β1 are the coefficients obtained from the normal solution for
linear regression.

The signal to noise ratio for the response to song+noise is then:

SNRs+n =
β2
1〈(rs(t)− r̄s)

2〉

(β0 + β1r̄s)2
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. And the SNR invariance is given by the ratio of the two SNRs:

ISNR =
SNRs+n

SNRs

=
β2
1 r̄

2
s

(β0 + β1r̄s)2

As shown on fig. 2.1A, the two metrics ended up being highly correlated: the
correlation coefficient between ICC and the log of ISNR is r = 0.94(p < 10−6)
and we decided to use ICC in the main text. However, the calculation of
ISNR also provides useful information in terms of the absolute magnitude
of the invariance. For example, it shows that the SNR in the response for
the seven most invariant cells is decreased by 5 to 10 dB when the song in
presented in noise. Thus, even for these noise-robust neurons the loss of
signal quality is present. Similarly, one can examine the value of the linear
regression coefficient, β1 on fig. 2.1B. This coefficient is always less than one
showing that the responses to the song signal in the song+noise stimulus is
always reduced. β1 is also highly correlated with ICC but always smaller.
Together this shows that although the shape of the time-varying response
is often very well preserved in noise-invariant neurons, that the magnitude
of this response is decreased resulting in significant losses in signal power
(informative time-varying firing rate) relative to noise power (mean firing
rate).

In the calculations above, the PSTH was obtained by smoothing spike ar-
rival times using a 31 ms Hanning window. The bias introduced by the small
number of trials used to compute each PSTH was correcting by jackknifing.
The single-stimulus results indicate a small but consistent negative bias in
the four-trial estimates. We then computed the invariance as the mean of
the individual bias-corrected correlations obtained for each 40 stimulus.

For each responsive single unit, we estimated the neurons STRF from their
responses to song alone. The STRF were obtained using the strfLab neural
data analysis suite developed in our laboratory (strflab.berkeley.edu). The
STRFs were estimated by regularized linear regression. The algorithm is
implemented as a Ridge Regression in strfLab (directfit training option). Be-
cause of the 1/f 2 statistics of song, the ridge regression hyper parameter acts
as a smoothing factor on the STRF. In addition, we used a sparseness hyper-
parameter that controls the number of non-zero coefficients in the STRF.
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Figure 2.1: Comparison of the Correlation Invariance (ICC) and the SNR Invari-
ance (ISNR). A. Scatter plot showing the strong correlation between the ISNR (in dB units)
and ICC : r = 0.96, p < 10−6. B. Scatter plot between the non-normalized linear regression
coefficient, β1, and the normalized measure of invariance, ICC . These two measures are also
highly correlated: r = 0.96, p < 10−6.

Optimal values of the two hyperparameters were found by Jackknife cross-
validation (see Theunissen, Stephen V David, et al. 2001; S. M. N. Woolley
2006, for more details). The stimulus representation used for the STRF was
the log of the amplitude of the spectrogram of the sound obtained with a
Gaussian shaped filter bank of 125 Hz wide frequency bands. Time delays of
up to 100 ms were used to assess the cross-correlation between the stimulus
and the response. Performance of the estimated final best STRF was then
quantified with a separate validation data set.

We assessed the performance of each STRF using coherence and the nor-
mal mutual information as described in Borst and Theunissen 1999; A. Hsu,
Borst, and Theunissen 2004. First, we compute the expected coherence be-
tween two single response trials; we then compute the coherence between the
STRF prediction and the average response. The coherence is a function of
frequency between zero and 1 that measures the correlation of two signals



CHAPTER 2. NOISE-INVARIANT NEURONS 14

at each frequency. To obtain a single measure of correlation, one can com-
pute the normal mutual information (MI). We then computed the normal
MI for the two coherences, calling the first the response information and the
second the predicted information. The ratio of the predicted information to
the response information is the performance ratio, and provides a measure of
model performance that is independent of the variability of the neuron (A.
Hsu, Sarah M N Woolley, et al. 2004). In all of our receptive field analyses,
we used only STRFs that predict sufficiently well, defined here as having
predicted information of at least 1.2 bits/second and a performance ratio of
at least 20%. The STRF performance was not correlated with either the
responsiveness of the neuron, as measured by their z-score, or the degree of
invariance (data not shown).

To further examine the gain of the neuronal response as a function of
temporal and spectral modulations, we also represented each STRF in terms
of its Modulation Transfer Function (MTF). The MTF is obtained by taking
the amplitude of 2 dimensional Fourier Transform of the STRF (Sarah M N
Woolley, Fremouw, et al. 2005). For each neuron, we also computed the center
of mass of its MTF to estimate its best spectral and temporal modulation
frequencies.

To calculate the invariance metrics for the STRF model, we first obtained
the predicted response to the song+ml-noise stimulus for each trial. Using
these in place of the actual responses, we then computed an invariance metrics
for the STRF model by comparing the predicted responses to the actual
response obtained for song alone. In this manner, we were able to directly
compare the STRF model invariance with the invariance calculated for the
actual neuron. We used a two-tailed t-test to compare the distribution of
similarity values for the 40, four-trial linear predictions to the 40 actual four-
trial responses.

Figure 2.4 illustrates the methodology and shows the STRF, MTF, neural
responses and predictions to both song and song+ml-noise for two additional
example neurons: one with relatively low noise-invariance and one with rel-
atively high noise-invariance.
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Noise Filtering Algorithm Using the Modulation Filter Bank
Model

Following directly from the premise that neurons in area NCM selectively
respond to spectral-temporal modulations present in zebra finch songs, even
in the presence of corrupting background noise, we developed a noise re-
duction scheme that would exploit this property. Our algorithm falls in the
general class of single microphone noise reduction (SMNR) algorithms using
spectral subtraction. The core idea in spectral subtraction is to estimate
the frequency components of the signal from the short time Fourier compo-
nents of the corrupted signal. The estimated signal frequency components
are obtained by multiplying the Fourier components of signal+noise by a
gain function. This is the synthesis part of the algorithm. The gain func-
tion can vary both in frequency and time. The form and estimation of the
optimal gain function is the analysis step of the algorithm and its design is
the principal focus of the novel development of the state-of-the art SMNR
algorithms.

Both the analysis and synthesis step in our algorithm used a complete
(amplitude and phase) time-frequency decomposition of the sound stimuli
(fig. 2.7). This time-frequency decomposition was obtained from a frequency
filter bank of N linearly-spaced band-pass filter Gaussian shaped channels
located between 250 Hz and 8 kHz (BW=125Hz). N was set at 60 for all
simulations. The amplitude of these N narrow-band signals could then be
obtained using the Hilbert transform to generate a spectrogram of the sound.
The analysis step in the algorithm involved generating an additional repre-
sentation of the sounds based on an ensemble of M model neurons fully
characterized by their STRF. The model STRFs were parameterized as the
product of two Gabor functions describing the temporal and spectral response
of the neuron:

STRF (t, f) = H(t) ·G(f)

, where

H(t) = At exp
−

(t−t0)
2

2σ2
t · cos(2πΩt(t− t0) + Pt)
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and

G(f) = Af exp
−

(f−f0)
2

2σ2
f · cos(sπΩf(f − f0) + Pf)

.
The parameters of these Gabor functions (e.g. for time: t0, the temporal

latency; σt, the temporal bandwidth; Ωt, the best temporal modulation fre-
quency; and Pt, the temporal phase) were randomly chosen using a uniform
distribution over the range of those found in area NCM (present study) and
Field L (Sarah M N Woolley, P. R. Gill, et al. 2009). The number of model
neurons, M , was not found to be critical as long as the population of STRFs
sufficiently tiled the relevant modulation space. M was set to be 140 for the
results shown. To obtain the representation of sounds in this neural space,
the log spectrogram of the stimuli was convolved by each STRF to obtain
the model neural response: −→a (t) of dimension M . As explained in the main
text, we then used these activation functions to obtain a set of optimal time
varying frequency gains, −→g (t) of dimension N . These frequency gains are
then be applied to the corresponding frequency slices in the time-frequency
decomposition of the sound to synthesize the processed signal using:

ŝ(t) =
N
∑

j=1

gj(t) · yj(t)

, where yj(t) is the narrow-band signal from the frequency filter j obtained
in the time-frequency decomposition of the song + noise stimulus, x(t).

The optimal set of weights, di, needed to obtain the optimal gains, −→g (t)
(see section 2.4) was learned by minimizing the squared error e2(t) = (s(t)−
ŝ(t))2 through gradient descent. For this purpose, training stimuli were gen-
erated by summing together a 1.5 s song clip and a randomly selected chunk
of either ml-noise or zebra finch colony noise of the same duration. To match
the experimental results, both the song, s(t), and the noise, n(t), were first
high-pass filtered above 250 Hz and low-pass filtered below 8 kHz, and then
resampled to a sampling rate of 16 kHz. The song and noise were weighted
to obtain a SNR of 3 dB, although similar results were found with lower
SNR’s. Training was performed on all instances of the signal + noise sam-
ples. Weights were determined by averaging across values obtained through
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jack-knifing across this data set ten times with 10% of the data held out as
an early stopping set. Noise reduction was then validated and quantified on
a novel song in novel noise. Examples of noise corrupted signals and filtered
signals that correspond to the spectrograms shown in fig. 2.8 can be found
in the supplemental online material.

To assess the performance of our model, we computed the cross-correlation
between the estimate and the clean signal in the log spectrogram domain.
We then took the ratio of this cross-correlation and the value obtained prior
to attempting to de-noise the stimulus to obtain a performance ratio. As
summarized in the text, we then compared our algorithm to other noise re-
duction schemes. For this purpose, we also estimated the performance ratio
for three other spectral subtraction noise algorithms: the optimal Wiener fil-
ter (OWF), a variable gain algorithm patented by Sonic Innovations (SINR)
and the ideal binary mask (IBM). The optimal Wiener filter is a frequency
filter whose static gain depends solely of the ratio of the power spectrum of
the signal and signal + noise. In our implementation, the Wiener filter was
constructed using the frequency power spectrum of signal and noise from the
training set and then applied to a stimulus from the testing set (of the same
class). The spectral subtraction algorithm for Sonic Innovations used a time
variable gain just as in our implementation. Also, as in our implementa-
tion, the analysis step for estimating this gain was based on the log of the
amplitude of the Fourier components. However, the gain function itself was
estimated not from a modulation filter bank but estimating the statistical
properties of the envelope of the signal and noise in each frequency band (US
Patent 6,757,395 B1). We used a MATLAB implementation of the SINR al-
gorithm provided to us by Dr. William Woods of Starkey Hearing Research
Center, Berkeley, CA. Optimal parameters for the level of noise reduction and
the estimation of the noise envelope for that algorithm were also obtained on
the training signal and noise stimuli and the performance was cross-validated
with the test stimuli. The IBM procedure used a zero-one mask applied to the
sounds in the spectrogram domain. The mask is adapted to specific signals
by setting an amplitude threshold. Binary masks require prior knowledge of
the desired signal and thus should be seen as an approximate upper bound on
the potential performance of general noise reduction algorithms. Although
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these simulations are far from comprehensive, they allowed us to compare
our algorithm to optimal classical approaches for Gaussian distributed signals
(OWF), to a very recent state-of-the-art algorithm (SINR) and to an upper
bound (IBM). For commercial applications, our noise-reduction algorithm is
available for licensing via UC Berkeleys Office of Technology Licensing (Tech-
nology: Modulation-Domain Speech Filtering For Noise Reduction; Tech ID:
22197; Lead Case: 2012-034-0).

2.4 Results/Discussion

We recorded neural responses from single neurons in NCM of anesthetized
adult male Zebra Finches. We obtained responses to 40 different unfamiliar
conspecific songs and to the same songs embedded in naturalistic synthetic
noise also called modulation-limited noise (ml-noise from here on). Ml-noise
is broadband white-noise that has been filtered in the modulation domain
to mimic the structure that is found in environmental sounds by restricting
the power of modulations in the envelope to low spectral-temporal frequencies
(Singh and Theunissen 2003). Ml-noise has also been shown to be an efficient
stimulus for driving high-level auditory neurons (see section 2.3 for additional
details). The signal to noise ratio (SNR) was set at 3dB.

Noise Invariant Neurons in NCM

As illustrated on the left panels in fig. 2.2, responses of some neurons
to song signal were almost completely masked by the addition of noise. In
these situations, the post-stimulus time histogram (PSTH) obtained for song
only (third row) is very different than the one obtained for song + ml-noise
(fifth row). However, some neurons also showed strong robustness to noise
degradation as illustrated on the right panels of fig. 2.2. Those neurons had
similar PSTHs for both conditions.

To quantify the degree of noise robustness, we calculated two measures
of noise-invariance: a de-biased correlation coefficient between the PSTHs
obtained for the song alone and song + ml-noise stimuli (called ICC) and
the ratio of the SNR estimated for the song + noise response and the song +
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ml-noise response (ISNR invariance). The ICC metric is a normalized measure
that ranges in values between -1 and 1. It is 1 when the response pattern ob-
served to song+ml-noise is identical to the one observed to song, irrespective
of the relative magnitude of the two responses. For ISNR, we defined the re-
sponse SNR as follows. For the response to song alone, the signal power was
defined as the variance in the PSTH across time and the noise was defined
as the mean firing rate. For the response to song plus noise, the signal was
taken to be the time-varying response that could be predicted linearly from
the response to song alone and the noise was the mean of this predicted re-
sponse (see section 2.3). This second value of invariance is bounded between
0 and 1 and captures not only the similarities in response patterns but also
magnitudes of time-varying responses that carry information about the song.
As shown in the supplemental material, the two measures were highly corre-
lated and subsequent analyses resulted in very similar results and identical
conclusions. For brevity, we show the analysis using the ICC metric in the
main paper. Some of the results with the ISNR metric are included in the
supplemental material.

Noise Invariance and Frequency Tuning

We found neurons with different degrees of noise invariance throughout
NCM but the neurons in the ventral region tended to have highest ICC

(fig. 2.3B). NCM also exhibits some degree of frequency tonotopy along
this dimension with higher frequency tuning found in more ventral regions
(Ribeiro et al. 1998; Terleph, Mello, and Vicario 2006). Indeed, in our data
set, we also found a strong correlation between dorsal/ventral position and the
best frequency (BF) of the neuron (fig. 2.3C). We estimated a neurons best
frequency from the peak of the frequency marginal of its spectral-temporal
receptive field (STRF). We found a range of BF from 1300 Hz to 3300 Hz
with a dorsal-ventral gradient (adjusted R2 = 0.34, p < 10−3). Although the
frequency range of our song stimulus and ml-noise stimulus was identical, the
frequency power spectrum of song has a peak around 4 kHz (A. Hsu, Sarah
M N Woolley, et al. 2004) that could have lead to stronger and thus poten-
tially more noise invariant responses to song for neurons with higher best fre-
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Figure 2.2: Noise-invariant responses in the avian NCM. Responses of two neurons
(Cell A and Cell B) to song presented alone and over noise. The top row shows the spec-
trogram of the same zebra finch song used in the two recordings. Song starts at 0s. Below
the spectrogram are raster plots and corresponding smoothed PSTHs. The first raster and
PSTH correspond to the response of each neuron to the song alone presented at 70 dB SPL.
Clear temporal synchrony across the four trials can be seen illustrative of an equally robust
response to song stimuli. The second raster and PSTH correspond to the responses to song+
modulation limited noise (ml-noise) presented at 3dB signal to noise ratio. Ml-noise is syn-
thesized by low-pass filtering white noise in the space of temporal and spectral modulations
(see section 2.3). The pink highlights show the duration of the stimulus (song + noise). The
onset and offset of the stimulus is different in each trial because the trials are aligned to the
onset of the song and the noise masker began and ended with a different delay in each trial.
The noise was also different in each trial. This addition of naturalistic noise destroys the
cross- trial synchrony in the response for the neuron shown in the left column but not for
the neuron shown in the right column.
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Figure 2.3: Location of noise invariant neurons in NCM. A. Photomicrograph of Nissl-
stained brain slice in one bird showing the typical trajectory of the electrode penetration.
By carefully orienting our electrode angle, we were able to sample NCM along its entire
dorsal to ventral extent. B. Scatter plot of noise invariance against stereotactic depth of
neural recordings. Noise invariance and recording depth were significantly correlated (slope
= 0.15/mm, adjusted R2 = 0.13, p = 0.02). The example neurons are labeled A and B on the
scatter plot. C. Scatter plot showing the relationship between the best frequency (Y-axis)
and the depth of the recording along the dorsal to ventral axis of NCM (X-axis). The solid
line is the linear regression between these two variables (adjusted R2 = 0.34, p < 10−3).

quency. A linear regression analysis between invariance and the neurons best
frequency could not confirm that hypothesis (adjusted R2 = 0.06, p = 0.1).
Thus, if this relationship exists, it can only have a very small effect size.

Noise Invariance and Spectral-temporal Tuning.

To further attempt to understand how noise invariance was achieved in this
system, we examined how the neurons responses for particular joint spectral-
temporal patterns that are unique to song could have contributed to robust
coding of song in noisy conditions. To do so we estimated the STRF of each
neuron and examined the predicted response to song and to song plus noise.
The STRF describes how acoustical patterns in time and frequency correlate
with the neurons response (Theunissen, Stephen V David, et al. 2001; Sarah
M N Woolley, P. R. Gill, et al. 2009). The STRF can also be used as a model
of the neuron to estimate predicted responses for arbitrary sound stimuli.
The STRF model is often described as linear but can include both input



CHAPTER 2. NOISE-INVARIANT NEURONS 22

and output non-linearities. In this study, the stimulus was represented as
a log spectrogram and the output of the linear filter was half-wave rectified
(see section 2.3). Although we have shown that better response predictions
could be obtained using additional non-linear elements such as gain control
(P. Gill, Zhang, et al. 2006), in this study we have used the simpler STRF
model to more explicitly describe the spectral-temporal tuning of each neuron
(examples of STRF predictions are found in fig. 2.4).

To determine whether a neurons tuning for particular spectral-temporal
features characteristic of song and less common in noise could explain the
observed invariance, we use the STRF to obtain estimated responses to song
and noise. We then regressed the ICC values that we measured directly from
the neurons response against the ICC values obtained from the predictions
of STRF model (fig. 2.5A). Two results come out of this analysis. First,
the measured invariance and the model invariance are positively but weakly
correlated showing that the neurons STRFs can in part explain the observed
noise-invariance (Adjusted R2 = 0.12, p = 0.034). Second, we found that,
for most neurons, the degree of invariance predicted by the STRF model
was greater than the one found in actual neurons. In other words, non-
linearities not captured in the STRF model made these neurons less invariant.
Although this result might seem surprising for an auditory region believed
to be important for song recognition, it has a simple explanation. Many
high-level neurons show adapting responses to sound intensity levels (I. Dean,
Harper, and McAlpine 2005) and this common non-linear response property is
not captured in this STRF model. Intensity adapting neurons would exhibit
a decrease in response to the song in noise relative to the song alone due
to the adaptive changes in gain. This decrease in response gain without a
corresponding decrease in background rate would result in a decrease of the
responses SNR.

Therefore, for the task of extracting the song from noise, the most effective
non-linearities appear to be the simple thresholding non-linearity (i.e. for
neurons with STRFs closest to the x=y line in fig. 2.5A) or a yet to be
described additional non-linearity boosts invariance (n=3/32). Although the
specific non-linearities that could be beneficial for preserving signal in noise
still need to be described, previous research have characterized higher-order
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Figure 2.4: Example of STRF and STRF Predictions for Two Cells. Column A:
A low noise-invariant cell (invariance = 0.25), Cell 1 and Column B: a high noise-invariant
cell (invariance = 0.65), Cell 2. Top row shows the STRF and the corresponding MTF.
Second row shows the spectrogram of one song stimulus. Third and fourth row show the
neural responses as a spike raster (top) and a PSTH (below) to the song presented alone. In
the PSTH plot, the actual neural response is in blue and the prediction obtained from the
STRF is in red. Spike raster for response of low noise-invariant cell to masked song. The
fifth and sixth row show the responses to the song presented over a masker of ml-noise.
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Figure 2.5: Spectral-temporal tuning and invariance. Vertical axis in AC shows the
noise invariance in the neural response. Each neuron (each point on the scatterplots) is
represented by its STRF (0.25 - 8 kHz on the vertical axis, 0 - 60 ms on the horizontal). A.
Invariance vs STRF Model Invariance. The solid line has slope 1.0, showing equal perfor-
mance between the STRF model and the neural response. Neurons with significantly different
performance (p < 0.05, two-tailed t-test) have their receptive fields outlined. Dashed line
shows regression fit (slope = 0.40, Adjusted R2 = 0.12, p = 0.034), indicating the positive
correlation between the invariance predicted by the STRF and actual invariance. B. In-
variance vs Spectral Modulation Tuning. Neurons sensitive to higher spectral modulations
are more invariant (Adjusted R2 = 0.192, p = 0.007). C. Invariance vs Temporal Modula-
tion Tuning. Neurons sensitive to lower temporal modulations are more invariant (Adjusted
R2 = 0.15, p = 0.015). D. Ensemble modulation transfer functions for neurons grouped by
invariance. Low invariance neurons (left panel, invariance < 0.3, n = 11) respond to high
temporal and low spectral frequency modulations. Neurons with moderate invariance (mid-
dle panel, 0.3 < invariance < 0.4, n = 11) transmit faster, sharper modulations. Neurons
with high invariance (right panel, invariance > 0.4, n = 10) respond mostly to slower and
spectrally sharp sounds.
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non-linearities response that could play an important role: neurons in NCM
exhibit stimulus specific adaptation (Stripling, Volman, and D. F. Clayton
1997) and neurons in another avian secondary auditory area, CM (Caudal
Mesopallium), respond preferentially to surprising stimuli (P. Gill, Sarah M
N Woolley, et al. 2008). These non-linearities could facilitate noise invariant
responses since they tend to de-emphasize the current or expected stimulus
(in this case noise like sounds) without decreasing the gain of the neuron to
sound at the same frequency.

Since the STRF could partially explain the observed noise-invariance, we
asked what feature of the neurons spectral-temporal tuning was important
for this computation. By estimating the modulation gain from the neu-
rons STRFs, we found that tuning for high spectral modulations and low
temporal modulations correlate with neural invariance (fig. 2.5B-C). Neu-
rons sensitive to higher spectral modulations are more invariant (Adjusted
R2 = 0.192, p = 0.007) and neurons sensitive to lower temporal modulations
are more invariant (Adjusted R2 = 0.15, p = 0.015). To assess the effect size
of these two relationships taken together, we used multiple linear-regression
with spectral and temporal modulation tuning as regressors used to explain
the neurons invariance and found an adjusted R2 of 0.23 (p=0.009). Thus
the contributions of spectral and temporal tuning to invariance are not com-
pletely additive. The ensemble modulation transfer functions further illus-
trate how the spectral and temporal modulation tuning co-vary along the
noise-invariance dimension (fig. 2.5D). Noise invariant neurons exhibit the
combination of longer integration times and sharp spectral tuning. In ad-
dition, the sharp excitatory spectral tuning was often combined with sharp
inhibitory spectral tuning as well. These properties make noise-invariant
neurons particularly sensitive to the longer harmonic stacks present in song
(and other communication signals) even when these are embedded in noise
as illustrated in the example neuron in fig. 2.2 (right panel).

The generation of the observed modulation tuning properties of the more
noise invariant neurons described in this study is not a trivial task: most
neurons in lower auditory areas have much shorter integration times and
lack the sharp excitation and inhibition along the spectral dimension that
we observed here. From comprehensive surveys of tuning properties in the
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avian primary auditory cortex (Field L) (Sarah M N Woolley, P. R. Gill,
et al. 2009; Nagel and A. J. Doupe 2008), we know that a small number of
neurons with similar characteristics exist in these pre-synaptic areas (Sarah
M N Woolley, P. R. Gill, et al. 2009). Similarly, in the mammalian system,
neurons in A1 have been shown to have a range of spectral-temporal tuning
similar to that seen in birds but few with the sharp spectral tuning seen
here (Depireux et al. 2001; L. M. Miller et al. 2002). Thus it is reasonable
to postulate that noise-invariance in NCM (and putatively in mammalian
secondary auditory cortical regions) is the result of a series of computations
that are occurring along the auditory processing stream. However, it is also
known that NCM possesses a complex network of inhibitory neurons and
that these play an important role in shaping spectral and temporal response
properties (Pinaud et al. 2008). We also found a higher concentration of
noise invariant neurons in the more ventral regions of NCM but failed to
find a correlation between invariance and best frequency. On the other, we
found that both temporal modulation tuning (adjusted R2 = 0.12, p = 0.02)
and spectral modulation tuning (adjusted R2 = 0.15, p = 0.01) were also
correlated with depth: lower temporal and higher spectral modulation tuning
is found in ventral regions of NCM. This organization of tuning properties
is reminiscent of the organization of the primary auditory areas, field L,
where the output layers have a higher concentration of neurons with longer
integration times (Kim and A. Doupe 2011). Thus both upstream and local
circuitry are almost certainly involved in the creation of noise-invariant neural
representations.

Invariance and Song Selectivity

Since the tuning of noise invariant neurons described by their STRF and
the threshold non-linearity only describes a fraction of the invariance, we
were interested in assessing whether noise invariant neurons were selective
for longer sound segments such as those that might be useful to distinguish
one song from another. To begin to investigate this idea, we examined the
invariance of all the neurons for each song and calculated the standard devi-
ation and the coefficient of variation (CV) of the invariance metric for each
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neuron. These results are shown as a two-dimensional heat map on fig. 2.6.
Although, the degree of invariance varied somewhat across songs (and the
most invariant neurons could have invariances above 0.9 for certain sounds),
the variability was remarkably low: highly invariant neurons tended to show
noise- invariance to most song stimuli. The CVs for the 10 most invariant
neurons were similar and all below 0.5. We therefore conclude that neurons
that show a high degree of invariance could be useful to extract signal from
noise not only for a specific song but also for an entire stimulus class. For
example, noise invariant neurons could detect short acoustical features that
are characteristic of many zebra finch songs. The STRF analysis shows that
sensitivity to features up to 100 ms in duration is more than sufficient to gen-
erate in model neurons noise invariance of similar magnitude to that observed
in the actual data. However, since the STRF only explains a fraction of both
the observed invariance and the response, selective response properties that
involve longer integration times could also be involved in the generation of
noise invariant responses.

Biologically Inspired Noise Reduction Algorithm

Inspired by our discovery of noise invariant neurons in NCM, we engi-
neered a noise filtering algorithm based on a decomposition of the sound by
an ensemble of artificial neurons described by realistic STRFs. We developed
this algorithm both for biological and engineering purposes. Our biological
goal was to demonstrate that an ensemble of noise-invariant responses such as
the one observed here could indeed be used to recover a signal from noise. We
also wanted to show whether an optimization process designed to extract sig-
nals from noise would rely on responses of particular artificial neurons with
properties that are similar to those found in the biology. Finally, we also
wanted to explore to what extent is the invariance of signal in noise depen-
dent on the exact statistics of the signal and noise stimuli. Our engineering
goal was to develop a real-time algorithm inspired by the biology that could
potentially be used in clinical applications such as hearing aids and cochlear
implants or in commercial applications involving automatic speech recogni-
tion (Hermus 2007). In hearing aids, various forms of noise reduction have
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Figure 2.6: Range of invariance observed across neurons and song stimuli. Two
dimensional heat plot that shows the value of the variance metric obtained for each neuron
(n = 32) and each song stimuli (n = 36). The neurons are sorted from low mean invariance
(bottom row) to high mean invariance (top row). The columns on the left show the standard
deviation of the variance and the coefficient of variation for each neuron. The color bar is
placed at the bottom of the graph and is the same for the variance, the standard deviation
and the coefficient of variation. The grey cells in the matrix correspond to (neuron, stimulus)
where we were not able to calculate the invariance either because of missing data or very
low response rates.



CHAPTER 2. NOISE-INVARIANT NEURONS 29

been shown to offer an incremental improvement in the listening experience
(Luts et al. 2010; DiGiovanni, Davlin, and Nagaraj 2011) though listening
to speech in noisy environments remains the principal complaint of hearing
aid users (Palmer 2009). In addition, none of the current noise reduction al-
gorithms have led to improvements in speech intelligibility (Alcántara et al.
2003; Bentler et al. 2008).

Our ensemble of artificial neurons can be thought of as a modulation filter
bank because the response of each neuron quantifies the presence and absence
of particular spectral-temporal patterns as observed in a spectrogram and,
contrary to a frequency filter bank, not solely the presence or absence of
energy at a particular frequency band. In other words, the STRFs can be
thought of as higher-level sound filters: if lower-level sound filters operate
in the frequency domain (for example removing low frequency noise such as
the hum of airplane engines), these high-level filters operate in the spectral-
temporal modulation domain. In this joint modulation domain, sounds that
have structure in time (such as beats) or structure in frequency (such as in
a musical note composed of a fundamental tone and its harmonically related
overtones) are characterized by specific temporal and spectral modulations. A
spectral-temporal modulation filter could then be used to detect sounds that
contain particular time-frequency patterns while filtering out other sounds
that might have similar frequency content but lack this spectral-temporal
structure. Similar decompositions have also been proposed and used by others
for the efficient processing of speech and other complex signals (Mesgarani,
Slaney, and Shihab A. Shamma 2006; David J. Klein, König, and Kording
2003; Chi, Ru, and Shihab A Shamma 2005).

Noise filtering with such a modulation filter bank can be described as series
of signal processing steps: i) decompose the signal into frequency channels
using a frequency filter bank; ii) represent the sound as the envelope in each
of the frequency channels, as it is done in a spectrogram; iii) filter this time-
frequency amplitude representation by a modulation filter bank to effectively
obtain a filtered spectrogram; iv) invert this filtered spectrogram to recover
the desired signal. Although each of these steps involves relatively simple
signal processing, two significant issues remain. First, one has to choose the
appropriate gain on the modulation filters in order to detect behaviorally
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relevant signals over noise. Second, the spectrogram inversion step requires
a computationally intensive iterative procedure (Griffin and Lim 1984) that
would prevent such a modulation filtering procedure to operate in real time
or with minimal delays. Our algorithm solves these two issues. We have
eliminated the spectrographic inversion step and instead use the output of
the modulation filter bank to generate a time-varying gain vector that can
directly operate on the output of the initial frequency filter bank. Second,
we propose to find optimal fixed gains on the modulation filter bank by
minimizing the error between a desired signal and the output of the filtering
process in the time domain. Then once the modulation filter weights are fixed,
the algorithm can operate in real-time with a delay that is only dependent
on the width of the STRF in the modulation filter bank.

The various steps in our algorithm are illustrated on fig. 2.7. Both the
analysis and synthesis steps of the algorithm use a complete (amplitude
and phase) time-frequency decomposition of the sound stimuli. This time-
frequency decomposition is obtained from a frequency filter bank ofN linearly-
spaced band-pass filter Gaussian shaped channels located between 250 Hz and
8 kHz. The amplitude of these N narrow-band signals is obtained using the
Hilbert transform (or rectification and low-pass filtering) to generate a spec-
trogram of the sound. This spectrographic transformation is identical to the
one that we use for the estimation of the STRFs (see section 2.3).

The analysis step in the algorithm involves generating an additional rep-
resentation of the sounds based on an ensemble of model neurons fully char-
acterized by their STRF. These STRFs are designed to efficiently encode the
structure of the signal and the noise, allowing them to be useful indicators
of the time-course of signal in a noisy sound. For this study, we used a bank
of STRFs that were designed to model the STRFs found throughout the au-
ditory pallium, including STRFs not only from neurons in NCM but also
the field L complex (Sarah M N Woolley, P. R. Gill, et al. 2009). The log
spectrogram of the stimulus is convolved with each STRF to obtain model
neural responses: −→a (t) of dimension M . The crux of our algorithm is to
transform these neural responses back into a set of time varying frequency
gains, −→g (t) of dimension N . These frequency gains will then be applied to
the corresponding frequency slices in the time-frequency decomposition of the
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Figure 2.7: Noise Reduction Algorithm. We implemented a biologically inspired noise-
filtering algorithm using an analysis/synthesis paradigm (top row) where the synthesis step
is based on a STRF filter bank decomposition. The bottom row shows the model neural
responses obtained from a sound (spectrogram of noise-corrupted song) using the filter bank
of biologically realistic STRFs. These responses are then weighed optimally with weights
d1, . . . , dM to select the combination of responses that are most noise-invariant. The weighted
responses are then transformed into frequency space by multiplying the weighted responses
by the frequency marginal of the corresponding STRF (color-matched on the figure) to obtain
gains as a function of frequency. The top row illustrates how these time-varying frequency
gains can then be applied to a decomposition of the sound into frequency channels allowing
for the synthesis step and an estimate of the clean signal. This technology is available for
licensing via UC Berkeleys Office of Technology Licensing (Technology: Modulation-Domain
Speech Filtering For Noise Reduction; Tech ID: 22197; Lead Case: 2012-034-0)
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sound to synthesize the processed signal. −→g (t) is a function of the sum of all
model neural responses each scaled by an importance weighting, di, and then
multiplied by the frequency marginal of the corresponding neuron’s STRF:

gj(t) = f

(

M
∑

i=1

di · ai(t) ·Ki,j

)

with j ∈ {1, N}. The function f was chosen to be the logistic function in
order to restrict the gains to lie between a lower bound, representing maximal
attenuation, and 0 dB, representing no attenuation. Ki,j is the frequency
marginal value of neuron i for the frequency band centered at j, and it was
obtained from the frequency marginal of each STRF. Using these gains, we
then synthesized a processed signal:

ŝ(t) =
N
∑

j=1

gj(t) · yj(t)

, where yj(t) is the narrow-band signal from from the frequency filter j ob-
tained in the time-frequency decomposition of the song + noise stimulus,
x(t). The optimal set of weights, di, was learned by minimizing the squared
error, e2(t) = (s(t)− ŝ(t))2 through gradient descent.

To assess the quality of our algorithm, we compared it to 3 other noise
reduction schemes: the optimal classical frequencyWiener filter for stationary
Gaussian signals (OWF), a state-of-the-art spectral subtraction algorithm
(SINR) used by a hearing aid company, and the upper bound obtained by an
ideal binary mask (IBM). The optimal Wiener filter is a frequency filter whose
static gain depends solely on the ratio of the power spectrum of the signal
and signal + noise. The state-of-the-art spectral subtraction algorithm uses a
time variable gain just as in our algorithm but based on a running estimate of
noise and signal spectrum. This algorithm was patented by Sonic Innovations
(US Patent 6,757,395 B1) and is currently used in hearing aids. The IBM
procedure used a zero-one mask applied to the sounds in the spectrogram
domain. The mask is adapted to specific signals by setting an amplitude
threshold. Ideal binary masks require prior knowledge of the desired signal
and thus can be considered as an approximate upper bound on the potential
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performance of general noise reduction algorithms (Y. Li and D. L. Wang
2009).

As shown on fig. 2.8A, with relatively little customization and exploration
(for example in the choice of the set of artificial STRFs) our algorithm per-
formed strikingly well: our algorithm performed significantly better than
both the classical frequency Wiener filter and the SINR algorithm for a song
embedded in ml-noise and similarly to the SINR algorithm for a song embed-
ded in colony noise. The quality of the noise filtering can also be assessed
by examining the time-varying gains shown on bottom row in fig. 2.8B and
C: without any a priori knowledge of the location of the signal in time (and
contrary to the IBM), the time-varying gains can pick out when the signal
occurs in the noise. Moreover, the gains are not constant for all frequen-
cies but instead are also able to pick out harmonic structure in the sound.
The quality of the reconstruction can also be visually assessed by examining
the spectrograms shown in that figure or listening to the demos provided as
supplemental material.

We are now able to answer our questions. First, as quantified above, us-
ing an ensemble of physiologically realistic noise-invariant responses, we show
that one is able to recover the distorted signal with remarkable accuracy. Sec-
ond, we were also able to compare the properties of the STRFs in the model
that had the biggest importance gains (di) with those found in noise-invariant
neurons in NCM. As shown on fig. 2.9A & B, these STRFs are composed both
of narrow band neurons with long integration times as observed in our data
set and also broad band neurons with very short integration time. The eMTF
shown in fig. 2.9C & D further quantify these results. Thus, the noise in-
variant neurons found in NCM are well represented in by the model STRFs
tuned for high spectral modulation and low temporal modulations. NCM also
has neurons tuned to faster temporal modulations but the majority of these
neurons had narrow band frequency tuning (or high spectral modulations)
and these neurons are therefore not particularly effective at rejecting noise
stimuli. Fast broad-band neurons are however found in the avian primary
auditory forebrain (Sarah M N Woolley, P. R. Gill, et al. 2009; Nagel and
A. J. Doupe 2008) and could thus play a role, as part of an ensemble, in the
signal and noise separation. Our third question regarded the sensitivity of
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Figure 2.8: Performance of STRF Based Noise-Reduction. A. Performance of three
noise reduction algorithms (STRF, OWF, SINR) and lower and upper bounds (Stim, IBM)
on song embedded in colony noise or modulation-limited (ML) noise. The performance ratio
(y-axis) depicts the improvement in noise levels over the noise-corrupted signal, as measured
by the cross-correlation in the log spectrogram domain, with the error bars representing one
standard deviation across five noisy stimuli. On the x-axis are the models we have tested,
where Stim is the noise-corrupted signal, STRF is the model presented here, OWF is the
optimal Wiener filter, SINR is a spectral subtraction algorithm similar to STRF but based
on engineering constructs, and IBM is an ideal binary mask. B. Spectrograms of the signal
masked with noise from the zebra finch colony, the clean zebra finch song, and our signal
reconstruction, followed by the time-frequency gains. C. Same as B but for modulation-
limited noise. Sounds can be found in the supplemental materials.
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Figure 2.9: Model STRFs for Noise Reduction. A. The eight most positively (top) and
most negatively (bottom) weighted STRFs from the noise reduction algorithm trained with
a background of colony noise. B, Same as in A, but for the model trained with a background
of modulation-limited noise. C. The ensemble modulation transfer functions for the top 16
and bottom 16 STRFs for the model trained in colony noise, sorted as in A. D Same as in
C, but for the model trained in modulation-limited noise.
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noise-invariant neurons to the particular choice of signal and noise. The mod-
eling shows that the importance weights obtained for filtering out ml-noise
were slightly different that the weights obtained for filtering colony noise.
This relatively small effect can be visually assessed by comparing the highest
weighted STRFs for each noise class shown in fig. 2.9A versus fig. 2.9B. These
results suggest that slightly different sets of invariant-neurons depending on
the statistical nature of the signal and noise but that these effects might be
rather small. In addition, we found no correlation between the magnitude
of importance weights of the artificial neurons and their BF. Thus, we also
predict that the modulation tuning properties of noise-invariant neurons that
we described here would apply to a relatively large relevant set of natural sig-
nals and noise. This is in part possible because many forms of environmental
noise, including noise resulting from the summation of multiple sound signals,
have similar modulation structure characterized by a concentration of energy
at very low spectral modulations and low to intermediate temporal modu-
lations. In converse, communication signals can have significant energy in
regions combining either high spectral modulations with low temporal mod-
ulations or high temporal modulations with low spectral modulations (Singh
and Theunissen 2003; Sarah M N Woolley, Fremouw, et al. 2005).

Both in the model and in the biological system, given a complete modu-
lation filter bank, the importance weights for a given signal and noise could
be learned quickly through supervised learning. Moreover, after learning, the
algorithm can easily be implemented in real-time with minimal delay. Thus,
the algorithm is particularly useful with adaptive weights or if the statistics
of the noise and signal are known, both of which are true in the biological sys-
tem. Finally given its performance and the advantages described above, we
also believe that this noise filtering approach could be useful in clinical appli-
cations, such as hearing aids or cochlear implants, or in consumer applications
such as noise canceling preprocessing for automatic speech recognition.

In summary, we have shown the presence of noise-invariant neurons in
a secondary auditory cortical area. We show that a fraction of the noise-
rejecting property can be explained by the spectral-temporal tuning of the
neurons. However, tuning properties that are not well captured by the STRF
can also both increase or decrease noise-invariance and these properties will
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have to be examined in future work. We have also described a novel noise
reduction algorithm that uses a modulation filter-bank akin to the STRFs
found in the avian auditory system. The performance of this algorithm in
noise reduction was excellent and similar or better than the current state-
of-the-art algorithms used in hearing aids. The model also illustrates some
fundamental principles and allowed us to make stronger statements on the
scope of our biological findings. The fundamental principles are, first, that
signal and noises can have a distinct signature in the modulation space while
overlapping in the frequency space and that therefore filtering in this do-
main can be advantageous. Second, that although modulation filtering is a
linear operation in the spectrogram domain, that both the generation of a
spectrogram and the re-synthesis of a clean signal require non-linear com-
putations. We argue that the spectral-temporal properties that are found
in higher auditory areas and that are particularly efficient at distinguish-
ing noise modulations from signal modulations are the result of a series of
non-linear computations that occurred in the ascending auditory processing
stream. The model also shows that a real-time re-synthesis of a cleaned signal
could be obtained with additional non-linear operations or, in other words,
that a real-time spectrographic inversion is possible. Finally, our modeling
efforts show that the noise-invariant findings described here for a song as
a chosen prototypical signal and a modulation-limited noise as the chosen
prototypical noise would also apply to other signals and noise. However, the
involvement of neurons with slightly different tuning or adaptive properties
would be needed to obtain optimal signal detection. Given the behavioral
experiments that have shown that birds excel at auditory scene analysis tasks
both in the wild (Aubin and Jouventin 2002) and in the lab (MacDougall-
Shackleton et al. 1998; Benney and Braaten 2000) and given our increasing
understating of the underlying neural mechanisms (Bee, Micheyl, et al. 2010),
the birdsong model shows great promise to tackle one of the most difficult
and fascinating problems in auditory sciences: the analysis of a sound scape
into distinct sound objects.
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Chapter 3

A single microphone noise reduction
algorithm based on the detection and
reconstruction of spectro-temporal
features

Lee, Tyler & Theunissen, Frederic

3.1 Abstract

Animals throughout the animal kingdom excel at extracting individual
sounds from competing background sounds, yet current state-of-the-art sig-
nal processing algorithms struggle to process speech in the presence of even
modest background noise. Recent psychophysical experiments in humans
and electrophysiological recordings in animal models suggest that the brain
is adapted to process sounds within the restricted domain of spectro-temporal
modulations found in natural sounds. Here we describe a novel single micro-
phone noise reduction algorithm called spectro-temporal detection-reconstruction
(STDR) that relies on an artificial neural network trained to detect, extract
and reconstruct the spectro-temporal features found in speech. STDR can
significantly reduce the level of the background noise while preserving the
foreground speech quality and improving estimates of speech intelligibility.
In addition, by leveraging the strong temporal correlations present in speech,
the STDR algorithm can also operate on predictions of upcoming speech fea-
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tures, retaining similar performance levels while minimizing inherent through-
put delays. STDR performs better than a competing state-of-art algorithm
for a wide range of signal-to-noise ratios and has the potential for real-time
applications such as hearing aids and automatic speech recognition.

3.2 Introduction

Humans, as social beings, rely heavily on spoken language for communi-
cation. The fluctuations in air pressure through which speech is transmitted,
however, are regularly corrupted by a variety of sounds from other sources,
including the bustling noises of a crowded street, the ambient whoosh of
wind in an open field, or the speech babbles of other individuals at a social
gathering. Human brains, and indeed the brains of many other species (Fay
2008), are adept at extracting an individual sound source from these complex
mixtures. How the brain performs this task remains poorly understood, yet
a solution to this problem is critical to many important applications. Indi-
viduals with hearing aids struggle to understand speech in crowded spaces
(Palmer 2009); the optimal amplification and processing in quiet environ-
ments are often detrimental to the listening experience in noisy environments
(Edwards 2004). Similarly, artificial speech recognition (ASR) systems, such
as those used in smartphones, often fail in relatively low levels of background
noise (Stern and Morgan 2012). These difficulties have led to great interest
in the field of noise reduction from auditory scientists and engineers. Al-
though spatial cues can be used to facilitate the separation of speech in noise
(Litovsky 2005) we will be focusing on algorithms that record sound from a
single location: single microphone noise reduction (SMNR) algorithms.

Recent work in auditory neurophysiology has shed light on how the brain
parses sounds in noise. To parse the auditory scene, the brain must ana-
lyze incoming sounds in a feature space that reliably separates the particular
sound of interest from the current background noise. One way that this is
performed is by preferentially encoding behaviorally relevant sounds. This
class of sounds, often broadly declared natural sounds, lies in a particular
subspace of all possible sounds (Singh and Theunissen 2003). Indeed, there
is a good deal of evidence showing that natural sounds activate neurons most



CHAPTER 3. STDR BASED NOISE REDUCTION 40

strongly, especially in higher regions of the auditory system (reviewed in
Theunissen and Elie 2014). In an attempt to understand the relevant feature
space for these higher-level neurons, many researchers have looked to reverse
correlation and other methods to build encoding models capable of predicting
a neurons response from an incoming sound (Eggermont et al. 1981; David J
Klein et al. 2006; Theunissen, Sen, and a. J. Doupe 2000; Sharpee, Atencio,
and Schreiner 2011). Studies using these models have shown that the spectro-
temporal modulations can account for large fractions of the sound-induced
responses of neurons in many regions of the auditory system (reviewed in
Theunissen and Elie 2014; David J Klein et al. 2006). This body of work has
demonstrated that the set of spectro-temporal modulations that neurons de-
tect is also not uniformly distributed throughout the entire space but instead
lies in a subspace that lends an efficient encoding of behaviorally relevant
sounds (Sarah M N Woolley, Fremouw, et al. 2005; Rodŕıguez et al. 2010;
Escab́ı et al. 2003).

Extrapolating these results to the problem of analyzing sound in noise
leads to the postulate that when the brain is presented with a behaviorally
relevant sound (e.g. a communication signal) in background noise, the pref-
erential encoding of the behaviorally relevant sound leads to an underrep-
resentation of noise: a noise reduction. There is some evidence to believe
this is the case. For example, a study by Moore, Lee, and Theunissen 2013
showed that neurons sensitive to fast spectral modulations and slow tempo-
ral modulations responded to bird song presented in noise with greater levels
of noise robustness (Moore, Lee, and Theunissen 2013). Other work builds
on this preferential encoding hypothesis but prescribes more important roles
for nonlinear processing (e.g. neural adaptation) and attentional feedback
(Mesgarani, Stephen V. David, et al. 2014; Mesgarani and Chang 2012; Zion
Golumbic, Poeppel, and Charles E. Schroeder 2012; Rabinowitz et al. 2013;
Schneider and Sarah M N Woolley 2013).

Parallel work studying the relevant feature space to predict speech intelligi-
bility has shown the importance of both temporal and spectro-temporal mod-
ulations. Degradation of the slow temporal modulations present in speech
is known to correlate with a loss in speech intelligibility (Dubbelboer and
Houtgast 2008). Other studies indicate that the signal-to-noise ratio in the
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spectro-temporal modulation domain correlates strongly with the intelligibil-
ity of speech in a wide range of situations (Elhilali, Chi, and S. a. Shamma
2003). More specifically, the lowpass region of spectro-temporal modulations
below 7.75 Hz (temporal) and 3.75 cycles / kHz (spectral) seems particu-
larly important for speech intelligibility (T. M. Elliott and Theunissen 2009).
While some research has called into question the role of cross-frequency inte-
gration, or the spectro of spectro-temporal modulations, it seems clear that
the modulation space is a good candidate for the analysis of noisy and cor-
rupted speech (Chabot-Leclerc, Jørgensen, and Dau 2014).

In addition, neural sensory systems are affected by top-down processes
either in the form of attentive mechanisms or expectations. For example,
neural processing of speech in auditory cortical areas has been shown to be
selective for the attended speech stream (Mesgarani and Chang 2012). Ex-
pecting linguistic information also changes the properties of neural responses
to degraded speech in lower cortical areas (Hannemann, Obleser, and Eulitz
2007; Holdgraf et al. n.d.). Both attention and expectation rely on high order
statistical structure in the speech stream that can be used to make predictions
about future sounds and in this manner facilitate the computations needed
for detection and interpretation.

Here we introduce an algorithm that performs single microphone noise re-
duction, extracting speech from background noise by simultaneously learning
a spectro-temporal feature space in which to project noisy speech, applying
a static nonlinearity, and then decoding jointly time-frequency gains that
modify the noisy speech to produce a clean speech estimate. This algorithm
outperforms a standard optimal noise reduction scheme, the Ephraim-Malah
algorithm (Ephraim and Malah 1985) with a minimum statistics noise estima-
tor (Martin 1994; Martin 2001), across multiple measures of sound quality
and intelligibility. Further, we explore the role that predicting upcoming
spectro-temporal features can play in producing a system with strong noise
reduction and minimal throughput delay.
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3.3 Methods

Stimuli

We trained our algorithm on clean speech recordings of the HINT sentence
corpus embedded in multiple noise types (Nilsson, Soli, and Sullivan 1994;
Bradlow et al. 2011). All stimuli were single channel, sampled at 16 kHz,
and band-limited between 25 Hz and 7.5 kHz, with durations averaging 1.9
seconds, ranging from 0.8 to 7.3 seconds. The algorithm was trained in
multiple noise conditions. We first describe results on training sets with 100
stimuli from a single noise type: speech-shaped noise and babble noise. We
then describe results on a training set with 280 stimuli from 7 different noise
types: speech-shaped noise, babble noise and all 5 noise types from the QUT
database (D. Dean et al. 2010). Testing was done either on held-out stimuli
from the same noise types used in training, or on a separate dataset using
12 noise types: 10 gathered from freesound.org, along with white noise and
pink noise. Training was done using sentences from either 1 speaker or 16
speakers at 0 dB SNR. A detailed description of each stimulus set is provided
below.

HINT sentences

The speech used was from the ALLSTAR corpus, a large set of recordings
from 128 multi-lingual speakers (Bradlow et al. 2011). We specifically used
all recordings of the HINT sentences, a stimulus set that includes 120 short,
phonetically balanced sentences (Nilsson, Soli, and Sullivan 1994). Our al-
gorithm was trained on a subset of either 1 female speaker or 16 speakers (8
male and 8 female, including the 1) chosen randomly from the entire database.
Though the speakers were multi-lingual, all sentences were spoken in Amer-
ican English. Testing was then done either on held-out sentences from the
same speakers, or on 112 novel speakers from the database.

Speech-shaped noise

We first tested the algorithm on speech embedded in speech-shaped noise.
Speech-shaped noise is Gaussian amplitude noise filtered to have the same



CHAPTER 3. STDR BASED NOISE REDUCTION 43

long-term average sound spectrum as speech. The long-term average spec-
trum was taken over the entire ALLSTAR corpus. Each noise segment was
one second longer than the corresponding speech segment. The speech was
then centered and added to the noise at 0 dB SNR, unless otherwise stated.

Babble noise

Babble noise was taken from a 235 second segment from the Noisex-92
database (Varga and Steeneken 1993). For each speech stimulus a random
chunk of babble noise 1 second longer than the speech was extracted. Just
as the speech-shaped noise stimuli, the speech was then centered and added
to the babble noise at 0 dB SNR, unless otherwise stated.

QUT noise

Additional training noise was taken from the QUT noise database (D.
Dean et al. 2010). The database contains more than 30 minutes of recording
from each of 10 different locations in 5 different noise types: caf, home, street,
car, reverb. Training data was taken only from group A locations (food court,
kitchen, city, windows down, indoor pool), while group B locations were left
for testing. For each speech stimulus a random chunk 1 second longer than
the speech was extracted. The speech was then centered and added to the
noise at 0 dB SNR, unless otherwise stated.

Freesound.org

Additional noise types used in testing the algorithm were downloaded from
the website freesound.org. The sounds were made available by users of the
site under a variety of Creative Commons licenses. We selected multiple ex-
amples from each of 10 different ambient noise types: airport, bird, machine,
ocean, rain, rain forest, theatre, train, train station, and wind (table 3.1).
For each noise type we chose 5 clips of 5 seconds duration each. This was
done using Audacity audio editing program, and the selections were made to
provide a representative sampling of each noise type.

freesound.org
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URL (http://www.freesound.org/people/) Start time (min:sec)

Airport 1
2 polymorpheva/sounds/104545 04:42.43
3 polymorpheva/sounds/122196 27.306
4 joedeshon/sounds/273468 11.451
5 joedeshon/sounds/273468 01:46.74

Birds 1 saphe/sounds/194889 01:18.96
2 jus/sounds/73617 2.383
3 flio191/sounds/269333 22.62
4 flio191/sounds/269333 44.072
5 frankie01234/sounds/214869 43.178

Machine 1 Personal library 02:50.15
2 rutgermuller/sounds/104079 1.041
3 viertelnachvier/sounds/249636 6.676
4 atmowav/sounds/126289 1.041
5 felipelnv/sounds/153299 2.228

Ocean 1 viertelnachvier/sounds/249637 8.675
2 slanesh/sounds/31762 19.677
3 slanesh/sounds/31762 42.129
4 xserra/sounds/161700 4.588
5 abcopen/sounds/166214 58.624

Rain 1 abcopen/sounds/166214 01:56.42
2 inchadney/sounds/22132 4.911
3 inchadney/sounds/22132 34.04
4 giddykipper/sounds/53489 15.018
5 giddykipper/sounds/53489 43.052

Rainforest 1 inchadney/sounds/221059 03:07.83
2 laurent/sounds/15467 38.074
3 laurent/sounds/15468 58
4 bulj/sounds/93710 5.649
5 bulj/sounds/93710 01:44.77

Theater 1 laurent/sounds/163355 46.633
2 corsica-s/sounds/28422 22.374
3 corsica-s/sounds/28422 55.507
4 edhutschek/sounds/242604 7.323
5 edhutschek/sounds/242604 42.64

Train 1 temawas/sounds/179875 03:59.49
2 sound-of-silenced/sounds/127956 31.317
3 sound-of-silenced/sounds/127956 02:48.23
4 rollingmill/sounds/262262 14.15
5 rollingmill/sounds/262262 02:13.73

Train station 1 rollingmill/sounds/262262 58.284
2 erh/sounds/58179 5.875
3 erh/sounds/61496 33.311
4 volivieri/sounds/50678 01:48.33
5 kyster/sounds/169722 05:08.59

Wind 1 erh/sounds/58179 27.349
2 incarnadine/sounds/13234 33.877
3 incarnadine/sounds/13234 21.772
4 incarnadine/sounds/16109 20.845
5 raremess/sounds/238038 1.82

Table 3.1: Composition of 10 categories of untrained noise types downloaded from
freesound.org.

freesound.org
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Spectro-Temporal Detection-Reconstruction (STDR) noise
reduction algorithm

The goal of any noise reduction scheme is to take a noisy signal, x(t) =
s(t) + n(t), (e.g. an individual speaker in a crowded room) and isolate, as
well as possible, the sound components corresponding to the clean signal, s(t)
(e.g. the individual speaker) from the noise, n(t). This is commonly done by
first applying a collection of bandpass filters to the noisy signal to produce a
set of narrowband channels, y(f, t). Then, each narrowband signal is scaled
by an estimated gain factor, ĝ(f, t), that is proportional to the signal-to-noise
ratio of the channel. Finally, these scaled signals are summed to produce an
estimate of the clean signal, ŝ(t): ŝ(t) =

∑

f y(f, t) · ĝ(f, t).
This scheme is often called an analysis-synthesis design and has been used

successfully for decades in many single microphone noise reduction algorithms
(Boll 1979; McAulay and Malpass 1980; Ephraim and Malah 1984). Where
these algorithms differ is in the method of estimating signal-to-noise and the
functional form of the gains. Here we utilize an artificial neural network
that attempts to analyze the spectro-temporal modulations present in the
noisy signal (Detection stage) to estimate the optimal time-varying gains
(Reconstruction stage) (fig. 3.1). Both detection and reconstruction stages
are inspired by auditory, and more generally sensory, computations performed
by the brain. This novel network architecture provides explicit representation
of the joint spectro-temporal structure present required in both the noisy
signal and the time-varying gains.

Analysis and spectrogram computation

To compute the narrowband signals, y(f, t), we created a filterbank with
223 bandpass Gaussian-shaped filters with center frequencies linearly spaced
between 25 Hz to 7.5 kHz and bandwidths of 32 Hz each, corresponding to a
time-domain window Gaussian window with a 5 ms bandwidth. We computed
the analytic signal from each narrowband signal and extracted the envelope.
A Gaussian-shaped frequency filter with standard deviation of 32 Hz effec-
tively limits the bandwidth of each channels amplitude envelope below 192
Hz (6 x 32 Hz, since 6 standard deviations accounts for approximately 99.8%
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Figure 3.1: The spectro-temporal detection-reconstruction (STDR) algorithm is composed
of two chains: the analysis-synthesis chain and the gain estimation chain (see section 3.3).
Top row: a noisy signal waveform is first bandpass filtered into a set of narrowband channels.
Each narrowband channel is then scaled by a time-varying gain, found in the gain estimation
chain. The scaled channels are then summed to create an estimate of the original clean signal.
Bottom row: the gains are produced using an artificial neural network. Each unit in the
network is characterized by a spectro-temporal detection kernel (i.e. its receptive field)
that determines its output given the spectrogram of a segment of noisy signal, and a gain
reconstruction kernel that it uses to generate time-varying gains for estimating the denoised
signal.

of the density of the window) (Flanagan 1980). Each channel’s envelope was
then extracted by computing the analytic signal and then downsampled to
1 kHz, producing a spectrogram Xlin(f, t). The spectrogram was then log
transformed with a floor value set at -80 dB or -50 dB from the maximum
power. Results were very similar for both floor values except for the babble
noise where performance was slightly but consistently better at -50 dB. Fi-
nally, we subtracted the mean log spectrogram value for each frequency band
before all later processing stages. This time-frequency analysis is qualitatively
similar to the analysis performed by the cochlea, which is often modeled us-
ing a set of bandpass filters, followed by a half-wave rectification, low-pass
filtering, and adaptive gain control (Lyon 1982). This complete preprocess-
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ing was applied to each individual sound before being fed into the network
as X(f, t).

Artificial neural network

The artificial neural network was structured as a three-layer autoencoder
(Hinton and Salakhutdinov 2006). The input to the network was processed
spectrogram, X(f, t). Each first layer unit operated on this time-frequency
representation using a spectro-temporal filter:

am(t) =
N
∑

f=1

LD−1
∑

τ=0

X(f, t− τ)φm(f, τ)

, where am(t) is the response of input unit m, φm(f, τ) is its spectro-temporal
filter, and LD is its filter duration. The activation of each input unit was
scaled to have unit standard deviation to help with optimization. This was
done for each individual sentence, though the rescaling could instead be done
on the next layers input weight matrix, if desired. The number of units
in the first layer was chosen to be 100 and τ ranged from 0 ms to 99 ms,
yielding a completely causal filter with 100 ms duration. The middle layer
performed a weighted linear combination of the first layer responses followed
by a pointwise threshold nonlinearity: ri(t) = max(wi · a(t) + βi, 0). Here,
ri(t) is the response unit i, wi is the ith row of the weight matrix W , a(t)
is the vector of first layer unit responses, and βi is the unit’s threshold. The
number of units in the middle layer was set to 80. The final layer performed
a simple weighted linear combination of the middle layers responses: on(t) =
vn · r(t), where, again, on(t) is the unit response and vn is the nth row
of the weight matrix V . The time-varying gains were then reconstructed
from the final layer activities by convolving with a spectro-temporal gain
reconstruction kernel and summing across all units. Lastly, we applied a
sigmoid function to the gain, bounding it between 0 and 1.

ĝ(f, t) = σ

(

γf +
∑

n

τ0+LR−1
∑

τ=τ0

on(t− τ)ψn(f, τ)

)
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Figure 3.2: The reconstruction kernels can be used to apply gains completely in the past,
overlapping the window used in detection (causal detection combined with acausal recon-
struction), completely in a predictive mode where the detection window is in the past and
the reconstruction kernel window is in the future (causal detection followed by causal recon-
struction) or anywhere in between. This is done by shifting the delays of the reconstruction
kernel window while maintaining a fixed window duration. For acausal reconstruction, the
real-time algorithm would have a minimum delay given by the extent of the reconstruction
window in the past.

. Here, σ is a sigmoid function (here the logistic function), γf is a bias term
for frequency band f , ψn(f, τ) is the spectro-temporal gain reconstruction
filter for unit n, and LR is the duration of the reconstruction filters. Though
it is not required, the parameters of the final layer were taken to be the same
as those chosen for the first layer: the number of units was set to 100 and the
duration of the filters was 100 ms. In contrast to the first layer, however, we
explored several different ranges for τ , beginning with the completely acausal
regime of -99 ms to 0 ms where the reconstructed gains are entirely in the
past, and sliding the window to the completely predictive regime of 0 ms to
99 ms where the reconstructed gains are entirely in the future (fig. 3.2). Also
note that is a common practice to set the minimum asymptotic value of the
sigmoid to some small, nonzero value: g = gmin+(1−gmin)ĝ. While we found
that this subjectively offers some benefits, we have kept this value at zero for
sake of clarity. The number of units in each layer was chosen such that an
increase provided no further qualitative benefit. The duration of the filters
were varied symmetrically from 10 ms to 200 ms, and 100 ms was chosen
as the value that provided the best overall performance for all noise types,
though the differences were small.
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To understand how the network processed the signals, we found it helpful
to break down the computations into two functional phases: a detection
phase, corresponding to the first and second layers, and a gain reconstruction
phase, corresponding to the second and third layers (fig. 2.2). In this view,
each unit in the middle layer can be said to perform a spectro-temporal
feature detection on the input using it spectro-temporal detection kernel,
defined as:

Di(f, τ) =
∑

m

Wi,mφm(f, τ)

. These filters are commonly called spectro-temporal receptive fields (STRF)
by auditory neurophysiologists and have been shown to effectively represent
speech (Mesgarani 2008). We will use this nomenclature here when appro-
priate. Similarly, each unit in the middle layer makes its own contribution to
the estimated gains using its gain reconstruction kernel, defined as:

Ri(f, τ) =
∑

n

Vn,iψn(f, τ)

. For this reason we call our algorithm the spectro-temporal detection-
reconstruction, or STDR, algorithm.

Optimization

The spectro-temporal filters of the first and third layers were learned using
principal components analysis (PCA) on separate examples of clean speech
and noise. PCA was performed on sections of spectrogram taken by sliding
a 100 ms rectangular window with a stride of 50% of the window duration.
We used a total of 100 principal components, 50 from clean speech and 50
from noise.

Optimizations were performed on a training set of 100 examples, for speech-
shaped noise and babble noise, or 280 examples, for 7 noise type training, of
signal in background noise, each less than 5 seconds in duration and where
ground truth signal and noise were known. All performance metrics, de-
scribed in the next section, were computed on a held-out set of noisy stimuli
not seen during training. The weight matrices, W and V , unit biases, βi,
and frequency band biases, γf , were all updated in order to minimize the
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mean squared error between the estimated gains, ĝ, and the optimal gains,
g̃, computed as

1

NT

T
∑

t=1

N
∑

f=1

(g̃(f, t)− ĝ(f, t))2

, with

g̃(f, t) =
|Slin(f, t)|

|Xlin(f, t)|

. Here, g̃ is the optimal time-frequency gain that maps the linear noisy spec-
trogram Xlin (i.e. pre-logarithm) to the linear clean spectrogram Slin. T is
the total number of time points. Parameters were updated using gradient de-
scent and optimization ceased when the error had increased for 5 consecutive
iterations on a held-out portion of 10% of the training data. All filter weights
were initialized to small, uniform random values centered on zero. The range
for the weights was chosen using the normalized initialization heuristic from
(Glorot and Bengio 2010), which has been shown to alleviate discrepancies
in learning between layers and to perform well in simulations with deep net-
works. The biases were all initialized to zero. Only one random initialization
was done, as multiple randomizations produced qualitatively similar results.

Performance metrics

We assessed the performance of our algorithm using objective measures
of sound quality, speech intelligibility. Sound quality was quantified using
three composite ratings as proposed by Hu and Loizou 2008. These three
ratings predict the subjective evaluations of normal hearing listeners for the
speech distortion, background noise intrusiveness and overall quality of a
processed sound. These three ratings are obtained in turn from linear combi-
nations of four other objective measures: the segmental signal-to-noise ratio
(Hansen and Pellom 1998), the weighted spectral slope (Klatt 1982), the log
likelihood ratio (Quackenbush, Barnwell, and Clements 1988) and the per-
ceptual estimate of sound quality (PESQ) (Rix et al. 2001). The three ratings
showed correlations of 0.73, 0.64, and 0.73 between objective and subjective
quality judgments along each of the corresponding three dimensions (speech,
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background, and overall). Code for the algorithms was downloaded from:
http://ecs.utdallas.edu/loizou/speech/software.htm.

To gauge speech intelligibility, we used the short-time objective intelligi-
bility (STOI) rating, which measures the similarity between time-frequency
representations of the clean speech and the processed noisy speech (Taal et
al. 2011). This measure was shown to significantly correlate with subjec-
tive reports of speech intelligibility, with a correlation coefficient of 0.92 for
speech processed using single microphone noise reduction techniques. Code
for STOI was downloaded from: http://www.ceestaal.nl/matlab.html.

To determine if the performance of our STDR algorithm was significantly
better than either the unfiltered noisy signal or a comparison algorithm (the
Ephraim-Malah algorithm) we used a linear mixed-effects model. Both the
comparison algorithm and the mixed-effects model are described in more
detail in sections 3.3 and 3.3.

Normalized performance

Normalized performance values shown in fig. 3.6 and fig. 3.8 were computed
as:

NPalg = 100×
Palg − Punfilt

Popt − Punfilt

. Here, Palg is the performance of a particular algorithm, Punfilt is the metric
computed on the noisy speech signal, and Popt is the optimal performance
using time-frequency gains, g̃(f, t) . Thus, the normalized performance of
the unfiltered noisy speech is set to 0, the optimal performance is set to 100,
and a specific algorithms performance is the percentage of improvement over
the unfiltered noisy speech on any particular metric that the algorithm could
hope to achieve.

Comparison algorithm

We compared our algorithm with a current standard method for SMNR.
The algorithm computes the optimal gain to map the noisy speech log spectral
amplitude to the clean speech log spectral amplitude, as put forth by Ephraim
and Malah (EM) (Ephraim and Malah 1985). A minimum statistics noise es-

http://ecs.utdallas.edu/loizou/speech/software.htm
http://www.ceestaal.nl/matlab.html
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timator provides the EM algorithm with the required estimate of the noise
spectrum. The minimum statistics algorithm estimates the noise spectrum
as proportional to the minimum power within each frequency band across a
short time window (Martin 2001). The algorithm is founded on the expec-
tation that the target speech envelope is highly modulated with brief bouts
of silence between words and syllables. If the time window over which you
estimate the minimum power is long enough to reliably include these silent pe-
riods, the noise spectrum can be estimated as the minimum values. Because
the noise estimator works on a relatively short time window (1.5 seconds), the
algorithm is capable of handling nonstationary noises and continuous speech
without any large silent periods. The algorithm used was the ssubmmse.m
MATLAB routine implemented in the freely available package VOICEBOX
(Brookes 2002). Code for the EM algorithm was downloaded from: http://
www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html. All user de-
pendent parameters of the EM algorithm were left at their default values.

Significance testing

To determine if the performance of our STDR algorithm was significantly
better than either the unfiltered noisy signal or the EM algorithm, we used a
linear mixed-effects model with algorithm and stimulus SNR as fixed effects
and sentence ID as a random effect. This model was implemented using the
MATLAB function fitlme.m. The model computes the best estimate for the
difference in performance on any given metric, that processing with STDR
adds over either the unfiltered stimulus or the EM filtered stimulus, as well
as confidence intervals and p-values for this difference being nonzero. All
statistics are reported as: Delta in performance (p-value). The number of
degrees of freedom for each LME model were: 207 for all single speaker tests
and 3357 for all 16 speaker tests.

3.4 Results

As described in the methods, we developed a novel algorithm for single
microphone noise reduction called spectro-temporal detection-reconstruction

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
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(STDR). STDR relies on the detection of spectro-temporal features that are
useful for separating signal from noise and uses those detections to adjust
time-varying gains on each frequency band in a predictive manner. In the
results section, we further describe how the algorithm works by examining
the role of its components in specific speech-in-noise situations and compare
its performance to the EM algorithm.

Role of individual detection and gain reconstruction filters

As we will further describe below, our algorithm showed improvements on
most of the metrics we tested across a wide range of input signal-to-noise ra-
tios (SNR) as compared to both the unfiltered sound and the sound processed
by the EM algorithm. STDR achieves this feat by detecting characteristic
structure in both the signal and the noise and attempting to maintain high
gains in signal-heavy regions of the time-frequency plane and to decrease
the gains in noise-heavy regions. This push-pull action manifests in learned
detection and reconstruction gain filters that can clearly be interpreted as
signal-selective and noise-suppressive units. Section 3.4 shows four example
units trained on speech from a single speaker embedded in babble noise. The
first unit (section 3.4c) functions primarily to suppress noise. The detection
filter is strongly inhibited by the broadband onsets and more sustained energy
in high frequencies that are characteristic of isolated speech. When the unit
is not inhibited, it yields a broadband negative gain suppressing sound. The
other three units select for specific speech features, with sparse activations
that are nonzero only when their particular feature is present in the stimulus.
The filter of the second unit (section 3.4d) detects short bursts of high fre-
quency power often associated with fricatives in speech. The reconstruction
gain is almost a perfect match to the detection filter boosting those specific
sections of the speech signal. The filter of the third unit (section 3.4e) detects
coarse power in the mid-frequencies with some harmonic structure. The filter
of the fourth unit (section 3.4f) is highly specific, responding selectively to the
harmonic structure of the trained speakers voice. The detection filters and
reconstruction gain filters for all units are shown in fig. 3.4. In general, there
was a consistent dichotomy between noise-suppressive and signal-selective
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units with a continuum of filter types within each category.

Performance on speech in speech-shaped noise

By utilizing an array of individual units with different feature selectivity
learned from a representative data set, the algorithm is able to produce ac-
curate reconstructions to novel noisy stimuli. We tested the performance of
our algorithm using sentences from the hearing-in-noise test (HINT) embed-
ded in two types of background noise: speech-shaped noise and babble noise.
The speech-shaped noise tested was computed to match the spectrum of each
individual sentence. The STDR algorithm was trained on a set of 100 sen-
tences from either 1 or 16 individuals, chosen randomly from a large database
of speakers, at 0 dB SNR (See section 3.3). fig. 3.5 shows the performance
of the STDR algorithm on a novel sentence from speaker 1 when trained on
speech from 1 speaker (fig. 3.5c and fig. 3.5e) and 16 speakers (fig. 3.5d and
fig. 3.5f). A few features stand out when looking at the time-frequency gains.
Firstly, it captures precisely the low frequency harmonics corresponding to
the speakers pitch. This effect is much stronger when the algorithm was
trained only on the speaker shown but is still present when trained on 16
speakers (fig. 3.5c and fig. 3.5d, inset). Secondly, the STDR algorithm recon-
structs the slowly changing spectro-temporal contours of stimulus power in
the formants. This is evident in the dark regions in the low to mid frequen-
cies. Thirdly, it precisely amplifies the high frequency power found in many
consonants. Because this level of high frequency power is transient and only
present in the speech itself, it represents a very specific cue for clean speech
and is robustly detected. Lastly, the temporal structure in general of the
voice is very reliably detected, demonstrated by the strong onsets and offsets
in gains. Sound files for both the noisy speech and the denoised estimates
can be found in the supplemental materials.

To quantify the performance, we processed 15 novel sentences from each
trained speaker at 7 different SNRs and then computed several objective
measures of performance that have been used in the field (see section 3.3).
Note that the algorithm was only trained at 0 dB SNR and that our perfor-
mance quantification not only uses novel sentences but also a range of SNR
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Figure 3.3: Individual units in the network detect and reconstruct different types of spectro-
temporal features. (a) A spectrogram of the sentence ”The teapot was very hot”. (b) A
spectrogram of the sentence from (a) added to babble noise at 0 dB SNR. (c - f) Exam-
ple responses from four individual units showing, for each, its detection filter (top left), its
thresholded activation in response to the spectrogram in (b) (top right), its gain reconstruc-
tion filter (bottom left), and the resulting reconstructed gains (bottom right). For the filters
and reconstructed gains, blue represents a decrease in gain value whereas orange represents
an increase in gain value. (c) This unit predominately lowers the gain on noisy periods and
is strongly inhibited by the broadband onsets of speech. (d) This unit detects power and
reconstructs gains in the mid-range frequencies with additional selectivity for specific har-
monic structure. (e) This unit detects sharp onsets in the high frequencies, a feature present
only in the consonants of the foreground speech. (f) This unit shows strong selectivity for
the specific harmonics of the trained speaker.

around 0. To assess the intelligibility of the processed speech, we computed
the short-time objective intelligibility (STOI) measure (Taal et al. 2011). Our
STDR algorithm showed slight but significant improvements on this measure
over the unfiltered noisy speech (.03 (p < 10−4), df=207, linear mixed-effects
model, see section 3.3)(fig. 3.6a,b, left column). It also significantly outper-
formed a standard noise reduction algorithm that utilizes minimum statistics
noise estimation and log MMSE optimal frequency filtering, the Ephraim
Malah (EM) algorithm (.05 (p < 10−4), see section 3.3)(Ephraim and Malah
1985). These benefits were seen on a large majority of individual sentences
(fig. 3.6b, left column).

To assess the resulting quality of the processed stimulus, we computed a set
of three composite measures (Hu and Loizou 2008). These measures combine
multiple pre-existing objective measures to best estimate the subjective sound
quality ratings of human listeners along three axes, namely speech quality,
background noise intrusiveness and overall quality (see also section 3.3). The
STDR algorithm performed well, significantly improving each rating over the
unfiltered stimulus (estimated improvement of .54 (p < 10−4), .30 (p < 10−4)
and .44 (p < 10−4) for signal, background and overall, respectively). It
also provided significant improvements over the EM algorithm on all three
measures (.32 (p = 6 × 10−4), .07 (p < 10−4), .15 (p < 10−4))(fig. 3.6a,b,
center and right columns show background noise intrusiveness and overall
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Figure 3.4: All detection and gain reconstruction filters for the model trained on a single
speaker in babble noise. Filters from the four units highlighted in section 3.4 are bounded
with a thick box.
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Figure 3.5: An example of filtering by the STDR algorithm when trained on 1 or 16 speakers
in stationary speech-shaped noise. (a) A spectrogram of the sentence ”School got out early
today”. (b) A spectrogram of the same sentence after the addition of speech-shaped noise
at 0 dB SNR. (c) The predicted time-frequency gains generated by a model trained only on
the speaker of the sentence. (d) The predicted time-frequency gains generated by a model
trained on 16 different speakers, including the speaker of the sentence. The resulting gains
in (c) and (d) are similar with similar coarse spectral and temporal structure. Differences
between the two are found in their finer spectral structure: the model trained with only
a single speaker shows more finely resolved harmonic structure (inset), indicating that the
model is more finely tuned to the speakers characteristic pitches and pitch transitions. (e)
and (f) The resulting estimated clean speech spectrogram obtained by applying the gains
from (c) and (d), respectively, to (b).
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quality, respectively). The performance increases were not just in aggregate
but were found for the vast majority of the sentences (fig. 3.6b, center and
right columns). The mean performance for each processing on the complete
set of 8 metrics computed (STOI, 3 composite measures and the 4 component
measures they comprise) is shown in table 3.2.
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Figure 3.6: The performance of the algorithm on speech in speech-shaped noise was measured
using 4 different objective measures (3 shown). Stimuli consisted of a hold-out set of 15
sentences from each speaker processed at 7 different SNRs, ranging from -9 to +9 dB SNR.
Results shown in rows (a) and (b) were obtained from the algorithm trained on a single
speaker, whereas results in rows (c) and (d) were obtained from the algorithm trained on
16 speakers. The measures shown here are: the short-time objective intelligibility (STOI)
rating, the composite rating of background intrusiveness, and the composite rating of overall
quality (see section 3.3). (a) Summary plots of the results obtained on each rating were
obtained by averaging over all 15 sentences per SNR. In these plots, the lower bound of
the shaded region shows the rating of the unfiltered, noisy speech, and the upper bound
depicts performance using the optimal time-frequency mask (the ideal gains used as the
objective during training). The two lines represent the performance of our algorithm (marked
by circles) and the EM algorithm (squares). (b) Scatter plots of the normalized ratings
(improvement in performance) obtained for each individual sentence (see section 3.3): the
x-value corresponds to the sentence processed by STDR, the y-value corresponds to the
sentence processed by EM, and the shade corresponds to the input SNR for that sentence.
Values to the right of the y-axis indicate that processing with our algorithm improves the
rating over unfiltered. Values above the x-axis indicate that processing with EM improves the
rating over unfiltered. Values to the right of y=x represent sentences where our algorithm is
superior to the EM algorithm. For each metric, the STDR algorithm performed significantly
better than both the unfiltered stimulus and the EM algorithm. (c) and (d) Same plots
as in (a) and (b) but for 240 sentences from 16 speakers. The STDR algorithm improved
both composite metrics over unfiltered, outperforming the EM algorithm on background
intrusiveness. The mean performance for each processing on the complete set of 8 metrics
computed (STOI, 3 composite measures and the 4 component measures they comprise) is
shown in table 3.2 and table 3.3.
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Algorithm Unfiltered EM STDR

Metric
Composite Signal 1.76 2.0 2.31

Composite Background 1.55 1.77 1.84

Composite Overall 1.36 1.65 1.8

STOI 0.73 0.71 0.76

LLR 1.29 1.23 1.0

Segmental SNR -1.6 -0.19 -0.06

PESQ 1.27 1.64 1.55
WSS 84.64 91.5 75.69

Table 3.2: Performance of EM and STDR algorithms on 15 sentences from a single speaker
embedded in speech-shaped noise. Values are averaged over all 15 sentences and 7 different
SNRs. Bold values indicate best performance. For all but log-likelihood ratio (LLR) and
weighted spectral slope (WSS) larger values are better.

Algorithm Unfiltered EM STDR

Metric
Composite Signal 2.08 2.18 2.45

Composite Background 1.85 1.94 1.96

Composite Overall 1.7 1.84 1.95

STOI 0.74 0.71 0.75

LLR 1.35 1.28 1.05

Segmental SNR -1.34 -0.41 -0.53
PESQ 1.5 1.73 1.65
WSS 59.34 71.04 62.16

Table 3.3: Performance of EM and STDR algorithms on 15 sentences each from 16 speakers
embedded in speech-shaped noise. Values are averaged over all 240 sentences and 7 different
SNRs. Bold values indicate best performance.

Performance remained high when the model was trained on 16 speakers
and tested on 15 held-out sentences from each of those same 16 speakers
(fig. 3.6c,d). For the STOI ratings, the STDR algorithm showed slight but
significant improvements over both the unfiltered speech (.01 (p < 10−4),
df=3357) and the EM algorithm (.04 (p < 10−4)). Similarly, STDR improved
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the composite ratings of quality over unfiltered speech (.38 (p < 10−4), .11
(p < 10−4), .26 (p < 10−4), for signal, noise and overall quality, respectively)
and the EM algorithm for all three metrics (.27 (p < 10−4), .02 (p = 5×10−4),
.12 (p < 10−4), for signal, noise and overall quality, respectively).

Performance on speech in babble noise

A more challenging stimulus set is shown in fig. 3.7. Here the sentences
from the same database were added to babble noise from the Noisex corpus.
Babble noise, being roughly equivalent to the summation of many individ-
ual speakers, has the same long-term spectrum as clean speech, but with
spectral and temporal modulations somewhere in between individual speak-
ers and speech-shaped noise. Here again, the STDR algorithm extracted
complex joint spectro-temporal structure, with better resolution of individ-
ual harmonics when trained on a single speaker than trained on 16 speakers
(fig. 3.7 c-d, inset). The model trained on a single speaker also showed greater
overall levels of contrast, indicating more specificity its ability to detect the
target speech. Sound files for both the noisy speech and the denoised estimate
can be found in the supplementary materials.

Looking again at the entire set of 15 sentences per speaker, composite qual-
ity ratings were significantly increased over unfiltered speech (.61 (p < 10−4),
.66 (p < 10−4), .60 (p < 10−4), speech distortion, noise intrusiveness, and
overall quality, respectively)(fig. 3.8a,b, composite rating of noise intrusive-
ness in center column) and over the EM algorithm (.16 (p < 10−4), .45
(p < 10−4), .23 (p < 10−4)). For the composite ratings, the STDR algorithm
showed larger benefits over the EM algorithm when processing babble noise
instead of speechshaped noise. This is due primarily to the EM algorithm
showing smaller, though still significant, benefits from processing, likely be-
cause of the temporal nonstationarity of the noise. Performance gains on the
STOI measure were lessened, though still significant, for the STDR algorithm
(.02 (p < 10−4)) over both unfiltered and EM processed speech.
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Figure 3.7: An example of filtering by the STDR algorithm when trained on 1 or 16 speakers
in nonstationary babble noise. The figure layout is identical to fig. 3.5. (a) The clean speech
spectrogram for the sentence ”The teapot was very hot.” (b) Spectrogram for the sentence
from (a) added to babble noise at 0 dB SNR. (c) and (d) Again, the resulting gains in
both the 1 and 8 speaker case are very similar but the 1 speaker model is able to capture
more precise harmonic structure (inset). (e) and (f) The resulting estimated clean speech
spectrogram obtained by applying the gains from (c) and (d), respectively, to (b).
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Figure 3.8: The performance of the algorithm on speech in nonstationary babble noise was
measured using 4 different objective measures (3 shown). The figure layout is identical to
fig. 3.6. The mean performance for each processing on the complete set of 8 metrics are
shown in table 3.4 and table 3.5.

Algorithm Unfiltered EM STDR

Metric
Composite Signal 1.4 1.84 2.0

Composite Background 1.01 1.22 1.68

Composite Overall 1.12 1.49 1.72

STOI 0.71 0.71 0.73

LLR 1.43 1.15 1.34
Segmental SNR -7.26 -5.81 -3.12

PESQ 1.29 1.6 1.74

WSS 111.6 115.83 84.84

Table 3.4: Performance of EM and STDR algorithms on 15 sentences from a single speaker
embedded in babble noise. Values are averaged over all 15 sentences and 7 different SNRs.
Bold values indicate best performance.

Performance of STDR trained on 16 speakers was generally similar (fig. 3.8c,d),
so we will focus on the differences. In total, composite ratings of quality were
elevated for all processing types, with EM processing improving most for sig-
nal and overall quality and STDR improving most for noise intrusiveness (-.17
(p < 10−4), .14 (p < 10−4), -.08 (p < 10−4), for signal, noise and overall qual-
ity, respectively). Both processing types improved quality above unfiltered
speech, however. STOI ratings for STDR were insignificantly different than
unfiltered speech (p=.98), while the EM algorithm was significantly worse
(-.01 (p < 10−4)).

Testing performance generalization

To gauge the flexibility and generalization ability of the STDR algorithm,
we trained the algorithm on a total of 280 sentences from 16 speakers em-
bedded in 7 different noise types (5 QUT noises (see section 3.3), Noisex
babble noise and speech-shaped noise). The algorithm was then tested on
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Algorithm Unfiltered EM STDR

Metric
Composite Signal 1.79 2.06 1.89
Composite Background 1.72 1.78 1.92

Composite Overall 1.53 1.72 1.64
STOI 0.69 0.68 0.69

LLR 1.51 1.23 1.5
Segmental SNR -1.93 -0.74 0.11

PESQ 1.53 1.72 1.64
WSS 74.61 89.2 72.23

Table 3.5: Performance of EM and STDR algorithms on 15 sentences each from 16 speakers
embedded in babble noise. Values are averaged over all 240 sentences and 7 different SNRs.
Bold values indicate best performance.

novel sentences from each speaker and noise type, as well as from 114 un-
trained speakers embedded in 12 different untrained noise types gathered
from freesound.org (see section 3.3). The STDR algorithm, as presented
here, has too few parameters to effectively handle such diverse and large
datasets. In these situations, filtering shows little improvement over unfil-
tered, though rarely acts as a detriment (fig. 3.9 and fig. 3.10). In general,
STOI was unaffected or slightly decreased, while composite measures were
unaffected or significantly improved. Specifically, 6 of 7 noise types (all but
babble noise) showed improvement on multiple composite measures. Gen-
eralization to novel noise types and speakers was best for stationary noises
(white noise and pink noise), as well as backgrounds of birds and rainforest
sounds. Again, improvements were primarily seen for composite measures,
with STOI showing either no difference or small detriments. These find-
ings are consistent with the differences seen above when training on a single
speaker versus 16 speakers. For single speaker instances the detection and
reconstruction kernels can be tuned to very precise structure. Increasing the
number of speakers loses some of this precise structure but maintains much
of the coarse spectro-temporal structure characteristic of speech. By increas-
ing the diversity of the dataset under investigation, the set of features that
can reliably distinguish speech from noise decreases. As discussed below one
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EM STDR Unfiltered

Babble
Composite Signal 2.08 2.24 2.41

Composite Background 1.73 1.78 1.87

Composite Overall 1.66 1.76 1.88

STOI 0.68 0.68 0.72

LLR 1.15 1.1 1.0
Segmental SNR -0.77 -1.39 -0.84
PESQ 1.55 1.53 1.57

Cafe 84.55 71.7 65.99
Composite Signal 1.23 1.84 1.37
Composite Background 1.79 1.92 1.84
Composite Overall 1.21 1.56 1.3
STOI 0.7 0.73 0.74

LLR 2.0 1.56 1.99
Segmental SNR -0.14 0.02 -0.96
PESQ 1.46 1.46 1.41

Car 76.72 59.36 57.82
Composite Signal 2.51 2.5 2.45
Composite Background 2.03 1.95 1.96
Composite Overall 2.04 1.98 1.94
STOI 0.74 0.74 0.77

LLR 1.02 1.01 1.05

Segmental SNR 0.31 -0.61 -0.54
PESQ 1.82 1.67 1.62

Home 69.83 63.1 59.86
Composite Signal 2.05 2.35 2.19
Composite Background 1.91 2.01 2.02

Composite Overall 1.69 1.89 1.8
STOI 0.72 0.73 0.76

LLR 1.3 1.14 1.3

Segmental SNR 0.57 0.49 0.51
PESQ 1.61 1.63 1.6

EM STDR Unfiltered

Reverberant 75.64 61.67 58.86
Composite Signal 1.4 1.7 1.14
Composite Background 1.95 1.95 1.85
Composite Overall 1.4 1.51 1.2
STOI 0.72 0.74 0.76

LLR 2.01 1.73 2.25

Segmental SNR 0.29 -0.04 -1.19
PESQ 1.63 1.49 1.42

SSN 68.4 56.98 55.25
Composite Signal 2.18 2.3 2.07
Composite Background 1.93 1.86 1.84
Composite Overall 1.83 1.82 1.69
STOI 0.71 0.72 0.73

LLR 1.28 1.12 1.35

Segmental SNR -0.43 -1.2 -1.4
PESQ 1.73 1.55 1.5

Street 71.56 63.51 59.59
Composite Signal 1.59 1.92 1.6
Composite Background 1.8 1.86 1.81
Composite Overall 1.43 1.6 1.41
STOI 0.7 0.72 0.74

LLR 1.69 1.45 1.74

Segmental SNR -0.35 -0.55 -0.99
PESQ 1.55 1.48 1.41

Table 3.6: Performance of EM and STDR algorithms on 5 sentences each from 16 speakers
embedded in 7 different training noise types. Values are averaged over all 80 sentences and
7 different SNRs per noise type. Bold values indicate best performance.

could increase the sensitivity to these diminishing discriminating features by
increasing the number of units (PCs) or adding intermediate layers in our
network.

Performance for different reconstruction delays

Speech contains strong correlations at the timescale of tens to hundreds
of milliseconds. These correlations imply that one could build an effective
noise reduction algorithm with minimal throughput delay by utilizing mostly
predictive gains. As the time-frequency gains produced by our algorithm re-
sult from the convolution of gain reconstruction kernels with artificial unit
activations, we need only adjust the time delays used for the reconstruction
window. All previous results displayed an algorithm that was entirely acausal
in its reconstruction that is the model detected features in the past and then
attempted to produce gains for those same past time points. The applica-
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Figure 3.9: Mean performance on 6 of 7 training noise types (Home noise not shown) for
both the STDR and EM algorithms. Testing was done on 15 novel sentences from each of
the 16 training speakers, each embedded in a novel example from the specified noise type.
Car, Cafe, Home, Reverberant and Street noises are taken from the QUT database, babble
noise was taken from the Noisex-92 database, and speech-shaped noise was created to match
the long-term average speech spectrum of the entire ALLSTAR database of 128 speakers.
Plots are formatted as in fig. 3.6 and fig. 3.8. In the interest of space, only the composite
overall quality and STOI measures are shown. Average values across all SNRs are shown in
table 3.6.
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Figure 3.10: Mean performance on all 12 novel noise types for both the STDR and EM
algorithms. Testing was done on 5 sentences from each of 112 novel speakers, each embedded
in an example of the specified noise type. Ten of twelve noise types were downloaded from
freesound.org and are listed in table 3.1. White noise and pink noise were generated. In the
interest of space, only the composite overall quality and STOI measures are shown. Average
values across all SNRs are shown in table 3.7.
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EM STDR Unfiltered

Airport
Composite Signal 2.16 2.4 2.49

Composite Background 1.79 1.88 1.92

Composite Overall 1.74 1.9 1.95

STOI 0.7 0.72 0.75

LLR 1.13 1.06 1.0
Segmental SNR -0.67 -1.15 -0.91
PESQ 1.62 1.62 1.61

Birds 82.3 64.98 60.77
Composite Signal 1.83 2.21 2.04
Composite Background 2.26 2.46 2.34
Composite Overall 1.9 2.14 2.02
STOI 0.82 0.84 0.85

LLR 1.99 1.76 1.91
Segmental SNR -0.03 1.32 -0.36
PESQ 2.12 2.17 2.09

Machine 54.55 41.56 38.83
Composite Signal 2.17 2.25 2.11
Composite Background 2.0 1.91 1.92
Composite Overall 1.84 1.82 1.74
STOI 0.71 0.72 0.74

LLR 1.33 1.22 1.37

Segmental SNR 0.13 -0.92 -1.02
PESQ 1.75 1.57 1.54

Ocean 67.61 59.31 55.53
Composite Signal 2.4 2.38 2.33
Composite Background 1.98 1.87 1.89
Composite Overall 1.96 1.86 1.83
STOI 0.71 0.72 0.74

LLR 1.1 1.07 1.14

Segmental SNR -0.16 -1.23 -1.1
PESQ 1.74 1.54 1.51

Pink noise 67.64 60.58 56.54
Composite Signal 1.83 2.03 1.6
Composite Background 1.98 1.89 1.85
Composite Overall 1.66 1.67 1.43
STOI 0.7 0.73 0.73

LLR 1.64 1.4 1.8

Segmental SNR -0.03 -0.78 -1.3
PESQ 1.71 1.5 1.41

Rain 66.45 58.58 54.56
Composite Signal 2.62 2.55 2.39
Composite Background 2.23 2.03 2.03
Composite Overall 2.21 2.1 1.98
STOI 0.78 0.79 0.81

LLR 1.1 1.08 1.22

Segmental SNR 1.12 -1.01 -0.79
PESQ 2.0 1.83 1.73

EM STDR Unfiltered

Rainforest 61.55 59.94 54.22
Composite Signal 1.71 1.97 1.45
Composite Background 2.37 2.51 2.3
Composite Overall 1.85 2.02 1.71
STOI 0.85 0.86 0.87

LLR 2.16 2.02 2.47

Segmental SNR 0.9 1.8 -0.85
PESQ 2.12 2.14 2.03

Theatre 48.01 37.34 35.61
Composite Signal 2.33 2.41 2.48

Composite Background 1.86 1.91 1.91

Composite Overall 1.87 1.91 1.95

STOI 0.7 0.72 0.75

LLR 1.05 1.08 1.02
Segmental SNR -0.55 -1.06 -1.2
PESQ 1.68 1.61 1.59

Train 76.75 61.17 58.01
Composite Signal 3.13 2.93 3.13
Composite Background 2.21 2.05 2.12
Composite Overall 2.5 2.33 2.45
STOI 0.8 0.79 0.83

LLR 0.63 0.77 0.63
Segmental SNR 0.3 -1.44 -0.87
PESQ 2.07 1.9 1.92

Train station 62.33 58.3 53.2
Composite Signal 2.44 2.4 2.54

Composite Background 1.89 1.88 1.91

Composite Overall 1.94 1.9 1.98

STOI 0.72 0.73 0.76

LLR 0.97 1.06 0.96
Segmental SNR -0.4 -1.31 -1.24
PESQ 1.72 1.61 1.61

White noise 77.05 63.39 59.49
Composite Signal 1.3 1.59 0.78
Composite Background 2.16 2.14 1.95
Composite Overall 1.45 1.54 1.07
STOI 0.75 0.79 0.78
LLR 2.3 2.01 2.73

Segmental SNR 1.06 0.84 -1.38
PESQ 1.75 1.6 1.46

Wind 53.95 45.29 42.85
Composite Signal 2.41 2.41 2.39
Composite Background 1.97 1.92 1.92
Composite Overall 1.93 1.88 1.88
STOI 0.74 0.75 0.76

LLR 1.05 1.06 1.09

Segmental SNR 0.1 -0.65 -0.93
PESQ 1.66 1.53 1.52

Table 3.7: Performance of EM and STDR algorithms on 5 sentences each from 112 speakers
embedded in 12 different untrained noise types. Values are averaged over all 660 sentences
and 7 different SNRs per noise type. Bold values indicate best performance.
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tion of such an algorithm would result in a minimum time-delay that would
correspond to the duration of the gain reconstruction kernel (here 100 ms).
We also explored the ability of our algorithm to function using prediction
by varying the delay window. For reconstruction kernels of 100 milliseconds
duration, entirely acausal delays correspond to a central delay of -50 millisec-
onds, whereas entirely predictive delays correspond to a central delay of +50
milliseconds. We tested three additional delays in the middle of these two
extremes. fig. 3.11 shows the results of these experiments using the same per-
formance metrics as before. Here we have plotted the average performance
across fifteen novel sentences from a single speaker in both speech-shaped
noise and babble noise. All ratings are plotted for sentences at 0 dB SNR.
The schematic labels below graphically depict the purview of the detection
filters and reconstruction gain filters for each condition. Generally, perfor-
mance was best for entirely acausal delays, with gradually decreasing, though
still significantly positive, performance with more predictive delays. For both
background noises, the STOI was the measure most affected by shifting to
predictive delays. For both, the two most predictive algorithms no longer
showed a benefit, with the most predictive algorithm decreasing the rating.
Conversely, STDR showed significant improvements over unprocessed stimuli
for all of the composite ratings at each set of delays used (p < 10−4 for all
ratings).

3.5 Discussion

We developed a novel algorithm for single-microphone noise reduction
that performs well on several objective measures, across two noise types,
and several signal-to-noise ratios and speaker counts. The spectro-temporal
detection-reconstruction (STDR) algorithm functions by detecting joint spectro-
temporal features present in either the speech or the noise and using that
information to selectively enhance the spectro-temporal features of speech
and reduce the spectro-temoral features of noise. The STDR algorithm can
be used acausally, providing its best noise reduction at the cost of an inher-
ent time delay. It can also be used predictively, preserving significant noise
reduction and with minimal inherent time delay.
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Figure 3.11: The algorithm performed well using time-frequency gains produced from re-
construction kernels with windows ranging from entirely a causal to entirely predictive. (a)
Performance using the objective measure for speech intelligibility (STOI). Values on the
x-axis correspond to the center time delay of the reconstruction kernel window, character-
izing kernels that are entirely acausal (left), equally acausal and predictive (middle), and
entirely predictive (right). Performance values used were from stimuli processed at 0 dB
SNR from the speech in speech-shaped noise dataset (left column) and the speech in babble
noise dataset (right column). As in figs. 3.6 and 3.8, the baseline of the shaded region rep-
resents the rating of the unfiltered noisy stimulus and the top edge represents the optimal
performance obtained using ideal gains. b) Same as in (a) but for the composite noise metric.
c) Same as in (a) but for the composite overall metric. Our algorithm produced significant
improvements for all but four cases: STOI using the two most predictive sets of delays in
either column. The mean performance for each delay on the complete set of 8 metrics are
shown in table 3.8 and table 3.9.
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Delay -50 -30 0 30 50 Unfiltered

Metric
Composite Signal 2.37 2.17 2.14 2.0 1.92 1.71
Composite Background 1.84 1.69 1.68 1.6 1.56 1.49
Composite Overall 1.84 1.65 1.62 1.52 1.45 1.31
STOI 0.78 0.76 0.76 0.74 0.71 0.74
LLR 0.97 1.03 1.05 1.12 1.17 1.32
Segmental SNR -0.37 -0.99 -1.09 -1.51 -1.79 -2.22
PESQ 1.58 1.42 1.4 1.33 1.28 1.23
WSS 74.72 79.31 79.84 81.22 81.82 84.77

Table 3.8: Performance of the STDR algorithm on sentences from a single speaker embedded
in speech-shaped noise at 0 dB SNR for 5 different gain reconstruction kernel center delays,
ranging from -50 ms for an entirely acausal reconstruction to +50 ms for an entirely predictive
reconstruction.

Delay -50 -30 0 30 50 Unfiltered

Metric
Composite Signal 2.12 2.1 2.12 1.97 1.76 1.37
Composite Background 1.72 1.69 1.7 1.64 1.52 0.99
Composite Overall 1.81 1.79 1.79 1.65 1.45 1.1
STOI 0.75 0.75 0.75 0.72 0.68 0.71
LLR 1.27 1.27 1.25 1.29 1.37 1.43
Segmental SNR -3.05 -3.3 -3.07 -2.78 -3.04 -7.33
PESQ 1.8 1.79 1.77 1.66 1.49 1.27
WSS 83.1 84.66 84.53 87.93 91.16 112.94

Table 3.9: Performance of the STDR algorithm on sentences from a single speaker embedded
in babble noise at 0 dB SNR for 5 different gain reconstruction kernel center delays, ranging
from -50 ms for an entirely acausal reconstruction to +50 ms for an entirely predictive
reconstruction.
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This work builds on a large body of research in auditory science that has
demonstrated the importance of spectro-temporal modulations in the pro-
cessing of speech and other natural sounds (Theunissen and Elie 2014). All
natural sounds reside in a restricted subspace of possible spectro-temporal
modulations (Singh and Theunissen 2003). The STDR algorithm operates
within this subspace, finding the features that allow it to best discriminate
between the trained speech and the trained noise. These features, not sur-
prisingly, fall into a few well-known categories. Harmonic stacks are robust
indicators of the presence of speech and have been found by many studies
to be key sparse features of speech (David J. Klein, König, and Kording
2003; Carlson, Ming, and DeWeese 2012). They also provide a basis for noise
robust coding in higher auditory brain regions, where selectivity for fast spec-
tral modulations and slow temporal modulations correlates with a neurons
invariance to noise (Moore, Lee, and Theunissen 2013). The slower spectro-
temporal modulations present in formants are important features for vowel
discrimination (Liberman et al. 1967). They are modified during clear speech
to increase speech intelligibility (Amano-Kusumoto and Hosom 2011) and are
an interesting target for modern speech enhancement algorithms (Rao and
Carney 2014). Lastly, the sharp, broadband onsets and offsets of voiceless
consonants is a robust feature. Speech-shaped noise and speech averaged
across many speakers has a general dearth of high frequency power (Byrne et
al. 1994), a part of the spectrum dominated by voiceless consonants (Heinz
and Kenneth N Stevens 1961). These slow spectral modulations and fast
temporal modulations can be used to discriminate speech or other animal
communication signals from environmental sounds (Singh and Theunissen
2003; Sarah M N Woolley, Fremouw, et al. 2005). Spectro-temporal recep-
tive fields found in both the avian and mammalian auditory cortex have also
been shown to cluster, specializing in the detection of slower but more har-
monic sound features and faster but spectrally coarse features (L. M. Miller
et al. 2002; Nagel and A. J. Doupe 2008; Sarah M N Woolley, P. R. Gill, et
al. 2009) providing a filter bank tuned for extracting the characteristic slow
and fast speech features also found in our STDR algorithm. It has also been
suggested that the frequency filters in the mammalian auditory periphery are
already optimized in this dual task of representing the slower harmonic and
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more broadband transient sounds of speech (Smith and Lewicki 2006). Thus,
the detection filters in our STDR algorithm whose structure were originally
inspired by research in auditory neuroscience also exhibit, after learning, a
distribution of modulation tuning that is akin to what is found in the auditory
system.

Our biologically-inspired STDR algorithm performs better than a stan-
dard model for speech enhancement, the Ephraim-Malah algorithm (EM)
(Ephraim and Malah 1985), across a wide range of SNRs for each metric
tested. The EM algorithm is one of many methods for unsupervised speech
enhancement. We have chosen it here because it is a useful and standard
benchmark given its simplicity and generality. The EM algorithm is based on
reasonable assumptions about the properties of speech and noise. More pre-
cisely, it assumes that noise is relatively stationary compared to speech. These
assumptions can be modified using carefully designed heuristics, such as au-
tomatic voice activity detection or running noise spectrum estimates. While
these methods can be quite effective given their simplicity, they are rooted
in objectives that treat each time frame as an independent sample, omitting
any explicit reference to the joint spectro-temporal structures of sound, which
are known to be important both physiologically and psychophysically, as de-
scribed above. To address this shortcoming some unsupervised algorithms
have worked in the domain of spectro-temporal modulations, with moderate
success (Mesgarani 2005; C.-C. Hsu et al. 2015). However, all these ap-
proaches remain limited because, being unsupervised, they necessarily rely
on stationary properties of relatively low-level features of the signal and noise:
a single estimate of the speech and noise in a particular feature space (e.g.
the power spectrum) is assumed to hold across time.

Many studies, including this one, have instead opted to perform supervised
learning based speech enhancement using artificial neural networks (Wan and
Nelson 1998; Healy et al. 2013; Narayanan and D. L. Wang 2013; Xu et al.
2015). Artificial neural networks are a general class of function approximators
that make very few assumptions on the nature of the relevant statistics char-
acterizing speech or noise. Moreover artificial neural networks with proper
regularization to prevent over-fitting can work in a large variety of feature
spaces. Recently, many algorithms have been proposed that use neural net-
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works to map a time-frequency representation of noisy speech to either a
representation of clean speech or a set of time-frequency gains, as performed
here. The relative merits of predicting clean speech versus time-frequency
gains remains unclear in the literature. In some studies, reconstructing the
clean speech spectrogram performed better than attempting to reconstruct
the ideal ratio mask (IRM), a closely related metric to the optimal gains used
in our study (Xu et al. 2015). However, other studies have found the oppo-
site (Weninger, Hershey, and Roux 2014). The argument for reconstructing
a mask comes from the fact that noise reduction is an inherently discrimi-
native process and thus including a term representing the reconstruction of
both the noise and the speech (as is the case when computing a gain) should
improve performance (Huang et al. 2014). Independent of the type of out-
put reconstructed (i.e the nature of the objective function), multiple network
architectures have been proposed, with autoencoders (Xia and Bao 2014),
stacked autoencoders (Lu et al. 2013), deep neural networks (Healy et al.
2013; Narayanan and D. L. Wang 2013; Xu et al. 2015), and deep recurrent
neural networks (Weninger, Eyben, and Schuller 2014) as the most common.
Our STDR algorithm can best be described as a shallow neural network that
operates on a high-level and time-dependent input and output features: our
algorithm is the first to explore the role of spectro-temporal reconstruction
in producing optimal gains. Moving to the spectro-temporal domain allows
our algorithm to naturally and explicitly capture spectral changes over time,
as can be seen in figs. 3.5 and 3.7 where the time-frequency gains follow the
complex spectro-temporal structure of the formants. As far as we know, this
is also the first algorithm where the output units operate explicitly on many
time frames. In contrast, existing algorithms commonly reconstruct a single
frame or time-frequency point using sound from either past frames or sev-
eral frames centered on the output. These approaches, unfortunately, leave
any coding of the joint spectro-temporal structure of the output embedded
implicitly within the network; not only is such implicit coding difficult to
visualize or understand, it will also necessarily lead to more difficult training.
It is true that with the advent of recent and more capable training algo-
rithms, the learning the parameters of a many-layered neural network has
become possible (Hinton, Osindero, and Teh 2006). These deep networks
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show significant promise because of their impressive flexibility. Given a large
enough training dataset, they can be trained to generalize effectively to a
large number of untrained speakers and noise classes (Xu et al. 2015). The
STDR algorithm, as currently implemented, showed limited generalizability
and performed much better on specific tasks. However, given the similarity
between STDR and more traditional auto-encoders, our algorithm can easily
be expanded to include more layers and, in doing so, could further its general-
izable performance. Deeper networks greatly expand the feature space where
a model can distinguish speech from noise by producing increasingly abstract,
combination-sensitive units. In this manner one could combine the power of
deep networks with the biologically-inspired architecture of our STDR algo-
rithm that relies on mid-level acoustical features known to be behaviorally
relevant and used by the brain.

Finally and importantly, our explicit representation with time extend-
ing causally (i.e. in the future) enables us to directly explore the role that
spectro-temporal predictions might play in real-time speech enhancement.
One of the challenges in constructing a real-time algorithm for filtering based
on spectro-temporal modulations is that detecting slower temporal features
takes time. To adequately detect a 100 ms vowel from an individual speaker
should conceivably require the algorithm to buffer at least 100 ms of sound
before applying gains. Yet, because we are using spectro-temporal recon-
struction kernels, we can detect predictable features and extrapolate gains
into the future. As shown in fig. 3.11, this can be done with little degra-
dation in performance. This strategy is also related to many phenomena
observed throughout the auditory system. Most directly, recent work on how
humans process speech from multiple simultaneous speakers suggests that
cortical oscillations entrain auditory neurons to the attended speaker. This
entrainment occurs primarily in the phase of low frequency (≤ 8Hz) oscilla-
tions and power of high gamma oscillations (Mesgarani and Chang 2012; Ding
and Simon 2013; Zion Golumbic, Ding, et al. 2013; Ding and Simon 2012) and
can result in the selective representation of the attended speaker at higher
levels and decreased gain on the representation of the unattended speaker at
lower levels (Zion Golumbic, Ding, et al. 2013). These oscillations may repre-
sent the alignment of high-excitability periods with predictions of upcoming
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auditory events (Charles E. Schroeder and Lakatos 2009), synchronizing the
neural response to the event. Synchronicity of neural responses is thought to
be a critical mechanism by which components of a sound are grouped into
coherent auditory objects (Shihab A Shamma, Elhilali, and Micheyl 2011).

At a higher level, prediction is known to play a strong role in the intel-
ligibility of noisy and degraded speech. Reported levels of intelligibility for
speech vary wildly depending on the size of the potential response set (e.g.
individual phonemes, digits or open-ended words) as well as the amount of
context in which a target word is embedded (Pichora-Fuller 2008; Kalikow,
K N Stevens, and L. L. Elliott 1977; G. A. Miller, Heise, and Lichten 1951;
Bronkhorst, Bosman, and Smoorenburg 1993). For example, increasing the
amount of context in a sentence can increase the intelligibility of the final
word in the sentence by nearly 50% (Kalikow, K N Stevens, and L. L. Elliott
1977). More generally predictive coding has been shown to play an essential
role for perceptual computations in many sensory modalities (Summerfield
and Lange 2014; Clark 2013).

Since prediction could be a key player in real-time processing of auditory
scenes, one could also imagine further improvements to our STDR algorithm.
Currently the predictions are used strictly to generate gains in a feed-forward
fashion; they provide no feedback and do not modify the activations of the
detection filters in any way. The brain, however, appears to utilize these
temporal predictions to modulate the activity to ongoing stimuli. This could
be implemented by applying the predicted gains immediately to the incoming
stimulus and detecting features on the modified spectrogram. Also, our algo-
rithm relies on prediction only at the level of spectro-temporal modulations.
Due to the modular design of the algorithm, including additional layers of
detection and prediction on more abstract features such as phoneme transi-
tions or even words is an intriguing possibility. Additionally, further layers
would enable interactions among the detection filters. One current drawback
to the algorithm is that, when trained on a sufficiently diverse set of voices, it
will readily detect voice features in the background babble noise, despite the
intermittent nature of the background voices. A higher layer that aggregates
information across units will generally find more evidence for the foreground
speaker in the synchronized activity of the detection filters and could weed
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out the sporadic activation of isolated voice features.
An additional advantage to using an algorithm optimized to the task at

hand, such as the STDR, is that it makes no assumptions on the properties
of the foreground and background. Since many noise reduction algorithms
assume that the background noise is both more stationary and less modu-
lated than the foreground speech, they cannot be flexibly applied to other
standard sound source separation problems. The STDR algorithm retains the
potential to be applied to situations where the intuitions about foreground
and background no longer apply, such as the separation of two competing
speakers or of voice from music.

In summary, we have shown that a biologically inspired noise reduction
algorithm based on two properties found in the auditory system, the use of
spectro-temporal modulation filter banks and adaptive and predictive gains,
is capable of out performing a benchmark noise reduction algorithm. More-
over it can operate with minimal delay, making it an attractive solution
for clinical or engineering applications requiring real-time processing, such as
hearing aids and automatic speech recognition. Finally, its modular structure
allows for flexibility in its use for signals and noise of different natures and
its hierarchical structure will facilitate the implementation of more abstract
rules for detection and prediction.
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Chapter 4

Conclusion

Here we have demonstrated the existence of neurons in a secondary audi-
tory region of the zebra finch that are invariant to the addition of background
noise. Their invariance can be partially explained by their tuning to partic-
ular spectrotemporal modulations, principally fast spectral modulations and
slow temporal modulations. By developing an algorithm that used artifical
neurons with similar receptive fields to extract bird song from background
noise, we showed they are sufficient to represent a de-noised version of the
stimulus. An expanded version of this noise reduction algorithm, still func-
tioning in the domain of spectrotemporal modulations, outperformed optimal
frequency filtering when applied to speech from many speakers in a variety
of noise conditions. In addition, we found that noisy speech represented in
the spectrotemporal feature space can be predictively denoised, enabling nu-
merous real-time applications. These findings, in total, further cement the
domain of spectrotemporal modulations as an intermediate level representa-
tion crucial for a noise-robust representation of communication sounds and
open promising avenues of future research that utilizes prediction for real-
time sound processing.

To follow up on a few questions raised in section 3.5, we performed a set
of preliminary experiments to test the effects of dataset size, neural network
depth, and single timestep reconstruction filters on noise reduction using the
full noise dataset from fig. 3.9. We expected that dataset size would have a
significant effect, since exposure to a wider variety of training data can only
help when generalizing to new noise types and speakers. We also expected
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that increasing network depth would provide a large boost. This is because
a large network has many more degrees of freedom with which to fit com-
plicated input-output functions. Lastly, we expected that a single timestep
reconstruction filter would perform much worse, as the neural network must
find a way to encode the joint spectrotemporal structure of the output gains
implicitly, rather than allowing the reconstruction filter to explicitly code
these dependencies. As these tests were very preliminary, I will only make a
few qualitative statements here regarding our findings. Firstly, as expected,
using a much larger training dataset (13241 sentences or 14.7 hours) gave
much better generalization. However, increasing the network depth by in-
cluding additional hidden layers had little effect on overall performance. To
better understand this lack of improvement, one would have to fully map out
the relationship between training set size and network size. It is possible that
the dataset used was still not large enough to properly take advantage of the
larger network, though I find this unlikely. Further clarification of this is left
for future work. Lastly, for the same network size given in chapter 3, a single
timestep reconstruction filter showed much degraded performance. To fully
understand the necessity of an explicitly spectrotemporal reconstruction filter,
one would have to check larger network sizes capable of implicitly storing the
necessary dependencies. This is also left as future work.

Neural processing for auditory scene analysis

Several studies have explored noise invariance and auditory scene analysis
in the brain in the years since the completion of chapter 2. Though much
of this work is described in section 3.2, I will provide a brief summary here.
The research has progressed along two main lines: processing by single neu-
rons at different stages in the auditory pathway and attentionally-modulated
entrainment of oscillations in the human brain to a particular speaker in a
multi-speaker environment. In mammals, single units in primary auditory
cortex show increased invariance to background noise over units in the infe-
rior colliculus or auditory nerve (Rabinowitz et al. 2013; Mesgarani, Stephen
V. David, et al. 2014). These changes are due primarily to increasing lev-
els of short-term firing rate adaptation and secondarily to increased levels
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of response gain normalization. Interestingly, it appears that the increase
in noise-invariance does not appear until secondary auditory regions in the
avian brain, as neurons in Field L show similar levels of corruption to noise
as neurons in MLD, the IC analogue (Schneider and Sarah M N Woolley
2013; Narayan et al. 2007). The work by Schneider and Sarah M N Woolley
2013 replicated our finding of noise invariant neurons in NCM, extending it
with a simple circuit model where the sparse noise invariant neurons receive
excitatory drive from Field L and slower inhibitory input from interneurons
in NCM. Whether such a circuit could underly the slow temporal modulation
tuning we found to be important remains an open question.

Work in humans has also developed considerably in recent years. Using
MEG, EEG, and ECog, it has been shown repeatedly that low frequency
phase and high frequency amplitude modulations in cortical oscillations en-
train to the envelope of the attended speaker in a multi-speaker stimulus
(Mesgarani and Chang 2012; Zion Golumbic, Ding, et al. 2013; Ding and
Simon 2012; Ding and Simon 2013; O’Sullivan et al. 2014). By decoding
from these frequency bands, researchers have discovered many details about
the information stored in different regions and the action of attention on the
representation of a single sound source. The entrainment can be used to de-
code the amplitude envelope (eg. Zion Golumbic, Ding, et al. 2013) or full
spectrogram of the attended speaker (eg. Mesgarani and Chang 2012). Early
in auditory cortex, attention acts as a gain that increases the representation
of the attended source and decreases the representation of the unattended
source. In later auditory areas, the representation becomes entirely selective
for the target sound source (Zion Golumbic, Ding, et al. 2013). The repre-
sentation of the target sound source is independent of the target-to-masker
ratio, further indicating that multiple sound sources are represented sepa-
rately (Ding and Simon 2012). Though the effect is often small, it is reliable
at the level of a single trial (O’Sullivan et al. 2014), which opens the tan-
talizing possibility for real-time tracking of attention allocation for medical
applications (Van Eyndhoven, Francart, and Bertrand 2016).

Taken together, future research will hopefully bridge the gap between these
two domains. It has already been postulated that such entrainment of os-
cillations could play a functional role in sensory selection during attention
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(Lakatos et al. 2008; Charles E. Schroeder and Lakatos 2009; Charles E
Schroeder et al. 2010), but how this impacts single neurons and how the rep-
resentation of a single sound source is built up such that selection can occur
in the first place remains an exciting avenue of research. From the work in
chapter 2 and the work reviewed earlier, we know that bottom-up processing
and the efficient encoding of natural sounds provides a jumping off point for
active attentional selection. Further, we know that many of the principles
presumed to underlie auditory scene analysis, at least for simple tone stim-
uli, arise as early as the cochlear nucleus (Pressnitzer et al. 2008). If I may
speculate: this suggests that low-level features could be used early on in au-
ditory processing to provide an initial segregation of the auditory scene into
proposed sources. Then, given a small amount of early segregation, top-down
processing effected through entrainment to a particular sound source could
reinforce the representation of a single target sound. Studying this process
requires a better understanding of how cortical entrainment builds up follow-
ing the onset of a particular sound stream. Thus far, the temporal evolution
of this process has not been studied, but I would hypothesize that entrain-
ment of cortical oscillations, neural response invariance, and phase-locking of
spikes would all increase during this initial time period.

Continued applications for frontend noise reduction

Noise reduction continues to be a valuable technology for frontend signal
processing. It already shows significant promise in aiding individuals with
hearing aids by easing listening effort (Sarampalis et al. 2009), though there
is much room for improvement (Kochkin 2010). Recent efforts using deep
neural networks provided the first significant increases in speech intelligibil-
ity in both normal hearing and hearing-impaired individuals (Healy et al.
2013). It can also provide significant improvements when used prior to auto-
matic speech recognition. Indeed, there is a lot of recent work that has tried
to fuse speech enhancement with ASR (Du et al. 2016; Xiaofei Wang et al.
2015). The best new algorithms take advantage of the continued growth of
artificial neural networks to solve complicated regression and classification
tasks. Some of this work was reviewed in section 3.5. More recently, al-
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gorithms have been developed that combine multiple deep neural networks
to tackle different aspects of the speech enhancement problem by, for in-
stance, using one network for voice activity detection and another for clean
speech reconstruction (Gao et al. 2015). Other efforts have begun to develop
more specialized deep neural networks that function best on particular sets of
stimuli and combine their estimates to provide good generalization to novel
stimuli (Du et al. 2016). While such efforts work well for offline speech en-
hancement, they face significant challenges for implementation in real-time,
low-power situations like those faced in hearing aids. The continued growth
of neural networks in low-power environments such as cell phones provides
some hope in this respect. Yet, in approaching the problem of real-time pro-
cessing, the brain’s reliance on temporal context and the immense amount of
structure in natural sounds strongly suggests that temporal prediction should
be explored much further in future noise reduction algorithms.

To this end, one avenue we hope to explore in continuing the research laid
out here is to use the predictive gains as a method of pre-filtering the incoming
noisy spectrogram. This would allow more robust pattern recognition in
low SNR environments. The desired clean speech spectrogram could then
also be used as a training signal, asking the algorithm to reconstruct clean
speech from filtered noisy speech. These two signals would provide both
discriminative and generative teacher signals, as was recently found to be
beneficial (Weninger, Hershey, and Roux 2014).

Auditory scene analysis will remain an interesting problem for years to
come because it is at the intersection of so many interesting and challenging
questions. It merges the basic building blocks of auditory perception with
impressive top-down cognitive processing, integrating grouping effects that
begin at the auditory nerve with high-level concepts of speech comprehension
and music appreciation. A better understanding at every level could improve
the quality of life for individuals with hearing deficits and irrevocably change
the way we interact with technology around us.
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