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ABSTRACT OF THE DISSERTATION

Representing Geometry: Perception, Concepts, and Knowledge

By

J. Ethan Galebach

Doctor of Philosophy in Philosophy

University of California, Irvine, 2018

Professor Jeremy Heis, Chair

In this dissertation, I investigate how humans represent space and other geometric enti-

ties. The topics of my three chapters are delimited by three kinds of spatial representation:

perception, conception, and propositional knowledge. In chapter 1, argue against the widely-

held philosophical view that the content of visual perception includes a “geometry,” or more

precisely, a metric space. I appeal to behavioral and neural evidence to argue that the spa-

tial contents of visual perception exhibit a disunity that most philosophers since Kant would

find surprising. In chapter 2, I evaluate a theory of geometric concept acquisition known

as “core geometric cognition,” and I use behavioral and neural evidence to argue that the

most general assumptions of this approach are likely false. In chapter 3, I defend the view

that, despite the geometric disunity exhibited by perception, it is still plausible to believe

that some propositional knowledge of advanced mathematical theorems is grounded in visual

imagination.
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Introduction

In this dissertation, I investigate how humans represent space and other geometric enti-

ties. The topics of my three chapters are delimited by three kinds of spatial representation:

perception, conception, and propositional knowledge. In chapter 1, argue against the widely-

held philosophical view that the content of visual perception includes a geometry, or more

precisely, a metric space. I appeal to behavioral and neural evidence to argue that the spa-

tial contents of visual perception exhibit a disunity that most philosophers since Kant would

find surprising. In chapter 2, I evaluate a theory of geometric concept acquisition known

as core geometric cognition, and I use behavioral and neural evidence to argue that the

most general assumptions of this approach are likely false. In chapter 3, I defend the view

that, despite the geometric disunity exhibited by perception, it is still plausible to believe

that some propositional knowledge of advanced mathematical theorems is grounded in visual

imagination.

My first chapter begins with a demarcation of perception based on perceptual constancy

that can be found in David Marr, JJ Gibson, and Tyler Burge. If we assume that the notion

of perceptual constancy is capable of operationally defining perceptual representation, is

there any reason to believe that the spatial content of visual perception includes a metric

space? Analytic philosophers since the publication of Peter Strawson’s Individuals (1959)

have either taken for granted that the answer is ‘Yes,’ or have provided faulty arguments for

the existence of a visuo-perceptual metric space (VMS). I use behavioral, fMRI, and EEG
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studies by Nancy Kanwisher, Ruth Rosenholtz, and other vision scientists to argue against

the existence of a VMS. This evidence suggests that our attributions of shape to objects,

agents, faces, scenes, and surfaces, all fail to meet the definition of a metric space. Why

is this important? For one, it is often thought that Euclidean intuitions about parallelity,

angular addition, object rotation, size comparison, etc. are embedded in the content of

visual perception. Once we give up on the notion of a VMS, what explains the origins of

these intuitions and what can be said of their epistemic status? Are there unlearned cognitive

structures that underlie our intersubjective agreement in elementary geometry? Empirically,

how intersubjective is this agreement? Such questions bring me to my second chapter.

My second chapter evaluation one theory of the development of Euclidean intuitions

and geometric concepts known as the core cognitive theory of geometry. Philosophers of

arithmetic have fruitfully drawn upon the cognitive theory of number to develop their meta-

physical, semantic, and epistemological claims. Might a similar strategy be useful for philoso-

phers of geometry? As the theory currently stands, this is not likely. There are a number of

problems that are unique core cognitive theory of geometry that will need to be worked out

before philosophers can rely on its theoretical claims. In particular, there is little evidence

that the two core systems of geometry have the representational content and neural basis

that the theory attributes to them. Moreover, the theory fails to precisely demarcate (at

both an experimental and theoretical level) the concepts and beliefs it wants to explain.

Finally, the theory offers much fewer details about the stages of the acquisition process for

geometry than it does for arithmetic. In time, something like the core cognitive theory may

end up being correct. However, the current state of scientific knowledge does not provide a

firm foundation for developing claims in the philosophy of geometry.

In my third chapter, I propose an account of mathematical entitlement that is inspired

by Marcus Giaquinto’s book Visual Thinking in Mathematics. Over the past century, the

philosophical literature on the epistemology of mathematics has focused primarily on ax-
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iomatic proof, sometimes even suggesting that beliefs formed outside of axiomatic deduction

cannot qualify as mathematical knowledge (e.g., the Intermediate Value Theorem). As an

antidote to this preoccupation with proof-based knowledge, Giaquinto’s book describes how

the contents of visual imagination can reliably give rise to warranted basic beliefs in the

domain of elementary geometry and elementary arithmetic. In my chapter, I update and

expand upon the representational contents that Giaquinto attributes to visual imagination.

Additionally, I introduce the notion of a valid connection between imagery contents and

the resulting belief as a novel means for evaluating the epistemic status of the resulting

belief. Finally, I use this epistemic framework to show that both elementary and advanced

formulations of the Intermediate Value Theorem are subject to imagery-based mathematical

entitlement. The advanced formulation comes from a relatively new mathematical discipline

known as o-minimality. It is of philosophical interest that the founders of this discipline are

attempting to give an alternative foundation for geometric topology. Following Grothendieck,

they insist that the objects of o-minimality are inherently visualizable and that its theorems

conform to the topological intuition of shape. These assertions give additional support to

my thesis that advanced mathematical beliefs can be epistemically grounded in visual imag-

ination. As our scientific understanding of visual imagination progresses, my account will

have to be updated with more accurate details about its representational contents and belief

fixation processes. Despite this, I hope my epistemological account can contribute to our

understanding of the nature of mathematical knowledge outside of axiomatic proof.

The unifying topic of my dissertation – spatial representation – has given me the chance

to put a variety of disciplinary perspectives in conversation with one another. At times, it

seemed that translating concepts and claims between these disciplines was impossible. These

obstacles were temporary. I remain strongly committed to the view that any adequate un-

derstanding of how humans represent space requires us to articulate and synthesize robust

normative concepts, fruitful experimental paradigms, and a large body of neural and be-

havioral results. No academic discipline is currently fit to do this work alone. Even if my
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chapters are revealed to have significant blind spots, I hope they can motivate more gifted

philosophers to engage in this interdisciplinary effort to understand geometric representation.
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Chapter 1

Does Visual Perception Have a
Geometry?

Abstract: Over the past century, philosophers have often assumed that the content of

visual perception exhibits some sort of geometric organization. During this time, there has

been broad consensus that the representational contents of ordinary visuo-perceptual states

include, at the very least, a metric space in which the distance relations between many

visible elements are explicitly represented. This geometrically-organized representation goes

by various names – “scenario content,” “visual space,” “reference frame,” “egocentric space,”

“depth map,” “2.5-D sketch,” “coordinate space,” etc. – but in this essay, I simply call it

a visuo-perceptual metric space (VMS). I argue that, despite this consensus, no compelling

reason has been given for believing that visuo-perceptual states contain a VMS. I also show

that many neural and behavioral anomalies exist for VMS proponents. Finally, I describe

our best current vision-scientific theories of the spatial contents of perception and show how

they explain shape and scene perception without positing a VMS.
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1.1 Introduction

Philosophers since at least the publication of Peter Strawson’s Individuals (1959), but ar-

guably since Kant’s first Critique (1781), have agreed that the representational contents of

visual perception are often perceptually organized in a geometric structure. For present-day

philosophers that write on the spatial contents of perception, this claim – that visual per-

ception contains a metric space – has gone largely unquestioned. When arguments for this

view are put forward, they are often short and end with an appeal to allegedly supportive

research in perceptual psychology.

One illustrative example of how philosophers talk about the idea that visual percep-

tion has a geometric structure comes from The Oxford Handbook of Philosophy of Perception

(2015). Jérôme Dokic begins his essay, “Perception and Space,” by declaring that the con-

tents of perception typically have a geometric structure:

There is a minimal, formal sense in which the perceptual field is a kind of space.

The perceptual field imposes upon objects and positions a set of relations charac-

teristic of space, and this set of relations corresponds to a mathematical structure

that defines a perceptual space. ... I would like to relate these [facts] to the notion

of a frame of reference. (2015, p 441)

By the end of his essay, Dokic has concluded that every theory of perceptual representation

“should acknowledge that spatial perception ... necessarily involves frames of reference ...

with different origins and coordinate systems” (p 456).1 Like many other philosophical

1My concern in this essay is with the broad notion of a metric space. By positing a coordinate system,
Dokic posits additional geometric structure over and above that needed for a metric space. Indeed, most
philosophical proponents posit some additional structure (e.g., axes, origin, angles). However, I will largely
ignore this additional structure in my argument here in order to be as expansive as possible. Still, it is
important to appreciate the fact that positing a coordinate space has given rise to a number of philosophical
debates about whether the geometry of perception is discrete or continuous, allocentric or egocentric, carte-
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essays, Dokic largely assumes the existence of a visuo-perceptual metric space (henceforth,

a VMS) and believes that this has been established by psychological experimentation and

past philosophical argumentation.2

In this essay, I would like to seriously question this geometric view of perceptual rep-

resentation. I believe that recent neural and behavioral evidence has revealed a deeply

counterintuitive disunity in the way we perceive spatial aspects of our environment. I think

philosophers should take this disunity of spatial perception seriously. Although I will not

explore them here, there are significant consequences for a number of prominent debates

within the philosophy of perception, such as the pictorial vs. propositional content debate

and the cognitive penetrability debate.

I will argue against the existence of a VMS in three stages. First, I will show that, since

Strawson (1959), the central philosophical arguments for the existence of a VMS are faulty.3

Second, I will describe a number of experimental anomalies that prima facie conflict with

the claim that a VMS exists. Finally, I will describe the dominant understanding of spatial

representation in vision science today, taking note of which representational resources it

posits in place of a VMS. As we will see, the spatial contents of perception are not organized

geometrically in any robust sense.4

sian or polar, etc. These debates all assume the existence of a visuo-perceptual metric space, which reveals
how entrenched the philosophical commitment to the existence of this entity has become.

2Dokic appeals to philosophical argumentation by Gareth Evans, a student of Peter Strawson, in his
Varieties of Reference (1982).

3Although he limits his focus to egocentric coordinate spaces, David Bennett (2016; cf. 2012, p 25) is the
only philosopher that I am aware of who questions the existence of a VMS. He offers a critique of some of
the more recent philosophical arguments for the egocentric VMS. The arguments that he rebuts – arguments
based on visual processing of surface curvature, structure-from-motion, etc. – do not overlap with the more
historically influential arguments that I consider here. I am in agreement with many of Bennett’s conclusions.

4Perceptual states may represent spatial properties – shape, size, order, containment, distance, direction,
angle, length, orientation, etc. – properties without thereby representing a metric space. Do our spatial
representations achieve a geometric unity in post-perceptual processing? This question is partially addressed
in chapters 2 and 3.
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1.2 VMS Proponents and Arguments

Philosophers have used a wide variety of terms to refer to visuo-perceptual metric spaces.

The most common of these terms are: visual space, 2.5-D sketch, scenario content, egocentric

space, reference frame, coordinate system, visual field, and depth map.5 Yet, each of these

spaces has two features in common that I will use to define the notion of a VMS. First,

they all contain a set of distance relations that hold between most, if not all, entities in the

space. These distance relations are symmetric (i.e., d(x, y) = d(y, x)) and obey the triangle

inequality (i.e., d(x, y) + d(y, z) < d(x, z)). Second, they are all part of the representational

content of a visuo-perceptual state. Before I consider the specific philosophical arguments

offered for the existence of a VMS, a few caveats are in order regarding the meaning of

“visuo-perceptual state.”

1.2.1 What is Visual Perception?

As I will be using these terms, perception is importantly different from sensation and cogni-

tion. I will start with the sensation/perception border. The main feature that distinguishes

sensory states from perceptual (and cognitive) states is the fact that they are not repre-

sentations. That is, sensory states lack accuracy conditions. Sensory states necessarily lack

representational content, while perceptual states necessarily have content.6 I follow philoso-

phers like Tyler Burge (2010, pp 92), and perceptual psychologists like J. J. Gibson (1966,

p 1), in maintaining that the most primitive type of representational content arises via con-

5For “visual space,” see Hatfield (2009, p 5). For “2.5-D sketch,” see Hatfield (2009, p 5), Green (2015,
p 5). For “scenario content,” see Peacocke (1992, pp 64ff), Heck (2007, p 14), Schellenberg (2008, p 61).
For “egocentric space,” see Evans (1982, p 163). For “reference frame,” see Burge (2010, pp 199-201), Dokic
(2015, pp 443ff); Campbell (1994, ch. 1). For “visual field,” see Strawson (1959, p 65). For “coordinate
system,” see Wu (2013, p 652), Bermudez (1998, p 141). For “depth map,” see Bennett (2016, p 6).

6I will use “representational content” and “content” interchangeably. Some philosophers, like Gary Hat-
field and Christopher Peacocke, describe the phenomenal character of an experience as part of its “content,”
but I will not do so here.
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stancy in cortical visual areas. Constancy transformations issue mental states with accuracy

conditions involving perspective-invariant distal properties.7 These mental states represent,

e.g., the shape and color properties of distal entities. On this understanding of perception,

the retinal image – i.e., the sensory registration of luminance on the retina – does not con-

stitute a visuo-perceptual state. Hence, the retinal image is not a VMS despite the fact that

it can be usefully analyzed as a metric space. My thesis is not so bold as to claim that the

retinal image does not exist.

The perception/cognition border is more controversial among philosophers. There are

two schools of thought on how to draw this distinction.8 The first school of philosophers

demarcates perception from cognition in terms of an allegedly distinct type of phenome-

nal character that perceptual states have. On this understanding, a perceptual state can

normally be introspectively individuated and classified as perceptual by the person in that

state.9 Philosophers in the second school find this phenomenological demarcation of per-

ceptual states to be “deeply wrong-headed” (Burge 2014, p 11). This second school rejects

the claim that introspection can determine whether a given mental state is perceptual or

cognitive:

7This has been a common restriction since at least Gibson (1966, p 1) and Marr (1982, pp 29, 34, 36),
which call these perspective-invariant properties “constant,” “valid,” “invariant,” “objective,” “physical,”
and “permanent.” Marr distinguishes ‘primitive’ visual systems, like that of a fly, from ‘advanced’ visual
systems, like that of a human, on the basis of the latters ability to attribute perspective-invariant properties
like 3D-shape (pp 32-36). Similar appeals to perspective-invariance as constitutive of constancy can be
found at Palmer (1999, p 125), Nakayama and Shimojo (1992, p 1357), and Bennett (2016, p 4). Today,
determinations of perceptual constancy are most often operationalized in fMRI adaptation effects because
“fMRI ... adaptation across two different stimuli provides evidence for a common neural representation”
(Epstein, et al. 2017, p 1505; cf. Kanwisher and Dilks 2014, p. 733). Behavioral paradigms are also used
to determine constancies: aftereffects (Marr 1982, p 287), dishabituation effects (Kayaert and Wagemans
2010), categorization, individuation, and reidentification abilities (Potter 1975, 2014; Sekuler and Palmer
1992; Chen 1982, 1990, 2005; Rosenholtz 2016), tracking abilities (Zhou et al 2010), and illusions (Chen and
Zhou 1997, Zhou et al. 2003, Todd and Bressan 1990).

8Orlandi (2014) mentions a similar distinction between two schools of philosophy of perception: those who
reflect on “conscious perceptual experience” and those who reflect on the “current best models of perception
in the cognitive sciences” (p 13). See also Nanay (2017), pp 2-3.

9See Peacocke (1992, p 62), and Siegel (2010, pp 3-4). As Siegel (2017b) puts it, “We have an under-
standing of perceptual experiences that comes from our familiarity with them, and that understanding is
robust enough to identify the experiences, but not detailed enough to settle the [question of which properties
are perceptually represented in a given experience]” (p 74).
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Can we be sure from introspection that [the contents and phenomenal character

of an experiential state] are really perceptual, as opposed to primarily the “cog-

nitive phenomenology” of a conceptual overlay on perception, that is, partly or

wholly a matter of a conscious episode of perceptual judgment rather than pure

perception? (Block 2014, p 7)

Philosophers like Block and Burge deny that perceivers have introspective access to their own

mental states in a way that allows them to individuate or classify these states as perceptual

or cognitive. Instead, they offer a perception/cognition demarcation derived from vision

science. According to common usage in vision science, a visuo-perceptual state necessarily

(a) finds its neural correlate in the ventral or dorsal visual pathways,10 and (b) is the result of

processing information from a single fixation.11 If a representational mental state definitively

does not meet one of these criteria, it is post-perceptual and hence cognitive.

These two perception/cognition demarcations, one phenomenal and one vision-

scientific, issue different verdicts about whether perceptual states can represent, for instance,

a laptop, a punt return touchdown, your own neighborhood, or that two complex three-

10Most vision science focuses on the belief-guiding content of the ventral pathway, which goes from the
occipital to the temporal lobe and includes visual areas like LOC, PPA, OPA, EBA, FFA, and VWFA
(Kanwisher and Dilks 2014). Less is known about the action-guiding content of the dorsal pathway(s),
which goes from the occipital to the parietal lobe (Kravitz et al. 2011; Konen et al. 2013; Bell et al. 2014).

11This restriction has been common since at least Julesz (1975), which distinguishes single-fixation “pre-
attentive perceptions” of texture properties from transsaccadic “scrutiny” representations. A single fixation
lasts for “300 msec on average” (Henderson and Hollingworth 2003, p 58). Psychologists who explicitly
endorse this single-fixation view of perception include: O’Regan (1992), Rensink (2000, 2002), Henderson
and Hollingsworth (2003), and Fei-Fei et al. (2007). Some smaller (and largely independent) traditions of
research in psychology departments – namely, visual psychophysics and computer vision – do not clearly
distinguish perception from sensation or cognition, and hence I will not include their theoretical paradigms
within the category of vision science pace Palmer (1999).
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dimensional shapes are identical.12 In this essay, I will follow the vision-scientific demarcation

in specifying the scope of the VMS-concept.13

Now that we have a better sense of the scope of the VMS-concept, I will lay out

and critique the views of five prominent philosophers who endorse a VMS: Peter Strawson,

Christopher Peacocke, Tyler Burge, Gary Hatfield, Wayne Wu.14 These five figures are not

the only proponents of a VMS, but they are the only ones I have found that give arguments

for believing that a VMS exists.15

1.2.2 Five Arguments for a VMS

The idea of a visuo-perceptual metric space is not new. In the first Critique, Kant posits a

sensation-involving nonconceptual representation of space, intuition, that at the very least

obeys the triangle inequality:

12In this footnote, I say why these four items cannot be represented perceptually if we accept (a) and (b).
Kind-attributions like this laptop will have neural correlates outside of early visual areas (Kim et al. 2009).
Event-attributions like this punt return touchdown will be based on information from dozens of saccades and
fixations in various memory stores. Scene reidentification like this is my neighborhood (from Siegel 2017, p
xiii) will likely involve activating cognitive maps from long-term memory, which seems to take place in RSC,
an area whose perceptual status is unclear (Epstein and Vass 2013). Finally, shape-identity judgments like
these two objects have the same shape (from Peacocke 1992, p 78) will result from mental rotations in visual
working memory. These four representations will all likely count as perceptual under the phenomenological
demarcation, but they are likely post-perceptual under the vision-scientific demarcation.

13I do this because I agree with Block and Burge that our introspective abilities are not strong enough
to make this distinction in many cases. Hence, what vision scientists find theoretically fruitful will be a
preferable distinction to the phenomenal one. Moreover, I have sympathies with the ‘reductive’ approach
to phenomenal consciousness known under the label “higher-order theories of consciousness” (Carruthers
2016).

14Two philosophers that I will be discussing in detail, namely Peacocke and Hatfield, do not make clear
efforts to distinguish between these two demarcations of perception from cognition. As such, it is logically
possible that they would reject the existence of a VMS as I have narrowly defined it. However, since both
philosophers substantively engage with vision-scientific literature, they may endorse it. I will proceed as if
Peacocke’s scenarios and Hatfield’s visual spaces are both VMSs. Even if this is assumption is inaccurate,
their arguments for the existence of scenarios and visual spaces are unconvincing as I will show.

15Other twenty-first century proponents include Richard Heck (2007, p 14), David Chalmers (2006, p 22),
Mohan Matthen (2005, p 300), Susanna Schellenberg (2008, p 61), Robert Briscoe and John Schwenkler
(2015, p 1458), and Brad Thompson (2010, p 140).
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Space is not a discursive, or as one says, general concept of relations of things

in general, but a pure intuition ... [G]eometrical propositions, that, for instance,

in a triangle two sides together are greater than the third, can never be derived

from the general concepts of line and triangle, but only from intuition and indeed

a priori with apodictic certainty. (Kant 1781, A24-5/B39-40)

Throughout the twentieth century, dozens of philosophers have elaborated this metric-space

conception of perceptual content.16 I will focus on what I regard as the five most substantive

arguments for a VMS, namely, the arguments of Strawson, Peacocke, Hatfield, Burge, and

Wu. I will address each of these figures in turn, first demonstrating that they posit a VMS

and then laying out their argument. Each argument claims that humans would be unable to

complete a certain visual or cognitive task without a VMS. After laying out each argument,

I will show why it is flawed.

Strawson

In his 1959 book Individuals, Peter Strawson endorses a VMS in the following passages.

He claims that “the visual field is necessarily extended at any moment, and its parts must

exhibit spatial relations to each other” (p 65). The locations of these spatial parts (also

called visual elements) are perceptually specified in terms of “a common reference point

and common axes of spatial direction [and distance]” (p 22). According to Strawson, these

“visual elements can be seen all at once as at a certain visual distance from one another ...

Or, to put it in another way: the momentary states of the colour-patches of the visual scene

visibly exhibit spatial relations to each other at a moment” (80). From these passages, and

16The claim the visual perception has a geometry akin to a VMS can be found in the following twentieth-
century texts: Mach (1902), Carnap (1922), Cassirer (1944), Strawson (1959), Grünbaum (1962, 1973),
Putnam (1963), Sellars (1968, pp 25-30), Suppes (1977, 1995), Taylor (1978), O’Shaughnessy (1980, p 176),
Evans (1982, ch 6), French (1987, p 115), Baldwin (1992, p 183), Peacocke (1992, ch 3).
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many others like them, it is clear that Strawson conceives of visual perception as containing

a (coordinatized) metric space.

What is Strawson’s argument that such an entity exists? He claims that an adequate

conceptual analysis of our capacity for linguistic reference requires the existence of a VMS.

His argument rests on a few premises, the first of which is the claim that every instance of

linguistic reference is also an instance of identifying reference (p 16). According to Strawson,

a speaker makes an identifying reference only if she knows an “individuating fact” about

the referent (p 23). So, an implication of Strawson’s first premise is that linguistic reference

to object a, achieved by uttering an expression E, requires, for some concept P , that the

speaker knows: E refers to a & P (a) & ∀y(P (y) → a = y). The proposition, P (a), is the

individuating fact by which the expression E gains its “demonstrative force” (p 118).

Strawson’s second premise is that the concept P must individuate the referent by (i)

conceptually locating it within a region of a spatio-temporal coordinate space (pp 38, 56),

and (ii) providing a description that is true of the referent and false of the other particulars

in that region (p 25). Why does Strawson privilege the spatio-temporal coordinate space

as the means of all identifying reference? He does this because such a space is “uniquely

efficient” at generating the individuating facts required for identifying reference (p 24).

The third premise of Strawson’s argument is that the “visual field [must provide] the

materials for spatial concepts” (p 65).17 By this claim, Strawson means that the visual

perception must have the same geometric structure as the spatio-temporal coordinate space

underlying the individuating concept P . Hence, Strawson conceives of his “visual field” as

necessarily a visuo-perceptual metric space (p 65).

Taken together, Strawson’s three premises entail that the cognitive task of linguistic

reference requires a VMS. But his argument is not sound. Strawson’s first and third premises

17Strawson considers but rejects the view that auditory perception would also “suffice to generate spatial
concepts” (p 66).
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are false. The first premise is false because linguistic reference does not require knowledge

of an individuating fact. This is now orthodoxy in philosophy of language and is associated

with the general view known as “semantic externalism.” Most philosophers agree that certain

examples of everyday reference made famous by Kripke (1972) demonstrate that a speaker

need not know any individuating facts about a referent in order to refer to it. Strawson is

simply wrong when he claims that “one cannot significantly use a name to refer to someone

or something unless one [is] prepared to substitute a description for the name” (p 181).

A neo-Strawsonian might try to salvage the argument from reference by granting that

semantic externalism holds for linguistic reference, but still claiming that perceptual reference

requires attribution of an individuating location to the referent. Indeed, this is precisely

the view of Gareth Evans. Evans embraces semantic externalism in his 1973 essay, “The

Causal Theory of Names,” but Evans later claims that perceptual reference, unlike reference

from memory or testimony, requires “a conception of it as the occupant of such-and-such a

position” in an egocentric frame of reference (1982, p 149).18 Evans argues that this latter

claim is a consequence of his Generality Constraint, which Evans states as: “If we hold

that the subject’s understanding of ‘Fa’ and his understanding of ‘Gb’ are structured, we

are committed to the view that the subject will also be able to understand the sentences

‘Fb’ and ‘Ga’ ” (p 102). This constraint allegedly entails that perceptual reference is only

possible when a perceiver is capable of reidentifying the object (p 149). And reidentification

is allegedly accomplished on the basis of the object’s perceived location within an egocentric

frame of reference (p 149).

There are a number of problems with Evans’ argument. For one, it is not clear why

Evans requires locative facts to be the basis of reidentification rather than, say, shape facts.

For another, it seems fairly clear that we are capable of individuating, tracking, reidentify-

18Cf. Evans (1985), p 392. More recently, Evans’ location-based view of perceptual reference has been
endorsed by Robert Briscoe: “To see a matchbox as over there, e.g., is perforce to see it as located somewhere
relative to here, somewhere, that is, more precisely specified using the axes right/left, front/behind, and
above/below” (2009, p 424).
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ing, and thinking about objects that we unwittingly see in a mirror. Such objects are not

perceived in their true location and so Evans is committed to the unappealing view that

this is a case of reference failure.19 Finally, the Generality Constraint is primarily about

thoughts, not perceptual representations. Even if we extend it to perception, Evans does not

say how his reidentification requirement could be derived from the Generality Constraint.20

Hence, a neo-Strawsonian view of reference is without any argumentative support. More-

over, many cogent philosophical arguments for semantic externalism regarding perception

have been developed, although I will not review them here.21

Strawson’s third premise is also false. It is not true that the geometric character of

perception must be the same as the geometric character of our conception of the world. Even

if we grant to Strawson the bold claim that humans conceive of all objects as located in a

single, unified coordinate space (p 31), why should we think such a metric space is present

in perception? I assume Strawson would say that we could not develop (or “fill in”) our

conception of the world without a VMS. But this is simply inaccurate. It is logically possible

that each perceptual state represents a single distance relation between two objects, and only

later in a post-perceptual region (e.g., the hippocampus) do we integrate these relations into

a unified coordinate space.22 It is even possible that we develop (and “fill in”) our conception

of the world without incorporating any perceived metric properties of our environment – we

19I draw this objection from Tyler Burge (2010, p 200) and E. J. Green (2017, p 14). Burge and Green each
provide some other cogent objections to Evans’ locative requirement on perceptual reference. For instance,
Burge says: “One can see and think about a star or comet through light that is refracted by the atmosphere.
One might have seriously mislocated the object with respect to ones own position and have no practical way
of locating it correctly” (p 200).

20It seems very likely that Evans is drawing his reidentification requirement from Strawson (1959, ch. 2).
But Strawson’s reidentification requirement is (a) a requirement for linguistic reference, (b) grounded in the
capacity for sortal predication, and (c) lacking any argument for why every sortal predication contains the
idea “of a continuous path traced through space and time” (p 207), let alone for Evans’ further implication
that the perception of path-continuity requires the perception of a coordinatized metric space.

21Most prominently, Burge’s defense of “anti-individualism regarding perception” (1991; 2010, ch. 3).
22This might be how the hippocampus constructs a cognitive map representation of one’s environment, but

it is still unknown which perceptual and cognitive contents are integrated during this construction process.
For an overview of the currently-available neural and behavioral evidence on this topic, see Epstein et al.
(2017).
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might use saccadic corollary discharges, not perceptual contents, as our basis for adding new

objects and distance relations to our conception of the world cognitive map.23

In sum, Strawson’s argument from linguistic reference fails to provide any support

for the claim that a VMS exists because his first and third premises are false. Although

Strawson’s argument is not often explicitly endorsed today, his influence is still felt through

Evans and one of Evans’ colleagues: Christopher Peacocke. Peacocke provides our second

argument for a VMS.

Peacocke

In his 1992 book A Study of Concepts, Christopher Peacocke posits a VMS he calls a “sce-

nario.”24 According to Peacocke, a scenario is a perceptual representation that specifies the

coordinate locations and properties of all the surfaces in ones field of vision.25 Peacocke

claims that scenarios are perceptually ascribed to the unique physical location “given by

the property of being the center of the chest of the human body, with three axes given by

the directions back/front, left/right, and up/down with respect to that center” (p 62). For

Peacocke, the representational content of a scenario specifies,

for each [discernible] distance and direction from the origin..., whether there is a

surface there and, if so, what texture, hue, saturation, ...brightness, ...degree of

solidity, ...orientation, ...it has at that point. (p 63)

23Cf. Redish (1999), pp 84, 85, 277. Corollary discharges are visuo-motor neural signals that ‘predict’
future retinal stimulation after a saccade on the basis of a saccadic motor command.

24Peacocke’s postulation of scenarios was directly inspired by Gareth Evans’ above argument for a VMS.
See Peacocke (1992, p 71) where he endorses “Evans’ Thesis.”

25Other VMS proponents speak not of component surfaces but component points, textures, bars, blobs,
luminance gratings, contours, volumetric objects, enclosures, etc. I will gloss over these differences about
the elements that constitute the underlying set of the posited metric space.
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These contents determine the accuracy conditions of a scenario representation. When the

environmental surfaces match the represented surfaces with respect to the features mentioned

in this quote, the perceptual state with the scenario content is considered to be accurate.26

Peacocke’s initial motivating example for believing in a VMS is phenomenological. He

claims that distinctions in the way visual experiences feel should be explained in terms of

their distinct perceptual content:

The appropriate set of labeled axes captures distinctions in the phenomenology of

experience itself. Looking straight ahead at Buckingham Palace is one experience.

It is another to look at the palace with ones body turned toward a point on the

right. In this second case the palace is experienced as being off to to one side

from the direction straight ahead, even if the view remains exactly the same as

in the first case. (p 62)

In other words, Peacocke claims the distinct feel of these two experiences of Buckingham

Palace supports the claim that a surface’s direction from the perceiver’s body is percep-

tually represented.27 In doing so, Peacocke is assuming that phenomenal difference always

supervenes on representational difference. This view is usually called representationalism.28

However, in his earlier book, Sense and Content, Peacocke himself seems to reject repre-

sentationalism when he claims that the two phenomenally distinct interpretations of the

Necker cube have the same perceptual content (1983, pp 16-17). Representationalism is also

26Do scenarios qualify as visuo-perceptual in my sense? It seems so. Peacocke says that scenarios are
“most primitive level of ... nonconceptual representational content” (90). This suggests that scenarios are a
part of the content of visuo-perceptual states as defined by (a) and (b) above. Moreover, Peacocke discusses
and partially endorses the representational theories of early vision given by vision scientists like David Marr,
Stephen Palmer, Anne Treisman, and Roger Shepard. These vision scientists are explicitly concerned with
early visual areas, perceptual constancies, and visual representations derived from single eye fixations. So,
although Peacocke accepts the phenomenal demarcation of perception from cognition, his scenarios seem to
be perceptual in my sense.

27Peacocke formalizes this directional relation as, “R is located in direction D” (p 70). Presumably, this
direction D is encoded as three numbers representing the degrees of each angle formed by the vector to the
surface and each of the body’s three axes.

28Cf. Lycan (2015).
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fundamentally at odds with the vision-scientific definition of perceptual content in terms of

perspective-invariant constancies.29 Hence, this initial motivating example does not consti-

tute much of an argument.

Later on, Peacocke gives two additional reasons for believing in a VMS. First, he claims

that if “you are looking at a range of mountains, it may be correct to say that you see some

as rounded, some as jagged. But the content of your visual experience in respect of the shape

of the mountains is far more specific than that description indicates” (p 67). Peacocke is

claiming that when we perceive a scene like a range of mountains, the content is more pictorial

than conceptual, and that pictorial content should be articulated as a VMS. The problem

with this argument is that almost every current vision-scientific model of scene perception

understands “pictorial content” in terms of the global texture properties of the retinal image

rather than as a scenario representation. There is good experimental and neural evidence

for this view as we will see in section 3. One of the more revealing experimental results

from Mary Potter and colleagues demonstrates that, even though we can categorize a scene

as, e.g., ‘mountains’ or ‘flowers,’ after only seeing it for a few dozen milliseconds, we are

unable to reidentify which flower scene we saw even when the alternative choice has a vastly

different metric layout (Potter 1993; Potter et al. 2014). Over longer viewing times, when

we can distinguish round from jagged mountains, it is likely that the underlying perceptual

content is given by texture properties rather than a VMS. Hence, Peacocke’s first argument

is weak.

Peacocke’s second argument amounts to the claim that scenario content is the basis

of our capacity to “confirm or refute” the accuracy of our perception of an object’s shape

29See footnote 7. This is not to say that perceptually representing body-centric direction is impossible
– such a representation might be invariant over eye or head motion – but Peacocke’s Buckingham Palace
example does nothing to make this possibility more likely. Moreover, even if Peacocke is right that we
perceive the body-centric direction to Buckingham Palace, there are many ways to articulate this content
without positing a VMS. For instance, some visual neuroscientists and developmental psychologists have
claimed that we perceptually categorize an object as to the left or to the right independent of any metric
directional content (Scott et al. 2016; Gava et al. 2009).
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(p 242n11). This raises the question: If I perceive that this cube is red, can I refute this

perception without perceptually locating the cube in a VMS? This seems eminently plausible.

In order to refute this perception, I will need to reidentify the cube, and this can be done in

a number of ways without a VMS. For example, I might reidentify the cube on the basis of

some rare markings or the object next to it. There are many ways to reidentify an object

without using a VMS. Hence, Peacocke’s arguments do not provide any support for believing

in a VMS.

Hatfield

Gary Hatfield is our third VMS proponent. He describes his VMS in his theory of “visual

space.” Hatfield claims that visual space is “like David Marr’s 2.5-D sketch” (2009, p 5).30

David Marr’s 2.5-D sketch will be discussed more fully in section 3, but here I will simply

note that it contains a three-dimensional coordinate space centered on the ego. Presumably

Hatfield’s visual space also has this property. Regarding its metric structure, Hatfield claims

“that a finite Euclidean model captures the gross structure” of visual space (2003, p 172).

Visual space, like Marr’s 2.5-D sketch, is supposed to “guide action and ... support reasonably

accurate judgments of size, distance, and shape” (2009, p 205). So it seems that visual space

arises early in the visual cortex before processing splits into action-guiding dorsal content

and judgment-guiding ventral content.31 Nevertheless, there are two notable differences

between Hatfield and our previous proponents. First, Hatfield thinks of visual space in

the first instance as part of the phenomenal character of a perceptual state. Hence, we

determine the three-dimensional geometric structure of a visual space by asking perceivers

30The psychologist Rudolf Luneburg (1947) introduced the idea of a “visual space” with a hyperbolic
metric as a theory of the perceptual content underlying a particular visual task: judging the parallelity of
black cords or a series of lights. The “visual space” continues to be a topic of investigation in the (to my
my mind rather speculative) discipline of mathematical psychology (Indow 2004, Wagner 2005, Koenderink
and Van Doorn 2008), and in most of these cases visual space has an egocentric coordinate system

31See footnote 10.
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how things appear to them.32 Nevertheless, Hatfield thinks the geometric structure of visual

space determines the perceptual state’s geometric representational content via a Euclidean

transformation (2013, p 59).33 For example, even if two parallel railroad tracks converge

in (phenomenal) visual space, Hatfield thinks we often perceptually represent the railroad

tracks as parallel. As long as the phenomenal visual space successfully “serve[s] action

guiding, object cognition, and other purposes,” Hatfield thinks our perceptual state can be

said to accurately represent the geometry of the visible environment (2013, p 59). So it

should be no surprise that Hatfield’s primary argument for a VMS is based on psychological

experiments in which participants estimate various metric properties of their environment.

Hatfield thinks that these experimental results – particularly the object size estimation

results of Granrud (2004, 2013) – support the view that children develop a veridical VMS

by the age of 10 (2013, p 49).

Hatfield’s argument for a VMS has many shortcomings. Most significantly, it assumes

that our perceptual attribution of an object’s size in embedded in a unified geometric repre-

sentation of the whole visual environment. It is of course true that we feel that an object’s

size is perceptually given to us in a geometrically organized environment. But this feeling

substitutes the phenomenal definition of perception for our preferred vision-scientific defini-

tion. In visual neuroscience today, it is near orthodoxy that object size and spatial layout

32For Hatfield, perceptual states have two aspects: a phenomenal aspect and an representational aspect
(2009, p 18). The phenomenal aspect of a perceptual state is a collection of subject-dependent entities,
properties, and relations. The phenomenal aspect does not purport to represent anything in the visible
environment. For instance, when I look at the Kanisza triangle illusion and assert that there appears to be a
bright triangle there, Hatfield would say that this assertion reports the phenomenal aspect of my perceptual
state rather than the representational aspect. Hatfield claims that the phenomenal aspect of a perceptual
state has its own “spatial structure” (p 18). On the other hand, the representational aspect of a perceptual
state are the source of the states veridicality conditions and it is not reducible to biological function (p 25).
For Hatfield, it is fundamentally a scientific task to specify what a perceptual state represents, and ones
evidence will come from behavioral, evolutionary, and neurophysiological evidence. Hatfield’s two aspects
of perception allow him to claim that a single perceptual state may have phenomenally present a trapezoid
while representing a rectangle (p 19).

33Although this fact is not relevant to his argument, the Euclidean transformation is allegedly needed
to explain systematic underestimations of metric properties (2009, pp 171-175, 183). Outside of the visual
space framework, other theories could be developed to explain these underestimations (e.g., maybe Intraub’s
metric-free notion of “boundary extension” in scene representations could account for them (Intraub and
Richardson 1989; Intraub 2014)).
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constancies are processed by two distinct neural pathways in the ventral stream. Object

size constancy is represented in the lateral occipital cortex (LOC), whereas spatial layout

constancies are represented in the parahippocampal place area (PPA).34 Hence, even if our

verbal estimation of an object’s size is drawn directly from a perceptual representation of

the object’s size (as Hatfield supposes), there is substantial neural evidence to believe this

perceptual representationdoes not determine the geometry of the perceived spatial layout

(i.e., “visual space”).

A second, more narrow, objection to Hatfield’s argument comes from the experiments

in Foley (1972). Foley’s experiments demonstrate that visual space, supposing it exists, does

not have a constant curvature geometry (p 328). In his second experiment, Foley asked

participants (standing at a location O with a fixed luminous point A in front on them) to

first place a luminous point B in the right side of their visual field to create an isosceles

right triangle, OBA.35 Next, they were asked to place a luminous point C in the left side of

their visual field to create an isosceles right triangle, BAC. Finally, participants were asked

whether OA and BC have the same length. If a participant answered “no,” they were also

asked to estimate the ratio of the lengths of OA and BC. On average, he found that BC was

perceived to be 20% longer than OA (p 327). The results of this study are often taken to

show that, at best, the metric structure of visual space violates the “axiom of the congruence

of triangles,” and thus cannot have “any constant curvature geometry, including Euclidean

geometry” (Masrour 2015, p 1823).36 At worst, these results suggest that attempting to

describe the unified geometric structure of visual perception is a red herring. Either way,

Foley’s experiments disconfirm Hatfield’s claim that visual space is Euclidean. In sum,

34For an illustrative example, see Park et al. (2011). To get a fuller picture, see the essay collection Scene
Vision edited by Kveraga and Bar (2014).

35More exactly, Foley asked participants to place point B so that (i) OB is perpendicular to BA, and (ii)
OB and BA have the same length (1972, p 326).

36Suppes (1995, p 39), Wagner (2006, p 29), and Masrour (2015, p 7) all use this result to justify their
rejection of a constant curvature geometry for visual space. A somewhat analogous result for object shape
perception is presented in Domini and Braunstein (1998).
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Hatfield’s argument from size estimation provides no support for believing that his visual

space exists.

Burge

Tyler Burge (2010, p 200) draws his conception of a VMS from Gareth Evans’ Varieties

of Reference. Burge rejects Evans’ referential argument for a VMS (outlined above in the

Strawson section), but he endorses a different argument that he attributes to Evans.37 Ac-

cording to this argument, “egocentric spatial frameworks are necessary to spatial perceptual

representation [because they] figure centrally in agency” (p 201). Burge main evidence for

this claim is that, “empirically it is nearly certain that some animals have egocentric spatial

perceptual abilities” (2010, p 207).38 His only cited example from experimental psychology is

a 1998 article by Fred Dyer on bee navigation. Burge describes this article as defending the

view that “the perception and perceptual memory involved in this particular navigational

task use only egocentric spatial frameworks” (2010, p 202). However, Dyer describes the

bee’s navigation abilities as grounded in its encoding of a “retinally localized snapshots” (p

148). When this retinal image is presented again, Dyer claims it triggers the bee to fly in

a specific direction. Clearly, Dyer’s conception of the bee’s egocentric framework does not

constitute a perceptual state in my (or Burge’s) sense.

Burge (2014) gestures at a second argument for a VMS based on object shape percep-

tion. He claims that perceptually representing an object as a cube requires plotting straight

lines in a three-dimensional coordinate system:

Visual perception occurs in an egocentrically anchored, spatial coordinate system.

... [The] edge of a cube must be specified not merely as an edge, but through

37Burge (2010), pp 200-201. See also footnote 19.
38Burge also states this claim in an older essay when he says: “attribution of egocentric indexes is ubiq-

uitous in perceptual and animal psychology” (2003, p 330).
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specifications that plot the edge in the coordinate system – give its length, shape,

and orientation, using spatial specifications within the coordinate system. (p 492)

As before, it is not obvious that perceiving an objects shape requires perceiving its location.

Indeed, Burge (2010, p 202) makes this very point in arguing against Evans.39 On an em-

pirical level, the neural and behavioral evidence regarding object shape perception suggests

that shape attributed is size-invariant and orientation-invariant.40 Hence, it seems that a

perceptual attribution of shape does not necessitate a perceptual attribution of edge “length”

or “orientation” as Burge claims. Burge might respond that this representation is computed

on the basis of his proposed VMS shape representation. This is logically possible, but today

the most widely adopted computational model posits that a collection of 2D images, rather

than a VMS, is the basis of object shape attribution.41 There may be a compelling argument

for a VMS on the basis of object shape perception, but Burge does not provide it.

Wu

The final argument for a VMS is given by Wayne Wu. Before we look at Wu’s argument, I

want to establish that Wu actually posits a VMS. Consider the following passage where he

describes the representational content of visual experience:

Since normal human visual experience is three-dimensional and the locations of

visible objects are represented relative to the egocenter, we can present egocen-

39Peacocke (1992, p 242n11) puts forward a compelling argument that shape perception does not require
location perception: “Visually disoriented subjects are able to identify and apparently perceive the shape of
objects in their environments without experiencing them as have any particular (egocentric) location. There
is a readable case study in Godwin-Austen 1965. ... I thus allow that something is perceived as square
without being localized.”

40Konen and Kastner (2008), Kourtzi et al. (2003), Grill-Spector et al. (1999), Biederman and Cooper
(1992).

41This is the HMAX model of Reisenhuber and Poggio (1999). For an overview of the current status of this
model, see Li et al. (2015). Opponents of the HMAX model, like Biederman, admit that it is the “default
framework” for 3D object shape perception in vision science (Hayworth et al. 2011, p 1).
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tric spatial content in a Cartesian coordinate system, centered on part of the

perceiver, with the Cartesian axes setting egocentric directions (e.g. the z-axis

defines straight ahead). More appropriate would be a spherical [i.e., polar] coordi-

nate system that represents egocentric distance explicitly as a vector originating

at the egocentric origin and whose magnitude is the distance between visible

objects and the reference point. (2014, p 391)

In this passage, Wu technically claims that “visual experience,” not “visual perception,”

contains a three-dimensional coordinate space. Is there reason to think that visual perception

contains this coordinate space? I think so. For one, Wu claims that visual experience occurs

in a “visual system” that is distinct from a “cognitive” system (2013, p 648). For another, he

says that we locate objects in this space during a single fixation (2014, p 394). Wu provides

further confirmation that his coordinate space is visuo-perceptual when he cites Peacocke’s

writing on scenarios as a way of articulating his own view on the “egocentric spatial content”

of perception (2013, p 653n7). On this basis, I claim that Wu posits a VMS. Wu’s VMS is

unique in that it has polar coordinates pace Strawson, Peacocke, and Burge, each of whom

suggest that the VMS has Cartesian coordinates. But Wu, like most philosophers since

Kant, accepts that visual perception has a geometry about which we may inquire, “How is

it coordinatized?”

Wu’s argument for a VMS is grounded in the claim that a VMS is required to explain

position constancy and motion constancy. Position constancy is the capacity to accurately

perceive objects as stationary after a saccadic eye movement (despite changes in the retinal

image before and after the saccade). Motion constancy is the parallel capacity to accurately

perceive objects as in motion after a saccadic eye movement. Wu claims that these capacities

exist and that the standard non-VMS explanation of these capacities, “the Transsaccadic

Memory Account” (TM), is inadequate. His alternative explanation posits a VMS. It will be
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sufficient to refute Wu’s argument against the TM account of position constancy and motion

constancy.

According to the TM account, object motion attribution is computed purely on the

basis of comparing retinal images before and after a saccade.42 The first retinal image merely

needs to be adjusted on the basis of the corollary discharge from the eye saccade. This

account of motion constancy makes no appeal to a VMS since retinal images are sensations,

not representations.43 Wu (2013, p 651, fig 1) provides a helpful diagram of this allegedly

inadequate account. Wu claims that the TM account falsely assumes that, “where error is

high, the subject experiences visual spatial inconstancy [i.e., motion]; where error is low,

the subject experiences spatial constancy [i.e., no motion]” (p 651). According to Wu, this

assumption is false because

error signals are deployed in other areas in the brain that have nothing to do

with spatial constancy but where prediction is useful (e.g. in motor control, and

in explaining auditory verbal hallucination in schizophrenia). The Transaccadic

[sic] Memory account is explanatorily incomplete at a critical point. (2013, p

651; citations removed)44

In other words, Wu is claiming that low error signals in the above-cited diagram cannot be

necessary and sufficient for perceptual motion attribution. After all, error detection is used

in many non-perceptual systems. However, this is a straw man. I am not aware of any

TM proponent who has claimed that any low error signal in any brain area is sufficient for

perceptual constancy, let alone position constancy. Most proponents of the Transsaccadic

Memory Account merely claim that in the case of early vision this particular error signal is

42Cf. Wurtz et al. (2011), p 496.
43Wu (2014, p398) attributes this Transsaccadic Memory Account to the neuroscientists who wrote Wurtz

et al. (2011). This account is also endorsed by Henriques (1998), who defends it against various alternative
accounts that posit a VMS.

44A virtually identical passage (and argument) is presented at Wu (2014), p 398.
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necessary for the constancy transformation underlying motion attribution.45 Until Wu states

more fully his objection to the TM Account, we have no to reject this non-VMS account

of position and motion constancy. That is, I do not think position or motion constancy

considerations provide any grounds for positing a VMS.46

In sum, all of the arguments for a VMS from our five proponents are seriously flawed.

However, the idea of a VMS did have an explanatory purpose. The VMS was supposed to be

a single representation that explains human performance on a number of visual tasks such

as motion constancy, scene categorization, shape perception, linguistic reference, location

reports, and cognitive map construction.47 In some sense, the only remaining virtue of the

VMS is the unity it gives to our various explanations of these visual tasks. Hence, in section

3, I will show in some detail that current neural evidence supports a radically disunified

approach to the spatial contents underlying our most common visual tasks. Before we turn

to this, however, I would like to discuss two well-isolated behavioral anomalies that count

against the existence of a VMS: distance reports and visual crowding. In the next section, I

will show why these two visual tasks support my claim that a VMS does not exist.

1.2.3 Behavioral evidence against a VMS

Philosophical proponents of the VMS since Evans have distinguished themselves from older

philosophers (like Strawson and Kant) by appealing to behavioral evidence and computa-

tional models from perceptual psychology to develop their theories of perceptual content.

45See Stone (2011, p 105) for an account of how visual area V5 computes motion.
46Interestingly, Dokic (2015), section 9, argues that our capacity for position constancy suggests that we

should reject the existence of an egocentric coordinate space pace Wu.
47Many philosophical proponents of the VMS suggest that it should be used to explain human performance

on visuo-motor tasks (e.g., saccading, tracking, reaching, grasping, catching, rotating, etc.). For example,
see Wu (2014, p 399), Dokic (2015, p 454), Burge (2003, p 330), Hatfield (2009, p 205), Peacocke (1992, p
94). However, none of these five philosophers present an argument for a VMS based on its alleged ability
to explain visuo-motor behavior. Nanay (2013, pp 39-42) offers a more detailed analysis of visuo-motor
behavior, and notably he does not espouse a VMS in his theory of action-guiding representations (despite
positing representations of an object’s size, shape, location, etc.).
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This cross-disciplinary approach makes them vulnerable to attacks on the basis of new be-

havioral evidence. In this section, I will discuss two sets of experimental results that I believe

undermine the existence of a VMS. These experiments test human performance on distance

report tasks and visual crowding tasks.

The first set of experimental results suggest that, in many environments, humans per-

ceptually represent distance relations asymmetrically. That is, the perceived distance from

point A to point B is often systematically unequal to the perceived distance from point B to

point A. If this is right, the symmetry axiom of a metric space would be violated in spatial

perception. I am not familiar with any VMS proponents that have addressed this challenge

to their view. Two experiments revealing asymmetric distance estimations are presented in

Codol (1990). In the first experiment, seventy-two participants were each placed in a rectan-

gular room with twelve letter-labeled wooden disks placed on the floor at variable distances

from one other (p 395). Each participant was asked to stand on one disk and answer (in

centimeters) questions of the form: (i) “How far are you from person P?,” and (ii) “How far

is person P from you?” (p 394). The results show that, on average, humans estimate the

distance in (i) to be significantly greater – more than 14% greater – than the distance in (ii).

The second experiment confirmed this asymmetry in perceived distance. In this experiment,

Codol gave participants a map of a public room containing letter-labeled points. One point

was labeled “ME,” and the participants were told the other points represented people. Par-

ticipants were asked to answer questions (i) and (ii) again (using a map legend showing that

one meter corresponds to a 3-cm line). Their answers confirmed the original results. Codol

concludes that “individuals tend to consider others closer to themselves than they consider

themselves to others” (1989, p 15). Could a VMS proponent account for these results? It is

certainly possible, but to do so she would have to claim that these distance reports are not
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based on the VMS.48 The simplest explanation, to my mind, is that these distance estimates

are based on perceptual attributions that do not constitute a metric space.49

The other set of experimental results comes from the literature on visual crowding.

Visual crowding can be characterized as any phenomenon in which humans are unable to

individuate, categorize, or order objects in peripheral vision when they are flanked by other

objects. Vision scientists usually distinguish visual crowding phenomena from the limitations

associated with reduced peripheral acuity:

Visual crowding refers to the phenomenon in which a target may be easily recog-

nizable when viewed in isolation but becomes difficult to identify when flanked by

other items. The ease of recognizing the isolated target indicates that crowding

is not simply a by-product of reduced visual acuity in the periphery. Instead,

it seems that the visual system applies some as-yet-unspecified lossy transfor-

mation – perhaps some form of “feature integration,” pooling, or averaging – to

the stimulus, resulting in the subjective experience of mixed-up, jumbled visual

features. (Balas et al. 2009, p 1, citations removed)

One diagram from Rosenholtz (2016, fig 4) provides a nice example visual crowding.

In the first and third rows, observers fixate on the cross and they are able to categorize the

‘V’ on the left as a V. By contrast, in the second row, “an observer might see these crowded

letters in the wrong order ... they might not see a V at all or might see strange letter-

like shapes made up of a mixture of parts from several letters” (pp 443-444). Similarly,

48Peacocke (1992) may be providing a response to this challenge when he distinguishes VMS perceptual
distance content and non-VMS perceptual distance content. He admits that one may perceive “that x is
above y, that y is above z, and that z is above x” (79), and I presume that he thinks similar paradoxical
perceptions occur when we represent quantitative distance. To account for this fact, he claims that these
judgments derive not from his VMS (“scenario content”) but from a different type of perceptual content
that he calls “protopropositional content.” This is certainly a possible way out of the predicament, but this
raises the question of why we would need to posit is a VMS at all.

49Similar results have been established for spatial memory (rather than perception). See Newcombe et
al. (1999) for an overview. These results potentially constitute evidence against the existence of a cognitive
map, but they do not directly say anything about the contents of perception.
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Rosenholtz (2015) notes that an “observer might see these crowded letters in the wrong

order, perhaps confusing the word [‘BOARD’] with ‘BORAD’ ” (p 11).

Many vision scientists have used these behavioral results to develop ‘bag-of-features’

models of visual perception (see Pelli et al. 2004 for a review). According to these models,

our visual field is split up into “pooling regions” that can be used to index low-level features

such as contours and textures before we individuate, categorize and order visible objects.

These models provide clear explanations for many of the perceptual failures that humans

exhibit in visual crowding tasks. If these models are correct, we likely do not perceive most of

the spatial relations that hold between objects even when we have perceptually individuated

these objects. If the visual perception systematically fails to preserve even the order of visible

objects, then it is unlikely that the much stricter axioms of a metric space are satisfied by

the contents of visual perception. I believe visual crowding phenomena are much more easily

incorporated into a theory of perceptual content that forgoes a VMS in favor of piecemeal

spatial relations.

The above experimental results associated with distance report tasks and visual crowd-

ing tasks constitute anomalies for VMS theories of spatial perception. These results are not

decisive refutations of the VMS view, but I believe they should be taken seriously by any

philosopher who thinks visual perception has a unified geometry. In the second part of this

essay, I will offer an overview of what I take to be the current dominant paradigm of spatial

perception in vision science. I see this paradigm as constituting a non-geometric alterna-

tive to the VMS framework for understanding spatial perception that currently dominates

philosophical theorizing.
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1.3 Spatial Representation according to Vision Science

In the first part, I attempted to show how the major philosophical arguments for a VMS

are flawed. These arguments – from object shape categorization (Peacocke, Burge), scene

categorization (Peacocke), demonstrative reference (Strawson, Evans), navigation (Burge),

size estimation (Hatfield), and motion and position constancy (Wu) – all fail to support the

belief in a VMS.50 In this part, I would like to address the argument from psychological

authority for a VMS. In particular, most philosophical proponents of the VMS assume that

the psychological research of David Marr provides scientific legitimacy to the VMS. Evans,

Peacocke, and Hatfield all explicitly draw on Marrs 2.5-D sketch for inspiration in developing

their VMS variants. In section 3.1, I will show why Marr’s views and arguments provide no

support for the VMS. In section 3.2, I will show that any attempt to revise this argument from

authority by replacing Marr with the “best current vision science” provides no support for

positing a VMS. In section 3.3, I will conclude by discussing our prospects for understanding

spatial memory and the nature of its geometric content.

1.3.1 Marr’s visual perception: demarcation and primary function

Many philosophers see David Marr as a scientific authority on visual perception. However, in

the context of arguing for a VMS, Marr is not an ideal inspirational source for three reasons.

First, it is questionable whether Marr even posits a VMS. Second, Marr’s reasons for positing

the 2.5-D sketch are not conceptually valid. Third, the current best empirical theories of

the representational content underlying the visual tasks that Marr posits his 2.5-D sketch to

explain – namely, shape and scene categorization – do not appeal to a metric space. I will

develop these three points below, but it is necessary to first outline which parts of Marr’s

50Additionally, I am unaware of any more recent experimental results that purport to show that humans
make use of a VMS in completing any of these six visual tasks.
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approach to visual perception were innovative in the years around 1980 and remain dominant

in vision science today: (i) his isolation of the computational level, (ii) his demarcation of

perception from sensation, and (iii) his view of the primary function of the visual system.

Marr and Poggio (1977) introduced the notion of a “computational level” to vision

science as a way of highlighting the limitations of a ‘neurons-up’ approach to vision science.

The computational level of analysis uses goal-oriented and representational terms to describe

visual processes. According to Marr, this terminology is most often used by the plain man

and the computer vision engineer (1982, p 4). In contrast, brain scientists like Barlow (1972)

reject this terminology and focus exclusively on “how the nervous system is built and how

parts of it behave ... how the cells are connected, [and] why they respond as they do”

(Marr 1982, p 4). The plain man and the computer vision engineer, however, understand

visual processes primarily as an attempt to solve certain representational problems, such as

stereopsis, color attribution, perceptual grouping, and shape attribution (1977, pp 476-481).

According to Marr, the neurons-up approach of Barlow is unable to distinguish hexagonal

after-images from the interpretations of the Necker cube (p 471). The latter, but not the

former, is intrinsically a representational and goal-oriented process. Like other representa-

tional problems, a scientific understanding of how we perceive the Necker cube will require

a computational level of analysis in addition to the neuron-based hardware level of analysis

(1982, p 25). Vision science today accepts the need for a computational level of analysis.

Many articles in perceptual psychology continue to frame their experiments and discussions

as an analysis of specific representational problems.

Marr’s second innovation was his general distinction between sensation and perception

that aligns with the distinction I offered in section 1.1. In particular, Marr appeals to

constancy transformations as a feature of perceptual states that demarcates them from

purely sensory states:
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The important thing about the senses is that they are channels for perception

of the real world outside... [J. J. Gibson (1966)] asked the critically important

question, How does one obtain constant perceptions in everyday life on the basis

of continually changing sensations? This is exactly the right question, showing

that Gibson correctly regarded the problem of perception as that of recovering

from sensory information “valid” properties of the external world. (1982, p 29)

To illustrate this border between sensation and perception, Marr offers a few examples

of visual processes that never “obtain constant perceptions”: the housefly landing on the

ceiling (pp 32-34), and the human eye making a saccade in response to a sudden environmen-

tal change (p 105). Marr sees himself (and Gibson) as unlike most mid-century perceptual

psychologists who “have made no serious attempts at an overall understanding of what per-

ception is, concentrating instead on the analysis of properties and performance” (p 9). These

psychologists simply focus on, e.g., color receptors, shape judgments, or stereogram-based

judgments. Marr and Gibson want to give a synoptic account of perception. They both

adopt a framework in which perspective-invariant constancies demarcate perceptual states

from purely sensory states. This much is accepted by mainstream vision science today.51

Mar’s third lasting contribution to vision science is his claim that the primary function

of the human visual system is representing constancies of shape and spatial layout:

The quintessential fact of human vision [is] that it tells about shape and space

and spatial arrangement. Here lay a way to formulate its purpose – building a

description of the shape and positions of things from images. Of course, that

is by no means all that vision can do; it also tells about the illumination and

about the reflectances of the surfaces that make the shape – their brightnesses

and colors and visual textures – and about their motion. But these things seems

51Cf. footnote 7
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secondary; they could be hung off a theory in which the main job of vision was

to derive a representation of shape. (1982, p 36)

Marr says that he formed this view of the primary function of human vision on the basis of

Elizabeth Warrington’s experiments in clinical neurology, which show that objective object

shape categorization can occur without semantic categorization (Warrington and Taylor,

1973). More specifically, Marr goes on to claim that the primary function of the human

visual perception is attributing shape to various particulars: portable objects, agents, faces,

scenes, and surfaces.52 This shape-based view of the primary function of visual perception

informs the rest of 52 Marr’s book and continues to be the dominant framework in vision

science today (Kanwisher and Dilks, 2014). In sum, Marr’s lasting contribution to vision

science is the proposition that the primary function of visual perception is to represent

perspective-invariant shape properties via constancy transformations.

Other aspects of Marr’s work have not lasted. In particular, Marr proposes a set of

syntactic-computational stages for recovering objective shape representations, most of which

are no longer seriously endorsed by vision scientists. Marr’s stages are: the retinal image,

the zero-crossing, the raw primal sketch, the full primal sketch, the 2.5-D sketch, and the

3-D model. Computational theories today usually only endorse the first two stages.53 Given

that philosophers continue to draw on Marr’s 2.5-D sketch for inspiration for their VMS

(Peacocke 1992, p 65; Hatfield 2009, p 5), it is important to note that the 2.5-D sketch is no

52For objects, see pp 35, 312, 316. For agents, see p 319. For faces, see p 311. For scenes, see pp 217,
240, 249 (and arguably pp 229-232). For object surfaces, see pp 220-221, 224, 229. Note that most vision
scientists and philosophers use “shape perception” in a restricted sense to mean perceptual attribution of
shape to manipulable objects. For Marr, shape perception will also include aspects of what today is often
called “body perception,” “face perception,” “perceptual organization,” “spatial layout perception,” and
“scene perception.”

53Carandini et al. (2005), Freeman and Simoncelli (2011). Even in the Forward to the 2010 edition of
Marr’s Vision, Marr’s former student Shimon Ullman admits that the currently dominant approach to object
shape perception no longer posits a VMS such as Marr’s 2.5-D sketch or 3-D model: “Computational vision
has been dominated in the last decade by an alternative approach to [object 3D shape] recognition, based
on describing the possible image appearances of an object rather than its invariant 3-D structure” (xxi).
Ullman is here referring to the HMAX model of Reisenhuber and Poggio (1999) that I mentioned in footnote
40 above.
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longer a staple of computational theories of visual perception.54 Another aspect of Marr’s

approach to vision that has not lasted is his attempt to integrate representational theories

from vision science and visual psychophysics.55 The latter tradition accepts the existence of

a VMS on phenomenological and introspective grounds.56 It posits a coordinatized geometry

for the VMS on the basis of experimental estimations of apparent size and distance. Marr

briefly embraces this phenomenological methodology when he appeals to apparent distance

and orientation estimationresults in Ittelson (1960) and Stevens (1979) to justify the claim

54The 2.5-D sketch is defined as an encoding of “properties of the visible surfaces in a viewer-centered coor-
dinate system, such as surface orientation, distance from the viewer, and discontinuities in these quantities”
(p 38).

Although my line of reasoning here does not depend on it, I think the case could be made that Marr
is committed to view that the 2.5-D sketch is not a representation at all, but is rather a merely syntactic
entity. This is because representations have to be “objective,” “physical,” and “permanent” (pp 29, 34, 36).
Hence,the fact that the 2.5-D sketch is “viewer-centered” seems to disqualify it from being a representation.
According to Marr, the housefly has “no explicit representation” (35) of its landing surface because its visual
system makes only “subjective measurements” and does not describe “objective qualities” (36). These claims
seem to be true of the 2.5-D sketch as well, and hence it should not be understood as a representation. Against
his better judgment, Marr nevertheless claims that the 2.5-D sketch represents “objective physical reality”
(p. 269). Given Marr’s lack of clarity on this matter of whether subjective but perspectivally semi-invariant
properties (such as egocentric distance, direction, or slant) can be perceptually represented, I will bracket
the question of what Marr’s considered view is on whether his 2.5-D sketch is representational.

55In vision science, Marr draws on Hubel and Wiesel (1968). In visual psychophysics, Marr draws on
Ittelson (1960) and Stevens (1979). For the sake of clarity, I understand “vision science” to refer to any
fixation-controlled experimental results (behavioral or neural), as well as the theoretical claims made by these
experimentalists in discussion sections, review articles, meta-analyses, and textbooks. More specifically, I
understand vision-scientific behavioral results to include data from fixation-controlled experimental tasks
such as forced choice, categorization, estimation, serial reidentification, serial discrimination, instantiation
identification, navigation, reaching, etc. (These results may or may not depend on neural atypicalities
as a TMS or an agnosia.) I have in mind experimentalists such as Mary Potter, Ruth Rosenholtz, and
Aude Oliva. I understand vision-scientific neural results to include fMRI, EEG, and ECoG data about
adaptation, differential regional blood oxygen level-dependent (BOLD) activation across identical stimuli,
and intra-regional BOLD activation across differing stimuli. I have in mind experimentalists such as Nancy
Kanwisher, Russell Epstein, and Daniel Dilks.

Visual psychophysics, however, is a collection of experimental results in which participants estimate the
apparent (rather than objective) metric size and distance features. On this basis, visual psychophysics
articles infer that their postulated VMS exhibits various coordinatized geometries (Henderson 19999, Indow
2004, Wagner 2006, Koenderink and van Doorn 2008). This tradition and these psychologists are the ones
that Hatfield (2003, 2009) draws on as his scientific authorities in his argument for a contracted Euclidean
geometry for visual space.

56Additionally, many theorists in the visual psychophysics tradition accept a sense-data framework for
perceptual content. For instance, Ittelson (1960, p 133) claiming that “apparent distance is a subjective
datum which cannot be observed or measured directly by the experimenter.” Wagner (2006, ch 1) makes
many similar claims. These theorists presuppose a veil of perception in which we attribute locations and
properties to phenomenal entities. As I mentioned in section 1 while discussing Hatfield, I strongly suspect
that these phenomenological reports are based on higher cognitive processes (e.g., conversational maxims).
To suppose otherwise requires ascribing increasingly esoteric and context-dependent geometric structure to
the content of perception (cf. Wagner 2006).
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that “there is at least one internal representation [i.e., the 2.5-D sketch] of the depth [i.e.,

egocentric distance], surface orientation, or both associated with each surface point in a

scene” (1982, pp 275, 283).57 Marr’s argument for a VMS on the basis of visual psychophysics

would not be accepted in vision science today because appearance estimation results are a

poor substitute for the adaptation results and fixation-controlled behavioral results that are

currently used to determine perceptual contents.58 But even if one were to follow Marr in

embracing the validity of this phenomenological methodology, it is notable that Marr himself

admits that the psychophysical evidence for the existence of his 2.5-D sketch is weak:

Unfortunately, I cannot provide much more than a framework within which to

ask questions. ...There has not yet been any determined psychophysical assault

on the 2.5-D sketch, so we know very little about it or even whether it in fact

exists in the sense suggested by our approach to vision. (1982, p 279)59

Despite Marr’s cautionary claims about the existence of his 2.5-D sketch, philosophers and

psychologists have often assumed that its existence is empirically well-supported. This is

simply not the case. Hence, a legitimate argument from authority for a VMS should not be

appealing to Marr’s writings on the 2.5-D sketch.

57Marr offers some other arguments for a VMS, but they are quite opaque. In one argument, Marr appeals
to Julesz’s results that there is a 2◦-of-disparity upper limit on random-dot stereoscopic fusion. He claims
that this result indicates that we are likely perceiving the egocentric distance of all the surfaces in the
perceived scene (Marr 1982, pp 279-282). I fail to see how this argument is supposed to work. This upper
limit be a direct consequence of the physiology of matching the two retinal images in the striate cortex. But
more importantly, I do not see how an upper limit on fusion could support a claim about the perception of
egocentric distance. (One might argue that fusion itself requires a representation of egocentric distance, but
this is not what Marr is claiming.) In another argument, Marr appeals to occlusion perception to justify the
claim that we perceive egocentric distance. But we may simply be perceiving a non-metric depth relations
(‘in front of’ and ‘behind’) between surfaces (cf. Bennett 2016, pp 28ff.).

58This is simply an observation about the kinds of evidence that vision scientists currently use to infer
perceptual content. But I also believe there are good a priori reasons for being wary of such psychophysical
evidence: (i) these experiments are not fixation-controlled and thus are unable to distinguish perceptual
content from cognitive content, and (ii) the metric estimates are usually for a single surface/object and thus
can reveal very little about any alleged global representation of the environmental geometry.

59For example, Marr claims that “we do very poorly” on judging which of two surfaces is farther away
when they “lie in different parts of the visual field” (p 282). This fact “casts doubt ... on the idea that depth
is ... stored accurately over a range of values” (1982, p 282). The estimation results of Norman et al. (1995)
gives rise to a parallel doubt for surface orientation.
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As we have seen in this section, Marrs lasting contribution to vision science was the idea

that the primary function of the human visual system is to attribute perspective-invariant

shapes to portable objects, agents, faces, scenes, and surfaces via constancy transformations.

Marr’s other contributions, such as his posited stages of visual processing, have not lasted.

(And, at least in the case of the 2.5-D sketch, we have seen that this was for good reason.)

In the next section, I will elaborate the current vision-scientific understanding of the spatial

contents of perception. As we will see, the current explanations of our most well-understood

everyday visuo-spatial tasks make no appeal to a VMS.

1.3.2 Current Views on Shape and Scene Perception

For Marr, the primary function of visual perception was shape attribution to portable ob-

jects, agents, faces, scenes, and surfaces. In many ways, this is still the dominant paradigm of

visual perception. This view of visual perception has been repeatedly confirmed since Kan-

wisher and colleagues introduced functional neuroimaging techniques into vision science in

the 1990s. They have isolated neural correlates and pathways in the ventral stream for per-

ceptual attribution of each of the following shape types that Marr discusses: object/surface

shape, face shape, body shape, and scene shape. Kanwisher and Dilks (2014) summarize the

“key results from the last 15 years of neuroimaging research on humans”:

The central finding from this now-substantial body of work is that the VVP

[ventral visual pathway] is not homogeneous but is instead a highly differenti-

ated structure containing a set of regions each with its own distinct functional

profile. These regions include the fusiform face area (FFA), which responds selec-

tively to faces, the parahippocampal place area (PPA), which responds selectively

to [scenes], the extrastriate body area (EBA), which responds selectively to bod-

ies, the lateral occipital complex (LOC), which responds to object shape largely
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independent of object category, and the visual word form area (VWFA), which re-

sponds selectively to both visually presented words and consonant strings. Each

of these regions is present in approximately the same location in virtually every

healthy subject. These regions and their cohorts (e.g., the occipital face area or

OFA) constitute the fundamental machinery of high-level visual recognition in

humans. (p 733, citations removed)

These neural correlates and pathways respond selectively to their associated shape types

within a few hundred milliseconds.60 Moreover, we know that these cortical areas represent

distal environmental constancies because they exhibit adaptation effects. By recording these

adaptation effects, Kanwisher and colleagues infer which properties are being represented

in these cortical areas.61 I will focus on the question of which spatial contents mediate our

visual achievement of object shape constancy and scene shape constancy given that (i) these

are the two most commonly investigated and well-understood representational processes from

the five listed above, and (ii) they are the two representational processes of the five that our

philosophers appealed to in arguing for a VMS.62

Scene Categorization

Since 2001, Aude Oliva and her colleagues have been the leading figures in vision science

attempting to answer the question: what are the spatial contents involved in perceiving an

environmental space (i.e., a scene)? They claim that a decade of fMRI adaptation results

have suggested that “an environmental space can be represented by two separable and com-

plementary descriptors (Oliva and Torralba, 2001): its spatial boundary (i.e., the shape and

60See Bastin et al. (2013), Greene and Oliva (2009a) for the temporal profiles of PPA and OPA.
61In addition to fMRI adaptation, visual neuroscientists infer representational content based on the neural

and behavioral results described in footnote 54.
62The totality of these philosophical arguments were based on: object shape categorization (Peacocke,

Burge), scene categorization (Peacocke), motion and position constancy (Wu), demonstrative reference
(Strawson, Evans), navigation (Burge), and size estimation (Hatfield). I will address the last four at the end
of section 2.2.

37



size of the scene’s space) and its content (textures, surfaces, materials and objects)” (Park

et al. 2011, p 1333). The ‘spatial boundary descriptor’ attributes global features to the envi-

ronmental space, whereas the ‘content descriptor’ attributes local features to various items in

the environment. These two perceptual representations arise in two distinct visual pathways

that end in the “PPA and LOC,” respectively (p 1339). I will discuss the representational

contents of the latter pathway below. In the former pathway, these “scene-selective” visual

areas (e.g., OPA, PPA, RSC) exhibit adaptation effects when we add or remove portable

objects to the scene over multiple fixations, but these areas do not exhibit such adaptation

effects when we alter the permanent boundaries and landmarks of the scene (Park and Chun

2009; Park et al. 2011).

What, then, is the content of Oliva’s proposed “spatial boundary” percept associ-

ated with the PPA? According to Oliva’s model, this content is given by a global feature

space.63 For example, the openness and depth of the visible environment – defined in terms

of perspective-invariant large-scale texture patterns within the retinal image (see figure 3 of

Torralba and Oliva (2003), p 395) – are perceived attributes of this space.64 These features

may then subserve various visual tasks such as categorizing scenes as a “beach,” “street,” or

“forest.”

Although the exact number of global features that we represent in this pathway is not

yet known, the fMRI adaptation results are consistent with the five global features postulated

in Oliva’s model (the Spatial Envelope Model).65 Significantly, neither Oliva’s model nor its

63Park et al. (2015), Oliva et al. (2011), Greene and Oliva (2006, 2009a,b), Oliva and Torralba (2001).
64For instance, Greene and Oliva (2009a), Torralba and Oliva (2003), and Oliva and Torralba (2001) use

various gabor filters (a type of fourier transformation) on an image to classify the visible environment along
feature dimensions such as naturalness, openness, roughness, expansion, and ruggedness. The neural location
of these spatial boundary attributions may be in visual areas adjacent to the PPA. For instance, the RSC
seems to exhibit greater perspective-invariance than the PPA along some dimensions: “We did not find
any attenuation for panoramic repeats in the PPA, showing viewpoint-specificity. In contrast, RSC showed
significant attenuation for the panoramic condition, showing viewpoint-integration.” (Park and Chun 2009,
p. 1747)

65 See Oliva (2014), pp 727ff., for references to some of these adaptation experiments. For additional
studies on the constancies exhibited in the visual pathway to PPA, see Dilks et al. (2013), Kamps et al.
(2016), Dilks et al. (2011), Greene and Oliva (2009b), Park and Chun (2009), Ward et al. (2010), Morgan
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competitors posit a VMS: the distance relations between visible objects are never represented

as such.66 Many vision science articles are explicit on this point, such as this illustrative

passage from Oliva in which she contrasts her “holistic-based approach” to scene perception

with Marr’s “part-based approach”:

In the attempt to explain how the brain represents a scene, the part-based

approach (Marr, 1982; Biederman, 1987) depicts access to scene meaning as the

last step within a hierarchical organization of modules of visual processing with

increasing complexity (edges, surfaces, objects, scene). The “geon” theory put

forth by Irving Biederman (1987, 1995) suggests that fast scene understanding

could be achieved via a representation of the [geometric] arrangement of simple

volumetric forms from which the identity of the individual objects and scenes can

be inferred. Alternatively, a holistic-based approach (spatial envelope theory;

see Oliva and Torralba, 2001) constructs a meaningful representation of scene

gist directly from the low-level features pool, without binding contours to form

surfaces, and surfaces to form objects. (Oliva 2005, p 256)67

et al. (2011), Epstein et al. (2007). These studies suggest that spatial layout may be represented in terms of
spatial frequency textures as well as mean depth, center of mass, and mean element size. Although I cannot
explore these models here, it is notable that none of these features suggest the existence of a VMS.

66The competing models of scene representation in vision science are: (i) the Texture Tiling Model of
Rosenholtz (2009, 2012, 2016), (ii) the Parametric Texture Model of Gatys et al. (2015) and Portilla and
Simoncelli (2000), (iii) the Scene Schema Model of Renninger and Malik (2004), Kim and Biederman (2012),
and potentially Dillon et al. (2017), and (iv) the Regional Semantics Model of Vogel and Schiele (2007).
All four of these models are very similar to Oliva’s model in that they appeal to texture patterns (i.e.,
spatial frequencies) on the retinal image – rather than a metric space – to explain human performance on
visual tasks such as categorizing and reidentifying scenes in rapid serial visual presentations. Only the Scene
Schema Model posits anything like a geometric structure in representation content, but even here it is a
topological relational structure in which the relations are analogous to locative prepositions such as “under”
and “on.” These more abstract, topological relational structures were first posited by Biederman as “scene
schemas” (1982, p 145) and “structural descriptions” (1987, p 128). I find it somewhat plausible that these
structures exist, but there are few neural or behavioral results that support their existence in single-fixation
perception.

67For similar passages, see Mullin and Steeves (2011), p 4174; Mullally and Maguire (2011), p 7441;
Kanwisher and Dilks (2014), pp 736-737; Rosenholtz (2016), p 449.
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As we saw in section 2.1, Marr claims that the visual system first encodes local surface

properties of egocentric distance and orientation in a 2.5-D sketch and only later do we end

up perceiving the spatial layout or semantic properties of a scene. For Oliva and most present-

day vision scientists, Marr’s approach is not only an incorrect account of the computational

stages preceding scene perception, but it is an incorrect account of the representational

contents of scene perception. Marr postulated that the shape we perceptually attribute to

a scene will necessarily be embedded in a coordinate system in which each visible point

of a surface receives its own local coordinate. Oliva rejects this “part-based approach” in

favor of an approach in which spatial layout contents are analyzed in terms of global spatial

frequencies, not coordinate systems. In other words, the dominant and empirically-supported

approach to scene perception today outright rejects the postulation of a 2.5-D sketch or

a VMS. The current models claim that the naturalness, openness, roughness, expansion,

ruggedness, etc. of the visible environment are each attributed to the global space without

first locating multiple objects within a metric space.68

In sum, the best current models of scene perception do not posit a VMS, and many

articles explicitly reject the VMS as an artifact of a now-defunct tradition in vision science.

These current models are supported by a substantial body of neural and behavioral evidence,

almost all of which was not available to Marr in the 1980s. Today, a scientifically-informed

account of scene perception all but mandates that we reject a VMS in favor of a global

feature space representation. Such global features are stable over changes in perspective and

many studies show that various visual areas in the pathway to PPA adapt to these features.

68As might be guessed, Oliva considers her model to be Gibsonian in spirit: “By grounding our search in
the principles of environmental affordance (Gibson, 1979; Rosch, 1978), we have been able to find a collection
of properties that are necessary and sufficient to capture the essence of many landscape image categories”
(Greene and Oliva 2006, p 6).
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Object Shape Categorization

Does the VMS-concept fare any better in the study of object shape perception? That is, do

any of the “object-selective regions” in the LOC contain a VMS? Neural evidence suggests

otherwise: these regions exhibit adaptation across changes in the object’s occlusion, size,

position, handedness, surface curvature, and internal angles.69 If object shape contents in

the LOC included a metric space (with metric relations been a set of vertices, for instance),

these adaptation effects would not occur since the VMS itself would vary with each of these

changes in the object’s features.70

A VMS proponent may wonder whether these abstract and non-metric shape contents

in the LOC might be constructed from a VMS representation that arises in a pre-LOC visual

area such as V4. Indeed, vision scientists have shown that when “identical stimuli differing

in size ... were presented, V4 showed a recovery from adaptation” (Konen and Kastner 2008,

p 227). On its own, this could be used to suggest that V4 represents a metrically-determined

shape of an object. However, this size-dependency of V4 taken in conjunction with the fact

that V4 also recovers from adaptation when the object’s orientation changes suggests that

“the previously observed adaptation effects [in V4] were due to adaptation to low-level fea-

tures” of the retinal image (p 227). Hence, V4 may not exhibit any perceptual constancies,

“whereas higher-order lateral occipital complex (LOC) responds selectively to objects inde-

69For changes in occlusion, see Kourtzi and Kanwisher (2001). For changes in size and position, see Grill-
Spector et al. (1999). For changes in handedness, see Dilks et al. (2011). For changes in surface curvature
and internal angles, see Kourtzi et al. (2003) as well as the studies of the LOC-homologue in rhesus monkeys
in Kayaert et al. (2003), Kayaert et al. (2005). (The dishabituation results in Kayaert and Wagemans
(2010) provide behavioral corroboration that affine rather than metric features are the primary contents of
shape perception.) Somewhat relatedly, the results of Kim and Biederman (2012) suggest that we perceive
spatial relations between multiple objects (e.g., attachment, alignment, occlusion) only if these relations are
non-metric.

70The parts and structure of these non-metric shape representations are still not well understood. There
are various programmatic frameworks, however, such as Biederman’s geon theory (Biederman 1987; Lescroart
and Biederman 2013). One might wonder whether we know that the LOC represents object shape at all rather
than, say, an object’s even more abstract semantic properties. But the latter view has been disconfirmed by
the adaptation results mentioned in footnote 68 as well as by a study that directly tested this view: “fMRI
adaptation is not found in LOC across objects that are similar in meaning but differ in shape” (Kanwisher
and Dilks 2014, p 736).
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pendent of image transformations, suggesting a more abstract visual representation that is

necessary for perceptual object constancy” (Konen et al. 2011, p 49).71

Perceptual Content Other Than Shape-Based Content

In sum, the evidence from vision science over the past twenty years suggests that there is

no VMS in the representational content underlying object shape and scene shape percep-

tion. Hence, it would seem that any philosophical attempt to update Peacocke’s or Burge’s

appeals to object shape or scene shape perception to argue for a VMS would be fighting an

uphill battle against the current vision-scientific consensus. Of course, as we saw in Part

1, there are other kinds of perceptual content on the basis of which one might argue for a

VMS. Wayne Wu appeals to motion perception, Peter Strawson and Gareth Evans appeal to

perceptual reference, Burge appeals to perceptual content used in navigation, and Hatfield

appeals to perceptual content used in size estimation judgments. As we saw in Part 1, the

particular arguments for a VMS that these authors provide are flawed. Does current vision

science provide any experimental results about these topics that could be used to update and

strengthen their arguments? If so, I am unaware of such results. Although there have been

sustained vision-scientific investigations of perceptual reference (in the form of object track-

ing systems), object motion, and navigation, but little is known about the spatial contents

in these perceptual systems.That is, vision scientists currently lack experimentally-grounded

theories about which spatial features these perceptual processes actually represent.72 Hence,

it would seem that appealing to vision-scientific authority regarding any of these perceptual

contents, shape-based or not, will at best be unhelpful to a VMS proponent.

71For a similar claim that visual areas before LOC do not represent distal properties (i.e., invariances,
constancies), see Kanwisher and Dilks (2014, p 737). For fMRI adaptation results that suggest V4 may
exhibit constancy in representing the metric distance between two surfaces, see Neri et al. (2004), p 1881.

72For the little we do know about the spatial contents in these systems, see the following articles. Object
motion: Ashida et al. (2007), Warren and Rushton (2007), Fajen and Matthis (2013). Perceptual reference:
Xu (2009), Green (2018). Navigation: Raudies and Hasselmo (2011).
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1.4 Conclusion and Open Questions

Many philosophers in the 20th and 21st centuries have claimed that humans represent a

metric space in visual perception. I have critiqued their central arguments for this claim in

section 2, and I have contrasted this claim with the most experimentally-grounded theories

of perceptual content in vision science today in section 3. Based on these considerations,

I see every reason to be skeptical about the existence of a VMS. At the same time, hu-

mans constantly rely on geometrically-organized cognitive representations of both physical

domains (e.g., cognitive maps) and ideal domains (e.g., Euclidean figures). If they do not

arise in perception, which cognitive systems contain such geometric representations, what is

their specific content, and on what basis are they constructed? Answers to these questions

lack the kind of robust empirical support that investigations of perceptual content could

offer. Nevertheless, these questions are vital to any basic understanding of animal and hu-

man representation. For this reason, developmental psychologists like Elizabeth Spelke and

philosophers like Marcus Giaquinto have proposed representational theories to account for

various kinds of geometric cognition. In the next two chapters, I draw from and criticize their

theories in developing my own understanding of cognitive maps and elementary geometric

beliefs.
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Chapter 2

Are Euclidean Beliefs Grounded in
Core Cognitive Systems?

2.1 Introduction

Over the past decade, philosophers have drawn upon psychological theories of numerical

concept acquisition and arithmetical belief formation to defend claims about the meta-

physics,semantics, and epistemology of arithmetic.1 Most commonly, these philosophers

have focused on one theory from the psychological literature that has come to be known as

the “theory of core cognition.” The theory of core cognition offers an account of concept

acquisition and belief formation in at least five domains: portable objects, intention action,

number, geometry, and social group (Spelke and Kinzler 2007). For each domain, a collec-

tion of unlearned core cognitive systems makes possible the acquisition of basic concepts and

the formation of basic beliefs about this domain. Until recently, the domains of object and

number have received the most attention from core cognitive theorists and philosophers of

arithmetic. However, over the past decade, Spelke and others have published a number of

articles developing the core cognitive theory of geometry. The primary purpose of this essay

1For example, Ball (2017), Beck (2015), Burge (2010, pp 471ff), Giaquinto (2001a,b), Heck (2000), Jenkins
(2005, 2008), Maddy (2007, 2014), Margolis and Laurence (2008), Prinz (2002, pp 184ff), and Shea (2011).
Other philosophers of arithmetic, such as Hale and Wright (2001), Parsons (2009), and Resnik (1997), defend
their metaphysical, semantic, and epistemological claims without engaging this experimental literature.
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is to evaluate whether the theory of core cognition might be as useful for philosophers of

geometry as it has become for philosophers of arithmetic. My answer will be largely negative

given the current state of scientific knowledge.

In Part 1, I review the core cognitive theory of numerical concept acquisition in order

to isolate the essential claims of the core cognitive theory of number. In Part 2, I show how

core cognitive theorists have defended parallel claims in the domain of geometry. In Part 3,

I evaluate the strength of the core cognitive theory and reflect on its utility for philosophers

of geometry.

2.2 The Core Cognitive Theory of Numerical Concept Acquisition

In her Origin of Concepts, Susan Carey proposes a general theory of concept acquisition.

According to this theory, the content of a learned concept in one of the five domains (e.g.,

the numerical concept eight) is determined by its causal relations with objects in the en-

vironment. These causal relations are sustained by a set of unlearned, domain-specific,

modular systems of representation: core cognitive systems. The representations in these

core cognitive systems are necessarily intermodal and sensory-derived (Carey 2009, pp 38-

40, 136). Additionally, core cognitive representations are non-conceptual in the sense that

they cannot contain logical constants (e.g., negation or disjunction), cannot be asserted,

and cannot be entertained without attributing the property it represents to a particular

in the environment.2 According to Carey, concepts cannot be acquired by combining the

representational contents of core cognitive systems.3 Rather, a set of interrelated concepts

(e.g., natural number concepts) is acquired when a corresponding set of lexical items (e.g.,

2Carey claims that core cognitive representations are “conceptual,” but by this she merely means that
they are post-perceptual (2009, p 34) and intermodal (2009, p 39). I believe Carey would agree that core
cognitive representations lack all three aspects of my more restricted definition of concept.

3To claim that concepts are acquired in this way is to fall prey to Fodors (1975, p 36ff) reductio in favor
of radical concept nativism (Carey 2009, p 18).
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numerals) are appropriately related to each other and to the underlying core cognitive sys-

tems. Carey draws this theory of concept acquisition from philosophical essays like Laurence

and Margolis (1999, 2002) and she attributes it to many psychological essays from the early

1990s.4 Nevertheless, her book is currently the most detailed and experimentally grounded

explication of the core cognitive theory of concept acquisition.

Carey applies the core cognitive theory of concept acquisition to the system of natural

number concepts (2009, ch 4). In particular, she wants to give an account of “how children

learn the meaning of verbal numerals such as ‘three’ and ‘seven’ ” (p 134). Possession of this

system of concepts entails that one can correctly answer questions about the cardinality of

sets of objects, such as whether two sets have equal cardinality or questions of how many

objects are in the union or difference of two sets. Carey claims that the causal relations

determining the contents and acquisition of numerical concepts are sustained by two core

cognitive systems: the analogue magnitude system (AM) and the parallel individuation

system (PI).5

2.2.1 Two Core Systems of Number

The AM system is responsible for representing the numerical size of a set of environmental

particular. Core theorists individuate the AM system by its conformity to Weber’s law.

4Carey (2009, pp 25, 306, 307, 511, 517) also cites MacNamara (1986), Block (1986), and Nersessian (1992)
as philosophical articulations of the bootstrapping process that is espoused in the theory of core cognition.
Carey maintains that the core cognitive theory of numerical concept acquisition was first defended in five
studies from the early 1990s (p 25n2), and we might add to her list the publications of Fuson (1988), Wynn
(1990), and Dehaene and Changeux (1993). Despite some similarities, the core cognitive theory of concept
acquisition should not be attributed to Piaget. Piaget (1936) falsely claims that certain object and number
representations do not develop until around age 5, but these representations have since been isolated in
six-month-old infants (Carey 2009, pp 121, 136). Still, the core cognitive theory and Piagets theory both
posit discrete stages of cognitive growth and concept acquisition. This distinguishes their paradigms from
more ‘empiricist,’ ‘gradualist,’ or ‘non-modular architecturalist’ approaches, such as Bates et al. (1998),
Karmiloff-Smith (1992), Spencer et al. (2009), and Thelen and Smith (1994).

5Carey (2009), pp 117, 137. The AM system is identical to what Dehaene (2011) calls the “analogue
number sense” (Carey 2009, p 118). The PI system tracks multiple individuals (e.g., objects, events, tone
bursts) in working memory and during periods of occlusion (p 117).
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Weber’s law maintains that the discriminability of the (numerical) size of any two sets is a

function of the ratio of their cardinalities (2009, p 118). For example, according to Weber’s

law, it should be more difficult for an animal to determine whether an 8-object set and

a 9-object set have the same size than it is to determine whether an 8-object set and a

16-object set have the same size. Many species, including humans, respond to cardinality

properties in accordance with Webers law. For example, Elizabeth Brannon and colleagues

have shown that Rhesus monkeys can learn to order a novel collection of images by the

number of closed regions in each image.6 The Rhesus monkeys were successful at ordering

the images by cardinality when every pair of images had a cardinality ratio greater than 3:2,

but they failed when the ratio was smaller than this. Their performance conforms to Webers

law. In a second study, Xu and Spelke (2000) have shown that six-month-old human infants

dishabituate to (i.e., look longer at) a new dot array if its cardinality ratio to the old dot

array is greater 3:2.7

The AM system is not limited to representing that the numerical size of one set is

not equal to (or greater than) the numerical size of another set. The AM system can also

represent and compute the addition of two numerical sizes. Flombaum et al. (2005) showed

that Rhesus monkeys dishabituate if two sets of n objects are put behind a screen and then

the screen is lifted to reveal n objects rather than 2n objects.8 Still, it would be inaccurate

to say the AM system contains arithmetical representations. There is no evidence that AM

representations contain singular reference to discrete natural numbers (e.g., “the number

of planets is eight”, “seven is the successor of six”).9 Rather, the Weber-fraction signature

suggests the AM system represents 9 numerical size as a continuous property similar to

6Brannon and Terrace (1998), Cantlon and Brannon (2006).
7Spelke replicated this result using tone sequence cardinalities (Lipton and Spelke 2003, 2004) and car-

dinalities of jumping event sequences (Wood and Spelke 2005).
8This experiment is replicated for nine-month-old infants in McCrink and Wynn (2004).
9As Carey notes, an outdated model of the AM system called the “accumulator model” did posit such

discrete representations that are computed via a subconscious counting routine (2009, p 293). But the results
of Barth et al. (2005) and Wood and Spelke (2005) show that the time it takes adults and infants to form
an AM representation is invariant across set size.
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perceptible magnitudes like brightness, length, and temperature. Before we can explain the

acquisition of natural number concepts, we must consider the representational contents of

the PI system.

Core theorists individuate the PI system and their representations by their conformity

to a “set-size signature” (p 139). This signature arises in habituation studies where objects

are occluded one at a time behind a screen or in a jar. Starkey and Cooper (1980) found that,

although infants dishabituate when two objects are hidden and three are revealed, infants

do not dishabituate when four objects are hidden and six are revealed. These results violate

Weber’s law. Hence, the AM system is not responsible for the infant’s ability to discriminate

the sizes of these sets. Core cognitive theorists claims that the infants discrimination abilities

are grounded in an object-tracking system that is incapable of tracking more than three

objects. Their hypothesis is confirmed by another experimental paradigm involving jars of

occluded food items. In this paradigm, each of two empty jars are visibly and sequentially

filled with a certain number of graham crackers (Feigenson and Carey 2005). Infants are then

allowed to grab the food out of one of the jars. Infants consistently choose the numerically

larger set if both jars contain fewer than three objects. However, if either jar contains four

or more objects, they choose at random between the two jars (even in the case of one versus

four!).

There is some controversy about how we should characterize the content of the PI

system. Some core theorists believe that the above experiments show that the PI system

contains applied arithmetical representations of, e.g., 2 + 2 = 4. Other core theorists believe

that the PI system merely opens and closes individual-files rather than attributing cardinality

to sets.10 Despite this controversy, it is universally accepted that the PI system is not capable

of representing arithmetical facts involving numbers greater than four. The core cognitive

theory of number maintains that applied representations of, e.g., 5 + 7 = 12, are only possible

10Carey (2009, pp 142-143) seems to hold a position between these two extremes according to which infants
can represent that two sets stand in a 1-1 correspondence.
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through the childs construction of the verbal numeral list.11 As we will see below, the PI

and AM core systems play “a crucial role in the creation of the explicit verbal numeral list

representation of the positive integers” (Carey 2009, p 152).

2.2.2 Bootstrapping to Numerical Concepts and Arithmetical Beliefs

In any domain, the theory of core cognition desires to show how it is possible for language

learning to “build representational resources that transcend core cognition” (p 248). In

any domain, this process requires acquiring a lexicon along with an associated network of

inference and action rules (p 306). In the domain of number, core theorists agree that

children acquire numerical concepts by first learning: (i) to rehearse the verbal numeral list

(one, two, three, etc.), (ii) to count a set of objects, and (iii) to answer ‘how-many’ questions

with the the last numeral uttered during the counting procedure.12 Tokens of these numerals

lack meaning until they can be used to correctly answer a variety of cardinality questions

about sets of environmental particulars.13

What allows a child to correctly answer cardinality questions? Core theorists believe

that the singular/plural distinction in English grammar is the primary catalyst for correctly

answering these questions. They claim that children learn the meaning of the word “some” as

appropriate in cases where a visible set has two or more elements. They also claim that many

experimental results show that when children start to correctly answer cardinality questions

for sets with one element, the are actually mapping the numeral one to the indefinite article

11We may assume that core theorists would also accept that non-verbal numeral lists can also be used a
basis for the development of arithmetical representations.

12Carey calls these three skills, “the stable order principle,” “the 1-1 correspondence principle,” and “the
last word rule,” respectively (2009, pp 288-290, 300). As many experimental results show, these skills are
not sufficient for numerical concept possession since children with these skills are unsuccessful on the three
tasks described in the next footnote.

13These questions include: “Can you give me n?” (Give-a-Number task), “Can you point to the card
with n fish?” (Point-to-n task), and “What’s on this card?” (What’s-on-this-card task). When a child
is successful at all of these tasks for any set size, core theorists say they have acquired the “cardinality
principle.” Cf. Carey (2009), pp 297-302.
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“a” and all numerals greater than one to the word “some” (p 326). The crucial step comes

when they learn to correctly answer cardinality questions for sets of two, three, and four

elements. In the case of “two,” children learn to apply this numeral just in case their PI

system contains two open individual files. In every such case, the numeral “two” functions

as a determiner and thus describes a property of a set of objects. This property is naturally

inferred to be the numerical size that is represented in the AM system whenever the PI

system has two open individual files. In this way, “two” comes to represent a numerical

size. The same process explains how the numerals “three” and “four” come to represent

numerical sizes. In all three cases, when a child has learned to utter the numeral n whenever

they have n open individual files, their utterance will have the same meaning as their AM

representation of that set.

The PI system is not capable of opening more than four individual files. For this

reason, higher numerals only gain reference to a precise numerical size through a childs

ability to enumerate a set. The child’s disposition to answer ‘how-many’ questions using the

last word rule combines with singular/plural distinction to activate an AM representation

of the enumerated set. Through this procedure, higher numerals gain their reference to

numerical size. These numerals still do not represent cardinal numbers because they “do not

yet embody the arithmetic successor function” (p 327). However, children can acquire the

successor function concept when, for any set of size n, the meaning of numeral n + 1 is simply

the size of the set resulting from adding a new individual” (p 327). Children then use “this

integrated representational system to invent addition and subtraction algorithms based on

the successor function (i.e., by counting up and counting down)” (p 344). To summarize, the

singular/plural distinction in English grammar makes possible the simultaneous activation

of the PI and AM systems, which in turn allows the network of inference rules (i)-(iii) to

associate numerals with discretized content.
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When children are able to correctly answer cardinality questions, the system of nu-

merical concepts they now possess is constitutively related to core representations in the

AM and PI systems. That is, the representations in these two core systems are capable of

producing basic arithmetical beliefs. For example, if adults are shown two dot arrays where

the first array has twice as many dots as the other array, the AM system will represent this

fact and give rise to a belief that the number of dots in the first array is greater than the

number of dots in the second array (Barth et al. 2003). When the number of dots in the two

arrays is varied, Barth and colleagues have shown that the accuracy of adult verbal reports

about which array is larger conforms to Webers law.14 The mechanism underlying this sort

of basic arithmetical belief formation is sustained by “a mapping between analog magnitude

representations and the verbal integer list” (Carey 2009, p 128). Similarly, if the PI system

has three object files open, we are capable of forming a belief without counting that there

are three objects in the visible set.15 In this way, the theory of core cognition is just as much

a theory of belief formation as it is a theory of concept acquisition.

In order to evaluate the core cognitive theory of geometry, I want to isolate the essential

claims of the core cognitive theory of number. There are three such claims: (a) the AM and

PI systems exist, (b) numerical concept acquisition occurs when these two core systems allow

the numeral list to be appropriately applied to the environment, and (c) the representations

in the AM and PI system dispose us to form corresponding basic beliefs. Many philosophers

of arithmetic have adopted at least one of these claims in developing their own metaphysical,

semantic, and epistemological arguments.16 They have used this theory and its supporting

14Carey (2009), p 131. Barth et al. (2006) also showed human adults and four-year-old children a serial
display of a blue 45-dot array, a blue 60-dot array, and a red 75-dot array. They asked participants whether
they saw more blue dots or red dots. Their performance was again predicted by Weber’s law, which suggests
that the AM system generates arithmetical beliefs involving addition-like operations. (Carey 2009, pp 123,
127, 128)

15The exercise of this capacity is often called “subitizing” (Dehaene and Cohen 1994).
16Philosophers who support parts of the core cognitive theory of numerical concept acquisition include Ball

(2017), Beck (2015), Maddy (2007, 2014), Shea (2011), Burge (2010), Laurence and Margolis (2008), and
Giaquinto (2001). Some of these endorsements come with dissenting claims about some aspect of Carey’s
view of the representations in these two core cognitive systems: Ball (2017) argues they are not iconic, Beck
(2015) argues they are not conceptual, Burge (2010, p 480n82) argues they do not represent numerosity. I
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experiments to refine and extend their own theories of, e.g., arithmetical belief formation,

knowledge, analyticity, apriority, truth, and meaning. It is only natural to ask whether core

cognitive theory can bear philosophical fruitful in other domains. In particular, I will ask

whether the core cognitive theory of geometrical concept acquisition and belief formation

can stimulate theorizing in the philosophy of geometry.

2.3 The Core Cognitive Theory of Geometric Concept Acquisition

According to Spelke et al. (2010), core cognition of geometry parallels the structure of core

cognition of number. There are two core systems – the surface layout system and the object

shape system – that make the acquisition of familiar geometric concepts and Euclidean beliefs

possible:

What, then, is the nature of human knowledge of geometry, and how does this

knowledge arise and develop? Here, we offer a hypothesis in the spirit of Carey

(2009) ... Like natural number, natural geometry is founded on at least two

evolutionarily ancient, early developing, and cross-culturally universal cognitive

systems that capture abstract information about the shape of the surrounding

world: two core systems of geometry. Nevertheless, each system is limited: It

captures only a subset of the properties encompassed by Euclidean geometry, and

it applies only to a subset of the perceptible entities to which human adults give

shape descriptions. Children go beyond these limits, and construct a new system

of geometric representation that is more complete and general, by combining

productively the representations delivered by these two systems. (2010, p 865)

agree with these claims, but they should not be seen as challenging the essential claims of the core cognitive
theory of numerical concept acquisition.
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The “new system of geometric representation” refers to a collection of propositions and lex-

ical concepts found in Euclid’s Elements. In the case of arithmetic, the verbal numeral list

and the singular/plural distinction made the acquisition of numerical concepts and arith-

metical beliefs possible. In the case of geometry, acquisition is made possible by a set of

“uniquely human, culturally variable artifacts: pictures, models and maps” (2010, p 865).17

These artifacts make possible the construction of a rich relational structure (exhibiting typ-

ical Euclidean relations between points, lines, and angles) that is responsible for producing

basic Euclidean beliefs.18 This rich relational structure is thought to augment the geometric

content of cognitive maps, working memory, and the spatial representations inferred from

drawn maps.19 In short, the core cognitive theory of geometry posits three levels of repre-

sentation: the two core systems, an artifact-based rich relational structure, and Euclidean

concepts and beliefs. Over the past decade, articles by Spelke and many other cognitive

psychologists have argued for the existence of these representational systems and various

causal dependencies between them on the basis of behavioral and neural evidence that I will

describe below.20

17Spelke et al. (2010) make this point explicitly: “Thus, like the system of number, the system of geometry
that feels most natural to educated adults is a hard-won cognitive achievement, constructed by children as
they engage with the symbol systems of their culture” (p 865).

18For example, Dillon and Spelke (2018, p 1) claim that “older childrens map reading undergoes changes
through development that predict the emergence of intuitions that align better with euclidean geometry.”

19Dehaene et al. (2006) make the same point: “Geometrical intuitions, in the final analysis, may rest on
a spontaneous imposition of stable conceptual relations onto variable and imperfect sensory data” (p 383).
There is some disagreement about whether all three of these spatial representations take on this Euclidean
structure. For example, Lee et al. (2012, p 145) claim that certain experimental results demonstrate that
cognitive maps do not have a Euclidean structure. Rather, the geometric content of cognitive maps is closer
to what Chrastil and Warren (2014) refer to as “graph knowledge.”

20Calero et al. (2019), Dillon and Spelke (2015, 2018), Dillon et al. (2013), Lee et al. (2012), Spelke and
Lee (2012), Izard et al. (2011a), Spelke (2011), Spelke et al. (2010), Izard and Spelke (2009), Dehaene et al.
(2006). Within broadly the same tradition, some cognitive psychologists (e.g., Landau 2017, Shusterman and
Li 2016) have focused on the acquisition of non-metric concepts expressed by locative prepositional phrases
(e.g., ‘on’, ‘to left of’, ‘uphill from’). Still other articles in this tradition (e.g., Winkler-Rhoades et al. 2013,
Burgess 2006) have merely defended the view that the two core systems of geometry can explain the origins
of other cognitive, but pre-conceptual, skills such as the construction and application of cognitive maps.
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2.3.1 Two Core Systems of Geometry

The core cognitive theory of geometric concept acquisition appeals to a variety of neural and

behavioral evidence to argue for the existence, neural basis, and content of the surface layout

system and the object shape system.21 I will give an overview of this evidence here. Let’s

begin with the surface layout system. This core system, also called the “geometric module,”

was first proposed by Ken Cheng (1986) based on the results of three experiments about the

reorientation behavior by rats. In each experiment, rats were trained to find hidden food at

up to nine locations in a rectangular box. In the test trials, after rats learned the location

of the food, they were removed and placed in an identical box where they had to reorient

to find the food again. Cheng found that features such as the color, texture, and lighting

on the walls were not used to reorient. Based on these results, he posits a core system in

the working memory of rats that guides their navigation to a target object in a familiar

environment. In this core system, Cheng claims that rats attribute a “metric frame” to the

environment based on the “arrangement of surfaces,” and they location food via an “address

on the metric frame” (p 172).

A decade after Cheng’s experiments, neuroscientists recorded the activity of hippocam-

pal “place cells” while rats explored a rectangular environment (O’Keefe and Burgess 1996).

They found that the firing rates of certain place cells varied with the rat’s distance from a

given boundary wall. Further studies compared the firing rates of specific place cells across

variously-shaped environments, and they concluded that “the representation of space pro-

vided by place-cell firing rates is like a single flexible map, or more accurately a coordinate

system, which can be applied to any environment” (Hartley et al. 2000, p 378). By this, they

mean that place cell firing rates are computed from a set of postulated “boundary vector

cells” that each represent the distance to a boundary wall (and thus can be thought of as one

coordinate in the metric frame). Boundary vector cells were isolated in the rats entorhinal

21Unlike the numerical case, these two systems have not been given widely-adopted proper names.
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cortex by Solstad et al. (2008).22 In the case of humans, the fMRI studies of Doeller et

al. (2008) have found that when a human is being taught the location of a hidden object

(relative to a circular wall and the sun), the activity levels in the right posterior hippocam-

pus predict how well the subject is able to estimate that object’s location in a future trial.

Additionally, Hupbach and Nadel (2005) and Spelke and Lee (2008) found that two-year-old

children do not reorient on the basis of the distance between landmarks (e.g., a pole) or the

size of the angle between boundary walls.23

Core cognition theorists, who are primarily concerned with concept acquisition, regu-

larly cite the above studies to elaborate the contents and neural basis of the spatial layout

system. For example, Spelke et al. (2010, pp 867ff) claim that these studies demonstrate

that the spatial layout system represents (i) the egocentric distance and direction to each

boundary wall, (ii) the proportion between the lengths of adjacent boundary walls,24 and

(iii) the left/right relations between pairs of adjacent boundary walls. In contrast, these

representations do not include contents such as the distance between landmarks, the color

22This study is often cited by core theorists like Spelke and Lee (2012, p 2786), Lee et al. (2012), p
157. In addition to these boundary vectors cells, other kinds of newly-isolated cells have been implicated in
navigation. For instance, Hafting et al. (2005) isolated “grid cells.” If we imagine the navigable environment
has been tiled by equilateral triangles, each of these grid cells fires when the location of the animal has moved
over a vertex of a triangle. They propose that this firing pattern is evidence of a metric space representation of
the environment (often called a cognitive map), in which the animal stores the location of objects, landmarks,
and boundaries.

23As recently as Lee et al. (2012, pp 153, 157), core theorists have appealed to boundary vector cells as
the neural basis of the spatial layout system. However, there have been more recent attempts (e.g., Dillon
et al. 2017) by core theorists to argue that the neural basis of the spatial layout system is in fact the
occipital place area (OPA) and the retrosplenial complex (RSC). The argument that these areas represent
distance and left/right relations is based on fMRI adaptation results showing that these two brain regions
release from adaptation when the distance to a pictured landmark changes or the image is mirror-reversed.
Unfortunately, these results about adaptation release can be explain by any number of proximal image
features or non-geometric distal properties. Moreover, the OPA (and, arguably, the RSC) is a part of the
visuo-perceptual system, and hence cannot be the neural basis of a core system. For these reasons, in the
rest of this essay I will assume that boundary vector cells are the intended neural basis of the spatial layout
system.

24Spelke et al. (2010), p 868. Core theorists seem to have rejected claim (ii) after Lee et al. (2012,
experiments 7 and 8) showed that when four disconnected walls of equal length were arranged in a rectangular
shape, children were able to reorient. However, when four disconnected walls of two different lengths were
arranged in a square shape, children failed to reorient. This strikes me as a good reason to drop claim (ii).
If we do drop this claim, none of my critiques of the core cognitive theory of geometry would be affected,
but the diagram below from Spelke et al. (2010) would need to be updated.
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of, texture of, or angle between these boundary walls. The former set of properties, or so it is

maintained, innately and spontaneously guide human reorientation behavior in familiar en-

vironments, while the latter properties do not.25 Since this system does not represent certain

geometric features (e.g., angles and distance) it “fails as a system of Euclidean geometry”

(Spelke et al. 2010, p 867).

The object shape system also fails as a system of Euclidean geometry but for slightly

different reasons. The object shape system represents the geometric relations between the

parts of 3D portable objects (rather than between navigational boundaries). Spelke et al.

(2010) claim that this system represents (i) the size of angles formed by two edges of the

object, and (ii) the proportion between the length of adjacent edges. Notably, this system

does not represent the left/right relations between edges. The main results that core cognitive

theorists use to support these claims come from oddity tasks. In an oddity task, participants

are shown six roughly-similar figures simultaneously and asked to select the ‘odd’ figure.

Dehaene et al. (2006) found that pre-adolescent children in the U.S. do well at selecting

the figure with distinct angles or distinct length proportions. They also found that in trials

where the odd figure is a mirror image of the other figures (at various rotations), children

only make the correct selection 23% of the time (p 382). According to Spelke et al. (2010),

the neural basis of this core system is identical to the neural basis of visual shape perception:

the lateral occipital cortex (LOC). Dilks et al. (2011) have shown that the LOC exhibits

adaptation across serial displays of mirror-reversed figures. This adaptation effect suggests

that visual shape perception does not represent the left/right relations between the edges of

the perceived figure. Based on these findings, core cognitive theorists often claim that the

object shape system represents angles and length proportions, but not left/right (“sense”)

relations.

25The non-geometric properties are allegedly capable of guiding reorientation behavior, but only by means
of non-modular “associative learning” (Doeller and Burgess 2008; Spelke et al. 2012).
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2.3.2 Bootstrapping to Geometric Concepts and Beliefs

According to the theory of core cognition, the two core systems of geometry make possible

the acquisition of geometric concepts and Euclidean beliefs.26 The two core systems of

geometry are intended to be structurally parallel to the two core systems of number. Spelke

et al. (2010, p 874) make this parallel explicit in their Figure 4. In the case of geometric

concept acquisition, the two core systems of geometry allegedly sustain the causal relations

that give meaning to the relevant lexicon (e.g., point, line, angle, circle, triangle, parallel).

When an adolescent human has acquired these geometric concepts, Spelke et al. (2010, p 878)

describe this achievement as the “construction of a more general, unified system of Euclidean

geometry.” Dillon and Spelke (2018) operationalize the unity of this Euclidean system by

means of (i) a triangle completion task, and (ii) an angle-based reorientation task.27 Both

tasks require the participant to infer the size of one angle in a triangle (or a rhombus) from

core representations of side lengths. Two-year-old children perform no better than chance on

these two tasks, but twelve year-olds are successful at both tasks. What allows an adolescent

to successfully complete these tasks? As in the case of number, certain cultural artifacts are

supposed to explain this bootstrapping process. In core number cognition, these artifacts

were the verbal numeral list and the singular/plural distinction. In core geometric cognition,

these artifacts are supposed to be pictures, models, and (primarily) maps. Similar to the

singular/plural distinction, maps can simultaneously activate both core systems. To take

one example, an overhead line map of a triangular space activates the object shape system

because it is itself a small portable object with a 2D shape and it activates the spatial layout

system because it represents a large, navigable space with boundary walls. As of yet, the core

26Carey (2009) labels concept acquisition processes, “bootstrapping,” when they constitutively rely on
core systems for their representational content.

27In this study, the triangle completion task required the participants to predict whether the (imagined)
third angle in a triangle would get smaller or larger based on seeing the base angles either (i) increase in size
or (ii) move farther apart (Dillon and Spelke 2018, p 8, fig 3). The angle-based reorientation task provided
a map of either three disconnected sides or three disconnected angles that the participant had to complete
in mental imagery in order to reorient in a disconnected enclosure of the opposite kind (2018, p 5, fig 1).
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cognitive explanation for how this simultaneous activation is supposed to confer meaning on

geometric concepts like triangle, length, and parallel is not as detailed in the geometric case

as it is in the arithmetical case.

The core cognitive framework for geometric concept acquisition and Euclidean belief

formation is appealing. In time, something like it may prove to be correct. However, I want

to show here that the theory is inadequate as it currently stands. There are problems with the

claims about the two systems, the claims about the resulting concepts, and the claims about

the basic Euclidean beliefs that the core systems allegedly produce. These problems should

serve as a cautionary tale for any philosophers trying to building philosophical arguments

about truth, meaning, and knowledge in geometry while at the same time assuming the

accuracy of the core cognitive theory of geometric concept acquisition.

2.4 Problems for the Core Cognitive Theory of Geometry

The core cognitive theory of geometric concept acquisition faces three major obstacles. First,

the two core systems lack clear empirical support in the face of more recent neural and

behavioral evidence. Second, the geometric concepts that children allegedly acquire have

proven much more difficult to isolate than the analogous numerical concepts. Third, the

Euclidean beliefs that these core systems are supposed to generate have not been directly

tested.

2.4.1 Critique of the Two Core Systems of Geometry

The theory of core cognition posits the existence of core systems. By definition, core sys-

tems are post-perceptual and intermodal. The object shape system that Spelke and other

core theorists posit, however, is a visuo-perceptual system. The neural basis of this system,
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the lateral occipital cortex, is squarely within the vision-specific ventral stream that is re-

sponsible for visual perception (Kanwisher and Dilk 2014, p 733). Hence, it is clear that the

object shape system cannot be a core system. It is certainly possible there is an intermodal

core system with similar geometric contents to the object shape system (i.e., angles, length

proportions, but not left/right relations). But the neural and behavioral evidence that Spelke

and others have cited does not support this claim.

The spatial layout system fairs a bit better. This core system has a neural basis in

the boundary vector cells of the hippocampus. As such, it is both post-perceptual and

intermodal. Nevertheless, there are independent reasons for doubting that this system can

play the bootstrapping role that core theorists want it to play. The first reason is that

these boundary vectors cells in the hippocampus are part of a “a wider network of spatially

modulated neurons, including grid, [place], and head direction cells, each with distinct roles

in the representation of space and spatial memory” (Moser et al. 2015, p 2). This wider

network of spatially modulated neurons is not limited in the same way that boundary cells are

limited. In particular, the firing patterns of grid cells and place cells reveal that rats represent

their self-location on a metrically-specified grid of the navigable environment (Moser et al.

2015, p 3). Surprisingly, the firing patterns of the grid cells form equilateral triangles that

tile the surrounding space (2015, p 3, fig 1). The precise geometric contents of this wider

network of spatially modulated neurons is not obvious. However, it is clear that the failure of

boundary vector cells to represent angle sizes does not adequately account for the contents of

this wider network. Spelke and other core theorists have not provide any reason to think that

the spatial layout system should exclude the richer geometric contents of place, grid, and

head direction cells. Until such reasons are given, the neural evidence cited by core theorists

in favor of a spatial layout system does little to support their claim that this system cannot

represent the size of angles.
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The second reason for doubting the existence of the spatial layout system comes from

more recent reorientation studies. As we saw above, the core theorists identify the spatial

layout system with Ken Chengs (1986) proposed “geometric module.” His experiments were

taken to show that wall color, brightness, and texture were not used by rats to reorient.

Later, core theorists used Cheng’s experimental set up to show that these claims apply to

two-year-old children as well. (Further results about the lack of angle-based reorientation

came from these later studies as well.) But, notably, Cheng (2008 p 355) now maintains

the behavioral evidence for the existence of his geometric module “crumbled” beginning

with two reorientation studies published around 2005. These studies demonstrated that

rats and chickadees reorient in a rectangular enclosure based on the color of walls, which

overshadow the geometric properties of these walls.28 This evidence led Cheng to conclude

that the system underlying reorientation is associative and image-based, rather than modular

or geometric:

[New empirical] developments have led to an associative learning theory modeling

how featural cues [like color and texture] can sometimes help and sometimes

hinder the learning of geometric cues. And they have led to an approach of view-

based matching, in which geometric properties are not explicitly encoded. (2008,

p 355)

The behavioral evidence against the geometric module has only grown since 2008.29 Cheng

and his colleagues often explicitly note that these new studies undermine the core cognitive

theory of geometry (Twyman and Newcombe 2010, Sutton and Newcombe 2014). In fact,

Newcombe et al. (2009) use these newer studies of reorientation as evidence all modular

theories of mind. I do not mean to endorse these claims, but merely to note that the spatial

layout system lacks the clear behavioral support that undergirds the two core systems of

28These studies are Gray et al. (2005) and Pearce et al. (2006).
29Twyman et al. (2013) and Cheng et al. (2013) provide a nice overview of the many studies disconfirming

the existence of a geometric module.
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arithmetic. More generally, the neural and behavioral results that initially seemed to support

the object shape system and the spatial layout system have proved difficult to square with

more recent results.

2.4.2 Critique of the Proposed Geometric Concepts and Beliefs

The core cognitive theory of geometry is a theory of how we acquire geometric concepts

mentioned in Euclids Elements (e.g., point, line, equilateral triangle). This lexicon is notably

dissimilar to the lexicon of numerals that is studied by core numerical cognition. For one,

what set of concepts must be learned in order to have genuinely “Euclidean” beliefs? Are

concepts like left, right, rhombus, and cube necessarily in the set of geometric concepts whose

acquisition core theorists are trying to explain? In the case of number, there is a relatively

precise set of numerical concepts, function concepts, and relation concepts (e.g., greater than,

addition of, number of, successor of ) that delimit the constituents of arithmetical beliefs.

In the case of geometry, I am not aware of any similarly precise proposals for a set of basic

geometric concepts. The only statement of which I am aware that describes the intended

basic lexicon of geometry claims that it is composed of two syntactic kinds: shape names

and locative prepositions (Spelke et al. 2010, p 874). Without a more precise sense of these

set of basic geometric concepts are required, it will be difficult to determine when children

typically acquire these concepts and to theorize which core systems may be involved in their

acquisition. In the meantime, Dillon and Spelke (2018) use the Peabody Picture Vocabulary

Test (PPVT) to gauge mastery of geometry. They show that the PPVT score predicts success

on the triangle completion task and the angle-based reorientation task. However, given that

the PPVT is primarily a test of everyday sortal concepts, these results tell us little about how

basic geometric concepts are acquired. Hence, until a more precise lexicon is established, it

will be difficult to develop an experimental paradigm that can provide support for the core

cognitive theory.

74



Perhaps the more fundamental problem is that no precise set of Euclidean beliefs has

been experimentally established. Although the propositions of Euclid’s Elements are often

cited as the set of Euclidean beliefs, the experimental procedures do not test for such be-

liefs. In discussions of both the triangle completion task and the angle-based reorientation

task, core theorists often claim that successful participants must thereby believe a Euclidean

proposition. In the triangle completion task, it is that the sum of the three angles in a

triangle is a constant. In the angle-based reorientation task, it is that length of the sides

determine the size of the angles in a triangle. However, this is questionable. It seems clear

that participants would be able to successfully complete either task on the basis of amodal

completion or visual image generation. These latter abilities are not tied to Euclidean belief

formation in any obvious way.30 The one task that core theorists have used in their experi-

ments that seems to have the potential to reveal the formation of Euclidean beliefs is the line

intuitions task of Izard et al. (2011b). In this task, participants are shown diagrams of, say,

three non-collinear points and asked questions like, “Can a straight line be drawn through

all three points?” Other questions in the line intuitions task are about intersection and par-

allelity. Unfortunately for core theorists, the sample size is small and the results suggest that

adults and children perform equally well on these questions. In sum, the core cognitive theory

of geometric concept acquisition has faced unique difficulties in delimiting its explanandum

and in providing evidence for the existence of its explanans. These problems should serve as

a cautionary tale for any philosophers trying to build philosophical arguments about truth,

meaning, and knowledge in geometry while at the same time assuming the accuracy of the

core cognitive theory of geometric concept acquisition.

30There are some suggestive remarks from core theorists that these visual imagery abilities are dependent
on the formation of Euclidean beliefs. However, I am not aware of any evidence for this counterintuitive
claim.
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Chapter 3

Visual Imagination and Mathematical
Entitlement

Abstract: Recent work by Marcus Giaquinto on visual thinking in mathematics has pro-

vided us with a new appreciation for the role of visual imagination in the formation and

warrant of basic beliefs in elementary arithmetic and geometry. Yet, Giaquinto remains

skeptical about the epistemic role that visual imagination can play in elementary analysis.

He claims that our visual faculties are unreliable guides to the “limiting behavior” of certain

continuous functions. But a recent branch of mathematical logic, namely o-minimality, takes

as one of its primary objects definable continuous functions. I will argue that our visual fac-

ulties are dependable guides to the behavior of these objects. More specifically, I will argue

that the o-minimal Intermediate Value Theorem admits of imagery-based mathematical en-

titlement despite Giaquinto’s (sound) argument that the real-analytic IVT cannot be known

in this way.

3.1 Introduction

In his 2007 book, Visual Thinking in Mathematics, Marcus Giaquinto provides an answer

to a question raised by Plato: “how is pure geometrical knowledge possible?” (p 12). Gi-
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aquinto argues that a proper understanding of visual imagination and geometrical concepts

can explain the formation of true warranted geometrical beliefs. Can a parallel account

be given for mathematical knowledge outside of elementary geometry? Giaquinto maintains

that theorems in real analysis and other advanced mathematical disciplines cannot be known

through visual thinking.1 In this essay I will argue that Giaquinto underestimates the po-

tential explanatory power of his own epistemic framework. By focusing on the case of the

Intermediate Value Theorem, I will show that visual thinking can generate mathematical

knowledge in advanced disciplines like model theory and topology.

The primary reason Giaquinto develops his account of visual thinking is to refute

a long-standing position (held by some prominent mathematicians and philosophers) that

visual imagination and diagrammatic reasoning are too unreliable to produce warranted

mathematical beliefs. In Giaquinto’s own words:

A time-honoured view, still prevalent, is that the utility of visual thinking in

mathematics is only psychological, not epistemological. ...Visual representa-

tions...cannot be a resource for discovery, justification, proof, or any other way of

adding epistemic value to our mathematical capital – or so it is held. The chief

aim of this book is to put that view to the test. I will try to show how, why, and

to what extent it is mistaken. (2007, p 1)

Giaquinto takes aim here at numerous claims by both mathematicians and philoso-

phers over the past 200 years, such as Russell’s assertion that arithmetic and geometric

“self-evidence is often a mere will-o’-the-wisp, which is sure to lead us astray” (1901, p 78).

Arguably, this skeptical tradition can be traced to 1817, when Bernardo Bolzano appealed

to the real-analytic Intermediate Value Theorem (IVT) to defend his view that our visual

faculties are not reliable guides to the behavior of ε-δ continuous functions. In the early

1When the representational contents of visual imagination give rise to mathematical beliefs in a chain of
reasoning, Giaquinto says that this reasoning constitutes “visual thinking” (2007, p 1).
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20th century, Russell (1919) and Hahn (1933) put forward an historical narrative accord-

ing to which 19th-century mathematics is a story of a “flight from intuition.” They claim

that these mathematicians continually uncovered cases where visual imagination leads us to

believe various mathematical falsehoods.2 According to Russell and Hahn, these demonstra-

tions eventually convinced the mathematical community that a search for the foundations

of mathematical knowledge was necessary. The first major victory of this movement was the

discovery of a “rigorous” definition of the notion of a continuous function. According to this

narrative, once ε-δ definition of continuity was formulated, true mathematical knowledge of

the IVT became possible. It is this historical narrative that makes the IVT particularly

worthy of study for anyone concerned with visual thinking in mathematics, and it is why I

focus on the IVT in this essay.

In Part 2, I distinguish some basic epistemological notions. In Part 3, I describe a

plausible set of geometric contents for visual imagination according to the current dominant

theory of working memory. In Part 4, I consider a single proposition of elementary geometry

– for any square, the parts either side of its diagonal are congruent – and show how we can

acquire knowledge of this proposition through visual thinking. In Part 5, I will extend this

account of mathematical knowledge to the o-minimal Intermediate Value Theorem. Unlike

the real-analytic Intermediate Value Theorem, which Giaquinto has discussed extensively

(1994, 2007, 2011), I will argue that the o-minimal version can be known through visual

thinking. In Part 6, I step back from the IVT and show that the developers and practitioners

of o-minimality were engaged in a general epistemological project. These mathematicians

intended the primary objects of o-minimality to be inherently visualizable. I will consider

the extent to which they succeeded by asking if our visual faculties are reliable guides to the

behavior of these objects.

2One can find discussions of the falsehoods that allegedly powered the flight from intuition in the following
sources: Russell (1901), p 94; von Koch (1906); Forder (1927), p 46; Coffa (1982), p 686. Cf. Norman (2006),
Mancosu (2005). It should be noted, however, that the ‘flight from intuition’ narrative has been refuted by
historians of mathematics (e.g., Gray 2008, Heis 2008, Lützen 2003). Nevertheless, it continues to hold
weight among some philosophers.
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3.2 Imagery-based Mathematical Entitlement

Marcus Giaquinto’s mathematical epistemology focuses on a very specific type of knowledge

that requires what I will call imagery-based mathematical entitlement. In this section I will

flesh out what I mean by this phrase and the more basic notion of epistemology. Epistemol-

ogy, in the broadest sense, concerns a person’s right to accept a proposition or theory as

true.3 Some rights to accept a proposition p are partially grounded in the believer’s ability to

produce a proposition q as a reason (i.e., justification) for the belief. Other rights to accept

a proposition are not grounded in such an ability, and such rights are called entitlements.4

When a justified or entitled belief is true, I will refer to it as knowledge. The most familiar

type of entitlement is a perceptual entitlement. A perceptual entitlement is a right to believe

a proposition that is grounded in (a) the reliability of the believer’s perceptual systems in

generating perceptual states with accurate contents, and (b) a deductively valid connection

between the contents of the underlying perceptual states (e.g., this triangle is scarlet) and

the contents of the belief that the perceptual states generate (e.g., this figure is red).

Giaquinto maintains that for his target epistemological case studies, namely mathe-

matical beliefs generated from visual imagination (e.g., the angles of a triangle sum to 180◦),

our right to believe should not theorized in terms of perceptual entitlement.5 Mathematical

beliefs, unlike perceptual beliefs, are not about the believer’s visible environment and so

possession of a systematically accurate perceptual system does not add any epistemic force

to the belief. In other words, condition (a) above is not necessary for the mathematical

3According to this understanding, knowledge and justification are merely subtopics within epistemology.
4The terminology of entitlements comes from Burge (1993, 1998, 2003), Dretske (2000), and Goldman

(2001).
5Giaquinto uses the word “discovery” instead of “entitlement,” which I assume he draws from Lakatos

(1976). The only difference is that discovery excludes entitlements from testimony and entitlements that
involve a “violation of epistemic rationality” (2007, p 2). I will be exclusively concerned with mathematical
entitlement in this essay, so the reader should assume these restrictions hold unless otherwise stated.
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kind of entitlement that Giaquinto theorizes. For this reason, imagery-based mathematical

entitlements (as distinguished from perceptual entitlements) are apriori entitlements.6

That is, these beliefs do not derive their epistemic status from a reliably-produced

perceptual state. Additionally, since the mathematical belief is generated from visual imag-

ination rather than perception, condition (b) is not necessary either. However, a validity

condition similar to (b) is necessary for imagery-based mathematical entitlement: the ground

of one’s right to believe that, e.g., for any square the parts either side of its diagonal are

congruent, is a deductively valid connection between the underlying imagery contents and

the generated belief contents. In Part 4, I will flesh out the imagery contents from which

this proposition about squares may be deduced. Before diving into this particular example,

I will use Part 3 to describe what we know about the geometric contents of visual imagery.

current cognitive-scientific understanding of mental imagery and its contents. For now, all

one needs to know is that when these geometric contents produce a mathematical belief, we

will say that the resulting belief is imagery-based.

The third and final kind of entitlement that I will mention here is analytic entitlement.

This kind of entitlement accrues to mathematical beliefs such as two is a number and every

square has four sides, as well as non-mathematical beliefs such as every apple is a fruit

and my house lights are either on or off.7 In every such case, anyone who possesses the

component concepts of the proposition will necessarily find the proposition self-evident.8 In

6Giaquinto (2007), pp 2, 8. Cf. Burge (1993), p 274. For discussion of non-imagery-based kinds of apriori
entitled beliefs (e.g., introspective, analytic, or logical beliefs), see the essays cited in footnote 4.

7For endorsements of the idea that our entitlement to certain set-theoretic axioms is analytic, see Kreisel
(1967, p 144), Gödel (1964, p 260ff), and Fraenkel (1927, p 61).

8I would like to note, somewhat tangentially, a minor difference between Giaquinto’s theory of analytic
entitlement and my own. Giaquinto elaborates the idea of analytic entitlement in terms of Christopher
Peacocke’s (1992) theory of concept possession, which is a theory to which I do not want to commit my-
self. According to Peacocke’s theory, possession of a concept is nothing more than acceptance of a set of
“primitively compelling” propositions and inference rules. I do not wish to commit myself to this theory of
concept possession, but I find a weaker claim plausible: for some concepts, acceptance of certain propositions
is necessary (but not sufficient) for possession of the concept. For arithmetic and geometric concepts, this
claim seems exceptionally plausible. My rejection of Peacocke’s theory and acceptance of the weaker claim
aligns with Prinz (2002), who claims that Peacocke’s theory “seems to work well for certain taxonomic and
kinship terms,...mathematical and theoretical terms,...and artifact concepts” (p 32). Prinz goes on to argue
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contrast to imagery-based mathematical entitlement, one’s right to believe these propositions

is not grounded in any facts about pre-belief representational systems (e.g., the existence of

a valid connection between visual imagery and the beliefs it generates). Analytic entitlement

will only become significant in this essay when I elaborate the notion of a “valid connection,”

which is necessary for imagery-based mathematical entitlement in Part 4. In particular, when

we establish one example of a deductively valid connection between the contents of visual

imagery and the resulting belief, we will allow premises that are self-evident propositions in

addition to the premises that are imagery contents.

Before I move on to characterizing the geometric contents of visual imagination, I

will briefly specify what ‘mathematical’ means in imagery-based mathematical entitlement.

My understanding of mathematics is broad. My use of this term not only rejects logicist

claims such as, “formal logic...is the same thing as mathematics” (Russell 1901, p 74),

but it also rejects more lenient uses of ‘mathematics’ where professional mathematicians

are the dominant concern (Paseau 2014). In contrast, my notion of mathematics is just

as much about the representational content and inferential activity associated with K-12

mathematics textbooks and exercises as it is about the proofs in mathematics journals.9

Giaquinto argues that elementary beliefs in number theory, algebra, and geometry admit

of imagery-based mathematical entitlement. But Giaquinto also argues that this kind of

entitlement cannot accrue to beliefs in analysis. Giaquinto’s argument leaves the reader

with the impression that imagery-based entitlement is impossible for mathematical beliefs

about more ‘advanced’ mathematical subject matters, such as algebraic topology, set theory,

complex analysis, geometric model theory, analytic number theory, and algebraic geometry.10

that Peacocke’s account is not be adequate for every kind of categorization capacity that we might want to
call conceptual, such as dot-pattern categorization (p 51), color categorization (p 52), bird categorization (p
53-55). A prototype theory of concept individuation (Rosch and Mervis 1975) may be preferable in these
cases. It is possible that Giaquinto also believes this since he appeals to Kosslyn’s notion of a category
pattern, which is a prototype (Kosslyn 1994, p 180).

9This seems to be how Giaquinto (2005b) understands the delineation of mathematics as well.
10Indeed, most philosophers of mathematics place similar epistemic limits on visual imagination and

diagrams in ‘advanced’ disciplines. One exception is Brown’s (2008) argument that the analytic Intermediate
Value Theorem can be diagrammatically known. However, I believe Giaquinto (2011) provides a convincing
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In Part 5, I will show that this impression is misleading. Before I address the question of

which mathematical subdisciplines admit imagery-based mathematical entitlement, I will

first need to describe the geometric contents of visual imagination that make imagery-based

mathematical entitlement possible.

3.3 The Geometric Contents of Visual Imagination

To articulate his view of the contents of visual imagery, Giaquinto appeals to the work of

cognitive psychologist Stephen Kosslyn. Kosslyn’s theory of visual imagery remains more or

less the dominant paradigm in cognitive psychology today.11 According to Kosslyn’s theory,

when a human generates a mental image of, e.g., a square, a tent, or a knife, their visual

imagination produces three kinds of representations: an environment-centered coordinate

system, a set of object-centered intrinsic axes, and a set of axis-dependent spatial relations.

I will describe each kind of representation in the following paragraphs.12

According to Kosslyn, when we imagine an object we attribute a coordinate system

to the space surrounding the object.13 Perhaps the most widely accepted argument for this

claim comes from the experimental results of Roger Shepard. Roger Shepard’s studies of

mental rotation (Shepard and Metzler 1971, Cooper and Shepard 1973) are widely regarded

refutation of his view. Another exception, one which I find more promising, is De Toffoli and Giardino
(2014).

11Endorsements of Kosslyn’s theory of imagery contents can be found in Bettencourt and Xu (2016),
Christophel et al. (2015), Pearson et al. (2013), Hamamé et al. (2012), and Logie and van der Meulen
(2009). In cognitive psychology and cognitive neuroscience today, discussion of visual imagination is often
couched within a larger discussion of working memory. For this reason, Baddeley’s episodic buffer is more
frequently cited than Kosslyn’s visual buffer. I maintain, along with Pearson (2001) and Logie and van der
Meulen (2009), that these two terms refer to the same buffer.

12For discussion of and evidence for this coordinate structure, see Kosslyn (1994, ch 7). All of my examples
of an imagined object – a square, a tent, and a knife – are taken from Kosslyn (1994).

13The origin and axes of this coordinate system (relative to the visualizer) are determined by factors such
as “the gravitational upright,...position on the retina, and the way the body is oriented” (Kosslyn 1994, p
132).
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as revealing the existence of an environment-centered coordinate system in mental imagery.14

In the first study, Shepard and Metzler asked participants whether two distinct 3D tetris

figures at various orientations have the same shape. They found that the decision times

of participants increased linearly with the angular distance of the necessary rotation. This

result has been confirmed many times, and parallel results have been found for other spatial

configurations such as letters (Cooper and Shepard 1973) and 2D line figures (Hochberg and

Gellman 1977, Jordan et al. 2001).15 Kosslyn uses Shepard’s result to claim that we attribute

an environment-centered coordinate system to the space around an imagined object. If this

were not true,

mental rotation would not be necessary. In fact, one of the reasons Shepard and

Metzler’s (1971) original mental rotation experiment had such a large impact

was that the then-current approaches to visual representation emphasized object-

centered representations, and the rotation results were clearly not predicted by

such approaches. (Kosslyn 1994, p 149)

Kosslyn here rejects an object-centered approach to mental rotation, which holds that we

merely attribute intrinsic axes to an object. These intrinsic axes are primarily determined

by the symmetry properties of an object. So, for example, the intrinsic axes of a square will

be the lines that segment the square into four congruent square parts. Without an additional

set of environmental axes, the object-centered approach is unable to give an account of what

14For instance, Jeffrey Zacks begins his 2007 meta-analysis of mental rotation studies with these assertions:
“Mental rotation is a hypothetical psychological operation in which a mental image is rotated around some
axis in three-dimensional space. Mental rotation was first revealed in behavioral experiments (Cooper and
Shepard 1973, Shepard and Metzler 1971) in virtue of a striking finding: The time to make a judgment
about a rotated object often increases in a near-linear fashion with the amount of rotation required to bring
the object into alignment with a comparison object or with a previously learned template.” (Zacks 2007, p
1)

15Additionally, fMRI studies have found that mental rotation tasks are accomplished by spatiotopic regions
of the posterior parietal cortex and the activation levels in these regions increases linearly with angular
distance (Harris and Miniussi 2003, Zacks 2007). Together, these behavioral and neuroimaging results
“provide relatively good support for the hypothesis that mental rotation is a continuous transformation” of
an imagined object within a stable, environment-centered coordinate system (Zacks 2007, p 6).
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it would mean to continuously transform a square by mentally rotating it 45◦.16 Hence,

Shepard’s result is often taken to suggest that we represent both an environment-centered

coordinate system and a set of intrinsic axes, the latter of which I will call a reference frame.

Beside Shepard’s result, the existence of an object-centered reference frame (in addition

to an environment-centered coordinate system) in visual imagination is further suggested by

the symmetry experiments such as Palmer and Hemenway (1978) and McMullen and Farah

(1991).17 Palmer and Hemenway found that decision times for whether a figure has a reflec-

tion symmetry (e.g., symbols ‘H’, ‘%’) across an intrinsic axis is substantially shorter than

the decision time for whether a figure has a rotational symmetry (e.g., the letter ‘Z’). Their

explanation for this result is that reflection symmetries, but not rotational symmetries, are

encoded into the very representation of the figure. Additionally, McMullen and Farah found

“that the effects of orientation on naming time are eliminated with practice for symmetrical,

but not asymmetrical, pictures” (Kosslyn 1994, p 133). They also explained their result by

claiming that reflection symmetries are explicitly encoded in the representation of imagined

and perceived objects.18

The third kind of representation that Kosslyn posits in visual imagination is a set

of axis-dependent spatial relations. The reflection symmetries mentioned above are just

one example of this kind of representation. In addition, Kosslyn posits representations

of metric relations (e.g., distance, parallelity) and qualitative relations (e.g., collinearity,

co-termination, ‘on’, ‘left of’, ‘connected to’, ‘above’) within visual imagination.19 The

16An account of mental ‘rotation’ in terms of discrete changes, such as using intrinsic axes that segment
the square into four triangles rather than four squares, is ruled out by Shepard’s result.

17Kosslyn’s (1994, pp 133-136, 160) own endorsement of intrinsic axes draws on these experiments and the
related symmetry experiments of Corballis and Beale (1976, 1983), Bower and Glass (1976), Palmer (1977),
Jolicoeur and Kosslyn (1983), McMullen and Farah (1991).

18I believe symmetry results like these were a major reason that Kosslyn abandoned his early theory of
imagery contents (Kosslyn and Shwartz 1977, p 278), according to which shapes representations are encoded
by a two-dimensional grid of filled and unfilled cells. The symmetry theory does not require such a rich
grid structure to be represented (though, of course, even the symmetry theory acknowledges that the non-
representational retinal image will have a ‘grid structure’ in a sense). In philosophy, Michael Tye (1991, chs
5, 6) has incorporated Kosslyn’s older grid structure into his theory of imagery contents.

19Kosslyn (1994), pp 108-109, 227-228.
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experimental support for the existence of these spatial relations has been even less conclusive

than the available evidence discussed above for the coordinate system and reference frame.

For this reason, I will not review these results here. Nevertheless, I find Kosslyn’s theory

of imagery content plausible enough given the currently available behavioral and neural

evidence. Hence I will follow Giaquinto (2005a, 2007) in accepting these contents for the

rest of this essay while also noting that (i) this set of representations “is not the only one that

is consistent with the data” (2007, p 28), and (ii) our account of imagery-based mathematical

entitlement will not be significantly altered if, say, collinearity is not represented in visual

imagination.

Finally, I should note that in addition to the three kinds of representations above,

Kosslyn (1994, ch 10) proposes the existence of a fixed set of transformations – rotation,

translation, similarity (i.e., ‘zooming’), reflection, and stretching – that a visualizer has at

their disposal to voluntarily manipulate the representational contents of visual imagination.

Kosslyn describes some additional decision-time experiments in favor of the existence of these

mental transformations, but caveats (i) and (ii) also apply to the existence of these trans-

formations. Given the above notion of visual imagination, we will now turn our attention

to Giaquinto’s illustrative example of a geometric belief with imagery-based mathematical

entitlement.

3.4 Geometric Knowledge through Visual Imagination

With the above epistemological definitions and imagery contents fixed, I will focus on one

example of imagery-based mathematical entitlement from Giaquinto (2007) that will serve

as a guide for later cases. Consider the following claim:
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(S) For any square x and for any diagonal k of x, the parts of x either side of k

are congruent. (Giaquinto 2007, p 38)

After visualizing a square with a diagonal through it, a person may come to believe (S)

without being able to give a justification for the belief.20 Nevertheless, the person may

be entitled to believe (S) if the belief was acquired through a valid connection with visual

imagination. What constitutes this valid connection? First, their concept square must have

the correct “category specification.” That is, a certain set of imagery contents must cause

the application of the concept square to the imagined object. Giaquinto proposes a category

specification for square that is empirically plausible:

Category Specification for square

Let V and H be the vertical and horizontal axes of the reference frame. Then, to

categorize a figure as a square, it is necessary and sufficient that visual imagina-

tion represents the following features:

• Plane surface region, enclosed by straight edges: edges parallel to H, one

above and one below; edges parallel to V, one each side.

• Symmetrical about V.

• Symmetrical about H.

• Symmetrical about each axis bisecting angles of V and H.21

This category specification must not only guide the application of the concept square. It

must also generate a visual image with these contents when one visualizes a square. A person

20Besides its intuitive support, the idea that working memory (and hence visual imagination) triggers the
formation of beliefs has some experimental support in the case of the phonological loop (Baddeley et al.
1987, Baddeley et al. 2009).

21Giaquinto (2007), p 23. He draws these contents primarily from Stephen Palmer’s experiments on
perceptual judgments of shape, orientation, and symmetry (Palmer and Hemenway 1978, Palmer 1980, 1983,
1985). For Giaquinto, these contents are also supposed to arise in perception. But, as argued in Chapter 1,
I do not think that perceptual content includes a coordinate system. Nevertheless, it seems plausible that
these contents may be stored in a post-perceptual memory system, such as Logie’s visual cache (Logie 1995,
Logie and Cowan 2015). But as Palmer (1999) notes, “the nature of shape perception is so complex and
enigmatic that there is as yet no accepted theory of what shape is or how shape perception occurs” (p 327).
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with imagery-based entitlement to (S) must have the correct category specification for the

concept square. However, they must also have the correct category specifications for all other

visual concepts in (S), including diagonal, part, and congruence.22

The second requirement for imagery-based entitlement to (S) is ability to reflect the

square over its imagined diagonal. This ability is constitutive of a properly functioning

imagery system. Reflecting the square over its diagonal should then cause the concept con-

gruence to be applied to the parts of the square either side of the diagonal. The final

requirement for imagery-based entitlement to (S) is the disposition to generalize over all

imaginable square figures through imagery transformations.23 us to believe exercise a dis-

position a If rotation, translation, and similarity are constitutive of visual imagination as

Kosslyn claims, then this requirement is also met by anyone with a properly functioning

imagery system.24

The above three requirements are sufficient for imagery-based entitlement to (S) be-

cause they establish a deductively valid connection between the imagery contents and the

generated belief (S). This valid connection can be written in argument form as follows:

Valid Connection for (S)

22More precisely, these concepts are diagonal of a quadrilateral, part of a figure, and congruence of two
figures.

23Giaquinto (2007, pp 40-42) maintains that this disposition to generalize over all squares is the very
same disposition that can causes us to believe other universal mathematical claims about other shapes and
configurations. If this psychological hypothesis turns out to be correct, Giaquinto is right to assert that this
disposition will only generate knowledge if it is reliable (i.e., consistently generates true beliefs except for
cases of malfunction).

24It is possible that this generalization over the set of all imaginable square figures is not the result of
mental transformations, but simply the results of recognizing that all square-with-diagonal configurations
“share all their intrinsic geometric properties” (Giaquinto 2007, pp 137, 154). Other types of generalization
that Giaquinto posits do explicitly draw on Kosslyn’s set of mental transformations. For instance, Giaquinto
claims that we generalize over all triangular configurations of dots irrespective of the number of dots in each
row. Giaquinto claims that the phenomenal experience of a dot pattern can be numerically indeterminate and
thus we are disposed to make a shape-based generalizations based on similarity and rotational transformations
(2007, pp 144, 156). This strikes me as prima facie plausible, but I will largely remain silent on arithmetical
knowledge in this essay. Moreover, it is not necessary for us to determine here which of these two accounts of
geometric generalization. Either way, the three requirements I have placed on imagery-based mathematical
entitlement will be very similar.
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P1. Every square is symmetric about its diagonals. (Specification for square)

P2. Every quadrilateral that is symmetric about its diagonal has two parts

on either side of the diagonal that precisely overlap after a mental reflection.

(Structure of visual imagination)

P3. Every pair of figures that can be made to precisely overlap with another

through translation, reflection, and rotation are congruent. (Specification for

congruent)

C. Therefore, for any square with a diagonal, the parts either side of its diagonal

are congruent.

This deductively valid argument establishes a valid connection between (S) and visual imagi-

nation. It is important to note that this argument is not psychologically implemented by the

person with imagery-based entitlement to (S). In fact, it is conceivable that someone entitled

to (S) cannot even entertain any of the three premises in this argument. For instance, they

may not possess concepts like symmetry or reflection that are necessary to entertain these

premises. But even if they are able to think these premises and believe them, psychologically

implementing this argument would not produce imagery-based entitlement to (S). At best,

it would produce a justification to believe (S). Unlike this argument, the psychological route

to an imagery-generated belief in (S) that I describe above involves: generating a particular

imagined object, manipulating that imagined object, applying the concept congruence to

the parts of that imagined object, and generalizing over all imaginable squares.25 The argu-

ment above is not a description of psychological reality. Nevertheless, it establishes a valid

connection between visual imagination and the generated belief. According to my theory of

entitlement, this is sufficient for imagery-based mathematical entitlement to (S).

25This sequence of psychological acts reveals a general fact about the mathematical productivity of visual
imagination. The heart of this productivity “lies in viewing a form in two ways at once” (Giaquinto 2007, p
158). In this case, we view a figure as both a square and as a composition of two triangles. Giaquinto also
notes that cognitive scientists have theorized seeing in “two ways” (e.g., a rotated ‘D’ on top of a ‘J’ will
be categorized as an umbrella) and often they explain these phenomena in terms of Kosslyn’s visual buffer
(Finke et al. 1989, p 76).

94



Which mathematical subject matters are most vulnerable to imagery-based mathemat-

ical entitlement? Clearly, claims about rectilinear figures are good candidates for this type

of knowledge. But other mathematical concepts have category specifications as well. Gi-

aquinto (2007) makes a number of compelling arguments that integers, algebraic structures,

curves, and functions all have category specifications. This makes mathematical beliefs about

these objects potentially subject to imagery-based entitlement. Below I will focus on planar

curves and continuous functions. I will argue that certain concepts about these objects have

category specifications. I will use the above square-and-diagonal example as a guide for

demonstrating that certain beliefs about these curves and functions admit of imagery-based

mathematical entitlement. In particular, my focus will be on the Intermediate Value The-

orem. After I have detailed Giaquinto’s argument for an invalid connection between visual

imagination and the real-analytic IVT, I will consider whether the parallel argument holds

in the case of the o-minimal IVT.

3.5 Knowing the o-minimal IVT through Visual Imagination

Bolzano and many mathematicians after him, used the Intermediate Value Theorem to cast

doubt on the reliability of using diagrams to form mathematical beliefs. In other words,

Bolzano questions the epistemic status of imagery-generated belief in the IVT. He argues

that using a diagram in this case gives rise to a false, intermediate belief. Is Bolzano right?

It depends on how we formulate the content of the IVT. I will try to answer this question for

three different formulations of IVT: the synthetic formulation, the real-analytic formulation,

and the o-minimal formulation. I will show that, in addition to the synthetic IVT, the

o-minimal IVT admits of imagery-based mathematical entitlement.
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3.5.1 The Synthetic IVT

The simplest and most intuitive formulation of the Intermediate Value Theorem is called

the synthetic IVT. This formulation is a universal statement over the concept planar curve.

The category specification for planar curve is as follows:

Let y and x be the vertical and horizontal axes of the reference frame. Then,

to categorize a figure as a planar curve, it is necessary that visual imagination

represents the following features:

• Bounded contour with no visible gaps26

• Piecewise monotonic (i.e. finitely oscillating)27

• Piecewise smooth (i.e. has a tangent at all but finitely many points)28

• Passes the vertical line test (i.e., no point is directly above another)

Under this category specification, a planar curve will never have a segment that cannot

be visualized. In other words, a planar curve will never exhibit such “pathological behavior”

as filling a two-dimensional space (e.g., the “Hilbert curve”), having an infinitely-oscillating

segment (e.g., the “topologist’s sine curve”), or having infinitely many singular points (e.g.,

the “Weierstrass function”).29 With this in mind, we can state the synthetic IVT as follows:

(SI) Any planar curve that goes from below the x-axis to above it, intersects the

x-axis. (Giaquinto 2011, p 298)

Giaquinto maintains that, if a person possesses the concept planar curve and has the cor-

rect category specification of it, visual imagery may disposed them to believe (SI). He does

26Giaquinto (2011), pp 297-298. Giaquinto also refers to the property of having no visible gaps as “graphical
continuity.”

27Giaquinto (2007), p 185, fn 12.
28Giaquinto (2011), p 299. Additionally, Giaquinto speaks of “the ‘intuitive’ belief that a continuous

function must have a derivative everywhere except at isolated points” (Giaquinto 2007, p 3).
29I intended “planar curve” to be synonymous with Giaquinto’s (2007, 2011) term “pencil-continuous

curve.”
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not discuss the psychological mechanism by which this generalization over all planar curves

would normally occurs. For our purposes, we may assume that the stretching and similarity

transformation of visual imagination is responsible for generating belief like (SI). More im-

portantly, this imagery-generated belief has a valid connection to visual imagination. Hence,

it has imagery-based mathematical entitlement. We can write this valid connection in argu-

ment form as follows:

Valid Connection for (SI)

P1. All planar curves are piecewise smooth and monotonic. (Specification for

planar curve)

P2. All piecewise smooth and monotonic contours from below the x-axis to

above have a segment that is smooth, monotonic and goes from below the x-axis

to above. (Structure of visual imagination)

P3. All smooth, monotonic curve segments that go from below the x-axis to

above it will intersect the x-axis at a point. (Structure of visual imagination)

C. Therefore, any planar curve that goes from below the x-axis to above it,

intersects the x-axis.

Similar to the case of (S) above, this valid connection between (SI) and visual imag-

ination is the ground of one’s imagery-based entitlement to believe (SI). Can additional

valid connections be established for other formulations of the Intermediate Value Theorem?

Giaquinto makes a convincing argument that no valid connection exists between visual imag-

ination and the analytic IVT. I want to review Giaquinto’s argument before attempting to

answer this question for the o-minimal formulation of the IVT.

3.5.2 The Analytic IVT

When Russell, Hahn, and Bolzano rejected visual imagination as a source of knowledge

in mathematics, they all cite the analytic formulation of the IVT as a major motivation.

97



Although Giaquinto disagrees with their conclusion, he does admit that the analytic IVT

cannot be known through visual thinking. I agree. The sheer symbolic complexity of the

analytic IVT, as compared to the synthetic IVT, suggests by itself that this theorem may

be about objects that cannot be visualized:

(AI) If f is an ε-δ continuous function on [a, b] ⊂ R and f(a) < 0 < f(b), then
f(c) = 0 for some c ∈ (a, b).30

Let us assume for now that visual imagination can generate a belief in (AI). If so, the

concept ε-δ continuous function must have a category specification. Plausibly, it will be the

very similar to the category specification of the concept planar curve. But this already poses

a problem for the analytic IVT case. As we saw above, planar curves do not exhibit certain

pathological behaviors like oscillating infinitely many times or having an infinite number of

singular points. Yet, some notable ε-δ continuous functions demonstrably do exhibit these

pathological behaviors. At this point, we may try to revise the category specification of ε-δ

continuous function to include these functions. However, these pathological functions are

notable precisely because they cannot be specified in visual imagination. Hence, there is

no correct category specification for the concept ε-δ continuous function.31 This fact makes

it impossible to form universal beliefs about ε-δ continuous functions with imagery-based

entitlement. If we were to attempt to write out a valid connection for (AI) as we did for

(SI) above, we would fail. The parallel first premise – “all ε-δ continuous functions are

30Cf. Rudin (1976), p 93; Giaquinto (2011), p 297, fn 28. This is, in fact, the Intermediate Zero Theorem.
For purposes of argumentation, I will assume, along with Giaquinto (1994, 2007, 2011) and Brown (2008),
that we can use the IZT without loss of generality. Also, note that the range of this function is the metric
space R.

31To be clear, I am not denying that we might associate a set of prototypical visual features with this
concept. In fact, Kosslyn (1994, p 178) calls this set of prototypical features an exemplar pattern. Ex-
emplar patterns may give rise to universal beliefs about the associated concept, but these beliefs will lack
a deductively valid connection to visual imagination. In other words, such beliefs will lack imagery-based
entitlement. Kosslyn gives the example of an exemplar pattern of the concept dog. This pattern is a set
of visible features of a particular dog, Rover. When one imagines Rover, one may disposed to form various
universal beliefs about dogs. But these beliefs would not have imagery-based entitlement because Rover’s
features are not had by all dogs. There is no valid connection. Of course, such universal beliefs may have
inductive justifications, but this is another matter entirely.
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piecewise smooth and monotonic” – is nowhere to be found in the category specification for

ε-δ continuous function. Without this premise, we cannot write a valid connection between

the analytic IVT and visual imagination. Giaquinto expresses this same point when he

claims that the analytic IVT does not admit of imagery-based entitlement:

The problem is that there are some functions ε-δ continuous on a closed interval

... [that] do not have curves. Any continuous nowhere-differentiable function is

an example. So generalizing from the diagram here is not valid. (2011, p 300)

The analytic IVT is not the only mathematical theorem that eludes imagery-based

entitlement.32 Indeed, it may be tempting to think that for all but the most elementary

mathematical theorems, imagery-based entitlement will be untenable. Giaquinto himself

expresses this view when he claims that the reason (AI) does not admit of imagery-based

entitlement is that it “depends on theoretical concepts from e.g. real (or complex) analysis, or

something similarly abstruse” (2007, p 29). But I see no reason why complex and ‘abstruse’

mathematical concepts and theorems should be excluded from imagery-based entitlement.

In the rest of this paper, I want to push back against this tidy epistemological partition of

mathematics by showing that the ‘abstruse’ o-minimal formulation of the IVT has a valid

connection to visual imagination.

32Giaquinto gives two other examples of mathematical beliefs that do not admit of imagery-based entitle-
ment. One example comes from Kenneth Manders’ discussion of the distinction between exact and co-exact
properties in Euclidean practice (Manders 1996, 2008a, 2008b). In this setting, a diagram of a triangle may
dispose one to believe a false universal statement because the diagram contains a co-exact property that
“depends on” exact properties (Giaquinto 2011, pp 291-293). The second example is a generalization over
paths in Cantor space (Giaquinto 2008b; 2007, ch 11).

Although Giaquinto does not discuss it, there is a fourth formulation of the Intermediate Value Theorem.
This topological IVT, formulated and proved by Munkres (2000, p 154) as Theorem 24.3, is not subject
to imagery-based entitlement. As was the case for ε-δ continuous functions, some topologically continuous
functions cannot be visualized. A complete study of epistemology of the IVT should include considerations
of all four of these theorems (and probably more). Recognizing the variety of IVTs is crucial for dissolving
the presumption that the IVT belongs exclusively to real analysis.
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3.5.3 The O-minimal IVT

The o-minimal formulation of the IVT is able to overcome the two difficulties that plagued the

analytic IVT in the last section. First, the concept o-minimal continuous function is capable

of having a category specification, unlike the concept ε-δ continuous function. Second, there

is a valid connection between the o-minimal IVT and visual imagination. Unlike the analytic

IVT, we can write this valid connection in a deductive argument in a way that parallels the

argument for (SI) above. This section is aimed at establishing both of these claims. We will

begin by stating what exactly o-minimality is before returning to these claims.

O-minimality is a branch of model theory. I will review some general model-theoretic

definitions introducing the concept o-minimal continuous function. This will help us to grasp

the content of the o-minimal formulation of the IVT. At the most basic level, model theory

begins with a collection of formal languages:

Definition 3.5.1. A model-theoretic language L is given by specifying the following data:

a) A set of function symbols F and non-negative integers nf for each f ∈ F .

b) A set of relation symbols S and positive integers nS for each S ∈ S.

c) A set of constant symbols C.33

For example, the language of groups is specified by two symbols: the identity element ‘e’

and the group operation ‘·’. Other language may contain, e.g., a function symbol for every

analytic function on R. A model theorist might consider one language in isolation or, as in

the case of o-minimality, many languages all at once. For each language, there is a collection

of structures on which the symbols of the language are given a meaning. More precisely:

33Marker (2002b), p 8.
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Definition 3.5.2. A model-theoretic L-structure R = (R, (SRi )i∈I), (f
R
j )j∈J) consists of

a nonempty set R, the relations SRi each of which is the interpretation of Si ∈ S, and the
functions fRj each of which is the interpretation of fj ∈ F .34

For example, the structures associated to the language of groups are just the groups them-

selves. In each group, the identity element symbol is interpreted as the identity element and

the group operation symbol is interpreted as the group operation.

In every structure, the language of that structure induces a collection of subsets on

that structure which we call the definable sets. Intuitively, these are the sets that we can

talk about in our language. A more precise definition is given here:

Definition 3.5.3. Let R = (R, ...) be an L-structure. We say that X ⊆ Rn is definable
if there is an L-formula ϕ(x1, ..., xn, y1, ..., ym), and parameters p1, ..., pm such that X =
{(a1, ..., an) ∈ Rn : R |= ϕ(a1, ..., an, p1, ..., pn)}. We say that ϕ defines X.35

For example, in the group of integers, the set of even integers is definable by the formula

ϕ(x) := ∃y(y+ y = x). But many subsets of structures cannot be defined in the language of

the structure. For example, the set of real numbers cannot be defined in the field of complex

numbers. It is usually not obvious which subsets of a given structure are definable.

The structures that we call o-minimal are defined by the intuitive simplicity of their

definable sets. In all o-minimal structures, the definable subsets are finite unions of isolated

points and intervals. More precisely:

Definition 3.5.4. An L-structureR = (R,<R, ...), where <R is a dense linear order without
endpoints, is called o-minimal if and only if every set S ⊆ R1 that is definable in R with
parameters is a union of finitely many intervals and points.36

The two simplest kinds of o-minimal structures are ordered vector spaces of the form,

(R,<R,+R, (λ·R )λ∈F , 0
R), and real closed fields of the form, (R,<R,+R, ·R , 0R, 1R). The

34Dries (1998), p 21.
35Marker (2002b), p 19. We also say that L generates the sequence of definable sets δ = ({X ⊆ Ri : X is

definable})i∈N. (Dries 1998, p 21)
36Dries (1998), p 23.
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smallest o-minimal ordered vector space is (Q, <Q,+Q, (λ·Q )λ∈Z, 0), and the smallest real

closed field is (A, <A,+A, ·A , 0, 1).37

But the above definition of o-minimal structures also rules out many structures. For

example, if we add the sine function symbol to our language, the resulting structures (over

dense linear orders) will not be o-minimal. This is because we can use the sine function

symbol to define the set of integers. (Simply let ϕ(x) be the formula, sin(x) = 0.) And since

the integers cannot be written as a finite union of points and intervals, this structure is not

o-minimal.

O-minimal structures have a number of nice logical and geometrical properties. In par-

ticular, we will see that the o-minimal continuous functions within every o-minimal struc-

ture are ‘visualizable’ in precisely the ways that the ε-δ functions were not. Intuitively, an

o-minimal continuous function is any topologically continuous function that the language

has resources to talk about. More precisely,

Definition 3.5.5. A function f : R → R in an o-minimal structure is o-minimal con-
tinuous if and only if the inverse image of every definable open set of R is definable and
open.38

For example, in the field of real numbers, even though sin(x) is a continuous function, it is

not o-minimal continuous because the language of fields does not have the resources to talk

about this function.

In every language, we can collect together sentences of the language to form a theory.

If all of the sentences of a theory T are true on a structure M, we say that the structure

models that theory. We express this symbolically as: M |= T . If all the models of a given

theory are o-minimal, we say that the theory itself is o-minimal. That is:

37Here, ‘A’ refers to the field of real algebraic numbers, whose underlying set is the set of real roots of the
non-zero polynomials in one variable with rational coefficients.

38My term “o-minimal continuous” is synonymous with the Dries’ (1998) term “definable continuous.”
Also, the topology of an o-minimal structure is always the order topology.
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Definition 3.5.6. An L-theory T is o-minimal iff for all models M = (M, ...), such that
M |= T , the definable sets of M1 are exactly the finite unions of points and intervals.

For example, the theory of real closed fields is an o-minimal theory. And so is the theory

of dense linear orders. In each case, the axioms of the theory prohibit all their models

from having definable subsets that contain infinitely many isolated points. That is, all their

models are o-minimal.

Let us close this overview of o-minimality with the definition of an o-minimal expansion.

Intuitively, this is an o-minimal structure that we attain by enriching the language of a

different o-minimal structure. More precisely:

Definition 3.5.7. Let L+ ⊃ L. If M+ is an L+-structure, then by ignoring the interpre-
tations of the symbols in L+ \ L we get an L-structure M. We call M a reduct of M+

andM+ an expansion ofM. An o-minimal expansion of an o-minimal structure, is one
that preserves o-minimality (i.e. one in which the new function and relation symbols cannot
be used to define new subsets of R1).39

The notion of an o-minimal expansion allows us to state one of the first impor-

tant results about the class of o-minimal structures. Peterzil and Starchenko (1998)

have proven that all non-trivial o-minimal structures are expansions of these two basic

kinds of structures.40 That is, they are all either (1) order vector spaces of the form

(R,<R,+R, (λ·R )λ∈F , 0
R,F), where F stands for the new functions of the expansion, or

(2) real closed fields of the form (R,<R,+R, ·R , 0R, 1R,F). The most well-known expansion

of a real closed field is Wilkie’s real exponential field (i.e. R = R and F = {ex}).41

The class of o-minimal structures has many other notable properties. From the per-

spective of pure model theory, the two most important are the following. First, all o-minimal

39Marker (2002b), p 31.
40“Trivial” is a technical term for Peterzil and Starchenko. Roughly, it means that the number of definable

subsets of the structure is ‘small’.
41Wilkie (1996). This result also seems to have led to a significant increase in the number of mathematicians

working on o-minimality.
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theories have the Non Independence Property.42 Second, that o-minimality is preserved un-

der elementary equivalence of structures.43 Results like these have suggested that the class

o-minimal structures is unified enough to be worthy of sustained mathematical inquiry.

We are now in a position to state the o-minimal IVT and turn back to the question of

whether it has a valid connection with visual imagination. Here is the o-minimal formulation

of the Intermediate Value Theorem, and its well-known proof:

(OI) LetR be an o-minimal structure with a constant symbol ‘0’.44 If the function
f : [a, b] ⊆ R → R is o-minimal continuous and f(a) < 0 < f(b), then there is a
c such that f(c) = 0.45

Proof: Suppose not. Then there is no x such that f(x) = 0. In other words,
[a, b] = f−1((−∞, 0)) ∪ f−1((0,∞)).46

Since R is o-minimal, the definable subsets of R1 are exactly the finite unions
of points and intervals. Hence, the subsets (−∞, 0) and (0,∞) are definable.
Furthermore, since R is o-minimal, it has the order topology, so (−∞, 0) and
(0,∞) are open, too. Now, since f is definable continuous, the inverse images of
definable open sets are definable and open. Hence, f−1((−∞, 0)) and f−1((0,∞))
are definable and open. Because they are both definable, they can each be written
as a finite disjoint union of open intervals in the subspace [a, b] of R. That is, we
can write:

f−1((−∞, 0)) = [a, c1) ∪ (c2, c3) ∪ ... ∪ (cm−1, cm), where a < ci < ci+1 < b for all
i < m.

f−1((0,∞)) = (c′1, c
′
2)∪ (c′3, c

′
4)∪ ...∪ (c′n, b], where a < c′j < c′j+1 < b for all j < n.

For contradiction, consider the endpoint, c1, of the first interval of f−1((−∞, 0)).
Since [a, b] is the disjoint union of the above two sets, we know that c1 is in

42This notion was developed by Shelah in the 1960s and 1970s. The distinction between theories that have
the Independence Property and those that have NIP is widely considered to be “one of the most important
dividing lines between theories” (Peterzil 2007, p 13). For more on Stability Theory and its basic notions,
see Buechler (2017).

43Peterzil (2007), §3. This result is important because the related property of being ‘minimal’ (i.e. all
definable subsets are either finite or co-finite) is not preserved under elementary equivalence.

44The restriction to languages with a zero symbol is not strictly necessary.
45Dries (1998), p 19. For an additional statement of the proof, see Peterzil (2007).
46f−1((−∞, 0)) := {x | f(a) ≤ f(x) < 0}, and f−1((0,∞)) := {x | 0 < f(x) ≤ f(b)}.
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exactly one of these sets. By stipulation, it cannot be in f−1((−∞, 0)) because
its intervals are disjoint and open. So c1 ∈ f−1((0,∞)). This means that there
is some j such that c1 ∈ (c′j, c

′
j+1). But, since (c′j, c

′
j+1) is open, there is a point

q < c1 such that q ∈ (c′j, c
′
j+1). And since a < c′j by definition, it must be the

case that q ∈ [a, c1) as well. From this, it follows that q is a member of both
f−1((−∞, 0)) and f−1((0,∞)). Hence, f(q) < 0 and f(q) > 0. →←

The above proof provides us with a certain kind of mathematical knowledge of the o-

minimal IVT, a form of knowledge based on justification. This is not the kind of knowledge

that I am primarily concerned with in this paper. The kind of knowledge I am interested in

is imagery-based mathematical entitlement, which is not acquired through explicit proof. In

order to show that the o-minimal IVT also admits of imagery-based entitlement, we will take

note of three relevant theorems from o-minimality, namely the Monotonicity Theorem, the

Piecewise-Differentiability Theorem, and Dimension Invariance Theorem. These are stated

as follows:

Monotonicity LetR = (R,<, . . .) be an o-minimal structure, and let f :]a, b[]→
R be a definable function on some open interval ]a, b[⊆ R. Then there are
a0 = a < a1 < ... < an = b such that on each ]ai, ai+1[ the function f is either
constant or strictly monotone and continuous.47

Piecewise-Differentiability Let R = (R,<, . . .) be an o-minimal structure,
and let f :]a, b[→ R be a definable function on some open interval ]a, b[⊆ R.
Then for every n ∈ N there exist a = a0 < a1 < ... < ar = b such that f is
n-differentiable on each ]ai, ai+1[.

48

Dimension-Invariance If X ⊆ Rm and Y ⊆ Rn are definable subsets in an
o-minimal structure and there is a definable bijection between X and Y , then
dim X = dim Y .49

Together these three theorems tell us that o-minimal continuous functions lack the sort of

pathological behavior exhibited by ε-δ continuous functions. The topologist’s sine curve is

47Peterzil (2007), p 4.
48Peterzil (2007), p 19.
49Dries (1998), p 64. Proposition 1.3.
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not an o-minimal continuous function because it violates Monotonicity. Similarly, the Weier-

strass function violates Piecewise-Differentiability and the Hilbert curve violates Dimension-

Invariance. These three theorems do more than rule out a few bad apples. They establish

that every o-minimal continuous function, when plotted in a Cartesian reference frame, con-

forms to the category specification of the concept planar curve: (i) bounded contour with

no visible gaps, (ii) piecewise monotonic, (iii) piecewise smooth, and (iv) passes the vertical

line test. I would like to suggest that the concept o-minimal continuous function has, if

not the the same category specification as the concept planar curve, something very similar

to it. Of course, these two concepts themselves remain very much distinct. Possessing the

concept o-minimal continuous function requires that one accepts a number of claims and

inferences about model-theoretic entities. The same cannot be said for the concept planar

curve. Nevertheless, every object falling under these two concepts can be represented using

the limited representational resources available in visual imagination. This was not true for

the concept ε-δ continuous function. Whatever these limited resources turn out to be, I think

the claim they can represent all planar curves but not all ε-δ continuous functions is fairly

secure. I believe this claim is all we need to establish that the concept o-minimal continuous

function is capable of having a category specification.50

Supposing that the concept o-minimal continuous function has the above category

specification, is there reason to think that the o-minimal IVT has a valid connection to

visual imagination? Yes, because we can write this valid connection in argument form just

as we did for (SI):

Valid Connection for (OI)

P1. All o-minimal continuous functions f(x) are piecewise smooth and mono-

tonic. (Specification for o-minimal continuous function)

50In Part 6, I will argue for the stronger claim that the developers of o-minimality intended for these
o-minimal concepts to have category specifications.
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P2. All piecewise smooth and monotonic contours from below the x-axis to

above have a segment that is smooth, monotonic and goes from below the x-axis

to above. (Structure of visual imagination)

P3. All smooth, monotonic curve segments that go from below the x-axis to

above it will intersect the x-axis at a point. (Structure of visual imagination)

P4. For all curves that intersect the x-axis, there is a c ∈ R such that f(c) = 0.

(Concept of o-minimal function51)

C. Therefore, for any o-minimal continuous function f(x) that goes from below

the x-axis to above it, there is a c ∈ R such that f(c) = 0.

This argument establishes the existence of a valid connection between (OI) and visual

imagination. Recall that no such connection could be established for the case of (AI) because

the concept ε-δ continuous function did not have a category specification. In the case of (OI),

by contrast, the premise P1 can be derived from the category specification of the concept

o-minimal continuous function.

In this section, I have shown that the concept o-minimal continuous function is capable

of having a category specification and that there is a valid connection between the o-minimal

IVT and visual imagination. In Part 6, I will establish the stronger claim that the o-minimal

IVT can be known through imagery-based entitlement. In order to establish the stronger

claim I will show that o-minimal concepts, such as o-minimal continuous function, do indeed

have category specifications.

51This claim should be primitively compelling to everyone who possesses the concept o-minimal function.
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3.6 O-minimality as a Visual-Epistemological Project

3.6.1 Can o-minimal objects be visualized?

There is good reason to think that the concept o-minimal continuous function has a

category specification. This should not be obvious. It could be that o-minimality, like

abstract algebra, is not really concerned about whether its concepts have category specifica-

tions. (Consider, for example, the abstract-algebraic concept algebraically independent set.)

I will argue for this claim on the grounds that the developers of o-minimality intended its

subject matter to be inherently visualizable. Along the way I will suggest that these math-

ematicians are engaged in a mathematical project that is grounded in deep epistemological

commitments about the foundations of mathematics. Unfortunately, I will not be able to

evaluate the validity of these commitments here. Instead, I will simply make note of these

commitments when they bear on the imagistic nature of o-minimal objects.

The first textbook on o-minimality, Tame Topology and O-minimal Structures, was

published in 1998 by Lou van den Dries. He glosses the subject matter of o-minimality

as “the realm of geometry and topology envisaged by Poincaré” (Dries 1998, p 1). The

main work in which Henri Poincaré put forward his views on topology and geometry was his

“Analysis Situs” papers.52 In the introduction to this work, Poincaré tells us what he takes

to be the subject matter of geometry:

52This paper is widely considered to be a founding document of algebraic topology: “The systematic
study of algebraic topology was initiated by the French mathematician Henri Poincaré (1854-1912) in a
series of papers during the years 1895-1901. Algebraic topology, or analysis situs, did not develop as a
branch of point-set topology. Poincare’s original paper predated Frechet’s introduction of general metric
spaces by eleven years and Hausdorff’s classic treatise on point-set topology, Grundzüge der Mengenlehre,
by seventeen years. Moreover, the motivations behind the two subjects were different. Point-set topology
developed as a general, abstract theory to deal with continuous functions in a wide variety of settings.
Algebraic topology was motivated by specific geometric problems involving paths, surfaces, and geometry in
Euclidean spaces. Unlike point-set topology, algebraic topology was not an outgrowth of Cantor’s general
theory of sets. Indeed, in an address to the International Mathematical Congress of 1908, Poincaré referred
to point-set theory as a “disease” from which future generations would recover.” (Croom 1978, p 2).
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Geometry, in fact, has a unique raison d’être as the immediate description of the

structures which underlie our senses. (Poincaré 1895, p 5)

From this characterization, it is clear that o-minimality, insofar as it shares its subject matter

with the geometry of Poincaré, is a field of study explicitly tailored to visual perception and

visual imagination.

Lou van den Dries also claims that o-minimality is “an excellent framework for devel-

oping tame topology, or topologie modérée, as outlined in Grothendieck’s prophetic ‘Equisse

d’un Programme’ of 1984” (Dries 1998, vii). A few other contemporary model theorists have

expressed the same view.53 Grothendieck characterizes his theory of ‘tame topology’ as an

alternative to general topology (i.e. the axioms of a topological space) as a foundation for

the mathematical field of geometric topology.54 His “heuristic reflections” on the founda-

tions of topology reveal that he thinks the originators of the general-topological treatment

of geometric topology started on the wrong foot:

‘General topology’ was developed (during the thirties and forties) by analysts

and in order to meet the needs of analysis, not for topology per se, i.e. the

study of the topological properties of the various geometrical shapes. That the

foundations of topology are inadequate is manifest from the very beginning, in

the form of “false problems” (at least from the point of view of the topological

intuition of shapes) such as the “invariance of domains” ... (Grothendieck 1984,

pp 28-29)

What is remarkable about this document is that Grothendieck is calling for a deep

revision in the foundations of general topology, not (primarily) because his proposed alter-

53For instance, see Marker (2002a), Wilkie (2007), and Yomdin and Comte (2004).
54Grothendieck (1984, note 6) suggests that he wants tame topology to provide a restatement and proof

of the Hauptvermutung (i.e. any two triangulations of a triangulable space have a common refinement, a
single triangulation that is a subdivision of both of them), which is false in the received, general-topological
foundation of geometric topology.
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native has greater problem-solving capabilities (which I take to be, historically, the rule in

shifts of mathematical norms), but because general topology is ‘unnatural’ given its task: to

provide a framework for the “topological [and] geometrical intuition of shapes”.55 Indeed, he

even thinks that his revisions of general topology go hand-in-hand with the need to “rewrite

a new version, in modern style, of Klein’s classic book on the icosahedron and the other

Pythagorean polyhedra”.56 The objects that would be studied in such a book, although

written in the notations of algebraic geometry, are presented to us visually:

I do not believe that a mathematical fact has ever struck me quite so strongly

as [a certain theorem of algebraic geometry about complex algebraic curves],

nor had a comparable psychological impact. This is surely because of the very

familiar, non-technical nature of the objects considered, of which any child’s

drawing scrawled on a bit of paper (at least if the drawing is made without

lifting the pencil) gives a perfectly explicit example. (Grothendieck 1984, p 247)

These facts suggest that o-minimality, insofar as it shares its subject matter with

Grothendieck’s tame topology and Poincaré’s geometry, is explicitly concerned with the

visualizable realm.

A final reason to think that o-minimality is inherently visualizable arises when we

consider the origins of o-minimality. It is well known that o-minimality grew out of work

by Alfred Tarski on the method of quantifier elimination in geometry (Tarski 1948). Tarski

applied this method to his axiomatization of elementary geometry. His axiom system for

geometry attempted to capture as many of the results of Euclid’s Elements as he thought

feasible (Tarski 1959). And since the Elements is an essentially diagrammatic treatise, it

would seem that Tarski’s subject matter, at least in the 1959 paper, is inherently visualizable.

55Grothendieck (1984), pp 240, 258, 259.
56Grothendieck (1984), p 255. The book that Grothendieck mentions is Felix Klein’s Lectures on the

Icosahedron (1884).
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This hypothesis is confirmed when Tarski says that in the formal language of elementary

geometry,

we are able to ... refer ... to various special classes of geometrical figures, such

as the straight lines, the circles, the segments, the triangles, the quadrangles,

and, more generally, the polygons with a fixed number of vertices... This is

primarily a consequence of the fact that, in each of the classes just mentioned,

every geometrical figure is determined by a fixed finite number of points. (Tarski

1959, pp 16-17)

By Tarski’s own lights, his axiomatization of geometry has circles, polygons, lines, etc., as

its subject matter. These are paradigm cases of mathematical objects that can also form

the contents of visual imagination. We cannot overlook the fact that van den Dries (1984,

p 99) motivates the definition of an o-minimal structure by appealing to the “geometric

idea” in Tarski’s method of quantifier elimination.57 Finally, the fact that Tarski’s geometric

structures are all real closed fields further confirms the idea that o-minimality and Tarski’s

geometry share a substantial part of their subject matter. These considerations about Tarski,

support my claim that the primary objects of o-minimality can be represented in visual

imagination.

From the above discussion of Poincaré, Grothendieck, and Tarski, it is clear that the

developers of o-minimality see its subject matter as inherently visual. Therefore, it is reason-

able to think that the concept o-minimal continuous function has a category specification.

Furthermore, the category specification of o-minimal continuous function given by the de-

scription set in §5.1 presents itself as an obvious candidate. It is an obvious candidate

57The “geometric idea” of Tarski’s method of quantifier elimination contrasts with the “decidability idea”
of Tarski, which is a purely computational idea. In fact, van den Dries (1984, p 98) says that the search for a
decision method is a “waste of time” in the case of the elementary of theory of the real exponential field. The
main results of van den Dries’ 1984 paper are a collection of “finiteness theorems” that one might take to be
essential to our pre-theoretic notion of geometricality (i.e. what Giaquinto calls our “visual expectations in
mathematics” (Giaquinto 2007, p 3). These results will be discussed below.
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because o-minimal continuous functions demonstrably satisfy each of the descriptions in

§5.1: no gaps, piecewise monotonic, piecewise smooth, and satisfies the vertical line test.58

I take the above argument to support my claim that the o-minimal IVT admits of

imagery-based mathematical entitlement.59 In the final section, I will discuss the extent

to which o-minimality has succeeded in developing a general theory for which our visual

faculties are reliable guides to the behavior of its primary objects. I will focus on how

the visualizable objects of o-minimality behave differently from the real-analytic objects

that led to the so-called ‘flight from intuition’ in the nineteenth century. I will argue that

o-minimality has succeed and the behavior of o-minimal visualizable objects, unlike the

behavior of visualizable objects in real analysis, “accords with our visual comprehension of

space and spatial objects” (Giaquinto 2007, p 5).

3.6.2 Visual Virtues of O-minimality

Some of the most important results in o-minimality are what one might call ‘tameness

results’ (Wilkie 2007, Marker 2002a). These tameness results suggest that o-minimality

has succeed in isolating a subject matter that can be reliably investigated with one’s visual

faculties. The tameness results of o-minimality can, very roughly, be split into two kinds:

invariance results and finiteness results.60 In the former category belong the propositions

that Dimension and Euler Characteristic are invariant across definable bijections. In the

latter category, there are a number of ‘finiteness’ theorems. We have already seen two

58Moreover, there is a “general procedure” for imagining the o-minimal continuous functions, since each
has a finite number of smooth pieces. According to Giaquinto’s (2011, pp 299-300) psychological hypothesis,
this disposes us to generalize over all o-minimal continuous functions.

59Although I cannot defend it here, I think parallel arguments can be made for the reality of imagery-based
entitlement in the case of other o-minimal theorems, such as Rolle’s Theorem and the Mean Value Theorem.

60There are a few theorems that do not fit into either of these categories: the Curve Selection Theorem,
the Definable Choice Theorem, the Trivialization Theorem, and the theorem that states that all definable
groups are definably isomorphic to a Lie group. See Peterzil (2007) and Marker (2002a). I leave to future
investigation the question of to what extent these additional theorems suggest that o-minimal structures are
‘tame’.
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of these theorems, the Monotonicity Theorem and the Piecewise-Differentiability Theorem,

which together state that all definable continuous functions can be decomposed into a finite

number of pieces, each of which is either monotonic and n-differentiable. But there are

many other finiteness theorems. These finiteness theorems show that the developers of

o-minimality succeeded in their attempt to delineate a whole collection of concepts with

category specifications. In other words, our visual faculties are reliable guides to the behavior

of many o-minimal objects, not merely o-minimal continuous functions.

I believe that these finiteness theorems can be used to provide a clear distinction

between o-minimality and real analysis. According to Giaquinto, the main reason why real

analysis eludes visual imagination is the non-finite nature of its objects:

The reliability of visual thinking in mathematics, especially in analysis, came

under heavy suspicion in the nineteenth century. The main reason was that

our visual expectations in mathematics, known collectively as geometrical or

spatial intuition, quite often turned out to be utterly misleading, particularly

about what happens “at the limit” of an infinite process. A prominent case is

the existence of ...continuous but nowhere-differentiable function[s] ... A related

example reinforced suspicion. In 1890 Peano showed that it is possible to define

a curve that completely fills a two-dimensional region ... (Giaquinto 2007, pp

3-4).

There is no question that our intuitions about the behavior of infinite totalities and the

results of infinite processes can be very misleading. But o-minimality, I claim, is specifically

suited to avoid these kinds of objects and processes. There are three reasons o-minimality

can avoid these misleading infinite totalities and processes: the definition of an o-minimal

structure, the finiteness theorems hinted at above, and the fact that dimension is a definable

invariant. I will discuss each of these below.
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The definition of an o-minimal structure guarantees that we will never find ourselves

talking about one-dimensional objects that do not have finitely many connected components.

In other words, we can only define subsets of R1 that are finite collections of points, line

segments, and lines. We can express the content of this claim in terms of the limiting behavior

of these definable sets. That is, the definition of an o-minimal structure guarantees that,

as we approach a point in R1, we will not find any definable set D that infinitely oscillates

between p ∈ D and p 6∈ D. In fact, expression of infinite oscillation are familiar from tense

logic and relation modal logic.61 It is therefore natural to ask, given the order topology on

all o-minimal structures, whether we can formalize the above intuitive condition on infinite

oscillations in topological modal semantics.62

In the topological modal semantics, ‘�p’ says that there is an open neighborhood

around every point such that p is true on that neighborhood. Within this formal framework

we can express the claim that there are infinite oscillations between p and ¬p around a

single point x by the following holding at x: ¬�(p → �p) ∧ ¬�(¬p → �¬p). But I have

shown that this can never happen on o-minimal expansions of the real numbers. Indeed

the negation of the above sentence is characterist of all such expansion. See Appendix for

details. This theorem provides us with a formal statement of the intuitive fact that the one-

dimensional definable subsets are finite unions of familiar, visualizable objects like points

and line segments.

Let us move on to our discussion of the finiteness theorems. These theorems give us yet

another reason to think o-minimality can avoid the misleading infinite totalities and processes

that afflicted 19th-century analysis. Above, we said that the Piecewise-Differentiability

Theorem guarantees that all definable continuous functions will be n-differentiable at all

but finitely many points. Hence, we avoid continuous nowhere-differentiable functions. We

61For example, in tense logic, the formula ‘G(Fp∧ F¬p)’ expresses the fact that at any future time there
will be a time in the future when p is true and a time in the future when p is false.

62Topological modal semantics originated with Tarski’s 1938 paper, “Sentential Calculus and Topology”.
More recently, the study of Spatial Logics has been focused on the topological modal semantics.
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also said that the Monotonicity Theorem guarantees that all definable continuous functions

will only have finite oscillations. Hence, we avoid paradoxes of infinitely oscillating curves

like the topologist’s sine curve. Other pathological and ’untame’ constructions are ruled out

by additional finiteness theorems like the Finite Homeomorphism Type Theorem, the Cell

Decomposition Theorem, the Stratification Proposition, and the Triangulation Theorem.

These finiteness theorems provide the basis for additional suggestive results and conjectures

such as the following:

• The Borel subsets of Rn are not definable. (Marker 2002a, p 353)

• The solutions to definable differential equations have a finite number limit

cycles. (Dries and Speissegger 2003, p 2)

• O-minimal theories do not exhibit the “Gödel Incompleteness Phenomena”.

(Steinhorn 2003, p 21; Haskell, et al. 2000, p 7)

It is difficult to articulate what, if any, visual consequences these statements have. Never-

theless, they are concrete cases in which the objects of o-minimality exemplify a finite or

tame behavior that simply does not hold for objects in real analysis.

Finally, the invariance theorems of o-minimaility guarantee that visually detectable

properties like dimension and euler characteristic will be preserved under definable home-

omorphism. In contrast, the space-filling curves and other non-visual equivalences of real

analysis reveal that these objects do not align with our spatial expectations of the behav-

ior of a geometric figure when it is deformed. After all, it would seem quite puzzling if a

line segment could fill a square simply by deformation. In fact, Wilkie describes dimension

invariance as a desideratum of o-minimality:

[Any framework for tame topology] should have built-in restrictions so that we are

a priori guaranteed that pathological phenomena can never arise. In particular,
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there should be a meaningful notion of dimension for all sets under consideration

and any that can be constructed from these ... (Wilkie 2007, p 1)

Given the above discussion of the definition, finiteness theorems, and invariants of o-

minimality, I believe there is strong support for the claim o-minimality has succeeded in

developing a theory for which our visual faculties are reliable guides to the behavior of its

primary objects.

Before leaving this topic of the visual virtues of o-minimality, I would like to mention

that o-minimality also allows us to reject a dichotomy that Giaquinto puts to us when he

says that we have to choose between the IVT on the one hand, and the PDT and Dimension-

invariance on the other:

[The] maintain[enance of] our cognitive predispositions about space motivates

the intermediate-value condition on continuous functions, as one of our strongest

cognitive predispositions is that space has no gaps, not even invisibly small gaps.

Of course some things had to give: our cognitive dispositions are violated in

classical analysis by the existence of continuous nowhere-differentiable functions

and space-filling curves. We can avoid these surprises by replacing classical anal-

ysis with smooth infinitesimal analysis. But the IVT does not hold in smooth

infinitesimal analysis. (Giaquinto 2011, p 303.)

We do not have to choose between the IVT on the one hand, and the PDT and dimension-

invariance on the other hand. In o-minimality, we can maintain all three of these expectations

(along with many others). Moreover, the o-minimal IVT does not require extending the

rationals to reals. We can get away with incomplete orders because the proof of the o-minimal

IVT never appeals to the existence of minima or suprema, which stands as a counterexample

to what Giaquinto says about the IVT here:
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[I]f the IVT is a desideratum for an account of the real numbers, it has to

be proved for the given account, and that cannot be done without appeal to

Dedekind Completeness or something which implies it. (2011, p 303) 63

In sum, o-minimality seems tailored to our cognitive expectations about the spatial

contents of visual imagination. The definitions, finiteness theorems, and invariance theorems

suggest that o-minimality is able to sidestep much of the misleading ‘limiting’ behavior that

plague the basic objects of real analysis.

In this essay, I have articulated a general account of imagery-based entitlement and ap-

plied it to the the case of the o-minimal Intermediate Value Theorem. More generally, I have

argued that we have good reason to think the subject matter of o-minimality is inherently

visual. Finally, I proposed that the differential epistemic status of theorems in real analysis

and and theorems in o-minimality can be explained by considering the definitions, finiteness

theorems, and invariance results that hold in o-minimality but not in real analysis. I believe

my arguments in this essay undermine any attempt to restrict imagery-based mathemati-

cal entitlement to elementary geometry and arithmetic. If this is correct, a comprehensive

understanding of mathematical knowledge will have to go beyond the study of proof-based

justification. I would like to think the most promising way to study non-inferential mathe-

matical knowledge, such as imagery-based entitlement, is by synthesizing results in cognitive

psychology with a detailed study of how mathematicians understand their subject matter.

Throughout this essay, I hope to have exemplified this methodological commitment.

63For further discussion of the inessential nature of Dedekind Completeness for the IVT in real closed
fields, see Sinaceur (1994).
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3.7 Appendix: Modal Logic of O-minimal Structures

I will show here that the class of o-minimal structures can be characterized in proposi-

tional modal logic with the definable topological semantics.64 First, I say what the definable

topological semantics is, and then I prove the theorem stated in the main text.

Definition 3.7.1. Let R = (R, <,+,×, . . .) be an o-minimal expansion of the real field. In
the definable topological semantics, we let a definable valuation V : SL→ D, be a map
from atomic letters to the collection of definable-with-parameters subsets of R, such that for
all p and x65:

V,R, x |= p ⇐⇒ x ∈ V (p) (3.1)

V,R, x |= �ϕ ⇐⇒ There is open U 3 x such that U ⊆ {y ∈ Rk : V,R, y |= ϕ} (3.2)

The clauses for the propositional connectives are the usual ones, and here the topology is
the usual Euclidean topology on Rk. Further, as usual, one says that R, x |= p if and only
if for all definable valuations V , we have V,R, x |= p.

—

Theorem 1. For any expansion of the real field R, R is o-minimal iff for all x ∈ R, and p,

R, x |= �(p→ �p) ∨�(¬p→ �¬p) (3.3)

Proof. Note that �(p→ �p) ∨�(¬p→ �¬p) is logically equivalent to S := �(p ∨�¬p) ∨
�(¬p ∨�p). In this proof, we will be using the second formula, S.

‘⇒’: Let R be o-minimal. Let Di be an arbitrary definable subset of R. Then Di is a
finite union of isolated points and intervals. Let Vi be the valuation such that Vi(p) = Di.
We must show for an arbitrary x ∈ R, that Vi,R, x |= �(p∨�¬p)∨�(¬p∨�p). There are
two cases. Case (I): Vi,R, x |= p. Case (II): Vi,R, x |= ¬p.

64Of course there are many other kinds of “topological semantics” for propositional modal logic. Some
alternative topological interpretations of the Box operator that are worthy of consideration include: the
derivate operator, the definable closure operator, and the convex closure operator. All of these have been
studied in some capacity before, but (as far as I know) no one has studied them in the o-minimal setting.

65The following clauses are adapted from van Benthem and Bezhanishvili (2007), p 218.
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In case (I), I claim that Vi,R, x |= �(p∨�¬p). That is, there is an open interval Ox 3 x
such that for all y ∈ Ox, we have Vi,R, y |= p ∨ �¬p. Since Di is a finite union of isolated
points and (open or closed) intervals, either (a) x is an isolated point in Di, or (b) x is in an
(open or closed) interval Ux ⊆ Di. Consider (a). If x is an isolated point in Di, then there
is an open interval Jx around x such that Jx ∩Di = {x}. Let I := Jx. Then for all y ∈ I, if
x = y, then Vi,R, y |= p, and if x 6= y, then Vi,R, y |= �¬p. Hence, Vi,R, x |= �(p ∨�¬p).
Consider (b). Since there is an interval Ux containing x, either: (b1) x ∈ Int(Ux), (b2) x
is an endpoint of Ux. Consider (b1) and let I := Int(Ux). Then for all y ∈ I, we have
Vi,R, y |= p. Hence, Vi,R, x |= �p, entailing that Vi,R, x |= �(p ∨ �¬p). Consider (b2).
Since x is an endpoint of Ux, there is a w 6∈ Di such that, for all points z between x and w
(without loss of generality we can assume x < w), Vi,R, z |= ¬p (and, thus also: for all z,
we have Vi,R, z |= �¬p). Let I := Int(Ux) ∪ [x,w[. Then for all y ∈ I, either y ∈ Ux (and
so Vi,R, y |= p), or y ∈]x,w[ (and so Vi,R, y |= �¬p). Hence, Vi,R, x |= �(p ∨�¬p).

In case (II), I claim that Vi,R, x |= (¬p ∨ �p). Here we follow the same argument as
in case (I), except we consider the complement of Di, R \Di.

Since we began with an arbitrary Di and an arbitrary x, we can generalize over all
worlds x and definable valuations Vi. We thus conclude, for any x ∈ R, that Vi,R, x |=
�(p ∨�¬p) ∨�(¬p ∨�p).

‘⇐’: Let R be any expansion of the real field in which, for all x ∈ R and all Di = Vi(p)
, Vi,R, x |= �(¬p ∨ �p) ∨ �(p ∨ �¬p). We need to show that R is o-minimal. Appealing
to Schoutens (2014), Corollary 2.4, we have that if R is locally o-minimal, then R is o-
minimal.66 Hence, all we need to show is that R is locally o-minimal. By Toffalori and
Vozoris (2009), Proposition 2.4:

R is locally o-minimal iff for every x ∈ R and every Di ⊆ R, there are c, d ∈ R
such that c < x < d and either Di∩]c, d[ or ]c, d[\Di is equal to one of the
following: (i) {x}, (ii) ]c, x], (iii) [x, d[, or (iv) the whole interval ]c, d[.

We will show that if every x and Vi is such that Vi,M, x |= �(p∨�¬p)∨�(¬p∨�p),
then for each x, there is an open interval I around x such that for all Di, either Di ∩ I or
I \ Di is equal to any of (i)-(iv) above. We can then conclude that R is o-minimal. Fix x
and Di. In order to show that either I ∩ Di or I \ Di is equal to (i)-(iv), we will start by
considering the consequences of our supposition under the valuation Vi. That is, we know
from our supposition that Vi,R, x |= S. We thus know that one of two cases holds. Case
(I), Vi,R, x |= �(p ∨�¬p). Case (II), Vi,R, x |= �(¬p ∨�p).

In case (I), there is an open interval Ox around x such that for all y ∈ Ox, Vi,R, y |=
p ∨�¬p. The second disjunct tells us that Ox \Di is open. By Folland (1999), Proposition

66Schoutens actually proves that if R is type-complete, then it is o-minimal. But, as Rennet (2014), p 55,
fn 1, points out this type-completeness is equivalent to local o-minimality in the case of ordered fields.
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0.21, p 12, all open sets of R are equal to an arbitrary disjoint union of open intervals. That
is, Ox \ Di =

⊔
k∈K Jk. (Note that K might be empty.) Now either (a) x is in some Jk or

(b) it is not. Consider subcase (a) and let I := Jk. Then we know that I \Di = I, which is
(iv) above.

In subcase (b), we already have that Ox is an interval around x. But choosing an
appropriate I around x that satisfies any of (i)-(iv) is more difficult than in subcase (a).
For, it seems possible that all subneighborhoods Ux of Ox, contain infinitely many Jk’s.
For example, if x = 0 and Di = [1, 1/2] ∪ [1/4, 1/8] ∪ [1/16, 1/32] ∪ ... ∪ {0}, then any
subneighborhood Ux will contain infnitely many Jk’s. But, in fact, such cases are not possible.
More precisely, I claim that Ox \ Di is a finite union K0 of open intervals,

⊔
k∈K0

Jk. For,
suppose not. Then there are infinitely many Jk’s in Ox. We show that if R contains such
a definable set Di, it must contain another definable set Dj such that R does not model S
under Vj at some point y. (This would show that any structure containing Di must violate
the basic assumption for the right-to-left direction that R models S under all definable
valuations at every point.) In particular, we let Dj := Di \ {x}. (We know that this set
is definable because we have parameters.) We let Vj be the definable valuation such that
Vj(p) = Dj. I claim that Vj,R, x 6|= �(p ∨�¬p) ∨�(¬p ∨�p).

For contradiction, suppose first that Vj,R, x |= �(p∨�¬p). It follows that Vj,R, x |=
p∨�¬p. Since x 6∈ Dj, it follows that Vj,R, x |= �¬p. So there is an open Ox 3 x such that
Ox\Dj = Ox. But sinceDi = Djt{x}, we then have thatOx∩Di = {x}. Hence, there are two
closest open intervals Ja, Jb, such that Ox = Jat{x}tJb67, which contradicts our assumption
that there are infinitely many Jk’s in Ox. In this case there are only two: Ja and Jb. Hence,
by reductio, we have Vj,R, x 6|= �(p∨�¬p). Now suppose that Vj,R, x |= �(¬p∨�p). Then
there is an Ox such that for all y ∈ Ox, Vj,R, y |= ¬p∨�p. The second disjunct tells us that
Dj∩Ox must be an arbitrary union of disjoint open intervals

⊔
m∈M Lm. But we already have

that Ox \Di is an infinite union of disjoint open intervals
⊔
t∈T Jt. Since Di = Dj t {x}, we

then have that Ox\Dj = (
⊔
t∈T Jt)t({x}). Hence Ox = (

⊔
t∈T Jt)t(

⊔
m∈M Lm)t({x}). And

since |T | ≥ ω, this is impossible. (To see this, consider the set Ox \ {x}. It can be written
as two disjoint open intervals ]a, b[, ]b, c[. Since the first interval is connected, it cannot be
the disjoint union of open sets, so it must be identical to either a Jt or an Lm. This means
the second, connected interval is equal to an infinite disjoint union of open sets, which is a
contradiction.) Hence, Vj,R, x 6|= �(p ∨�¬p) ∨�(¬p ∨�p). This violates our supposition
for the left-to-right direction. So we can conclude that Ox \Di is a finite union K0 of open
intervals,

⊔
k∈K0

Jk.

Recall from the set up of subcase (b), we have that x ∈ Di, x ∈ Ox, and x 6∈ Jk for all
k. Since there are finitely many Jk’s we can select a open interval Ux ⊆ Ox that contains
at most one Jk on either side of x. There are four cases to consider: (1) Ux contains one
interval Ja above x and one interval Jb below x, (2) Ux contains one interval Ja above x and
is disjoint from all Jk’s below x, (3) Ux contains one interval Jb below x and is disjoint from
all Jk’s above x, and (4) Ux is disjoint from all Jk’s.

67So everyone is clear, I am using the square cup to mean “disjoint union”.
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In (4), we can immediately conclude that Ux ∩Di = Ux, which means that Ux satifies
(iv). In (3), either x ∈ cl(Jb) or not. If it is in the closure, then Ux ∩ Di = [x, d[ for some
d, which means Ux satisfies (iii). If not, then there is an open interval I around x that is
disjoint from all Jk’s, which means I satisfies (iv). In (2), we have the same as (3). In (1),
either x ∈ cl(Ja ∪ Jb) or not. If not, then there is an open I around x which satisfies (iv). If
so, then either x ∈ cl(Ja) ∩ cl(Jb) or not. If not, then we can find an I that satisfies (ii) or
(iii). If so, then Ux satisfies (i).

In case (II), we follow a similar argument as in case (I). We assume that Vi,R, x |=
�(¬p ∨�p). Let Dk := R \Di. Then we know that Vk,R, x |= �(p ∨�¬p). Since we let Vi
be arbitrary in case (I), we can substitute Vk for Vi in the above reasoning. Thus, we have
that at x, there is an I such that either I \ Dk of I ∩ Dk is equal to one of (i)-(iv) above.
Since I \Dk = I ∩Di and I ∩Dk = I \Di, we can say the same of Di itself.

Using the above-mentioned results from Toffalori and Vozoris (2009) and Schoutens
(2014), we can conclude that R is o-minimal.
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