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ABSTRACT OF THE DISSERTATION

Bidirectional Mental State Alignment for Human-Machine Collaboration

by

Xiaofeng Gao

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2022

Professor Song-Chun Zhu, Chair

For machines working alongside with humans, it is necessary to understand humans’ mental states,

including desires, beliefs and intentions for better interactions. In addition, humans also need

to understand machines’ capabilities and limitations to trust and rely on machines approriately.

Achieving such bidrectional mental state alignment is crucial to the success of human-machine

collaboration. This dissertation addresses this core challenge from both directions, spanning the

domains of embodied artificial intelligence, autonomous driving and human-robot interaction. In

the first direction of machines understanding humans, I propose a virtual environment for em-

bodied agents and human users to work on daily activities via simulation. To enable embodied

agents to better understand and execute human commands, I propose a benchmark allowing them

to actively ask questions to resolve language ambiguities. For autonomous driving systems to have

an accurate mental model of drivers, I propose a novel protocol to evaluate the effects of human-

machine interfaces on drivers’ situational awareness in different traffic conditions. In the second

direction, I study how robots can generate communicative actions to be better understood by hu-

mans. I propose i) an action parsing algorithm based on an And-Or graph representation to generate

explanations of task plans, ii) a task and motion planning framework to calibrate robot reachable

ii



workspace by expressive motions. My works culminate in building a computational framework

for bidirectional value alignment, which is evaluated in the human-machine collaborative scout

exploration game.

iii



The dissertation of Xiaofeng Gao is approved.

Demetri Terzopoulos

Tao Gao

Ying Nian Wu

Song-Chun Zhu, Committee Chair

University of California, Los Angeles

2022

iv



To my family.

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Building Interactive Environments for Embodied Agent Learning . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 VRKitchen Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Physics Engine and Photo-realistic Rendering . . . . . . . . . . . . . . . . 11

2.3.3 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.4 Python-UE4 Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 VR Chef Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Tool Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Preparing Dishes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Experiment 1: Using Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Experiment 2: Preparing Dishes . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Dialogue-Enabled Agents for Embodied Instruction Following . . . . . . . . . . . . 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vi



3.3 Task and Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Hybrid data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Generating answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Data augmentation on ALFRED . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Questioner fine-tuning using RL . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.3 Heuristic-based questioner . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.4 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Evaluating the Effects of Assisting Interfaces on Drivers’ Situational Awareness in

Autonomous Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Situational Awareness Measurements . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Ways to Improve Driving Situational Awareness . . . . . . . . . . . . . . 43

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Participants and Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 SAE L2 AD System and AR Assisting Cues . . . . . . . . . . . . . . . . . 45

vii



4.3.3 Object Location Discretization . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.4 Driving Scenario and Events . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.5 Dependent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.6 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Attention Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2 Situational Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.1 Attention Allocation, Workload and SA . . . . . . . . . . . . . . . . . . . 57

4.5.2 Comparison with Previous Studies . . . . . . . . . . . . . . . . . . . . . . 58

4.5.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Joint Mind Modeling for Explanation Generation in Human-Machine Collaboration 60

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Single Agent Mind Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 STC-AoG as a Hierarchical Mind Model . . . . . . . . . . . . . . . . . . 64

5.2.2 Parse Graphs as Mental State Representations . . . . . . . . . . . . . . . . 65

5.2.3 Joint task planning by parsing STC-AoG . . . . . . . . . . . . . . . . . . 66

5.3 Joint Mind Modeling for Human-Robot Collaborations . . . . . . . . . . . . . . . 67

5.3.1 Mind Models for Human and Robot . . . . . . . . . . . . . . . . . . . . . 67

5.3.2 Human Mental State Inference . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.3 Robot Mental State Update . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Explanation-based task coaching . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

viii



5.4.1 Explanation framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.2 Explanation Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.3 Explanation Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5.1 Experiment Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5.2 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Generating Expressive Motions for Calibration on Robot Reachable Workspace . . 81

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Capability Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.1 Calibrating Reachable Workspace . . . . . . . . . . . . . . . . . . . . . . 84

6.3.2 Human Belief Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.3 REMP: Reachability-Expressive Motion Planning . . . . . . . . . . . . . . 87

6.3.4 Generating Reachability-Expressive Trajectories . . . . . . . . . . . . . . 89

6.3.5 Planning for Start and Target Pairs . . . . . . . . . . . . . . . . . . . . . . 91

6.4 Applying reachability-expressive motion planning (REMP) to Human-Robot Col-

laboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.1 Collaborative Table Clearing . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.2 Human and Robot Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

ix



6.5.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5.2 Result and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 In-situ bidirectional human-robot value alignment with communicative learning . . 101

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Game design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.4 Bidirectional value alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.5 Human experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5.2 Human study results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.7 Game setup details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.8 Computational model details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.8.2 Action selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.8.3 Proposal selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.8.4 Human-robot value alignment . . . . . . . . . . . . . . . . . . . . . . . . 125

7.8.5 Utility-aware explanation generation . . . . . . . . . . . . . . . . . . . . . 129

7.9 Human experiment details and demographics . . . . . . . . . . . . . . . . . . . . 130

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

x



LIST OF FIGURES

2.1 A sample sequence of an agent making a sandwich. Rectangles on the left graph

represents five necessary sub-tasks, including (1) taking ingredients from fridge, (2)

putting ham and cheese on the bread, (3) use the oven, (4) cut tomato and (5) add some

sauce. Each rectangle on the right graph indicates atomic actions required to finish a

sub-task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Architecture of VRKitchen. Users can either directly teleoperate the agent using VR

device or send commands to the agent by Python API. . . . . . . . . . . . . . . . . . 10

2.3 Four humanoid avatars designed using MakeHuman [The]. . . . . . . . . . . . . . . . 11

2.4 Sample kitchen scenes available in VRKitchen. Scenes have a variety of appearance

and layouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Sample actions and object state changes by making use of different tools in VRKitchen. 12

2.6 Users can provide demonstrations by doing tasks in VRKitchen. These data can be

taken to initialize virtual agent’s policy, which will be improved through interactions

with the virtual environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Multi-modal data is available in the virtual environment. Figures in the first row show

RGB, depth and semantic segmentations from a third person perspective. Figures in

the second row are from the agent’s first person view. . . . . . . . . . . . . . . . . . . 16

2.8 An example of human demonstrations for making a pizza. . . . . . . . . . . . . . . . . 17

2.9 An example of human demonstrations for making roast meat. . . . . . . . . . . . . . . 17

2.10 Examples of dishes made in VRKitchen. Note that different ingredients leads to dif-

ferent variants of a dish. For example, mixing orange and kiwi juice together would

make orange & kiwi juice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

xi



2.11 Experiment results for five tool use tasks. Black horizontal lines show rewards agents

get from taking the tools, and the red lines indicate the rewards of completing the

whole tasks. Each curve shows the average reward an agent receives using one of

three different RL algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.12 Experiment results for three dish preparing tasks. Each curve shows the average reward

an agent receives using one of RL algorithms. . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Example dialogue between a robot and a human user during task completion. The

robot raises questions to obtain additional information (e.g., when the target location

is not clear) and to resolve ambiguities (e.g., when facing two knives on the table). . . 25

3.2 The annotation interface for hybrid data collection. The worker first clicks the “begin”

button to watch a video clip showing the initial states of the environment. Given the

instruction, the worker selects a question to help perform the task. Next, the worker

clicks the “show demonstration” button to watch the expert demonstration on how to

complete the task. The worker then answers their own question based on what they

have learned from the videos. Finally, workers choose whether they think the questions

and answers are necessary to help the agent carry out the command. . . . . . . . . . . 27

3.3 Examples in our QA dataset. We show instructions and questions asked by humans,

and answers provided by both the oracle and humans. Compared to step-by-step in-

structions, our augmented instructions are concise and general, thus requiring the agent

to understand its current state to generate the correct action sequences. . . . . . . . . . 28

3.4 The questioner-performer architecture. The questioner generates questions based on

the first person image of the agent and the task instruction. The oracle answers the

question based on the scene metadata. The performer takes the image, the instruction,

and question and answers as input to predict actions. . . . . . . . . . . . . . . . . . . 30

3.5 The Questioner model. Given the instruction and current image feature I, our Seq2seq

model generates question tokens w1:i. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xii



4.1 Our driving simulator is composed of a steering wheel and two pedals mounted on

a cockpit, and three 55-inch displays showing the front and side views of the virtual

environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 This is a forward event intersection with high traffic density, corresponding to the event

in Figure 4.6A. We highlight objects using bounding boxes on the user interface: red

for pedestrians and blue for cars. In addition, we also display the ego vehicle’s current

speed and heading direction with yellow texts and arrows in the middle. During the

study, this concatenated screenshot is separately shown on three displays to simulate

the field-of-view of a driver in the real world (see Figure 4.1). . . . . . . . . . . . . . . 42

4.3 To evaluate drivers’ SA, we pause the simulation and hide all road users. On top of the

background road scene of the intersection, we display several regions and ask users to

choose which regions were occupied by pedestrians or vehicles. . . . . . . . . . . . . 42

4.4 We first discretize an intersection into 4 areas based on spatial distance and eccentricity

relative to the green ego vehicle. According to area discretizations, we then discretize

pedestrians’ and vehicles’ all possible movements near the intersection. For example,

pedestrian A crossing the top of the intersection is considered moving in area 1, while

car F going straight on the left will be moving in areas 2 and 3. . . . . . . . . . . . . . 44

4.5 Drives and intersections. Light traffic route 1 (LT1) and light traffic route 2 (LT2) are of

low traffic density, while dense traffic route 1 (DT1) and dense traffic route 2 (DT2) are

of high traffic density. Blue dots represent event intersections where the target objects

are highlighted. Yellow dots represent event intersections where the target objects are

not highlighted. Green dots are non-event intersections where we ask dummy SAGAT

questions to reduce the learning effect of SA in event intersections. In intersections

a1, b1 and c1, SAGAT questions are asked before the treatment (highlighting or not

highlighting). In intersections a2, b2 and c2, SAGAT questions are asked after the

treatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xiii



4.6 We display the locations and heading directions of target objects in three types of event

intersections. For clarity, distractor objects are not shown here. The green rectangle

is the ego vehicle. Gray rectangles are other vehicles’ locations and gray arrows show

their moving directions. Yellows arrows show pedestrians’ movements across the in-

tersection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 Drivers’ fixation time (in second) on each car and pedestrian given traffic density. “N”

represents non-highlighting results and “H” represents highlighting results. We report

the p-value between highlighting conditions for each object. . . . . . . . . . . . . . . 50

4.8 Drivers’ SAGAT question response accuracy in delayed intersections. “N” represents

non-highlighting results and “H” represents highlighting results. We report the p-value

between highlighting conditions for each object. . . . . . . . . . . . . . . . . . . . . . 52

4.9 SA transition conditioned on traffic density and highlighting across all objects. ”SA at

time t” represents drivers’ SA response before the treatment, while ”SA at time t+1” is

for SA response after the treatment. The shade of each region represents the proportion

of the samples falling into each category. Darker color represents a higher proportion. . 53

4.10 SA transition for the top center pedestrian (pedestrian A in Figure 4.6A). The shade of

each region represents the proportion of the samples falling into each category. Darker

color represents a higher proportion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.11 SA transition for the bottom center car (car F in Figure 4.6A). The shade of each

region represents the proportion of the samples falling into each category. Darker

color represents a higher proportion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 The task making salad requires team members to take three lettuce from the basket

and cut each one with a knife, before it can be put into the plate and served. After the

first lettuce has been cut, the robot is cutting the second one. The robot can identify

human’s sub-optimal behavior (taking new lettuce from the basket) before generating

explanations to the human. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xiv



5.2 The hierarchical mind model for the collaboration task, ”making salad”, represented

by an AoG. The And node represents temporal relations between sub-tasks. The Or

node represents two possible ways for the team to finish the tasks. Each terminal node

(diamond) denotes an atomic action that would cause certain fluent changes (triangles)

for objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Robot mental state pgr and inferred human mental state p̂gh represented as parse

graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Human mental model update process. We use it to infer user mental state pgh, which

is hidden to the robot. Here we assume human actions ah
t and robot message mr

t are

conditional independent given human mental state pgh
t at time t. . . . . . . . . . . . . 68

5.5 Explanation timing. At time t, sort posterior probability of pghi
t in descending order,

and then compare the most possible user mental state pgh1
t with robot mental state pgr

t .

Since they are the same, there is no need to explain to the user. At time t ′, pgh1
t ′ is not

equal to pgr
t ′ , therefore, the robot should provide the explanation. . . . . . . . . . . . 69

5.8 Time taken for the team to complete two orders under different testing conditions. . . 76

5.9 User’s self-reported perception of the robot in terms of its efficiency and helpfulness. . 76

5.6 (a) A top-down view of our collaborative cooking game, where the user (the bottom

character) collaborates with a robot (the top character) on some cooking tasks, e.g.

making apple juice. (b) The explanation interface exhibits the expected sub-tasks for

both agents. Pre-conditions and post-effects of atomic actions are displayed as well. . . 79

5.7 An example task schedule for making apple juice. The robot maintains the schedule

to reflect its expectation on how the team should finish the task. Each color block

represents a sub-task, performed by either robot or human. At a specific timing, we

can assign tasks to both agents based on the schedule. E.g. at 10.0s, the robot is getting

apple slices 1 while the user is supposed to be preparing apple 2. The schedule gets

updated based on inferred human mental states, as shown in Algorithm 1. . . . . . . . 80

xv



6.1 (a) Consider a collaborative table clearing task, where the robot has a limited capability

and cannot reach the yellow and white objects. Users who incorrectly estimate that the

robot can reach the yellow object would assign it to the robot, resulting in a worse

teaming performance. (b) We propose capability calibration, where the robot uses its

motion to demonstrate its capability before collaboration. . . . . . . . . . . . . . . . 82

6.2 Simulated human estimation of robot A’s reachability map, after observing each demon-

stration generated by Algorithm 3, measured by Intersection of Union (IoU) between

the human estimation and the ground truth. Robot A is a 2-link arm with link lengths

0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Visualization of the robot reachable workspace and the trajectories generated by cost

function cb (belief ) and cs (static). (a) and (b) show the results for Robot B and Robot

C respectively. It can be seen that the belief trajectories cover broader regions of the

reachable workspace and new trajectories tend to visit areas that haven’t been covered

by their predecessors. The red dots, corresponding to Figure 6.6, represent the points

we use to query the users in our experiments. . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Trajectories generated by task and motion planning and the simulated reachability

estimation given observations. Combining REMP with task planning, we can optimize

the starting and target positions for better calibration. . . . . . . . . . . . . . . . . . . 93

6.5 Simulation results of reachability estimation and collaboration performance. Starting

and target positions are chosen greedily. . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.6 To evaluate users’ estimation of the robot’s reachable workspace, we sample query

points in the workspace and ask users to select points that they think the robot’s end

effector can reach. These points correspond to the red dots in Figure 6.3A and Fig-

ure 6.3B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.7 User study results. Here we report means and standard errors. * indicates statistical

significant pairs (p < .05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xvi



7.1 Overview of bidirectional human-robot value alignment. Pie charts represent the

values, i.e., the importance of different goals in a collaboration task, such as simulta-

neously considering safety, gaining money, saving time, and reserving resources. t in

the superscript represents the time step. U and M in the subscript stand for “user” and

“machine”, respectively. VU is the user’s true value, VUinM is the robot’s estimation of

the user’s value, and VMinU is the user’s estimation of the robot’s current value. δ de-

notes the distance between values in the task value space. In every round of interaction,

the machine first receives signals from the physical environment and processes its ob-

servations to form an abstract state of the environment. Next, the machine presents the

processed map together with movement proposals and explanations to human users,

who will provide feedback to the system accepting/rejecting the proposals according

to human values and current map state. Given the user’s feedback, the machine then

updates its estimation of human values and takes actions w.r.t. the new values. Co-

operative human-robot communication with appropriate explanation aligns the team

values in two directions by diminishing the distance between VUinM and VU , as well as

VMinU and VUinM, resulting in final convergence to the true value VU . . . . . . . . . . . 104

7.2 Study design of the Scout Exploration Game. Timeline (A) denotes events happen-

ing in a single round of the game, starting from scouts receiving environment signals

and ending with their next move. Proposals and explanations are presented differently

to users depending on their experimental group; see fig. 7.3 for details. The value es-

timation asks users to infer scouts’ value at current time. Answers to these questions

will not be used by the scouts during the game, but only for inspecting users’ mental

model after the game completes. fig. 7.5B shows the detailed user-interface (UI) of

these questions. Timelines (B) and (C) depict mental dynamics of the robots and the

user, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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7.3 User interface for the scout exploration game. (A) From left to right: Legend panel

in the first column explains the meaning of various icons used in the game. The value

function panel in the second column shows the true values indicating the relative im-

portance of various goals; the values are unknown to the robot scouts and cannot be

modified by the user. The four right panels change dynamically over the course of the

game. The central panel in the third column shows the current status of the map in the

game. The score panel at the bottom shows the current scores for achieving individual

goals. The overall score is the sum of the scores for individual goals, weighted by the

values known to human users in the value function panel. The Status panel provides a

text summary of the current status of the robot system. (B) The Proposal panel shows

the robot scouts’ current proposals; human users can accept or reject proposals of indi-

vidual scouts. In the proposal-only group, participants only see a descriptive sentence

for each proposal (B.0), whereas, in the brief-explanation and full-explanation groups,

participants are presented with a brief explanation about the proposal’s purpose (B.1).

(C) The Explanation panel shows detailed explanations provided by the scouts, only

displayed to the full-explanation group.(D)The bottom table summarizes key compo-

nents of the game display included in each group. . . . . . . . . . . . . . . . . . . . . 111
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7.4 Results of value estimation for scouts and humans in three groups. The legends:

proposal, brief, and full refer to the proposal-only group, the brief-explanation group,

and the full-explanation group, respectively. Horizontal axis indicates the progress

of the game for human participants; vertical axis indicates Kendall’s rank correlation

coefficient between estimated values by scouts and humans; higher correlation indi-

cates better value alignment. Top panel A: correlation between scouts’ value estimate

and the true values that are known to human users as a function of game progress (i.e.,

scout’s accuracy in estimating human values). Before the game starts, the scouts’ value

estimate is initialized as uniform across all goals. Bottom panel B: correlation between

the human estimate of the scouts’ values and scouts’ estimate of the true values as a

function of game progress (i.e., humans’ accuracy in estimating scouts’ values). As-

terisks in the plot indicate significant group differences in paired t-test with P-value

smaller than 5%. The error bars indicate the observation minimum and maximum. The

solid lines and red dashed lines in the bars respectively indicate the median and mean. . 113
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7.5 Examples of questions participants received during the game. (A) Explanation/proposal

satisfaction question. Participants are asked to provide a satisfaction score for the ex-

plainer in every round when they receive scout’s proposals and explanations. This

satisfaction score is used to update models for generating future explanations. (B)

Value estimation question. Participants predict the robot scouts’ belief about the true

human value by sliding the bars to set a relative importance of each goal; of note, this

is a question about level-2 Theory-of-Mind (ToM). Our interface ensures that the total

value of all goals sums to 100%; if the participant moves one slider, the others will

automatically change proportional w.r.t. their original values, such that all values still

sum to 100%. Meanwhile, participants can lock a particular slider by checking the

lock symbol to the right of the slider. (C) Qualitative trust question. We ask the

participants “how confident you are in the scouts?” and “how much do you think the

scout’s actions will have a HARMFUL outcome?” (D) Attention check question.

These questions are shown after trust questions; participants receive one of the four

questions about the game logic and UI. Participants who failed the attention check are

later removed from data analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
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CHAPTER 1

Introduction

With recent advances in aritificial intelligence (AI), intelligent machines have been developed to

help us extensively in our daily lives. Advanced Driver Assistance Systems (ADAS) can maintain

the car’s speed and distance relative to other vehicles, and help drivers with parking. Intelligent

robot vacuums can clean our houses without colliding with obstacles. Facial recognition systems

allow us to make quick and secured payments without cash, credit card or mobile phones. Indeed,

these applications demonstrate the acheivements of making machines perceive and change the

physical environment. Nonetheless, for building machines that can better interact with humans,

one important missing piece of research is related to mutual understanding between humans and

machines.

Understanding human minds, in addition to the physical world, enables machines to have

human-like interactions with people. It is well known that humans understand that others may

have mental states different from oneself. This capability of attributing unique mental state to each

individual is denoted as theory of mind (ToM) [PW78]. Such mental states, including beliefs, de-

sires and intentions, are crucial for humans to comprehend, predict and influence the behaviors of

other people. If we ever want to make intelligent machines that can infer what their human partners

may know, predict their future behaviors, and establish efficient communications, understanding

human mental states should be one crucial step.

One of the largest limitations in this direction is the lack of human data and standardized

benchmarks. My works contributes to this area by creating virtual environments in simulation for

humans and robots to work on daily activities. I propose a benchmark allowing embodied agents
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to actively ask questions to humans to resolve language ambiguities for instruction following. In

addition, I propose a novel protocol to study the effects of highlighting on Augmented-Reality-

based user interfaces on drivers’ situational awareness.

An equally important topic is for humans to understand machines. As machines are becoming

increasingly complicated and autonomous, understanding how they make decisions as well as their

capabilities and limitations enable humans to make better use of them. Failures to do so inevitably

lead to misuse or disuse of the machine, inappropriate trust, and sometimes even catastrophic

results. The situations have been exacerbated by recent popularity of deep learning models, which

seem to be black boxes to most non-expert users.

Previous works in this area, categorized as explainable AI (XAI), focus on producing inter-

pretable visualizations for data-driven machine learning models mainly used in perception [KWG18,

AWZ20]. We believe that a goal-directed AI agent working with humans should be viewed as a

system with multiple functionalities, including perception, planning, cognition and control. We

argue that i) the target of human understanding should be more than the perception module, ii) the

communication between the agent and human users should more diverse, and iii) efficient com-

munication also requires understanding of the human mental states. Thus our works contribute

to this area by generating communicative actions via cognitive modeling through a wide range of

modalities suitable for the embodiment of the machine, ranging from assisting user interface for

autonomous vehicles, expressive motion demonstrations for robots, and questions and task plan

visualizations for embodied virtual agents.

In summary, this dissertation proposes simulation environment, benchmark, user study protocol

and computational framework to address the challenge of human-machine mental state alignment,

spanning the domains of embodied AI, autonomous driving and human-robot interaction. The

detailed contributions of each chapter are outlined below.

In Chapter 2, we propose VRKitchen, a virtual kitchen environment for simulating cooking

activities with rich object state changes and compositional goals. We build interfaces for both AI

agents and human users to control the embodied agent. We also propose a new challenge including
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two sets of task for evaluating the agent’s ability for long-term task planning and fine-grained

object manipulation respectively.

In Chapter 3, we propose DialFRED, an embodied instruction following benchmark allowing

an agent to actively ask questions to the human user and use the information to better complete the

task. The benchmark consists of 25 types of tasks and 53K human-annotated task-relevant ques-

tions and answers. We also propose a model based on a questioner-performer framework showing

the effectiveness of adding dialogue for improving the performance of embodied instruction fol-

lowing.

In Chapter 4, we propose a novel protocol for evaluating the effects of a Augmented-Reality

(AR) based user interface that highlights potential hazardous objects on drivers’ situational aware-

ness for objects with different locations, types and traffic densities. We further conduct a simulator

experiment using the protocol and carefully analyzed the effect of highlighting in different con-

ditions. The results show that highlighting has mixed effects on drivers’ situational awareness,

depending on object characteristics and traffic density.

In Chapter 5, we design a real-time collaborative cooking game to study human-robot collabo-

rations. We propose an action-parsing algorithm based on an And-Or graph representation to infer

human mental states from their actions. We further propose an explanation generation framework

based on the inferred mental states for giving humans hints and explaining what the robot is do-

ing. We demonstrate that our approach improves user perception of the robot and leads to more

effective collaboration.

In Chapter 6, we propose REMP, a novel motion planning algorithm enabling the human to

understand the robot’s reaching capabilities. The algorithm is based on modeling perceived robot

capability as a human’s belief over robot’s reachable workspace, and integrates the belief update

process into motion planning via cost functions in trajectory optimiztion. We demonstrate that

REMP can significantly increase human’s reachability estimation accuracy, as well as the perfor-

mance of the subsequent collaboration task.
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In Chapter 7, we propose a human-machine teaming system instantiated as a collaborative scout

exploration game, requiring the machine to both extract useful information from human’s feedback

to infer human’s values and explain what they plan to do based on its current value estimation. We

demonstrate that our iterative teacher-aware learning and explanation generation framework is able

to achieve bidirectional value alignment in an in-situ manner.
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CHAPTER 2

Building Interactive Environments for Embodied Agent

Learning

2.1 Introduction

Fortunately, humans have built AI systems that can accurately detect and recognize objects [KH12,

HGD17], generate vivid natural images [BDS18], and beat human Go champions [SSS17]. How-

ever, a truly intelligent machine agent should be able to solve a large set of complex tasks in the

physical world by adapting itself to unseen surroundings and planning a long sequence of actions

to reach the desired goals, which is still beyond the the capacity of current machine models. This

gives rise to the need of advancing research on task-oriented learning. In particular, we are inter-

ested in the following three task-oriented learning problems for the present work.

Learning visual representation of a dynamic environment. In the process of solving a task

in a dynamic environment, the appearance of the same object may change dramatically as a result

of actions [ILA15, FR13, LWZ17]. To capture such variation in object appearance, the agent is

required to have a better visual representation of the environment dynamics. For example, the

agent should recognize the tomato even if it is cut into pieces and put into container. To acquire

such visual knowledge, it is important for an agent to learn from physical interactions and reason

over the underlying causality of object state changes. There have been work on implementing

interaction-based learning in lab environments [LGF16,ACM15,HKB15], but the limited scenarios

greatly restrict scalability and reproducitibility of prior work. Instead, we believe that building a

simulation platform is a good alternative since i) performance of different algorithms can be easily
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evaluated and benchmarked, ii) a large set of diverse and realistic environments and tasks can be

designed and customized.

Learning to generate long-term plans for complex tasks. A complex task is often composed

of various sub-tasks, each of which has its own sub-goal [BAR44]. Thus the agent needs to take

a long sequence of actions to finish the task. The large number of possible actions in the sample

space and the extremely sparse rewards make it difficult to steer the policy to the right direction.

Recently, many researchers have focused on learning hierarchical policies [SP02,AKL16,SXS18]

in simple domains. In this work, we provide a realistic environment where the agent can learn to

compose long-term plans for daily life tasks that humans encounter in the real world.

Learning from human demonstrations to bootstrap agents’ models. Training an agent from

scratch is extremely difficult in complex environments. To bootstrap the training, it is common to

let an agent to imitate human experts by watching human demonstrations [NR00,ZMB08,GGC16].

Previous work has shown that learning from demonstrations (or imitation learning) significantly

improves the learning efficiency and achieves a higher performance than reinforcement learning

does [ZGK17, HVP17]. However, it is expensive and time consuming to collect diverse human

demonstrations with high qualities. We believe that virtual reality games can provide us with an

ideal medium to crowd source demonstrations from a broad range of users [AD08].

In this work, we focus on simulating cooking activities and two sets of cooking tasks (using

common tools and preparing dishes) in a virtual kitchen environment, VRKitchen. We illustrate

how this system can address the emerged needs for the three task-oriented learning problems in an

example shown in Figure 2.1, where an agent makes a sandwich in one of the kitchens created in

our system.

• The environment allows the agent to interact with different tools and ingredients and simu-

lates a variety of object changes. E.g., the bread changes its color when it is being heated

in the oven, and the tomato turns into slices after it is cut. The agent’s interactions with the

physical world when performing cooking tasks will result in large variations and temporal

6



changes in objects’ appearance and physical properties, which calls for a task-oriented visual

representation.

• To make a sandwich, the agent needs to perform a long sequence of actions, including taking

ingredients from a fridge, putting cheese and ham on the bread, toasting the bread, adding

some sliced tomato and putting some sauce on the bread. To quickly and successfully reach

the final goal, it is necessary to equip the agent with the ability to conduct long-term plan-

ning.

• We build two interfaces to allow an AI algorithm as well as a human user to control the

embodied agent respectively, thus humans can give demonstrations using VR devices at any

places in the world, and the AI algorithms can learn from these demonstrations and perform

the same tasks in the same virtual environments.

In summary, our main contributions are:

• A configurable virtual kitchen environment in a photo-realistic 3D physical simulation which

enables a wide range of cooking tasks with rich object state changes and compositional goals;

• A toolkit including a VR-based user interface for collecting human demonstrations, and a

Python API for training and testing different AI algorithms in the virtual environments.

• Proposing a new challenge – VR chef challenge, to provide standardized evaluation for

benchmarking different approaches in terms of their learning efficiency in complex 3D en-

vironments.

• A new human demonstration dataset of various cooking tasks – UCLA VR chef dataset.

2.2 Related Work

Simulation platforms. Traditionally, visual representations are learned from static datasets. Ei-

ther containing prerecorded videos [RAA12] or images [JWS09], most of them fail to capture the
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Figure 2.1: A sample sequence of an agent making a sandwich. Rectangles on the left graph
represents five necessary sub-tasks, including (1) taking ingredients from fridge, (2) putting ham
and cheese on the bread, (3) use the oven, (4) cut tomato and (5) add some sauce. Each rectangle
on the right graph indicates atomic actions required to finish a sub-task.

Env. Large-scale Physics Realistic State Manip Avatar Demo
Malmo [JHH16]

√ √

DeepMind Lab [BLT16]
VizDoom [KWR17]

MINOS [SCD17]
√ √

HoME [BPA17]
√ √ √

Gibson [XZH18]
√ √ √ √

House3D [WWG18]
√ √ √

AI2-THOR [KMH17a]
√ √ √ √

VirtualHome [PRB18]
√ √ √ √

SURREAL [FZZ18]
√ √ √

VRKitchen (ours)
√ √ √ √ √ √

Table 2.1: Comparison with other 3D virtual environments. Large-scale: a large number of scenes.
Physics: physics simulation. Realistic: photo-realistic rendering. State: changeable object states.
Manip: enabling object interactions and manipulations. Avatar: humanoid virtual agents. Demo:
user interface to collect human demonstrations.

dynamics in viewpoint and object state during human activities, in spite of their large scale.

To address this issue, there has been a growing trend to develop 3D virtual platforms for

training embodied agents in dynamic environments. Typical systems include 3D game environ-

ments [KWR17, BLT16, JHH16], and robot control platforms [TET12, CB16, FZZ18, PAR18].

While these systems offer physics simulation and 3D rendering, they fail to provide realistic envi-
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ronments and daily tasks humans face in the real world.

More recently, based on 3D scene datasets such as Matterport3D [CDF18] and SUNCG [SYZ17],

there are have been several systems simulating more realistic indoor environments [BPA17,WWG18,

SCD17, MHL17, XZH18] for visual navigation tasks and basic object interactions such as push-

ing and moving funitures [KMH17a]. While the environments in these systems are indeed more

realistic and scalable compared to previous systems, they still can not simulate complex object

manipulation that are common in our daily life. [PRB18] took a step forward and has created a

dataset of common household activities with a larger set of agent actions including pick-up, switch

on/off, sit and stand-up. However, this system was only designed for generating data for video un-

derstanding. In contrast, our system emphasizes training and evaluating agents on virtual cooking

tasks, which involves fine-grained object manipulation on the level of object parts (e.g., grasping

the handle of a knife), and flexible interfaces for allowing both human users and AI algorithms

to perform tasks. Our system also simulates the animation of object state changes (such as the

process of cutting a fruit) and the gestures of humanoid avatars (such as reaching for an object)

instead of only showing pre-conditions and post-effects as in [KMH17a]. A detailed comparison

between our system and other virtual environments is summarized in Table 2.1.

Imitation learning. Learning from demonstration or imitation learning is proven to be an effective

approach to train machine agents efficiently [AN04a, SS08, RGB10]. Collecting diverse expert

demonstrations with 3D ground-truth information in real world is extremely difficult. We believe

the VR interface in our system can greatly simplify and scale up the demonstration collection.

VR for AI. VR provides a convenient way to evaluate AI algorithms in tasks where interaction

or human involvement is necessary. Researches have been conducted on many relevant domains,

including physical intuition learning [LGF16], human-robot interaction [LRM17, GRO17], learn-

ing motor control from human demonstrations [HKB15, KNM01, BCC01]. Researchers have also

used VR to collect data and train computer vision models. To this end, several plugins for game

engines have been released, such as UETorch [LGF16] and UnrealCV [QY16]. To date, such plu-

gins only offer APIs to control game state and record data, requiring additional packages to train
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Figure 2.2: Architecture of VRKitchen. Users can either directly teleoperate the agent using VR
device or send commands to the agent by Python API.

virtual agents.

2.3 VRKitchen Environment

Our goal is to enable better learning of autonomous agents for tasks with compositional goals and

rich object state changes. To this end, we have designed VRKitchen, an interactive virtual kitchen

environment which provides a testbed for training and evaluating various learning and planning

algorithms in a variety of cooking tasks. With the help of virtual reality device, human users serve

as teachers for the agents by providing demonstrations in the virtual environment.

2.3.1 Architecture Overview

Figure 2.2 gives an overview of the architecture of VRKitchen. In particular, our system consists

of three modules: (1) the physics engine and photo-realistic rendering module consists of several

humanoid agents and kitchen scenes, each has a number of ingredients and tools necessary for

performing cooking activities; (2) a user interface module which allows users or algorithms to
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(A) Female 1 (B) Female 2 (C) Male 1 (D) Male 2

Figure 2.3: Four humanoid avatars designed using MakeHuman [The].

Figure 2.4: Sample kitchen scenes available in VRKitchen. Scenes have a variety of appearance
and layouts.

perform tasks by virtual reality device or Python API; (3) a Python-UE4 bridge, which transfers

high level commands to motor control signals and sends them to the agent.

2.3.2 Physics Engine and Photo-realistic Rendering

As a popular game engine, Unreal Engine 4 (UE4) provides physics simulation and photo-realistic

rendering which are vital for creating a realistic environment. On top of that, we design humanoid

agents, scenes, object state changes, and fine-grained actions as follows.

Humanoid agents. Agents in VRKitchen have human-like appearances (shown in Figure 2.3)

and detailed embodiment representations. The animation of the agent can be broken into different

states, e.g. walking, idle. Each agent is surrounded by a capsule for collision detection: when

it’s walking, it would fail to navigate to a new location if it collides with any objects in the scene.
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Figure 2.5: Sample actions and object state changes by making use of different tools in VRKitchen.

When it is idle, the agent can freely interact with objects within certain range of its body.

Scenes. VRKitchen consists of 16 fully interactive kitchen scenes as shown in Figure 2.4.

Agents can interact with most of the objects in the scenes, including various kinds of tools, recepta-

cles and ingredients. Each kitchen is designed and created manually based on common household

setting. 3D models of furnitures and appliances in kitchens are first obtained from the SUNCG

dataset [SYZ17]. Some of the models are decomposed to create necessary object interactions, e.g.

we reassemble doors and cabinets to create effects for opening and closing the door. After we have

basic furnitures and appliances in the scene, we then add cooking ingredients and tools. Instead

of sampling their locations randomly, we place the objects according to their utility, e.g. tools are

placed on the cabinets while perishable ingredients such as fruits and vegetables are available in

the fridge. On average, there are 55 interactive objects in a scene.

Object state changes. One key factor of VRKitchen is the ability to simulate state changes for

objects. Instead of showing only pre-conditions and post effects of actions, VRKitchen simulates

the continuous geometric and topological changes of objects caused by actions. This leads to a

great number of available cooking activities, such as roasting, peeling, scooping, pouring, blend-

ing, juicing, etc. Overall, there are 18 cooking activities available in VRKitchen. Figure 2.5 shows

some examples of object interactions and state changes.

Fine-grained actions. In previous platforms [KMH17a, BPA17], objects are typically treated

as a whole. However, in real world, humans apply different actions to different parts of objects.
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E.g. to get some coffee from a coffee machine, a human may first press the power button to open

the machine, and press the brew button afterwards to brew coffee. Thus we design the objects in

our system in a compositional way, i.e., an object has multiple components, each of which has

its own affordance. This extends the typical action space in prior systems to a much larger set of

fine-grained actions and enables the agents to learn object-related causality and commonsense.

2.3.3 User Interface

With a detailed human embodiment representation, multiple levels of human-object-interactions

are available. In particular, there are two ways for users to provide such demonstrations:

(1) Users can directly control the agent’s head and hands. During teleoperation, actions are

recorded using a set of off-the-shelf VR device, in our case, an Oculus Rift head-mounted display

(HMD) and a pair of Oculus Touch controllers. Two Oculus constellation sensors are used to track

the transforms of the headset and controllers in 3D spaces. We then apply the data to a human avatar

in the virtual environment: the avatar’s head and hand movements correspond to the human user’s,

while other parts of its body are animated through a built-in Inverse Kinematics solver (Forward

And Backward Reaching Inverse Kinematics, or FABRIK). Human users are free to navigate the

space using the Thumbsticks and grab objects using the Trigger button on the controller. Figure 2.6

gives an example of collecting demonstrations for continuous actions.

(2) The Python API offers a way to obtain discrete action sequences from users. In particular,

it provides world states and receives discrete action sequences. The world state is comprised of the

locations and current states of nearby objects and a RGB/depth image of agent’s first person view.

Figure 2.8 and Figure 2.9 show examples of recorded human demonstrations for tasks pizza and

roast meat from a third person view.
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2.3.4 Python-UE4 Bridge

The Python-UE4 bridge contains a communication module and a controller. The Python server

communicates with the game engine to receive data from the environment and send requests to

the agent. It is connected to the engine through sockets. To perform an action, the server sends

a command to UE4 and waits for a response. A client in the game engine parses the command

and applies the corresponding animations to the agent. A payload containing states of nearby ob-

jects, agent’s first person camera view (in terms of RGB, depth and object instance segmentations)

and other task-relevant information are sent back to the Python server. The process repeats until

terminal state is reached.

The controller enables both low level motor controls and high level commands. Low level

controls change local translation and rotation of agent’s body, heads and hands, while other body

parts are animated using FABRIK. High level commands, which performs atomic actions such as

taking or placing an object, are further implemented by taking advantage of the low level controller.

To cut a carrot with a knife, for example, the high level controller iteratively updates the hand

location until the knife reaches the carrot.

2.3.5 Performance

We run VRKitchen on a computer with Intel(R) Core(TM) i7-7700K processor @ 4.50GHz and

NVIDIA Titan X (Pascal) graphics card. A typical interaction, including sending command, exe-

cuting the action, rendering frame and getting response, takes about 0.066 seconds (15 actions per

second) for a single thread. The resolutions for RGB, depth and object segmentation images are

by default 84×84.
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Figure 2.6: Users can provide demonstrations by doing tasks in VRKitchen. These data can be
taken to initialize virtual agent’s policy, which will be improved through interactions with the
virtual environment.

2.4 VR Chef Challenge

In this paper, we propose the VR chef challenge consisting of two sets of cooking tasks: (a)

tool use, where learning motor control is the main challenge; and (b) preparing dishes, where

compositional goals are involved and there are hidden task dependencies (e.g., ingredients need to

be prepared in a certain order). The first set of tasks requires an agent to continuously control its

hands to make use of a tool. In the second set of tasks, agents must perform a series of atomic

actions in the right order to achieve the final goal.

2.4.1 Tool Use

Based on available actions and state changes in the environment (shown in Figure 2.5), we have

designed 5 tool use tasks: cutting, peeling, can-opening, pouring and getting water. These tasks

are common in cooking and require accurate control of agent’s hand to change the state of an

object. Agents would get rewards once it takes the correct tool and each time states of objects

being changed. Definitions for these task are displayed as following.

• Cutting: cut a carrot into four pieces with a knife. The agent gets reward from getting the

knife and each cutting.

• Peeling: peel a kiwi with a peeler. The agent receives reward from getting the peeler and
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(A) RGB (B) Depth (C) Segmentation

Figure 2.7: Multi-modal data is available in the virtual environment. Figures in the first row show
RGB, depth and semantic segmentations from a third person perspective. Figures in the second
row are from the agent’s first person view.

each peeled skin. Note that the skin will be peeled only if the peeler touches it within a

certain range of rotation. The task finishes if enough pieces of skins are peeled.

• Can-opening: open a can with a can opener. Around the lid, there are four sides. One side of

the lid will break if it overlaps with the blade. Agents receive reward from taking the opener

and breaking each side of the lid.

• Pouring: take a cup full of water and pour water into a empty cup. The agent is rewarded for

taking the full cup and each additional amount of water added into the empty cup. The task

is considered done only if the cup is filled over fifty percent.

• Getting water: take an empty cup and get water from a running tap. The agent is rewarded

for taking the cup and each additional amount of water added into it. The task is considered

done only if the cup is filled over fifty percent.

In each episode, the agent can control the translation and rotation of avatar’s right hand for 50

steps. The continuous action space is defined as a tuple (∆x,∆y,∆z,∆φ ,∆θ ,∆ψ,γ), where (x,y,z)

is the right hand 3D location and (φ ,θ ,ψ) is the 3D rotation in terms of Euler angle. If the grab

strength γ is bigger than a threshold (0.1 in our case), objects within a certain range of avatar’s
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Figure 2.8: An example of human demonstrations for making a pizza.

Figure 2.9: An example of human demonstrations for making roast meat.

hand will be attached to a socket. Physics simulations are enabled on all the objects. For objects

attached to agent’s hand, physics simulation is disabled.

2.4.2 Preparing Dishes

Visual task planning require agents to take advantage of a sequence of atomic actions to reach a

certain goal. Many challenges arise in this domain, including making long explorations and visual

understanding of the surroundings. In VRKitchen, we design all atomic actions and object state

changes available in several dish preparing tasks. Using these atomic actions, the agent can interact

with the environments until a predefined goal is reached. Figure 2.10 shows some examples of

dishes.

2.4.2.1 Atomic Actions

Each atomic action listed below can be viewed as a composition of a verb (action) and a noun (ob-

ject). Objects can be grouped into three types: tools, ingredients and receptacles. (1) Ingredients

are small objects needed to make a certain dish. We assume that the agent can hold at most one
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ingredient at a time. (2) For receptacles, we follow the definition in [KMH17a]. They are defined

as stationary objects which can hold things. Certain receptacles are called containers which can

be closed and agents can not interact with the objects within them until they are open. (3) Tools

can be used to change the states of certain ingredients. Atomic actions and object affordance are

defined in a following way:

• Take {ingredient}: take an ingredient from a nearby receptacle;

• Put into {receptacle}: put a held ingredient into a nearby receptacle;

• Use {tool}: use a tool to change the state of a ingredient in a nearby receptacle;

• Navigate {tool, receptacle}: move to a tool or receptacle;

• Toggle {container}: change state of a container in front of the agent.

• Turn: rotating the agent’s facing direction by 90 degrees.

Note that actions including Take, put into, use, and toggle would fail if the agent is

not near the target object.

2.4.2.2 Ingredient Sets and States

Meanwhile, there are seven sets of ingredients, including fruit, meat, vegetable, cold-cut, cheese,

sauce, bread and dough. Each set contains a number of ingredients as variants: for example, cold-

cut can be ham, turkey or salami. One ingredient may have up to four types of state changes: cut,

peeled, cooked and juiced. We manually define affordance for each set of ingredients: e.g. fruit

and vegetable like oranges and tomatoes can be juiced (using a juicer) while bread and meat can

not. Tools include grater, juicer, knife, oven, sauce-bottle, stove and receptacles are fridge, plate,

cut-board, pot and cup.
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Task Goal states Target location

Fruit juice
fruit1: cut, juiced;
fruit2: cut, juiced cup

Roast meat
fruit: cut, juiced, cooked;

meat: cooked pot

Stew
veg: cut, cooked;

meat: cooked pot

Pizza

veg: cut, cooked;
cold-cut: cooked;
cheese: cooked;
sauce: cooked;
dough: cooked

plate

Sandwich

veg: cut; sauce;
cold-cut: cooked;
cheese: cooked;
bread: cooked

plate

Table 2.2: The goals for five available dishes. In each task, the agent should change required
ingredients to the goal states and move them to a target location.

2.4.2.3 Goals

Based on the atomic actions defined in 2.4.2.1, agents can prepare five dishes: fruit juice, stew,

roast meat, sandwich and pizza. Goals of each tasks are compositionally defined upon (1) goals

states of several sets of ingredients and (2) target locations: to fulfill a task, all required ingredients

should meet the goal states and be placed in a target location. For example, to fulfill the task fruit

juice, two fruits should be cut, juiced and put into the same cup. Here, the target locations are

one or several kinds of containers. Table 2.2 defines the goal states and target locations of all tasks.

2.5 Experiment

We train agents in our environments using several popular deep reinforcement learning algorithms

to provide benchmarks of proposed tasks.
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Figure 2.10: Examples of dishes made in VRKitchen. Note that different ingredients leads to
different variants of a dish. For example, mixing orange and kiwi juice together would make
orange & kiwi juice.

2.5.1 Experiment 1: Using Tools

2.5.1.1 Experiment Setup

In this experiment, we are learning motor controls for an agent to use different tools. In particular,

five tasks (defined in 2.4.1) are available, including (a) cutting a carrot; (b) peeling a kiwi; (c)

opening a can; (d) pouring water from one cup to another; (e) getting water from the tap. Successful

policies should first learn to take the tool and then perform a set of transformations and rotations

on the hand, correspond to the task and surroundings.

2.5.1.2 Results and Analysis

For five tool use tasks, we conduct experiments using three deep reinforcement learning algo-

rithms: A2C [MBM16], DDPG [LHP15], PPO [SWD17]. The inputs are the 84× 84 raw pixels

coming from agent’s first person view. We run each algorithm for 10000 episodes, each of which

terminates if the goal state is reached or the episode exceeds 1000 steps.

Figure 2.11 summarizes the results of our experiments. We see that because of the large state

space, agents trained using RL algorithms rarely succeed in most of the five tasks.
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Figure 2.11: Experiment results for five tool use tasks. Black horizontal lines show rewards agents
get from taking the tools, and the red lines indicate the rewards of completing the whole tasks.
Each curve shows the average reward an agent receives using one of three different RL algorithms.

2.5.2 Experiment 2: Preparing Dishes

2.5.2.1 Experiment Setup

In this experiment, we study visual planning tasks, which require the agent to emit a sequence of

atomic actions to meet several sub-goals. In general, successful plans should first go to locations

near some ingredients, take them and change their states by making use of some tools. Particularly,

tasks have three levels of difficulty:

1. Easy: First, Navigate to a receptacle R1 and take an ingredient I1. After that, Navigate

to a tool T1 with I1 and use T1. An example would be making orange juice: the agent should

first go to the fridge and take an orange. Then it should take the orange to the juicer and use

it. This task requires the agent to reason about the causal effects of its actions.

2. Medium: In addition to the ”Easy” task, this task requires the agent to take from the

receptacle R1 a different ingredient I2. The task ends when the agent puts I1 and I2 into a
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Figure 2.12: Experiment results for three dish preparing tasks. Each curve shows the average
reward an agent receives using one of RL algorithms.

new receptacle R2. A sample task is making beef stew: the agent should first go to the

fridge and take an tomato and beef. Then it should bring the tomato to the knife and use it.

Finally, the agent should put both beef and tomato into a pot. This task requires identifying

various tools, receptacles and ingredients.

3. Hard: Compared to the ”Medium” tasks, more objects are involved in hard tasks. Moreover,

a longer sequence of actions is required to reach the goal state. Making sandwich is one

example: ingredients involved are bread, tomato, ham and cheese, and an optimal policy

takes about 29 steps to reach the goal states.

Atomic actions are defined as take, put into, use, navigate, toggle, turn (de-

tailed definition in 2.4.2.1).

2.5.2.2 Results and Analysis

We evaluate the performance of three deep reinforcement learning algorithms (A2C [MBM16],

DQN [MKS15] and PPO [SWD17]) on dish preparing tasks. We run each algorithm for 5000

episodes. We consider an episode fails if it exceeds 1000 steps.

Figure 2.12 shows the experiment results. For easy tasks (juice), it takes less than 1000 episodes

for the best algorithm to find near-optimal solution. For medium-level tasks (stew), PPO [SWD17]

is still able to converge after 3000 episodes. None of three RL algorithms can successfully guide
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the agent in hard tasks.

2.6 Conclusion

We have designed a virtual reality system, VRKitchen, which offers physical simulation, photo-

realistic rendering of multiple kitchen environments, a large set of fine-grained object manipu-

lations, and embodied agents with human-like appearances and gestures. We have implemented

toolkits for training and testing AI agents as well as for collecting human demonstrations in our sys-

tem. By utilizing our system, we have proposed VR chef challenge with two sets of cooking tasks

and benchmarked the performance of several popular deep reinforcement learning approaches on

these tasks. We are also able to compile a video dataset of human demonstrations of the cooking

tasks using the user interface in the system. In the future, we plan to enrich the simulation in

our system and conduct a more thorough evaluation of current task-oriented learning approaches,

including visual representation learning, world model learning, reinforcement learning, imitation

learning, visual task planning, etc.
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CHAPTER 3

Dialogue-Enabled Agents for Embodied Instruction Following

3.1 Introduction

Robot assistants need to understand natural language and interact with the environment. To help

build language-driven embodied agents, various tasks and benchmarks have been proposed [AWT18,

STG20], where the agent is given an instruction, following which it is supposed to execute the ap-

propriate corresponding sequence of actions including navigation and object manipulation. Even

with natural language instructions, such tasks are often overwhelming for the agent on its own due

to two major challenges: 1) resolving ambiguities in natural language and grounding instructions

to actions in a rich environment, and 2) planning for long-horizon action sequences and recovering

from possible failures.

Humans, faced with inadequate information for a task, seek assistance from others. Similarly,

embodied agents should be able to actively ask questions to humans, and utilize the verbal response

to overcome challenges in understanding intent and task execution. For example, to deal with

ambiguity in human instruction, clarifications are often necessary. As shown in Figure 3.1, the

instruction ”pick up the knife,” is ambiguous when there are two knives in front of the robot –

knowing the color of the intended knife helps the agent ground the instruction to its environment.

We present DialFRED, an embodied instruction following benchmark allowing an agent to 1)

actively ask questions to the human user, and 2) use the information in the response to better com-

plete the task. DialFRED is built by augmenting ALFRED [STG20], an existing benchmark that

pairs demonstrations of common household tasks with instructions. ALFRED language instruc-
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Human Instruction: Move to the kitchen table and pick up the knife.

Vision
Dialog

Robot Action
Robot Human

Where is the 
kitchen table?

The kitchen table 
is to your left.

Ok, what does 
the knife look 
like?

The knife is yellow.

Got it!

<turn left>
<forward>

...
<turn left>

<pick up [mask]>

Figure 3.1: Example dialogue between a robot and a human user during task completion. The
robot raises questions to obtain additional information (e.g., when the target location is not clear)
and to resolve ambiguities (e.g., when facing two knives on the table).

tions are given as high level goals, e.g., Move a knife to the sink, and a sequence of step-by-step

instructions (sub-goals), e.g., Move forward to the center table, Pick up the knife, Walk to the

sink, Put the knife in the sink. ALFRED only contains 7 types of high level goals and 8 types of

sub-goals. Existing work [BPF21,MCR21] has exploited patterns in ALFRED task structures, and

shown that models can acheive state-of-the-art performance by classifying the task type from high-

level task instructions alone, even without using step-by-step instructions. To mitigate this issue

and ensure the necessity of instruction following, we build DialFRED by augmenting ALFRED

for an increased number of task types. In addition, DialFRED facilitates agent-human dialogue by

providing human-annotated task-relevant questions and answers.

Contributions. To enable the development and evaluation of dialogue-enabled agents in com-

plex manipulation and navigation tasks, DialFRED consists of a) 25 types of sub-goal level tasks,

compared to 8 sub-goals originally available in ALFRED; b) 53K human-annotated task-relevant

questions and answers; and c) models for a questioner-performer framework showing that adding

dialogue helps to significantly improve the instruction following performance. We make Dial-
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FRED publicly available and encourage researchers from related robotics disciplines to propose

and evaluate their solutions to dialog-enabled embodied agents.

3.2 Related Work

Embodied Question Answering and Instruction Following. Multiple embodied AI environ-

ments are based on creating agents that learn to complete challenging tasks by interacting with their

environments [CDF17, KMH17b, PRB18, GGS19, XSL20, BGK20, GSA20]. Building on these,

tasks and benchmarks that require an interactive agent to extract information from the environment

to answer specific questions have been proposed [DDG18, GKR18]. The other line of work that

uses these environments focuses on creating agents to interpret natural language instructions and

perform tasks in the environment [AWT18]. ALFRED [STG20], a recently proposed benchmark

along this direction, requires the agent to complete complex household tasks by following natural

language instructions. Dialogue-enabled agents in navigation or manipulation tasks have recently

been proposed [TMC20, PTS21] – these focus on action prediction from dialogue history, and do

not emphasize the agent’s ability to ask task-appropriate questions. In this paper, we take a further

step in dialogue-enabled agents by presenting a benchmark for the agent to actively ask questions

and learn from the answers to better finish the task.

Task-Oriented Dialogue. In task-oriented dialogue, agents rely on skills beyond language mod-

eling (e.g., processing multi-modal sensory data, querying knowledge bases, reasoning based on

observations and knowledge [GGL18, CGS18]). Towards building robust dialogue systems, both

data-driven [MSW16, HMW20] and reinforcement learning approaches [SGM16, PLL17] have

been studied. Studies have shown that the ability to ask for help from humans is crucial for agent

failure recovery [TKL14]. For visual language navigation, multiple works study when and how

to ask for help [NDB19, ND19, RBT20, CSE20]. Household tasks however, pose greater chal-

lenges to agents compared to navigation-only tasks, due to longer action sequences, compositional

task structures and irreversible object state changes. Our benchmark focuses on these complex
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Figure 3.2: The annotation interface for hybrid data collection. The worker first clicks the “begin”
button to watch a video clip showing the initial states of the environment. Given the instruction,
the worker selects a question to help perform the task. Next, the worker clicks the “show demon-
stration” button to watch the expert demonstration on how to complete the task. The worker then
answers their own question based on what they have learned from the videos. Finally, workers
choose whether they think the questions and answers are necessary to help the agent carry out the
command.

household tasks requiring both navigation and manipulation.

3.3 Task and Dataset

DialFRED requires an agent to follow natural language instructions and perform navigation and

object manipulation to finish a household task in a virtual environment. We further enable the

agent to ask questions, and use the extra information in the responses to better complete the task.

Each task instance in DialFRED is a tuple of the initial environment state, the target environ-

ment state and an instruction. The agent’s goal is to perform a sequence of actions to change the

environment states to the target. Given a natural language instruction, the agent can choose to ask

questions to the human, or to execute physical actions in its environment based on the information

in the original instructions together with the questions and answers. Physical actions include all

5 navigation actions (e.g., Turn Left) and all 7 manipulation actions (e.g., Pickup). These

actions can change environment states, and some of the changes are irreversible (e.g. Slice).

Instead of always emitting a physical action, a dialog-enabled agent may emit a question. To stan-
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Figure 3.3: Examples in our QA dataset. We show instructions and questions asked by humans,
and answers provided by both the oracle and humans. Compared to step-by-step instructions, our
augmented instructions are concise and general, thus requiring the agent to understand its current
state to generate the correct action sequences.

dardize this benchmark, we provide an oracle that can answer a set of predefined types of questions

(a crude ‘simulated’ human user). The oracle has access to the ground-truth states of the virtual

environment, allowing it to provide accurate information regarding objects and tasks.

3.3.1 Hybrid data collection

We collect human annotations on Amazon Mechanical Turk for questions and answers. Each

instance in the dataset is a tuple of question type q ∈ Q asking about a specific property of an

object o ∈ O (o could be empty for questions not related to objects) and a human answer a ∈ A

for the question at the beginning of the task. Figure 3.2 displays the data collection interface. The

hybrid data collection (HDC) process is as follows:

1. Each annotator watches a 10 second video clip, which displays the state of the environment

right before the task. Annotators also see the original language instructions for the task.

2. The annotator then selects one pertinent question (from several predefined questions) that they

think may help the agent complete the task. The annotator may also type in a question of their

own choosing if none of the provided questions are a good fit.
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3. The annotator watches a second video clip – this time of an expert agent performing the task.

4. The annotator answers their own question and provides feedback (yes/no) on whether asking

the question was necessary in the given scenario.

To generate the predefined question choices for the annotator to choose from, we consider three

types of questions Q, related to the location and appearance of the query object o that needs to be

interacted with to finish the task, and the relative direction between the agent’s current position and

the target position to guide the navigation:

1. Location: where is o?

2. Appearance: what does o look like?

3. Direction: which direction should I turn to?

Given a natural language instruction (e.g. Put the egg in the microwave), we parse it and extract

all the nouns (e.g. egg and microwave). We insert each noun into one of the question templates to

generate questions (e.g. Where is the egg? and What does the microwave look like?).

We collected human questions and answers for 29,376 sub-goals (e.g., Take the knife to the

counter). Two annotators provide questions and answers for each sub-goal and they reach a modest

level of agreement (Fleiss’ κ = 0.13) in terms of question selection. To ensure the quality of the

dataset, we first remove invalid annotations when the annotation time is less than 15 seconds. We

further ask trained annotators to rate annotations.

A worker is compensated $0.25 for each HIT; the dataset collection cost is∼ $10K. The dataset

is gathered over 112 rooms and 80 types of objects. Each human answer contains 6.73 words on

average. A lexical complexity analysis on the human answers [Lu12] shows that the number of

different words (NDW) in the answers are 7915. The lexical sophistication (the proportion of

words not in the 2000 most frequent words in the American National Corpus) is 49%. Example

human questions and answers are shown in Figure 3.3.
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Action(t): turn(right)

Image

Take the knife 
to the potato.

Instruction Questioner

Q?
yes

Question

Where is 
the potato?

Human/Oracle Answer

The potato is 
on the counter.

Action(t-1)

Performer

Multi-modal Transformer

Figure 3.4: The questioner-performer architecture. The questioner generates questions based on
the first person image of the agent and the task instruction. The oracle answers the question based
on the scene metadata. The performer takes the image, the instruction, and question and answers
as input to predict actions.

3.3.2 Generating answers

In addition to the human answers, we build an oracle that provides templated answers which can

be easier for the agent to understand. In Figure 3.3, we show answers generated by the oracle

for some task examples. To create the oracle, we take advantage of the ground-truth states of

objects and the agent in the simulated environment: (i) to answer object location questions, we

compute the direction of the object relative to the agent, and the receptacle that contains the object;

(ii) to answer object appearance questions, we focus on its color and material. Object material is

extracted from scene metadata in the underlying simulation environment (AI2-Thor). For object

color, we extract object pixel RGB values from images, and map them to color names; (iii) for

direction questions, we check the agent’s location at the end of the task in the ground-truth action

sequences, and compare it to the agent’s initial location. Based on these metadata, we use language

templates to generate answers. Some example templates include:

• Location: The o is to your [direction] in/on the [container].

• Appearance: The o is [color] and made of [material].

• Direction: You should turn [direction] / You don’t need to move.

30



3.3.3 Data augmentation on ALFRED

Each task in ALFRED has a goal, split into multiple sub-goals. Each sub-goal requires the agent

to manipulate some objects or move to a target location. Two types of language instructions are

given. The high-level task instruction (e.g., Move a knife to the sink) describes the overall goal.

The step-by-step instructions (e.g., Pick up the knife) guide the agent to complete each sub-goal.

ALFRED exhibits clear patterns in both high-level task structures and sub-goal action sequences:

tasks of the same type require very similar sub-goal sequences to complete them, and sub-goals of

the same type (especially manipulation sub-goals) have almost fixed action sequences. The limited

variety in tasks and sub-goals precludes instructions understanding – allowing models that directly

classify the task type from high-level task instructions alone to perform well, without even using

the step-by-step instructions [BPF21, MCR21].

To get rid of the strong patterns in both high-level task structures and sub-goal actions in AL-

FRED, DialFRED uses data augmentation to increase the number of task types, and focuses on

instruction following at the sub-goal level to encourage learning from instructions for each task.

We also introduce augmentations on the original ALFRED sub-goal instructions to add ambigui-

ties in language so that the sequence of actions cannot be fully determined by only focusing on the

instruction – reasoning based on knowledge of the environment state is needed. We show examples

for DialFRED tasks and instructions in Figure 3.3.

Sub-goal augmentations. In ALFRED there are 8 only sub-goal types (go to, pick up, put, cool,

heat, clean, slice, toggle). The action sequences required to finish these are almost fixed. For

example, cool object always corresponds to: open fridge, put object into fridge, close fridge, open

fridge, take out object. To increase task variations, we augment the sub-goals in two ways. First,

we split an original sub-goal into multiple low level actions, each action corresponding to a new

sub-goal. For example, the sub-goal clean object is split into three sub-goals: put the object in the

sink, turn on the faucet and turn off the faucet. Second, we merge multiple sub-goals into a new

sub-goal. For example, sub-goals go to the fridge and open the fridge are merged into a new sub-

31



goal which requires the agent to first go to the fridge and open it. Using these operations, we arrive

at 25 sub-goal types in our augmented dataset. In our experiments, we evaluate agent performance

on these sub-goals; henceforth referred to as tasks. To standardize the benchmark, we divide the

sub-goal task instances into training and validation folds. We further divide the validation fold into

seen and unseen splits depending on whether the environment presents in the training fold. This

results in 34,253 tasks in the training fold, 1,296 tasks in the validation seen fold and 1,363 tasks

in the validation unseen fold.

Instruction augmentation. To generate instructions for DialFRED tasks, we create instruction

templates for each low level action. For tasks created from split sub-goals, we directly use the tem-

plate as instruction. For tasks created from combined sub-goals, we concatenate the instructions

of low level actions within the sub-goal. In addition to the step-by-step instructions describing

low level actions, we generate new instructions that only describe one major action in the task. For

example, for the task go to the microwave and open the microwave (Figure 3.3), a human may only

describe the main action ”open the microwave” in the instruction. The agent cannot determine the

action sequence solely based on the instruction. It needs to have an understanding of its position in

the room to decide which action to take next. We belive these instructions match human commands

in real-world scenrios and are more challenging than the original step-by-step instructions.

3.4 Method

Our baseline for the DialFRED benchmark has two key components, a questioner and a performer

(Figure 3.4). The questioner asks questions based on the task instruction and agent observations.

The performer predicts a sequence of actions to execute in the environment based on the original

instruction and the questions and answers. A good questioner knows both when to ask a question

and what question(s) to ask, so that the task can be better completed by the performer. We first train

the questioner using human-annotated data, i.e., give the model a good starting point by mimicking

human judgement. To improve the coordination between the questioner and the performer, we fine-
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tune the questioner with reinforcement learning. The questions and answers (QAs) together form a

dialogue between two entities: the agent (represented by the performer and questioner model) and

the human (represented by the instruction and the answers).

3.4.1 Architecture

Questioner. Our questioner model (Figure 3.5), is based on a sequence-to-sequence architecture,

inspired by [RBT20]. It uses an LSTM layer [HS97] to encoder the instruction and a ResNet layer

[HZR15] to encoder the visual observation. The instructions are embedded as 256 dimensional

vectors and passed through an LSTM to produce context vectors and a final hidden state. The

hidden state is used to initialize the LSTM decoder. At each time step the decoder is updated

with the previous question token wi−1 and the image ResNet feature I. The hidden state is used to

attend over the language and predict the next question token wi. We pre-train the questioner using

questions selected by Turkers (Section 3.3.1) on the training split. Based on Turkers feedback on

whether asking the question is necessary, the questioner can also choose not to ask a question by

generating a “none” token.

Performer. Our performer is based on the Episodic Transformer [PSS21], an attention-based

multi-layer transformer model that encodes the full history of the instruction and QAs, visual

observations and action history to predict future actions. To enable the model to handle all possible

QAs from the questioner and oracle, we pre-train it on the training split by providing it with

instructions and all possible questions, including a combination of question types and answers.

Model parameters are optimized by minimizing the cross-entropy between predicted and expert

actions.

3.4.2 Questioner fine-tuning using RL

The goal of the questioner is to ask necessary questions to help the performer finish the task.

Thus we fine tune the questioner using reinforcement learning to learn when to ask a question and
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Figure 3.5: The Questioner model. Given the instruction and current image feature I, our Seq2seq
model generates question tokens w1:i.

what question(s) to ask on the validation seen split. The learning system for question asking is

modeled as a Markov Decision Process, specified by a tuple < S,A,T,R >, where S is the state

space (including number of steps and the current progress of task completion), A = Q×O is the

action space of all possible questions (in our cases a combination of question types Q and target

object O), T (s′|s,a) is the transition function encoding how the performer can advance the task

given the question and its corresponding answers, and R(s,a) is the reward function encoding the

reward for each (s,a) pair.

Asking questions has costs: a balance must be struck between the number of questions and

performance gain. The reward function addresses this trade-off. Some questions generated by the

questioner cannot be answered by the oracle, e.g. the appearance of task-irrelevant objects. Thus

we add a penalty for invalid questions. We adopt the following reward structure: reward for task

completion rsuc = 1.0, penalty for each step rstep =−0.01, penalty per question asked rq =−0.05,

penalty per invalid question rinvalid =−0.1.

Our seq2seq questioner model can be viewed as a policy network πθ (s,a) = p(a|s;θ) mapping

each state vector s to a stochastic questioning policy. The optimal value of θ is found by mini-
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# Expt setting Seen SR Unseen SR Seen PWSR Unseen PWSR NQ
1 Instruction only 25.4 18.3 18.4 11.4 0
2 All QAs 43.4 32.0 31.2 19.9 3.24
3 Random QA 39.9 27.9 28.4 17.3 0.81
4 Random MC 46.6 29.5 35.5 18.7 0.52
5 RL begin 47.3 32.7 33.5 20.1 0.37
6 RL anytime 47.8 33.6 34.2 20.4 0.71

Table 3.1: Performance of the baselines. Seen SR and unseen SR represent the success rate on
valid seen and valid unseen splits. PWSR is the path weighted success rate. NQ is the number of
questions asked by the questioner. The best results are highlighted in boldface.

mizing the actor-critic loss [SB18] using stochastic gradient decent. The performer model is not

updated during questioner fine tuning.

Expt setting Unseen SR Unseen PWSR NQ Loc Perc. App Perc. Dir Perc.
Human - - 0.66 0.72 0.22 0.06
RL anytime 33.6 20.4 0.71 0.65 0.14 0.21
RL Loc perturb 32.2 19.8 0.66 0.47 0.15 0.38
RL App perturb 32.4 19.9 0.40 0.92 0.04 0.04
RL Dir perturb 33.0 20.4 0.61 0.51 0.45 0.04
Random 28.4 17.3 0.81 0.36 0.31 0.33
Random Loc perturb 26.0 16.0 0.81 0.36 0.31 0.33
Random App perturb 26.1 16.1 0.81 0.36 0.31 0.33
Random Dir perturb 26.2 15.8 0.81 0.36 0.31 0.33

Table 3.2: Ablation study by perturbing the oracle. We start from two settings: a questioner that
has been fine-tuned for asking questions at any time and a questioner that asks a random question
at the beginning. We perturb the oracle by not providing answers for one question type 50% of the
time. Loc Perc, App Perc and Dir Perc represent the percentage questions about object locations,
object appearance and directions respectively.

3.4.3 Heuristic-based questioner

Inspired by [CSE20], we implemented a questioner based on model confusion. The idea is that

if the performer is not confident, the output action distribution would have high entropy; model

confusion could be a good heuristic to know when to ask a question. We sort action probabilities

in decreasing order; an agent is confused if the minimum difference between the top two actions is
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Experiment setting Seen SR Unseen SR Seen PWSR Unseen PWSR NQ
RL anytime (Fixed 1) 51.9 34.7 36.3 21.2 21.39
RL anytime (Fixed 5) 47.8 33.6 34.2 20.4 0.71
RL anytime (Fixed 10) 46.3 32.4 32.7 19.9 0.36
RL anytime (MC) 47.1 33.0 33.3 20.4 0.31

Table 3.3: Effect of question timing. We manipulate the number of steps the performer rolls out
before the questioner can ask the next question. For (Fixed 1), we modify the rewards (rinvalid =
−0.01,rq = −0.002) to promote question asking. For (MC), the questioner asks questions based
on the performer model confusion.

less than a threshold ε throughout the action sequences:

min
t
(pt

sorted[0]− pt
sorted[1])< ε (3.1)

The threshold is used to control the degree of confusion for asking questions. In practice, we set

the confusion threshold ε = 0.5 in the experiment.

3.5 Experiments

We evaluate the baseline models on our dataset. We terminate the episode when it exceeds 1000

steps or has more than 10 failed actions. For evaluation, we focus on the success rate of tasks.

3.5.1 Evaluation metrics

We evaluate model performance using success rate and path weighted success rate. To understand

the trade-off between the number of questions asked and task performance, we measure the number

of questions throughout the task.
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3.5.2 Baselines

We implemented 6 baselines and evaluated their performance on our augmented dataset (Table 3.1).

In all baselines we use the Episodic Transformer model as the performer. In baselines 2–6, the

performer is trained using imitation learning on expert action sequences with language instructions

and QAs. In baselines 5–6, the questioner is pre-trained on human dialogues in the training split,

and fine-tuned using reinforcement learning on the valid seen split. Baseline details are itemized

below:

1. In this baseline, no questions are allowed, the performer is trained to predict the action se-

quences based on the language instruction and visual observations.

2. In addition to the instruction, the performer gets all valid QAs at the beginning of the task,

including a combination of all three question types (i.e. location, appearance and direction) and

objects mentioned in the instruction.

3. Questions are sampled randomly based on type: 25% for each of the 3 types and 25% for no

question. Given a selected question type, questions and answers for all relevant objects are

given to the performer in addition to the instructions.

4. When the action sequences generated by the performer satisfy the model confusion criterion

(Equation (3.1)), the performer is randomly provided with a valid QA as input.

5. The questioner is fine-tuned using reinforcement learning to learn whether to ask a question

and what question to ask at the beginning of a task. The performer uses the QA to generate the

action sequence to finish the task.

6. Similar to baseline 5, the questioner is fine-tuned using reinforcement learning, but now it can

ask questions in the middle of the task. Given the instruction and previous QAs, we roll out the

performer for 5 steps, following which the questioner is allowed to generate new questions and

thus get new answers.

37



3.5.3 Results

We display (Table 3.1) the task performance (success rate) on validation seen and unseen splits for

all baseline models. Comparing the results of baselines 1–3, we see that adding QAs to the instruc-

tions improves task performance on both splits. Comparing the results of baselines 2–5, we see

that the fine-tuned questioner achieves the best performance, with a smaller number of questions.

Comparing the results of two reinforcement learning baselines (5,6), we see that enabling the agent

to ask questions in the middle of the task improves performance at the cost of more questions and

answers. In addition, the random MC baseline achieves reasonable performance on the valid seen

split, but not on the valid unseen split. Since the performer is pre-trained on the training split,

which has the same scene as the valid seen split, and is given random combinations of different

types of QAs as input, it is not surprising that the random MC baseline does not generalize well to

unseen environments.

3.5.4 Ablation Study

Perturbed oracle. We perform an ablation study (Table 3.2) by perturbing the oracle. For each

question type, we limit the oracle to provide answers for 50% of the asked questions. The original

fine-tuned questioner (RL anytime) has a similar number of questions (and distribution) as the hu-

man data it is pre-trained on – most questions are about object locations. With the perturbation, the

model asks slightly fewer questions. We observe that the fine-tuned questioner model adapts to the

deficient oracle. For example, after perturbation on object location answers, the questioner asks

28% fewer location questions and 81% more direction questions instead. Looking at model per-

formance after perturbation, we find that perturbing the location answers reduces the performance

the most. This result matches the large proportion of location questions asked by both humans

and the learning-tuned model, indicating that location answers are probably most useful for task

completion. We perform the same perturbations on the oracle for the random questioner. Com-

paring the performance of models before and after perturbation, we see that the drop in SR caused
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by the perturbations for the learning-tuned questioners are smaller than the drops for the random

questioners. The difference can be explained by the learning-tuned questioner’s ability to adjust

the proportion of questions to adapt to the deficient oracle.

Question timing. To understand how question timing affects performance, we change the number

of action steps the performer executes before allowing the questioner to ask a question. We add a

setting, RL anytime (MC), which allows the questioner to ask questions based on model confusion

(Equation (3.1)) during fine-tuning. The results (Table 3.3) show that reducing the number of steps

between questions leads to slightly better performance, but it also requires the oracle to answer

significantly more questions. Comparing the results of model confusion with fixed timing, we find

that it achieves reasonable performance at relatively low cost.

3.6 Conclusion

We presented DialFRED, a dialogue-enabled embodied instruction following benchmark that al-

lows an agent to actively ask questions while interacting with the environment to finish a household

task. DialFRED is generated by augmenting ALFRED to increase task and language variations. It

includes an oracle to answer questions and a human-annotated dataset with 53K task-relevant ques-

tions and answers – a potential resource to model how humans ask and answer task-oriented ques-

tions. To tackle DialFRED, we propose a questioner-performer baseline (and variants) wherein the

questioner is pre-trained with the human-annotated data and fine-tuned with reinforcement learn-

ing. Experimental results show that asking the right questions leads to significantly improved task

performance. Extending existing embodied instruction following benchmarks with dialogue is a

promising avenue of research towards truly interactive embodied agents. Along these lines, we

posit that the general framework of oracle-guided reinforcement training and the hybrid data anno-

tation method we employ may be useful to “dialogue-enable” other embodied instruction following

tasks.
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CHAPTER 4

Evaluating the Effects of Assisting Interfaces on Drivers’

Situational Awareness in Autonomous Vehicles

4.1 Introduction

Autonomous vehicles (AVs) have the potential to revolutionize the transportation industry. Despite

the rapid development of the autonomous driving (AD) system, fully automated cars are still not

available on public roads. Currently, some vehicles on the market are equipped with advanced

driver assistance systems (ADAS) that allow partially automated driving, or SAE Level 2 (L2)

automation [int18]. While drivers can briefly enjoy feet-free and hands-free driving under certain

driving situations at this level of automation, they are still required to monitor the traffic conditions

and prepare for sudden maneuvers and possible takeover requests. As a result, it is crucial to

maintain the driver’s situational awareness (SA) when interacting with the AD system and avoid

the out-of-the-loop problem [End88a].

With the goal of improving drivers’ SA and trust, researchers investigated various ways of

communication to convey internal information to the drivers. The challenge is that showing addi-

tional information to the drivers can increase their cognitive load and cause distractions [Hel14].

Showing too much information not only prevents drivers from paying attention to the most criti-

cal information during driving [AC18], but is also against the main motivation of developing the

AD system, i.e. reducing driver workload. Therefore, we believe that a smart user interface (UI)

should be able to strike a balance between the amount of information provided and the driver’s

limited attention and cognitive load.
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Figure 4.1: Our driving simulator is composed of a steering wheel and two pedals mounted on a
cockpit, and three 55-inch displays showing the front and side views of the virtual environment.

Results from previous studies showed that highlighting hazardous objects via augmented reality

(AR) based UI is a promising way to increase drivers’ SA [LLR18, CER21]. Nevertheless, those

works mainly focused on evaluating the effects of highlighting on SA across all objects. We

believe a smart UI should optimize the highlighting for each object to maintain a proper workload

and help the driver be aware of the potential hazards that are prone to be ignored. Therefore, we

need to understand the effects of highlighting on each specific object, depending on the object

characteristics.

Specifically, in this work, we distinguish objects by three properties 1) locations (relative to

the driver), 2) types (i.e. pedestrian or vehicle), and 3) traffic densities and evaluate the effect of

highlighting considering those factors.

We implemented object highlighting via a UI on a driving simulator based on Unreal Engine

4 (UE4), and conducted an in-person study (N=20) on the simulator to investigate the effect of

highlighting on drivers’ attention allocation and SA for each object in an urban environment.

The main contributions of this paper are:

• We implemented an AR-based UI in a driving simulator to inform drivers of the AD’s perception

capabilities by highlighting hazardous objects. We focused on urban intersections because of

their complex traffic conditions, which can be demanding for the drivers to monitor.
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Figure 4.2: This is a forward event intersection with high traffic density, corresponding to the
event in Figure 4.6A. We highlight objects using bounding boxes on the user interface: red for
pedestrians and blue for cars. In addition, we also display the ego vehicle’s current speed and
heading direction with yellow texts and arrows in the middle. During the study, this concatenated
screenshot is separately shown on three displays to simulate the field-of-view of a driver in the real
world (see Figure 4.1).

Figure 4.3: To evaluate drivers’ SA, we pause the simulation and hide all road users. On top of
the background road scene of the intersection, we display several regions and ask users to choose
which regions were occupied by pedestrians or vehicles.

• We designed and conducted a simulator experiment to evaluate the impact of highlighting on

drivers’ object-wise SA and attention allocation. Specifically, we designed a novel Situational

Awareness Global Assessment Technique (SAGAT) protocol with temporal variations to mea-

sure the same driver’s SA changes before and after the highlighting in two identical intersections

to better understand the effect of highlighting on SA. Objects’ locations and movements at in-

tersections are discretized based on spatial distance and eccentricity.

• We carefully analyzed the effect of highlighting with the AR interface in different conditions,

including a combination of object types, object locations and traffic densities.

The results of our study suggest that the effects of highlighting on perception-level SA highly

depend on object properties and traffic densities. We believe the results pave the way for a smart
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UI that can selectively highlight objects to improve SA for drivers of AVs, leading to more safety

in driving and monitoring partially autonomous vehicles.

4.2 Related Work

4.2.1 Situational Awareness Measurements

SA can be generally understood as knowing what is going on around you [End88a]. Over the

years, various methods have been proposed to measure SA. They can be categorized into objec-

tive measurements (e.g. SPAM [DHT98] and DAZE [SMJ17]) and subjective measurements (e.g.

SART [Tay90] and SARS [WH94]). SAGAT is a widely-known technique to measure SA objec-

tively [End88b]. During a SAGAT session, the display is frozen at selected times and participants

are asked to answer questions to measure SA. An advantage of SAGAT is that participants are

unable to prepare for the questions in advance, thus minimizing the possibility of attention bias.

Studies suggested that SAGAT is a technique with a high degree of reliability [EB94] and valid-

ity [End90]. Apart from direct measurements, SA can also be inferred with indirect measurements,

including eye gaze behaviors and takeovers [BL10, YKD18, ZMM21]. For a more comprehensive

review of situational awareness measurements, we refer readers to this survey [SSW06].

4.2.2 Ways to Improve Driving Situational Awareness

Driver’s SA at SAE L2 or L3 automated driving has been widely studied for years. Previous

works have shown that driver’s SA can be influenced by a wide range of factors, such as age

[Bol01], driving experience [WSB16] and working memory [JH10, HHB14]. Since driver’s SA

plays an important role in driving safety, different methods have been proposed to enhance SA

during driving. Recently, the idea of assisting human-machine interface (HMI) has generated much

interest [MKT18]. Studies that examined the effects of AR windshield display (WSD) interface

found significant effects on driver’s SA, when highlighting potential driving threats [LLR18] or
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(A) Area Discretizations based on
spatial distance and eccentricity
relative to the ego vehicle shown
in green.

(B) Pedestrian movements. Yel-
lows arrows show target pedes-
trians’ all possible movements
across the intersection.

(C) Vehicles movements. Gray
rectangles are target vehicles’ ini-
tial locations and arrows show
possible moving directions.

Figure 4.4: We first discretize an intersection into 4 areas based on spatial distance and eccentricity
relative to the green ego vehicle. According to area discretizations, we then discretize pedestrians’
and vehicles’ all possible movements near the intersection. For example, pedestrian A crossing the
top of the intersection is considered moving in area 1, while car F going straight on the left will be
moving in areas 2 and 3.

common traffic objects (e.g. cars, pedestrians, and traffic signs) [CER21, WWH20]. The SA

improvement was observed at both perception level [TJ19] and comprehension and projection

levels [PTF16]. In these works, the focus is to evaluate the effect of HMI on the driver’s average

SA across all traffic objects between experimental groups. Thus the driver’s SA is measured within

each treatment group without distinguishing between objects [PTF16, LLR18, CER21]. Our work

takes one further step in this direction: 1) we focus on evaluating the effect of HMI on driver’s SA

for each object, distinguished by their locations and types, and 2) propose a novel SAGAT protocol

with temporal variations by measuring the same participant’s SA before and after the treatment to

better analyze its effects toward a specific object.

4.3 Method

In this section, we introduce our simulation study. We start with participant and apparatus in

Section 4.3.1 and talk about the AD system and AR cues in Section 4.3.2. We discuss how we
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discretize the object locations in Section 4.3.3 and the details of the scenarios in Section 4.3.4.

Then we describe how we measure attention allocation and situational awareness of the driver in

Section 4.3.5. Finally, we go through the whole procedure of our study in Section 4.3.6.

4.3.1 Participants and Apparatus

A total of 20 participants (12 males, and 8 females) from the San Francisco Bay area completed

the study. Their age ranged from 20 to 49 years old. To be eligible for the study, each participant

was required to have had a valid license for more than two years and drive more than 5,000 miles

(8,047 km) per year.

As shown in Figure 4.1, we used a medium-fidelity driving simulator built with AirSim [SDL18],

a plug-in for UE4, to conduct all driving sessions. Also, Tobii Pro Glasses 31 were used to collect

the participant’s eye-tracking data.

4.3.2 SAE L2 AD System and AR Assisting Cues

The Wizard of Oz method is used to simulate realistic AD driving. To more realistically emulate

a functioning AD system, we had an expert driver drive the ego-vehicle through the premeditated

route in the simulated environment. The drive was recorded by saving all pedal and steering inputs

to an AD file, which then provided realistic autonomous car behavior to participants. To ensure

consistency of the AD driving behavior, all driving data were recorded from a single expert driver.

The driving behaviors were further reviewed by two researchers, and routes were practiced to

ensure consistency. During the driving, the participant was requested to indicate their take-over

intention by pressing the brake pedal.

The AR cues were developed and assigned to highlight specific road users within intersections.

As shown in Figure 4.2, AR graphics used for highlighting were consistent in shape, i.e. a series

of 3D bounding boxes that formed a cubic region surrounding a specific type of road users (blue

1https://www.tobiipro.com/glasses3
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Figure 4.5: Drives and intersections. Light traffic route 1 (LT1) and light traffic route 2 (LT2) are
of low traffic density, while dense traffic route 1 (DT1) and dense traffic route 2 (DT2) are of high
traffic density. Blue dots represent event intersections where the target objects are highlighted.
Yellow dots represent event intersections where the target objects are not highlighted. Green dots
are non-event intersections where we ask dummy SAGAT questions to reduce the learning effect
of SA in event intersections. In intersections a1, b1 and c1, SAGAT questions are asked before the
treatment (highlighting or not highlighting). In intersections a2, b2 and c2, SAGAT questions are
asked after the treatment.

for vehicles and red for pedestrians).

4.3.3 Object Location Discretization

The human visual field can be commonly divided into three major regions: foveal, parafoveal, and

peripheral. The foveal region extends out to an angle of 1 degree and the parafoveal region from 1

to 5 degrees [NL80, QCF19]. Those two together are commonly referred to as the central vision,

and the peripheral region encompasses the remainder of the visual field. Many researchers have

noted that, as a result of the inhomogeneity of the visual system, attention allocation and awareness

are strongly affected by the target eccentricity and spatial distance. Detecting a target far away in

the peripheral as opposed to nearby and central vision requires longer search times and more eye

movements [CEC95].
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(A) Forward event intersection (B) Left event intersection (C) Right event intersection

Figure 4.6: We display the locations and heading directions of target objects in three types of
event intersections. For clarity, distractor objects are not shown here. The green rectangle is the
ego vehicle. Gray rectangles are other vehicles’ locations and gray arrows show their moving
directions. Yellows arrows show pedestrians’ movements across the intersection.

Considering both an object’s spatial distance (i.e. near or far) and eccentricity (i.e. center

or marginal) relative to the driver in the ego vehicle, we categorized the object positions in an

intersection into four types of areas: the top center area (area 1), the bottom center area (area 2),

the bottom left and bottom right areas (area 3) and the top left and top right areas (area 4), as shown

in Figure 4.4A. Since the pedestrians and cars move across different areas, their movements were

also discretized (Figure 4.4B, Figure 4.4C).

4.3.4 Driving Scenario and Events

The driving scenario is an urban environment in daylight conditions with a posted speed limit of 25

mph. Events are triggered when the ego vehicle comes near event intersections. During an event,

the ego vehicle first stops before the intersection due to a stop sign or a flashing red traffic light.

The vehicle then waits until the other road users have passed the intersection following the traffic

rule. While the vehicle is waiting, the driver is asked to continuously monitor the surroundings

and take over the control if the AD system has made an unexpected or dangerous move. The cars

and pedestrians across intersections are consistent in appearance. Intersections are of similar sizes

(L = 15.3±2.0 m, W = 14.4±1.2 m).
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We inserted a SAGAT pause while the ego-car is waiting for other traffic at an intersection.

The participant is asked to answer the positions of objects, including cars and pedestrians (Level

1 SA). We are particularly interested to study the SA of some of the objects that can potentially

collide with the ego vehicle (the future trajectory of the object will intersect with the ego-car’s

future trajectory). We carefully design the event timing so that only these objects are located in

certain regions at the SAGAT pauses. We refer to them as target objects and other objects as

distractor objects. During the SAGAT pause, the simulation is frozen and other situational objects

(i.e. pedestrians, vehicles and traffic lights) are hidden in the simulator. Meanwhile, several regions

would be displayed on the blank scene, as shown in Figure 4.3. The driver is asked to speak about

all the regions where he/she believes there were pedestrians and/or vehicles. In particular, we have

designed three types of events that correspond to three heading directions (i.e. forward, turning

left and turning right) of the ego vehicle.

Two driving routes with opposite directions and different traffic densities were designed in

this experiment (See Figure 4.5). We change the traffic density of routes, by adding or removing

distractor objects from event intersections. The average number of total objects, including both

distractors and target objects, is 10 for dense traffic (DT) route and 5 for light traffic (LT) route

drives in event intersections. Based on each route, two drives with different event designs were

developed (LT1 & LT2 and DT1 & DT2). Figure 4.6 illustrates the design of each type of event

and target objects in the event:

• Forward intersections (a1 and a2 in Figure 4.5). For intersections where the ego vehicle is

heading straight, the target objects are pedestrian A, vehicles F and G (Figure 4.6A). The SAGAT

pause occurs while pedestrian A is crossing the intersection on the top (at area 1) and vehicles F

and G are going through the intersection in the middle (at area 1 and area 2 respectively).

• Left intersections (b1 and b2 in Figure 4.5). For intersections where the ego vehicle is heading

left, the target objects are pedestrians B, C and vehicle G (Figure 4.6B). The SAGAT pause

occurs while pedestrian B is crossing the intersection on the top left (at area 4), C is on the
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bottom center (at area 2) and vehicle G is waiting on the top right (at area 4).

• Right intersections (c1 and c2 in Figure 4.5). For intersections where the ego vehicle is heading

right, the target objects include the pedestrian D and vehicle F (Figure 4.6C). The SAGAT pause

occurs while vehicle F is waiting on the bottom left (at area 3) and pedestrian D is crossing the

intersection on the bottom right (at area 3).

Each participant was randomly assigned to one of the four experimental groups and experi-

enced one of the four combinations of two drives (routes) in sequential order: group (i) LT1 and

then DT2; group (ii) DT2 and then LT1; group (iii) LT2 and then DT1; and group (iv) DT1 and

then LT2. Figure 4.5 illustrates the event/non-event intersections for all four drives. For each

drive, there are six event intersections, including two left intersections, two right intersections and

two forward intersections. In some event intersections (blue dots in Figure 4.5), the target objects

are highlighted. In order to reduce the learning effect between the two intersections of the same

type within a drive, we also design a non-event intersection (green dots) between them: in these

non-event intersections, the driver also needs to answer a dummy SAGAT question, such as the

heading direction of the vehicle and the color of the traffic light. The average duration of a drive is

15 minutes.

Our goal is to understand how highlighting would change the SA and attention for different

objects. Thus we measure SA from the same driver at two different timings in one type of inter-

section: 1) before treatment (i.e. highlighting or not highlighting the target object) and 2) 1 second

after the treatment. To reduce the order effect, we implemented two separate intersections with the

same type of events, but with different timing of the SAGAT pauses. For example, in drive LT1,

the SAGAT pause in one of the forward event intersections (a2) is delayed by 1 second, while the

SAGAT pause in the other forward event intersection (a1) is not delayed. The purpose of this delay

is to study how highlighting or not highlighting the target object within this delayed period would

change drivers’ SA. Since the delayed and undelayed intersections have exactly the same event,

we can compare the driver’s SA responses to better understand the effect of highlighting.
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(A) Fixation time on cars

(B) Fixation time on pedestrians

Figure 4.7: Drivers’ fixation time (in second) on each car and pedestrian given traffic density. “N”
represents non-highlighting results and “H” represents highlighting results. We report the p-value
between highlighting conditions for each object.
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4.3.5 Dependent Variables

Attention allocation. Attention allocation is strongly associated with situational awareness. To

form situational awareness, one needs to perceive and process the environment [End88a]. However,

the limited capacity of human attentional resources in combination with the excessive attentional

demands in a dynamic driving environment can result in a loss of situational awareness. To study

attention allocation, one well-established measurement is to track human fixation behavior. We

collect drivers’ eye-tracking data with Tobii Pro Glasses 3. We also annotate the target objects

in each event intersection using Vatic [VPR13]. Based on the finding that humans can recognize

information in the fovea (2.5 deg [NL80,QCF19]) within 120 ms [RC07], we define that the driver

has fixated on an object if the gaze has stayed within 2.5 degrees from the center of the object for

more than 120 milliseconds.

Situational awareness. To measure drivers’ situational awareness, we adopt the SAGAT technique

and ask drivers questions about the location of pedestrians and vehicles during the pauses in the

event intersections (Figure 4.3). We focus on the Level 1 SA (perception) since it is the most

fundamental one. Participants were asked to select all the regions that they think had a pedestrian

or a vehicle the moment before the SAGAT pause. Two images with region highlightings, each

corresponding to pedestrians and vehicles (e.g., Figure 4.3 is for pedestrians), are presented in

sequence with a corresponding SAGAT question. They were also asked to provide a confidence

level (from 0 to 100) for each region they specified, which is further discretized to low confidence

(0-50) and high confidence (51-100). Regions that are not selected by the participant are treated

as low confidence. The order of SAGAT questions (i.e. pedestrian or vehicle) is randomized to

reduce the order effect. During the analysis, we study the SA response on the discretized regions

that are occupied by the target objects.
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(A) Response accuracy on cars

(B) Response accuracy on pedestrians

Figure 4.8: Drivers’ SAGAT question response accuracy in delayed intersections. “N” represents
non-highlighting results and “H” represents highlighting results. We report the p-value between
highlighting conditions for each object.
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(A) low density w/o highlighting (B) low density w/ highlighting

(C) high density w/o highlighting (D) high density w highlighting

Figure 4.9: SA transition conditioned on traffic density and highlighting across all objects. ”SA
at time t” represents drivers’ SA response before the treatment, while ”SA at time t+1” is for SA
response after the treatment. The shade of each region represents the proportion of the samples
falling into each category. Darker color represents a higher proportion.

4.3.6 Procedure

Participants first completed a pre-study survey to provide demographics and driving experience.

They also filled in a questionnaire designed to evaluate their trust in automation [JBD00]. The

moderator then gave each participant a brief introduction to the study and set up the Tobii glasses

and the driving simulator. The study began with a practice drive where the participant was asked

a sample question during a SAGAT pause. During the practice drive, the participant was asked to

take over control of the vehicle using the brake pedal whenever they felt uncomfortable with the

AD system. The participant was also given a chance to practice answering the SAGAT question

at an intersection as well as indicating their intention to take over. After the practice drive, the

participant was randomly assigned to an experimental group, and went through two standard drives
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(A) low density w/o highlighting (B) low density w/ highlighting

(C) high density w/0 highlighting (D) high density w/ highlighting

Figure 4.10: SA transition for the top center pedestrian (pedestrian A in Figure 4.6A). The shade
of each region represents the proportion of the samples falling into each category. Darker color
represents a higher proportion.

of different traffic densities. During a drive, each participant experienced six event intersections

and two non-event intersections (Figure 4.5). In each event intersection, the participant was asked

about the locations of vehicles and pedestrians during the SAGAT pause (Figure 4.3).

4.4 Results

In this section, we present the results of our study, analyzing how highlighting objects changes

drivers’ attention allocation and situational awareness during their interaction with an AD system

based on the data collected from the driving simulator experiment.

54



(A) low density w/o highlighting (B) low density w/ highlighting

(C) high density w/o highlighting (D) high density w/ highlighting

Figure 4.11: SA transition for the bottom center car (car F in Figure 4.6A). The shade of each
region represents the proportion of the samples falling into each category. Darker color represents
a higher proportion.

4.4.1 Attention Allocation

For attention allocation, we analyze the driver’s fixation time on target objects. Since our goal is

to study how highlighting would change the driver’s attention, we focus on the driver’s fixation

during the delayed period (Section 4.3.4). We show the results for specific cars and pedestrians

in Figure 4.7 at different traffic densities. Running a pairwise t-test, we found a significant effect

(p = .02) for highlighting the top center pedestrian, i.e. the pedestrian A, when the traffic density

is low. We don’t find the same trend for top center pedestrians at high traffic density.
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4.4.2 Situational Awareness

SA response accuracy. We analyze drivers’ responses to the SAGAT questions at delayed in-

tersections, when different highlighting conditions have been applied to the target objects (Fig-

ure 4.8). Across all objects, driver’s SA on highlighted objects (M = 0.60,SD = 0.49) are higher

than the unhighlighted ones (M = 0.52,SD = 0.50), but the difference is not statistically signifi-

cant (p = .14). For cars (Figure 4.8A), we observed a significant difference between highlighting

conditions for the top right car (car G) in a low traffic density environment(p = .02) and for the

top center car and bottom center car (cars F and G) in high traffic density environment(p = .02).

For pedestrians (Figure 4.8B), we only found a significant change in SA for top center pedestrians

during light traffic routes (p < .0001). The results indicate that highlighting can improve the SA

for the top right car and the top center pedestrian at low traffic density, while decreasing the SA for

the bottom center car and top center car at high traffic density. The Pearson correlation coefficient

between fixation time and SA response accuracy is r = .12 (p = .03), indicating a weak correlation

between attention and SA.

SA transition. We first analyze the transition of drivers’ SA from undelayed pauses to delayed

pauses across all objects, when we apply different highlighting conditions to the target objects

during time t and time t +1 (Figure 4.9). Given low traffic density, for drivers with an initial low

SA on target objects, highlighting leads to SA improvement (from low to high) for 55.3% of the

drivers, compared to 36.8% in the non-highlighting conditions. For drivers with an initial high SA

on target objects, we found that those in the highlighting conditions are more likely to maintain

their high SA (78.6%) compared to drivers in the non-highlighting conditions (69.0%) for low

density. Similarly, when the traffic density is high, highlighting also helps more drivers maintain

high SA (66.7%) compared to the no highlighting (59.5%). Running a two-sample proportion test,

however, we didn’t find any significant effect of highlighting on SA transition for either traffic

density across all objects.

Looking at the SA transition for specific objects, we found from a proportion test that for the
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top center pedestrian, highlighting can significantly increase the proportion of drivers that improve

low SA (p = .0007) and maintain high SA (p = .03) compared to the control condition when the

traffic density is low (Figure 4.10). On the contrary, for the bottom center car, we found that

highlighting actually decreases the proportion of drivers that maintain high SA (p = .02) when

the traffic density is high (Figure 4.11). We didn’t find any significant difference in SA transition

between highlighting conditions for other objects.

4.5 Discussion

The results indicate that the effect of highlighting varies a lot depending on the situation. High-

lighting can significantly improve SA on certain objects at low traffic density. However, it can

also decrease drivers’ SA of some objects at high traffic density. These findings can provide guid-

ance in selecting which object to highlight for the UI to improve the driver’s SA while driving and

monitoring SAE L2 or L3 AVs.

4.5.1 Attention Allocation, Workload and SA

Driving is a visual and motor control process. Thus, drivers’ attention allocation and workload play

important roles in establishing their SA. Previous works have proposed quantitative methods to

model the interplay between attention allocation, workload and SA [WMA08,SXD14,LWZ14]than

on unhighlighted ones. Specifically, the attention allocation process can be largely influenced by

the salience of an object and workload [Wic02]. A high workload can result in attention tunneling

and negatively impact SA. In our study results, highlighting the cars in the center of the driver’s

field of view significantly decreases SA when the traffic density is high, while the difference is not

significant when the traffic density is lower. This can probably be explained by (i) the driver’s high

workload given the dense traffic ii) the highlighting AR cues induce additional workload (iii) the

fact that cars in the center are already very salient even without highlighting. These reasons can

also explain why significant SA improvement was found for the top center pedestrian (which is not
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visually salient and easy to be ignored by the driver) at low traffic density and why improvement

is not significant at higher traffic density (due to the driver being overwhelmed by the dense traf-

fic). We believe these results shed light on designing object-specific AR cues on human-machine

interfaces.

4.5.2 Comparison with Previous Studies

Previous works focus on evaluating the driver’s average SA across all traffic objects in different

experimental groups. By controlling a specific object’s spatial characteristic in the driving sim-

ulator, we are able to further study the transition of the user’s SA on the object before and after

the highlighting. Results from previous works [PTF16, LLR18, CER21] showed that using an AR

interface could improve drivers’ average SA across all objects. Thanks to the unique study design

covering objects properties and traffic conditions in common intersections as well as the proposed

SAGAT protocol with temporal variations, we are able to see significant positive effects of AR cues

on some objects and negative effects on some other objects. These results extend knowledge of

the community on the effects of AR cues beyond specifically-designed scenarios and hand-picked

objects, showing how different objects can benefit from the AR cues in more general driving sce-

narios.

4.5.3 Limitations and Future Work

Our UI is implemented in a driving simulator, which enables us to control the timing of events

accurately. Driving scenarios in the real world are more complex and have more variety than

our examined scenarios. In reality, the AR cues can be implemented by detecting vehicles and

pedestrians from sensors and highlighting them using bounding boxes on the AR-HUD. In ad-

dition, every participant experienced two similar event intersections - one before and one after

the highlighting. We ask dummy SAGAT questions in non-event intersections between the two

events intersections to reduce the learning effect, but the effect may not be canceled off com-
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pletely. Additionally, we measure SA using SAGAT, which is known to be highly reliable [EB94].

The drawback is that SAGAT requires the participant to memorize the objects and thus can also

increase the workload [FLH20]. Non-intrusive SA measures can be considered in a future study

to ensure an accurate measure of drivers’ workload when interacting with an AD system. Finally,

in the future work, we plan to consider other object features (e.g. object colors and speed) and the

differences in the intersections’ background environment, which are also likely to affect SA.

4.6 Conclusion

This work aims to investigate the effects of highlighting objects with an AR interface on drivers’

perception-level SA for SAE L2 or L3 AVs under different circumstances, including object types,

locations and traffic densities in urban environments. We conducted a user study in a driving

simulator (N = 20). The results show that highlighting has a positive impact on SA when the traffic

density is low and the highlighted object has originally low visual saliency, and sometimes causes

a reduction in SA when the object is already very salient even without highlighting during dense

traffic. This work extends the knowledge on methods to improve driver’s situational awareness for

autonomous vehicles, and enables the development of a smart driver-assistance interface that can

selectively highlight objects to improve SA for drivers monitoring partially autonomous vehicles.
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CHAPTER 5

Joint Mind Modeling for Explanation Generation in

Human-Machine Collaboration

In recent years, there has been a great amount of success on building powerful artificial intelligence

(AI) systems to solve complex tasks [LFD16, BPS17]. As highly autonomous robots are being

developed, there is a growing need to make them quickly understood to avoid consequences caused

by misunderstanding [Gun17]. However, existing robot systems are often not human compatible

– i) they do not understand humans’ minds and ii) they are just black boxes to humans too. Such

limits prevent the AI systems from working with humans effectively.

Inspired by studies on the Theory-of-Mind [PW78, Den89], we believe that a crucial step to-

wards building human compatible systems, particularly for human-robot collaborations, is to un-

derstand human activities and their underlying mental state. As a motivating example, consider

a robot chef helping a human make salads in the kitchen shown in Figure 5.1. Even when the

robot understands how to perform the task on its own, it would be challenging to finish the task

efficiently without having a shared mental model with its human partner. For making the salad,

the robot believes the plate should be picked up by the user while the human agent believes the

other way. If the robot can identify such discrepancies between different agents’ mental states, it

can generate explanations to mitigate the differences and encourage the correction of sub-optimal

human behavior.

To this end, we propose a framework that improves human-robot teaming performance through

explanations. With a graph-based representation, the robot can maintain the mental states of both

team members during a highly-structured collaborative task. The robot can then generate explana-
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Figure 5.1: The task making salad requires team members to take three lettuce from the basket and
cut each one with a knife, before it can be put into the plate and served. After the first lettuce has
been cut, the robot is cutting the second one. The robot can identify human’s sub-optimal behavior
(taking new lettuce from the basket) before generating explanations to the human.

tions when difference between mental states is detected, which implies sub-optimal user behaviors.

In summary, the main contribution of this paper is three-fold:

• We design a real-time collaborative cooking game as an online user study system and develop

an evaluation protocol, which can be accessed from our website.

• We propose to understand complex human activities using an action parsing algorithm based

on an And-Or graph task representation, which allows the robot to infer human mental states in

complex environments.

• Based on the inferred human mental state, we propose an explanation generation framework.

Experiments on a real-time cooking task show that our approach successfully improves user

perception of the robot and leads to better human-robot collaborations.
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5.1 Related Work

Human-aware planning. Designing robots that can work with humans has been widely stud-

ied by researchers. Most of the prior works hope to create robots to better understand and adapt

to human collaborators. [LHF16] evaluates a collaborative task allocation framework based on a

Bayesian inference of human intention. [HRA16] proposes a formulation of the value alignment

problem assuming the robot learning an unknown human reward function. Optimal solutions can

be achieved when the human demonstrates active teaching behavior. To deal with sensor uncer-

tainty and task ambiguity in a collaborative assembly task, [HBV14] uses an And-Or tree structure

as the task representation, which is similar to our approach. When sub-optimal user behavior are

encountered, [RDL18] proposes to learn the incorrect human internal dynamics model via inverse

RL and then perform an internal-to-real dynamics transfer to assist users in shared-autonomy tasks.

Our framework differs from this line of research in that we also aim at improving humans’ under-

standing of robots’ models using communicative actions. Such two-way understanding will further

help human-robot collaborations.

Goal-driven explainable AI. In contrast to data-driven XAI which improves understanding of

”black-box” machine learning algorithms given input data, goal-directed XAI typically explains

the behavior of an agent or robot for a specific task [LMS17, ANC19, Mil19], in order to increase

model transparency [SRK19], human’s trust [WPH16] or task performance [XD15]. Some of

the works achieve this aim by enabling robots to directly generate easy-to-understand motions

[DS13,KHD18] or task plans [ZSK17]. Other works, similar to ours, focus on using explicit com-

munication to change user mental state, e.g., updating users’ incorrect reward functions [TAH19],

correcting users’ false belief or misunderstanding about the environment [GZ18, SSK18], resolv-

ing the disagreement between collaborators’ actions [NKF18] or providing users with necessary

knowledge about the current situation [DA16]. Compared to these work that often require of-

fline training with humans or theoretical assumptions on the human models, this paper takes a

direct approach to generate explanations solely based on an online estimation of human model and
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Figure 5.2: The hierarchical mind model for the collaboration task, ”making salad”, represented by
an AoG. The And node represents temporal relations between sub-tasks. The Or node represents
two possible ways for the team to finish the tasks. Each terminal node (diamond) denotes an atomic
action that would cause certain fluent changes (triangles) for objects.

knowledge of the task structure. The experiment results show our approach is empirically effective

in an ad-hoc human-robot teaming settings [SKK10] where pre-coordination is not available.

5.2 Single Agent Mind Model

And-Or graphs (AoGs) have been widely used for robot task planning [XSX16,SGR17,LZS18] and

human activity modeling [TPZ13, SXR15]. As a hierarchical representation, a spatial-temporal-

causal And-Or graph (STC-AoG) encodes a joint task plan and corresponding spatial, temporal,

and causal relations an agent could have about the task [XSX16]. In this work, we propose to use

a STC-AoG as a unified representation of a robot’s knowledge and plan regarding the task as well

as the inferred human’s knowledge and plan. An example of a single-agent plan for making salad

is in Figure 5.2.
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Figure 5.3: Robot mental state pgr and inferred human mental state p̂gh represented as parse
graphs.

5.2.1 STC-AoG as a Hierarchical Mind Model

In general, an And-Or Graph consists of nodes and edges. The set of nodes includes Or node,

And node, and Terminal node. Each Or node specifies the Or relation: only one of its children

nodes would be performed at a given time. An And node represents the And relation and is

composed of several children nodes. Each Terminal node represents a set of entities that cannot

be further decomposed. The edge represents the top-down sampling process from a parent node

to its children nodes. The root node of the And-Or tree is always an And node connected to a set

of And/Or nodes. Each And-node represents a sub-task which can be further decomposed into a

series of sub-tasks or atomic actions.

In this paper, the graph G =< A,F,T,V,R,P > is formally defined as the following:

• A is a set of terminal nodes. Each node corresponds to an atomic action a ∈ A.

• F is a set of object states essential to the task, including possible pre-conditions and post-effects

of atomic actions.

• T : F×A→ F is a set of transition rules that represent state changes caused by atomic actions.

• V is a set of non-terminal nodes, which can be further decomposed into two sets: the And nodes

S and the Or nodes O. Each sub-task corresponds to an And node s, which encodes a temporal
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relationship between its children. An Or node o forms a production rule with an associated

probability, i.e. you may choose one of its children each weighted with a certain probability.

• R is the set of production rules.

• P is the set of probabilities on production rules.

Causal relation. Causal knowledge represents the pre-conditions and the post-effects of atomic

actions. We define it as a fluent change caused by an action. Fluent f ∈ F can be viewed as some

essential properties in a state x that can change over time, e.g., the temperature in a room and the

status of a heater. For each atomic action, there are pre-conditions characterized by certain fluents

of the states. E.g., an agent cannot successfully turn on the heater unless it is plugged in. As

the effect of an action, certain fluents would be changed, and the state x would evolve to x′. For

example, if someone turns on a heater, the temperature of the room will be higher (and the heater

would be on). It is formulated as one of the transition rules T .

Temporal relation. Temporal knowledge encodes the schedule for an agent to finish each sub-

task. It also contains the temporal relations between atomic actions in a low level sub-task. The

sub-task preparing salad, for example, consists of taking salad, placing it onto the cutting board,

and using the knife.

Spatial relation. Spatial knowledge represents the physical configuration of the environment that

is necessary to finish the task. In our case, to make the salad, an agent needs to know the locations

of ingredients (e.g., lettuce), tool benches (e.g., basket, cutting board), delivery benches, etc.

5.2.2 Parse Graphs as Mental State Representations

During the collaboration, an agent can use parse graphs to represent the mental states of itself or

the other agent. A parse graph is an instance of an And-Or Graph, each of its Or nodes selects

one child node. Figure 5.3 shows two parse graphs represent the robot and human’s plan for the

situation shown in 5.1. In our case, the parse graph pgt =< sh
t ,s

r
t ,a

h
t ,a

r
t , f h

t , f r
t > is one possible
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plan for both agents to finish the task. Particularly, the root node leads to a selection of individual

sub-tasks (sh
t ,s

r
t ) as sub-goals assigned to human and robot agent. To achieve these sub-goals,

agents perform atomic action (ah
t ,a

r
t ) based on their belief of current fluent ( f h

t , f r
t ).

5.2.3 Joint task planning by parsing STC-AoG

To construct the mental state representation for the robot, we design an algorithm based on STC-

AoG parsing to select the optimal task plan for the team.

Given a set of sub-tasks S necessary to complete the joint task, the objective is to minimize

the total task completion time by assigning a sub-task to either a robot or human agent, without

violating any latent constraint:

min
xv

s ,τs
max

v∈{r,h}∑s∈S
xv

sδ
v
s

s.t. xv
s ∈ Xfeasible,τs ∈ Γfeasible.

(5.1)

where xv
s is a binary variable indicating whether to assign sub-task s to agent v, and τs is a contin-

uous variable representing the finishing time for the sub-task s. Constant δ v
s represents the amount

of time for agent v to finish the sub-task s. Xfeasible and Γfeasible represent the set of valid assign-

ments that satisfies latent causal constraints, e.g., an agent cannot hold two objects at the same

time; a sub-task can be performed only if pre-conditions are met; after all assigned sub-tasks have

been completed, the final state should satisfy the goal requirement.

We search for the optimal task plan via a dynamic programming algorithm. Starting from

the initial state fb, we make valid sub-tasks assignments and simulate new intermediate state fe

based on the state transition function T . By updating the current optimal consumed time and the

corresponding sub-task assignment vectors for every intermediate state, our algorithm will finally

reach the optimal plan for the entire task. During the updating process, we also record the sub-

task assignment vectors for previous states, in order to generate the whole optimal assignment

{xv
s}s=1,...,|S| and completion time τ1, ...,τ|S| for each sub-task. After the task plan is computed,
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the robot’s mental model is represented by a parse graph, as shown in the left part of 5.3: each

sub-task in the task plan indicates a sub-goal that an agent needs to achieve at the time being. Sub-

tasks are further connected with a sequence of corresponding atomic actions, which have certain

pre-conditions and post-effects.

5.3 Joint Mind Modeling for Human-Robot Collaborations

Our goal is to enable efficient human-aware collaboration for a human-robot team. Specifically,

robots need to understand human agents based on their actions and decide whether the team is

moving in the right direction. We propose to model the robot mental state pgr and the human

mental state pgh.

5.3.1 Mind Models for Human and Robot

We treat the robot’s mind as the oracle, i.e., it contains all necessary spatial, temporal, and causal

information the team needs to finish the task. For example, at any given time t, the robot has a

certain expectation of (i) current low level sub-goals (sh
t ,s

r
t ) both agents should be pursuing; (ii)

the actions (ah
t ,a

r
t ) agents should perform; (iii) whether current object fluents satisfy pre-conditions

of such actions, and what would be the post-effects.

It is also necessary to model the user’s mind, which acts as a strong inductive bias in predicting

user activities. As the user’s mental state pgh
t is not directly available to the robot, we propose to

infer it from user behavior and the history of communication.

5.3.2 Human Mental State Inference

Based on the observed user behavior, we infer the most likely human mental state p̂gh, including

the belief, goal and action plans. On a high level, this inference process uses observed user actions

and communication history to infer human mental state. Specifically, given the And-Or graph G
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Figure 5.4: Human mental model update process. We use it to infer user mental state pgh, which
is hidden to the robot. Here we assume human actions ah

t and robot message mr
t are conditional

independent given human mental state pgh
t at time t.

and human-robot interaction data DT = {dt}t=1,...,T , we infer the user mind p̂gh iteratively:

p̂gh = argmax
pgh

p(pgh|DT ,G), (5.2)

p(pgh|DT ,G) ∝ p(pgh|G,DT−1)p(dT |pgh,G). (5.3)

Here the first term models the prior on the user mind given previous data DT−1 and AoG

structure G. The second term models the likelihood for new data dT .

To model the likelihood function p(dT |pgh,G), we take a sampling-based approach. For each

interaction data d, we consider user atomic action ah
obs and communication between the two agents

m. The idea is to model how likely the user performs action ah
obs when receiving message from

the robot mr, with current mental state pgh, as shown in Figure 5.4. Assuming ah
obs and mr are
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Figure 5.5: Explanation timing. At time t, sort posterior probability of pghi
t in descending order,

and then compare the most possible user mental state pgh1
t with robot mental state pgr

t . Since they
are the same, there is no need to explain to the user. At time t ′, pgh1

t ′ is not equal to pgr
t ′ , therefore,

the robot should provide the explanation.

conditional independent given pgh we have:

p(d|pgh,G) = p(ah
obs|pgh,G)p(mr|pgh,G), (5.4)

p(ah
obs|pgh,G) = ∑

ah
samp

p(ah
samp|pgh)p(ah

obs|ah
samp), (5.5)

where p(ah
samp|pgh) denotes the probability of sampled human action ah

samp given current estima-

tion of human mental state pgh. p(ah
obs|ah

samp) measures the similarity between observed human

trajectory ah
obs and sampled trajectory ah

samp.

In practice, we use rapid-exploring random tree (RRT*) for trajectory sampling and dynamic

time warping (DTW) based approach to compare trajectories. DTW outputs a difference score

di f f . We use it in the energy function for the Boltzmann distribution. Then we update the human

mental state in every time-step through the following equation:

P(p̂gh
t+1|DT ,G) =

1
Z

e−
di f f

T λ
nP(p̂gh

t |DT−1,G), (5.6)
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Algorithm 1: Planning and explanation generation
1 while Task not finished do
2 if Replan needed then
3 Collect state information from the game;
4 Collect predicted human intentions from the last time step ;
5 Call DP planner ;
6 Obtain a new sequence of sub-tasks from planner and re-organize AoG based on it;
7 Parse AoG through checking pre-conditions and post-effects against the current

environment state information ;
8 Find out the next atomic action to execute based on parsing result ;

9 Predict human intentions by equation (5.6) ;
10 Measure the difference between predicted intention and expected human actions;
11 Generate an explanation if difference is significant;

where T is a constant temperature term, Z is a normalization constant, and λ (> 1) is a constant

that controls the importance of an explanation. It models how much information the user can retain

for an explanation. n is the number of times an explanation about p̂gh is generated for the user in

this task. Therefore, λ n implicitly encodes the communication history m. Right now, we only

consider communications from robot to human mr. Communication from human to robot mh can

be considered in the future by adding corresponding energy terms. For now, some parameters (T

and λ ) are set heuristically. These parameters can be learned from annotated user data [CH05].

5.3.3 Robot Mental State Update

Based on the observations in the environment, the robot can update its joint task plan. It is a

two-step process. First, the robot collects all relevant information about the task and calls a DP

planner described in Section 5.2.3 to obtain an optimal sequence of sub-tasks. Then the robot

updates its mental state through re-organizing AoG (Delete finished nodes. Re-order unfinished

nodes. If necessary, add back nodes deleted previously). Second, the robot uses causal knowledge

(pre-conditions and post-effects of each atomic action) in the AoG terminal nodes to determine the

next atomic action. If pre-conditions for the next atomic action are satisfied, the robot will execute

it. Otherwise, the robot will be idle, waiting for the user to complete the other part of the job.
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5.4 Explanation-based task coaching

In this section, we propose a framework for explanation generation to enable efficient human-robot

collaboration.

5.4.1 Explanation framework

As shown in Algorithm 1, the framework includes an iterative process of online planning and

explanation generation:

1. At a given time, the robot updates its mental state to represent the expected current goals of

both agents and corresponding atomic actions;

2. The mental state of the human agent can be inferred, which would be further compared to the

robot’s mental state. Based on the result, the robot would decide whether explanations are

necessary;

3. On the occasions where users perform an action other than that indicated in the explanation, the

robot would update its task plan and mental model to reflect the best joint policy and expected

mental models in the new state.

Take the task making salad for example. At the beginning of the game, an optimal plan requires

the user to first take the plate. A sub-optimal plan could be the user first taking the lettuce. If

the user insists on taking the lettuce first regardless of whether explanations are given, the robot

will update the task plan and expect the user to gather the plate afterwards.

5.4.2 Explanation Timing

The explanation serves to provide users with the knowledge necessary to finish the task efficiently.

This is achieved by inferring the user’s mental model during the interaction and comparing it

with the robot’s. Whenever a disparity between these two models is detected, we can generate

71



explanations to encourage correction of the user’s mental state.

During collaboration, we use temporal parsing to get robot mental state pgr
t from its And-Or

graph at time t. As in Section 5.3.2, user mental states p̂gh
t can be inferred based on communica-

tion history and action sequences. The system generates explanations when there is a mismatch

between the robot mental state and inferred human mental state: |pgr
t − p̂gh

t | > ε . In practice, we

measure P(p̂gh
t |DT ,G) for every sub-tasks at each time step based on equation (5.6). If the proba-

bility P(p̂gh
t = pgr

t |DT ,G) is lower than a threshold, we generate an explanation for the user. This

process is shown in Figure 5.5.

5.4.3 Explanation Content

We envision the disparity occurred between the user’s mental state and robot’s due to several

reasons:

1. The user wants to achieve goals that are different from the robot’s expectation;

2. The user performs incorrect atomic actions to achieve a sub-goal;

3. The user is unaware of the pre-condition or effect of an atomic action.

In this paper, we do not distinguish between the possible causes of disparity when choosing

the explanation timing, as they are too ambiguous. Instead, we propose to generate hierarchical

explanation which consists of three components of the robot’s mind representation:

1. The robot would explain the current expected sub-goals of both agents (sh
t ,s

r
t ) based on its

mental state pgr, e.g., ”My current goal is preparing the lettuce. Meanwhile, your expected

goal is getting the plate.”;

2. The robot communicates the expected atomic actions that both agents are supposed to perform

(ah
t ,a

r
t ), e.g., ”Currently, I’m performing the action slicing the lettuce. You are supposed to

perform the action taking the plate.”;
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3. In addition, by showing images of world states before and after an action (as shown in Figure

5.6), the robot would also demonstrate the fluent change caused by an atomic action ft
at−→ ft+1.

5.5 User Study

We conducted a user study in a gaming environment to evaluate our algorithm, where participants

can collaborate with agents on a virtual cooking task. The gaming environment and explanation

interface are displayed in Figure 5.6.

5.5.1 Experiment Domain

Our experiment domain is inspired by the video game Overcooked1, where multiple agents are

supposed to make use of various tools and take different roles to prepare, cook, and serve various

dishes. Particularly, we use Unreal Engine 4 (UE4) to create a real-time cooking task, namely

making apple juice. To finish the task, teammates need to take apples from the box and slice

them with a knife near the chopping board. Three apple slices should be put into the juicer before

producing and delivering apple juice. Figure 5.6 shows a top-down view of the environment. The

game interface is designed to be interactive (e.g., object appearance will change after taking valid

actions) so that people can easily play through.

To finish the task, each user needs to complete a sequence of 62 atomic actions, if acting

optimally, and observe 5 different object fluent changes with a total state space around 109. An

example task schedule is shown in Figure fig. 5.7.

5.5.2 Experiment Design

Hypotheses. The user study tests the following hypotheses with respect to our algorithm in the

collaboration:

1http://www.ghosttowngames.com/overcooked/
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• H1: Task completion time. Participants would collaborate with the robot more efficiently if the

robot generates explanations based on the human mental state modeling, compared to the other

conditions.

• H2: Perception of the robot. Participants would have higher perceived helpfulness and ef-

ficiency of the robot, as a result of receiving explanations based on the human mental state

modeling, compared to the other conditions.

Manipulated Variables. We use a between-subject design for our experiment. In particular, users

are randomly assigned to one of three groups and receive different explanations from the robot:

• Control: Users would not get any explanations from the robot. As a result, they can learn to

finish the task by interacting with the environment.

• Heuristics: The robot gives explanations when there is no detected user action for a period of

time. This serves as a simple heuristic for the robot to infer whether the user is having difficulties

in finishing the task. The timing threshold is set to 9.3 seconds, based on the result of a pre-study

in which users can actively ask for explanations when they get stuck.

• Mind modeling: The robot gives explanations when there is a disparity between robot and

human mental states.

Study Protocol. Before starting the experiment, each participant signs an informed consent form.

An introduction is given afterward, including rules and basic controls of the game. As a part of the

introduction, participants are given three chances to work on a simple single-agent training task, to

verify their understanding. Those who fail to complete the training task in one minute would not

continue the study. This is a comprehension test to exclude people who do not understand game

control.

Participants who finish training get to see further instructions before starting to collaborate with

the robot. They are first educated about the goal of a collaboration task (i.e., making apple juice)
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and what actions the team should perform to finish it. This is done to make sure every participant

has sufficient knowledge to finish the task, so that the impact of user-specific prior knowledge can

be minimized. To prepare users to interact and communicate with the robot agent, we would also

show them a top-down view of the level map (as shown in Figure 5.6), the appearance of the robot

agent as well as an example of an explanation. During the task, the team is required to make and

serve two orders of dishes in the virtual kitchen. At the end of the study, each participant is asked

to complete a post-experiment survey to provide background information and evaluate the robot

teammate.

Measurement. In the background study, we have collected from users their basic demographic

information, education, as well as experience with video games.

Our objective measure is intended to evaluate the human-robot teaming performance and sub-

jective measure is designed for evaluating users’ perception of the robot. Our dependent measures

are listed below:

• Teaming performance. We evaluate teaming performance by recording the time for the team

to complete each order.

• Perception of the robot. We measure user’s perception about the robot, in terms of its help-

fulness and efficiency. Helpfulness is comprised of questions that measure users’ opinion on

the robot’s ability to provide necessary help. Efficiency is comprised of questions that measure

users’ opinion on how efficiently and fluently the team is able to finish the task.
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Figure 5.8: Time taken for the team to complete two orders under different testing conditions.

Figure 5.9: User’s self-reported perception of the robot in terms of its efficiency and helpfulness.

5.5.3 Results and Analysis

We recruited 29 subjects for our IRB-approved study from the university’s subject pool. Most of

the participants (69.3%) came from a non-STEM background. Their reported ages ranged from 17

to 36 (M=19.52, SD=2.89). All the participants have moderate experience with video games and

have not played the video game Overcooked, which inspired our study design. Each participant
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got 1 course credit after completing the study. In addition, for ease of conducting the study, we

discarded the data of 2 participants from the control group, as they got completely lost and failed

to finish the designated task. As a result, there are 10 valid participants in the ”mind modeling”

and ”heuristics” group, and 7 in the ”control” group.

Generally, we use ANOVA to test the effects of different experimental conditions on teaming

performance and subjective perception of the robot. Tukey HSD tests are conducted on all possible

pairs of experimental conditions.

As shown in Figure 5.8, we found marginally significant effects from ”mind modeling” con-

ditions on completion time of the first order (F(2,24) = 2.038, p = .152). Post-hoc comparisons

using the Tukey HSD tests revealed that teams could finish the first order significantly faster if

users were under the ”mind modeling” condition, compared to those under ”control” (p = .044).

The result is marginally significant compared to those in ”heuristics” (p = .120), confirming

H1. However, for the completion time of the second order, we did not find any significant ef-

fect (F(2,24) = 0.425, p = .658). This is not surprising since users were asked to finish the same

task twice. They could take advantage of their previous experience working with the robot for the

second order. Intuitively, the quantitative result showed that our explanation generation algorithm

helped non-expert users to finish the task efficiently on their first run, while those in the control

group needed to complete the task once to be able to finish it with the same efficiency.

The factorial ANOVA also revealed a significant effect of the explanation system on the per-

ceived helpfulness (F(2,24) = 4.663, p = .019) and efficiency (F(2,24) = 4.136, p = .029) of the

robot (Figure 5.9). In support of H2, post-hoc analysis with the Tukey HSD tests showed that the

robot’s perceived helpfulness was significantly higher under the ”mind modeling” condition, com-

pared to ”control” (p = .023) and ”heuristics” (p < .01). Users under the ”mind modeling” were

also more likely to believe the explanation system resulted in improved collaboration efficiency,

compared to ”heuristics” (p = .026) and ”control” (p < .01).
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5.6 Conclusion

In this paper, we propose a framework that allows a robot agent to improve teaming performance

by communicating compelling explanations to its non-expert human teammate. By maintaining the

mental state of both agents, the robot agent successfully generates explanations when the human

behavior deviates from the optimal plan. By conducting a user study on a virtual collaborative

cooking task, we demonstrate that the proposed algorithm can improve efficiency and quality of

the interaction.

For simplicity of implementation, the current environment configuration prevents human and

robot from having a shared workspace. For future work, we plan to study more cooking tasks in

a diverse set of environments where multiple collaboration strategies can evolve. In addition, to

make the robot’s model more transparent, we consider to generate contrastive explanations with

respect to identified incorrect user beliefs from the user’s mental model in the future. Meanwhile,

we plan to focus on a more balanced settings where both the human and robot agent have some

information (e.g. ability, preference) to share with the teammates before a valid and efficient joint

task plan can be formed.
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(A)

(B)

Figure 5.6: (a) A top-down view of our collaborative cooking game, where the user (the bottom
character) collaborates with a robot (the top character) on some cooking tasks, e.g. making apple
juice. (b) The explanation interface exhibits the expected sub-tasks for both agents. Pre-conditions
and post-effects of atomic actions are displayed as well.
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Figure 5.7: An example task schedule for making apple juice. The robot maintains the schedule
to reflect its expectation on how the team should finish the task. Each color block represents a
sub-task, performed by either robot or human. At a specific timing, we can assign tasks to both
agents based on the schedule. E.g. at 10.0s, the robot is getting apple slices 1 while the user is
supposed to be preparing apple 2. The schedule gets updated based on inferred human mental
states, as shown in Algorithm 1.
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CHAPTER 6

Generating Expressive Motions for Calibration on Robot

Reachable Workspace

6.1 Introduction

One of the main challenges in Human-Robot Interaction is that the capacity of the robot perceived

by the human partner may not be consistent with its actual capacity [SGS99, PK06, FKS08]. Such

discrepancy may lead to overuse or misuse of the robot. Particularly, in an ad-hoc teaming setting

where humans do not have prior experience with their robot partners, the consequence caused by

such discrepancy could be detrimental to the team collaboration [AS17].

In this work, our key insights to address this challenge are two-fold: i) humans’ perception

of the capability of a robot can be calibrated by observing its behavior, e.g., robot demonstrating

its motion trajectories in pursuit of certain goals, and ii) calibrating the perceived robot capability

improves the quality of subsequent human-robot collaboration.

We focus on a case study as shown in Figure 6.1, where a human user and a robot share the same

workspace, and they must take turns picking up all objects as fast as possible. As the robot can only

reach part of the workspace due to its mechanical limits, the human partner needs to pick up the

objects that the robot can not reach to achieve maximum efficiency in completing this joint task.

We introduce capability calibration as shown in Figure 6.1b, where we allow the robot to show

a small number of demonstrations. After watching each demonstration, the human can estimate

the robot’s capability accordingly. The goal is to come up with motion plans to pragmatically

demonstrate the robot’s capability.
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(A) Inaccurate ca-
pability estimation
can lead to failure
in collaboration.

(B) In this example, the human is supposed to pick up the white and the yellow cubes
and let the robot collect the red and the green ones.

Figure 6.1: (a) Consider a collaborative table clearing task, where the robot has a limited capability
and cannot reach the yellow and white objects. Users who incorrectly estimate that the robot can
reach the yellow object would assign it to the robot, resulting in a worse teaming performance. (b)
We propose capability calibration, where the robot uses its motion to demonstrate its capability
before collaboration.
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To achieve a sample-efficient calibration, we propose reachability-expressive motion planning

(REMP), a novel planning algorithm that models perceived robot capability as a human’s belief

over a robot’s reachable workspace, and integrates the belief update into motion planning by in-

troducing an additional cost in trajectory optimization. As a result, REMP can generate a series of

expressive trajectories for different robots to showcase their reachability to users. We conducted a

user study in which participants i) first observed several robot demonstrations, then ii) estimated

where the robot could reach, and iii) proceeded to work with the same robot in a joint task: pick-

ing up all objects in the shared workspace as fast as possible. We find that i) REMP significantly

increases the accuracy of humans’ reachability estimation, ii) the subsequent human-robot collab-

oration benefits from a successful calibration, iii) users perceive the robot as more predictable and

reliable.

6.2 Related Work

Perceived robot capability. Various works have studied how humans perceive a robot’s capability,

differentiating between social and physical capabilities [CDS15]. In prior work, social capabilities

were defined as a robot’s ability to communicate and interact with humans [JLD13], and physical

capabilities were defined on a set of tasks a robot can successfully perform [RVB21], such as lifting

different objects on the table [NNP17, CNS18], searching and firefighting in various weather and

fire conditions [XBO19]. In these works, robots’ capabilities of different tasks are estimated sep-

arately based on experience counts of action outcomes – a higher success rate indicates a stronger

capability in a task [LFK20]. Since the capability modeled in these works are highly task depen-

dent, the user’s knowledge of a robot’s capability in one task can not be easily generalized to the

knowledge of its capability in other tasks. In contrast, our work focuses on physical capabilities

that serve as a basis for a robot to achieve success in a wide range of tasks. In particular, we

focus on reachability, which is one of the most fundamental physical capabilities for robots. By

understanding a robot’s reachability, users can better assess its overall capability in various tasks
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where reaching is involved. Given an arbitrary task, the user can decide whether the robot can

successfully perform it based on perceived reachability.

Robot expressive motions. When deploying robots in real-world settings that are beyond factory

environments, functional motions only designed to accomplish tasks are inadequate for human

users to correctly understand the robots and establish effective collaborations [VK19]. It is equally

important to convey the rationality and intent of a robot through its motion [SMF14, LBA21].

To generate such motions, prior work formulated and optimized the legibility of trajectories via

functional gradient descent [DS13, SGB15]. Similar ideas were also adopted to study robots’

expression of emotion [FMB15] and style [LHP05]. To express robot (in)capability, prior work

used repetitive motions, either generated by simple heuristics [NM01] or hand-crafted for each task

[TDJ11]. In contrast, [KHD18] proposed a trajectory optimization-based method that maximizes

the similarity between motions and would-be successful executions. Our work takes one further

step in this direction: we i) model how humans update their beliefs of the capability of a robot given

the observed robot motions and ii) integrate the belief update process into trajectory optimization

to generate new motions that can optimally improve humans’ beliefs.

6.3 Capability Calibration

We propose a capability calibration framework (as shown in Figure 6.1b) to align a human user’s

understanding of a robot’s capability with the ground truth, where the user can watch a small num-

ber of demonstrations of her robot partner before they work together. In this section, we introduce

our approach to generate such demonstrations that can efficiently reveal the robot’s reachability.

We show how this calibration could be applied to collaboration in Section 6.4.

6.3.1 Calibrating Reachable Workspace

In this sub-section, we define the reachability calibration task. In Section 6.3.2, we describe how

human belief would be updated before a new trajectory can be generated. In Sec. 6.3.3, we propose
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Figure 6.2: Simulated human estimation of robot A’s reachability map, after observing each
demonstration generated by Algorithm 3, measured by Intersection of Union (IoU) between the
human estimation and the ground truth. Robot A is a 2-link arm with link lengths 0.1.

REMP, which enables the robot to generate one trajectory showing its reachable workspace based

on a simulated human belief that models what the human has already known about the robot.

In Section 6.3.5, we reify our capability calibration framework by combining REMP and task

planning. We begin with some notations.

The robot’s ground truth reachability is defined as f : Xws → {0,1}, i.e. whether a target

position x in the workspace Xws is reachable by the end-effector according to the robot’s kinematic

constraints. Meanwhile, we assume the human is maintaining a belief bt
h : Xws→ [0,1], modeling

how likely a target is reachable after observing a robot trajectory ξ t
1:N ∈ Ξ with length N at time

t ∈ {1...T}. After observing all the robot demonstrations, human’s final belief would become

bT
h = τ(b0

h,Z), with τ denoting the belief transition from the initial guess b0
h to the final bT

h with

all seen demonstrations Z = ξ 1:T . In addition, we define Xrs ⊆ Xws as the robot’s reachable

workspace. φee : Q →Xrs is the forward kinematic function of the end-effector, generating its

position given a configuration.

Using notations above, we can formalize capability calibration as an optimizing problem over

a set of trajectories, Z, whose cardinality may not necessarily be known in advance. The goal is to

reduce the mismatch between the robot’s ground truth capability and the user’s final belief:

argmin
Z∈Ξ∗

Cost(Z) (6.1)

s.t. ∑
x∈Xws

∣∣∣τ(b0
h(x),Z

)
− f (x)

∣∣∣< ε,
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where Ξ∗ uses the Kleene star to represent all possible sequences of robot motions, Cost(·) : Ξ∗→
R is a function to evaluate the overall cost for trajectories. The condition means the user has a

reachability estimation close enough to the robot’s true capability.

One intuitive cost is the total length of all the trajectories in Z, optimizing which is equivalent

to minimizing the cardinality of Z when the trajectories all have similar length. In this paper,

we maintain the homogeneity of trajectories by further regulating the start configurations of all

trajectories to be in a set of configurations S⊂Q0 and target positions in a set of positions G⊂Xrs.

Due to the size of motion space, an exact solution to eq. (6.1) is intractable. Thus, we adopt

an incremental update: we keep generating new trajectories ξ t until the user’s belief is sufficiently

aligned with the robot’s capability. Every time we want to expand Z, we first select a pair of starting

configuration and target position (qt ,xr) ∈ S×G and then generate a motion using it. We term the

former as the task planning problem and the latter as motion planning.

6.3.2 Human Belief Model

Our objective is to make people without any knowledge about robotics easily understand the true

capacities of a robot. Thus, our human belief model attempts to capture what a novice user may

think about a robot’s reachability after watching its trajectories. We assume human updates its

belief on an interested point x in the workspace after observing a new robot trajectory ξ . Intuitively,

if a point is close to the visited positions in an observed trajectory, the human observer would

consider it more likely to be reachable. We model the belief update process as an iterative Bayesian

inference beginning from a uniform prior:

τ(bt ,ξ t)(x) = bt+1
h (x) ∝ bt

h(x)p(ξ t |x) (6.2)

and p(ξ t |x) = e−γd(φ(ξ t),x), where d(φ(ξ ),x) captures the distance between the trajectory ξ and

the interested position x. The hyperparameter γ defines how much the human extrapolates the

observed trajectory to the points nearby: a large γ means that such extrapolation mainly happens
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Algorithm 2: REMP
1 Given a target position xr and a starting configuration qt , human belief bt ;
2 Generate trajectory ξ t based on bt

h, qt , Equation (6.4) ;
3 Update human belief bt+1

h using ξ t , Equation (6.2) ;
4 return bt+1

h , ξ t

to the point which is very close to the trajectory. In particular, we use the end-effector position φee

as the feature, and compute the squared euclidean distance between the interested position and the

closest end-effector position in the trajectory:

d(φ(ξ ),x) = min
i
||φee(ξi)− x||2. (6.3)

The design of our distance function is motivated by the fact that, given a trajectory, it is straight-

forward for users to focus on the robot’s end-effector which is central to the task, while trying to

estimate its reachable workspace.

6.3.3 REMP: Reachability-Expressive Motion Planning

Expressing robot reachability is more than randomly moving the end-effector to somewhere in

its reachable workspace. Our insight is that it is essential to understand what the human already

knows or does not know about the robot, so that every demonstration can communicate as much

information to the human as possible. We believe this can be formulated as an optimization prob-

lem: finding a new trajectory that would minimize the misalignment between the ground truth

reachability and human’s updated estimation. We capture the misalignment using a cost function

c(ξ ,bt
h, f ) and formulate the optimization problem as the following:

ξ
t = argmin

ξ

c(ξ ,bt
h, f )+

1
λ

N

∑
i=1
||ξi+1−ξi||2,

subject to φee(ξn) = xr,collision-free(ξ ).

(6.4)
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The first term is an expressiveness cost and the second term is a smoothness cost commonly

seen in trajectory optimization. The trajectory at the t-th step is generated by minimizing the sum

of the two costs, subjecting to a constraint that requires the end effector to reach a target position

xr at the end of the trajectory.

Assuming each point in the trajectory contributes to the cost independently, we design the cost

function based on a value vi(ξi,bt
h, f ), which represents the degree of alignment between human’s

estimation and the robot’s ground truth reachable workspace:

cb(ξ ,bt
h, f ) = α

N

∑
i=1

vi(ξi,bt
h, f )

= α

N

∑
i=1

eβ

(
bt

h(φee(ξi))− f (φee(ξi))
) (6.5)

A small value vi suggests that the human observer is underestimating the robot’s capability at

ξi. In that case, we want to facilitate calibration by encouraging the robot to move to ξi. On the

other hand, we would see a large vi if the human is over-estimating the capability. In that case, it

is beneficial for the robot to avoid reaching points near ξi. The hyperparameter α and β control

how aggressive the trajectory would be in expressing the capability. We call this cost function

cb, which captures human updated belief. Note that the intuition is if the observer previously

underestimates the reachability of a point x, bt
h(x)− f (x) will be negative and give low cost for

trajectories covering x. Hence, trajectories passing through underestimated points are more likely

to be chosen. Trajectories including overestimated points, on the contrary, have larger costs and

are less likely to be selected.

Static human model. Our key intuition is the human would update its belief of the robot’s reach-

ability after observing each trajectory. To test it, we also design a fixed cost function as baseline,

assuming an underlying uniform belief model ∀x, bstatic(x) = b0. The corresponding cost function

under the assumption of a static human model is cs. Note that this baseline generates functional

motions that solely aim to finish the physical task of reaching the target. We envision that in real-

ity, users may also learn from these physical motions the robot’s capability by interacting with the
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(A) Robot B is a 2-link arm with link lengths 0.13 and 0.07.

(B) Robot C is a PR2 robot. In this work, we consider the reachable workspace of its right arm.

Figure 6.3: Visualization of the robot reachable workspace and the trajectories generated by cost
function cb (belief ) and cs (static). (a) and (b) show the results for Robot B and Robot C respec-
tively. It can be seen that the belief trajectories cover broader regions of the reachable workspace
and new trajectories tend to visit areas that haven’t been covered by their predecessors. The red
dots, corresponding to Figure 6.6, represent the points we use to query the users in our experiments.

robot on some tasks, but such learning is not as efficient as the learning in a dedicated calibration

phase.

6.3.4 Generating Reachability-Expressive Trajectories

Implementation. We implemented our framework using TrajOpt [SHL13] on two kinds of sim-

ulated robots in OpenRAVE [Dia10], including a manipulator with 2 links and a PR2 robot. For

the 2-link arm, we manipulated its joint limits and link lengths to allow it to have a variety of two-

dimensional reachable workspaces. These serve as testing cases for our framework, as we want

to study how well the framework copes with reachable workspaces of different sizes and shapes.

For the PR2 robot, we didn’t do such manipulations since the goal here is to see how practical it

is to apply the framework to real robot manipulators. Without loss of generality, we focus on the

right arm of the PR2 robot. In practice, we use grid search to find hyperparameters that gener-
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Algorithm 3: REMP-T
1 Given a list of target position and starting configuration pairs (x,q)1:T and human belief

bh;
2 for t = 1, . . . ,T do
3 bh,ξ

t = REMP(xt ,qt ,bh)

4 return bh,ξ
1:T

Algorithm 4: Calibration on Reachable Workspace
1 Given a set of target positions G, starting configurations S, initial human belief b0;
2 for t = 1,2, . . . , do
3 ∀x, b0

h(x)← b0;
4 Let σ(ζ ) = ∑x∈Xws

∣∣ f (x)− REMP-T (ζ ,b0
h)[bh]

∣∣;
5 ζ ∗t ← argminζ∈(G×S)t σ(ζ ) ;
6 σt ← σ(ζ ∗t );
7 if σt−σt−1 < ε then
8 return REMP-T (ζ ∗t ,b

0
h)

ate trajectories to maximize the accuracy of reachability estimation in simulation, as described in

Section 6.4.3.

Qualitative behaviors. Figure 6.2, Figure 6.3A and Figure 6.3B show the trajectories generated

by the cost functions cb and cs for the robots by running REMP iteratively using the updated be-

lief, following Algorithm 3. As both cb and cs assume a uniform belief on the robot’s reachable

workspace at the beginning, the first trajectories generated by these cost functions are almost iden-

tical. Starting from the second trajectories, we find that the ones generated using cb can cover a

large part of the robot’s reachable workspace. On the contrary, trajectories generated by cs are

more sensitive to the physical cost. Overall, It is clear that REMP accommodates human belief at

each time step and tries to traverse uncovered regions to better express the robot’s reachability.
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Algorithm 5: Calibration with Fixed T
1 Given a set of target positions G = {x1, . . . ,xN}, number of trajectories T , starting

configuration set S, initial human belief b0;
2 ∀x, b0

h(x)← b0, δ ← ∞;
3 for κ ∈ T − combination(G×S) do
4 bh← b0

h;
5 for t← 1 to T do
6 bh, ξ̂

t ← REMP(κ t(G),κ t(S),bh);

7 σ = ∑x∈Xws |bh(x)− f (x)|;
8 if σ < δ then
9 δ ← σ ;

10 ξ 1:T ← ξ̂ 1:T ;

11 return ξ 1:T

6.3.5 Planning for Start and Target Pairs

We have shown how REMP can generate an expressive trajectory given a starting configuration

and a target position. For a better capability calibration, we also want to optimize the number of

trajectories as well as the sequence of starting configurations and target positions. As outlined in

Alg. 4, this could be achieved by Task and Motion Planning (TAMP) [KL11], where the plans of

start and target pairs come from task planning and the trajectories for a given pair comes from

REMP. In Alg. 4, we solve (6.1) in an incremental manner. Namely, we keep increasing the

cardinality of Z until user’s belief is aligned with the robot’s actual capability. For each size of

Z, we find the best sequence of starting configurations from S and target positions from G (Line

5 of Alg. 4). To avoid trajectories that are too short or uninformative, we set S as the set of

configurations near the neutral configuration of the robot and G as the set of positions far away

from the neutral end effector positions:

S = {q,∀q |q−qneutral|< a1} (6.6)

91



G = {x,∀x min
q∈S
|x−φee(q)|> a2} (6.7)

Finding Z incrementally, despite giving the exact optimum, can be time consuming. In practice,

rather than demonstrating to humans constantly until converge, we can pre-define T to a reasonable

number and find the optimal set of trajectories. In Alg. 5, we assume fixed number of trajectories.

We start from a uniform prior for the human belief, and update the belief w.r.t. Eq. (6.2). Sec-

tion 6.3.5 depicts an example to optimize 4 trajectories that start from different configurations and

reach different targets. Note that Alg. 5 plans by enumerating all possible combinations, but any

stochastic planning approaches can be used to further accommodate resource constraints and task

scalability.

6.4 Applying REMP to Human-Robot Collaboration

In this section, we discuss how to apply REMP to human-robot collaboration after the calibration.

6.4.1 Collaborative Table Clearing

We design a human-robot collaboration task in a table clearing scenario, where some objects are

scattered on a table and a robot can assist the human with the object collection. The human and the

robot take turns picking up the objects. In each step, the human collects first and the robot collects

one of the remaining objects. The human can reach all of the objects, while the robot can only

reach a subset of them. To finish the task as quickly as possible, the human and the robot need to

split the work wisely, so that, in each round, the robot has some objects to pick up. The reward is

calculated by the number of objects picked up and the time penalty.
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Figure 6.4: Trajectories generated by task and motion planning and the simulated reachability
estimation given observations. Combining REMP with task planning, we can optimize the starting
and target positions for better calibration.

6.4.2 Human and Robot Policy

After observing robot expressive demonstrations and updating the belief with Eq. (6.2), the human

is assumed to act in an approximately rational way with respect to the current estimation of the

robot capability, bt
h. We use a Boltzmann noisily-rational human decision model [MV53], assum-

ing the human is more likely to help the robot with its unreachable objects based on the human’s

current reachability estimation. Since we want to emphasize the effect of the calibration, we use a

simple uniform robot policy in the simulation, i.e., it would randomly pick up objects it can reach,

and do nothing if no objects are reachable.
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(A) Simulated reachability estimation accuracy,
measured by Intersection of Union between the
human reachability estimation and the ground
truth. Higher value indicates better estimation.

(B) Simulated human-robot collaboration perfor-
mance measured by averaged rewards acquired by
the group. Every point on the curves for traversal
is the mean of 100 trajectories.

Figure 6.5: Simulation results of reachability estimation and collaboration performance. Starting
and target positions are chosen greedily.

6.4.3 Simulation Results

Using the behavior model described in the previous sections, we simulated with 3 robots A, B and

C with different configurations and reachability: (i) A is a 2-link arm where each link is of equal

length, (ii) B is a 2-link arm where the length of its first link (0.13) is larger than the length of

the second (0.07), (iii) C is a PR2 robot. The belief and static methods in the legend correspond

to the definition in Section 6.3.2. In addition, we implemented a traversal baseline, where the

robot moves its end-effector to traverse the workspace to demonstrate its reachability. From the

starting position, the end effector moves to unreached waypoints in its reachable workspace one

by one. The number of waypoints we sampled corresponds to the number of trajectories in belief

and static.

Figure 6.5A and Figure 6.5B shows the quantitative results of capability calibration and human-
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(A) 36 points for 2-link arms. (B) 25 points for PR2.

Figure 6.6: To evaluate users’ estimation of the robot’s reachable workspace, we sample query
points in the workspace and ask users to select points that they think the robot’s end effector can
reach. These points correspond to the red dots in Figure 6.3A and Figure 6.3B.

robot collaboration. The result suggests that as the robot shows more demonstrations, the human

has a better understanding of its capability and collaborates with it more effectively for all base-

lines. Looking at the sample efficiency, we notice that without modeling human belief changes,

the improvement is quite slow and limited: a large number of demonstrations need to be observed

before calibration is achieved. On the contrary, trajectories generated by our proposed REMP

algorithm keep providing new information to the user. As a result, the user’s estimation accu-

racy increases much faster for belief compared to the baselines. There is fluctuation when many

trajectories are shown, due to the limited memory of our human model.

6.5 User Study

As we have shown the effectiveness of REMP in simulation, we now turn to investigate how much

it helps users work with robots in a user study. This study was certified as exempt from IRB review

per 45 CFR 46.104 category 3 by the UCLA Institutional Review Board on 9/4/2020.
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Table 6.1: Survey statements to evaluate reachability, predictability, reliability and trust toward
robots.

1. It is easy to tell where the robot’s hand can reach.
2. The robot behaves in a predictable manner.
3. I can rely on the robot to function properly despite its limited capability.
4. I trust the robot.

6.5.1 Experiment Design

Participants. We recruited 202 participants (37% Female, median age 34) from Amazon Mechan-

ical Turk.

Materials. During the study, participants interact with the three robots in the simulation as de-

scribed in Section 6.4.3. We measure how well participants can understand the robot’s capability

and how such understanding can help them in the collaboration, as well as their self-reported per-

ception of the robot. To measure capability understanding, we ask users to choose positions that

they think the robot can reach from a number of object queries, as shown in Figure 6.6. We record

their selections and compare them with the ground truth. For collaboration task performance,

we use the accumulated reward of the team as a measure. To measure the perception of the robot,

we ask participants to rate statements listed in Table 6.1 on a 7-point Likert scale labeled from

”strongly agree” to ”strongly disagree”, after they have finished interaction with a robot. Inspired

by [MG00], the statements shown in Table 6.1 are designed to evaluate their subjective understand-

ing of the robot in different aspects, including reachability, predictability, reliance and trust.

Calibration task. In the calibration task, the participant would be randomly assigned to an ex-

periment group, and observe T demonstrations. Based on the simulations results in Figure 6.5A,

we believe showing more demonstrations would generally lead to a better calibration. Considering

the limited time of participants in our online study, however, we cannot use an arbitrarily large

T . From simulation, we witness the most significant improvement during the first 4 trajectories,

thus we control the number of demonstrations T = 4 in practice. After seeing all demonstrations,

participants are asked to estimate the robot’s reachable workspace by choosing positions that they
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(A) Intersection of Union between
the human reachability estimation
and the ground truth. A higher
value indicates better estimation.

(B) The human-robot team perfor-
mance in the collaboration task. A
higher value indicates a higher re-
ward.

(C) Users’ ratings toward the Lik-
ert statements in Tab. 6.1. A
higher rating indicates higher con-
fidence.

Figure 6.7: User study results. Here we report means and standard errors. * indicates statistical
significant pairs (p < .05).

think the robot can reach from a number of object queries, as shown in Figure 6.6.

Collaboration task. In the collaboration task, participants are asked to perform an online table

clearing task together with the same robot they have just been calibrated. As discussed in Sec-

tion 6.4.1, the task required the team to clear all four objects on the table. During each time step,

the participant would pick up an object first before the robot makes its decision. The team would

get rewarded based on how fast they take all the objects. Since two of the objects cannot be reached

by the robot, to get the maximum accumulated reward (+2), the participant needs to pick up ob-

jects that cannot be reached by the robot. Failure to do so would result in the team getting a lower

reward (0).

Experiment conditions. Like simulations, we varied types of motion users observed in the user

study, i.e., the belief, static and traversal methods defined in Section 6.4.3.

Design. The robot types are within-subject: participants interacted with all three robots. Demon-

strations are between-subject: participants only saw demonstrations from one of the three experi-

ment conditions when interacting with a robot.

Procedure. After a brief introduction, each participant is asked to interact with three robots A,

B and C in random order. The purpose is to see how robot’s physical configurations affect capa-
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bility perception. During the interaction with each robot, the participants would first go through a

calibration task before collaborating with the same robot on the table clearing task.

Hypotheses. We hypothesized the capability calibration framework benefits the users in the fol-

lowing aspects:

H1: Participants going through capability calibration in the belief condition would have a better

understanding of the robot’s capability, compared to those in the other conditions.

H2: Teams in the belief condition would perform better in the collaboration tasks than those in the

other conditions.

H3: Participants in the belief condition would have a more positive perception of the robot, com-

pared to those in the other conditions.

6.5.2 Result and Analysis

Capability understanding. We first analyzed the accuracy of the user’s estimation of the robot’s

reachable workspace, by computing the intersection of union (IoU) between their responses and

the ground truth. We performed a Kruskal–Wallis H-test of the IoUs using the type of motion

independent variables. As a result, we found a significant effect for the motion (χ2(2,603) =

113.52, p< .001). A post-hoc analysis with Mann-Whitney U test revealed that all three conditions

are different from each other, with belief significantly better than static (p < .001) and traversal

(p < .001). This confirms our hypothesis H1. Figure 6.7A shows the accuracy of participants’

reachability estimation w.r.t different robots. On average, belief performs 65% better than static

and 32% better than traversal. Compared to the simulation results in Figure 6.5, the user study

result follows relatively the same order for different conditions.

Task performance. We also analyzed the collaboration task performance. A Kruskal–Wallis

H-test indicates that there is a statistically significant effect of the accumulated rewards between

conditions (χ2(2,603) = 22.62, p < .001). The post-hoc Mann-Whitney U test showed a signif-

icant difference between belief and static (p < .001). This partially supports our hypothesis H2.
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We didn’t observe a significant difference between belief and traversal. Figure 6.7B shows the task

performance for different robots in three conditions. The Pearson correlation coefficient between

reachability estimation and collaboration performance is r = .203 with p-value smaller than 0.001,

indicating a positive correlation. This validates that calibrating perceived robot capability benefits

the collaboration performance. Surprisingly, users in the traversal condition have a slightly higher

reward when collaborating with the PR2 robot compared with those in static, even if their reach-

ability estimation is less accurate, although the difference is not significant. This is probably due

to the stochastic nature of the traversal baseline and specific object locations in our collaboration

task.

Perception of robots. Finally, we analyzed participants’ perception toward robots. Running a

Kruskal–Wallis H-test, we found significant effects for reachability (χ2(2,603) = 20.39, p < .001)

and predictability (χ2(2,603) = 11.30, p = .003). The post-hoc Mann-Whitney U test revealed

significant difference between belief and traversal for reachability (p < .001) and predictability

(p < .001), confirming H3. Overall, users tended to prefer belief over static, and static over

traversal. This is unexpected for reachability, considering the fact that users are actually better

at predicting robots’ reachability in traversal than in static. The Pearson correlation coefficient

between reachability rating and prediction accuracy is r = .109, indicating a weak positive corre-

lation. Similarly, we observe a weak correlation r = .019 between self-reported reliance and users’

actual ability to rely on the robot during collaboration. This suggests that there may be a discrep-

ancy between the users’ self-reported capability understanding and what they actually know about

the robot.

In summary, we found that users in the belief condition had the most accurate estimation of

the robots’ capability, and reported the robots in this condition as the most reliable, the most

predictable, and the easiest to understand among all three conditions. Moreover, users working

with the belief robots achieved a higher reward than those working with the static robots did.

These objective and subjective results together suggest that our approach has an overall advantage

for improving humans’ understanding of robots as well as the quality of collaboration over the
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baselines.

6.6 Conclusion

We have proposed an expressive robot motion planning algorithm, REMP, which can generate

informative trajectories by integrate human belief update into trajectory optimization. Our experi-

ments show that our approach can efficiently calibrate a user’s perception of a robot’s reachability

and consequently improve human-robot collaboration.

In this work, we focused on the robot’s spatial reachability. As reaching is one of the most

basic tasks in human-robot interaction, we believe understanding reachability would greatly help

users understand robot capacities in more complex tasks. Thus we view our work as a successful

first step towards a more general capability calibration setting. In the future, it is possible to extend

REMP for other capabilities. Our current work treats predictability and reliability as separate

measures from trust. Considering the multidimensional nature of trust, better instruments can be

used for a more comprehensive trust measure [MU21]. Also, due to online experiment constraints,

we only investigated the reachability calibration problem on a 2D plane. We intend to generalize

our algorithm to 3D environment in future work.
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CHAPTER 7

In-situ bidirectional human-robot value alignment with

communicative learning

7.1 Introduction

What makes a good human-robot team? At the dawn of artificial intelligence (AI), Norbert

Wiener [Wie60] identified the foundation of collaborative robots with the warning “if we use,

to achieve our purposes, a mechanical agency with whose operation we cannot interfere effec-

tively . . . we had better be quite sure that the purpose put into the machine is the purpose which

we really desire.” Since then, several efforts [KM94, GN07] have demonstrated that effective

human-robot collaboration depends on a shared team mental model which includes values [Sch92],

goals [RCS92], and current states of the task [RCS92]. To achieve a shared team mental model, hu-

mans use communication as an efficient tool to establish a common team understanding of task ex-

pectations, with team members adopting anticipatory information-sharing strategies to accomplish

collaborative tasks [MES04, BSS16]. In most cases, the sharing process is bidirectional among

collaborators, as each teammate needs to fulfill the roles of both speaker and listener (i.e., provid-

ing private task-relevant information to partners while also accurately comprehending teammates’

messages). Successful communication in human-robot collaboration can be signaled by bidirec-

tional value alignment, with robots accurately inferring human values, combined with effective ex-

planations of the robot’s behavior to humans. If these prerequisites are not met, the collaboration

may encounter unforeseeable difficulties due to erroneous expectations of teammates [ULS20].

Thus, for robots to become beneficial collaborators in human society, they must be receptive lis-
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teners and expressive speakers when interacting with their human teammates.

From the listener’s perspective, algorithms such as inverse reinforcement learning (IRL) [AN04b]

combine human interactive data with conventional machine learning methods to learn human val-

ues in specific tasks [KS09, GSS13]. Assuming (sub-)optimal behavior from human experts, IRL

aims to recover the underlying reward function that guides human demonstration. However, ac-

quiring human data in some application domains that arise in military and healthcare contexts can

be expensive, if not impossible. Dependence on large datasets also prevents these methods from

tackling in-situ, real-time, and interactive human-robot collaboration scenarios. From the speaker’s

perspective, explainable artificial intelligence (XAI) was introduced to facilitate the alignment of

mental models between humans and robots [EGL19]. However, existing XAI systems typically

emphasize the generation of interpretable rationales to explain model decisions or predictions, ei-

ther unfolding the model for a human user to probe and inspect [RSG16,LZS18,EGL19,ZWW20,

ZZZ20], or reconciling the discrepancy between the human user’s mental model and the robot’s

counterparts, for a world model [CSZ17, GZ18] and goals [TAH19, HHA19]. Critically, human

users’ active interactions or inputs to the system only influence how explanations of robots’ deci-

sions are generated, but rarely influence the model’s decision-making process. This amounts to a

unidirectional alignment of the mental model as static machine—dynamic human communication,

where only the human user’s comprehension of the robot or the task evolves, given explanations

about a fixed decision model in machines. In a nutshell, existing XAI systems primarily approach

the human-robot communication problem from one of the two communication directions, but sel-

dom from both.

To accomplish bidirectional human-robot mental alignment, a more human-centric, dynamic

machine—dynamic human communication is required. In such a new paradigm, a robot, in addi-

tion to revealing its decision-making process, would adopt the user’s values and change its behavior

in real-time so that the robot and the human user would cooperatively achieve a set of common

goals. To grasp the user’s messages instantaneously, conventional data-driven machine learning

approaches are replaced by communicative learning within a cooperative team. Explanations from
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the robot will be contextually adapted according to the human’s current goals. Such a cooperation-

oriented human-machine teaming would require the machine to possess a certain level of ToM: A

machine would actively infer the user’s beliefs, desires, and goals [YLF20,GGZ20]. The system’s

design will not be limited to explaining its decision-making process, but will also aim to under-

stand human needs for cooperation, therefore forming a human-centric and human compatible

process [Rus19]. This mental alignment process, that can be viewed as one core computation for

forming communal and personal common ground [Cla96] that guarantee the coherence of human

conversations, embarks the success of human-machine collaboration.

Motivated to build an XAI system with the aforementioned capabilities of understanding the

human user’s beliefs, desires, and goals while being interpretable to the user, we introduce a se-

quential decision-making task that requires human-machine teaming to deal with complex con-

straints over problems intractable to the human’s inferential capabilities. Specifically, we devise

a human-machine teaming system instantiated as a collaborative game, in which the human user

needs to work together with a group of robot scouts to accomplish some tasks and optimize the

group gain. In this game, the user and robots communicate on a constrained channel: (i) Only

the robots directly interact with the physical world; the user does not directly access the physi-

cal world or directly control robots’ behavior. (ii) Only the user has access to the ground-truth

value that encodes human’s desirable end-states, which determine how the task should be com-

pleted (e.g., minimizing time, maximizing areas to explore), and the robots have to infer this value

function through human-machine interactions. Such a setting constitutes a miniature task that re-

alistically mimics real-world human-machine teaming. Many systems perform autonomously and

interact directly with the hazardous environments under human users’ supervision, but it is chal-

lenging [Sam38] for desirable end-states to be explicitly coded in autonomous agents beforehand,

or to change dynamically as events unfold. This setting also follows the classic multiagent sys-

tem collaboration framework, where agents in the system can work in parallel but may rely on

their partners’ communication and feedback [Hub88]. To complete a game successfully, robots are

expected to accomplish bidirectional alignment by both “listening” and “speaking” wisely. First,
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Figure 7.1: Overview of bidirectional human-robot value alignment. Pie charts represent the
values, i.e., the importance of different goals in a collaboration task, such as simultaneously con-
sidering safety, gaining money, saving time, and reserving resources. t in the superscript represents
the time step. U and M in the subscript stand for “user” and “machine”, respectively. VU is the
user’s true value, VUinM is the robot’s estimation of the user’s value, and VMinU is the user’s esti-
mation of the robot’s current value. δ denotes the distance between values in the task value space.
In every round of interaction, the machine first receives signals from the physical environment and
processes its observations to form an abstract state of the environment. Next, the machine presents
the processed map together with movement proposals and explanations to human users, who will
provide feedback to the system accepting/rejecting the proposals according to human values and
current map state. Given the user’s feedback, the machine then updates its estimation of human
values and takes actions w.r.t. the new values. Cooperative human-robot communication with ap-
propriate explanation aligns the team values in two directions by diminishing the distance between
VUinM and VU , as well as VMinU and VUinM, resulting in final convergence to the true value VU .

robots need to extract useful information from human feedback to infer the user’s values and adjust

their policies accordingly. Second, robots are required to effectively explain what they have done

and plan to do based on their current value inference, so that the user knows whether the team

shares the human values. fig. 7.1 illustrates the bidirectional value alignment process in the game.

Taken together, the proposed XAI system aims to address the following two questions: (i) How can

robots accurately estimate users’ intentions during real-time interaction and feedback? (ii) How

can robots explain themselves so that the user can understand their behavior and provide helpful
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feedback to aid their value alignment?

To learn human values and intentions, robots make proposals for task plans and ask for the

user’s feedback (i.e., acceptance or rejection of a proposal), from which the task goals can be

inferred. In the collaborative game, knowing that robots are actively learning human values, the

user tends to provide helpful pedagogical feedback to facilitate alignment [HLM16]. In partic-

ular, every message conveys two aspects of meanings: (a) literal meaning, based on consistency

between this message and the value, and (b) pragmatic meaning [Gri75, GS13, SGG14], based on

deficiency of alternative feedback. Aware of the user’s helpfulness, the robots adopt a human-

centric amelioration of iterative teacher-aware learning (ITAL) [YZS21]to learn the human value.

ITAL performs maximum likelihood estimation (MLE) based on a two-part likelihood function:

The first part models the probability of given feedback being aligned with the human value (literal

meaning), and the second part captures the probability of receiving that feedback instead of other

alternatives (pragmatic meaning). Leveraging both aspects of meanings, the proposed XAI system

demonstrates value alignment in an in-situ, few-round, instantaneous manner, enabling interactive

human-machine communication in a cooperative teaming task with a large problem space.

To synchronize the robots’ mental status with the human user, our XAI system generates ex-

planations that reveal robots’ current estimation of human values and justify the proposed plan.

In each step of interaction, to avoid overwhelming the user’s cognitive workload with verbose

explanations, the robots present customized explanations, such as omitting repetitive signals and

emphasizing important updates. The robots model human users’ mental dynamics as a Markov

process and track the most relevant aspects of the robots’ decision process using a sequential sta-

tistical graphical model. The explanation that includes all the relevant aspects and best addresses

the user’s concern at that step will be presented. After receiving explanations from robots and

sending feedback to them, the user provides cues to the robots about how satisfying they found the

latest proposals and explanations. Using this feedback, the robots constantly update the formats,

attention, and contents of the explanations.

To evaluate the performance of our XAI system, we conducted human experiments to examine
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the success of bidirectional human-robot value alignment. We adopted three types of explanations,

and randomly assigned participants into one of the three groups. Three dependent measurements

were used to assess the mental accordance: (i) the consistency between robot’s inferred value and

human’s true value, (ii) human perception of how well robots infer and align with human’s value,

and (iii) human’s cognitive trust [Sim07] of the system. Our results show that the proposed XAI

system can achieve bidirectional value alignment in an in-situ, real-time manner for collaborative

tasks; the robots can infer the human user’s values and make their value estimation comprehensible

to the user. We also found that some forms of explanations that benefit the way humans interact

with the robots may not necessarily improve the human perception of how well robots infer users’

values. These results provide converging evidence supporting the necessity for diverse explana-

tions that promote both the performance quality of robots and their social intelligence [RSP21]. As

the goal of an AI collaborator is to reduce the human’s cognitive burden and assist task completion,

we believe that proactively inferring human values in real-time and fostering human comprehen-

sion of the system paves the way for generic human-machine teaming.

7.2 Results

fig. 7.1 illustrates the bidirectional value alignment procedure between the human user and robots

during the game. The system’s learning algorithm, built on top of ITAL [YZS21], substitutes

the conventional likelihood functions for regression or classification tasks by explicitly integrating

the Boltzmann rationality human-decision model. The system incorporates both the literal and

pragmatic meaning of human feedback to infer the user’s value. Meanwhile, the system explains

its decision-making process to facilitate human perception of the machine. To test the system,

we design a psychological experiment to assess the performance of human-robot value alignment

using different forms of explanations. In the coming sections, we first describe the human-robot

collaboration game design, followed by an overview of the algorithms we used for bidirectional

value alignment and explanation generation. Next, we introduce the human experiment design,
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Figure 7.2: Study design of the Scout Exploration Game. Timeline (A) denotes events happen-
ing in a single round of the game, starting from scouts receiving environment signals and ending
with their next move. Proposals and explanations are presented differently to users depending on
their experimental group; see fig. 7.3 for details. The value estimation asks users to infer scouts’
value at current time. Answers to these questions will not be used by the scouts during the game,
but only for inspecting users’ mental model after the game completes. fig. 7.5B shows the detailed
UI of these questions. Timelines (B) and (C) depict mental dynamics of the robots and the user,
respectively.

report the empirical results of value alignments between humans and machines, and compare the

impact of various types of explanations on value alignment.

7.3 Game design

Our collaborative game, the Scout Exploration Game, involves one human commander and three

robot scouts. The game’s objective is to find a safe path on an unknown map from the base (located

in the bottom right corner of the map) to the destination (located in the upper left corner of the map).

The map is represented as a partially observed 20× 20 tile board, with each tile potentially holding

one of the various devices and remaining unobserved until a robot scout moves close enough to

observe (reveal) the tile’s contents. Every scout has the same probabilistic observation model,

specified later in the “Observation model” section.

There is structural interdependence between human and scouts in the game [JV19] in the fol-
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lowing way: (i) the user depends on the scouts to explore the dangerous area and defuse bombs,

and (ii) the scouts need the user to provide feedback to better understand the goal of the current

mission. We define a set of goals for the robot scouts to pursue as they find the path to reach the

destination, including (i) saving time used to reach the destination, (ii) investigating suspicious

circuits/bombs (loops of devices connected with wires) on the map, and (iii) exploring tiles, and

(iv) collecting resources (gold bricks on the map). The game’s performance is measured by these

factors, i.e. the accomplishment of these goals by the robot scouts, and their relative importance

(weights), defined as the human user’s value function. Although all goals have intrinsic benefits, a

trade-off among the goals has to be made according to the value function. For instance, if time is

valued more in the value function than resources, the scouts should ignore some resources along

the way to the destination for the sake of time. To emphasize the trade-off essence of value func-

tions, we represent the importance of each factor with a percentage and the four percentages sum

to 1. Before the interaction begins, a value function is assigned only to the human user as the

mission for the game. Just like in the real world, various tasks can be specified with distinctive

functions defined on a unified set of features [BDM17]. We coined seven value functions in this

study to cover diverse types of tasks: four of them have one dominant goal, two of them have two

equally important goals, and the rest values everything but resources.

We mimic a realistic scenario, where human needs can be too diverse to code in the robot

beforehand and value functions can be difficult to transfer between human and machine due to

different mental representations. Without knowing the value function, to complete a task, the robot

scouts (as a team) must quickly infer the commander’s value. In each step, we let the robot team

make three movement proposals, one for each scout, to the user, and the user can either accept

or reject a proposal. To help the commander make decisions, the robot team also explains the

reason for every proposal. With the user’s feedback, conditioned on the interaction history as

well as the current map status, the robot team adjusts its estimation of the human value and takes

actions accordingly. Specifically, if a plan is accepted, the proposer will follow that plan as much

as possible (a plan may be interrupted by unexpected blocks in the partially observable map);
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otherwise, the robot will execute a new plan with the updated value estimation. We only allow the

robot team to make proposals once in every round so that they must rely on their own autonomy to

complete the task, instead of proposing until acceptance and effectively being teleoperated by the

user. This concludes one round of interaction, and this process will be repeated. Of note, to avoid

inefficient communication, the robot only makes proposals when necessary and acts according to

the basis of the latest human value estimation. fig. 7.2 summarizes the human-machine interaction

flow.

This game is complex through the lens of the combinatorial game theory. With an average

planning step of 35 and a branching factor of 212, the estimated game tree complexity is of 10126

for scouts to generate task plans. In comparison, chess has a game tree complexity of 10123. On

the player side, with an average round of feedback of 18 and a branching factor of 8, the estimated

game tree complexity is of 1016 for the player to provide feedback.

7.4 Bidirectional value alignment

Bidirectional value alignment, as one of the primary contributions, provides a more human-centric,

dynamic machine—dynamic human communication framework for human-robot teaming. To es-

timate the human user’s value during the communication process, we integrate two levels of ToM

into our computation model. The level-1 ToM encodes the cooperative assumption. Namely, given

a cooperative human user, the accepted proposals are more likely to align with the correct value

function than the rejected ones. The level-2 ToM further accommodates users’ pedagogy into the

model. That is, the feedback that drives robots’ value closer to the true value is more likely to

be selected than other alternative feedback combinations. The pedagogical inclination requires an

additional level of ToM because it demands recursive modeling of the user’s model of the robots.

Combining both levels of ToM, we formulize human behavior with distributions parameterized

by the value and develop a learning algorithm with a closed-form parameter update function; see

details in the Human-robot value alignment section.

109



To facilitate such a bidirectional alignment and gain human trust, we provide different forms of

explanations along with proposals, which unveils the rationales behind scouts’ proposals. Specifi-

cally, the explainer takes in current estimations of two levels of ToM as semantic input and fills it

in a syntactic template. To provide concise explanations that are interpretable to humans and fa-

cilitate learning from humans, we devise a sequential generation process that selects templates by

taking human’s preference over previously observed explanations (i.e., satisfaction score) into con-

sideration. We call such preferences human’s explanation utility; see details in the Utility-aware

explanation generation section.

7.5 Human experiment

7.5.1 Experimental design

The human study examines whether our XAI system achieves real-time bidirectional value align-

ment between the human and the machine. In particular, we evaluate the efficacy of different forms

of explanation of the robots’ plans to human users. We conducted a psychological study with 135

participants. Participants were randomly assigned to one of three groups: (i) a proposal-only group

(ii) a brief-explanation group, and (iii) a full-explanation group, each with 45 participants. In the

proposal-only group, the scouts only make proposals and give no explanations to the human. In

the brief-explanation group, every proposal consists of a one-sentence brief explanation, explicat-

ing its positive outcomes. In the full-explanation group, a more detailed explanation accompanies

every proposal, expounding the gains and costs of scouts’ tentative actions and the dynamics of

their values for the importance of different goals. Across all three groups, the robot scouts follow

the same action policy and decision process for belief updating. The three groups differ only in

terms of the forms of explanations provided to the human participants. fig. 7.3 compares the game

interface that appeared in each group.

Our experimental setup consists of three phases: introduction, familiarization, and game play-

ing. The first two phases prepare participants for the game. Game overview, rules, and UI are
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Figure 7.3: User interface for the scout exploration game. (A) From left to right: Legend panel
in the first column explains the meaning of various icons used in the game. The value function
panel in the second column shows the true values indicating the relative importance of various
goals; the values are unknown to the robot scouts and cannot be modified by the user. The four
right panels change dynamically over the course of the game. The central panel in the third column
shows the current status of the map in the game. The score panel at the bottom shows the current
scores for achieving individual goals. The overall score is the sum of the scores for individual
goals, weighted by the values known to human users in the value function panel. The Status panel
provides a text summary of the current status of the robot system. (B) The Proposal panel shows
the robot scouts’ current proposals; human users can accept or reject proposals of individual scouts.
In the proposal-only group, participants only see a descriptive sentence for each proposal (B.0),
whereas, in the brief-explanation and full-explanation groups, participants are presented with a
brief explanation about the proposal’s purpose (B.1). (C) The Explanation panel shows detailed
explanations provided by the scouts, only displayed to the full-explanation group.(D)The bottom
table summarizes key components of the game display included in each group.

explained in the introduction phase. In the familiarization phase, the system tests participants with

a set of questions to validate their understanding of the game; only participants who correctly an-

swer all the questions in the familiarization phase proceed to the game playing phase. During the

game, participants are asked to accept or reject scouts’ proposals and assess satisfaction with the
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scouts’ communication after every feedback. The feedback for proposals are given using buttons

shown in fig. 7.3B. The satisfaction are provided via Likert-scale questions shown in fig. 7.5A.

In addition, we also ask participants to estimate the machine’s internal states, such as the scouts’

current value function and their qualitative trust of the XAI system. The scouts’ value estimation

questions are asked every 2 rounds of communication, and the trust questions are asked every 5

rounds. fig. 7.5B and fig. 7.5C show the scouts’ value estimation question and the trust question

respectively. Note that human judgments about the value estimation and trust are not used to adjust

scouts’ behavior; these additional measures are only used for evaluation purposes.
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Figure 7.4: Results of value estimation for scouts and humans in three groups. The legends:
proposal, brief, and full refer to the proposal-only group, the brief-explanation group, and the full-
explanation group, respectively. Horizontal axis indicates the progress of the game for human
participants; vertical axis indicates Kendall’s rank correlation coefficient between estimated values
by scouts and humans; higher correlation indicates better value alignment. Top panel A: correlation
between scouts’ value estimate and the true values that are known to human users as a function
of game progress (i.e., scout’s accuracy in estimating human values). Before the game starts,
the scouts’ value estimate is initialized as uniform across all goals. Bottom panel B: correlation
between the human estimate of the scouts’ values and scouts’ estimate of the true values as a
function of game progress (i.e., humans’ accuracy in estimating scouts’ values). Asterisks in the
plot indicate significant group differences in paired t-test with P-value smaller than 5%. The error
bars indicate the observation minimum and maximum. The solid lines and red dashed lines in the
bars respectively indicate the median and mean.
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7.5.2 Human study results

fig. 7.4 illustrates the bidirectional human-robot value alignment results for all three groups. We

compute the Kendall rank correlation coefficient, commonly referred to as Kendall’s τ coefficient,

to assess the value alignment between scouts and humans. To compare two sets of values (e.g.,

values estimated by scouts versus true values known to human users), we first rank the task goals

by their corresponding values and then calculate the Kendall’s τ coefficient between the two rank-

ings. Perfectly agreed/disagreed rankings have τ = ±1, and independent rankings expect τ ≈ 0.

To demonstrate dynamic changes in bidirectional value alignment between scouts and humans, we

record the scouts’ estimation of the user’s value and measure the user’s estimation of the scout’s

value as the game proceeds. Since games have various lengths due to different explanation formats,

group values, and individual differences in participants, we normalize game progress as a percent-

age calculated by dividing the number of current iterations by the total number of iterations. For all

three groups, we remove subjects who fail attention checks and outliers whose alignment results

are 1.5 Interquartile Range Method (IQR) below the 25th percentile or above the 75th percentile at

any game progresses.

fig. 7.4A shows the alignment between robots’ estimated values and the true values known

to human users. First, all groups show higher value alignment at the end of the game com-

pared to the beginning of the game [paired t-test, tProp(44) = 2.850,PProp = 0.007, tBrie f (44) =

10.148,PBrie f < 0.001, tFull(44) = 11.452,PFull < 0.001]. Importantly, scouts that interacted with

the brief-explanation and full-explanation groups show stronger value alignment, revealed by

higher correlations between scouts’ estimated values and true values, than alignment in the proposal-

only group (τ = 0.2,0.4,0.5 for the proposal-only , brief-explanation and full-explanation groups

respectively). The group differences emerge in early stages of the game (25% of the game progress),

and are maintained to the end of the game, confirmed by analysis of variance (ANOVA) at a range

of progress points [from game progress 25%, 50%, 75% and 100%, F(2,132)= 19.086,14.202,11.961,11.622;P<

0.001,P < 0.001,P < 0.001,P < 0.001]. Better value alignment in the two groups involving ex-

planation than the baseline proposal-only group without explanation provides strong evidence that
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explanations about robot decision processes to human users enhance bidirectional communications

between humans and machines. The enhanced communication, in turn, helps machines gain accu-

rate estimates of human values, thereby fostering human-machine teaming. There is no significant

difference between the brief-explanation group and full-explanation group, implying that the detail

of the explanations may not critically influence humans’ feedback in terms of accepting or reject-

ing robots’ proposals, as long as these explanations provide sufficient contexts to justify the robots’

intents.

fig. 7.4B depicts how well the human users estimate the scouts’ values over the progress of

the game (i.e., the accuracy with which humans assess the scouts’ values). fig. 7.5B shows the

interface we used to collect human estimates in the experiment. An ANOVA test revealed a sig-

nificant main effect of groups in the later stage of the game playing at game progress 50%, 75%

and 100%, [F(2,132) = 7.632,F(2,132) = 8.339,F(2,128) = 10.542,P = 0.001,P < 0.001,P < 0.001

respectively]. The brief-explanation and full-explanation groups show significant enhancement

of alignment between human estimates of scouts’ values and scouts’ values used in determin-

ing their decision and proposals at the end of the game compared to the beginning of the game

[paired t-test, tBrie f (44) = 3.272,PBrie f = 0.002, tFull(39) = 2.810,PFull = 0.007], whereas the

proposal-only group does not show any improvement [paired t-test, tProp(38) = 0.286,PProp =

0.776]. These results suggest that human users have difficulty understanding robots’ intentions

by only observing their situational behaviors, highlighting the central role of explanation in re-

vealing the robots’ intentions to its human user. Critically, humans show stronger alignment in

estimating scout’s values in the full-explanation group than in the other two groups in the sec-

ond half of the game [independent sample t-test, from game progress 50%, 75% and 100%,

t(88) = 4.291, t(88) = 4.511, t(84) = 5.088,P < 0.001,P < 0.001,P < 0.001 against proposal-

only ; t(88)= 2.387, t(88)= 2.219, t(86)= 2.196,P= 0.019,0.030,0.031 against brief-explanation

]. In comparison, the brief-explanation group only yields a more consistent human estimate of

scouts’ values than the proposal-only group at the end of the game [independent sample t-test,

t(86) = 2.274,P = 0.026]. Taken together, these results indicate that both forms of explanation
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facilitate human estimates of robots’ value estimates based on observation of robots’ behavior and

interactions with the robots. But the full explanation, which provides details about both the advan-

tages and the disadvantages of a proposal, is more helpful to human judgments about the robots’

estimates than a brief explanation showing only the major benefit of a proposal.

Both results from robots’ estimate of human values in fig. 7.4A and from human estimate of

robots’ values fig. 7.4B show that groups with brief and full explanations can maintain a stable

trend of value alignments across the entire human-robot teaming process. However, the emergence

of value alignment differs across different groups and varies for different alignment metrics over

the course of the game. Robots’ value alignment metrics measured by the Kendall’s τ coefficient

converges at 25% of the game. Alignment of human estimates and scouts’ values converges at 50%

progress for the full-explanation group, and 75% game progress for the brief-explanation group.

These results demonstrate our system’s capability to maintain the established team mental model

during continuous human-robot teaming, with full explanations enabling faster convergence of

users’ estimates of robots’ mental status (estimates of values). The convergence of both alignment

metrics shows that (i) our value alignment algorithm enables the robot scouts to learn human

values in an in-situ, real-time, and interactive manner, and (ii) explanations generated by the robots

enable users to better perceive the machine’s values. These results demonstrate a bidirectional

human-robot alignment. Moreover, our result pins down the contributions of explanation formats

in different facets of human-robot communication. We found that brief and full explanations lead

to similar effects in improving the way humans provide feedback to the machine via acceptance or

rejection of robots’ proposals. However, the full-explanation group shows a significantly greater

benefit for human accuracy in estimating robots’ values.

7.6 Discussion

Our proposed XAI system successfully demonstrates the feasibility of a bidirectional human-robot

value alignment framework. From the listener’s perspective, robots in all three explanation groups
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can quickly align to the user’s value by correctly ranking at least 60% of goals’ importance as early

as the 25% progress of the game. From the speaker’s perspective, by providing proper explana-

tions, robots can reveal their intentions to the user and facilitate better human perception of the ma-

chine’s values, with convergence occurring at 50% (full-explanation ) and 75% (brief-explanation )

of the game. Together, both perspectives provide convincing evidence of a bidirectional process of

value alignment. Specifically, (i) by receiving cooperative human feedback, robots gradually up-

date their value function to align with the human values, and (ii) by continuously interacting with

the robots, the human user gradually forms a coherent perception of the system’s capability and

intentions. Although the system’s values have not converged in the first half of the game, the user’s

perception of the robots’ estimate can still improve. Eventually, when the robots’ values become

stable, the user’s estimation of the robots also becomes stable. The pairing of convergence from

robots’ estimate of the user’s values to user’s true values, and from user’s estimate of the robots’

values to robots’ current values forms a bidirectional value alignment anchored by the user’s true

value.

Despite showing similar converging trends of value alignments, the three explanation groups

differ in the precision of their alignments. In both directions of human-robot estimation (i.e., scouts

estimating human values and the human’s understanding of the scouts’ current value estimation),

the Kendall’s τ coefficients of the proposal-only group are significantly lower than the coefficients

of the other two groups. These gaps suggest that human-machine interactions alone are not suf-

ficient to enhance the human perception of the machine, nor are they sufficient to evoke better

human feedback/guidance to the robots. Results from the computational ecology models show

that a multiagent system can converge to an equilibrium point only when the information delay

and uncertainty between agents are fairly small. On contrary, our modeling framework can han-

dle relatively large amount of uncertainty. In our case, the scouts’ explanations play an important

role in reducing information uncertainty and system convergence: Explanations help the human

understand the machine’s current value estimation and generate a better response, which in turn

enables the machine to estimate the value more accurately. The extent of human-robot mutual
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understanding depends upon how an AI system explains itself to the user. In the absence of infor-

mative explanations, certain misconceptions cannot be eliminated even with continuous interaction

between humans and robots, leading to a slower value alignment.

Compared with the brief-explanation group, the full-explanation group demonstrates signifi-

cant enhancement in the human estimate of robots’ values, but does not show a strong advantage

in terms of scouts’ value alignment. These results indicate that human users in the two explanation

groups provide feedback to the scouts in similar ways, although the full-explanation group acquires

a more accurate understanding of the system. One possible cause of this dissociation is that human

users exhaust their cognitive resources when processing other complexities of the game, such as

comprehending messages from the three scouts or analyzing information on the map. Thus, ad-

ditional details in the full explanation cannot be accommodated to offer more rationale feedback.

An alternative possible reason involves the design of the game, in particular, the granularity of

the feedback. As there are only eight possible feedback combinations (two for each scout’s pro-

posal) in every round, it is possible to identify the best response to the scouts with only a limited

understanding of the system status and the proposals. The extra information provided in the full

explanation, though beneficial to the user’s perception of the machine, maybe useless for scouts’

value learning.

We also measured users’ qualitative trust in the system as the game proceeds. However, we did

not find any significant differences across the three explanation groups. This result suggests that

human trust toward machines depends on many facets of the machines [WPH16, RSP21]. Both

social intelligence and performance quality of robots are indispensable to fostering trust [RSP21].

Better bidirectional value alignment can improve team performance, but may not be sufficient

to enhance the human perception of scouts’ social intelligence through short-term human-robot

collaborations. Also, in the current game, scouts are not likely to make catastrophic mistakes

throughout the task, and are guaranteed to reach the upper left corner of the map successfully.

Since the robots can always accomplish the task in the end, users may tend to trust the robots, so

that explanations have less impact on trust formation.
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To summarize, we present a bidirectional human-robot value alignment framework and use

an XAI system to verify its feasibility. The proposed XAI system demonstrates that, with ToM

integrated into the machine’s learning module and appropriate explanations provided to the user,

humans and robots are able to achieve alignment of mental models through an in-situ, real-time and

interactive manner. The coherent computational framework reported in our study provides promis-

ing results to address the question raised at the beginning of this article, “what constitutes a good

human-robot team”, by contributing to the formation of a shared mental model between a human

and a machine. Particularly, our work focuses on the task-specific aspects of the mental model,

namely the value and intentions. In more intricate scenarios, mental alignments can further entail

other aspects going beyond the context of a single task, e.g., capabilities of every team member,

prerequisites and outcomes of actions (also referred to as the world transition model in reinforce-

ment learning (RL)), individual duties and roles. These components in the mental model are useful

across various task contexts. In human language using, such a mental alignment process is often

referred to as personal common ground and can be established via episodic evidence [Cla96], i.e.,

the actions or events the speakers are part of together. In our setting, the episodic evidence could

be acquired from human-robot collaboration in multiple games, possibly with different value func-

tions and maps. As such, the universal human model described in eq. (7.2) and eq. (7.6) can be

replaced by a customized model parameterized for individual person’s characteristics.

In this work, we focus on the alignment of value functions, which captures the relative im-

portance of a wide range of goals. Aligning the values can greatly help the human and machine

establish common ground for task-oriented collaborations. Thus, we consider our work as the first

step towards a more general mental model alignment setting in human-machine collaboration. In

future work, we plan to explore factors that can further enhance human users’ trust (e.g., enabling

counterfactual queries to the robots), validate the effects of alignment on task performance, and

apply our system to tasks involving more complicated environments and value functions.
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(A) Explanation/proposal satisfaction question (B) Value estimation question

(C) Qualitative trust question (D) Attention check question

Figure 7.5: Examples of questions participants received during the game. (A) Explana-
tion/proposal satisfaction question. Participants are asked to provide a satisfaction score for the
explainer in every round when they receive scout’s proposals and explanations. This satisfaction
score is used to update models for generating future explanations. (B) Value estimation question.
Participants predict the robot scouts’ belief about the true human value by sliding the bars to set
a relative importance of each goal; of note, this is a question about level-2 ToM. Our interface
ensures that the total value of all goals sums to 100%; if the participant moves one slider, the
others will automatically change proportional w.r.t. their original values, such that all values still
sum to 100%. Meanwhile, participants can lock a particular slider by checking the lock symbol
to the right of the slider. (C) Qualitative trust question. We ask the participants “how confident
you are in the scouts?” and “how much do you think the scout’s actions will have a HARMFUL
outcome?” (D) Attention check question. These questions are shown after trust questions; par-
ticipants receive one of the four questions about the game logic and UI. Participants who failed the
attention check are later removed from data analysis.
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7.7 Game setup details

We implement this game using HaxeFlixel, a 2D game engine for JavaScript-based games, such

that participants can access the game on web browsers; this setup is necessary in the situation

of COVID-19. Our between-subject design is divided by the explanation format provided to the

participants: the proposal-only group, the brief-explanation group, and the full-explanation group.

The proposal-only group only shows the proposed trajectory on the map and a basic descriptive

text about the proposal, such as “Scout 1 proposes to move along the blue trajectory.” For the brief-

explanation and full-explanation group, brief explanations accompany the proposals to clarify the

motivation of the robot scouts; e.g., “Scout 1 proposes to move along the blue trajectory, which

is in the top 1% of sampled trajectories when saving time.” The full-explanation includes a more

detailed full explanation besides the brief one in the proposal panel; e.g., “Scout 1 wants to save

more time at the cost of map exploration and resource collection.” More details about explanations

can be found in the “Explanation Generation” section. The full user interface of the game is

displayed in fig. 7.3 with the actual explanations used in the game.

After giving feedback to the scouts’ proposals, participants are asked a few questions before

the next round of explanation and proposing. These questions are, by the order of showing up, sat-

isfaction about the latest proposal and explanation, value estimation, qualitative trust, and attention

check. Only answers to the satisfaction questions are used by the system’s explainer for explana-

tion utility tracking; all other questions are used only for post-game analysis. fig. 7.5 includes

some example questions queried during the game. To avoid overwhelming users, value estimation

questions are asked every 2 proposals, and qualitative trust and attention check questions are asked

every 5 proposals.
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Algorithm 6: Overview of the Scout Exploration Game
1 Set t = 1, initialize st , agent’s mental state xR

0 ;
2 while not task-complete(xR

t−1) do
3 ot ∼ observation model(st) // collect observations from the environment

4 x̂R
t = update state belief(xR

t−1,ot) // update belief given observations

5 mR
t ∼ proposal explanation generation(x̂R

t ) // generate messages (proposal &
explanation) to the user

6 xR
t = update value belief(x̂R

t−1,m
R
t ,m

H
t ) // update beliefs given user feedback

7 aR
t ∼ action policy(xR

t ) // agent’s policy
8 st+1 ∼ game dynamics(st ,aR

t ) // state transition
9 t = t +1

10 end

7.8 Computational model details

7.8.1 Overview

Before diving into the technical details of how the proposed robot scouts act, align value, and

interact with the human user in a bidirectional communicative learning framework, we first provide

an overview of the game flow and the notations of the computational model. We use R and H to

denote the robot scouts and the human user, respectively. θ encodes the parameters of the value

function, s the physical state, υ the utility of explanations, b(·) the belief over latent variables.

xR =
(
b(s),b(θ),b(υ)

)
, the mental state [RCS92, GN07] of the robots (the robot team shares

one mental state), depicts their current beliefs of all the unknown task-relevant variables. m the

message used for human-machine communication. In every round of the game, the robot scouts

receive observations from the environment and make a task plan based on their current mental

state. Next, they send messages (proposals and/or explanations) to the human user for feedback;

this user feedback is used for robots’ final movement plans in this round. Alg. 6 sketches the high-

level game flow, and fig. 7.6 shows the computation pipeline for one round of human-machine

teaming.
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Figure 7.6: Algorithmic flow of the computational model.

Of note, one comparable but different setting to our human-machine teaming framework is

IRL [AD21]. Nevertheless, IRL aims to recover an underlying reward function given pre-recorded

expert demonstrations in an offline passive learning setting. In contrast, the robot scouts in our

setting are designed to learn interactively from scarce supervisions given by the human user. Cru-

cially, our design requires the robots to actively infer the human user’s value in real-time and

in-situ as the task proceeds. Furthermore, to consummate a collaboration, not only must the robot

scouts quickly comprehend the human user’s intent, but also elucidate themselves to ensure smooth

communication with the human user throughout the entire game. In brief, the robots are tasked to

perform value alignment by inferring the human user’s mental model, actively making proposals,

and evaluating the human user’s feedback, which requires complex and recursive mind modeling

of the human user.

In the coming sections, we will introduce how the robots select actions, make proposals, update

belief of human user’s value function, and generate communication messages.

7.8.2 Action selection

Suppose the robot scouts already know about the human user’s value function. The game simplifies

to a partially observable Markov decision process (POMDP) setting, solvable by planning-based
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methods [SV10]. Let τi denote the plan proposed by the i-th scout and τ = {τ1, ...,τK} as the

complete plan of the scout group, where K is the number of scouts in the group. When constructing

a plan, the scouts utilize the following policy:

argmax
τ∈T

Es∼b(s),θ∼b(θ)[θ
T f (τ,s)] = argmax

τ∈T
Es∼b(s)[ f (τ,s)]

T Eθ∼b(θ)[θ ]

≈ argmax
τ∈T

θ̄
T( 1

NS

NS

∑
n=1

f (τ,sn)
)
= argmax

τ∈T
θ̄

T f (τ),
(7.1)

where f (τ,s) is the status of the four goals in the terminal game state given that current state is s

and the scouts follow the plan τ; we call it the features of (τ,s). The first equality holds because

s and θ are independent of each other in our setting. Given the dynamics of the game, f can be

forward simulated in our planner, such that the expectation of f (τ,s) can be approximated using

Monte Carlo methods with NS state samples, giving us f (τ), the feature of τ . Instead of computing

the full distribution, the agent only needs to keep track of the mean of the belief over human user’s

value function as we are using a linear model to calculate the gain of the game; we use θ̄ to denote

the mean of b(θ). Since the space of all possible plans is too large ((20× 20)K) to be calculated

exactly, we use heuristics to approximate the space of all possible plans by constructing another

space T and select the optimal plan from it. After a plan τ is determined, the joint action of all

robot scouts is the first move of the generated plans aR = (τ1[0], . . . ,τK[0]).

7.8.3 Proposal selection

To improve user experience during the interaction and foster human trust, the robots ought to

make good proposals at the proper time to collect users’ informative feedback. In active learn-

ing [RLG18], the query usually maximizes the expected information gain. However, such criteria

of asking questions to an oracle cannot be applied to human-robot interaction (HRI). Critically,

besides acquiring information from the human, robots’ questions also ought to reveal their mental

status to the user and gain their trust. Of note, a clear dilemma always exists: The proposal with the

most expected information gain is usually the most uncertain one as well, querying of which easily
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leaves an unreliable impression of the system to the user and impairs the human perception of the

machine’s value. To tackle this issue, we design our communicative learning framework such that

the scouts will propose the optimal plan given their current estimation of the user’s value. Such

proposals can reveal the robot team’s current mental status to the user for better human perception

of the scouts, hence receiving more helpful supervision. For instance, if all three proposals ignore

suspicious devices, but bomb exploration is an important factor, the user will be aware of the dis-

crepancy between the scout’s value and the intended value and adjust it with feedback. As a result,

plans used for proposals are calculated in the same way as plans for action selection described in

the last paragraph, only with b(θ) from the previous time step.

7.8.4 Human-robot value alignment

Level-1 ToM The robot scouts need to estimate the human user’s value from their interactions.

In the collaborative game, the more a proposal facilitates goals with high values, the more it is

likely to be accepted. In this paper, we refer to the ability to infer humans’ value from their actions

as level-1 ToM. Bearing level-1 ToM, the scouts can interpret the user’s feedback and update

the value estimation given the current map status. For example, if a trajectory towards a partially

explored circuit is accepted, the scouts are likely to increase the value to bomb investigation and

lower the other goals. We integrate level-1 ToM into our computation model and develop a learning

algorithm with a closed-form parameter update function.

Belief update with level-1 ToM Let mH( f b) denote the human user’s feedback, which is a

binary code with the i-th bit indicating the acceptance or rejection of the proposal from the i-

th scout. Assuming the human user considers each proposal separately and follows a Bernoulli
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acceptance distribution [CNS18], the likelihood function of the human user’s feedback is:

p
(
mH( f b)|τ; θ̄

)
=

K

∏
i=1

p
(
mH( f b)i|τi; θ̄

)
=

K

∏
i=1

exp(β1θ̄ T f (τi))
mH( f b)i exp(β1θ̄ T f (¬τi))

(1−mH( f b)i)

exp(β1θ̄ T f (τi))+ exp(β1θ̄ T f (¬τi))
,

(7.2)

where

f (τi) = ∑
τ∈T :τi∈τ

f (τ), and f (¬τi) = ∑
τ∈T :τi /∈τ

f (τ). (7.3)

That is, a proposal is more likely to be accepted if including it in the scouts’ plan is more beneficial

than excluding it when θ̄ is the value parameter. Given this likelihood function, we utilize MLE to

learn θ̄ by maximizing log p(mH( f b)|τ; θ̄) w.r.t. θ̄ :

θ̄ = θ̄ +η
∂ log p(mH( f b)|τ; θ̄)

∂ θ̄
, (7.4)

where η is the learning rate, and

∂ log p(mH( f b)|τ; θ̄)

∂ θ̄
=β1

K

∑
i=1

[
mH( f b)i f (τi)+

(
1−mH( f b)i

)
f (¬τi)

−Em∼p(mH( f b)i|τi;θ̄)
[
m f (τi)+(1−m) f (¬τi)

]]
.

(7.5)

where acceptance/rejection selects the feature of including/excluding τi and the expectation is taken

w.r.t. the feedback distribution given current θ̄ . The expectation computes the average feature if the

plan, τ , is randomly accepted/rejected according to current θ̄ . The difference between the user’s

designated feature and the expected feature forms the gradient. Since θ̄ > 0 and ∥θ̄∥1 = 1, we

perform MLE with the projected stochastic gradient ascent algorithm.

Level-2 ToM Intuitive but limited, the comprehension of feedback endowed by level-1 ToM is

constrained to its plain content, i.e., the literal meaning of the feedback. In human communication,

messages often convey both literal meanings and pragmatic meanings [SGF13]. In other words,
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one can acquire not only explicit information from what others said but also implicit information

from what others did not say. A typical concretization is the Gricean Maxims of quantity [Gri75] or

the scalar implicature: When people say “I like drinking warm coffee,” though the lexical meaning

of “warm” is semantically close to “hot,” they mean “not hot”; otherwise people would have said

“hot” directly [Car98, VBP13]. Similarly, the human user’s selection of a certain combination of

feedback but not other combinations can also help robot value alignment. To comprehend this

process, it requires the robots to mentally simulate and plan based on human users’ pedagogical

tendency and belief about the robots’ current plan. We refer to such a recursive inference ability as

level-2 ToM.

Belief update with level-2 ToM To enable level-2 ToM, robots need to conduct a recursive men-

tal simulation in a counterfactual fashion and consider the advantage of the received feedback over

others not being sent. Intuitively, suppose the user knows how the robots with level-1 ToM update

the value given feedback; the more the feedback leads to changes towards the ground-truth value,

the more it is likely to be selected. Computationally, the level-2 robots first simulate level-1 value

update given all possible feedback. Next, the robots find a ground-truth value such that the update

brought by the received feedback is better than the other alternative feedback. Mathematically, we

formulate the human user providing feedback based on its anticipatory improvement following

q(mH( f b)|θ̄ ,τ;θ
∗) =

exp(−β2∥θ̄ +η
∂ log p(mH( f b)|τ;θ̄)

∂ θ̄
−θ ∗∥2)

∑
m̂H( f b)∈FB

exp(−β2∥θ̄ +η
∂ log p(m̂H( f b)|τ;θ̄)

∂ θ̄
−θ ∗∥2)

, (7.6)

where β2≥ 0 controls the extremeness of the Boltzmann rationality, η is the learning rate, and θ ∗ is

the set of ground-truth parameters of the value function possessed by the human user. The intuition

of this equation is: The feedback from the human user is sampled from a soft-min distribution of

the distance between the updated parameters given the feedback and the ground-truth parameters.

The smaller the distance is, the larger the improvement brought by that feedback, and the larger the

improvement is, the more likely the feedback is provided. Further analysis of the above distance
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can be found in Liu et al. [LDL18]. Integrating this feedback function into our value learning

algorithm, we can derive a new parameter update function:

θ̄ = θ̄ +ηg
(
mH( f b)

)
+2β2η

2
(

g
(
mH( f b)

)
−Em( f b)∼q(m( f b)|θ̄ ,τ;θ∗) [g(m( f b))]

)
, (7.7)

where

g(m( f b)) =
∂ log p(m( f b)|τ; θ̄)

∂ θ̄
. (7.8)

The first two terms in eq. (7.7) are the same as the level-1 belief update, whereas the third term

grasps the message’s context by comparing the selected message against the also-runs and lever-

ages the advantage to further update the belief. Notice that θ ∗ is unknown to the agent, so q in the

expectation does not have an exact solution. Thus, we use θ̄ +ηg(mH( f b)) as an approximation

of θ ∗. That is, we calculate level-1 ToM update on the parameters of the value function and take an

additional gradient ascent step for level-2 ToM update. In this work, we always initialize scouts’

value as uniform across all goals, i.e., θ̄ 0 = [0.25,0.25,0.25,0.25].

The difference between robots with level-1 ToM and level-2 ToM is the likelihood function they

used to model the user. A level-1 robot assumes the user provides feedback only by thinking about

how good the proposals are, whereas a level-2 robot is also aware of the pedagogical perspective

of the human user in the collaborative game and accommodating the information of both the literal

and the pragmatic meaning of user feedback.

Theoretically, the recursive reasoning between robots and the human user can continue in-

finitely with unlimited resources or up to a fixed-point of convergence [WWP20]. In this work, we

only model the human user as knowing the value update mechanism of scouts with level-1 ToM, a

manageable extent of reasoning for human cognitive capability [WVV17], which is also adopted

by recent literature (e.g., [PCD19]).

The effectiveness of this computational model in the Scout Exploration Game has been verified

by the empirical results in the previous section. For other settings, in which task performance

has a linear relationship with the value, as depicted by eq. (7.1), the same model can be applied
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with minor modifications. For settings involving non-linear value functions, the inner product in

eq. (7.1) is to be replaced, as well as the gradient function in eq. (7.5). Still, the core computations

in the algorithm, namely the MLE learning of the value function and the level-1/2 ToM integration,

remains the same.

7.8.5 Utility-aware explanation generation

We generate explanations to aid the human user in collaborating with the robots by accepting/rejecting

specific proposals. Given trajectories produced by the planner, the explainer aims to generate

human-like explanations that not only provide sufficient semantic information but also match the

human user’s syntactic preferences, namely, the explanation utility. Specifically, an explanation is

defined by its semantic inputs and a set of syntactic rules. The former is produced by the plan-

ner, providing explanations regarding what. This includes the current observation, physical state,

and belief over the value function. The latter is to provide explanations regarding how, i.e., user’s

explanation utility.

To quantitatively estimate the utility values, after each round, we use a Likert-scale question-

naire on explanation/proposal satisfaction (see fig. 7.5A). Answers to these questions reflect the

participant’s belief regarding how helpful the explanations are for them to understand the game

and provide correct guidance to the robot team towards plans that are better suited to the scenarios

and their value functions.

Given the satisfactory score, we formulate the overall generation as an Hidden Markov Model

(HMM)-based sequential generation process, capable of adopting the temporal dynamics of the

human user’s explanation utility. More precisely, at each step, we first predefine a set of tem-

plates, each of which is accompanied by a combination of attributes, e.g., isCounterfactual,

hasTarget.; these templates provide the basis of an explanation and are filled in according to rel-

evant slots. Next, the explainer determines the optimal syntax that matches the human’s syntactic

utility based on the satisfactory score.
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Of note, one distinguished attribute to highlight is isRitualized, stemmed from the term

“ontogenetic ritualization” in evolutionary anthropology literature. Conventionally, ritualization

is referred to the evidence that early infants learn to communicate, especially in a symbolic man-

ner, not based on imitation but rather on an individual learning process [Loc80]. Tomasello and

Call [TC97] argue such communicative behavior is a communicative signal that can be formed

by two individuals shaping each other’s behavior in repeated instances of interaction over time.

Similar phenomena have also been observed and investigated on other primates, such as great

apes [Tom96]. For example, many individual chimpanzees come to use a stylized “arm-raise” to

indicate that they are about to hit the other and thus initiate play [TC97]. In this way, a behavior

that was not at first a communicative signal would become one over time. Inspired by this non-

verbal behavior, the process of “ontogenetic ritualization” can also be formed during human-robot

teaming, specifically when understanding and reacting to explanations. Intuitively, human speakers

are reluctant to repeat similar messages that they have already conveyed before and would rather

deliver a more concise version. To achieve this goal, we explicitly define the “ritualized form” of

explanation templates.

7.9 Human experiment details and demographics

Human participants were recruited from University of California, San Diego (UCSD) undergrad-

uate students taking psychology courses and the University of California, Los Angeles (UCLA)

Department of Psychology subject pool. All subjects were compensated with course credit for

their participation. A total of 167 students completed the introduction phase and passed the fa-

miliarization test (56, 53, 58 for the proposal-only , brief-explanation , full-explanation group,

respectively). 19 subjects were removed from the analysis for failing the attention check during

the game play, resulting in 148 subjects (49, 47, 52 for the proposal-only , brief-explanation , full-

explanation group, respectively) considered in the final results. In fig. 7.4, we report results after

the removal of outliers that are 1.5 IQR below the 25th percentile or above the 75th percentile,
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resulting in 135 valid subjects (45 subjects per group). Before the game starts, all subjects were

assigned to one of the three explanation groups and given one of seven value functions randomly.

The explanations for the brief-explanation and full-explanation groups are generated as described

in the “Utility-aware explanation generation” section. Subjects in the proposal-only group did not

have access to any explanations.

The experiment included three phases: introduction, familiarization, and game play. In the

introduction phase, participants were presented with the context and rules of the Scout Exploration

Game. Icons, scores and UI in the game were explained to the participants with both text descrip-

tions and video demonstrations. Because subjects in different explanation groups will see different

UI in the game, we guaranteed that the UI in the video demonstrations is consistent with the one

in the actual game; video demonstrations for other groups were not presented, which ensures the

between-subject design. In the familiarization stage, participants were tested with multiple-choice

questions about their understanding of the game flow, rules, and the UI. Participants who correctly

answered all questions proceeded to game play. Participants having at least one wrong answer

were asked to review the introduction and retake the familiarization test. Participants who could

not pass the familiarization test twice or took more than 20 minutes before starting the game play

were removed from the study. Credits were awarded to participants regardless of their familiar-

ization test results. The computational model used for scouts’ value alignment is the same across

all groups to attribute the difference in the performance of bidirectional value alignment to the

lack or distinction of explanations. Participants in the proposal-only , brief-explanation , and full-

explanation group communicate with the scouts for 15.4, 16.4, 16.2 rounds on average, with the

standard deviation of 3.2, 4.0, 3.7 rounds, respectively. The average time of game play is 20.8,

22.5, 32.3 minutes, with the standard deviation of 4.5, 6.3, 10.7 minutes for the proposal-only ,

brief-explanation , and full-explanation group, respectively.

To measure the value alignment performance, we use the Kendall τ coefficient to compare

the goals’ importance ranking in the target value with the ranking in the value estimation. The

null hypothesis is that explanations yield the same value alignment across different groups, and
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therefore, no difference in the ranking statistics would be observed. The test is a two-tailed inde-

pendent samples t test to compare performance from two groups of participants, because we used a

between-subjects design in the study, with a commonly used significance level α = 0.05, assuming

t-distribution, and the rejection region is P≤ 0.05.
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CHAPTER 8

Conclusion

As intelligent machines powered by AI are growing more and more capable, there is an ongoing

debate over to what extent they will replace human labor. Some argue that machines will coexist

with human workers, while others believe full replacement is inevitable at the end. Whatever

the answer may be, as their creators and users, we are responsible for making sure machines are

achieving what we expect them to achieve. As Robert Weiner stated [Wie60], ”if we use, to achieve

our purposes, a mechanical agency with whose operation we cannot interfere effectively ... we had

better be quite sure that the purpose put into the machine is the purpose which we really desire.”

Indeed, it is vital to create machines that are understandable and at the same time understand users’

mental states, for the acceptance of AI and maybe for the society in general.

This dissertation addresses the challenge of bidirectional mental state alignment between hu-

mans and machines from three perspectives: i) creating standardized simulation environment and

benchmark to support data-driven learning approaches (chapter 2 and chapter 3), ii) proposing ex-

periment protocol to better understand human mental states from user study (chapter 4), and iii)

integrating the human mental state estimation into task planning and motion planning to generate

communications for collaboration (chapter 5, chapter 6 and chapter 7).

Nevertheless, we are still far from solving this challenge. Below I list open problems in each

directions. I hope this dissertation can provide valuable insights and inspire future works in human-

machine interaction.

• Tasks and benchmarks. Although many recent works have contributed to creating simulation

environments and tasks for training and evaluating AI agents in general [CDF17, KMH17b,
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PRB18, XSL20, BGK20, GSA20], human-machine interaction systems are evaluated on dif-

ferent tasks created by individual researchers, with few exceptions [CSH19]. We believe that

creating standardized benchmark and simulation environments in each domain should be a

valuable contribution, since it enables researchers to build on top of existing algorithms for

new solutions.

• Computational models for inferring human mental states. Humans have different types

of mental states, including trust, attention, perception, emotion, belief, motivation, inten-

tion and memory. They are typically not directly observable and have to be inferred from

humans’ behaviors. There exists works modeling some of these mental states separately

[LS04,BTS07,VKZ14,YLF20,FQZ21] in rather constrained settings. However, these men-

tal states can be very much correlated for the same individual, thus calling for a holistic

approach.

• Communicative actions. To communicate effeciently with each other, humans often rely

on common ground, a set of propositions which everyone assumes to be true. Forming the

common ground requires implicit and explicit communication. Moreover, based on common

ground, humans take advantage of multiple means of communication, including physical

motions, language and non-verbal behaviors, suited to the specific situation to achieve their

communication intent. Intelligent machines with various embodiment representations should

find the most suitable modality for communication.
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style with nonlinear inverse optimization.” ACM Transactions on Graphics (TOG),
24(3):1071–1081, 2005.

[LHP15] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. “Continuous control with deep rein-
forcement learning.” arXiv preprint arXiv:1509.02971, 2015.

[LLR18] Patrick Lindemann, Tae-Young Lee, and Gerhard Rigoll. “Catch my drift: Elevat-
ing situation awareness for highly automated driving with an explanatory windshield
display user interface.” Multimodal Technologies and Interaction, 2(4):71, 2018.

[LMS17] Pat Langley, Ben Meadows, Mohan Sridharan, and Dongkyu Choi. “Explainable
agency for intelligent autonomous systems.” In Twenty-Ninth IAAI Conference, 2017.

[Loc80] A. Lock. The guided reinvention of language. Academic Pr, 1980.

[LRM17] Oliver Liu, Daniel Rakita, Bilge Mutlu, and Michael Gleicher. “Understanding
human-robot interaction in virtual reality.” In RO-MAN 2017 - 26th IEEE Interna-
tional Symposium on Robot and Human Interactive Communication, 2017.

[LS04] John D Lee and Katrina A See. “Trust in automation: Designing for appropriate
reliance.” Human factors, 46(1):50–80, 2004.

[Lu12] Xiaofei Lu. “The relationship of lexical richness to the quality of ESL learners’ oral
narratives.” The Modern Language Journal, 96(2):190–208, 2012.

[LWZ14] Shuang Liu, Xiaoru Wanyan, and Damin Zhuang. “Modeling the situation aware-
ness by the analysis of cognitive process.” Bio-medical materials and engineering,
24(6):2311–2318, 2014.

144



[LWZ17] Yang Liu, Ping Wei, and Song Chun Zhu. “Jointly Recognizing Object Fluents and
Tasks in Egocentric Videos.” In Proceedings of the IEEE International Conference on
Computer Vision, volume 2017-Octob, pp. 2943–2951, 2017.

[LZS18] Hangxin Liu, Yaofang Zhang, Wenwen Si, Xu Xie, Yixin Zhu, and Song-Chun Zhu.
“Interactive robot knowledge patching using augmented reality.” In 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 1947–1954. IEEE,
2018.

[MBM16] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. “Asynchronous meth-
ods for deep reinforcement learning.” In International conference on machine learn-
ing, pp. 1928–1937. PMLR, 2016.

[MCR21] So Yeon Min, Devendra Singh Chaplot, Pradeep Ravikumar, Yonatan Bisk, and Rus-
lan Salakhutdinov. “FILM: Following Instructions in Language with Modular Meth-
ods.” arXiv preprint arXiv:2110.07342, 2021.

[MES04] Jean MacMillan, Elliot E Entin, and Daniel Serfaty. “Communication overhead: The
hidden cost of team cognition.” Team cognition: Understanding the factors that drive
process and performance, 2004.

[MG00] Maria Madsen and Shirley Gregor. “Measuring human-computer trust.” In 11th aus-
tralasian conference on information systems, volume 53, pp. 6–8. Citeseer, 2000.

[MHL17] John McCormac, Ankur Handa, Stefan Leutenegger, and Andrew J. Davison.
“SceneNet RGB-D: Can 5M Synthetic Images Beat Generic ImageNet Pre-training
on Indoor Segmentation?” In Proceedings of the IEEE International Conference on
Computer Vision, volume 2017-Octob, pp. 2697–2706, 2017.

[Mil19] Tim Miller. “Explanation in artificial intelligence: Insights from the social sciences.”
Artificial Intelligence, 267:1–38, 2019.

[MKS15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Os-
trovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. “Human-level
control through deep reinforcement learning.” Nature, 518(7540):529–533, feb 2015.

[MKT18] Coleman Merenda, Hyungil Kim, Kyle Tanous, Joseph L Gabbard, Blake Feichtl,
Teruhisa Misu, and Chihiro Suga. “Augmented reality interface design approaches for
goal-directed and stimulus-driven driving tasks.” IEEE transactions on visualization
and computer graphics, 24(11):2875–2885, 2018.

145
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