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United States

The tri-synaptic pathway in the mammalian hippocampus enables cognitive learning
and memory. Despite decades of reports on anatomy and physiology, the functional
architecture of the hippocampal network remains poorly understood in terms of the
dynamics of axonal information transfer between subregions. Information inputs largely
flow from the entorhinal cortex (EC) to the dentate gyrus (DG), and then are processed
further in the CA3 and CA1 before returning to the EC. Here, we reconstructed elements
of the rat hippocampus in a novel device over an electrode array that allowed for
monitoring the directionality of individual axons between the subregions. The direction
of spike propagation was determined by the transmission delay of the axons recorded
between two electrodes in microfluidic tunnels. The majority of axons from the EC to the
DG operated in the feed-forward direction, with other regions developing unexpectedly
large proportions of feedback axons to balance excitation. Spike timing in axons
between each region followed single exponential log-log distributions over two orders of
magnitude from 0.01 to 1 s, indicating that conventional descriptors of mean firing rates
are misleading assumptions. Most of the spiking occurred in bursts that required two
exponentials to fit the distribution of inter-burst intervals. This suggested the presence
of up-states and down-states in every region, with the least up-states in the DG
to CA3 feed-forward axons and the CA3 subregion. The peaks of the log-normal
distributions of intra-burst spike rates were similar in axons between regions with modes
around 95 Hz distributed over an order of magnitude. Burst durations were also log-
normally distributed around a peak of 88 ms over two orders of magnitude. Despite the
diversity of these spike distributions, spike rates from individual axons were often linearly
correlated to subregions. These linear relationships enabled the generation of structural
connectivity graphs, not possible previously without the directional flow of axonal
information. The rich axonal spike dynamics between subregions of the hippocampus
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reveal both constraints and broad emergent dynamics of hippocampal architecture.
Knowledge of this network architecture may enable more efficient computational artificial
intelligence (AI) networks, neuromorphic hardware, and stimulation and decoding from
cognitive implants.

Keywords: electrode array, entorhinal, dentate, CA3, CA1, axons, burst, power law

INTRODUCTION

Routing of information through the hippocampal tri-synaptic
circuit is widely viewed as the process that enables learning or
remembering cognitive events as components of episodes. The
inherent wiring architecture enables episodes to be completed
from partial information or recognized for novel aspects or
locations. We have considerable anatomical knowledge of the
circuit, first described in 1911 by Ramon y Cajal as a sequential
relay of connections among three anatomical regions within the
hippocampus: from the entorhinal cortex (EC), to the dentate
gyrus (DG) to the CA3 and CA1 (Andersen et al., 1971), before
closing the loop back to the subiculum and entorhinal cortex.
While this understanding is of a largely unidirectional circuit,
except for the final feedback connection, control theory requires
feedback in other subregions, as seen in major cortical areas.

Motivation for a Reverse-Engineered
Hippocampus
We know a lot about individual synaptic structures, synaptic
machinery, transmitters and their receptors, voltage-gated
channels, and action potentials, but less about how these
components dynamically bind cell assemblies in each subregion
and contribute to the whole flow of information and the
specialization at each stage, leading to learning and remembering.
In order to learn more about the spatial connectivity that
emerges from connecting these subregions, here, we reverse-
engineered the rat hippocampal formation by micro-dissecting
these individual subregions from young postnatal animals and
plated dispersed neurons into a novel four-compartment device.
The four compartments were bridged by microfluidic tunnels
that allow only axons to communicate between subregions. The
entire system sits on top of a 120-electrode micro-array that
monitors extracellular action potentials in the subregions and
form pairs of electrodes in the tunnels to follow the flow of
inter-regional action potentials and identify feedback routing.

One of the great wonders of experimental neuroscience is the
emergent development of neural activity, modeled in culture,
from isolated spherical cells extricated from the developing
rodent brain, first as dendrites, then axons, and then synapses
(Gross, 1979; Bartlett and Banker, 1984). While we know
much about how the rich repertoire of spikes and bursts must
coordinate the flow of information, the architecture for the
coordinated flow is poorly understood. The intrinsic ability of
isolated brain neurons to reconnect in an in vivo order has been
demonstrated by a number of groups (Czarnecki et al., 2012;
Downes et al., 2012; Kanagasabapathi et al., 2013; Dranias et al.,
2013). Contrary to what might be expected in a uniform culture
environment, we have found by reverse transcription polymerase

chain reaction (RT-PCR) that subregions dissected from specific
regions of the rat hippocampus (DG, CA3, CA1, and EC)
maintain their subregion-specific gene expression (Brewer et al.,
2013). Several laboratories have segregated two parts of the brain
into a bidirectionally connected network (Kanagasabapathi et al.,
2013; Bhattacharya et al., 2016; DeMarse et al., 2016; Poli et al.,
2017, 2018a,b), cortical-striatal (Virlogeux et al., 2018). In a
three-compartment culture of cortical-hippocampal-amygdala,
Dauth et al. (2017) more rigorously showed unique patterns
of protein expression by mass spectroscopy. This suggests that
epigenetic switches were already set for the fate of the neurons
to produce distinct expression profiles and, hence, behave
in different electrophysiological capacities. In this study, we
explicitly describe these electrophysiologic distinctions with a
novel four-compartment device to enable the characterization
of spike dynamics in the primary input into the four major
subregions of the hippocampus, namely, EC, DG, CA3, and CA1
in a realistic closed loop architecture.

Technological Advances Using
Microelectrode Arrays
This utility of brain investigation using micro/multi electrode
arrays (MEAs) follows 40 years of progress in the development
and use of cutting-edge microfabrication technologies with
in vitro brain preparations, notably pioneering studies by Gross
(1979) and Pine (1980, 2006) with cultured neurons, and the
team of the authors (Novak and Wheeler, 1989) using current
source density to better reveal the propagation of epileptiform
activity in hippocampal slices. The growth of the technology,
industry, and applications is related in a history by Pine
(2006). The technologies have been used for new insights in
epilepsy, stroke, learning/memory (examples: Shimono et al.,
2002; Stett et al., 2003; Colombi et al., 2013) and for long-
term cultured slices (Egert et al., 1998). MEA technology
continually outpaces the science as several groups (Hutzler
et al., 2006; Hierlemann et al., 2011; Ferrea et al., 2012; Yuan
et al., 2018)1 have demonstrated arrays with electrode counts
increasing from tens to thousands of electrodes and feature
dimensions reduced from tens of microns to a few microns
from slices and dissociated cells, giving detailed images of
signal propagation recordings with variations in the conduction
velocity of individual axons (Bakkum et al., 2013). Examples
of how advances in MEAs enabled a new understanding of
neuronal networks abound. For example, mouse organotypic
slices coupled to high-density MEAs revealed faster spike rates
in cortical preparations than hippocampal (Timme et al., 2014).
Advances in network architecture introduced small-world, rich

1https://www.3brain.com/resources/gallery
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club topologies from dissociated hippocampal cultures (Poli et al.,
2015; Schroeter et al., 2015). The potential for use of MEA
technology in understanding the dynamics of neural activity has
been studied by a number of groups using dissociated neural
cultures (e.g., Gross, 2011) to explore learning capabilities (Jimbo
et al., 1999; Marom and Shahaf, 2002; Cadotte et al., 2008).
Control of the geometry of plated neurons has been used to
understand the development of neural activity (Segev et al., 2002;
Wheeler and Brewer, 2010), or to understand how information
propagation depends on geometry (examples from the group
of the authors: Alagapan et al., 2016; DeMarse et al., 2016).
Flickering fluorescence from somal calcium sensors coincided
with MEA measures of bursts of spikes, indicating spike burst-
mediated opening of calcium channels (Jimbo et al., 1993;
Takayama et al., 2009). Calcium imaging of cell assemblies and
sequences is currently performed in vivo. The self-wiring of these
circuits was described by Segev and Ben-Jacob (1998).

Integration of Microfluidics and
Electrode Arrays
One other technological advance has been the introduction of
microtunnels for isolating axons (Taylor et al., 2003, Taylor
et al., 2005), coupled with several reports that tunnels plus
electrodes enable the recording of axonal activity and conduction
direction (e.g., the group, Dworak and Wheeler, 2009). Rewiring
between brain slices (Berdichevsky et al., 2010; Kanagasabapathi
et al., 2013) and isolated hippocampal neurons (Brewer et al.,
2013) was made possible by microtunnels and wells with axons
communicating from one anatomical region to the next and
microelectrode signal sampling (Poli et al., 2017). Here, we
continue the rich history of in vitro 2D modeling of the
complexities of the 3D brain using a four-compartment device
over a 120-electrode array to access axons of transmission and
disambiguate feed-forward and feedback flow of information
between different subregions of the hippocampus.

Information Transmission Ascertained
From Axonal Spike Propagation
The small 0.1–1 µm diameter of axons within the hippocampus
makes quantitative electrophysiology difficult and confounds the
understanding of the outputs of processing in each layer. Hence,
few studies describe the output of the EC through perforant path
axons into the DG. DG mossy fiber outputs into the CA3 and the
Schaffer collateral coupling from CA3 to CA1 are seldom studied,
because the bundle of these small caliber axons is inaccessible
to individual patch clamp technology. Consequently, it has been
difficult to discern from a subregion how signals and information
are processed for transmission into the next region, even in
hippocampal slices or in vivo recording with tetrode arrays. Here,
we overcome these problems by isolating individual axons in
microfluidic channels that span two electrodes. The two sites
permit the determination of directional propagation of action
potentials, as pioneered by Dworak and Wheeler (2009) and
utilized in the laboratory of the authors in two-compartment
systems (Bhattacharya et al., 2016; Poli et al., 2017, 2018a,b).
However, these two-compartment systems are likely limited by

the absence of a circuit loop that we describe here in a four-
compartment system.

Hippocampal Network Architecture
To better understand the contribution of network architecture
and spiking dynamics to separate information processing in
each subregion of the hippocampus, here, we employ a unique
four-chamber device to answer the question “how do the spike
dynamics and axonal communication differ between subregions
to process the flow of information?” Preliminary attempts at
cross-correlations of spike times in the system revealed only non-
significant differences between the subregions. By segregating
feed-forward from feedback axon signals, here we report that
spike patterns in individual axons reveal a rich repertoire of
bursts that could be connected to their source and targets. In the
feed-forward direction, subregional neuronal somata connect to
their transmission axons, which in turn connect to their target
subregional somata. In the feedback direction, the subregional
order is reversed. While measures from individual axons provide
clear indications of directionality, whether generalizations about
the architecture of each subregion can be inferred requires
statistical analysis of a number of such hippocampal networks.
Subregional statistical differences in the spike dynamics of this
emergent activity could contribute to understanding the network
architecture and information processing. Decades of studies on
hippocampal slices crudely stimulated the perforant path of
Schaffer collateral bundles of axons without knowledge of the
number of axons activated. Not surprisingly, large fractions
of target neurons were stimulated in the CA3 or CA1 to
produce a population spike, but not spike dynamics of individual
neurons. Only recently has a cluster of target responses been
associated with the spatial extent of each terminal field of axons
(Hendrickson et al., 2016), followed by appreciation of differences
in topographic organization along the longitudinal and traverse
axes of the CA3 subregion (Yu et al., 2020). Pairwise spike
correlations between cortical neurons in close proximity capture
most statistical properties of a single neuron and provide a
measure of population activity (Helias et al., 2014; Dettner et al.,
2016). However, these populations could be more rigorously
defined by their subregional somata to target axon and axonal
source to target neuron as enabled here.

Logarithmic Distributions of Spike
Dynamics Underpinning Specificity in
Network Architecture
Brain activity measures often exhibit logarithmic dynamics
(Buzsaki and Mizuseki, 2014) that turn multiplicative functions
into addition and division into subtraction (Polsky et al., 2009;
Silver, 2010). Knowledge of this network architecture may apply
to neuromorphic engineering in which a key pursuit is to
mimic the extreme efficiency of memory storage, processing, and
retrieval of vast amount of information that is routinely presented
to a relatively small region of the brain, the hippocampus. A better
understanding of hippocampal spatial dynamics may enable
more efficient computational AI networks and neuromorphic
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hardware, as well as suggest patterns for human brain stimulation
and decoding from cognitive implants.

MATERIALS AND METHODS

Neuronal Network Culture in a
Four-Chamber Device
Glass multi-electrode arrays were substrates for the culture of
neuronal networks (MEA120 with one hundred twenty 30-µm
diameter electrodes spaced 0.2 mm apart, Multichannel Systems,
Reutlingen, Germany). The substrates were cleaned according to
instructions of the manufacturer. A custom polydimethylsiloxane
(PDMS) device was aligned to the electrodes (Figure 1). Each
of the four wells was 9.7 mm2 by 1 mm high. The wells were
connected by 51 microfluidic tunnels 3-µm high × 10-µm
wide × 400-µm long spaced 50 µm apart (Bhattacharya et al.,
2016). The 120 electrodes allowed 19 electrodes in each subregion
and 2 electrodes under each of 5 of the 51 tunnels between each
subregion, thus monitoring about 10% of the axons between
subregions. Details of the design and architecture of a two-
compartment version were reported previously (Bhattacharya
et al., 2016). The array with the attached device was activated with
an air/oxygen plasma for 2 min to promote adhesion. The tunnels
were filled with 70% ethanol to displace air. The ethanol was
quickly replaced with poly-D-lysine (100 µg/ml, 135 kD, P6407;
Sigma-Aldrich, St. Louis, MO, United States), which was allowed
to attach overnight. Polylysine was aspirated and rinsed once with
18 M Ohm deionized water and allowed to dry. The hippocampal
subregions were micro-dissected from postnatal day 4 Sprague–
Dawley rat pups (Mattson et al., 1989; Brewer et al., 2013) under
anesthesia as approved by the UC Irvine Institutional Animal
Care and Use Committee. Brain cells were dissociated and plated
at 1,000 cells/mm2 for DG (including the hilus), 330 for CA3,
410 for CA1, and 330 for EC (including subiculum). These
densities were chosen to mimic the ratio of neuronal densities
in vivo: EC-DG 1:3, DG-CA3 3:1, CA3-CA 11:1.25, and CA1-
EC 1.25:1 (Braitenberg and Schuz, 2004). The plating and culture
medium was NbActiv4 (BrainBits, Springfield, IL, United States)
to promote synaptogenesis closer to in vivo densities (Brewer
et al., 2008; Poli et al., 2018b). This medium is the classic
Neurobasal/B27 medium (Brewer et al., 1993) supplemented
with creatine, cholesterol, and low levels of estrogen. For
comparisons with hippocampal slice physiology, this 270-mOsm
culture medium contains (in mM) 66.3 NaCl, 26 NaHC03,
5.36 KCl, 1.8 CaCl2, 0.81 MgCI2, 0.9 NaH2P04, 0.2 Fe(N03)3,
25 glucose, 0.23 pyruvate, 10 HEPES, 18 of the 20 common
amino acids (minus excitotoxic glutamate and aspartate), four
vitamins (biotin, vitamin E, vitamin E acetate, and selenium),
albumin, three anti-oxidants (glutathione, superoxide dismutase,
and catalase), two essential fatty acids (linoleic and linolenic
acid), five hormones (T3, progesterone, insulin, corticosterone,
and retinyl acetate) and several other ingredients (carnitine,
ethanolamine, galactose, putrescine, and transferrin) optimized
for hippocampal neuron survival in vitro. The cells in 10 µl of
medium were plated into the wells sequentially. After 30 min in
the incubator to allow for adhesion, the dish was filled with 1 ml

of the medium that connected all the chambers. The cultures were
capped with a Teflon sheet and incubated for 21–26 days in 5%
CO2 and 9% O2. One-half of the medium was changed every
7 days. Activity was recorded after 20–25 days in culture, a period
when cultured networks are reaching stability (Le Feber et al.,
2009). Recordings were collected 2–5 days after medium change.
In this study, final cell densities were not measured. Although
glial densities were not measured, similar cultures contained 20%
astroglia (Boehler et al., 2007).

Multi-Electrode Array and Recording
Recordings were made on the 120-electrode microarray
with a Multichannel Systems MEA120 1100× (Multichannel
Systems, Reutlingen, Germany) amplifier. For this report, only
spontaneous activity was analyzed with the MCRack software at
a sampling rate of 25 kHz at 37◦C for 5 min, in humidified 5%
CO2, 9% O2, as in culture. Movement from the culture incubator
to the amplifier often resulted in low levels of spiking. Recordings
were initiated after several minutes, shortly after stable activity
was seen in 80% of the tunnels. Arrays with less than 80% active
tunnels or that had poor growth in one of the subcompartments
were rejected for recording.

Spike/Burst Detection and Dynamics
Spikes were detected after high-pass 400-Hz finite impulse
response (FIR) filtering and then applying the Precision Time
Spike Detection (PTSD) algorithm (Maccione et al., 2009) using
the SpyCode MATLAB toolbox (Bologna et al., 2010). The
differential threshold was chosen as nine times the standard
deviation of the biological and thermal noise of the signal
that was calculated for 200-ms contiguous windows. The PTSD
algorithm searches for a peak near the threshold crossing for
a time window as defined by peak lifetime period parameter,
set to 1 ms. Additionally, the refractory period (dead time) was
set to 1.6 ms to maximize spike counts and minimize complex
spikes (Narula et al., 2017). Bursts were identified as four or
more spikes with a maximum interspike interval (ISI) of 50 ms
(Bhattacharya et al., 2016).

Spike Sorting and Propagation in Axons
Sorting was not necessary for the subregions, because low
cell density enabled the electrodes there to mostly detect
signals from a single neuronal soma. Individual axons were
detected in a tunnel by performing spike sorting on the two
electrodes to detect single units (Supplementary Figure 1).
Spike sorting was performed offline using the open-source
MATLAB toolbox wave_clus (Quiroga et al., 2004). Single units
were identified by performing feature extraction followed by
unsupervised clustering. Haar wavelet transform with four-
level multiresolution decomposition was used to reduce the
dimensionality of the spike waveform. Unsupervised selection
was used to identify 10 wavelet coefficients with the largest
standard deviation between clusters of identified spike features.
Superparamagnetic clustering was performed on the wavelet
feature to identify single units. The temperature parameter of
supraparamagnetic clustering (SPC) was varied from 0 to 0.2
in increments of 0.01, and the highest temperature with more
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FIGURE 1 | In vitro neuron culture of four separate hippocampal subregions with axonal interconnections aligned on a 120-electrode array. (A) Phase contrast image
after 3 weeks in culture. Spacing between the 30-µm diameter electrodes is 0.2 mm. (B) Raster plot of spikes detected on individual electrodes over 5 min
(30 s/row). Each tick is one spike. (C) Electrode array layout. Reference ground electrodes are seen in the corners. (D) Electrical feedback signals from the indicated
electrodes with source axons in the dentate gyrus (DG)- entorhinal cortex (EC) tunnel appearing to elicit a response in the EC target. Large spike signal to noise
ratios without high-pass filter. Box indicates a burst in spikes. Gray area is enlarged.

than 60 spikes was chosen as the parameter for spike sorting.
Additionally, clusters with refractory violations and temporal
instability were rejected, as prescribed by Hill et al. (2011).

After spike sorting, a normalized matching index (NMI)
was used to identify single units in the two electrodes that

belong to the same axon (Poli et al., 2018b). This was done
by comparing the timing of all the spikes of sorted units on
one electrode to those on the second electrode in the same
tunnel (Supplementary Figure 1). To associate units that belong
to the same axon, an NMI algorithm is calculated for every
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combination of the units in each two-electrode tunnel, as shown
in Supplementary Figure 1D. Paired spikes were identified as
spikes with a delay between 0.1 and 1 ms, corresponding to the
physiological propagation velocity of action potentials in an axon
(0.2–2 mm/ms), adjusted for spike rate. NMI is used to quantify
the temporal overlap between the two spike trains.

NMI =
No. of paired spikes

max(total No. of spikes per spike train)

The combinations of single units from the two electrodes above
a threshold normalized matching index >0.2 were marked as
belonging to the same axon. This NMI threshold was set to
identify sufficient synchrony in spiking by systematic variation
from 0.15 to 0.25. The value of 0.2 as a threshold was chosen
to maximize the detection of axons while removing spurious
matched units that showed low spiking synchrony and had no
predominant direction of spike propagation from the histogram.
Then, conduction time histogram is calculated for the matched
units, as shown in Supplementary Figures 1F,G. The direction of
spike propagation was identified using the peak of the histogram.
The axons were said to have feed-forward propagation when the
spike propagation occurred in the direction of the native flow of
information in the tri-synaptic hippocampal loop.

Probability Distributions
The distributions of spike dynamics that follow log-log
distributions (interspike interval, spikes per burst, and inter-
burst interval) were visualized as complementary cumulative
probability distributions (CCDs) (Newman, 2005). The bins for
the histogram were logarithmically spaced with the number
of bins set to 50 per order of magnitude. The scaling
parameter α is calculated by computing the slope of the linear
regression line that fits the CCD (Arnold, 1983) after log
transforming X and Y axes. The log transformed linear model
was log10(P) = α∗log10(t) + c. The minimum and maximum
time limits for the best fit (highest R2) were determined by
initially setting the cumulative probability range between 0.1 and
1. This was followed by performing a grid search to find the
local maximum for R2 when the time limits were varied by, at
most, 50% using a step size of 5%. In the case of the inter-
burst intervals without a clear single curve fit, a piecewise linear
fit using the same method was applied twice, and the point
of intersection was identified between the two linear fit lines.
The initial minimum and maximum time limits for “up-states”
(corresponding to the faster bursting) were set to the cumulative
probability of 0.1 and 1. The minimum of the “up-states” was used
as the maximum time limit for the “down-states” (corresponding
to the slower bursting), and the initial minimum was set to the
cumulative probability of 0.01. The burst dynamics measures
were better fitted by a lognormal distribution, and probability
distribution was analyzed using the histogram on a semi-log plot
with logarithmically spaced bins, with the number of bins set
to 100 per order of magnitude. The mode was calculated by
fitting a normal distribution to the histogram and identifying the

2www.brilliant.org/wiki/log-normal-distribution

peak, and the standard deviation is calculated using the standard
equation of lognormal distribution.2

Mode of lognormal distribution = e(m− s2
2 )

The mean and SD, m and s, were estimated by fitting a normal
distribution on log-transformed quantities.

Network Graph Visualization
To correlate axonal activity with subregional source or target,
average firing rates were computed for each 1 s of recording.
Graphical connections were evaluated by linear regression
between the pairwise combinations of each axonal and
subregional firing rate. Slope values were interpreted as a
measure of the strength of the connection, and R2 values were
interpreted as a measure of reliability. In order to remove
insignificant connections and for the sake of clarity, the linear
models were analyzed when R2 > 0.2, and slope > 0.1.

Data Processing and Statistics
Data were analyzed with custom MATLAB 2019b scripts
(Supplementary Table 1). Statistical significance of the difference
in slopes was evaluated in MATLAB by analysis of covariance
(ANCOVA) with alpha set to 5%, followed by Tukey’s HSD
(honestly significant difference) test. The significance of the
difference in means was analyzed by analysis of variance
(ANOVA), followed by Tukey’s HSD test. The null hypothesis
was rejected for p < 0.05, adjusted for multiple comparisons.
Significance tests are specified for each type of analysis
within the figure legend. Data were analyzed for 10 separate
networks (n). Scripts and spike time data are available
upon request.

RESULTS

A Reconstructed Hippocampal Network
for Robustly Monitoring Axonal
Communication
In order to reveal the network architecture of communication
between the four subregions of the hippocampal formation, we
designed a four-compartment device with narrow 3 µm × 5 µm
microfluidic tunnels that promote axonal but not dendritic
entry (Figure 1A). These tunnels were previously shown to
be axon-selective over dendrites (Taylor et al., 2003; Dworak
and Wheeler, 2009) if their length was over 300 µm (Wang
et al., 2012). Alignment over an MEA (Figure 1C) allows
the recording of a rich repertoire of spontaneous signals and
low noise (Figures 1B,D). Spontaneous spiking activity from
10 arrays was used for this study (Supplementary Figure 2).
As previously demonstrated for axons communicating between
two compartments of DG and CA3 (Narula et al., 2017), the
tunnels mostly contain only one or two axons each (Figure 2A).
Neurons isolated from distinct postnatal hippocampal subregions
and grown in vitro maintain their distinct developmental
subtypes of gene expression despite a common culture medium
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FIGURE 2 | Feed-forward (FF) and feedback (FB) units between the subregions. (A) Interregional axons by subregions that they connect. Most tunnels were
populated by a single axon. Two or three axon units were also detected. Spike sorting and subsequent determination of direction of propagation yield substantial
numbers of feedback units in each subregion (n = 8 arrays). (B) EC-DG tunnels predominantly contain feed-forward axons, implying that the direction of information
flow is predominantly feed-forward, whereas DG-CA3 and CA3-CA1 contain significantly more tunnels with feedback axons or bidirectional (containing both FF and
FB units). (C) Slower feedback velocities of spike propagation than feed-forward axons by 2-way ANOVA with Tukey HSD subtests of the confidence interval
overlap. p-values above bars are for the feed-forward vs. feedback comparison. Bars are mean and 95% confidence intervals of conduction delays. Corresponding
conduction velocities are also indicated above bars for the 0.2-mm electrode spacing. N = 10 arrays.

(Brewer et al., 2013). Although we can electrically monitor axons
in five of the microtunnels in each of the bridges between
compartments, the design incorporates 10 times that many
microtunnels for maximum axonal communication between the
subregions (DeMarse et al., 2016).

Identification of Feed-Forward and
Feedback Axonal Communication by
Spike Sorting and Timing
Because of the high resistance in the 3 µm × 5 µm × 400 µm
axon microfluidic tunnels, spike amplitudes are often in the mV
range (Dworak and Wheeler, 2009), while out in the subregions
only soma have sufficient current source density to signal a

spike (Nam and Wheeler, 2011). In the microfluidic channel,
there is room for many 0.1- to 1-µm diameter unmyelinated
axons (Bartlett and Banker, 1984). To determine how many
axons were in a tunnel and whether they were conducting
spikes in the feed-forward or feedback direction, we first sorted
spikes at each electrode by their waveforms, assuming each axon
produced a unique waveform (Supplementary Figures 1A,B).
Since each axon would be coupled differently to each of the
two electrodes in the tunnel, waveforms on the two electrodes
would differ and could not be used for the identification of
a unique axon. To identify unique axons, we required the
conduction velocity of each action potential in one axon to
be constant over the 200-µm spacing between electrodes. At
an average of around 0.5 mm/ms for an unmyelinated axon
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(Colombe and Ulinski, 1999; Kondo et al., 2004; Dworak and
Wheeler, 2009), we looked for delay times and directions
between ±0.1 and 1 ms (0.2–2 m/s). Supplementary Figure 1C
shows waveforms on adjacent electrodes in a tunnel with
a 0.6-ms delay in the feedback direction (in this case CA1
to CA3). Supplementary Figure 1D shows a matrix of
NMI for all possible combinations of the pairing of sorted
units on the two electrodes, with three sorted units per
electrode. NMI quantifies the fraction of total spikes that are
within physiologic delay times corresponding to conduction
velocities of 0.2–2 m/s. The distributions of these particular
spike time delays allow the identification of feed-forward
or feedback directions with a Gaussian distribution of delay
times (Supplementary Figures 1F,G). The 0.2-mm distance
between adjacent electrodes divided by the median delay time
is the conduction velocity (Supplementary Figure 1E). Sorted
units that are identified as corresponding to the same axons
are paired by choosing the combinations with maximum
NMI, for all NMI >0.2. The conduction velocities were
calculated for only the paired axons, and the others were
shown blank here.

The trisynaptic circuit was first envisioned as a simple
forward flow of information. Later, anatomy and physiology
identified large numbers of inhibitory neurons within the
hippocampal formation, which would be needed to prevent
runaway excitation. To the knowledge of the authors, although
rich local inhibition is well-known (Geiller et al., 2020), the
extent of inhibitory axonal communication between subregions
is less clear (Penttonen et al., 1997) and not compared
between each subregion. Based on a single sorted waveform
passing over two electrodes, Figure 2 shows that a large
proportion of the microfluidic tunnels between regions contained
a single axon conducting spikes in either the feed-forward
or feedback direction, while some contained two or three
identifiable units or both feed-forward and feedback axons.
The proportion of feed-forward and feedback units might be
expected to be balanced, but we found that the EC-DG axons
were predominantly feed-forward, while DG-CA3 and CA3-
CA1 units were predominantly feedback (Figure 2B). Two-
way ANOVA for the four subregions and two directions was
significant for their interaction, F(3, 63) = 5.66, P < 0.002,
implying that the proportion of feed-forward to feedback unit
counts varied between subregions, and that feed-forward axons
failed to predominate over feedback axons [F(1, 63) = 0.58,
p = 0.7]. We examined the conduction delay for all identified
feed-forward and feedback axons, since a difference would
affect how fast the feedback would occur. Figure 2C shows
that feedback was slower among three of the four subregions,
averaging 0.46 m/s compared with the feed-forward 0.61 m/s.
Since conduction velocity is proportional to the diameter
of the axon (Hursh, 1939), feedback axons are likely to be
smaller in diameter than feed-forward axons. Of the DG-CA3
axons configured in the four-compartment loop, 69% showed
feedback connectivity, which was much stronger than the 19%
feedback in the previous two-compartment unlooped DG-CA3
design [F(1, 12) = 9, P = 0.01] (Bhattacharya et al., 2016).
This result highlights the importance of network architecture.

Together, this diversity of mechanisms allowed the overall flow of
information within the circuit to be relatively balanced. Further
analysis here will describe the distribution of firing rates by
subregion and direction.

Spike Dynamics—Interspike Intervals in
Axons and Subregions Were Log-Log
Distributed
We examined six measures of spike dynamics in the axons
communicating between subregions, as well as the subregions
themselves, all contained in one large network over a 120-
electrode array (see Supplementary Figure 3 for definitions): (1)
interspike intervals, (2) percent of total spikes in bursts, (3) spikes
per burst, (4) inter-burst intervals (burst rates), (5) intra-burst
spike rate, and (6) burst duration. None of these could be well-
fitted with a Gaussian distribution model that characterized a
simple biological mechanism with noise; they were better fitted
by log-log or semi-log (lognormal) distributions.

Interspike intervals followed a log-log distribution from 0.01
to 1 s, corresponding to 1–100 Hz for all inter-regional axons
(Figure 3). Thus, shorter times represent faster firing. This meant
that the probability (P) of spike firing at a time, t, followed
a linear model with slope m based on the equation P = tm.
In log space, we have the linear equation Log(P) = m∗Log(t).
All the data shown in Figure 3 for ISIs are well-fit by a
single-power, one-characteristic slope, with R2 of 0.99 or better.
The nature of this scale-free distribution (Beggs and Plenz,
2003; Newman, 2005) is that differing slopes would be most
evident at long ISIs, but expansion to focus on the shorter
times also would show this dispersion (Figure 3). Figure 3D
shows that the slope of the curve fit for feed-forward axons
from the EC to DG was significantly steeper by ANCOVA than
between the other subregions, which indicated more events
at shorter times and faster firing. Fifty percent of the EC-
DG feed-forward axons (median) had an interspike interval
less than 26 ms and were 27% faster than the slower DG-
CA3 axons with longer spike intervals. From Figure 3E, it
can be seen that the feedback ISIs are the fastest from the
DG back to the EC. Figure 3F shows that the median ISI
in the CA1 subregion is 24 ms and 41% faster than the
slowest DG subregion spiking. Note that the log-log distribution
cannot be accurately described by a certain mean and standard
deviation. Median values were centered around 30 ms for feed-
forward axons, 31 ms for feedback axons, and 29 ms for the
different subregions, corresponding to 32–34 Hz firing rates,
but this characteristic was not useful to discriminate between
subregional axons or subregion wells because of the long-
tailed distributions. This means that behaviors that are often
characterized by mean spike rates are [Frame1]misleading and
missing the full repertoire of a two-log range of spike rates. Log-
log distributions enable a wider range of information transfer
without a mean set point (Fagerholm et al., 2016). Data points
longer than 0.05 s represent spike times between bursts, and
some of the times shorter than 0.05 s are not in bursts,
because they are not part of a sequence of four spikes with
these short times.
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FIGURE 3 | Interspike intervals (ISIs) followed log-log distributions (linear in log-log space). (A) ISIs as complementary cumulative probabilities in feed-forward axons.
More spikes at shorter time intervals are from fastest spiking in EC-DG axons. Longer ISIs from slowest spiking axons are in DG-CA3. (B) ISIs in feedback axons.
Fastest spiking in axons from DG back to EC. (C) Subregional ISIs are shortest (fastest) in the CA1 subregion. R2 > 0.99 for all fits. N = 10 arrays. (D) Feed-forward
axon ISI slopes of which EC-DG is 27% faster than DG-CA3 and each of the others. The median ISI (p = 0.5) for EC-DG from A occurred earliest at 25.6 ms for
EC-DG. (E) Feedback axon slopes of ISI distributions with DG back to EC significantly faster than the others and shortest median. (F) Subregion neuron ISI slopes
with CA1 fastest. P-values calculated using ANCOVA followed by Tukey-HSD. The error bars represent the 95% confidence intervals obtained by ANCOVA.

Spike Dynamics—The Majority of Spikes
Were in Bursts
After examining all the individual spikes above, we examined
their distribution in time. Figure 1D illustrates several clusters
of spikes commonly called burst (Wong et al., 1979). We used
a common definition for a burst as a group of at least four
spikes with no more than 50 ms ISI (Brewer et al., 2013). Luczak
et al. (2015) called these bursts packets of information, suggesting
that they might be the main form of information transmission.
Supplementary Figure 4 shows an average 60% of spikes in
bursts for each of the axon directions and in the subregions.
Spikes in bursts ranged from a low fraction of 0.52 in feed-
forward axons from EC to DG to a high of 0.78 for feedback axons
from DG to EC [ANOVA F(1, 15) = 3.3, p = 0.09]. By ANOVA,
there were no significant differences in the fractions of spikes in
bursts by subregions.

Burst Dynamics—Spikes per Burst Were
Log-Log Distributed From 5–100 Spikes
Spikes per burst might impact the strength of a packet of
information and how long the activation signal was maintained,

while other inputs were integrated. In contrast to the “burstiness”
of cortical networks (Wagenaar et al., 2005, 2006; DeMarse et al.,
2016), regional network-wide bursting was less common in these
hippocampal subregions. As shown in Figure 4, spike counts per
burst are well-fit by log-log models from 5 to about 100 spikes
in both axon directions and in the subregions. Figure 4D shows
feed-forward CA1-EC axons with the steepest negative slope and
a median of 7 spikes per burst compared with the shallowest
slopes in CA3-CA1 axons with 10 spikes per burst (ANOVA with
Tukey HSD, p < 10−4). Differences in spikes per burst, as shown
in Figures 4D–F, suggest subregional differences in coding for
the flow of information.

Inter-Burst Intervals Followed a
Piecewise Log-Log Distribution,
Suggesting Up-Down States
The time between bursts varied from 0.2 to 20 s with no central
mean for feed-forward, feedback, or subregion activity (Figure 5).
Distributions did not follow a single power, but in most cases
were fitted nicely by two power functions. For feed-forward axons
(Figure 5A), breakpoints ranged from 0.6 s for CA1-EC to 5 s
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FIGURE 4 | Spikes per burst follow log-log distributions. (A,D) Feed-forward axons in CA1-EC have the steepest negative slope with least spikes/burst. (B,E)
Feedback axonal spikes per burst with steepest slope and least spikes per burst in EC-CA1 axons. (C,F) Subregional ISIs are shortest (fastest) in the CA1
subregion. R2 > 0.99 for all fits. The error bars represent the 95% confidence interval obtained by ANCOVA. Only the fraction of data between cumulative probability
of 1 to 0.1 was used for fitting the linear model. P-values calculated by ANCOVA followed by Tukey HSD.

for EC-DG. The shallowest slopes of inter-burst intervals were
in the feed-forward DG-CA3 axons (Figures 5A,D), with the
median occurring below the breakpoint of 0.9 s. For the shortest
breakpoint at 0.6 s in CA1-EC axons, 40% of the bursts were
spaced at times shorter than 0.45 s, but much more widely spaced
from 0.6 to 20 s for the remaining 60%.

The short-spaced bursts could represent up-states, and the
wide spacing between bursts could represent down-states (Li
et al., 2009), likely controlled by inhibitory neuron activity
(Zucca et al., 2017). Figures 5A,D show that these “up-states”
for CA1-EC axons have more negative slopes (faster bursting)
than shallower slopes of the DG-CA3 regional feed-forward
axons. The CA1-EC axons transitioned from these high bursting
rates to slower ones at only 0.6 s, while the EC-DG axons
maintained higher rates of up to 5 s before breaking to slower
rates. Conversely, half of the DG-CA3 axons transitioned from
short inter-burst intervals to longer ones at 0.9 s. Only 50% of
the feed-forward axons from CA1 to EC were in a faster-firing

group (shorter interval). Over the next 1.5 log from 0.6 to
20 s, CA1-EC axons switched to a steeper slope, suggesting
a switch from an up- to a down-state. The intercept for this
switch in CA3-CA1 axons was at 1.8 s. In feedback axon
bursting (Figures 5B,E), the breakpoints from faster burst rates
(shorter times) to slower burst rates reached 0.6 s in CA1
back to CA3, and 3 s in DG back to EC, suggesting that
feedback inhibition by burst rates lasted longer than the feed-
forward excitation. In the subregions (Figures 5C,F), clear
inflection points at shorter times (0.9 s) were seen for CA3
burst rates. The longest inflection times were observed for
neurons in the EC (4 s) and neurons in the DG (4.3 s).
Neurons in the CA1 were intermediate in their shift from a
high to a low rate of bursting (1.4 s). Note that these are
inter-burst intervals that translate to burst rates and not tonic
intra-burst spike rates or phasic firing patterns from excitatory
dominated rate controlled by gamma amino butyric acid (GABA)
(Mann and Mody, 2010). Together, these data provided clear
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FIGURE 5 | Inter-burst Intervals (IBIs) follow piecewise log-log distributions, suggesting up-down states. Points where log-log fits changed to a steeper slope are
enumerated. (A) Feed-forward axons with least time of main state in DG-CA3 (most shallow slope), suggesting low range of up states compared with other axons
there. Fifty percent of the up-states in DG-CA3 FF axons occur at times less than 1 s (horizontal and vertical lines). In contrast, 50% of the other feed-forward axons
have IBIs of about 0.5 s. (B) Feedback axons in CA1-CA3 appear to switch from a domain of short inter-burst intervals to a longer domain around 0.6 s. (C) In the
subregions, CA3 neurons switch from faster bursts to slower bursts around 0.9 s, while the transition in DG occurs only after 4.3 s. R2 > 0.99 for all fits. IBIs for (D)
feed-forward axons, (E) feedback axons, and (F) subregion neurons. Least frequent bursting (longer IBIs) was in DG-CA3 feed-forward axons and CA3 subregion
neurons. The error bars in the graphs represent the 95% confidence intervals obtained by ANCOVA. P-values calculated by ANCOVA followed by Tukey-HSD.

evidence of fast and slow burst rates for axons and neurons,
suggesting up- and down-states of the flow of information
through burst propagation.

Intra-Burst Spike Rates Were Distributed
Lognormally, Centered Near 95 Hz
The strength of an axonal input and the number of synaptic
vesicles releasing the transmitter will depend on the burst length
and the spike rate within the burst. The criterion for a burst
with at least four spikes, each arriving in less than 50 ms, was
chosen to approximate the time constant for synaptic integration.
These values put a lower limit on the spike rate of 20 Hz
within bursts; the dead time of 1.6 ms puts a maximum rate
approaching 500 Hz. Figure 6 shows the remarkably uniform
lognormal distributions of spike rates. The distributions of these
spike rates were noticeably long-tailed, better represented by a
single logarithmic Gaussian transformation than a linear log-log
model (e.g., R2 of 0.92 for the log-normal fit and 0.58 for a log-
log fit of the same intra-burst spike rate data in the EC). From

Gaussian lognormal fitting with R2 values greater than 0.9, we
derived the mode or peaks of the distributions. None of these
distributions were significantly different from the average burst
rate of 95 Hz by ANOVA. This might be surprising in comparison
with the significant differences in ISIs shown in Figure 3 but
can be explained by three facts: (a) burst spiking is only about
60% of all spikes (Supplementary Figure 4); (b) a data subset
has reduced power to reach significance; (c) all short times are
not part of a burst. Burst firing rates in FF axons (Figure 6A)
ranged from modes of 76 Hz for the slowest EC-DG axons to
the fastest CA3 to CA1 axons at 127 Hz with an average feed-
forward mode of 95 Hz. This order, which is different from the
overall ISI, could reflect different portions of the distribution, and
includes the longer burst durations of EC-DG shown in Figure 7.
Feedback axon modes (Figure 6B) ranged from the slowest EC
to CA1 axons at 73 Hz, to the others all at 96 Hz for an average
feedback mode of 90 Hz. Subregional burst modes (Figure 6C)
ranged from the slowest EC soma at 73 Hz to the fastest CA3
soma at 133 Hz and had an average mode of 95 Hz. Several higher
rates that deviate from nearly perfect Gaussian fits were noticed
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FIGURE 6 | Intra-burst spike rates follow lognormal distributions without significant differences between (A) feed-forward axons, (B) feedback axons or (C)
subregions. Error bars at each intra-burst bin are SE for n = 10 arrays. Red dashed line is best fit of a single Gaussian curve. Modes in Hz are indicated above
curves. No differences were seen by ANOVA with Tukey HSD. All R2 of fits > 0.9.

FIGURE 7 | Burst duration varies over 2-order of magnitude with similar log-normal modes of 88 ms for (A) feed-forward axons, (B) feedback axons or (C)
subregions. ANOVA with Tukey HSD indicated no significant differences between distributions. Error bars at each intra-burst bin are SE for n = 10 arrays. Red
dashed line is best fit of a single Gaussian distribution. Modes in ms are indicated above curves. All R2 of fits > 0.9.

as bumps in the distribution in feedback CA1-CA3 axons around
300 Hz (Figure 6B) and neurons in the EC (200 Hz) and CA1 and
CA3 subregions (400 Hz) (Figure 6C).

Burst Durations Were Distributed
Lognormally Close to the Same 88-ms
Mode
While the mode of intra-burst spike rates was 95 Hz, the
burst duration could vary greatly, changing the drive into the
target synapses. The burst duration of all communicating axons

follows a lognormal distribution, with a mode centered around
88 ms (Figure 7). Burst length was lognormally distributed
symmetrically from about 10 to 1,000 ms. Bursts in feed-
forward axons ranged from modes of 79 to 110 ms with an
average mode of 94 ms (Figure 7A). Feedback axon modes
ranged from 79 to 100 ms with an average mode of 91 ms
(Figure 7B). Subregional burst lengths ranged from 66 to
95 ms modes with an average mode of 79 ms (Figure 7C).
None of these were significantly different from the overall
burst duration mode of 88 ms by ANOVA of log-transformed
Gaussian distributions.
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FIGURE 8 | Graphical connections for one-network microelectrode array (MEA). (A) Spike rate correlations between source wells feed-forward to axons in tunnels or
feedback from wells to axons. Each point is the spike rate for a 1-s window over the 300-s recording. Top two examples show strong source to axon correlations
below unity (dashed line). Bottom two examples show axon to target correlations. (B) Magnitudes of slopes > 0.2 and R2 > 0.1. Feed-forward is in red, feedback in
blue. Directionality indicated by arrowheads in axons. (C) Reliability of connections as correlation coefficients (R2). (D) Examples of poor correlations of CA3 neuron
sources to CA3-CA1 axons. Bimodal distribution of CA3 activity in lower example (array 5).
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Correlations of Input Neuron Spike
Rates, Axonal Transmission Rates, and
Target Neuron Rates Enabled the
Construction of Network Graph Maps of
Connection Strength
The complexity of the above network dynamics might suggest
difficulty in constructing the structural and functional
connectivity of this in vitro network (Poli et al., 2015).
Nevertheless, we examined the correlation of rates of each
neighboring axonal tunnel to spike rates of each subregional
source or target electrode, most commonly the activity of
single neuronal soma. Since the directionality of the axonal
transmission is determined, we are able to separate feed-forward
correlations from feedback correlations, as shown in Figure 8. As
each region was expected to process the incoming information
differently, we did not expect subregional soma spike rates to
elicit similar axonal spike rates, i.e., most rates would not be
correlated with slopes of one. A rare case of recording the axon
emanating from a subregional neuron electrode was unlikely,
since each subregion electrode recorded less than 3% of the
neurons in the region, and each microchannel with electrodes
was only 1 of 51 microchannels (Figure 1A). Using the spike
rate correlations, we measured axonal transmission strength as
slopes, and reliability as R2 of the correlated source neurons
through multiple routes. Figure 8A shows two feed-forward and
two feedback examples with strong correlations. We noticed
that source spike rates often led to spike rates in their targets
below one. This could reflect low synaptic weights and the
need for more than one axon to fire a target neuron or several
sources of neurons needed to sum into the target axon. The
segregation of the directions of the spikes of the axons in the
tunnels allows the formation of a map of connectivity among
all the subregions (Figure 8B) and their reliability (Figure 8C).
It was clear that both feed-forward and feedback signaling
occurred throughout the network. In agreement with Figure 2,
feed-forward connections (red) were strongest from EC to DG,
while feedback connections (blue) were enhanced from CA3
to DG. From CA3 to CA1, we could not find reliable firing
rate correlations as exemplified in Figure 8D. Figure 1B and
Supplementary Figure 5 show that the lack of linear CA3-
CA1 connectivity was not due to lack of activity in CA3; CA3
neurons were spiking at high rates uncorrelated to spiking in
axons leaving CA3 into the CA1 region. Baseline drift was not
the cause, since recordings in different regions were acquired
simultaneously and centered for DC baseline.

DISCUSSION

Novel Device Enabled Measurements of
the Directionality and Velocity of Axonal
Communication Between Subregions of
the Hippocampus
With a novel four-compartment device, we enabled the
reconstruction of a hippocampal network comprising the

entorhinal cortex, dentate gyrus, CA3, and CA1 subregions in
a loop with axonal connections isolated in microfluidic tunnels.
Electrodes in the subregions and two electrodes in each tunnel
were designed to monitor the emergent activity of the direction
of axonal propagation of action potentials. Most of the 3-µm-
high tunnels contained only one or two axons. The directionality
of axonal transmission enabled source, transmission, and target
relationships. In the feed-forward direction, some subregional
neuronal somata were connected to transmission axons, which
in turn were connected to target subregional somata. In the
feedback direction, the subregional order was reversed.

Directionality was surprisingly non-uniform with feed-
forward axons from the entorhinal cortex to dentate gyrus
predominating, while feedback axons prevailed from CA3 to
dentate gyrus and CA1 to CA3. Reciprocal connections of the
EC with CA1 have been reported (Rockland and Van Hoesen,
1999), as well as CA3-dentate (Penttonen et al., 1997; Lisman,
1999), possibly as axon collaterals of CA3 pyramidal neurons
returning to innervate mossy fibers, hilar interneurons, and
granule cells (Ishizuka et al., 1990; Li et al., 1994; Scharfman,
1994; Kneisler and Dingledine, 1995). However, CA1 to CA3
reciprocal connections have been incidentally reported from slice
stimulation in CA1 (Andersen et al., 2000), although they are
generally claimed not to exist (Schultz and Engelhardt, 2014),
possibly because they have not been examined with modern
tracer techniques.

In general, feed-forward axons exhibited faster spontaneous
conduction velocities (0.5–0.7 m/s) than feedback axons (0.4–
0.5 m/s). Based on cable models, velocity is proportional to axon
diameter (Hursh, 1939; Hodgkin, 1954), suggesting that feedback
axons were thinner, and that feed-forward axons were thicker
for faster conduction velocity. To the knowledge of the authors,
this distinction has not been reported, but should be confirmed
at higher magnification by electron microscopy. These values
were supported in general by the range of axon conduction
velocities of 0.2–1.4 m/s seen in stimulated cortical neurons
over an 11,000-electrode array in vitro (Bakkum et al., 2013).
However, in contrast to the measurements over 0.2 mm, Bakkum
et al. (2013) measured variations in conduction velocities of
over 2.5 mm of axon length. In one axon, velocity was about
1.3 m/s in the first millimeter, then 1 m/s in the next millimeter,
before tapering below 0.3 m/s, 2–2.5 mm from the soma.
Another axon was fairly constant at 0.5 m/s, 0.2–0.5 mm from
the soma. They did not distinguish between excitatory and
inhibitory axons. More recently, conduction velocities of primary
rat cortical axons in culture on a 19,584-electrode CMOS array
were 0.48± 0.09 SD m/s (n= 1,086 neurons) (Yuan et al., 2020).
Axons in mouse organotypic hippocampal slices increased action
potential velocities with increased fiber diameter, measured by
super-resolution stimulated emission depletion (STED) imaging
(Chereau et al., 2017). In cortical neurons in vitro in MEA micro-
fluidic channels such as those used in this study, Dworak and
Wheeler (2009) found conduction velocities ranging from 0.2
to 0.8 m/s. In intact rat cortex ex vivo, De Col et al. (2008)
found conduction velocities in unmyelinated axons activating
the cranial meninges to depend on prior spike rate and sodium
channel inactivation, ranging from 0.1 to 1.4 m/s, with a mean at
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0.55 m/s. Measures of peripheral myelinated cat nerves of Hursh
(1939) were much faster, ranging from 10 to 100 m/s. Rushton
(1951) and, later, Waxman and Bennett (1972) compared these
myelinated measures to those of slower unmyelinated cat C fibers
from 0.2 to 1 µm in diameter and velocities from 0.8 to 2 m/s.
The axon conduction speeds we report (0.2–2 m/s but more
commonly ∼0.5 m/s) are generally consistent with measures
in hippocampal slices (0.25 m/s, Schaffer collaterals; Andersen
et al., 2000); 0.24 m/s, dentate granule cells (Schmidt-Hieber
et al., 2007; Kress et al., 2008), and 0.38 m/s in CA3 (Meeks and
Mennerick, 2007) or 0.22 m/s from CA3 to CA3 (Andersen et al.,
2000). Reports from cultured neurons showed similar ranges
(0.18–1.14 m/s) in a hippocampal study in the lab (Dworak and
Wheeler, 2009; 0.4–1.4, peak at 0.6 m/s), the lab 0.6–1.4 m/s (Pan
et al., 2011, 2014), ∼0.55 m/s, in hippocampus (Habibey et al.,
2017) and 0.59 m/s (Tovar et al., 2018). Overall, the measured
feed-forward spike velocities of 0.5–0.7 m/s are in the range of
other in vitro and in vivo observations of unmyelinated axons,
and we observe for the first time a slower velocity for feedback
axons of 0.4–0.5 m/s. These results suggest that feedback axons
are smaller in diameter than feed-forward axons, and that their
slower speed may allow time for the propagation of multiple
feed-forward spikes before the beginning of feedback inhibition.

Log-Dynamic Hippocampal Networks
A second notable aspect of this article was the logarithmic
relationships of spike and burst dynamics. Buzsaki and Mizuseki
(2014) highlighted this feature of the brain, which is likely
due to the multiplicative combination of a large number of
variables. They provided examples of the lognormal power of
brain waves, the proportion of cells firing in a 100-ms window
(population synchrony), spontaneous firing rates in rat, monkey
and human cortex, synaptic weights, spine size, and axon
diameter. The stimulus amplitude of light and sound stimuli
to the brain are detected over multiple orders of magnitude
according to the Weber-Fechner law, logarithmic relationships.
However, most research reports characterize the response to a
stimulus, location, head direction, or even spontaneous activity
in terms of mean firing rates (Coletta et al., 2018). Means are
appropriate for Gaussian or normal distributions, but brain
activity is mostly long-tailed with many events beyond the peak
of activity. Because firing rate measurements rely on the time
bin chosen as a denominator, we chose to quantify spontaneous
spiking activity in terms of every ISI, independent of the time
bin, except in the large limit of some bins. Long-tailed ISI
distributions were observed early in cortical neurons on electrode
arrays (Beggs and Plenz, 2003; Pasquale et al., 2008), mostly in
terms of avalanches of connected activity with log-log, power-
law distributions of the number of electrodes involved. The
classical scale-free function requires that the distribution be
independent of the size of the measurement bin. The approach
of log bins contributed to the detection of scale invariance, as
have been highlighted previously (McManus et al., 1987). This
study is the first to rigorously compare subregional differences
in the distribution of spike times, and is certainly unique in
recognizing the log-log distribution of axonal spike times among
the subregions. A plethora of non-linear mechanisms contribute

to the log-log distributions of firing rates: multiple channel
open times, channel densities, spine sizes, synaptic weights,
receptor desensitization, inhibitory inputs, axonal and dendritic
branching, and network cell assemblies. Compared with Gaussian
distributions, functional advantages of log-log distributions
include a wider range of coding, no central mean, and the ability
to change multiplicative inputs into addition and transform
division operations of inhibitory inputs into subtraction (Polsky
et al., 2009; Silver, 2010). Cortical and subregional hippocampal
networks reported here differ from other synchronized or wave-
like oscillatory networks by operating at a log-log critical state
that maximizes information transmission and fault tolerance
while maintaining stability (Beggs and Plenz, 2003; Klaus et al.,
2011; Dahmen et al., 2019). When normalized for all events,
a single parameter of the slope of the cumulative distribution
summarizes the spike distributions over two orders of magnitude
from 10 to 1,000 ms. Distributions of spikes per burst and inter-
burst intervals were well-fitted over a single order of magnitude.
These spike-rate and spike-timing-based codes are part of a single
continuum of coding in the hippocampus (Luczak et al., 2015;
DeMarse et al., 2016).

Log Dynamic EC
Information processing in and between subregions of the
hippocampal network was distinguished by the single time
parameter of slope in the log-log distributions of interspike
intervals, spikes per burst, and inter-burst intervals (burst rates).
Here, we discuss each region in order around the network
loop. Spiking within the EC region was faster than that in the
neighboring DG, but with fewer spikes per burst and longer inter-
burst intervals than in DG. Axons emanating from the EC and
feeding forward into the DG region (EC-DG) exhibited the fastest
spike rates (most short interspike intervals) and a high fraction of
short inter-burst intervals. Of the feedback axons, DG-EC were
also faster than most of the other feedback axons with shorter
inter-burst intervals. Other in vitro studies on cortical rat neurons
saw a wide range of bursting behavior with a similar log-normal
median near 100 spikes/burst and spanning a range from 20 to
2,000 (Wagenaar et al., 2005). Power law distributions of ISIs
are expected from a network of non-linear neurons (Persi et al.,
2004). A more generalized Levy distribution incorporates break
points in several log-log slopes of cortical neuron spike burst
distributions as we observed. Spike rates within bursts were not
measured, nor were comparisons made to hippocampal neurons
or their axons. Rat in vivo measurements showed maximum spike
rates in the EC, averaging 50 Hz (Barnes et al., 1990).

Log Dynamic DG
Within the dentate gyrus subregion, spike rates were lower than
those within most of the other regions with fewer spikes per burst.
Spike rates of output axons from DG into CA3 were the lowest
feed-forward group. Spike rates of feedback axons from CA3 into
DG were low as well. Feedback axons from the CA3 into the DG
mossy cells have been documented in vivo (Penttonen et al., 1997)
as well as axon collaterals back into the DG from the Schaeffer
collaterals (Hendrickson et al., 2016).
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Log Dynamic CA3
Within the CA3 subregion, spike rates were lower than those
within most of the other regions reflected in the longest inter-
burst intervals and shortest burst durations, even with high
spike rates in these short bursts. These bursts drove short-
durations of high spike rates of output axons from CA3 into CA1
accompanied by the highest proportion of spikes in bursts and
shorter inter-burst intervals. Spike rates of feedback axons from
CA1 into CA3 were high. At any point in time, the spike rate
in the same neuron is modulated by the relative excitatory and
inhibitory drive. As we saw poor correlations for CA3 with CA3-
CA1 axons, Renart et al. (2010) more often observed the absence
of correlations in somatosensory cortex in times of rat activity
than inactive times. Their modeling showed that this could occur
when recurrent inhibition was well-balanced by excitatory drive.
Dahmen et al. (2019) also showed the range of such correlations
centered at zero correlation in Macaque motor cortex. They
noted that correlations near zero are characteristic of collateral
inhibition-dominated networks, as we have seen in CA3 and
would be expected from a network poised in the critical state
(Beggs and Plenz, 2003; Dahmen et al., 2019).

Log Dynamic CA1
The twofold higher literature references to CA1 than CA3 or DG
(Pubmed Search, January 2021; Komendantov et al., 2019) could
arise from higher response rates to axonal stimulation. Among
the four subregions, we saw the highest spike rates in CA1 with
shorter inter-burst intervals (steepest slope in ISI distribution).
Feedback of EC into CA1 was weaker. To complete the loop, CA1
output into EC was strong in overall spike rates and burst rates.

With these distinctions, it was surprising that intra-burst spike
rates and burst durations followed lognormal distributions with
similar mean rates and times distributed over two orders of
magnitude. These signatures suggest that compared with overall
spike and burst timing, intra-burst dynamics were regulated by a
single, less complex but still non-linear mechanism. In contrast,
variations in spike conduction delays (velocities) exhibited
simpler (linear) Gaussian distributions, possibly due to thermal
and measurement noise.

Inter-Burst Intervals, Up-States, and
Down-States
Despite the lognormal distributions of spike rates within bursts
and burst durations, the probabilities of times between bursts
followed log-log linear models. Luczak et al. (2015) called these
bursts packets of information, suggesting that they might be the
main form of information transmission in the behaving brain.
With over 90% of bursts needing two slopes to fit a linear log-
log model, inter-burst intervals appeared to be grouped into
one of two characteristic probability distributions, one of shorter
times between bursts and another of longer times between bursts.
The shorter time group was consistent with commonly observed
up-states and longer time intervals with down-states (Battaglia
et al., 2004; Gretenkord et al., 2017; Tatsuno et al., 2020).
Note that the measures are longer times between bursts, not a
transition from bursts to non-burst spikes. These observations
make common methods of average spike rate measures untenable

if the distributions are log-log, with no central mean. Indeed, we
found the CA3 subregion to stand out with a particularly short
duration between bursts, breaking to longer duration down-
states after only 0.9 s, in contrast to breaks of 4 s or longer
for the up-states of EC and DG. Information processing within
these regions results in feed-forward axonal transmission at high
burst up-states of up to 0.9 s in DG to CA3, while up-states
last up to 5 s in the EC-DG axons. Feedback axons from the
DG to EC have the steepest slope with characteristic up-states
extending out to 3 s. A mechanism for up- and down-states
involves periodic variations in membrane potential, depolarizing
toward and hyperpolarizing away from threshold (Steriade et al.,
1993), varying at somewhat periodic 0.5–3 Hz. The relationship
of 1–3 Hz delta slow waves to the slower burst rates in CA3, DG-
CA3, and CA3-DG will be the subject of a third article in this
series on slow waves in axons.

Network Graph Maps Differences in
Information Processing
The reconstructed hippocampus displayed connectional diversity
between the subregions. Strong feed-forward axons emanated
from the EC toward the DG, while strong feedback axons
were directed from the CA3 into the DG. The majority of
source to axon and axon to target relationships were linear.
This result was surprising given the non-linear, logarithmic
spike and burst dynamics reported in the rest of the article.
Logarithmic relationships can arise from the integration of
several linear functions (Newman, 2005). By calculating firing
rates at 1 s, we could be measuring mostly single bursts or
packets of information. In these bursts, the spike rate of a single
axon is reliably transmitted (R2 > 0.1) from the source via an
intermediary neuron to an efferent axon or from an interregional
axon to the target. These relationships are characterized by a
variety of slopes. Slopes above 1 suggest frequent co-incident
axon spikes that undergo spatiotemporal integration to excite
a target neuron, as in about one-third of the outputs from
EC toward DG. A preponderance of slopes centered close to
unity connected the EC forward into axons targeting the DG.
This suggested reliable excitation unbalanced by inter-regional
inhibition until later stages. All the other subregional connections
ranged between slopes of 0.1 and 2. Significant, reliable slopes
could arise from a number of factors. Low slopes could be
caused by the local inhibition of excitation and/or a target neuron
with weak synapses that need excitation from multiple axons
to fire and/or temporal and spatial dendritic integration and
sparse coding (Poli et al., 2017). Linearly unreliable connections
(R2 < 0.1) with slopes below 0.1 might suggest a plethora
of weak synapses or targets that require large numbers of
synchronous inputs to achieve target neuron spiking (Poli et al.,
2018a; Sherrill et al., 2020). Such weak pairwise correlations
that we found here that differed between subregions provide the
underpinning of emergent spatiotemporal patterns of population
activity, as highlighted by Yu et al. (2020) in earlier studies
by Halliday (2000); Schneidman et al. (2006), Kriener et al.
(2009), and Renart et al. (2010). Earlier studies also found
evidence for sharing propagation of the correlation through
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multiple layers (Kumar et al., 2010; Rosenbaum and Josic, 2011;
Rosenbaum et al., 2017; Darshan et al., 2018). During monocular
deprivation, network point to point spiking correlations change
in the rat visual cortex, suggesting the importance of this
regulation for maintaining homeostatic balance in the network.
Further details on edges, hubs, and temporal dynamics, such
as axonal synchrony, will be the focus of a second article in
this series.

Limitations
Disadvantages of the system include a 2D simplification of the
3D brain and the lack of lamellar organization of the mammalian
hippocampus. Also limited are the thousands of neurons in
each subregion compared with numbers approaching a million
in the rat hippocampus (Braitenberg and Schuz, 2004). This
likely limited the diversity of activity that we observed. The
network lacked thalamic inputs or subcortical modulatory inputs,
perhaps also limiting the repertoire of in vitro responses. The
four subregions included combinations of further divisions such
as the hilus with the DG, CA2 with CA3, and subiculum
with EC. The device design here omitted EC to CA3 feed-
forward activation through Schaffer collaterals. The study in
progress incorporates micro-fluidic channels for this pathway.
Further pharmacologic inhibition of GABA receptors is needed
to establish that feedback axons are inhibitory. The attempts
at waveform classification or spike rates to identify inhibitory
axons proved unreliable, as others have found (Becchetti et al.,
2012; Rogers et al., 2021). In an earlier two-subregion device,
we found about 47% GAD67 reporter-tagged neurons in DG
(inhibitory/total cells) opposing CA3, and only 10% GAD67
neurons in CA3 (Brewer et al., 2013); however, these could be
mostly local inhibitory neurons. This report also showed GAD65
immunoreactive axons in microfluidic channels, supporting at
least some inhibitory directionality seen here by the directionality
of conduction velocities. Here, we have focused on differences in
spatial dynamics between the subregions that include numerous
connections over a fixed time of 5 min. A finer detail is
expected in the next article in this series from analysis of the
temporal dynamics to determine how many of the pathways
exemplified are active during each burst of activity. In a third
article, we also intend to integrate information on the slow
waves from 1 to 300 Hz that we observed but were filtered
out in this study. In a fourth article, we will delineate how
this architecture can be used to learn patterns of stimuli,
distinguish small differences, and complete partial inputs of
prior patterns.

Application
The approach of reverse engineering a hippocampal network
fills the meso-scale gap in knowledge between micro studies
on synaptic inputs to single neurons and millimeter-scale
macro studies on functional magnetic resonance imaging. The
patterns of feed-forward and feedback dynamics among different
subregions of the hippocampus may hold the key to memory
processing and consolidation for brain circuit prosthesis (Song
et al., 2018). The feedback pathways are often related to the
control of forwarding neuronal transmission, particularly in

modulating excessive excitatory stimulations downstream (Yu
et al., 2020). Repeating stimulation patterns, once learned, may
elicit feedback transmission to decrease further stimulation of
the same patterns to preserve neural subnetwork bandwidth
and, thus, improve efficiency (Bein et al., 2020). Multiple
hierarchies of feed-forward-feedback interactions may be the
key to exponentially increase neuronal efficiency. This mode
of memory formation and consolidation is consistent with
how other parts of the brain function, such as the way
the tightly coupled feed-forward feedback networks in the
visuomotor integration along the dorsal pathway enable a
graceful visually guided movement (Pratviel et al., 2021). Further
knowledge of the feed-forward and feedback dynamics in
the hippocampus could help design an extremely memory-
efficient neuromorphic computer (Abu-Hassan et al., 2019;
Lee et al., 2021).
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Supplementary Figure 1 | Examples of spike sorting from axons crossing two
electrodes in a single microfluidic tunnel. The goal is to pair sorted units on one
tunnel electrode with the units on the other tunnel electrode. (A) Spike sorting on
one electrode on the CA1 side of the tunnel (F9) indicates three units with spike
counts. (B) The second electrode (G9) on the CA3 side also indicates three units.
The matching algorithm examines the relative timing of the spikes to calculate
normalized matching index (NMI) to match units, proceeds to assign feed-forward
or feedback direction, and calculates conduction velocity (delay time/200 µm
spacing of electrodes) for the matched axons. (C) Example of a spike delay
corresponding to the FB axon with a spike delay of 0.52 ms, indicating spike
propagation in feedback direction with a velocity of 0.37 m/s. (D) Example NMI
matrix calculated between three sorted units in the CA1 side of the tunnel and
three sorted units in the CA3 side of the tunnel. NMI quantifies the fraction of total
spikes that are within delay times of 0.1 and 1 ms (corresponding to known
conduction velocities of 0.2–2 m/s). Units with maximum NMI (above threshold of
0.2) are matched together as belonging to the same axons. Two NMI values
indicated in red belong to the two axons identified, which are unit 1 in CA1 paired
with unit 1 in CA3, and unit 3 in CA1 paired with unit 2 in CA3 [see also arrows in
panels (A,B)]. The latter of the two axons has an NMI of 0.34, indicating that 34%
of paired spikes are within physiological conduction time delays between the two
units. (E) Positive conduction velocities (m/s) are interpreted as feed-forward
signals, negative as feedback. (F) Distribution of delay times between unit 1 in
CA1 side electrode and unit 1 in CA3 side electrode. This delay is centered at

0.63 ms, which corresponds to an axonal conduction velocity of 0.32 m/s, from
the CA3 to the CA1 side. (G) Another primary axon with spikes traveling
backward from CA1 to CA3, with a delay centered at −0.54 ms for a conduction
velocity of −0.37 m/s.

Supplementary Figure 2 | Raster plots of spontaneous spikes from the 10 MEAs
used for this study. Each line is 30 s. Twelve lines at each electrode equals 5 min
of recording (heavy boxes are the tunnels).

Supplementary Figure 3 | Measured features of spike trains include burst
properties of interspike intervals, spikes per burst, inter-burst intervals, intra-burst
spike rate, and burst duration.

Supplementary Figure 4 | Fractions of total spikes occurring inside bursts
(n = 10 arrays). About 60% of spikes were inside bursts with no significant
differences by analysis of variance (ANOVA). The largest difference between
feed-forward and feedback axons between EC and DG did not reach significance
at p = 0.09 [F (1, 15) = 3.3] (n = 10 arrays).

Supplementary Figure 5 | Poor correlation of feed-forward axons from CA3 is
not due to low activity in CA3. (A) Strong activity in CA3 source is poorly
correlated with (B) corresponding time range in axons emanating from CA3
toward CA1. Ten electrodes in CA3 are shown in A. Red dots
mark spikes.
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