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Abstract

Convection and Gravity Waves in the Tropical Atmosphere

by

Jacob P. Edman

Doctor of Philosophy in Earth and Planetary Science

University of California, Berkeley

Professor David M. Romps, Chair

Moist convective clouds play a key role in the earth’s energy and water cycles, but their
turbulent and localized nature makes it difficult to study how they interact with the large-scale
atmospheric circulation. In this dissertation, we study the interaction between convection
and the large-scale tropical atmosphere in two ways. First, we develop simple analytical
models for how convection interacts with large-scale circulations in the tropical atmosphere.
These models are primarily based on a traditional-but-crude approximation of gravity wave
dynamics, in which the tropopause is assumed to be a rigid lid. We test these models in
cloud-resolving numerical simulations of a small patch of tropical atmosphere and determine
that some of these methods pass a simple test of self-consistency, but are far from perfect.
Alternately, we take a more sophisticated analytical approach– instead of using the traditional
rigid lid model of the tropical atmosphere, we derive novel analytical solutions for pulses of
buoyancy (a crude representation of the effects of convective clouds) in an atmosphere with
both a troposphere and a stratosphere. This construction allows wave energy to realistically
radiate out of the troposphere. We find that allowing wave energy to radiate out of the
troposphere causes buoyancy anomalies in the troposphere to decay on timescales of hours to
days, in stark contrast to the rigid lid model, which predicts that buoyancy anomalies persist
forever in the absence of dissipation.
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Chapter 1

Introduction

Despite being a vital part of earth’s energy and water cycles, many aspects of moist
convection in the atmosphere remain poorly understood. The ongoing struggle to parameterize
moist convection in global climate models (GCMs) is a prime example of the multiscale
complexity of moist convection. A GCM resolves the large-scale atmospheric circulation,
but at the time of writing, typical horizontal grid resolutions (50-200 km) are much too
coarse to resolve the dynamics of moist convection, which occurs on scales of hundreds of
meters to kilometers. This scale separation would seem to lend itself well to parameterization–
it certainly makes sense in the midlatitudes, where earth’s rotation organizes large-scale
atmospheric circulations into the familiar cyclones which bring California most of its rain.
These cyclones are much larger and persist for much longer than any individual convective
cloud, so their dynamics can be largely understood without considering convection directly.
However, in the tropics, where the influence of earth’s rotation is negligible, the primary slow,
“external”, forcing is radiative cooling of the atmosphere. This radiative cooling and the
associated downward mass flux is balanced by moist convection. Convective clouds transport
energy and water vapor high into the atmosphere, fueled by latent heat released as they
ascend. The amount of energy transported by moist convection depends on the rate at which
the atmosphere cools, which is in turn tied to the temperature and water vapor content of the
atmosphere. Because of this, moist convection directly feeds back on the large-scale circulation
in the tropics, which makes disentangling convection from the large-scale circulation quite
difficult. In this dissertation, we attempt to gain a deeper understanding of the interactions
between convection and large-scale circulations by employing a combination of simple models
and analytical techniques.

Chapters 2 and 3 are devoted to understanding how a small patch of tropical atmosphere
interacts with the surrounding environment. Is there a simple, self-consistent way of describing
the large-scale atmospheric response to an anomalous burst of convection in the patch? In
these chapters, we seek to model a single patch of atmosphere, either analytically or using
a cloud-resolving model (CRM), and parameterize the large-scale circulation. This type of
parameterization has been called a ‘supradomain-scale’ (SDS) parameterization. There are two
main approaches to SDS parameterization, known as the weak-temperature-gradient (WTG)
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approximation and the weak-pressure-gradient (WPG) approximation. Both approaches take
advantage of the fact that horizontal density and temperature gradients must be small in the
tropical atmosphere. As we show in Appendix A.1, density gradients are small in the tropics
due to the lack of influence earth’s rotation there.

WTG simply diagnoses the large-scale convergence required to maintain a fixed vertical
temperature profile, which is prescribed externally. The latter approach, WPG, also takes
advantage of the small horizontal density variations in the tropical troposphere, but assumes
that adjustment to this state takes place via the propagation of monochromatic gravity
wave, which crude approximation of how the atmosphere responds to an anomalous burst
of convection. Consider this sequence of events: A burst of convection in a column of
atmosphere creates a local buoyancy anomaly, which causes the surrounding air to subside
and warm. This creates a new buoyancy anomaly adjacent to the original one, and continuity
requires the convecting column to rise and cool, removing the initial buoyancy anomaly. This
propagating disturbance is a gravity wave. The details of this process are quite complicated
in a fully-compressible, stratified atmosphere, and the emitted gravity waves can influence
development and supression of convection itself. In WPG, we neglect these difficulties by
assuming the emitted gravity wave has a single wavelength. In Chapter 2, we develop a new
version of WPG analytically in the context of shallow water equations, and show how it can
be extended to fully-compressible atmosphere.

In addition to encapsulating our understanding of how convection interacts with its
environment, SDS schemes like WPG and WTG provide an attractive way to test convective
parameterizations for global climate models. This type of application, and whether or
not SDS schemes are reliable enough to be used in such a way, is discussed further in
Chapter 3. With an SDS scheme coupled to a cloud-resolving model (CRM), we resolve
the convective dynamics in a small patch of atmosphere, and parameterize the large-scale
circulation normally resolved by a GCM. If we replace the CRM (which resolves convection)
with a single-column of a GCM (with parameterized convection), we can directly test the
reliability of the convective parameterization. Comparing observed divergence profiles and
those produced by a single-column of a GCM coupled to the SDS scheme under the same
conditions can tell us whether the convective parameterization is doing something reasonable.

How does moist convection, a fast and localized process, spread heat throughout the
atmosphere, in order to balance the slow and relatively uniform radiative cooling of the
atmosphere? In Chapter 4 we go beyond the simplistic understanding of tropical atmospheric
dynamics encapsulated by WPG and WTG, and derive new analytical solutions which show
how buoyancy anomalies spread throughout the tropical atmosphere. In general, the gravity
waves excited by convection have a continuous spectrum of wavenumbers and frequencies,
making analytical solutions difficult. In the past, authors have leveraged the fact that
convection stops at the tropopause to greatly simplify the problem by assuming a rigid lid
exists at the tropopause. With this assumption, the initial disturbance can be decomposed
into a discrete set of normal modes, each with a corresponding wave speed. While this
approach has been very useful for understanding basic elements of tropical atmospheric
dynamics, including “steady-state" (e.g. Gill 1980) and transient responses (e.g. Matsuno
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1966), it has some glaringly-unphysical consequences. For example, the discrete nature of the
rigid-lid wave spectrum means an pulse of convection sets off a series of impossibly-sharp
wavefronts propagating forever throughout the domain, each at a distinct wave speed. As
more and more convection occurs, the energy in the domain grows without bound.

This problem arises because the rigid lid at the tropopause does not allow waves to
propagate upward and out of the troposphere and relieve this unphysical build-up of energy.
In Chapter 4, we derive analytic solutions for a pulse of buoyancy in an atmosphere without
a rigid lid, and show that the upward radiation of wave energy out of the troposphere causes
wavefronts to rapidly disperse. Buoyancy anomalies in an atmosphere without a rigid lid
decay rapidly, with the longest waves in the tropical troposphere taking only about 10 days
to radiate away.
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Chapter 2

An Improved Weak Pressure Gradient
Scheme for Single-Column Modeling1

A new formulation of the weak-pressure-gradient approximation (WPG) is introduced for
parameterizing large-scale dynamics in limited-domain atmospheric models. This new WPG is
developed in the context of the one-dimensional, linearized, damped shallow-water equations
and then extended to Boussinesq and compressible fluids. Unlike previous supradomain-scale
parameterizations, this formulation of WPG correctly reproduces both steady-state solutions
and first-baroclinic gravity waves. In so doing, this scheme eliminates the undesirable gravity-
wave resonance in previous versions of WPG. In addition, this scheme can be extended to
accurately model the emission of gravity waves with arbitrary vertical wavenumber.

2.1 Introduction
In recent decades, single-column atmospheric models, including cloud-resolving models

and single-column versions of global climate models, have come into widespread use as a
means to develop and test new parameterizations for use in global climate models. To
compare with observations, these limited-domain models are often forced with an observed
profile of large-scale ascent (equivalently, a profile of large-scale convergence). This approach,
however, has its drawbacks. For example, convergence profiles often contain significant errors,
whether they come from observations (Mapes et al. 2003) or reanalysis (Roads et al. 1998).
Additionally, forcing the model in this way neglects feedbacks on the large-scale circulation
(Randall et al. 1996; Hack & Pedretti 2000) by unrealistically decoupling the large-scale
vertical velocity from moist convection (Mapes 1997).

One way to solve these problems is to allow the model to specify its own convergence
profile by parameterizing the large scale dynamics (Sobel & Bretherton 2000), a method
dubbed ‘supradomain-scale’ (SDS) parameterization by Romps (2012b). On the most basic

1Material in this chapter originally published in Edman & Romps (2014), c© Copyright
2014 AMS.

https://www.ametsoc.org/ams/index.cfm/publications/ethical-guidelines-and-ams-policies/ams-copyright-policy/
https://www.ametsoc.org/ams/index.cfm/publications/ethical-guidelines-and-ams-policies/ams-copyright-policy/
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level, an SDS parameterization ingests environmental and modeled profiles of temperature
and humidity and uses them to calculate the convergence profile, which is defined by the
buoyancy of the column relative to its surroundings. Currently, there are two main paradigms
for SDS parameterization, known as the weak-temperature-gradient approximation (WTG;
e.g., Raymond & Zeng 2005), and the weak-pressure-gradient approximation (WPG; e.g.,
Romps 2012b). The premise of WTG is that vertical advection of potential temperature
relaxes buoyancy differences between the column and the environment on some fixed timescale
(Raymond & Zeng 2005; Sessions et al. 2010; Wang & Sobel 2012), while WPG relies on a
parameterized form of the pressure-gradient force between the column and the environment
to determine vertical velocity (Holton 1973; Nilsson & Emanuel 1999; Raymond & Zeng
2000; Kuang 2008; Blossey et al. 2009; Kuang 2011; Romps 2012b,a). Both schemes address
the traditional problems listed above, but thus far neither approach has yielded an entirely
satisfactory method for SDS parameterization.

Previous work has shown that prior implementations of WPG and WTG are inherently
unable to adequately model steady-state and transient behavior in the same simulation;
parameter values must be tuned depending on which is of interest (Romps 2012b). However,
in numerical simulations, WPG appears to capture the dynamics of the full 3D atmosphere
more realistically than WTG (Romps 2012a). In particular, a buoyancy perturbation in a
column can trigger ascent both above and below the perturbation; this nonlocal ascent has the
potential to trigger moist convection by removing a convective inhibition layer (Bretherton &
Smolarkiewicz 1989; Mapes 1993). Romps (2012a) found that WPG was able to replicate
this nonlocal behavior, while WTG can, by definition, only produce ascent at levels with
positive buoyancy perturbations.

WPG introduces another difficulty, however. A column coupled to WPG behaves as if it
were immersed in a bath of plane waves; for this reason, WPG is sometimes referred to as
the damped-wave method (Kuang 2008; Wang et al. 2013). Around the frequency of these
plane waves, a buoyancy anomaly in the column can trigger a resonance (with convection in
phase with plane-wave-induced ascent) rather than the buoyancy anomaly simply damping
away (as would occur by gravity-wave emission from the column in two or three dimensions).
In general, this resonant behavior is undesirable for a scheme that seeks to parameterize the
interaction between a single column’s anomalous convection and its anomalous large-scale
convergence.

In this paper, we seek to resolve these difficulties by deriving a modified version of WPG in
the context of the 1D, linearized, damped, shallow-water equations. We do this for simplicity,
but this does not limit the applicability of the results. The shallow-water equations can be
thought of as representing an atmosphere that only permits one vertical mode; water layers
of different depths approximate different vertical modes. To gain some intuition for this
connection, we may think of the shallow-water system as representing the free troposphere: a
source of mass in the shallow-water system corresponds to an injection of mass into the free
troposphere from the boundary layer, which is associated with latent heating. Thanks to
the mathematics relating the shallow-water equations to vertical modes of a stratified fluid,
it is straightforward to extend the shallow-water results to the full atmosphere. Section 2.2
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derives analytical solutions to a 1D shallow-water system. This information is then used
in Section 2.3 to derive a new and improved set of WPG equations for the shallow-water
system. Section 2.4 calculates – for the benchmark system, WTG, and the old and new
WPG – the amplitude of the height anomaly driven by an oscillating source. Those solutions
are compared for both inviscid and damped flow in Section 2.5, which demonstrates some
advantages of the new WPG scheme over other SDS schemes. Section 2.6 extends the WPG
scheme to a continuously stratified fluid. Section 2.7 concludes with some discussion.

2.2 Shallow-water equations
The goal of an SDS scheme is to accurately model the large-scale flow between an

atmospheric column and its environment. A good SDS scheme will be able to do two
things: 1. remove unforced virtual-temperature anomalies from the column on appropriate
timescales (i.e., the timescales for gravity waves to exit the column), and 2. generate the
correct virtual-temperature anomaly in the presence of a steady-state heating anomaly (where
the virtual-temperature anomaly is made possible by a frictional drag on the flow). Both of
these behaviors occur in the one-dimensional, linearized, damped, shallow-water equations.
Because we can derive analytical solutions for this system, this is where we begin our analysis.

For a shallow-water system of depth D, source Q (units of m s−1), and Rayleigh-damping
timescale 1/α, the following equations govern a small height perturbation h and a small
horizontal velocity u:

∂th = −D∂xu+Q (2.1)
∂tu = −g∂xh− αu . (2.2)

This system relates to the tropical free troposphere (where the Coriolis parameter can be
approximated as zero) if we think of mapping h onto the mass of the free troposphere and
Q onto the convective mass flux into the free troposphere. Using these equations, we wish
to derive two timescales: 1. the transient timescale for unforced height anomalies to exit
a column, and 2. the steady-state timescale that relates a column’s steady-state height
perturbation h to the applied steady-state forcing Q.

To begin, we must pick a “column” of the 1D shallow-water system that we will poke
(with an initial height anomaly) and prod (with a steady-state mass source). Without any
loss of generality, we choose our column as the region from x = −L1 to x = L1. For the
transient case, this is all that we need to define. But, for the steady-state case with drag, we
can only achieve a steady state if the source in the column is balanced elsewhere by a sink
(i.e., there is no net source summed across the entire domain). In the absence of any drag
(i.e., α = 0), switching on a steady source in the column would generate two shock waves
of h anomaly that would travel forever up and down the x axis, and the height anomaly
in the column would hold steady. In the presence of drag, however, switching on a steady
source in the column would cause the h anomaly in the column to grow ad infinitum as
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the pressure-gradient force tries to push the growing mass anomaly out to larger and larger
distances against the countervailing drag force.

For this reason, we define a region of compensating mass sink of size L2 to either side of
the column. As depicted in Figure 2.1, the source Q in the column of size 2L1 is balanced
by an equal and opposite source −QL1/L2 in the wings of combined size 2L2. As shown
below, the choice of L2 has a negligible impact on the evolution of transients, but it plays a
crucial role in defining the magnitude of height anomalies in the presence of a steady-state
forcing. What sets L2? While it is plausible that L2 may be comparable to the dissipative
scale

√
gD/α (i.e., the product of the wave speed and the damping timescale), we deem it

equally plausible that L2 is set, in reality, by the dissipative effects of the convective response
to the passing wave. In this latter scenario, anomalous convection in some column would
generate a transient heating of its surroundings by the emitted gravity waves. This transient
heating may inhibit convection, leading to an anomalous cooling that damps the wave. If
that transient warming is sufficiently efficient at inhibiting convection, then this damping via
convective deficit could serve as a sink for the gravity waves well before the waves extend
to the dissipative scale. We do not attempt to resolve this difficult issue here. Instead, we
simply leave L2 as a free parameter and leave its determination to future work.

2.2.1 Transients
In the study of transients, we will assume that the timescale for inviscid gravity waves

to exit the column (L1/
√
gD) is much smaller than the Rayleigh damping timescale (1/α).

Therefore, we can safely set α = 0. Taking ∂t of (2.1) and −D∂x of (2.2) and adding the
results, we find an inhomogeneous wave equation for h:

∂2
t h− gD∂2

xh = ∂tQ . (2.3)

The solution to (2.3) for an arbitrary source Q is given by

h(x, t) = 1
2

t∫
−∞

dt′
{
Q
[
x+ c(t− t′), t′

]
+Q

[
x− c(t− t′), t′

]}
, (2.4)

where c =
√
gD is the wave speed. Thus, for an initial pulse Q(x, t) = Q0(x)δ(t), h(x, t) is

given by two waves of the same shape as Q0, traveling to the left and right with speed c.
Consider a system with zero h for time t < 0 that is given an instantaneous jolt at t = 0

defined by the source

Q(x, t) =
(

1 + L1

L2

)
h0δ(t)H(L1−x)H(L1 +x)− L1

L2
h0δ(t)

[
H(L1 +L2−x)H(L1 +L2 +x)

]
,

where H is the Heaviside unit step function. This generates h(x) of the same shape as that
depicted in Figure 2.1, with an initial amplitude in the column of h = h0. The solution, from
equation (2.4), is

h(x, t) = h+(x, t) + h−(x, t) ,
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Figure 2.1 : The setup of the 1D shallow-water forcings. The forcing Q in the column of size 2L1 is
balanced by an equal and opposite forcing of −QL1/L2 in the wings of combined size 2L2.

where

h±(x, t) =
(

1 + L1

L2

)
h0

2 H(L1 − x± ct)H(L1 + x∓ ct)

− L1

L2

h0

2 H(L1 + L2 − x± ct)H(L1 + L2 + x∓ ct) .

This solution is just the sum of top-hat pulses traveling in the negative (h−) and positive
(h+) directions from the source and sink regions at speed c. The timescale for the entire
disturbance to propagate out of the column (defined as −L1 < x < L1) is on the order of
(L1 + L2)/c. If L2 is comparable in size to L1, then this timescale is of order L1/c. On the
other hand, if we assume that the compensating regions are much larger than the width of
the column (i.e. L2 � L1), then the amplitude of the disturbance from the compensating
regions is small relative to the disturbance from the column. In this case, we can safely ignore
this secondary disturbance from the compensating regions, and the timescale for transients
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to propagate out of the column is still

τ = L1

c
(transient timescale) . (2.5)

2.2.2 Steady state
For the steady state case, we consider a Q of the same shape as in Figure 2.1,

Q(x, t) =
(

1 + L1

L2

)
Q0H(L1 − x)H(L1 + x)− L1

L2
Q0H(L1 + L2 − x)H(L1 + L2 + x) .

Assuming a positive α, the steady-state solution to equations (2.1) and (2.2) is

u(x) =



Q0

D
x |x| ≤ L1

Q0L1

DL2
sign(x)

(
L1 + L2 − |x|

)
L1 < |x| < L1 + L2

0 L1 + L2 ≤ |x|

(2.6)

and

h(x) =



αQ0

2c2

[
L1(L1 + L2)− x2

]
|x| ≤ L1

αQ0L1

2c2L2

(
L1 + L2 − |x|

)2
L1 < |x| < L1 + L2

0 L1 + L2 ≤ |x|

. (2.7)

This solution is shown in Figure 2.2. By averaging over the column (x ∈ [−L1, L1]), we see
that the mean steady-state height anomaly is

1
2L1

∫ L1

−L1
dx h(x) = α

c2L
2
1

(1
3 + 1

2
L2

L1

)
Q0 . (2.8)

This equation for the mean height anomaly is of the form τQ0, where τ is a timescale relating
the source Q0 to the mean steady-state height anomaly in the column. Therefore, we see
that this timescale is

τ = αL2
1

c2

(1
3 + 1

2
L2

L1

)
(steady-state timescale) . (2.9)
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2c2  L1(L1 + L2) h

Figure 2.2 : The steady-state solution corresponding to equations (2.6) and (2.7).

2.3 New WPG
WPG reduces equations (2.1) and (2.2) to an equation for the evolution of h in a single

column embedded in a quiescent environment. The first step in deriving the WPG version
of these equations is to take the divergence of (2.2). Next, we approximate the resulting
pressure-gradient term −∂2

xh by h
L2 , where L represents the distance over which the height

anomaly (equivalently, the pressure anomaly) relaxes to zero; the precise value of L will be
determined below. Finally, we replace α with the to-be-determined constant α∗. This yields
the standard WPG equations,

∂th = −Dδ +Q (2.10)

∂tδ = gh

L2 − α
∗δ , (2.11)

where δ = ∂xu is the divergence. As shown by Romps (2012b), this set of equations is unable
to capture simultaneously both the transient and steady-state timescales. Here, we will add
a term to the WPG equations in the hope of ameliorating this situation.

The fundamental problem with the WPG equations is that, in the inviscid limit (α→ 0),
they describe an oscillating system instead of a damped system. If we think of WPG as
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describing a column immersed in a quiescent environment, then perturbations in the column
should exit the column on a gravity-wave propagation timescale, causing the perturbation in
the column to damp towards zero. Instead, initial perturbations in the WPG system lead
to oscillations: in the case of an unforced and inviscid fluid (Q = α = 0), equations (2.10)
and (2.11) give ∂2

t h = −(c/L)2h. This describes a normal mode with period 2πL/c instead
of decay towards zero on a timescale of L/c.

Which of the equations (2.10) and (2.11) is responsible for this bad behavior? Equation
(2.10) can not be at fault, for it enforces a simple and irrefutable statement of mass conservation
for the column. Equation (2.11), on the other hand, is not as ironclad. Its weak point is the
approximation

−∂2
xp ≈

g

L2h , (2.12)

where a bar denotes an average over x ∈ [−L1, L1]. This equation can be written as

− g

L1
∂xh|L1

−L1
≈ g

L2h .

In other words, it assumes that the height gradients at the boundaries of the column are
proportional to the mean height perturbation in the column. For a transient height anomaly,
however, this is not the case. Consider δ = 0 and h = h0 exp(−x2/L2

1) at time t = 0.
Taking Q = α = 0, this height perturbation evolves as two counter-propagating Gaussian
disturbances: one has velocity c, the other has velocity −c, and both have an amplitude of
h0/2. This is depicted in Figure 2.3. For t < L1/c, the mean height anomaly in the column
is positive and the pressure-gradient force (which is proportional to the height gradient in
the shallow water model) at x = ±L1 is accelerating fluid out of the column. For t > L1/c,
however, the mean height anomaly is still positive, but the pressure-gradient force has
switched signs, and is now accelerating fluid into the column. This example illuminates a key
piece of physics missing from the approximation in equation (2.12): the back-reaction caused
by the column’s modification of its immediate environment. Height anomalies initially within
the column at time t are just outside the column at time t + L1/c. In this transient case,
the difference in height anomalies between the column and its immediate environment is not
h(t), as assumed in previous implementations of WPG, but is, instead, something akin to
h(t)− h(t− L1/c) ≈ (L1/c)∂th. This suggests that a term similar to (L1/c)∂th might belong
on the right-hand side of equation (2.11).

Note that the h term on the right-hand side of (2.11) cannot be entirely replaced by a ∂th
term because the former is needed to make steady-state solutions possible in the presence of
a constant, nonzero Q. Therefore, we explore the consequences of adding the term (L/c)∂th,
multiplied by g/L2 and a to-be-determined dimensionless number β, to the right-hand side
of the divergence equation. This gives

∂th = −Dδ +Q (2.13)

∂tδ = gh

L2 + βg

Lc
∂th− α∗δ . (2.14)
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In order to put equation (2.14) in a form more easily integrated, we define a new variable δ′
related to δ and h as

δ′ = δ − βgh/cL
1− βα∗L/c .

Expression (2.14) benefits from a cancellation of terms when written in terms of δ′. The
resulting equations are

∂th = −Dδ +Q (2.15)

∂tδ
′ = gh

L2 − α
∗δ′ (2.16)

δ = δ′ + βL

c
∂tδ
′ . (2.17)

Here, equation (2.16) is a prognostic equation for δ′, and equation (2.17) is a diagnostic
equation giving δ – the actual divergence – in terms of δ′ and its derivative.

To find the correct values for β, L, and α∗, we reduce these equations to a single equation
for h and study its steady-state and transient behaviors. The equations reduce to

∂2
t h+ (α∗ + βc/L)∂th+ c2

L2h = ∂tQ+ α∗Q . (2.18)

For transient cases with Q = 0, a test solution of h = eωt gives a dispersion relation of

ω = −
(
α∗

2 + βc

2L

)
±

√√√√(α∗
2 + βc

2L

)2

− c2

L2 . (2.19)

As discussed in Section 2.2.1, transients should exit the column on a timescale of L1/c in the
inviscid limit. This is achieved by selecting

β = 2 (2.20)
L = L1 , (2.21)

which, in the inviscid limit, reduces (2.19) to ω = −c/L1. For a steady-state case with
constant Q, the solution to (2.18) is h = (α∗L2/c2)Q, which yields the timescale found in
Section 2.2.2 if we choose

α∗ = α
(1

3 + 1
2
L2

L1

)
. (2.22)

For the old WPG, β = 0 in (2.18), so there is no way to simultaneously capture the
transient timescale and the steady-state timescale. Selecting L = L1, we have two choices for
α∗ in the old WPG. If we match the transient timescale, then

α∗ = 2c/L1 .

We will call this “version 1” of the old WPG. If we match the steady-state timescale, then we
must choose α∗ as defined by equation (2.22). We will call this “version 2” of the old WPG.
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WTG is similarly unable to capture both the transient and steady-state time scales. In
the relaxed form of WTG (e.g., Raymond & Zeng 2005), equation (2.1) is approximated by

δ = h

Dτ
, (2.23)

where τ is the timescale over which height differences between the column and the environment
are removed. If we match the transient time scale (i.e. the time for a gravity wave to propagate
out of the column), then

τ = L1

c
.

This is the form of τ most commonly used in the literature (e.g., Raymond & Zeng 2005;
Sessions et al. 2010; Wang & Sobel 2011); we will call this “version 1” of WTG. An alternative,
but potentially interesting choice is to match the steady-state timescale, which gives

τ = α∗L2
1

c2 .

We will call this “version 2” of WTG. The equations for all five SDS schemes are listed in
Table 2.1.

2.4 Solutions to an oscillating source
Although we have shown that WPG can match the full 1D solution for inviscid transient

and steady state cases, so far we have not demonstrated how WPG performs for cases which
do not fit neatly into either of these categories. To explore solutions that lie somewhere
between inviscid transients and damped steady states, we calculate here solutions to an
oscillating mass source. These solutions are compared against each other in Section 2.5.

2.4.1 Benchmark
Consider a source of the shape depicted in Figure 2.1 that oscillates in time with angular

frequency ω,

Q(x, t) =
(

1 + L1

L2

)
Q0 cos(ωt)H(L1 − x)H(L1 + x)

− L1

L2
Q0 cos(ωt)H(L1 + L2 − x)H(L1 + L2 + x) . (2.24)

In Appendix B.1, we derive the solution generated by this forcing for the case of the inviscid
(i.e., α = 0) shallow-water equations. In this inviscid case, the average height anomaly over
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SDS scheme Equations for δ

New WPG
∂tδ
′ = gh

L2
1
− α

(1
3 + 1

2
L2

L1

)
δ′

δ = δ′ + 2L1

c
∂tδ
′

Old WPG v1 ∂tδ = gh

L2
1
− 2c
L1
δ

Old WPG v2 ∂tδ = gh

L2
1
− α

(1
3 + 1

2
L2

L1

)
δ

WTG v1 δ = gh

L1c

WTG v2 δ = gh

αL2
1

(1
3 + 1

2
L2

L1

)−1

Table 2.1 : Definitions of the horizontal divergence δ in the five supradomain-scale schemes in the
context of the damped shallow-water equations with damping rate α, column of width 2L1, and
compensating regions of net width 2L2. Here, g is the gravitational acceleration, c =

√
gD is the

wave speed, and h is the mean height anomaly in the column.
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the column is h̄(t) = h0 cos(ωt+ φ), where the amplitude h0 is

hbenchmark
0 = Q0

ω


[
c

ωL1
sin

(
ωL1

c

) [(
1 + L1

L2

)
sin

(
ωL1

c

)
− L1

L2
sin

(
ω(L1 + L2)

c

)] ]2

+
[
− 1+ c

ωL1
sin

(
ωL1

c

) [(
1 + L1

L2

)
cos

(
ωL1

c

)
− L1

L2
cos

(
ω(L1 + L2)

c

)] ]2


1/2

(2.25)

In the presence of damping (α > 0), an analytical solution is not possible, so the damped
shallow-water equations are integrated numerically to obtain the value of h0.

2.4.2 New WPG
In the column, equation (2.24) takes the form Q(t) = Q0 cos(ωt). Therefore, to find the

corresponding solution from the new WPG scheme, we substitute Q = Q0e
iωt, with ω and

Q0 both real, into (2.18) with the values of β, L, and α∗ given by equations (2.20–2.22). We
then seek a solution of the form h = h0e

iωt+iφ for real constants h0 and φ. The resulting
dispersion relation for ω is

−ω2h0 + (α∗ + 2c/L1)iωh0 + (c2/L2
1)h0 = (iω + α∗)Q0e

−iφ

For brevity, the α∗ notation is retained here, although its value is given by equation (2.22).
Solving for h0, we obtain

hWPG,new
0 =

√√√√ ω2 + α∗2

(c2/L2
1 − ω2)2 + (α∗ + 2c/L1)2ω2 Q0 . (2.26)

2.4.3 Old WPG, version 1
The amplitude for version 1 of the old WPG, which is tuned to match the transient

timescale, is obtained by setting β to zero in (2.18) and setting L = L1 and α∗ = 2c/L1,
which gives the dispersion relation

−ω2h0 + (2c/L1)iωh0 + (c2/L2
1)h0 = (iω + 2c/L1)Q0e

−iφ .

Solving for h0, we obtain

hWPG,old,v1
0 =

√
ω2 + (2c/L1)2

ω2 + (c/L1)2 Q0 . (2.27)
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2.4.4 Old WPG, version 2
The amplitude for version 2 of the old WPG, which is tuned to match the steady-state

timescale, is obtained by setting β to zero in (2.18) and using the same values for L and α∗
used by the new WPG. This gives the dispersion relation

−ω2h0 + α∗iωh0 + (c2/L2
1)h0 = (iω + α∗)Q0e

−iφ .

Solving for h0, we obtain

hWPG,old,v2
0 =

√√√√ ω2 + α∗2

(c2/L2
1 − ω2)2 + α∗2ω2 Q0 . (2.28)

2.4.5 WTG, version 1
For version 1 of WTG, the dispersion relation is

iωh0 = −ch0/L1 +Q0e
−iφ ,

which gives
hWTG,v1

0 = Q0√
ω2 + c2/L2

1

. (2.29)

2.4.6 WTG, version 2
For version 2 of WTG, the dispersion relation is

iωh0 = − c
2h0

α∗L2
1

+Q0e
−iφ ,

which gives
hWTG,v2

0 = Q0√
ω2 + c4

α∗2L4
1

. (2.30)

2.5 Comparison of oscillating solutions
To facilitate a comparison of these amplitudes, let us non-dimensionalize the equations

with respect to the gravity-wave timescale L1/c. Introducing non-dimensional variables
denoted by a tilde,

h̃0 = c

L1Q0
h0

ω̃ = ωL1/c

α̃ = αL1/c

α̃∗ = α∗L1/c ,
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the amplitudes become

h̃benchmark
0 = 1

ω̃2


[

sin(ω̃)
[

(1 + r) sin (ω̃)− r sin (ω̃ + ω̃/r))
]]2

+
[
− ω̃ + sin(ω̃)

[
(1 + r) cos (ω̃)− r cos (ω̃ + ω̃/r)

]]2


1/2

(2.31)

h̃WPG,new
0 =

√√√√ ω̃2 + α̃∗2

(1− ω̃2)2 + (α̃∗ + 2)2ω̃2 (2.32)

h̃WPG,old,v1
0 =

√
ω̃2 + 4
ω̃2 + 1 (2.33)

h̃WPG,old,v2
0 =

√√√√ ω̃2 + α̃∗2

(1− ω̃2)2 + α̃∗2ω̃2 (2.34)

h̃WTG,v1
0 = 1√

ω̃2 + 1
(2.35)

h̃WTG,v2
0 = 1√

ω̃2 + 1/α̃∗2
, (2.36)

where
r ≡ L1/L2 .

Recall that equation (2.31) is for inviscid flow only, while the other equations are for general
damping. In Section 2.5.3, numerical simulations of the damped shallow-water equations will
be used instead of equation (2.31).

2.5.1 Inviscid oscillations for large and small ω̃
For ω̃ � 1, the mass added to the column during the positive phase of Q does not

propagate significantly out of the column before it is removed by the negative phase of Q.
Therefore, the amplitude h0 is simply equal to

∫ π/2
0 dtQ0 cos(ωt), which gives h̃0 = 1/ω̃. The

benchmark solution and all of the WPG and WTG schemes give this behavior, which can be
confirmed by taking the large-ω̃ limit of equations (2.31–2.36).

For ω̃ � 1, not all of the SDS parameterizations are equivalent, even in the inviscid case.
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In the limit of ω̃ → 0 for inviscid flow, the amplitudes are

h̃benchmark
0 =

(1
3 + 1

2
L2

L1

)
ω̃ (2.37)

h̃WPG,new
0 = ω̃ (2.38)

h̃WPG,old,v1
0 = 2 (2.39)
h̃WPG,old,v2

0 = ω̃ (2.40)
h̃WTG,v1

0 = 1 (2.41)
h̃WTG,v2

0 = 0 . (2.42)

Note that the benchmark amplitude scales as ω̃ in the small-ω̃ limit. This is caused by gravity
waves from the adjacent sink regions that propagate into the column. For ω̃ = 0, the solution
is simply an inviscid steady state; without any Rayleigh damping, no pressure gradient (i.e.,
no h gradient) is needed to drive the flow, so h̃0 = 0. Therefore, the h̃0 ∼ ω̃ scaling reflects
the approach to an inviscid steady state as ω̃ is decreased towards zero.

Both the new WPG and version 2 of the old WPG capture the h̃0 ∼ ω̃ scaling. An
important difference, however, is that these schemes miss the (1/3 + L2/2L1) factor in that
scaling relationship. In the benchmark simulations, this dependence on L2 is caused by the
fact that a larger sink region (i.e., larger L2) requires a longer time for the peak of the sink
signal to reach the column. This allows the height anomaly in the column to reach a larger
amplitude before it is quenched by gravity waves from the sink regions. Since neither the new
WPG scheme nor version 2 of the old WPG scheme know anything about L2 in the absence
of damping, it is not possible for them to capture this effect. The other schemes – version 1
of the old WPG and both WTG schemes – are unable to capture any h̃0 ∼ ω̃ scaling in the
small-frequency limit.

2.5.2 Inviscid oscillations for all ω̃
For one-dimensional, inviscid, shallow water, an oscillating source Q(x, t) of the form

(2.24) gives rise to height oscillations in the column with an amplitude given by (2.31). In
the column, this source simplifies to Q(t) = Q0 cos(ωt). When subjected to this Q(t) under
the assumption of inviscid flow (i.e., α = 0), the five SDS schemes produce height oscillations
with amplitudes given by equations (2.32–2.36) with α̃∗ = α̃ = 0.

These amplitudes are plotted as a function of ω̃ in Figure 2.4 for the case of L1/L2 = 1.
The black curve gives the benchmark solution. The green and blue curves correspond to WTG
and the old WPG; solid and dashed curves correspond to version 1 and version 2. The red
curve plots the solution from the new WPG scheme. Note that WTG version 2 (the dashed
green curve) does not appear on this plot because its h0 is identically zero when α̃∗ = 0. With
that exception, all the other schemes do well at matching the benchmark amplitude for large
ω̃. As discussed in the previous section, this agreement at large ω̃ is a trivial consequence of
the forcing period being much smaller than the gravity-wave propagation time.
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At small ω̃, the behavior is described by equations (2.37–2.42). The new WPG scheme
and version 2 of the old WPG scheme scale their amplitude in proportion to ω̃ like the
benchmark solution, but offset by an overall factor of 1/3 + L2/2L1. The other schemes do
poorly in the small-ω̃ limit.

For ω̃ = 1, versions 2 of WTG and old WPG are both highly discrepant with each other
and the benchmark solution: the benchmark has h̃0 ∼ 1, WTG version 2 has h̃0 = 0, and
old WPG version 2 has h̃0 =∞. As mentioned above, version 2 of WTG is identically zero
for all ω̃ because it is designed to move height anomalies out of the column on a timescale
proportional to α, which is zero in the inviscid limit. Version 2 of the old WPG has a
resonance at ω̃ = 1, which manifests itself as an infinite h̃0 at that frequency. This resonance
occurs because that scheme interprets any height anomaly in the column as a consequence of
the column sitting in an infinite plane wave of height anomalies with frequency L1/c. An
oscillatory forcing at this frequency is interpreted by this scheme as an amplification of the
plane-wave amplitude.

2.5.3 Damped oscillations
To evaluate the WTG and WPG schemes in the presence of damping (α > 0), the

benchmark solutions must be simulated numerically. The amplitudes obtained from these
numerical simulations are plotted as black circles in Figure 2.5, which gives the amplitudes
h̃0 for a range of ω̃, α̃, and L1/L2. The colors and line styles (solid versus dashed) are the
same as in Figure 2.4. From left to right, the columns range from α̃ = 0.1 to 0.001. From top
to bottom, the rows range from L1/L2 = 1 to 0.01. Each plot depicts log10 h̃0 as a function
of log10 ω̃, with the abscissa ranging from ω̃ = 10−4 to 10.

The choices of α̃, ω̃, and L1/L2 depicted here are motivated by the following considerations.
Imagine that the column (i.e., the region from −L1 to L1) represents a patch of atmosphere
comparable in size to a GCM grid column, i.e., with a width on the order of 100 km. For
L1/L2 = 1, any convective anomaly in the column is compensated for by a convective anomaly
of comparable magnitude, but opposite sign, in the adjacent grid cells. On the other hand, it
is unlikely that that the compensating region would be significantly smaller than one grid cell,
so we consider L1/L2 = 1 as the upper limit for this ratio. At the lower limit, we consider
L1/L2 = 0.01, which implies a compensating region on the order of 10,000 km. Since this
is already comparable to the circumference of the Earth, we take this as the lower limit of
L1/L2.

A plausible constraint on ω̃ can be obtained by requiring that gravity waves are able
to communicate signals across the compensating region on a timescale short compared to
one period of the oscillation; otherwise, the contemporaneous oscillations of the source and
sink regions would be acausal. Multiplying the gravity-wave speed (c) by the timescale of
the oscillation (1/ω) and requiring it to be larger than L2, we obtain c/ω > L2, which can
be rewritten as ω̃ < L1/L2. In Figure 2.5, this region is occupied by log10 ω̃ < 0 in the
top row, < −1 in the middle row, and < −2 in the bottom row. Further consideration of
causality leads us to conclude that the maximum size of the sink region, L2, cannot exceed
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the dissipative scale c/α (i.e. the length scale over which gravity waves are dissipated by
Rayleigh damping). This implies that we should restrict our attention to α̃ ≤ L1/L2. For α,
a range of α̃ from 0.1 to 0.001 with c = 50 m s−1 and L1 = 100 km corresponds to a range of
1/α from 0.2 days to 20 days. As shown by Romps (2013), moist convection can generate a
damping timescale in the range of 1–10 days, although the precise timescale depends on the
convective mass flux and the baroclinicity of the circulation.

Note that versions 1 of WTG and old WPG give the same curves for h̃0 in all panels of
Figure 2.5. This is caused by the fact that the amplitudes in equations (2.33) and (2.35) do
not depend on either L2 or α. As in the inviscid case, their amplitudes plateau at small ω̃,
resulting in poor behavior there. Version 2 of WTG is increasingly bad as α̃ decreases, with
the amplitude going to zero in the inviscid limit. Version 2 of the old WPG scheme continues
to exhibit a resonance at ω̃ = 1, although the addition of damping prevents the amplitude
from going to infinity. The new WPG scheme performs very well when L1 and L2 are of the
same order of magnitude, as shown by the excellent agreement between the black and red
curves in the top row of Figure 2.5. At smaller L1/L2 ratios, the new WPG scheme performs
well at small frequencies (ω̃ � 1, where steady state prevails, and so versions 2 of WTG and
WPG also perform well) and around one and larger frequencies (ω̃ & 1, where transients
dominate, and so versions 1 of WTG and WPG also perform well). In these respects, the
new WPG combines the best aspects of previous SDS schemes. Where the new WPG is most
deficient is for ω̃ ∼ 0.01 for the smallest α̃ (0.001) and the smallest L1/L2 (0.01). For that
combination of ω̃, α̃, and L1/L2, the frequency is large compared to the damping, making
the flow practically inviscid. Since L2 is large compared to L1, comparison of equations (2.37)
and (2.38) correctly predicts that the new WPG scheme will underestimate the amplitude by
a factor of L2/2L1 = 50.

2.6 Extension to continuously stratified fluids
Given an SDS scheme for the shallow-water equations, it is straightforward to extend

it to a continuously stratified fluid. Consider the linearized, Rayleigh-damped, hydrostatic,
Boussinesq equations, described by

∂tu = −1
ρ
∂xp− αu (2.43)

∂tv = −1
ρ
∂yp− αv (2.44)

0 = b− 1
ρ
∂zp (2.45)

∂tb = −N2w +Q (2.46)
∂xu+ ∂yv + ∂zw = 0 , (2.47)
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where b is the buoyancy (m s−2), p is the perturbation pressure (Pa), and Q is the buoyancy
source (m s−3). These equations can be combined to give a self-contained equation for B:

∂2
t ∂

2
zb+ α∂t∂

2
zb+N2∇2b = ∂t∂

2
zQ+ α∂2

zQ . (2.48)

For consistency with the one-dimensional shallow-water equations studied in the previous
sections, let us drop the y dimension (or, equivalently, consider solutions that are invariant
in the y direction). Then, one-dimensional transient waves in an inviscid fluid obey

∂2
t ∂

2
zb+N2∂2

xb = 0 .

For buoyancy patterns with a vertical wavenumber m, i.e., b(x, z, t) = b(x, t) sin(mz), this is a
wave equation with phase speed N/m. Therefore, the transient timescale for these buoyancy
patterns is

τ = L1m

N
(transient timescale) . (2.49)

Next, consider a steady state, which reduces (2.48) to

N2∂2
xb = α∂2

zQ . (2.50)

For a heating of wavenumber m with compensating regions as depicted in Figure 2.1, Q takes
the form

Q(x, z) =
(

1 + L1

L2

)
Q0 sin(mz)H(L1 − x)H(L1 + x)

− L1

L2
Q0 sin(mz)H(L1 + L2 − x)H(L1 + L2 + x) .

Substituting this forcing into (2.50) along with the test solution b(x, z) = b(x) sin(mz), we
find

b(x) =



αQ0m
2

2N2

[
L1(L1 + L2)− x2

]
|x| ≤ L1

αQ0L1m
2

2N2L2

(
L1 + L2 − |x|

)2
L1 < |x| < L1 + L2

0 L1 + L2 ≤ |x|

. (2.51)

This solution for b(x) is the same as the solution for h(x) in equation (2.7) with c replaced
by N/m. In the column, the mean buoyancy anomaly is

1
2L1

∫ L1

−L1
dx b(x) = αm2

N2 L
2
1

(1
3 + 1

2
L2

L1

)
Q0 . (2.52)

Therefore, we see that the timescale relating the forcing Q0 to the steady-state anomaly is

τ = αm2L2
1

N2

(1
3 + 1

2
L2

L1

)
(steady-state timescale) . (2.53)
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Not surprisingly, this is the same timescale as in (2.9) with c replaced by N/m.
By analogy to the new WPG scheme given in Table 2.1 for the shallow-water equations,

the Boussinesq fluid coupled to the new WPG scheme is described by

∂tb = −N2w +Q (2.54)
∂zp = ρb (2.55)
∂zw = −δ (2.56)

∂tδ
′ = 1

ρ

p

L2
1
− α∗δ′ (2.57)

δ = δ′ + 2πL1

HN
∂tδ
′ , (2.58)

with α∗ = α(1/3 + L2/2L1). Here, the buoyancy b plays a role analogous to that of h in the
shallow-water equations. Equations (3.10) and (3.11) have no analog in the shallow-water
equations, but are present here because the Boussinesq system is a continuously stratified
fluid. Note that equations (3.12) and (2.58) are the same as the new WPG equations listed
in Table 2.1, but with gh replaced by p and c replaced by NH/π, which is the wave speed of
the first baroclinic mode. These equations can be combined to give a self-contained equation
for b:

∂2
t ∂

2
zb+ α∗∂t∂

2
zb−

2πN
HL1

∂tb−
N2

L2
1
b = ∂t∂

2
zQ+ α∗∂2

zQ . (2.59)

For inviscid transients of the form b(z, t) = B0 exp(iωt+ imz), we get

m2ω2 − (2πN/HL1)iω − (N/L1)2 = 0 . (2.60)

If m = π/H, then
ω = HN

πL1
i ,

and b decays with the timescale L1π/HN . This is the correct behavior for the first baroclinic
mode. In steady state with Q = Q0 sin(mz), the WPG equations reduces to

b = α∗m2L2

N2 Q0 . (2.61)

For our choice of α∗, this gives the correct relationship between b and Q.
At first glance, one might be concerned by the presence of the dry first baroclinic wave

speed in (2.58), because moist convection coupled to dry dynamics can generate waves that
move at speeds different from the dry gravity-wave phase speed. However, this occurs by
a superposition of damped, dry, gravity waves, all of which travel at their respective dry
phase speeds. To state this in another way, the large-scale gravity-wave dynamics are always
dictated by a linear set of equations, regardless of the heat source. No matter how nonlinear
the interactions between the convective heat source and the gravity waves, the coupled
convection-wave dynamics are simply given by the dry, large-scale dynamics coupled to a
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heat source. The purpose of any supradomain-scale parameterization is to parameterize these
large-scale dry dynamics, so the use of the dry gravity-wave speed is correct here, and in fact,
not unique to WPG. Prior implementations of WTG also use the dry, first-baroclinic wave
speed to set the relaxation timescale for the temperature profile, τ (Raymond & Zeng 2005;
Sessions et al. 2010; Wang & Sobel 2011; Daleu et al. 2012).

For a fully compressible atmosphere, such as that simulated by a cloud-resolving model,
WPG is implemented by the addition of a mass source −ρδ as described by Romps (2012b).
In the new WPG scheme, the divergence δ is governed by

∂tδ
′(z, t) = p(z, t)− p0(z)

ρ(z, t)L2
1
− α∗δ′(z, t) (2.62)

δ(z, t) = δ′(z, t) + 2πL1

HN
∂tδ
′(z, t) , (2.63)

with α∗ = α(1/3 +L2/2L1). This pair of equations replaces equation (A1) in the appendix of
Romps (2012a). Otherwise, the implementation of this new WPG scheme is identical to that
described there and in Romps (2012a).

2.7 Discussion
This new WPG scheme is motivated by the observation that gravity waves can exert a

back-reaction on a column of fluid as they exit that column, as illustrated by the change in
sign of the dashed curve in Figure 2.3. By adding a term to the governing equation for the
large-scale divergence δ, this behavior can be captured. The resulting formulation of WPG
can simultaneously capture the timescale of gravity-wave transients (i.e., the time it takes for
gravity waves to remove transient pressure anomalies from the column) and the timescale
for steady-state solutions (i.e., the time that relates the steady-state buoyancy source to the
steady-state buoyancy anomaly). As pointed out by Romps (2012b), neither WTG nor the
original WPG are able to do this.

One problem that remains, at least superficially, is the inability of this new WPG to
simultaneously capture the correct timescales for more than one transient baroclinic mode.
In equation (2.58) for WPG in a Boussinesq fluid, the coefficient of the last term contains
a π/H, which is the vertical wavenumber of the first baroclinic mode. As a consequence,
the dispersion relation (2.60) only gives the correct timescale for transient modes with this
wavenumber; higher wavenumbers are damped too quickly. Fortunately, the key to overcoming
this problem is straightforward in the new WPG. Following a spectral decomposition approach
akin to suggestions by Bergman & Sardeshmukh (2004) and Mapes (2004) and choosing a
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basis for the baroclinic modes, denoted by ck(z), we can write p, δ, and δ′ as

p(z, t) =
∑
k

pk(t)ck(z) (2.64)

δ(z, t) =
∑
k

δk(t)ck(z) (2.65)

δ′(z, t) =
∑
k

δ′k(t)ck(z) . (2.66)

Equations (3.12) and (2.58) can then be modified to

∂tδ
′
k = 1

ρ

pk
L2

1
− α∗δ′k (2.67)

δk = δ′k + 2L1

N
mk∂tδ

′
k , (2.68)

where mk = kπ/H. This differs from equations (3.12) and (2.58) in that the coefficient in
(2.68) now contains the vertical wave number mk, which results in a mode-specific phase
speed, N/mk. In a practical implementation, this simply requires decomposing p into modes
at each time step (truncating at some sufficiently high wavenumber n) and integrating n
prognostic equations for the n different δ′k. An analogous decomposition can be made for a
compressible fluid.
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Figure 2.3 : For a stationary (δ = 0) Gaussian (h ∝ e−x2/L2
1) centered on the column at time t = 0,

the solution for t > 0 is of two Gaussians propagating to the left and right. As seen in the lower
plot, the average h in the column (h, solid curve) decreases monotonically, but the pressure-gradient
force at the edges of the column (−∂xh|L1

−L1
, dashed curve) switches from divergent to convergent at

t = 1. This mismatch between h and −∂xh|L1
−L1

motivates the addition of a new term to the WPG
equations.
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Figure 2.4 : For inviscid dynamics (α = 0) and L1/L2 = 1, the non-dimensionalized amplitude h̃0 in
response to an oscillatory forcing Q with non-dimensionalized angular frequency ω̃.
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Figure 2.5 : The non-dimensionalized amplitude h̃0 in response to an oscillatory forcing with
non-dimensionalized angular frequency ω̃. Plots of log10(h̃0) versus log10(ω̃) are shown for all
combinations of L1/L2 = 1, 0.1, and 0.01 (rows 1 through 3) and non-dimensionalized α̃ = 0.1, 0.01,
and 0.001 (columns 1 through 3). Results are shown for (black circles) benchmark numerical model,
(green solid) WTG v1, (green dashed) WTG v2, (blue solid) old WPG v1, (blue dashed) old WPG
v2, and (red) new WPG.
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Chapter 3

Self-consistency tests of
large-scale-dynamics
parameterizations for single-column
modeling1

Large-scale dynamics parameterizations are tested numerically in cloud-resolving simula-
tions, including a new version of the weak-pressure-gradient approximation (WPG) introduced
in Chapter 2 and Edman & Romps (2014), the weak-temperature-gradient approximation
(WTG), and a prior implementation of WPG. We perform a series of self-consistency tests
with each large-scale dynamics parameterization, in which we compare the result of a cloud-
resolving simulation coupled to WTG or WPG with an otherwise identical simulation with
prescribed large-scale convergence. In self-consistency tests based on radiative-convective
equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly
coupled or strongly coupled to either WPG or WTG are self-consistent, but WPG-coupled
simulations exhibit a non-monotonic behavior as the strength of the coupling to WPG is
varied. We also perform self-consistency tests based on observed forcings from two obser-
vational campaigns: the Tropical Warm Pool International Cloud Experiment (TWP-ICE)
and the ARM Southern Great Plains (SGP) Summer 1995 IOP. In these tests, we show that
the new version of WPG improves upon prior versions of WPG by eliminating a potentially
troublesome gravity-wave resonance.

3.1 Introduction
Studies of idealized tropical dynamics using single-column and cloud-resolving simulations

frequently incorporate parameterized large-scale dynamics to capture the interaction between
1Material in this chapter originally published in Edman & Romps (2015), under a Creative

Commons license.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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the modeled domain and the environment (e.g. Chiang & Sobel 2002; Raymond & Zeng
2005; Kuang 2008, 2011; Emanuel & Sobel 2013; Bony et al. 2013). A large-scale dynamics
parameterization, also referred to as a supradomain-scale (SDS) parameterization (Romps
2012b), diagnoses the large-scale convergence into a modeled column by comparing the
modeled profile of pressure or temperature to a reference environmental profile. There are
two main SDS schemes: the weak-temperature-gradient approximation (WTG) and the
weak-pressure-gradient or damped-wave approximation (WPG). In the former, horizontal
temperature gradients are assumed to be small, and buoyancy differences between the column
and the reference environment are relaxed by vertical advection of potential temperature
on some fixed timescale (Sobel & Bretherton 2000; Raymond & Zeng 2005; Sessions et al.
2010; Wang & Sobel 2012; Wang et al. 2013). On the other hand, WPG uses a parameterized
form of the pressure-gradient force between the column and the reference environment to
diagnose large-scale convergence (Holton 1973; Nilsson & Emanuel 1999; Raymond & Zeng
2000; Kuang 2008; Blossey et al. 2009; Kuang 2011; Romps 2012b,a; Edman & Romps 2014).

The goal of an SDS scheme is to produce the convergence profile that a modeled column
would experience if immersed in the chosen environment. The convective dynamics within the
column are modeled with either a single-column model (SCM), typically with a convective
parameterization, or with a cloud-resolving model (CRM). A typical use for an SDS scheme
is to feed it a time-dependent profile of temperature or pressure from observations and see
whether the SCM or CRM faithfully replicates the observed precipitation. In this case, any
mismatch between the observed and modeled precipitation may be due to errors in the SDS
scheme, errors in the SCM/CRM, or both. Therefore, these types of simulations are not
well-suited for evaluating the SDS schemes.

To evaluate the SDS schemes, we need to eliminate the influence of model error. This
can be accomplished by using an SCM/CRM simulation as the benchmark. Consider two
simulations that use the same SCM or CRM, as depicted in Figure 3.1. Run 1 may, in
general, be forced with any time-dependent convergence, horizontal advection, surface fluxes,
and nudging. These forcings may be taken from observations or they may be constructed
artificially. Run 2 uses the same set of forcings minus the convergence. Instead of being
forced with a time-dependent convergence profile, run 2 uses an SDS scheme to calculate its
convergence profile. And, in particular, the SDS scheme uses the temperature (for WTG)
or pressure (for WPG) from run 1 as the environmental profile. Since the model used in
both runs is the same, and since the forcings are identical aside from the use of the SDS
scheme, any differences in the resulting model output will be due to a failure of the SDS
scheme. If the model outputs are the same, then we say that the SDS scheme has passed the
self-consistency test. Here, “self-consistency” refers to the model behaving the same as itself.

A more explicit example of what we mean by self-consistency is the following. Imagine
a large-domain simulation of statistically steady and uniform convection. Now, consider a
small subdomain. This small subdomain, if left immersed in the large-domain simulation,
is unambiguously stable. If, when coupled to WTG or WPG using a reference profile
representative of the larger domain, the small subdomain continues to evolve in the same
statistically steady manner as it did when immersed in the large domain, then we would
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Figure 3.1 : A general self-consistency test for an SDS scheme. An SDS scheme passes the self-
consistency test if two simulations of the same SCM or CRM give the same output when forced as
depicted above. In particular, run 2 is forced with the same set of forcings as run 1, except that
the convergence profile is determined from the SDS scheme rather than being prescribed. In the
SDS scheme, the environmental profile (either pressure for WPG or temperature for WTG) is taken
from run 1.
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say that this simulation passes the self-consistency test. If the coupled simulation develops
a different large-scale circulation, then the large-scale dynamics parameterization is not
faithfully representing the interaction between the smaller subdomain and the large-scale
environment. We would say, in this case, that the SDS scheme fails the self-consistency test.

In particular, we will say that an SDS scheme passes the self-consistency test if it
generates domain-mean anomalous ascent or descent that is much smaller in magnitude than
the radiatively driven clear-sky descent speed in the benchmark simulation. For example, an
SDS scheme that perfectly replicates an RCE benchmark will have a domain-mean ascent
profile that is zero; since zero is certainly less than O(0.1) of the radiatively driven clear-sky
descent speed, this SDS is self-consistent. On the other hand, if the SDS scheme causes the
atmosphere to dry out and descend en masse to balance radiative cooling, then the domain-
mean descent speed will be comparable to the clear-sky descent speed in the benchmark RCE
simulation; therefore, this SDS scheme would be considered to have failed the self-consistency
test in spectacular fashion.

Much of the work using single-column and cloud-resolving models coupled to large-scale
dynamics parameterizations has focused on the conditions leading to multiple equilibria (i.e.,
the presence of distinct wet and dry equilibrium states; Sobel et al. 2007; Sessions et al. 2010)
or on comparisons with observations (e.g., Wang et al. 2013). There has been comparatively
little effort expended on studying whether or not commonly used SDS schemes can simply
reproduce the behavior of a model immersed in a larger version of itself. This is the goal of
the self-consistency tests we conduct in this study. In order to reliably compare model results
with observations, one might reasonably expect that an SDS scheme must be able to pass a
self-consistency test. Some implementations of WTG have been shown to fail self-consistency
tests (Raymond & Zeng 2005; Raymond 2007; Daleu et al. 2012), and Kuang (2011) found
that one implementation of WPG was passes for some parameter choices, but not others.

But, is it fair to expect these SDS schemes to succeed in these self-consistency tests? What
if failing a self-consistency test simply reflects a true instability in convecting atmospheres,
whereby a statistically uniform patch of atmosphere evolves a large-scale circulation? Indeed,
it has been suggested that the existence of multiple equilibria in single-column models with
an SDS scheme is related to the phenomenon of convective aggregation (Sobel et al. 2007).
Fortunately, we can exclude this possibility so long as we use fixed radiative cooling profiles
in the self-consistency tests. Although convective aggregation has been studied extensively in
numerical models (Held et al. 1993; Bretherton et al. 2005; Stephens et al. 2008; Muller &
Held 2012; Jeevanjee & Romps 2013; Emanuel et al. 2014; Wing & Emanuel 2014), there has
been no example of convective aggregation with fixed, horizontally uniform radiative cooling.
In fact, all indications are that interactive radiation (i.e., radiation that interacts with water
vapor and clouds) is essential to the triggering and maintenance of convective aggregation.
Therefore, when using fixed radiation, SDS schemes should be able to pass self-consistency
tests .

A key motivation for this study is to test the new form of WPG introduced in Chapter
2 and Edman & Romps (2014) in a cloud-resolving framework. In that study, we used
an idealized shallow-water framework to show that the new WPG improves upon previous
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implementations of WPG and WTG by more accurately capturing steady-state and transient
dynamics. Additionally, in the idealized system, this new form of WPG removes a potentially
troublesome gravity-wave resonance found in prior versions of WPG. In such a case, rather
than damping the buoyancy anomaly away on the timescale for gravity-wave emission from the
column, the column coupled to old WPG behaves as though an infinite, convectively-coupled
wave is passing through the domain (Romps 2012b). This behavior is undesirable if one is
attempting to parameterize the interaction between convection and large-scale convergence.
In this study, we present evidence that this gravity wave resonance can cause problems
in simulations coupled to WPG and show that it is eliminated entirely in the new WPG
presented in Chapter 2 and Edman & Romps (2014).

In this paper, we use cloud-resolving simulations with and without large-scale dynamics
parameterizations to test the claims of improvement to WPG made by Edman & Romps
(2014) using self-consistency tests. First, we perform self-consistency tests with WPG and
WTG using a cloud-resolving model in a simple radiative-convective equilibrium (RCE)
framework. We also perform self-consistency tests with observed forcings, by comparing
simulations forced with vertical-velocity observations from two observational campaigns – the
Tropical Warm Pool International Cloud Experiment (TWP-ICE; Fridlind et al. 2010) and
the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) intensive
observational period (IOP) of July 1995 (Ghan et al. 1999) – with simulations using large-
scale dynamics parameterized by new WPG, old WPG, and WTG. Section 3.2 describes
the implementations of the three large-scale dynamics parameterizations used in this study
(2 versions of WPG, 1 version of WTG). Section 3.3 describes the RCE self-consistency
tests and contains a brief discussion of their implications. In section 3.4, we describe the
self-consistency tests based on the TWP-ICE and SGP data and discuss the gravity wave
resonance problem in old WPG. We conclude with a brief discussion in Section 3.5.

3.2 Implementations of WPG and WTG
The SDS scheme that we refer to as “old WPG” is the version used in Romps (2012a).

The horizontal divergence δ(z, t) is calculated by

∂tδ(z, t) = 1
L2
p(z, t)− p0(z, t)

ρ(z, t) − α∗δ(z, t) , (3.1)

where the overbar represents the horizontal average over the column and a subscript 0 denotes
the environmental reference profile that is provided to the parameterization. The length scale
L and time scale 1/α∗ are input parameters to the scheme.

“New WPG” is a modification to old WPG introduced in Chapter 2 and Edman & Romps
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(2014), in which equation 3.1 is replaced by the following pair of equations:

∂tδ
′(z, t) = 1

L2
p(z, t)− p0(z, t)

ρ(z, t) − α∗δ′(z, t) , (3.2)

δ(z, t) = δ′(z, t) + 2πL
HN

∂tδ
′(z, t) . (3.3)

Here, the horizontal divergence δ(z, t) is the old WPG divergence δ′(z, t) modified by a
term proportional to the length scale L divided by the first-baroclinic wave speed NH/π
(i.e. the time for a dry first-baroclinic wave to cover a distance L), where N is a reference
Brunt-Väisälä frequency and H is the height scale. This factor is added to account for the
back reaction exerted on a column of fluid by gravity waves exiting the column, as described
in Chapter 2 and Edman & Romps (2014).

We implement WTG in the relaxed form following Raymond & Zeng (2005), where the
vertical velocity w(z, t) is calculated as

w(z, t) = θv(z, t)− θv0(z, t)
τ max[γ, ∂zθv0(z, t)] (3.4)

above a height of 1 km. Below z = 1 km, w is linearly interpolated to zero at the surface. A
minimum stability of γ = 0.01 K km−1 is enforced in the denominator to avoid singularities,
and τ is a relaxation time scale that is an input parameter to the scheme. This vertical
velocity is then converted to a horizontal divergence δ(z, t) by

δ(z, t) = − 1
ρ(z, t)∂z[ρ(z, t)w(z, t)] (3.5)

The horizontal divergence calculated by an SDS scheme defines a mass source, −ρδ, which
is added to the cloud-resolving model’s tendencies of density, water vapor, and temperature.
Following Romps (2012a), we also include the horizontal advective effect of convergence over
the modeled domain in the tendencies of potential temperature and water vapor. This is
represented by a second-order centered method, such that the tendency equations have the
following modifications:

∂tρ(x, t) = −ρ(x, t)δ(z, t) + . . . (3.6)

∂t [ρ(x, t)qv(x, t)] = −ρ(x, t)δ(z, t)
{
qv(x, t) + 1

2[qv0(z)− qv(x, t)]
}

+ . . . (3.7)

∂t [ρ(x, t)θ(x, t)] = −ρ(x, t)δ(z, t)
{
θ(x, t) + 1

2[θ0(z)− θ(x, t)]
}

+ . . . (3.8)

Note that the above equation for potential temperature θ was incorrectly written in terms
of absolute temperature in Romps (2012a), but it was correctly implemented in terms of
potential temperature both there and here.

All simulations are performed using the fully-compressible, cloud-resolving model Das
Atmosphärische Modell (DAM, Romps 2008) with 2-km grid spacing in the horizontal, a
doubly periodic domain, and no Coriolis force. The vertical grid is stretched, ranging from
approximately 50-m grid spacing near the surface, up to 1 km near the model top, which is
at 32 km.
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3.3 Self-consistency in RCE
Radiative-convective equilibrium (RCE) is a state of no mean convergence into the

simulated column, and it serves as a particularly simple situation in which to test self-
consistency. We use the following basic procedure for the self-consistency tests: 1) run a
cloud-resolving model to RCE with fixed SST and fixed radiative cooling, without any SDS
scheme; 2) run an identical simulation, but coupled to either WPG or WTG, using the mean
profiles of pressure (for WPG) or temperature (for WTG) from the first simulation as the
reference environment. These two steps correspond to model runs 1 and 2 in Figure 3.1. If
the SDS scheme passes the self-consistency test, run 2 should exhibit no mean ascent.

For both runs 1 and 2, surface fluxes are calculated using a bulk aerodynamic formula
over an ocean with a fixed SST of 300 K and the profile of radiative cooling is fixed as the
average of an otherwise identical 120-day RCE simulation with interactive radiation. Run 1
lasts 240 days; run 2 is initialized from a 3D snapshot taken at the end of the run 1, and it
lasts 90 days. The reference profiles of temperature, pressure, and water vapor used as input
to the SDS schemes in run 2 are averages over the last 120 days of run 1.

Self-consistency in RCE appears to depend on the choice of relaxation parameter for
each scheme (e.g., τ for WTG and L for both WPGs). We test three choices of relaxation
parameter for each scheme, corresponding to different adjustment timescales (τ) for WTG,
and different length scales (L) for WPG. The three values of L are 128 km, 1280 km, and
12800 km. The smallest value of L is twice the width of the domain and the largest is ≈ 1/3
the circumference of the earth at the equator. For WTG, τ is set to L/c, where c ≈ 50 m
s−1 is the approximate wave speed of the first baroclinic mode in the tropical atmosphere,
so τ takes the values 0.725, 7.25, and 72.5 hours. Additional simulations (not shown) with
a larger domain (144 x 144 km) indicate that WTG may become more self-consistent with
larger domain sizes, while WPG is much less sensitive.

Figure 3.2 shows the precipitation time series from the last part of run 1 (RCE) and
the entirety of run 2 (the SDS parameterized simulations) for each choice of SDS scheme
and relaxation parameter. Run 2 begins at day 240 and continues until day 330; thick,
colored lines show results for WTG (top), old WPG (middle), and new WPG (bottom). For
all SDS schemes with the parameter choice corresponding to the slowest adjustment (e.g.,
τ = 72.5 hours and L = 12800 km; orange lines in figure 3.2) the precipitation time series for
run 2 is nearly indistinguishable from the RCE in run 1 (thin black lines). In those cases,
the parameterized adjustment is so weak that the column is effectively decoupled from the
environment.

For L = 1280 km, both new and old WPG exhibit oscillatory behavior on a ≈ 10-day
timescale, similar to that seen in Kuang (2011), and there is less mean precipitation than
in the RCE run. The 10-day oscillation and most of the change in the mean disappears for
L = 128 km, but larger variability on shorter timescales remains (although this is somewhat
reduced for new WPG relative to old WPG). For both choices of τ , WTG appears more
similar to the RCE case than any of the versions of WPG. There is almost no change in the
mean precipitation relative to the RCE case, but the case with τ = 7.25 hours has a ≈ 10-day
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period oscillation similar to both versions of WPG, albeit with smaller amplitude. Note that
this 10-day oscillation is distinct from the gravity-wave resonance discussed previously; it
is not possible for the gravity wave resonance to occur in WTG or new WPG. Also, the p
and w anomalies are in phase for 10-day period oscillations, in contrast to the gravity wave
resonance where the p and w anomalies are in quadrature.

Figure 3.3 shows the resulting vertical-velocity profiles for each of the “run 2” simulations,
averaged over the full 90 days. For a large-scale dynamics parameterization that is perfectly
self-consistent, the mean vertical-velocity profile would be zero at all heights, i.e., the same
as the RCE state. This requirement is very closely met in the cases of τ = 72.5 hours and
L = 12800 km; these parameters are planetary-scale, so that the coupling to large-scale
dynamics is so weak that it has a negligible effect on the modeled convection and the column
is actually in RCE. For other values of L and τ , there are noticeable deviations of the
vertical-velocity profiles from zero; these deviations will be compared to the radiatively drive
descent speeds below. As expected, the mean vertical-velocity profiles for new and old WPG
are nearly identical; the two schemes only differ in their treatment of transient disturbances.

One striking feature of these simulations is the agreement between WPG and WTG for
small L and τ ; for L = 128 km and τ = 0.725 hours, the vertical-velocity profiles are almost
identical, with strongly third-baroclinic structure. This agrees with the findings of Kuang
(2012), who found that simulations of atmospheric circulations over SST hotspots using WTG
and WPG converge to a similar third-baroclinic structure (see figures 10 and 11 of Kuang
(2012)) in the limit of small L and τ . It is notable that this same structure persists in our
RCE self-consistency tests, in the absence of any SST anomaly.

On the other hand, WTG and WPG exhibit very different behavior as the relaxation
parameter is increased. For WTG, increasing τ reduces the mean vertical motion, which
decreases monotonically toward zero until the column is in RCE (e.g., the simulations with
τ = 72.5 hours). This agrees with the findings of Daleu et al. (2012), although their model had
descending motion for all values of τ ; clearly some aspects of this circulation are dependent
on the model setup, although the parameter dependence seems robust. In contrast, the
vertical motion in the WPG simulations does not monotonically decrease toward zero as L is
increased. When L is increased from 128 km to 1280 km, the third-baroclinic structure in
the vertical-velocity profile disappears, and is replaced by first-baroclinic descent with more
than twice the magnitude. But, as L is increased further, the column does in fact approach
RCE (e.g., the WPG simulations with L = 12800 km). The WPG simulations of Kuang
(2012) also show this tendency toward deeper structure for larger L, but the non-monotonic
approach to RCE is a novel feature of these simulations.

Although these nonzero vertical-velocity profiles tell us that WTG and WPG are not
perfect, are they “good enough” for practical use? Our criteria for passing a self-consistency
test – that the vertical-velocity errors are small compared to radiatively driven clear-sky
subsidence – is designed to answer this question. The net radiative cooling rate of the
troposphere is equal to about 1 K day−1. The subsidence rate is given by w = gQ/N2T ,
where N is the Brunt-Väisälä frequency and Q is the radiative cooling rate in dimensions of
Kelvin per time. Using values realistic for the mid-troposphere, this results in w ≈ −4 mm
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Figure 3.2 : Rainfall time series for the RCE self-consistency tests. In all panels, the thin black line
depicts the domain-averaged precipitation from the RCE simulation. The results of the coupled
simulations (WTG, top; old WPG, middle; new WPG, bottom) are shown after day 240; the green
lines represent the precipitation from simulations with the strongest coupling to WPG or WTG
(e.g. L = 128 km for WPG, τ = 0.725 hours for WTG), the blue lines show the intermediate choice,
and the orange lines show the case with the weakest coupling, which is effectively RCE for all the
SDS schemes.
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parameter choices (see legend).
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s−1. For all three values of τ , the domain-mean w in the WTG simulations is . 1 mm s−1,
which is much smaller in magnitude than ≈ 4 mm s−1, so we conclude that WTG passes these
self-consistency tests. The story is a bit different, however, for WPG. For small and large
L (128 km and 12800 km), the WPG profiles are nearly identical to the WTG profiles for
small and large τ (0.725 and 72.5 hours), and they meet the requirement for self-consistency.
For intermediate L (1280 km), however, the WPG profile takes a value of about −2 mm
s−1, which is comparable to the radiatively driven clear-sky descent speed of about −4 mm
s−1. For intermediate L, therefore, we conclude that new and old WPG do not pass these
self-consistency tests. In the next section, we perform self-consistency tests with observed
forcing, which emphasizes the ability of each SDS scheme to deal with transient disturbances.

3.4 Self-consistency with observed forcings
We adapted case studies from two observational campaigns focused on single-column

model intercomparisons: the Tropical Warm Pool International Cloud Experiment (TWP-
ICE, Fridlind et al. 2010) and the July 1995 intensive observation period (IOP) at the ARM
Southern Great Plains site (Ghan et al. 1999). However, rather than use the observed
environmental reference profiles to drive WPG and WTG (e.g., as in Wang et al. 2013), we
“filter” the observations through a benchmark simulation forced with the observed vertical
velocity, and then use the pressure and temperature profiles from the benchmark simulation
as input to WPG and WTG. This is the same procedure depicted in Figure 3.1. This
self-consistency test allows for a direct comparison between the benchmark and SDS-enabled
simulations without contamination from any model or observational errors other than those
introduced by the SDS scheme itself.

For the time-varying self-consistency tests, we use a 128-km square domain. The bench-
mark simulation is forced with the observed large-scale vertical velocity from observations.
The simulations with parameterized large-scale dynamics derive their own vertical velocity
using time-varying reference profiles taken from the benchmark simulation. Because WPG
and WTG have been shown to respond strongly to variations in surface fluxes (Wang et al.
2013), but we are mainly interested in their ability to produce convergence profiles consistent
with heating anomalies in the column, we use time-invariant surface and advective forcings
and non-interactive (but time-varying) radiative cooling profiles for both the benchmark and
WPG/WTG coupled experiments.

Additionally, all simulations are initialized using observed profiles of wind, temperature,
and humidity; the temperature field is perturbed with 0.01-K noise in the first layer of the
domain. Parameters for new and old WPG are set following Edman & Romps (2014), with
L = 128 km (the size of the domain) and α∗ = α(1/3 + r/2), where 1/α is the Rayleigh
damping timescale for the troposphere, taken here to be 5 days. The value of r is not well
constrained (see discussion in Chapter 2), but it represents the ratio of the size of the region
affected by anomalous convection in the modeled column to the size of the anomalously
convecting column; here we set r = 10. For new WPG, we set the factor 2π/HN = 0.042 s
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m−1, corresponding to H = 15 km and N = 0.01 s−1. For WTG, we set τ as the time for
a first baroclinic wave to traverse the domain τ = 128 km/49 m s−1 = 0.725 hours, which
is comfortably within the range established by previous studies (e.g., Cohen & Craig 2004;
Wang & Sobel 2011; Wang et al. 2013).

3.4.1 TWP-ICE
For the TWP-ICE self-consistency test, the surface fluxes and radiative cooling profile for

the benchmark and WPG/WTG runs are taken from a simulation identical to the benchmark
simulation (prescribed observed vertical velocity), but with surface fluxes calculated inter-
actively using the bulk aerodynamic formula over an ocean with SST fixed at the observed
mean of 302 K, and radiation calculated interactively every 10 minutes. To assess the relative
performance of WTG, old WPG, and new WPG, we compare the precipitation time series
from each simulation with parameterized large-scale dynamics against the precipitation time
series from the benchmark simulation. Precipitation is a relatively holistic way to assess
performance, because it is closely related to the large-scale convergence produced by the SDS
scheme.

The resulting precipitation time series are shown in Figure 3.4. WTG, old WPG, and
new WPG are shown in the top, middle, and bottom panels, respectively. In all three
panels, the result of the benchmark simulation is shown by the thin black line. By eye,
all of the parameterizations perform relatively well throughout the entire 16-day period.
More quantitatively, the R2 values are 0.590, 0.656, and 0.780 for WTG, old WPG, and new
WPG, respectively. In the first half of the simulation period, both new WPG and WTG
capture the timing and magnitude of the relatively large, almost-daily precipitation events in
the benchmark, although the peaks for the WTG case lag the benchmark slightly, and the
amplitude of the largest event at the end of day 5 is too small. Old WPG gets the timing
of the events roughly correct, but more often than not produces larger amplitudes than the
benchmark. In the latter half of the simulation, when the benchmark is characterized by
smaller amplitude precipitation events, WTG performs better than either new WPG or old
WPG, which both predict more intermittent precipitation in the latter half of the simulation
than the benchmark.

3.4.2 ARM-Southern Great Plains
In addition to the TWP-ICE experiments, we perform tests using a nearly identical model

setup and procedure applied to data from the July 1995 intensive observation period (IOP)
at the ARM Southern Great Plains (SGP) site (Ghan et al. 1999). A time-varying radiative
cooling profile (from a separate simulation) and time-invariant surface advective tendencies
(from observations) are applied as in the TWP-ICE experiments. Because this field site is
over land rather than ocean, we prescribe the time-mean of the observed surface fluxes for
all SGP simulations. Additionally, for the WPG runs, we apply the same boundary layer
linearization used in WTG to reduce the sensitivity to the diurnal cycle of heating.



3.4. SELF-CONSISTENCY WITH OBSERVED FORCINGS 40

0

50

100

150

200

m
m

/d
a
y

benchmark

WTG

0

50

100

150

200

m
m

/d
a
y

benchmark

Old WPG

0 2 4 6 8 10 12 14 16
days

0

50

100

150

200

m
m

/d
a
y

benchmark

New WPG

Figure 3.4 : Precipitation time series for the TWP-ICE test case. In all panels, the thin black line
is the precipitation rate from the benchmark simulation with prescribed w. The thick green line
in the top panel is the precipitation from the simulation coupled to WTG (τ = 0.725 hours); the
middle and bottom panels show old WPG and new WPG (L = 128 km for both), respectively.
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We do not include the effects of rotation, despite the fact that the ARM SGP site is
located at 36.5◦ N, well outside the tropics. At this latitude, the Rossby deformation radius
is ≈2000 km, which is an order of magnitude greater than the horizontal extent of the model
domain. Thus, we might expect that rotation would not affect the dynamics contained within
the model domain, and the assumption of weak temperature and pressure gradients across
the model domain and the environment are not grossly violated. Also, convection in the
midlatitudes is more strongly forced by large-scale convergence than in the tropics; on these
grounds we might expect parameterized large-scale dynamics to actually perform better in
midlatitudes than in the tropics.
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Figure 3.5 : Same as Figure 3.4, but for the SGP test case. Maximum rainfall rates for the old WPG
and new WPG cases are 422 mm/day and 365 mm/day, respectively.
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Figure 3.5 shows the precipitation time series from simulations based on the SGP case
using WTG (top), old WPG (middle), and new WPG (bottom). Again, in all three panels,
precipitation from the benchmark simulation (forced vertical velocity) is shown by the thin
black line.

By eye, we see that WTG outperforms both new and old WPG for this case, although
none of the parameterizations perform as well as in the TWP-ICE self-consistency test. The
precipitation events in WTG (top panel, thick red line) are close to the same magnitude as
the benchmark, with the exception of the event on day 13, which is spuriously large, and
the event on day 4, which is absent. The timing of WTG precipitation events is similar to
the benchmark, although some WTG events lead the benchmark by up to 12 hours (days 6
and 8) while others lag by a few hours (days 2 and 14). On the other hand, both versions
of WPG over-predict the magnitude of almost all precipitation events, and the timing is
significantly delayed for the events on days 4, 8, and 12. Furthermore, WTG simulates the
persistent rainfall from days 14-16 of the benchmark simulation better than both versions of
WPG, which predict almost-daily precipitation events with magnitudes much larger than the
benchmark.

3.4.3 Gravity wave resonance
We performed an additional set of simulations based on the SGP case, similar to the

time-varying self-consistency tests described above, but instead using time-varying surface
fluxes and interactive radiation for both the benchmark and WTG/WPG coupled runs. This
is still a self-consistency test, as the benchmark and WTG/WPG coupled runs are subject
to the same forcings, but now the SDS scheme must respond to forcings other than column
buoyancy anomalies. This framework is perhaps more representative of how WTG and WPG
might be used to test CRM’s ability to reproduce the properties of the observed atmosphere.
One other important difference between these simulations and the SGP simulations described
above (and shown in Figure 3.5) is the use of a moister initial condition, which leads to larger
magnitude precipitation events in the benchmark and coupled simulations, but should not
affect the dynamical resonance we explore in this section.

The results of this experiment are shown in Figure 3.6. Old WPG (middle panel, orange
solid line) clearly performs the worst of the three large-scale dynamics parameterizations, with
peak precipitation rates more than twice as large as the benchmark case, and, starting around
day 12, a series of large rainfall events seemingly unrelated to anything in the benchmark
simulation. These wild oscillations are not present in new WPG, and they are the result of
the gravity wave resonance mentioned earlier.

Why the resonance?

From the precipitation time series in Figure 3.6, it is clear that new WPG is a substantial
improvement over old WPG. This improvement is due to the improved handling of transient
disturbances in new WPG; in particular, new WPG eliminates the spurious gravity-wave
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Figure 3.6 : Precipitation time series for the SGP case with interactive radiation and time-varying
surface and advective forcings. In all panels, the thin black line is the precipitation rate from the
benchmark simulation with prescribed w. The thick green lines in all panels show precipitation
from the SDS-coupled runs; in the top panel is the precipitation from the simulation coupled to
WTG (τ = 0.725 hours); the middle and bottom panels show old WPG and new WPG (L = 128
km for both), respectively. Maximum rainfall rate for the old WPG case is 1470 mm/day.
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resonance in old WPG, as shown in Chapter 2 and Edman & Romps (2014). The resonance
works as follows: a column coupled to old WPG behaves as though a plane wave of wavelength
L is passing through the domain; buoyancy anomalies with nearly the same frequency as
this wave can trigger a resonance, amplifying the anomaly rather than damping it away. For
the shallow-water case considered in Chapter 2 and Edman & Romps (2014), the resonance
occurs only at the frequency f = ω/(2π) = c/(2πL), where c =

√
gh is the wave speed

in a shallow fluid of depth h. Through a separation of variables, it can be shown that a
continuously stratified fluid obeys a set of shallow water equations, each corresponding to
a different ‘equivalent depth’ (e.g., Matsuno 1966). If one imposes a so-called ‘rigid lid’
somewhere in the atmosphere (i.e., w → 0 at some z), the vertical structure of the stratified
fluid can be decomposed into a discrete set of vertical modes, each with a distinct wave speed
c. While perhaps not physically realistic, the rigid lid assumption has been justified in the
literature (e.g. Mapes 1998) and is often invoked in studies of tropical circulations (e.g., Dias
et al. 1983; Haertel & Johnson 1998; Tulich et al. 2007). Because the continuously stratified
fluid supports a spectrum of wave speeds and vertical structures, old WPG has the potential
for gravity wave resonance at any of the discrete frequencies fi = ci/(2πL), where ci is wave
speed of the ith vertical mode.

To see this explicitly, consider the Boussinesq equations linearized about a motionless
hydrostatic base state. If we use the old WPG approximation, these equations become

∂tb = −N2w +Q (3.9)
∂zp = ρb (3.10)
∂zw = −δ (3.11)

∂tδ = 1
ρ

p

L2 − α
∗δ . (3.12)

Here, b is the buoyancy, Q is the buoyancy forcing, α∗ is a damping term, and δ is the
horizontal divergence. Assuming N2 is constant with height and the dynamics are inviscid
(α∗ = 0), these equations can be reduced to the following equation for the buoyancy:

∂2
t ∂

2
zb−

N2

L2 b = ∂t∂
2
zQ . (3.13)

For a forcing of the form Q = Q0e
iωt+imz, where ω is the forcing frequency and m is the

vertical wavenumber, the solutions for b can take the form B0e
iωt+imz. Plugging this into

equation (3.13), we find an expression for the amplitude of the buoyancy anomaly B0:

B0 = − im2ω

m2ω2 −N2/L2Q0 . (3.14)

The amplitude B0 goes to infinity as ω goes to N/mL. Since N/m is the phase speed of
a hydrostatic gravity wave with vertical wave number m, we find that the gravity wave
resonance occurs at f = ω/(2π) = cm/(2πL), where cm is the phase speed of the mode
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with vertical wave number m. Therefore, we expect that the gravity wave resonance in
old WPG could manifest at a variety of frequencies and with particular vertical structures,
corresponding to the vertical modes m and their associated phase speeds cm.

In Chapter 2 and Edman & Romps (2014), we showed that new WPG eliminated this
gravity-wave resonance in the shallow-water system. Here, we show that new WPG eliminates
the gravity wave resonance in a continuously stratified fluid for any vertical mode. The
Boussinesq system for new WPG is:

∂tb = −N2w +Q (3.15)
∂zp = ρb (3.16)
∂zw = −δ (3.17)

∂tδ
′ = 1

ρ

p

L2 − α
∗δ′ (3.18)

δ = δ′ + 2πL
HN

∂tδ
′ . (3.19)

The difference between these equations and those for old WPG is the addition of (3.19),
which alters δ by a term proportional to the time for a first-baroclinic mode to propagate
across a distance L. This incorporates the effect of the gravity wave back-reaction discussed
in Chapter 2 and Edman & Romps (2014).

Reducing these equations to a single equation for the buoyancy in the inviscid case
(α∗ = 0), we get

∂2
t ∂

2
zb−

2πN
HL

∂tb−
N2

L2 b = ∂t∂
2
zQ . (3.20)

For an oscillating source Q = Q0e
iωt+imz (where ω and m real and nonzero), we search for

solutions of the form b = B0e
iωt+imz and find

B0 = − im2ω

m2ω2 − 2πN
HL

iω − N2

L2

Q0 . (3.21)

Clearly, there is no combination of real m and real ω that can make the denominator
zero. Therefore, there is no resonance for any forcing – i.e., for any frequency and vertical
wavenumber – in new WPG.

Vertical mode decomposition

In the above example using constant N2, the sine functions form an orthogonal basis with
which we can expand any vertical profile. For the general case of N2(z), we can define a set
of vertical modes by solving the vertical structure equation,

d2W (z)
dz2 + N2(z)

c2
m

W (z) = 0 , (3.22)



3.4. SELF-CONSISTENCY WITH OBSERVED FORCINGS 46

where W (z) is the vertical structure function for w. Subject to boundary conditions w = 0 at
the surface and the tropopause, this produces a set of orthogonal eigenfunctions corresponding
to discrete wave speeds cm.

We perform this decomposition for the SGP simulation coupled to old WPG using the
mean N2(z) and placing a rigid lid at the cold-point tropopause (z = 16.4 km). The first
two vertical modes are plotted on the right side of Figure 3.7. To gain some insight into
the wild oscillations beginning around day 12 of the old WPG simulation, we project the
vertical profile of w (averaged every 5 minutes) onto these vertical modes; the result is the
bottom left panel of Figure 3.7. Compared to the actual w time series from the simulation
(top left panel), the first two modes capture the basic features of the oscillation: a shallow
(mode 2) circulation leads a deeper (mode 1) circulation, with a frequency of approximately
4 cycles/day.

Figure 3.7 : (top) Time series of w from the SGP simulation with interactive radiation and time-
varying surface and advective forcings coupled to old WPG. (bottom) Projection of w time series
onto the first two vertical modes. (right) First two vertical modes with a rigid lid at the tropopause.

The top panel of Figure 3.8 shows the time series of projection coefficients for each of
the first four vertical modes. Clearly, most of the amplitude is contained in the first three
modes. The bottom panel shows the power spectra of the projection coefficients for the
first four vertical modes; the x-axis is rescaled by the factor 2πL such that it is in units of
wave speed. The vertical black lines correspond to the wave speeds of the different vertical
modes, e.g., c1 = 55.2 m s−1 and c2 = 28.2 m s−1. If the oscillations are indeed caused by
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the gravity wave resonance in old WPG, then we expect the peaks in the power spectra to
align with one or more of these vertical lines. The strongest peak for all modes occurs at c2,
the resonance we would associate with the vertical structure of mode 2. This is consistent
with the behavior in Figure 3.7, where the mode 2 circulation appears to trigger the deeper
circulation, causing them to oscillate at the same frequency. Mode 1 also has a peak near
c1 = 55.2 m s−1 and another around 5 m s−1; the peak at c1 is due to gravity wave resonance
with a mode-1 vertical structure, while the peak near 5 m s−1 appears to be associated with
higher vertical modes.

3.5 Discussion
In this study, we have evaluated three methods for parameterizing large-scale dynamics

(SDS schemes) in CRMs, using a self-consistency framework designed to isolate errors
introduced by the SDS scheme from errors in the convection simulated by the CRM. WTG,
old WPG, and new WPG are all pass RCE self-consistency tests for large τ and L (large-scale
environment weakly coupled to the column) and for small τ and L (large-scale environment
strongly coupled to the column). For intermediate L, however, old WPG and new WPG
exhibit domain-mean descent that is comparable to the radiatively driven clear-sky descent
and, therefore, do not pass this part of the self-consistency test.

These mixed results do not necessarily doom the enterprise of parameterizing large-scale
dynamics. One notable limitation of the versions of WPG and WTG considered here is that
they rely on a single parameter related to the wave speed of a particular baroclinic mode (τ
in WTG, β in new WPG); others have suggested that a spectral decomposition approach
might be the best way forward (Bergman & Sardeshmukh 2004; Mapes 2004). Herman &
Raymond (2014) recently introduced a ‘spectral WTG’ based on this approach, and new
WPG could be extended to a spectral framework as well.

The secondary goal of this study is to evaluate the new form of WPG introduced in Chapter
2 and Edman & Romps (2014), and confirm that it represents a significant advance over
prior implementations of WPG. We find that, in a self-consistency test based on observations
from TWP-ICE, new WPG simulates the benchmark precipitation time series better than old
WPG and WTG, but in a test based on observations from the ARM SGP site, both versions
of WPG perform poorly, and WTG performs better than either version WPG.

We also show the traditional version of WPG (e.g. Romps 2012a) is prone to a potentially
troublesome gravity wave resonance, where buoyancy anomalies near the natural frequency
of the column are amplified rather than damped away. In another set of self-consistency
tests based on the ARM SGP observations (Figure 3.6), which use interactive radiation and
time-varying surface and advective forcings, we find that old WPG is severely affected by
this gravity-wave resonance, and that the new version of WPG eliminates this resonance
and simulates precipitation time series better than old WPG. As a result, we find that this
gravity-wave resonance can pose a significant problem in observationally-based experiments,
but we confirm the new version of WPG does not suffer from this deficiency.
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Figure 3.8 : (top) Time series of projection coefficient for the first four vertical normal modes.
(bottom) Power spectra for the time series of projection coefficients for the first four vertical modes.
The x-axis has been rescaled to be in units of wave speed; the black vertical lines correspond to the
wave speeds of the vertical modes.
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Chapter 4

Beyond the rigid lid: Baroclinic
modes in a structured atmosphere1

The baroclinic-mode decomposition is a fixture of the tropical-dynamics literature due
to its simplicity and apparent usefulness in understanding a wide range of atmospheric
phenomena. However, its derivation relies on the assumption that the tropopause is a
rigid lid, which artificially restricts the vertical propagation of wave energy. This causes
tropospheric buoyancy anomalies of a single vertical mode to remain coherent for all time in
the absence of dissipation. Here, we derive the Green’s functions for these baroclinic modes
in a two-dimensional troposphere (or, equivalently, a three-dimensional troposphere with
one translational symmetry) that is overlain by a stratosphere. These Green’s functions
quantify the propagation and spreading of gravity waves generated by a horizontally localized
heating, and they can be used to reconstruct the evolution of any tropospheric heating. For a
first-baroclinic two-dimensional right-moving or left-moving gravity wave with a characteristic
width of 100 km, its initial horizontal shape becomes unrecognizable after 4 hours, at which
point its initial amplitude has also been reduced by a factor of 1/π. After this time, the
gravity wave assumes a universal shape that widens linearly in time. For gravity waves on a
periodic domain the length of Earth’s circumference, it takes only 10 days for the gravity
waves to spread their buoyancy throughout the entire domain.

4.1 Introduction
Much of the atmospheric tropical-dynamics literature has relied on spectrally-discretized

and truncated models that reduce the primitive equations to a set of shallow-water equations
for the first one or two baroclinic modes (e.g., Matsuno 1966; Gill 1980; Neelin & Held 1987;
Mapes 1993). This class of simple models is capable of replicating important aspects of
the tropical atmospheric circulation. For example, some studies (e.g., Wheeler & Kiladis

1Material in this chapter originally published in Edman & Romps (2017), c© Copyright
2017 AMS.

https://www.ametsoc.org/ams/index.cfm/publications/ethical-guidelines-and-ams-policies/ams-copyright-policy/
https://www.ametsoc.org/ams/index.cfm/publications/ethical-guidelines-and-ams-policies/ams-copyright-policy/
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1999; Hendon & Wheeler 2008) have documented features in the tropical spectra of outgoing
longwave radiation that appear quite similar to the linear equatorial waves predicted by
Matsuno (1966). Others (e.g., Gill 1980; Neelin & Held 1987) have constructed simple models
that capture many of the observed features of steady tropical circulations using only the first
baroclinic mode.

The spectral discretization used by these simple models is only formally justified if the
tropopause behaves like a rigid lid, and the spectral truncation to the first one or two modes
is valid only if the heating has a particularly simple structure. It has indeed been observed
that the first one or two baroclinic modes dominate diabatic heating profiles in the tropical
troposphere, at least around mesoscale convective systems (Mapes & Houze 1995). Past work
often interprets first and second baroclinic-mode heating as corresponding to deep-convective
and stratiform clouds, respectively (e.g., Mapes 2000; Haertel & Kiladis 2004). However, the
tropopause is far from being a rigid lid, and, in a semi-infinite atmosphere, any heat source
confined to the troposphere excites waves with a continuous spectrum of vertical structures,
even if the heating is dominated by a single baroclinic mode (Pandya et al. 1993; Mapes
1998; Lindzen 2003).

A further objection to this spectral discretization and truncation comes from considering
the response to transient heating in a model with a rigid lid. Bretherton & Smolarkiewicz
(1989) introduced the canonical description of gravity-wave adjustment in a non-rotating
fluid, in which wave fronts of compensating subsidence propagate away from the heat source
at discrete gravity-wave speeds corresponding to each baroclinic mode. This model has
proved useful for understanding how convective clouds may initiate convection in their local
environments (Mapes 1993), and for parameterizing the interaction of convection and large-
scale circulations (e.g., Raymond & Zeng 2000; Cohen & Craig 2004; Edman & Romps 2014).
However, this picture of purely horizontal wave radiation is at best incomplete: it predicts
that wave fronts produced by a pulse of heating will propagate forever unless there is some
dissipation in the system. In order to prevent this pathological behavior, simple models based
on one or two baroclinic modes often invoke strong damping in the form of Rayleigh friction
and Newtonian cooling, with timescales of about 1-10 days (e.g., Matsuno 1966; Chang 1977;
Gill 1980; Wu et al. 2000; Sobel et al. 2001; Sugiyama 2009; Chan & Shepherd 2014). Some
have found this need for strong damping unsettling (e.g., Battisti et al. 1999), but recent
work has suggested that it could be produced by convective momentum transport (Lin et al.
2008; Romps 2014).

As other studies have pointed out (e.g., Pandya et al. 1993), the upward radiation of wave
energy modifies the rigid-lid picture, smoothing out sharp wave fronts that would otherwise
propagate forever in the absence of any dissipative friction or radiation. This diffusion of
sharp wave fronts occurs because the vertical component of the group velocity for hydrostatic
gravity waves is proportional to the horizontal wavenumber. Therefore, the largest horizontal
wavenumbers are the first to radiate out of the troposphere (Gill 1982), rapidly smoothing out
any sharp features in the tropospheric gravity wave. Eventually, all of the nonzero horizontal
wavenumbers radiate into the stratosphere, leaving the troposphere with a non-propagating,
horizontally uniform buoyancy anomaly.
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Some studies have suggested that internal gravity waves radiate out of the troposphere
on timescales relevant to dynamics. Mapes (1998) attempted to parameterize the smoothing
of wavefronts emanating from a mesoscale convective system using a Gaussian kernel. And,
Yano & Emanuel (1991) found that upward radiation of wave energy suppresses the growth of
the wind-induced surface heat exchange (WISHE) instability for all but the longest equatorial
modes.

In another study, Chumakova et al. (2013, henceforth CRT) found a set of exponentially
decaying solutions to the linearized two-dimensional Boussinesq equations in a layer of fluid
with constant buoyancy frequency N1 (i.e., the troposphere) overlain by a layer of fluid with
a buoyancy frequency N2 greater than N1 (i.e., the stratosphere). We will refer to these
exponentially decaying solutions as CRT modes. A single CRT mode of buoyancy (from
equations 17 and 18 of CRT) can be written as2

bCRT
k,m (x, z, t) = 

b0 sin(mz) exp
[
−iN1|k|

m
t+ ikx

]
z ≤ H

b0
N2

2
N2

1
sin(mH) exp

[
− iN1|k|

m
t

+ikx− iN2
N1
m(z −H)

]
z > H

, (4.1)

where
m = nπ + i tanh−1(N1/N2)

H
(4.2)

is a complex vertical wavenumber, n is an integer, k is a horizontal wavenumber, H is the
height of the tropopause, and b0 is a constant with dimensions of buoyancy. This buoyancy
distribution can be generated at time t = 0 in an initially quiescent atmosphere by applying
a heating of Q = bCRT

k,m (x, z, 0)δ(t), where δ is the Dirac delta function. The resulting pattern
of buoyancy propagates horizontally with speed Re(N1/m) and decays exponentially with an
e-folding time of −1/Im(N1|k|/m).

In principle, the CRT modes can be used to construct solutions to some initial-value
problems, but there are a host of problems with this approach: the CRT modes do not have
the same vertical structure as rigid-lid normal modes; the CRT modes are not orthogonal;
the CRT modes are divergent in the N2 = N1 limit; the buoyancy in the initial state of
each CRT mode is not confined to the troposphere; and the energy density of each CRT
mode grows exponentially without bound as you move upwards in the stratosphere. The
unboundedness is essential to how the CRT modes work: the CRT modes are constructed to
decay exponentially in time, but, to have an upward-propagating pattern of gravity waves in
the stratosphere that decays exponentially with time, the pattern must grow exponentially
with height.

2There are a couple of typos in equation 18 of CRT. The expressions for ρn and pn are missing factors of
iρ0 and iρ0N

2
1 , respectively. In equation (4.4), we have also extended the CRT modes into the stratosphere

by enforcing continuity of (1/N2)∂tb and (1/N2)∂z∂tb at z = H, which guarantee continuity of u and w.
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Another way in which the CRT modes are unphysical is that they fail to generate a steady
state in response to a steady tropospheric heating. In a 2D Boussinesq fluid at rest, the
response to a steady heating is steady and finite within an ever-expanding region centered
at the location of the heating. To see that the CRT modes do not achieve this state, first
consider the heating

Q(x, z, t) = 
B0 sin(mz)δ(x)δ(t) z ≤ H

B0
N2

2
N2

1
sin(mH) exp

[
− iN2

N1
m(z −H)

]
δ(x)δ(t) z > H

, (4.3)

where m is defined as in equation (4.2) with integer n. Here and throughout, we will use
a lowercase b to denote a buoyancy (with units of m s−2), an uppercase B to denote a
horizontally integrated buoyancy (m2 s−2), and Q to denote a heating or, in other words, a
tendency of buoyancy (m s−3). Since the Fourier transform of δ(x) is 1/

√
2π, this buoyancy

evolves as

bCRT
m (x, z, t) = B0

2πb0

∫ ∞
−∞

dk bCRT
k,m (x, z, t)

=



B0
2π Im

{
sin(mz)

[
1

N1t/m+x + 1
N1t/m−x

]}
z ≤ H

B0
2π

N2
2

N2
1
Im
{

sin(mH)e−i
N2
N1

m(z−H)

×
[

1
N1t/m+x + 1

N1t/m−x

] }
z > H

. (4.4)

This solution has a left-moving pulse of buoyancy and a right-moving pulse of buoyancy that
both smear out with time. As with the single-k solution in equation (4.1), this has an energy
density that grows exponentially with height in the stratosphere. This behavior was baked in
by the heating in equation (4.3), which had to be chosen that way in order to make use of the
CRT modes. When integrated horizontally and temporally, that heating grows exponentially
with height in the stratosphere.

From this solution, we can find the solution to a heating that has the same spatial structure
as (4.3), but has a Heaviside unit step function of time H(t) instead of a δ(t), i.e., the heating
is switched on at t = 0 and held on. The solution to this is

∫ t
0 dt

′ bCRT
m (x, z, t′)H(t), which is

proportional to log [1− (N1t/mx)2], which grows logarithmically without bound. Since this
behavior occurs for any m satisfying (4.2), the CRT modes do not admit any steady-state
solutions to a steady heating.

The left panel of Figure 4.1 illustrates this pathology for an n = 1 heating (closely
approximating a first-baroclinic structure in the troposphere) of the form in equation (4.3)
with δ(t) replaced with H(t). The values of H, N1, and N2 are chosen to be representative of
the tropical atmosphere. Based on Figure 4.2, which shows the mean of 3-hourly soundings
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Table 4.1 : Unless otherwise specified, throughout the chapter we will default to these parameter
values, which are typical for Earth’s tropics.

Parameter Symbol Value
Buoyancy frequency in the troposphere N1 0.01 s−1

Depth of the troposphere H 17 km
Stratification ratio N2/N1 2.5

from the Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Darwin,
Australia from January 18 to February 3, 2006, these values are set to H = 17 km, N1 = 0.01
s−1 and N2 = 0.025 s−1 here and throughout the chapter. For ease of reference, these values
are printed in Table 4.1. In the left panel of Figure 4.1, each colored line plots the time series
of mid-tropospheric buoyancy at a specific distance from the origin. For example, the darkest
blue curve is the buoyancy at x = 10 km, which will feel the leading edge of the gravity
wave pass over it at a normalized time of Re(N1/m)t = 10 km. The darkest red curve is the
buoyancy at x = 100 km, which will feel the leading edge of the gravity wave pass over it
at a normalized time of Re(N1/m)t = 100 km. If these solutions behaved as expected from
rigid-lid thinking, then the buoyancy at each of these locations would plateau at a value of
2Re(N1/m)/B0 shortly after the wave front has passed. Instead, the buoyancy at all of these
locations continues to rise logarithmically. This undesirable behavior is a consequence of
the stratospheric heating that is baked into the CRT modes. As we will see in section 4.2.4,
steady heating that is confined to the troposphere generates a steady buoyancy field.

In this study, we take a different approach than CRT. Rather than seek a set of vertical
modes for an atmosphere without a rigid lid at the tropopause, we solve the initial-value
problem directly. In section 4.2, we derive a Green’s function for a pulse of buoyancy in the
troposphere with baroclinic vertical structure for the simplest atmosphere without a rigid lid
at the tropopause: the two-dimensional, non-rotating Boussinesq equations with two layers of
constant but differing stratification. In the subsequent sections, we explore how this simple
change to a more realistic upper boundary condition results in buoyancy anomalies that
quickly spread out as they propagate, in stark contrast to the rigid-lid case.
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Figure 4.1 : (left) The time series of mid-tropospheric buoyancy for a variety of distances from the
origin, ranging from 10 to 100 km, for a steady n = 1 heating (approximating a first baroclinic
mode in the troposphere) that is held on for all t > 0, which is obtained by integrating the CRT
Green’s function in equation (4.4). The time on the abscissa is normalized by the propagation speed
of the wave front, Re(N1/m). The buoyancies on the ordinate are normalized by 2Re(N1/m)/B0,
which is naively the value to which the mid-tropospheric buoyancy would asymptote shortly after
the wave front passes. (right) Same, but for the Green’s function presented in equation (4.13).
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Figure 4.2 : Mean profile of the Brunt-Väisäilä frequency N calculated from soundings taken every 3
hours at the Darwin ARM site from January 18, 2006 to February 3, 2006. The dashed line denotes
the cold-point tropopause at 16.9 km.

4.2 The leaky-lid Green’s function
The Boussinesq equations describing hydrostatic linear perturbations to a two-dimensional,

nonrotating, stratified fluid at rest are

∂tu = −∂xp
ρ0

(4.5a)

0 = −∂zp
ρ0

+ b (4.5b)

∂tb = −N2w +Q (4.5c)
0 = ∂xu+ ∂zw , (4.5d)

where u is the horizontal speed, w is the vertical speed, ρ0 is a constant density, p is the
pressure perturbation, b is the buoyancy, and Q is the buoyancy source or, in other words,
the heating. Let N be piecewise constant in height such that

N =

N1 0 ≤ z ≤ H

N2 H < z
, (4.6)

where H is the tropopause. When N2 > N1, this is a simple analogue for Earth’s atmosphere
in which the troposphere is capped by the more stratified stratosphere. The derivation in
section 4.2.4, however, applies equally well to any value of N2/N1 from zero to infinity.
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In the following subsections, we will review the Green’s functions for a troposphere with
a rigid lid (N2 =∞) and a troposphere with no lid (N2 = N1), and then present the Green’s
function for a troposphere with a leaky lid (N1 < N2 <∞), which, as we will see, connects
the rigid-lid and no-lid limits. To derive any of these Green’s functions, we write the set of
Boussinesq equations (4.5) as a wave equation for b,

∂2
t ∂

2
zb+N2∂2

xb = ∂t∂
2
zQ , (4.7)

and we seek a solution for a baroclinic tropospheric heating of the form

Q(x, z, t) = B0 sin(mz)H(H − z)δ(x)δ(t) , (4.8)

where B0 is a constant, H is the depth of troposphere, and m is taken to be one of the
baroclinic modes, i.e., m = nπ/H where n is an integer.

4.2.1 Green’s function for a rigid lid
To begin, we reproduce the well-known solution for an atmosphere with a rigid lid at

the tropopause, which corresponds to N2 = ∞. The rigid lid requires w = 0 at z = H, so
we can formally decompose the solutions to (4.7) into a set of vertical normal modes with
discrete eigenvalues. This decomposition gives the traditional baroclinic modes, or rigid-lid
modes, which are sines (for b and w) and cosines (for p and u) with nodal or anti-nodal
points at the surface and tropopause (Gill 1982). Each baroclinic mode is governed by a set
of shallow-water equations with wavespeed N1/m, where m is the eigenvalue corresponding
to a particular baroclinic mode.

For a troposphere with a rigid lid, the Green’s function – i.e., the solution to (4.7) for a
baroclinic pulse specified by equation (4.8) – is

brigid
m (x, z, t) = B0

2

[
δ(N1t/m + x) + δ(N1t/m − x)

]
× H(t) sin(mz)H(H − z) . (4.9)

This describes two delta-function pulses of buoyancy propagating to the left and right with
the same baroclinic vertical structure as the forcing. The nature of this solution follows
directly from the discrete spectrum of vertical modes for a layer of fluid with a rigid lid. By
design, the source specified by equation (4.8) excites exactly one of the normal modes of this
system, which travels with a constant horizontal wave speed c = N1/m. In the absence of
dissipation, these pulses will propagate forever.

4.2.2 Green’s function for no lid
Next, consider a troposphere with no lid, which corresponds to N2 = N1. In this case, the

Green’s function – i.e., the solution to (4.7) for a baroclinic pulse specified by equation (4.8) –
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was found by Pandya et al. (1993) to be

bno lid
m (x, z, t) = B0

2π cos(mH) sin (HN1t/x) sin (N1tz/x)

×
[

1
N1t/m+ x

+ 1
N1t/m− x

]
. (4.10)

Despite the appearance of singularities at x = ±N1t/m, the solution is smooth there; at those
locations, the divergence from the 1/(N1t/m± x) terms is canceled by the sin(HN1t/x) term
since m is an integer multiple of π/H. The two pulses of buoyancy propagate horizontally at
the same speed as in the rigid-lid case, but they spread out into smooth blobs rather than
retaining their delta-function shape.

Another notable difference from the rigid-lid solution is the complex vertical structure
of the buoyancy field. Unlike the rigid-lid solution, which has the same vertical structure
as the heating, the no-lid buoyancy field projects onto every baroclinic mode: the buoyancy
is not all of the same baroclinicity as the heating. This reflects the fact that the baroclinic
modes are not the vertical eigenfunctions of the system when the rigid lid is raised beyond
the tropopause. In fact, when there is no lid at all, as in this case, the eigenvalue spectrum
becomes continuous. The relationship between the continuous and discrete spectra is precisely
that of the continuous and discrete Fourier transforms. As the spatial domain increases
in size, the discrete transform approaches the continuous one. Despite this, the linearized
governing equations (4.5) require that the horizontally-integrated buoyancy maintains the
same baroclinic structure as the source for all time, regardless of N2. For example, in the
case of a first-baroclinic source, the horizontally-integrated buoyancy is first-baroclinic for all
time. This property can most easily be seen by integrating equation (4.5c) over x and noting
that the integral of w over x must be zero by continuity. Remarkably, it can be confirmed
numerically that the horizontal integral of bno lid

m equals B0 sin(mz)H(H − z).
To get a quantitative sense of how the no-lid solution compares to the rigid-lid solution,

consider the buoyancy at x = ±N1t/m, which are the centers of the propagating pulses.
Taking the limit of equation (4.10) as |x| → N1t/m, we find

bno lid
m (±N1t/m, z, t) = B0m

2H

2πN1t
sin(mz) . (4.11)

Note that all of the buoyancy at x = ±N1t/m is contained in the same vertical mode m as
the initial perturbation. Note, also, that the amplitude goes as 1/t. Since the horizontally-
integrated buoyancy is constant and projects only onto the baroclinic mode of the source,
this implies that the width of the left-moving or right-moving pulse is proportional to t; more
specifically, its width is approximately πN1t/m

2H.
In summary, the one-way propagating buoyancy pulses can be described as propagating

at a constant speed of c = N1/m at their center and with edges that spread away from
each center at a speed of πN1/2m2H = (π/2mH)c. We will see in section 4.2.4 how this is
modified for N2 > N1.
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4.2.3 Simple model for the decay of amplitude
What causes the pulses of buoyancy to decay in amplitude and spread out? It is

illuminating to think of the counter-propagating pulses of buoyancy as packets of internal
gravity waves propagating away from the source. Without a rigid lid at the tropopause,
internal gravity waves can propagate out of the troposphere. The vertical group velocity
for internal gravity waves is proportional to the horizontal wavenumber, which means that
shorter waves radiate out of the troposphere faster than longer waves. It is this process
that causes the dispersal of the initial delta functions noted above. After a sufficiently long
time, all that remains is a non-propagating, horizontally-uniform buoyancy anomaly in the
troposphere. Note that the net heating to the troposphere is the same whether or not there
is a rigid lid at the tropopause: wave energy can propagate upward, but the buoyancy is still
confined to the troposphere.

We can construct a simple model for the decay in amplitude at |x| = N1t/m by considering
the upward radiation of gravity waves. From the dispersion relation for hydrostatic gravity
waves defined by (4.7), we find that ω = N1|k|/m, where k is the horizontal wavenumber,
so the horizontal speed of a hydrostatic gravity wave is cx = N1/m, and the vertical group
velocity of a hydrostatic gravity wave is cgz = N1|k|/m2. A natural timescale τk for a gravity
wave of horizontal wavenumber k to radiate up and out of the troposphere is the depth of
the troposphere H divided by the vertical group velocity, or

τk = m2H

N1|k|
. (4.12)

Therefore, we posit that the amplitude of a plane wave of buoyancy in the troposphere decays
like exp(−t/τk).

For a buoyancy pulse that begins as a delta function in x, we can approximate the evolution
of the resulting counter-propagating buoyancy pulses (or wave packets) by modifying the
rigid lid solution (4.9) to include this exponential decay of gravity waves. Taking the Fourier
transform of equation (4.9) yields

b̃rigid
m (k, z, t) = 1√

2π

∫ ∞
−∞

dx eikxbrigid
m (x, z, t) = B0

2
√

2π
(
eikN1t/m + e−ikN1t/m

)
sin(mz) .

We can approximate the decay of gravity waves that occurs in the no-lid atmosphere by
multiplying this Fourier-transformed rigid-lid solution by exp(−t/τk), i.e.,

b̃no lid
m (k, z, t) ≈ B0

2
√

2π
(
eikN1t/m + e−ikN1t/m

)
e−t/τk sin(mz) .

Since 1/τk is proportional to |k|, this modification does not alter the horizontally-integrated
buoyancy, which is contained in the k = 0 mode. By performing an inverse Fourier transform
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evaluated at |x| = N1t/m, we get

bno lid
m (±N1t/m, z, t) ≈

1√
2π

∫ ∞
−∞

dk e±ikN1t/mb̃no lid
m (k, z, t)

= 1 + 2m2H2

1 + 4m2H2
B0m

2H

πN1t
sin(mz) ≈ B0m

2H

2πN1t
sin(mz) ,

which is the expression previously derived in equation (4.11). This confirms (4.12) as the
approximate residence timescale for plane waves in the troposphere.

4.2.4 Green’s function for a leaky lid
Having explored the limiting cases of a rigid lid and no lid, we can turn to our goal of

deriving the Green’s function for the case of a troposphere with a leaky lid, which corresponds
to N1 < N2 <∞. For details of the derivation, see Appendix A. The Green’s function – i.e.,
the solution to (4.7) for a baroclinic pulse specified by equation (4.8) – is found to be

bleaky
m (x, z, t) =



B0
2π

cos(mH) sin(HN1t/x)
N1
N2

+
(
N2
N1
−N1
N2

)
sin2(HN1t/x)

×
[

1
N1t/m+x + 1

N1t/m−x

]
× sin (N1tz/x)

for z ≤ H

B0
2π

cos(mH) sin(HN1t/x)
N1
N2

+
(
N2
N1
−N1
N2

)
sin2(HN1t/x)

×
[

1
N1t/m+x + 1

N1t/m−x

]
N2
2N1

{
(
N2
N1

+ 1
)

sin
[
N1tz
x

+
(
N2
N1
− 1

)
N1t(z−H)

x

]
+
(
N2
N1
− 1

)
sin

[
N1tH
x

+ N2t(H−z)
x

] }
for z > H

. (4.13)

This solution is valid over the full range of N2/N1, from 0 to ∞, which means that it
encompasses both the rigid-lid and no-lid solutions. When N2/N1 = 1, bleaky

m equals bno lid
m ,

i.e., it gives the solution for constant N from equation (4.10). In the limit of N2/N1 →∞,
bleaky
m = brigid

m , i.e., it gives the solution for a rigid-lid tropopause from equation (4.9).
Figure 4.3 compares the no-lid solution (N1 = N2 = 0.01 s−1) and the leaky-lid solution

(N1 = 0.01 s−1 and N2 = 0.025 s−2) at t = 1 hour in response to the tropospheric heating
in equation (4.8) with H = 17 km, m = π/H, and B0 = 1 m2 s−2. Compared to the no-lid
solution, the first-baroclinic gravity waves are more coherent in the troposphere, i.e., they are
more compact in the horizontal and have higher peak buoyancies. At the tropopause, there
is a discontinuity in buoyancy at the tropopause due to the discontinuity of N2 in equation
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Figure 4.3 : (left) The no-lid solution bno lid
m at t = 1 hour in an atmosphere with N1 = N2 = 0.01

s−1 that was subjected to the heating given by equation (4.8) with H = 17 km, m = π/H, and
B0 = 1 m2 s−2. (right) Same, but for bleaky

m with N1 = 0.01 s−1 and N2 = 0.025 s−1.

(4.5c). In the stratosphere, the oscillations in buoyancy have a vertical wavelength that is
shorter by the factor N1/N2, and their amplitude is greater. As with the no-lid solution,
it can be confirmed that the leaky-lid solution has the following properties: bleaky

m satisfies
(4.7) with Q = 0 for all t > 0; (1/N2)∂tbleaky

m and (1/N2)∂z∂tbleaky
m are continuous across the

tropopause, guaranteeing continuity of u and w there; the horizontal integral of bleaky
m equals

B0 sin(mz)H(H − z); and bleaky
m is zero for all |x| > 0 at t = 0.

Although t appears in several places in equation (4.13), the temporal evolution of bleaky
m is

surprisingly simple. Defining x̂ = mx/N1t, we can write bleaky
m as

bleaky
m (x, z, t)

= B0m

2πN1t

cos(mH) sin (mH/x̂) sin (mz/x̂)
N1
N2

+
(
N2
N1
− N1

N2

)
sin2 (mH/x̂)

×
[ 1
1 + x̂

+ 1
1− x̂

]
for z ≤ H . (4.14)

Writing bleaky
m in this way makes clear that the shape of the buoyancy distribution is invariant

in time: the buoyancy distribution simply stretches out linearly in time (i.e., position x̂ in the
distribution travels away from the origin at speed x̂N1/m) as its overall amplitude decreases
as 1/t. Therefore, one plot of bleaky

m is sufficient to illustrate its evolution for all time.
Plots of bleaky

m are shown in the top row of Figure 4.4 for cases of, from left to right: no
lid and first baroclinic (N2/N1 = 1 and m = π/H); no lid and second baroclinic (N2/N1 = 1
and m = 2π/H); leaky lid and first baroclinic (N2/N1 = 2.5 and m = π/H); and leaky lid
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Figure 4.4 : (top row) The Green’s function bleaky
m in equation (4.13) for all combinations of

N2/N1 ∈ (0, 1) and m ∈ (π/H, 2π/H) on a common color scale at the times when the pulses have
reached a common distance, with red being positive and blue being negative. (middle row) Same,
but for the approximation to bleaky

m given in equation (4.17). (bottom row) The projections of bleaky
m

onto the first-baroclinic and second-baroclinic rigid-lid modes, as given by equation (4.16).

and second baroclinic (N2/N1 = 2.5 and m = 2π/H). For an apples-to-apples comparison,
these are plotted on the same color scale at a time in their evolution when the pulses have
reached a common distance from the origin (i.e., at a time for the second-baroclinic pulses
that is twice the time for the first-baroclinic pulses). The abscissa ranges over plus or minus
twice that distance. The ordinate ranges over the full depth of the troposphere.

At the center of each pulse, bleaky
m evaluates to

bleaky
m (±N1t/m, z, t) = N2

N1

B0Hm
2

2πN1t
sin(mz) for z ≤ H . (4.15)

Since the buoyancy pulses travel at a speed of cgx = N1/m, their amplitude is proportional
to m/cgxt. For the same distance traveled (i.e., for the same value of cgxt), the amplitude
of the wave is proportional to the baroclinicity (i.e., proportional to m). Since the width
of the buoyancy pulse is inversely proportional to the amplitude, this means that, when a
second-baroclinic pulse has traveled 100 km, it is twice as compact in the horizontal as the
second-baroclinic pulse when it reaches 100 km. In summary, the nth-baroclinic pulse spreads
out at 1/n2 the rate per time, and 1/n the rate per distance, as compared to a 1st-baroclinic
pulse.

Although the buoyancy pulse at x = ±N1t/m has the same baroclinicity as the initial
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heating, this is not generally true at other x. This is expected since any initial vertical
structure that is zero in the stratosphere is not a normal mode of the leaky-lid atmosphere.
The eigenvalue spectrum is continuous for any atmosphere that is unbounded in the z-
direction, so any such initial vertical structure projects onto an infinite number of normal
modes, all of which have different phase speeds. These different components of the initial
buoyancy distribution radiate away from the initial heat source at different speeds, and thus
begin decohering immediately, leading to the complicated horizontal and vertical structure of
bno lid
m for t > 0, which is visible in the top row of Figure 4.4. Mathematically, this complexity
stems from the tz/x argument in equation (4.13).

Given this complexity, how can we make contact with the standard rigid-lid paradigm?
Is there some way that we can write bleaky

m in terms of the rigid-lid modes even though the
rigid-lid modes are not normal modes of the leaky-lid atmosphere? The answer is yes: we
could simply write bleaky

m as a sum of rigid-lid modes. But, this approach is of little conceptual
advantage if, say, a first-baroclinic heating generates a buoyancy pulse that projects strongly
onto higher-baroclinic modes.

We can quantify these contributions by projecting bleaky
m onto the various baroclinic modes.

The projection of bleaky
m onto baroclinic mode m′, which we will denote by aleaky

m,m′ , is

aleaky
m,m′(x, t) = 2

H

∫ H

0
dz sin(m′z)bleaky

m (x, z, t)

= 2B0N1tx
2

πmm′H

sin2 (HN1t/x)
N1
N2

+
(
N2
N1
− N1

N2

)
sin2 (HN1t/x)

× cos(mH) cos(m′H)[
(N1t/m)2 − x2

] [
(N1t/m′)2 − x2

] . (4.16)

For the four cases shown in the top row of Figure 4.4, the projections onto the first and
second baroclinic modes are shown in the bottom row of Figure 4.4. These are plotted on
common axes with the red curves representing the projection onto the first baroclinic mode
and the blue curves representing the projection onto the second baroclinic mode. In the no-lid
troposphere, a first-baroclinic heating generates a buoyancy pattern that projects strongly
onto the second-baroclinic mode; as seen in the lower-left panel of Figure 4.4, the maximum
amplitude of the m′ = 2π/H projection is nearly as large as the maximum amplitude of the
m′ = π/H projection. For the leaky-lid with a realistic N2/N1, however, a first-baroclinic
heating generates a buoyancy pattern that projects predominantly onto the first baroclinic
mode.

Based on these findings, we conclude that, unlike in a no-lid atmosphere, the projection
of the buoyancy onto its original vertical structure is a good approximation in a leaky-lid
atmosphere with a realistic stratification jump. This means, for example, that we can
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approximate bleaky
m by aleaky

m,m sin(mz):

bleaky
m (x, z, t) ≈ B0

2π
sin2 (HN1t/x)

N1
N2

+
(
N2
N1
− N1

N2

)
sin2 (HN1t/x)

× x

mH

[
− 1

(N1t/m+ x)2 + 1
(N1t/m− x)2

]
sin(mz)

for z ≤ H . (4.17)
This approximation has the great advantage of having a rigid-lid vertical structure – i.e., the
sin(mz) – while still retaining the horizontal decoherence generated by the leaky lid.

This approximation to bleaky
m is plotted in the middle row of Figure 4.4. For the no-lid

atmosphere, the approximation misses much of the structure of the buoyancy, especially for
a first-baroclinic heating. For a leaky-lid atmosphere, however, the approximation is quite
accurate.

Finally, let us return to Figure 4.1. The right panel shows the response to a first-baroclinic
heating that is confined to the troposphere and is turned on at time t = 0. Unlike the CRT
modes, which must be excited by heating the stratosphere as well, the atmosphere reaches a
steady state in response to this steady tropospheric heating. Since any steady tropospheric
heating can be constructed out of the bleaky

m Green’s functions, this tells us that, for a leaky-lid
atmosphere, any steady heating confined to the troposphere will generate a steady response.

4.2.5 Leaky-lid wave decay
The preceding analysis tells us about the evolution of buoyancy caused by a heating

confined to x = 0 in the troposphere. But, what about a heating that is sinusoidal in x? How
does the leaky lid modify the tropospheric residence time for such waves?

In principle, we could use the Green’s function bleaky
m to calculate the evolution of a

horizontally sinusoidal heating, but, in practice, we were unable to find a way to perform
this calculation analytically. Instead, we can make an educated guess based on what we have
learned so far and then check that guess against a numerical calculation. In equation (4.11),
we introduced a time scale for waves in the no-lid troposphere, and a comparison of equations
(4.11) and (4.15) suggests a simple modification for the leaky-lid troposphere. Equations
(4.11) and (4.15) are the amplitudes of the tropospheric buoyancy at x = ±N1t/m for the
no-lid and leaky-lid cases, respectively. These expressions differ only by an overall factor of
N2/N1. Since amplitude and width of a buoyancy pulse are inversely related, this means
that a one-way-propagating buoyancy pulse widens N1/N2 times slower in the presence of a
leaky lid. Since the emission of waves from the troposphere is responsible for widening the
pulse, this implies that waves exit the troposphere N1/N2 times slower in the leaky-lid case
compared to the no-lid case and, therefore, reside in the troposphere N2/N1 times longer.
Therefore, equation (4.12) generalizes to

τk = N2

N1

m2H

N1|k|
. (4.18)
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This timescale exhibits the behavior we expect from studying the Green’s function. Namely,
the residence time is longer for longer waves (smaller |k|) and for more rigid lids (larger
N2/N1).

4.2.6 Numerical validation of the wave timescale
To confirm that the timescale in (4.18) is a good approximation for a freely propagating

gravity wave in an atmosphere with two layers of differing N , we performed a series of
numerical simulations using Dedalus, a flexible, open-source, Python-based framework for
solving partial differential equations (www.dedalus-project.org). Dedalus is a spectral solver,
and we decompose the domain using a Chebyshev basis in the z direction and Fourier modes
in the horizontal. We solve the linearized Boussinesq system (4.5a)-(4.5d) on a periodic
domain of width L = 3000 km, with rigid boundaries at the top and bottom of the domain.
The tropopause is located at H = 17 km, and the rigid top is placed at 170 km, which is
sufficiently high to prevent reflected waves from re-entering the troposphere for the duration
of the simulation.

To test equation (4.18), we initialize the system with a buoyancy perturbation confined
to the troposphere, characterized by a single horizontal wavenumber k and vertical structure
corresponding to a single baroclinic mode m. While we are ultimately interested in the
amplitude of the buoyancy anomaly, diagnosing the wave energy, which is proportional to the
amplitude squared, provides a straightforward (and single-signed) way of bookkeeping in this
simple simulation setup. We compare the evolution of the wave energy in the troposphere
to the timescale predicted by (4.18), bearing in mind that, because energy is proportional
to amplitude squared, the decay timescale for energy is τk/2. Each simulation is run for for
at least τk, over which we expect the energy in the troposphere to undergo two e-foldings.
We run a total of 80 simulations, corresponding to all combinations of: m = π/H and
2π/H; N2/N1 = 1, 2, 3, 4, and 5; and k = 2πn/L for integer values of n from 3 through
10, which correspond to horizontal wavelengths ranging from 300 km to 1000 km. At each
time step, the buoyancy is projected onto the baroclinic mode of the original heating and the
tropospheric energy in that mode is calculated. The decay timescale is then estimated as
−2 times the inverse of the slope of the linear regression of the logarithm of tropospheric
energy versus time. The τk calculated from each simulation is plotted against the theoretical
τk from (4.18) in Figure 4.5, along with a dashed one-to-one line. Figure (4.5) shows very
good agreement between the theory and simulation for most parameter values, confirming
that the approximate timescale in equation (4.18) correctly characterizes the emission rate of
internal gravity waves from an Earth-like troposphere.

4.3 Lifetime of a pulse of buoyancy
We are now prepared to investigate how a heating of finite width propagates through a

two-dimensional troposphere. In principle, we can use the Green’s function to calculate how
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Figure 4.5 : Simulated tropospheric decay timescale τk versus that predicted from equation (4.18) for
80 simulations, which encompass all combinations of N2/N1 = 1, 2, 3, 4, and 5, and k = 2πn/3000
km−1 for integer values of n from 3 through 10, for both the first and second vertical mode
(m = π/H, 2π/H).
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any buoyancy distribution evolves to a horizontally uniform final state. For simplicity, we
focus here on heatings that have a top-hat distribution in the horizontal,

Q = b0H(a/2− |x|)δ(t) sin(mz) , (4.19)

where a is the width of the heating. This generates a buoyancy distribution at t = 0+ that is
given by btop hat

m (x, z, 0+) = b0H(a/2− |x|) sin(mz).
To find out how this buoyancy evolves in time, we can convolve this initial buoyancy

distribution with the Green’s function, i.e., with the bleaky
m from equation (4.13). Before we

do that, however, let us see if we can learn something about its behavior by considering the
residence timescales for its Fourier components. The Fourier transform of btop hat

m (x, z, 0+) is

b̃top hat
m (k, z, 0+) = 1√

2π

∫ ∞
−∞

dx eikxbtop hat
m (x, z, 0+)

= 2b0√
2π

sin(ak/2)
k

sin(mz)H(H − z) . (4.20)

The Fourier transform of the same amount of horizontally integrated buoyancy concentrated
at x = 0, i.e., bleaky

m (x, z, 0+) from equation (4.13) with B0 = ab0, is

b̃leaky
m (k, z, 0+) = 1√

2π

∫ ∞
−∞

dx eikxbleaky
m (x, z, 0n+) = ab0√

2π
sin(mz)H(H − z) . (4.21)

Taylor expanding (4.20) in k, we find

b̃top hat
m (k, z, 0+) = b̃leaky

m (k, z, 0+)
(

1− a2k2

24 + . . .

)
.

For |k| satisfying a2k2/24� 1, i.e., for |k| . 1/a� 2
√

6/a, the Fourier transform of b̃top hat
m

is practically indistinguishable from the Fourier transform of b̃leaky
m .

Since waves emanate from the troposphere on a timescale proportional to their wavenumber,
there will be a time τmelt when wavenumbers |k| > 1/a will have mostly left the troposphere.
After that time, b̃top hat(k, z, t) is practically indistinguishable from b̃leaky(k, z, t). We refer to
τmelt as the timescale for “melting” because this is the time by which the initial horizontal
shape of the buoyancy pulse has melted away. Based on the preceding argument, we can
define τmelt as the time at which wavenumber 1/a has experienced an e-folding of decay, i.e.,
we define τmelt as the τk from equation (4.18) with k = 1/a,

τmelt = N2

N1

m2Ha

N1
. (4.22)

By equation (4.15), the amplitude of bleaky
m at x = ±N1τ

melt/m and t = τmelt is b0/2π.
We can now summarize the evolution of the initial top-hat pulse. At time t = am/2N1,

the top-hat buoyancy pulse of magnitude b0 and width a splits into two pulses, each with
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magnitude b0/2 and width a, one of which is right-moving and the other left-moving. At
time t = τmelt, each of the unidirectional pulses has melted down to a peak amplitude of
b0/2π and is indistinguishable from an initial delta-function buoyancy pulse. For t > τmelt,
the buoyancy evolves as bleaky

m with the amplitude at x = ±N1t/m equal to b0τ
melt/2πt.

Figure 4.6 compares the evolution of the initial top hat (solid red), as calculated numerically
by convolution with the Green’s function, against the evolution of an initial delta-function
source (dashed green) with the same horizontally integrated buoyancy for the case of N2/N1 =
2.5. Also shown is the evolution of the top-hat pulse for a rigid lid (dashed black), i.e., for
N2/N1 =∞. The abscissa is a normalized distance in which unity is the distance traveled in
an amount of time equal to τmelt. As expected, the top-hat pulse has become indistinguishable
from an initial delta-function pulse by the time t = τmelt.

We can perform a further check of τmelt by numerically convolving an initial top-hat
distribution with the Green’s function bleaky

m from (4.13) and diagnosing the time when the
amplitude at |x| = N1t/m equals b0/2π. The top panel of Figure 4.7 shows the amplitude of
the right-moving half of a first-baroclinic top hat at x = N1t/m for N2/N1 = 1, 2.5, 5, and
10. The x-axis is normalized by τmelt so that the curves are independent of the width of the
initial top hat. The first-baroclinic Green’s function amplitude, i.e., bleaky

m (N1t/m,H/2, t), is
given by the dashed black line. As the right-mover and left-mover separate at small t/τmelt,
there are undulations in the buoyancy distribution that cause the buoyancy to briefly exceed
its initial value of b0/2. By t/τmelt = 1, though, all the curves have converged to the Green’s
function amplitude.

The lower panel of Figure 4.7 shows the approximate τmelt from equation (4.22) plotted
against the τmelt diagnosed from the time it takes for the numerically-integrated, right-moving,
first-baroclinic, top-hat pulses to decrease their peak amplitude to b0/2π. The top hats are
integrated for all combinations of a = 100, 500, 2000, 4000 and 8000 km, and N2/N1 = 1, 2.5,
5, and 10. These points all fall very close to the black-dashed one-to-one line.

A few things are notable about the lifetimes of buoyancy anomalies implied by τmelt.
First, the timescale is proportional to N2/N1, so that as N2/N1 →∞, τmelt →∞ too, which
is what we expect for the rigid-lid limit. It is also proportional to the width of the pulse,
so wider buoyancy anomalies retain their horizontal shape longer. Finally, it is quadratic in
m, the baroclinic mode of the initial anomaly. This has potentially significant implications
for the wave spectrum of equatorial Kelvin waves: the second-baroclinic pulses retain their
original shapes four times as long as first-baroclinic pulses.

In general, these decay timescales are quite fast. For a first-baroclinic buoyancy pulse
(m = π/H) in an Earth-like atmosphere (N2/N1 = 2.5, N1 = 0.01 s−1, H = 17 km) with a
width of 100 km, the original horizontal shape of the left-moving and right-moving buoyancy
pulses melts away in only four hours, which is how long it takes each pulse to travel about
800 km from their origin. By that time, each of the pulses has been reduced in amplitude by
a factor of 1/π. After this time, the amplitudes decrease as 1/t, so that, by eight hours, the
peak amplitudes have been reduced by another factor of two.

Although the “melting” time depends on the characteristic width of the initial pulse of
heating, the time to homogenize that heating over a periodic domain is independent of the
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Figure 4.6 : The red solid line shows the projection of buoyancy from a first-baroclinic top-hat
heating onto the first baroclinic mode at t = 0, τmelt/2, and τmelt for N2/N1 = 2.5, which is found
by numerically convolving a top hat with the baroclinic Green’s function (4.13). The green dashed
line shows the baroclinic Green’s function (4.13) with the same profile of horizontally integrated
buoyancy. This is an excellent approximation to the top hat for times greater than the τmelt of
equation (4.22). The abscissa is the distance normalized by the baroclinic wavespeed (N1/m) times
τmelt.
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Figure 4.7 : (top) Fraction of the initial peak buoyancy at x = N1t/m as function of t/τmelt for
the right-moving half of a first-baroclinic top hat pulse of buoyancy, for N2/N1 = 1, 2.5, 5, and 10.
(bottom) Estimated τmelt from equation (4.22) plotted against the actual τmelt for first baroclinic
top hats of with a = 100, 500, 2000, 4000, and 8000 km, for N2/N1 = 1, 2.5, 5, and 10. The actual
τmelt is found by numerically integrating the Green’s function (4.13) and finding the time when the
buoyancy at x = N1t/m drops below b0/2π.
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initial pulse width. To homogenize over a periodic domain of length L, we must wait a
time equal to the τk from equation (4.18) with k = 2π/L. For a first-baroclinic pulse on a
periodic domain of length L equal to the Earth’s equatorial circumference of 40,000 km, this
homogenization takes about 10 days. This is a remarkably short period of time: an isolated
pulse of tropospheric heating generates left-moving and right-moving pulses that reduce to
horizontal wavenumbers one and two by day 2.5, to horizontal wavenumber 1 by day 5, and
to an approximately uniform heating around the entire 40,000-km-long domain by day 10.

4.4 Conclusions
Assuming that the tropical tropopause is a rigid lid greatly simplifies tropical wave

dynamics, but is not physically justifiable and leads to a choice between the spurious
persistence of buoyancy anomalies in the troposphere or using unrealistically strong damping.
In this study, we show that replacing the rigid lid with an overlying layer of stratified fluid
resolves this difficulty. We have derived equation (4.13), which is the Green’s function for
a two-dimensional, non-rotating, Boussinesq fluid comprised of two layers of constant but
differing buoyancy frequency, which are meant to represent the troposphere and stratosphere.
This solution is valid for any ratio of the buoyancy frequencies in the two layers. It includes the
rigid-lid solution (an infinitely stratified upper layer) and the no-lid solution (a stratosphere
with the same stratification as the troposphere) as limiting cases. We have used this Green’s
function to show that the dispersive nature of upward internal gravity wave propagation
damps away buoyancy anomalies in Earth’s troposphere on timescales of hours to days,
which are comparable to the linear damping timescales used in simple models of the tropical
atmosphere. This naturally leads to the speculation that simple models of the atmosphere
with rigid lids at the tropopause may require strong Rayleigh friction or Newtonian cooling
in part because they lack this process.

Of course, the dispersion of vertically-propagating internal gravity waves is not equivalent
to a linear damping, e.g., Rayleigh friction or Newtonian cooling. While both processes
smooth out buoyancy anomalies, linear damping also removes the horizontal mean buoyancy
anomaly. On the other hand, vertically-propagating gravity waves leave behind a steady,
horizontally-uniform buoyancy anomaly, and in a steady state this must be removed by a
domain-mean diabatic cooling.
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Chapter 5

Conclusions

Moist convection in the earth’s atmosphere is a complex, nonlinear, turbulent process
involving multiple phase changes. The spatial and temporal scales span multiple orders of
magnitude, from ice crystals a few microns across to hurricanes hundreds of kilometers wide.
Furthermore, moist convection plays a key role in earth’s energy budget, transporting energy
and moisture from the surface to high in the atmosphere. The fast and localized nature of
convection makes it difficult to model at the global scale, but its influence on climate and
large-scale atmospheric circulation are undeniably large, even if many aspects are poorly
understood.

In this dissertation, we illuminated some key aspects of how moist convection interacts
with large-scale circulations. In Chapter 2, we showed how the interaction between a patch
of atmosphere and the environment can be modeled as a monochromatic gravity wave, and
derived a simple method, known as the weak-pressure-gradient approximation (WPG), to
use in cloud-resolving and single-column models. In Chapter 3, we tested WPG and other
ways of parameterizing the interaction between a column of atmosphere and the large-scale
circulation, and found that some of these methods pass a simple test of self-consistency.
Finally, in Chapter 4, we looked beyond these simple models and derived new analytic
solutions for pulses of heating in a stratified atmosphere with realistic vertical structure.
These more realistic solutions solve some of the glaring problems present in solutions based
on the assumption of rigid lid at the tropopause, and we discover that buoyancy anomalies in
the tropical atmosphere decay on timescales of hours to days, purely due to upward radiation
of wave energy.
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Appendix A

A.1 Horizontal density gradients are small in the trop-
ical atmosphere

Both WPG and WTG take advantage of the observation, that in the tropics, horizontal
density gradients are small. We can see that this is due to the lack of influence of the
earth’s rotation in the tropics from a simple scaling analysis of the governing equations,
originally carried out in Charney (1963). The governing equations for momentum, potential
temperature, and mass for a rotating fluid in hydrostatic balance are:

∂tu + u · ∇u + w∂zu = −∇p
ρ

+ f k̂× u (A.1)

0 = ∂zp

ρ
+ g (A.2)

∂tθ

θ̄
+ u
θ̄
· ∇θ + wN2

g
= 0 (A.3)

∂tρ+∇ · (ρu) + ∂zρw = 0 (A.4)
where u is the horizontal wind, w is the vertical velocity, ρ is the density, p is the pressure, θ
is the potential temperature, g is the gravitational acceleration, f is the Coriolis parameter,
and N ≡

√
g∂zθ
θ

is the Brunt-Väisälä frequency. The ∇ refers to horizontal derivatives only.
Let us define the pressure anomaly as p′ ≡ p− p̄(z), and similarly the density anomaly

ρ′ ≡ ρ− ρ̄(z). From equation (A.2), we define a scale height H ∼ p/ρg, which we also assume
to be the characteristic vertical scale of the motion. Then, again invoking the hydrostatic
equation, we see that

ρ′

ρ
∼ p′

p
.

Designating U for a horizontal velocity scale, W for a vertical velocity scale, L for a
length scale, and the timescale to be the advective timescale, L/U , the terms in equation
(A.1) scale like

U2

L

U2

L

WU

H

p′

ρL
fU (A.5)
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Furthermore, the continuity equation requires that W . UH
L
, provided density anomalies (ρ′

ρ
)

are order 1 or less, so this scaling implies

ρ′

ρ
∼ p′

p
∼ U2

gH
,
fUL

gH
(A.6)

Defining the Rossby number (Ro) as U/fL and a Froude number (Fr) as U2/gH (this is
different from the Froude number we would normally consider in a stratified fluid, as

√
gH

is not the relevant gravity wave speed), the pressure anomaly scales as either Fr/Ro or
Fr. Typical scales are L ≈ 100 km, H ≈ 8 km, and U ≈ 10 m s−1, so Fr ∼ 10−3. In the
midlatitudes, the Rossby number can be of comparable magnitude or smaller (f ≈ 10−4 s−1

at 45◦N), which indicates that density anomalies can be quite large there. But, f goes to
zero at the equator, so the Rossby number U/fL is very large throughout the tropics. Thus,
because the influence of earth’s rotation is negligible, density anomalies in the tropics scale
with Fr, and are very small:

ρ′

ρ
∼ p′

p
∼ U2

gH
∼ O(10−3) (A.7)
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Appendix B

B.1 Inviscid shallow-water solution with a top-hat os-
cillating source

A top-hat mass source that oscillates with angular frequency ω in a column from x1 to x2
may be written as

Q(x, t;x1, x2) = Q0 cos(ωt)H(x2 − x)H(x− x1) .

The fundamental solution to the inviscid shallow-water equations from equation (2.4) then
becomes

h(x, t;x1, x2) = Q0

2

t∫
−∞

dt′ cos(ωt′)

H
[
x2 −

(
x+ c{t− t′}

)]
H
[(
x+ c{t− t′}

)
− x1

]

+H
[
x2 −

(
x− c{t− t′}

)]
H
[(
x− c{t− t′}

)
− x1

] . (B.1)

We can rewrite the integrand using the identity H(ct′−a)H(b− ct′) = H(ct′−a)−H(ct′− b),
which holds provided that a < b. In this case, a is always less than b since x2 > x1. Rewriting
(B.1) with this identity, we obtain

h(x, t;x1, x2) = Q0

2

t∫
−∞

dt′ cos(ωt′)

H
[
ct′ − (−x2 + x+ ct)

]
−H

[
ct′ − (−x1 + x+ ct)

]

+H
[
ct′ − (x1 − x+ ct)

]
−H

[
ct′ − (x2 − x+ ct)

] . (B.2)
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This can be broken up into four integrals, with different lower bounds imposed by the step
functions:

h(x, t;x1, x2) =

Q0

2

{ t∫
t+x−x2

c

dt′ cos(ωt′)H
[
ct′ − (ct+ x− x2)

]
−

t∫
t+x−x1

c

dt′ cos(ωt′)H
[
ct′ − (ct+ x− x1)

]

+
t∫

t+x1−x
c

dt′ cos(ωt′)H
[
ct′ − (ct+ x1 − x)

]
−

t∫
t+x2−x

c

dt′ cos(ωt′)H
[
ct′ − (ct+ x2 − x)

]}
.

(B.3)

Evaluating the integrals leads to the following solution for h(x, t),

h(x, t;x1, x2) = Q0

2ω

H(x2 − x)
[

sin(ωt)− sin
(
ωt+ ω

{
x− x2

}
/c
)]

−H(x− x2)
[

sin(ωt)− sin
(
ωt+ ω

{
x2 − x

}
/c
)]

−H(x1 − x)
[

sin(ωt)− sin
(
ωt+ ω

{
x− x1

}
/c
)]

+H(x− x1)
[

sin(ωt)− sin
(
ωt+ ω

{
x1 − x

}
/c
)] , (B.4)

which can be written as

h(x, t;x1, x2) = Q0

2ω

sign(x2 − x)
[

sin(ωt)− sin
(
ωt− ω

∣∣∣x2 − x
∣∣∣/c)]

+ sign(x− x1)
[

sin(ωt)− sin
(
ωt− ω

∣∣∣x− x1

∣∣∣/c)]
 . (B.5)

For an oscillating source of the form in equation (2.24), the solution becomes

h(x, t) =
(

1 + L1

L2

)
h(x, t;−L1, L1)− L1

L2
h(x, t;−L1 − L2, L1 + L2) . (B.6)

The average of this function over the column is

h(t) ≡ 1
2L1

∫ L1

−L1
dx′ h(x′, t) (B.7)

= Q0

ω
sin(ωt) + Q0c

ω22L1

(
1 + L1

L2

){
cos(ωt)− cos

(
ωt− ω2L1

c

)}
(B.8)

− Q0c

ω22L1

L1

L2

{
cos

(
ωt− ωL2

c

)
− cos

(
ωt− ω2L1 + L2

c

)}
. (B.9)
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Written as h(t) = h0 cos(ωt + φ), the amplitude h0 of this oscillation is given by equation
(2.25).
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Appendix C

C.1 Deriving the Green’s function for a leaky-lid at-
mosphere

The path to our solution for an atmosphere with different N in the troposphere and
stratosphere adheres closely to the derivations published by Lin & Smith (1986) and Pandya
et al. (1993) for an atmosphere with constant N .

We begin by rewriting the two-dimensional, linearized Boussinesq equations (4.5) as wave
equations for w in each layer:

∂2
t ∂

2
zw1(x, z, t) +N2

1∂
2
xw1(x, z, t) = ∂2

xQ , 0 ≤ z ≤ H (C.1a)
∂2
t ∂

2
zw2(x, z, t) +N2

2∂
2
xw2(x, z, t) = 0 , H < z. (C.1b)

Then, we consider a buoyancy source of the form Q = B0δ(t)δ(x)δ(z − z0). Taking the
Laplace transform in time (t→ s) and the Fourier transform in x (x→ k) of equation (C.1),
we find

∂2
z ŵ1(x, z, t) + λ2ŵ1(x, z, t) = λ2

√
2πN2

1
B0δ(z − z0) , z ≤ H (C.2a)

∂2
z ŵ2(x, z, t) + λ2

2ŵ2(x, z, t) = 0 , H < z, (C.2b)

where λ ≡ iN1|k|/s, and λ2 ≡ iN2|k|/s. The presence of δ(z − z0) in the source term Q
imposes a jump condition on w1 at z = z0, which we can find by integrating equation (C.2a)
twice in z:

[ŵ1]+− = 0 (C.3)

[∂zŵ1]+− = λ2
√

2πN2
1
B0 , (C.4)

where [ ]+− represents the difference across z = z0.
We seek a solution subject to conditions at the surface (z = 0) and at the tropopause

(z = H), as well as a radiation condition as z →∞. At the surface, the rigid lower boundary
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requires ŵ1 = 0. At the tropopause (z = H), enforcing continuity of pressure and vertical
velocity requires ŵ1 = ŵ2 and ∂zŵ1 = ∂zŵ2. Above z = H, we require that ŵ2 → 0 as
z →∞.

If the buoyancy frequency is constant (i.e., if N = N1 everywhere), then the solution to
the transformed equations (C.2) is

ŵ1 = ŵ2 ≡ ŵ±0 =

−
λB0√
2πN2

1
eiλz0 sin(λz) , 0 ≤ z ≤ z0

− λB0√
2πN2

1
sin(λz0)eiλz , z0 < z

. (C.5)

This solution applies throughout the whole atmosphere, so have we defined a new variable
ŵ±0 , where + refers to the solution for z > z0 and − refers to the solution for z < z0.

Multiplying by 1/s in Laplace-transformed space is integration in time in real space, so we
solve for the buoyancy by multiplying the ŵ solutions by −N2

1/s and inverting the Fourier and
Laplace transforms. We find that the buoyancy due to a source term Q = B0δ(t)δ(x)δ(z− z0)
in an atmosphere with constant N is

bno lid
point (x, z, t) = B0N1t

πx2 sin
(
N1tz

x

)
sin

(
N1tz0

x

)
. (C.6)

To find the solution for the source term with baroclinic structure in the troposphere given by
equation (4.8), we integrate equation (C.6) against sin(mz0) through the troposphere:

bno lid
m (x, z, t) =

∫H
0 dz0 sin(mz0)bno lid

point (x, z, t)
= B0

2π cos(mH) sin (HN1t/x) sin (N1tz/x)
×
[

1
N1t/m+x + 1

N1t/m−x

]
, (C.7)

where m is one of the baroclinic modes. This is the Green’s function for the constant-N
atmosphere, which is equation (4.10) in the main text.

Now, suppose N2 = (1 + γ)N1, where γ ≥ −1. While we cannot integrate the modified
version of equation (C.5) directly for the case N1 6= N2, we can expand the modified version
of equation (C.5) in γ around γ = 0 and integrate each term in the series. By integrating
enough terms and determining what the series converges to, we find a solution valid for all
γ ≥ −1, i.e., for all N2 ≥ 0.

After rewriting ŵ1 in terms of γ, we find

ŵ1 = 
− λB0√

2πN2
1
eiλz0 sin(λz)

[
1+ γ

2 (1−e2iλ(H−z0))
1+ γ

2 (1−e2iλH)

]
, 0 ≤ z ≤ z0

− λB0√
2πN2

1

{
eiλz0 sin(λz)

[
1+ γ

2 (1−e2iλ(H−z0))
1+ γ

2 (1−e2iλH)

]
− sin(λ(z − z0))

}
, z0 < z ≤ H

(C.8)

and
ŵ2 = − λB0√

2πN2
1

[
eiλz sin(λz0)

] [ eiλγ(z−H)

1 + γ
2 (1− e2iλH)

]
, H < z (C.9)
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We focus our attention on the solution in the troposphere, equation (C.8), which can be
expanded about γ = 0 by noting that the denominator becomes[

1 + γ

2
(
1− e2iλH

)]−1
≈ 1− γ

2
(
1− e2iλH

)
+ γ2

4
(
1− e2iλH

)2
− . . . . (C.10)

Recalling the constant-N solution ŵ±0 , where + refers to the solution for z > z0 and − refers
to the solution for z < z0, the first-order expansion in γ can be written

ŵ1 ≈

ŵ
−
0 + γ

2e
2iλH

(
1− e−2iλz0

)
ŵ−0 0 ≤ z < z0

ŵ+
0 + γ

2e
2iλH

(
1− e−2iλz0

)
ŵ−0 z0 < z ≤ H

(C.11)

Finding the higher-order terms is straightforward and the nth-order term is:(
γ

2

)n (
e2iλH − 1

)n−1
e2iλH

(
1− e−2iλz0

)
ŵ−0 . (C.12)

As in the constant-N case, we solve for the buoyancy by multiplying by −N2
1/s and

inverting the Laplace and Fourier transforms. In this way, we calculate successively higher
order approximations to the buoyancy in the troposphere and eventually determine the series
converges to

bleaky
point(x, z, t) = bno lid

point (x, z, t)× 1 + γ

1 + (2γ + γ2) sin2
(
HN1t
x

) z ≤ H. (C.13)

The solution for N1 6= N2 is just the constant-N solution (C.6) multiplied by a new factor.
Note that this expression does not rely on the smallness of γ; it is valid over the entire range
of N2/N1 from 0 to ∞, which corresponds to γ = −1 to ∞.

Since the multiplicative factor that converts the constant-N solution (C.6) to the differing-
N solution (C.13) is independent of z, the solution for the buoyancy source with baroclinic
structure given by (4.8) follows easily from equation (C.7):

bleaky
m (x, z, t) = bno lid

m (x, z, t) × 1 + γ

1 + (2γ + γ2) sin2
(
HN1t
x

) z ≤ H . (C.14)

This solution is the same as the tropospheric part of equation (4.13). Following a similar set
of steps reveals the stratospheric part of the solution.
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