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Abstract of the Dissertation

Computational Transonic Flutter Solutions for

Cranked Wings by the Direct

Eulerian-Lagrangian Method

by

Erik Charles Mellquist

Doctor of Philosophy in Aerospace Engineering

University of California, Los Angeles, 2014

Professor Oddvar O. Bendiksen, Chair

In this dissertation, a three-dimensional computational aeroelastic simulation for

cranked, highly-swept wings is developed, and solutions are presented for several

wing models. The computational model is a fully nonlinear coupled fluid-structure

simulation based on the Direct Eulerian-Lagrangian coupling methodology. The

wing is modeled using nonlinear modified von Karman plate finite elements. Large

deformation is accounted for through the use of element-attached local coordinate

systems referenced to a single global coordinate system. The fluid is modeled

using the mixed Eulerian-Lagrangian formulation of the classical Euler equations

and is discretized using a Galerkin finite element approach on an unstructured

tetrahedral mesh. The fluid and structural models are coupled by the Direct

Eulerian-Lagrangian method where the finite-element shape functions and the lo-

cal element coordinate systems are used to describe the fluid-structure boundary

without approximation. Time synchronization and spatial accuracy are main-
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tained to ensure accurate exchange of energy between the fluid and the structure.

The computational solutions exhibit multiple types of aeroelastic response in-

cluding transonic limit cycle flutter at a wide range of dynamic pressures, subsonic

and supersonic bending-torsion flutter at higher dynamic pressures and a wide

range of Mach numbers, and limit cycle oscillation dependent on both Mach num-

ber and angle of attack. Shock motion dependent on wing deformation is shown

to play a major role in determining the response of the wings, and, depending on

the flow conditions, can either stabilize or destabilize the response. Results from

the simulations correlate closely with observed wind tunnel test responses.
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CHAPTER 1

Introduction

1.1 Motivation for Research

Accurate solutions to transonic aeroelasticity problems are important for the de-

sign of modern commercial and military aircraft [1]. These vehicles are required

to be lightweight and efficient while operating at transonic Mach numbers. The

structures of lighter aircraft are more flexible and therefore susceptible to large,

nonlinear deformation. The transonic aerodynamic environment is inherently non-

linear and can impart large, unsteady forces on the aircraft as regions of supersonic

flow and shock waves form, move, and disappear on the vehicle surface [2–4]. The

flutter boundary at transonic Mach numbers often resides at lower dynamic pres-

sures than it does in the adjacent subsonic and supersonic regions, making its

identification critical [5]. Additionally, experimental results have proven difficult

with the potential for unexpected model destruction and wind tunnel damage [6].

Due to the nonlinear nature of transonic flutter, obtaining solutions that accu-

rately model and explain the physical phenomena has been difficult, and numerical

simulations are often required.

Three-dimensional computational aeroelastic solutions based on the nonlinear

Euler [7] and Navier-Stokes [8] equations were first calculated over twenty years
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ago. Since that time, most solutions have focused on improving the fluid and/or

structural models used in the simulation, and rightfully so, as their accuracy is

of the utmost importance. In contrast, the coupling of the two models has often

been treated as if its importance was secondary. This is a problem, as it has

been shown that the accuracy of the coupling between the fluid and the structure

can have a large effect on the solution [9–11]. The Direct Eulerian-Lagrangian

coupling method has proven to be accurate at simulating the energy exchange be-

tween the fluid and the structure [9], thus ensuring that the conservation laws are

satisfied. Up to this point, the Direct Eulerian-Lagrangian method has primarily

been applied to simple wing planforms with low to moderate leading edge sweep.

Wider application of the method has the potential to improve understanding of

transonic aeroelasticity phenomena.

In the present research, a three-dimensional computational aeroelastic simula-

tion for cranked, highly-swept wings is developed, and solutions are presented for

several wing models. The computational model is a fully nonlinear coupled fluid-

structure simulation based on the Direct Eulerian-Lagrangian coupling method-

ology. The wing is modeled using nonlinear modified von Karman plate finite el-

ements. Large deformation is accounted for through the use of element-attached

local coordinate systems referenced to a single global coordinate system. The

fluid is modeled using the mixed Eulerian-Lagrangian formulation of the classical

Euler equations and is discretized using a Galerkin finite element approach on an

unstructured tetrahedral mesh. The fluid and structural models are coupled by

the Direct Eulerian-Lagrangian method where the finite-element shape functions

and the local element coordinate systems are used to describe the fluid-structure
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boundary without approximation. Time synchronization and spatial accuracy

are maintained to ensure accurate exchange of energy between the fluid and the

structure.

1.2 Literature Review

1.2.1 Transonic Computational Aeroelasticity

Early developments in transonic computational aeroelasticity were based on CFD

research from the 1970’s. In 1971, Murman and Cole [12] developed a two-dimen-

sional steady simulation based on transonic small disturbance theory. Their work

was extended to three-dimensions by Ballhaus and Bailey [13]. Later the same

method would be applied to solve the two-dimensional [14] and three-dimensional

[15] unsteady equations.

The first computational transonic flutter analyses applied transonic small dis-

turbance theory to simple two and three-dimensional models. Two-dimensional

solutions were computed by Ballhaus and Goorjian [16] and Rizzetta [17] in the

late 1970’s. Soon after, Borland and Rizzetta extended their previous work [15]

to a three-dimensional flutter solution [18] which coupled a transonic small dis-

turbance theory fluid model to a normal modes structural model. The fluid and

structural equations were integrated forward in time together. The code, called

XTRAN3S, was limited to wings with high aspect ratios, large taper ratios, and

small sweep angles because of the coordinate transformation used. Later, Gu-

ruswamy and Goorjian would develop an improved coordinate transformation and

implement it in a new program called ATRAN3S [19]. The improvement allowed
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for aeroelastic analysis of more complicated wing planforms including those of

the F5 and B-1 [20]. ATRAN3S and other aeroelastic analysis programs based

on transonic small disturbance theory and the full potential equations were the

state of the art through the end of the 1980’s [7,21–23]. Despite their popularity,

transonic flutter solutions calculated with these programs were of questionable va-

lidity. In potential flow theory, entropy production is neglected. This results in a

poor prediction of the strength and location of shocks which are important factors

in transonic aeroelastic stability. In addition, the small disturbance assumption

is likely invalid for aeroelastic analysis where deformation can be large.

As computing speed increased, it became feasible to simulate unsteady tran-

sonic flows with the Euler or Navier-Stokes equations. In 1985, Venkatakrishnan

and Jameson [24] developed an unsteady Euler solver for the problem of two-

dimensional transonic flow over a moving airfoil. A few years later, the first in-

stance of a two-dimensional Euler CFD based aeroelastic analysis was presented

by Bendiksen and Kousen [25, 26]. They used a finite volume scheme on a mov-

ing, structured mesh, integrating the structural and fluid equations together in

time. Aerodynamic forces were applied to a typical section model of an airfoil by

enforcement of tangent flow boundary conditions. Around the same time, Wu et

al. [27] and Wu [28] presented a method for solving the two-dimensional unsteady

compressible Navier-Stokes equations along with flutter solutions for a typical sec-

tion model. Soon, Guruswamy would use the new ENSAERO code to extend the

application of the Euler [29] and Navier-Stokes [8, 30–32] equations to the three-

dimensional unsteady aerodynamic and flutter analyses of wings modeled using

plate finite elements. Another three-dimensional Euler/Navier-Stokes aeroelastic
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code called CFL3D was also in development at the time. This code was applied

to many problems including flutter solutions for a two-dimensional airfoil and

three-dimensional 45 degree swept wing using a structured, deforming mesh with

the Euler [33, 34] and Navier-Stokes [35] equations. The mesh motion algorithm

of CFL3D was based on the work of Batina [36], who used a spring analogy to

determine the location of the interior points of a two-dimensional unstructured,

triangular mesh as the airfoil moved.

Up to this point, all existing aeroelastic simulations were using what is now

referred to as the “classical approach” to fluid-structure coupling. In these sim-

ulations, the fluid and structure are integrated separately and coupled through

the kinematic boundary conditions. Time consistency of the classical methods is

difficult to establish, as enforcement of the boundary conditions requires knowl-

edge of the position and velocity of the fluid-structure boundary, but the position

and velocity of the boundary are not known until the boundary conditions are

used to calculate the surface pressures and apply forces to the structure for the

current time step. To manage this problem, approximations are used. Usually the

pressure from the previous time step is extrapolated forward in time and applied

to the system. This process introduces unknown phase errors. Additionally, the

location of the fluid-structure boundary is often estimated with a “virtua” bound-

ary surface using spline or interpolation functions. The estimated boundary may

not be accurate, leading to errors in the calculated energy transferred from the

fluid to the structure.

In 1991, Bendiksen presented a new computational method for aeroelastic

response calculations that solved the problems inherent in the classical approach
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[9]. By formulating the governing equations for both the fluid and the structure in

integral conservation law form based on a mixed Eulerian-Lagrangian description,

the fluid-structure system was treated as a single continuum dynamics problem.

In this initial paper and a follow up [4], solutions were calculated for a two-

dimensional wing section with camber bending. The fluid was modeled using the

Euler equations discretized with a structured quadrilateral finite volume mesh,

and the structure was modeled with beam finite elements. Results showed that

the new method accurately modeled the transfer of energy between the fluid and

the structure. The total energy of the structure (kinetic plus strain) was compared

to the work done by the fluid for every time point in the simulation. The difference

between the two was constant and equal to the initial energy of the structure. In

the absence of structural damping, this indicates that the law of conservation of

energy was satisfied. When the same calculations were done on the classical model

from Reference 25, the difference between the energy and work changed over time

indicating that energy was not being conserved. Flutter response comparisons

between the new and classical method showed significant differences, indicating

the importance of proper fluid-structure coupling in aeroelastic simulations.

Over the past twenty years, the new method (eventually dubbed the Direct

Eulerian-Lagrangian method [37]) has been applied to multiple aeroelastic and

aeroservoelastic problems resulting in improved understanding of aeroelastic re-

sponses in the transonic region. Some of the applications of the Direct Eulerian-

Lagrangian method are listed below.

1. The importance of shock motion in transonic flutter was demonstrated us-

ing a two-dimensional wing section with camber bending on a structured,
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quadrilateral, finite volume mesh [4].

2. The aeroelastic response of transonic and supersonic flows over two-dimen-

sional panels was calculated using a structured triangular finite element

discretization of the Euler equations. Beam finite elements were used to

model the panel. Divergence and limit cycle flutter were observed in the

solutions [38, 39].

3. Hsiao and Bendiksen [40–42] simulated the transonic aeroelastic stability of

cascades by discretizing the Euler equations over a two-dimensional hybrid

structured/unstructured triangular finite element mesh.

4. Aeroservoelastic response of the ONERA M6 wing [43] (with 30 degree

leading edge sweep) was studied. For the first time, the Direct Eulerian-

Lagrangian method was applied in three-dimensions. The simulations used

an unstructured tetrahedral mesh to discretize the Euler equations. The

wing structure was modeled with Mindlin-Reissner discrete shear triangle

plate finite elements. To improve computational performance, the simula-

tions were run on a parallel computer system [37,44–47].

5. Limit cycle flutter behavior of a three-dimensional wing in transonic flow was

studied [48]. Nonlinear shock transitions from Tijdeman Type A (continu-

ous) to Type B (intermittent) [3] were identified as the dominant mechanism

for limiting the energy exchange from the fluid to the structure, resulting in

limit cycle oscillations (LCO) as opposed to destructive flutter.

6. Bendiksen and Seber studied the effect of nonlinear structural stiffening on

the ONERA M6 wing during transonic flutter. The simulation also included
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geometric nonlinearity which allowed aerodynamic loads to be modeled as

follower forces. [49–51].

7. Bendiksen studied the transonic limit cycle flutter response of a high aspect

ratio swept wing. The improved, nonlinear, structural model was included.

The new computational results agreed well with existing experimental re-

sults [52]. Because of the accurate fluid-structure coupling provided by

the Direct Eulerian-Lagrangian method, the energy exchange between the

fluid and the structure at different span locations could be studied. Several

new observations regarding transonic flutter were made including the effect

of shock location on flutter behavior, the stabilizing nature of structural

washout, and the “aeroelastic stability balance” based on differences in aero-

dynamic work on the inboard and outboard portions of the wing. [53–55].

8. A phenomenon, “Mach number freeze,” which had not previously been iden-

tified in unsteady transonic flows, was studied. Its existence was used to

explain the stabilization of limit cycle flutter near Mach one and the desta-

bilizing effect of wing sweep at transonic Mach numbers [56].

The Direct Eulerian-Lagrangian method has primarily been applied to sim-

ple wing planforms with low to moderate sweep, while more complicated wing

planforms have only been studied using less rigorous coupling methods.

Baker et al. [57] simulated the response of a cranked high speed transport wing

using a test correlated, linear finite element model coupled to an Euler CFD solver.

The simulation predicted unstable flutter in a narrow Mach range (0.98–1.0) at

a wide range of dynamic pressures. At the same Mach numbers and dynamic
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pressures, the test model [6, 58, 59] experienced “increased response.” Another

“region of increased response” from the test (Mach 0.8–0.97) was not predicted

by the simulation.

Gordnier and Melville [60–62], Attar and Gordnier [63, 64], and Peng and

Han [65] developed a simulation of a cropped delta wing undergoing LCO in

transonic flow. Multiple coupling methods and structural models were combined

with both Euler and Navier-Stokes fluid models. The simulations were able to

predict the onset of the test measured flutter boundary [66], but unable to simulate

the correct LCO magnitude.

In 2001, Hartwich et al. [67] attempted to simulate the limit cycle flutter of the

B-1 wing that had previously been observed in flight [68] and wind tunnel test [69].

The computations used the CFL3D Navier-Stokes fluid solver loosely coupled to a

linear, modal finite element model. The simulation was only able to produce limit

cycle flutter when a single structural mode was used. The magnitude of response

was significantly different from measured test responses.

The costs associated with using classical coupling methods are significant. Not

only is the accuracy of the simulations reduced, but the knowledge which can be

gained by studying the results is limited. When conservation of energy cannot be

guaranteed (as it cannot with classical coupling), the transfer of energy between

the fluid and the structure can be incorrect. Because of this, it is difficult to

improve the understanding of the physics behind the behavior when the results

are studied.
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1.2.2 Transonic Flutter of Cranked Wing Planforms

Transonic flutter of cranked wings has been observed in multiple flight and wind

tunnel tests. In 1978, transonic limit cycle flutter was observed during flight test-

ing of the variable sweep wing B-1 aircraft [68]. It was initially posited that the

oscillations were due to shock motion on the wing. Several years later two dy-

namically scaled aeroelastic models of the B-1 wing were tested in the transonic

wind tunnel at NASA Ames [69]. Limit cycle oscillations similar to those in the

flight test were observed for the fully swept (65 and 67.5 degrees) configuration.

The LCO was seen at Mach numbers from 0.65 to 1.05 and was highly sensitive

to angle of attack, only occurring above 6.9 degrees. The researchers involved dis-

counted the prior assertion that shock motion was responsible for the oscillations.

Instead, they argued that a leading edge vortex was transferring energy to the

wing in the first bending mode.

Multiple attempts at modeling the phenomenon causing the LCO are recorded

in the literature. Guruswamy et al. [20] coupled a transonic small disturbance

theory fluid model to a normal modes structural model, but simulations were not

able to capture any of the limit cycle behavior that had been observed. Later,

Guruswamy claimed to simulate sustained aeroelastic oscillations using a three-

dimensional finite element structural model coupled to the ENSAERO Navier-

Stokes fluid model, but the results show lightly damped oscillations [8]. More

recently, Hartwich et al. used the CFL3D Navier-Stokes fluid solver loosely cou-

pled to a linear, modal finite element model [67]. The simulation was only able

to produce limit cycle flutter when a single structural mode was used. The mag-

nitude of response was significantly different from that measured in the wind
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tunnel test. In response to Reference 67, Ericsson suggested the causative phe-

nomenon was not a single leading-edge vortex, but rather the interaction between

two leading-edge vortices [70,71].

A second example of a cranked wing experiencing flutter was documented by

Silva et al. [6] and Schuster et al. [58, 59]. A series of tests were run for a High

Speed Civil Transport (HSCT) wing in NASA Langley’s Transonic Dynamics

Tunnel. Both rigid and flexible models were tested. The flexible model was

aeroelastically scaled, and built using fiberglass skins with an open-cell foam core.

Due to mistakes in the design of the model, it had a flutter dynamic pressure

that was beyond the safe limit of the tunnel. To change the structural dynamic

properties of the wing, a mass was added to the aft tip section. This brought the

flutter dynamic pressure within the range of the tunnel. During testing, a flutter

point was initially found, but the response was not repeatable. It was believed that

non-elastic deformation of the wing (e.g. loosened rivets) was responsible. During

the test, two regions of “increased response in first wing bending mode” were

discovered in the transonic regime (Mach 0.8–1.0). Not much detail is given on the

nature of the increased response, but it is never identified as unstable flutter. One

of the increased response regions, identified as the “chimney,” was only present

from Mach 0.98–1.0, but existed at a large range of dynamic pressures. At a high

dynamic pressure point in the chimney, unstable flutter was encountered, and the

model was destroyed.

Baker et al. [57] attempted to simulate the response of the test wing using

a correlated, linear finite element model coupled to an Euler CFD solver. The

simulation predicted flutter in the same “chimney” region as the test. There is
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not sufficient detail in the literature to determine how accurately the simulation

was able to model the full set of wind tunnel observations.

More recently, the NEXST-2 supersonic transport (SST) model, which is sim-

ilar to NASA’s HSCT, was analyzed by the Japan Aerospace Exploration Agency

(JAXA) in their Transonic Flutter Wind Tunnel [72, 73]. They insured against

the loss of their model by installing a weight on the trailing edge at the wing tip

that would detach during large oscillations, changing the structural properties of

the model and arresting the flutter response. Because of this, they were able to

find a high dynamic pressure flutter region that existed between Mach 0.9 and

Mach 1.1 without destroying their model. At a narrower range of Mach numbers

(0.96–1.06), but lower dynamic pressures, they discovered a region of stable limit

cycle oscillations (LCO). The dynamic responses in the two regions were at unique

frequencies, indicating that different modes of the structure were being excited in

each case.

1.2.3 Mesh Generation Techniques

The first step in solving any CFD problem is to generate a mesh to discretize

the fluid domain. The mesh type and quality greatly influence the efficiency and

accuracy of the solution. Meshes are often divided into two categories: structured

and unstructured.

The traditional approach has been to use structured meshes to discretize the

domain. These grids often employ quadrilaterals in two-dimensions and hexa-

hedra in three-dimensions spaced in regular patterns. Structured meshes have

a high degree of regularity and smoothness which lends itself to straightforward
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grid generation and a more efficient solution processes. Structured meshes also

have the advantage of being well-suited for solving the full Navier-Stokes equa-

tions, where, in order to resolve boundary layer characteristics, the element size

in the direction perpendicular to the boundary should be small. It is often or-

ders of magnitude smaller than the element size in the flow direction. Structured

meshes, however, suffer from the limitation of hexahedral elements to discretize

complicated domains [74].

In contrast to structured meshes, unstructured meshes, which often consist of

simplicial elements (triangles in two-dimensions and tetrahedra in three-dimen-

sions), excel at discretizing complex geometries. Unstructured meshes are also

ideal for the implementation of adaptive meshing techniques where the mesh moves

to accommodate a changing boundary, grid points are added to improve accuracy,

or grid points are removed to improve efficiency. To their detriment, solving the

conservation equations on unstructured meshes is not as computationally efficient

as it is on structured grids. In addition, the process of generating an unstruc-

tured mesh can be challenging. In response to these challenges, there has been a

considerable amount of work in the field of unstructured mesh generation [74–76].

Unstructured mesh generation techniques can be divided into two categories.

The first class of methods are those that work by modifying an existing mesh

or connecting an existing set of grid points. These methods often use Delaunay

triangulation techniques (also identified as Dirichlet or Voronoi tessellation). In

the second category, are the advancing front techniques which separate the meshed

region from the unmeshed region with a “front.” This front is then advanced into

the unmeshed space through the addition of points, edges, and elements [75].
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One of the first methods for generating unstructured meshes was developed

by Frederick et al. [77] for use in two-dimensional structural finite element stress

analysis. In this work, triangular elements were built on a set of points that

were manually entered using a magnetic pen on an electromagnetic graph tracing

table. The algorithm was dependent on proper numbering of the nodes, and thus

somewhat inefficient. Nguyen [78] used a similar algorithm (though without the

magnetic pen technology) to generate tetrahedral meshes in three-dimensions with

automated mesh refinement.

The first general purpose algorithm for Delaunay triangulation in two-dimen-

sions was developed by Green and Sibson [79] who used Dirichlet tessellations to

divide a plane into contiguous regions which were then used to define a trian-

gulation. Bowyer [80] and Watson [81] expanded upon this work by developing

algorithms to calculate the Dirichlet tessellation and Delaunay triangulation in

Euclidean space of any dimension. The method developed by Watson introduced

new points to the triangulation one at a time (though all the points were de-

fined prior to the start of mesh generation) and was the first use of an advancing

front technique. The efficiency of Watson’s algorithm [81] was improved for two-

dimensional discretization by Sloan and Houlsby [82] through the use of improved

data storage routines.

Though these methods produced fully meshed regions, setting them up re-

quired a large amount of effort. With the goal of reducing the time required to

set up a mesh, Lo [83] used an improved algorithm for generating the node lo-

cations to produce a two-dimensional grid of triangles that could discretize any

arbitrary multi-connected domain. The algorithm allowed for the definition of
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sub-domains with independent mesh sizes. This resulted in good mesh resolution

in regions with irregular boundaries. Like the work of Watson, Lo used an ad-

vancing front technique over a region where grid points (but not the connectivity)

were previously defined.

Jameson et al. [84] were the first to use Delaunay triangulation to generate

a mesh for the solution of aerodynamic equations. Bowyer’s method [80] was

applied in three-dimensions to produce a mesh around a complete aircraft for the

solution of steady inviscid transonic flow using the finite element method with

Euler equations.

The first instance of an advancing front technique which introduced nodes

and elements together was developed by Peraire et al. [85]. They used a coarse

two-dimensional triangular background grid to define the mesh size over the com-

putational domain. The front was then advanced from the outer edges inward

until the domain was filled. In addition, a directional mesh refinement scheme

was developed which used error in the solution to identify regions and direc-

tions where the mesh should be improved. The initial mesh was then used as a

background mesh to generate the refined mesh. The work of Peraire et al. was

extended to three-dimensions by Löhner and Parikh [86] and Löhner [87] who

derived an efficient algorithm by using a heap list to store the faces (triangles in

three-dimensions) and quad/octree structures to store the points. In contrast to

previous methods, the advancing front method was more automatic with less user

involvement. The method became popular and was implemented by NASA [88] in

their GEN2D and GEN3D programs. Later, Peraire et al. [89], added progressive

mesh refinement to a three-dimensional implementation of their program.
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As CFD mesh sizes increased, more efficient mesh creation programs became

necessary. In response, Löhner et al. [90] developed a parallel implementation of

the advancing front method in two-dimensions. The domain was divided into sub-

domains which were meshed independently and then combined. The algorithm

was programmed to mesh the sub-domains in parallel on a computer with multiple

processors, and a significant improvement in meshing time was realized.

To this point, unstructured grids were being used to solve the Euler equa-

tions, but an unstructured mesh scheme appropriate for the full Navier-Stokes

equations had not yet been found. Kallinderis et al. [91] proposed a hybrid pris-

matic/tetrahedral mesh generation technique which used triangular prisms near

the boundary to resolve viscous effects and tetrahedra elsewhere. More recently,

NASA has developed their FUN3D (Fully Unstructured Navier-Stokes) code which

has the capability to solve the Reynolds averaged Navier-Stokes equations over

an unstructured tetrahedral mesh. This code has been applied to many different

fluid-structure interaction problems [76,92].

In recent years, the focus in unstructured grid generation research has been

on improving performance [93–95]. This is necessary due to some of the large

models currently being used in research and industry. In aeroelastic simulations,

the meshes are often much smaller, and such methods are not necessary.

1.3 Problem Statement and Research Objectives

The current state of the art in transonic aeroelastic simulations is to couple the

fluid and structure through the Direct Eulerian-Lagrangian method. Up to this
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point, the method has primarily been applied to simple wing planforms with low

to moderate leading edge sweep. At the same time, some of the most difficult,

unsolved transonic flutter problems involve wings with leading and trailing edge

kinks and high leading edge sweep. Application of the Direct Eulerian-Lagrangian

method to these problems is needed.

The objective of this research is twofold. The first objective is to improve

upon the existing computer codes that have been used to implement the Direct

Eulerian-Lagrangian method in transonic aeroelastic simulations. The second

objective is to apply the updated codes to the solutions of transonic aeroelastic

problems which were previously unsolved. The updates to accomplish these tasks

are as follows:

1. Update the current three-dimensional unstructured meshing code to gener-

ate meshes for highly swept wings with leading and trailing edge kinks and

tips that are not parallel to the root.

2. Update the structural dynamic modeling portion of the code to generate

nonlinear finite element models for cranked wings that can be coupled to

the new fluid mesh.

3. Update the aeroelastic codes to apply the Direct Eulerian-Lagrangian cou-

pling method to the new fluid and structural models.

1.4 Dissertation Outline

Immediately following this introductory chapter, the mixed Eulerian-Lagrangian

formulation of the fluid model and the generation of the unstructured tetrahe-
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dral mesh is discussed (Chapter 2). Next, Chapter 3 contains a discussion of the

nonlinear structural model of the wing. In Chapter 4, coupling of the fluid and

structural models by the Direct Eulerian-Lagrangian method is presented. Chap-

ter 5 contains comparisons with previously published computational aeroelastic

results that serve to validate the current code. Following this, Chapter 6 contains

the results and analysis from transonic aeroelastic simulations of the NEXST-2

supersonic transport wing and a generic high speed cranked wing. Finally, con-

clusions and recommendations for future research are presented in Chapter 7.

Also included are two appendices. Appendix A contains the User’s Guide to a

graphical user interface (GUI) front end for the updated aeroelasticity programs.

Appendix B summarizes the changes made to the meshing and aeroelasticity pro-

grams.
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CHAPTER 2

Mixed Eulerian-Lagrangian Formulation of the

Fluid Model

2.1 Introduction

In this chapter, the dynamic model of the fluid surrounding the wing is presented.

The computational simulation of aeroelastic problems requires that the fluid model

accurately calculate the pressure on the moving wing surface. For transonic prob-

lems, the location and strength of shocks on the wing surface is also of primary

importance. Since the wing surface is moving, the fluid model must also accom-

modate a moving boundary. In Chapter 4, the fluid model will be coupled with the

finite element structural model from Chapter 3. The fluid model presented here is

a modified version of the model used in References 10,11,37–42,44–51,53–56,96.

The fluid model employs the mixed Eulerian-Lagrangian formulation of the

classical Euler equations and is discretized using a Galerkin finite element ap-

proach on an unstructured tetrahedral mesh. The mixed Eulerian-Lagrangian

formulation (also known as Arbitrary Lagrangian-Eulerian (ALE)) is used to solve

the governing equations in the presence of a moving boundary. This formulation

was developed by Hirt et al. [97] and has become common in the solution of com-
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putational fluid dynamic problems with a moving boundary [4, 9, 25, 26, 98–101].

The Euler equations have proven useful in the analysis of inviscid, transonic

flows due to their ability to accurately model the strength and location of shocks

while not suffering from the computational cost of full Navier-Stokes solutions

[4, 9, 24–26, 29, 33, 34, 57, 61, 62, 64, 65, 102–111]. Discretizing the equations with

the Galerkin finite element approach allows for accurate coupling at the fluid-

structure boundary via the Direct Eulerian-Lagrangian approach which is ex-

plained in Chapter 4. An unstructured, tetrahedral mesh is used because of its

ability to discretize the complex geometry of an aircraft wing and deform with

the wing as it moves.

2.2 Governing Equations

The fluid model is based on the integral (or weak) form of the conservation laws,

∂

∂t

∫
Ω

WdV +

∫
∂Ω

F · ndS = 0 (2.1a)

where Ω is a control volume with boundary ∂Ω moving with velocity U, n = niêi

is the outward unit normal of the control volume, êi are unit vectors, and

W =


ρ

ρu1

ρu2

ρu3

ρe


(2.1b)

F = Fj êj, Fj =


ρ(uj − Uj)

ρu1(uj − Uj)− σ1j

ρu2(uj − Uj)− σ2j

ρu3(uj − Uj)− σ3j

ρe(uj − Uj)− σijui


(2.1c)
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Here, ρ is the fluid density, u is the fluid velocity, e is the total energy per unit

mass, σij is the Cartesian stress tensor, and uj and Uj are the Cartesian compo-

nents of u and U. Equation 2.1a represents conservation of mass, conservation

of momentum in three directions, and conservation of energy. It should be noted

that body forces have been neglected.

In Equation 2.1c, if U = 0, the formulation becomes the standard Euler equa-

tions. If U = u, the equations are Lagrangian and the fluid element boundaries

move with the fluid. When U 6= u, the description is a mix of Eulerian and La-

grangian, hence “the mixed Eulerian-Lagrangian formulation.” This formulation

is particularly useful in flutter simulations where the fluid-structure boundary

moves. The fluid element velocity on the wing surface is set to the velocity of the

wing. The element velocity at the outer boundary is set to zero. The velocity for

elements between the wing and the outer boundary is determined through a mesh

motion scheme described in Section 2.5.

The pressure, p, can be eliminated by using the equation of state for a perfect

gas.

p = ρ(γ − 1)(e− 1

2
uiui) (2.2)

In the Euler fluid model, viscosity is neglected and the stress tensor can be

represented by

σij = −pδij (2.3)

This simplification yields accurate results except in the cases of shock-induced

boundary layer separation or separated flow due to high angle of attack.

The terms in the vector W can be approximated as a linear combination of
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shape functions.

W(x1, x2, x3, t) =
∑
j

Wjφj(x1, x2, x3, t) (2.4)

Here, Wj are the nodal values of W and φj are linear shape functions. They are

applied over tetrahedral elements. By substituting Equation 2.4 into the Galerkin

form of Equation 2.1a and applying the divergence theorem, we get

∂

∂t

∫
Ω

WφidV +

∫
Ω

φi∇·FdV =
∂

∂t

∫
Ω

WφidV +

∫
∂Ω

F ·nφidS−
∫
∂Ω

F ·∇φidS = 0

(2.5)

The integrals are evaluated numerically using Gaussian integration, and the

space-discretized nodal equations for the fluid domain become

d

dt

∑
j

mijWj + Qi −Di = 0 (2.6)

where i = 1, 2, . . . , N (all nodes) and the summation on j is over all nodes in the

“superelement” or control volume associated with node i (the union of all elements

that meet at node i). In Equation 2.6, mij is the consistent mass matrix, Qi is

the flux vector, and Di are dissipative fluxes of the Jameson-Mavriplis type which

are added to capture shocks and to stabilize the scheme. These were developed

in References 106 and 108 and modified in References 96 and 46.
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2.3 Integration Scheme

A multi-stage Runge-Kutta scheme is used to integrate Equation 2.6. The scheme

is shown below.

W(0) = W[n]

W(1) =
[
M
]−1
(
M(0)W(0) − α1∆t

[
Q
(
W(0)

)
−D

(
W(0)

)])
W(2) =

[
M
]−1
(
M(0)W(0) − α2∆t

[
Q
(
W(1)

)
−D

(
W(1)

)])
W(3) =

[
M
]−1
(
M(0)W(0) − α3∆t

[
Q
(
W(2)

)
−D

(
W(1)

)])
W(4) =

[
M
]−1
(
M(0)W(0) − α4∆t

[
Q
(
W(3)

)
−D

(
W(1)

)])
W(5) =

[
M
]−1
(
M(0)W(0) − α5∆t

[
Q
(
W(4)

)
−D

(
W(1)

)])
W[n+1] = W(5)

(2.7)

where αi for i = 1, 2, 3, 4, 5 are 1
4
, 1

6
, 3

8
, 1

2
, 1 respectively, and ∆t is the time

step. Superscripts in parentheses represent the Runge-Kutta stage number, and

superscripts in square brackets represent the global time step number. To save

computational time, the dissipative terms are updated only during the first two

stages.

The time step, ∆t∗i , is calculated for each node as the minimum time for a

wave to propagate from the chosen node, i to its adjacent nodes, k = 1, 2, . . . , n,

where n is the number of adjacent nodes.

∆t∗i = min(∆tik), ∀ k adjacent to node i (2.8a)

∆tik =
∆x ·∆x∣∣∣(ū− Ū) ·∆x

∣∣∣+ ā |∆x|
(2.8b)

∆x = (xk − xi)êx + (yk − yi)êy + (zk − zi)êz (2.8c)

Here, ū, Ū , and ā are the mean flow velocity, mesh velocity, and speed of

sound between nodes i and k. The local time step can be used to accelerate the
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convergence for steady calculations. In this case, each node proceeds to the final

solution at its own speed. This cannot be done for unsteady calculations, where

a global time step must be used. The global time step, ∆t∗ is calculated using

Equation 2.9a. The explicit Runge-Kutta method used here must be bounded

by the Courant-Friederich-Lewy (CFL) number, λ, in order to obtain numerical

stability (Equation 2.9b). The CFL number has a maximum value of 2
√

2 for the

four-stage scheme [105].

∆t∗ = min(∆t∗i ), ∀ nodes i (2.9a)

∆t ≤ λ∆t∗ (2.9b)

2.4 Mesh Generation by the Advancing Front Method

To solve the conservation equations from Section 2.2, they must be discretized over

the solution domain with a three-dimensional (3-D) mesh. Meshes can be classified

into two types: structured and unstructured. Structured meshes usually employ

hexahedral elements and have a high degree of regularity and smoothness. This is

beneficial, as it can result in a more efficient solution process. Structured meshes,

however, suffer from the limitation of hexahedral elements to discretize compli-

cated domains. Unstructured meshes, in contrast, excel at discretizing complex

domains as they often use tetrahedral elements [76,84,86,91,100,112,113]. Com-

putational performance and the generation of flow visualizations is complicated

by the irregular arrangement of elements, but the benefits often outweigh these

negatives. Unstructured tetrahedral meshes have been used in a large number of

CFD and aeroelasticity problems [74,76,86,89,91,92,100,106,112–114].
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A popular technique for the generation of unstructured tetrahedral meshes is

the advancing front method (AFM) [36,74,75,85–90,93–95,112]. The availability

of a well-developed computer program designed to interface with the aeroelastic

solution programs made it a good choice for mesh generation. The AFM presented

in this section is a modified version of the process used in References 10, 11, 37,

44–51, 53–56. Using a computer program where the source code is available to

be modified has advantages over the use of a packaged mesh generation program.

By modifying the source code, the meshing program can be adjusted to work as

desired. In addition, for the mesh to be compatible with the aeroelastic programs,

each node must be associated to either a specific surface or the interior space of the

coupled fluid-structure model. This is especially important on the wing surface

and wing tip.

The AFM is carried out in four stages:

1. The fluid domain is defined by a set of boundary lines and discretized using

a coarse background mesh which defines the fluid mesh size at different

locations in the domain. Note that “background mesh” which only exists

to facilitate the AFM is different from the “fluid mesh,” which refers to the

3-D mesh that discretizes the fluid domain in order to solve the conservation

equations.

2. Boundary lines are discretized with grid points that will serve as the initial

front for discretizing the two-dimensional (2-D) surfaces.

3. Two-dimensional surfaces are defined by groups of boundary lines. The

surfaces are discretized with triangles using the 2-D AFM. Surfaces that
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are curved (wing surface, wing tip, and cylindrical far-field) are mapped to

a flat surface before they are discretized. The curvature is restored after

discretization. The triangles on the 2-D surface serve as the initial front for

the 3-D AFM.

4. The 2-D surfaces are patched together to form a closed volume. The 3-D

AFM is used to discretize the volume with tetrahedral elements.

2.4.1 Mesh Domain

To simplify the mesh creation, only the upper half of the domain is discretized

by the AFM. This limits the analysis to symmetric airfoils. The full domain is

generated by creating a mirror of the upper domain about the plane at Z = 0 and

coupling the two halves together. The upper half of the mesh domain for a high

speed civil transport (HSCT) wing is shown in Figures 2.1 and 2.2. Boundary line

numbers are also shown.

The mesh domain is bounded by six surfaces: the symmetry plane (Z = 0),

the wing upper surface, the wing tip, the tunnel attach wall (Y = 0), the far

tunnel wall, and the cylindrical far-field.

2.4.2 Mesh Parameters

Each wing planform requires the creation of a unique fluid mesh. While a few

of the mesh parameters are fixed, most of them are user-definable in a series of

text-based input files. Planform shape, mesh density, and mesh resolution can be

adjusted. Generating the input files can be a tedious, error prone task. To make
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Figure 2.1: Upper half of the mesh domain with the wing on the symmetry plane.

Figure 2.2: Wing region of the upper half of the mesh domain.
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Table 2.1: Wing planform parameters.

Parameter Description

ΛL1 Inboard leading edge sweep angle

ΛT1 Inboard trailing edge sweep angle

ΛK1 Kink sweep angle

YL1 Span location of kink at leading edge

ΛL2 Outboard leading edge sweep angle

ΛT2 Outboard trailing edge sweep angle

ΛK2 Tip sweep angle

YL2 Span location of tip at leading edge

Tspan Thickness at user defined span locations relative to root

Ywall Far tunnel wall location

the process of generating a mesh as simple as possible, a series of Python [115]

scripts with a graphical user interface (GUI) were created to generate all the

required input files. The collection of these scripts is a program called dfLap

(Direct Flutter Analysis Program). Along with quicker, more reliable mesh cre-

ation, dfLap also interfaces with the steady CFD, static aeroelastic, and flutter

programs. It can also be used to generate visualizations of meshes and aeroelastic

results. The dfLap User’s Guide can be found in Appendix A.

The parameters used to define the wing planform are shown in Table 2.1 and

Figure 2.3. Note that ΛT1 is negative while all other angles are shown positive.

The wing root chord is always normalized to a length of 1.0, and the cylindrical

far-field always has a radius of 7 with a center at x = 1. The location of the far
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Figure 2.3: Wing planform parameters.

tunnel wall (Ywall) can be changed as desired to accommodate wings of different

span.

2.4.3 Background Mesh

The mesh domain is initially discretized by a coarse, tetrahedral background mesh.

Each vertex in the background mesh has a local fluid mesh size, δ, associated with

it. By linearly interpolating between the vertices, the fluid mesh size at any point

in the domain can be calculated. The background mesh for a HSCT wing is

shown in Figures 2.4, 2.5, and 2.6. In the figures, the wing is shown as a bold

red line. The background mesh must be adjusted to match each different wing

planform. This can be a tedious process, but is done automatically based on the

wing planform shape by dfLap. Figures 2.5 and 2.6 show that the background

grid extends outside of the cylindrical far-field boundary of the computational

domain. The background mesh is designed this way for simplicity. No fluid mesh
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nodes are created in the space outside of the far-field boundary.

2.4.4 Boundary Line Discretization

Boundary lines are discretized by the creation of fluid mesh grid points. The

location of the grid points can be calculated based on the δ values on the line

or the locations can be defined explicitly. For most boundary lines, defining the

points explicitly is inefficient and provides no benefit. In this case, δ values are

Figure 2.4: Background grid on the Z = 0 plane.

Figure 2.5: Background grid on the Y = 0 plane.

30



Figure 2.6: Background grid on the X − Z plane at the wing tip.

used. This method is used on all boundary lines other than 16, 17, and 18. It is

the author’s experience that for areas where boundary lines intersect at a small

angle (wing tip trailing edge), a better mesh can be created by explicitly defining

the grid points. This method is used on boundary lines 16, 17, and 18. When grid

points are explicitly defined, it is necessary that a δ value for each grid point also

be defined. The δ values must be matched to the local mesh size (the distance

between grid points). If this is not done, a poorly formed mesh will result.

To calculate grid points on a boundary line using δ values, the first step is to

use Equation 2.10. Here, As is an integer that represents the number of segments

the boundary line will be divided into, and δc(s) is a function that defines the δ

values along a boundary line with length l.

As =

∫ l

0

1

δc(s)
ds (2.10)
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After As is calculated, the location of grid points along the boundary line is

determined by solving for li in Equation 2.11.

i =

∫ li

0

1

δc(s)
ds, i = 0, · · · , As (2.11)

In Equations 2.10 and 2.11, δ values are interpolated from the background

mesh for boundary lines 1–3, 10, 11, 19, and 20. For lines on the wing leading

and trailing edge (14, 15, 21, and 22), δ values are calculated based on the defined

δ values at the leading and trailing edges of lines 17 and 18. The δ values along

lines 14, 15, 21, and 22 are scaled based on the local wing chord length. This

process allows tighter control over the mesh on the wing surface and has proven

very reliable [10, 11,48–51,53–56].

2.4.5 2-D Surface Discretization

Before a 2-D surface can be discretized by the AFM, the edges of the surface

must be defined using the previously discretized boundary lines. Six 2-D surfaces

define the outer boundary of the mesh domain: the symmetry plane, the wing

upper surface, the wing tip, the tunnel attach wall, the far tunnel wall, and the

cylindrical far-field. The boundary lines that make up each surface are listed in

Table 2.2. When the boundary lines for each surface are linked together, they

form a closed surface which serves as the initial front for the 2-D discretization.

The nodes in the initial front are numbered in the counterclockwise direction, thus

as one moves along the front from smaller to larger numbered nodes, the domain

to be discretized is always on the left-hand side.

Once the initial front has been assembled, the 2-D AFM is carried out as
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follows:

1. Select the shortest line in the front. Call this line AB. Finding this line can

be a time-consuming process. To speed up the search, a heap list based on

a binary tree data structure as presented by Löhner is used [87].

2. Calculate δ at the midpoint of AB. Call this point M . For the symmetry

plane, the tunnel attach wall, the tunnel far wall, and the cylindrical far-

field, δ is interpolated from the background mesh. For the wing surface and

wing tip, δ is interpolated from the explicitly defined values associated with

the boundary lines at the wing root (line 17). In these cases, the delta values

are scaled by the local chord length.

3. Generate a new point inside the domain as shown in Figure 2.7, where C is

Table 2.2: Aerodynamic mesh surface definitions.

ID Surface Boundary Lines

1 Symmetry plane 1, 14, 21, 16, 22, 15, 2, 11, 3, 10

2 Wing surface 14, 21, 18, 22, 15, 17

3 Wing tip 16, 18

4 Tunnel attach wall 1, 17, 2, 19

5 Tunnel far wall 3, 20

6 Cylindrical far-field 10, 19, 11, 20
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the new grid point. The value of δ1 is determined according to

δ1 =


δ if 0.55

∣∣AB∣∣ ≤ δ ≤ 2
∣∣AB∣∣

0.55
∣∣AB∣∣ if 0.55

∣∣AB∣∣ > δ

2
∣∣AB∣∣ if δ > 2

∣∣AB∣∣
(2.12)

Figure 2.7: Generation of a new point.

4. Create a list of candidate points to form a triangle with AB. Call this list

ai, i = 1, . . . , n. Any nodes in the front that lie inside a circle with radius

2.5δ with center at point C are included in ai. The list is sorted with points

closest to C first and points furthest from C last. Point C is only included

in the list if no point in ai is within a distance of 1.5δ1 from both points A

and B. If no points meet this criteria, C is placed at the top of the list of

candidate points.

5. Select the best candidate to form the new triangle. Start at the top of the

list from step 4 and check for intersection between Aai and Bai with any

other line in front. If there is no intersection, 4ABai is the new triangle. If
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there is an intersection with an existing line, try the next point in the list,

ai.

6. As new nodes and lines are added to the mesh, the front advances, and lines

that were previously in the front are left behind. This process is repeated

until no faces remain in the front.

Two dimensional meshes for all six boundary surfaces are shown in Figures

2.8–2.13.

Figure 2.8: Symmetry plane mesh.

Figure 2.9: Wing surface mesh.
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Figure 2.10: Wing tip mesh.

Figure 2.11: Tunnel attach wall mesh.

Figure 2.12: Tunnel far wall mesh.
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Figure 2.13: Cylindrical far-field mesh.

2.4.6 Curved 2-D Surfaces

Three of the surfaces in the mesh domain are not flat (wing surface, wing tip, and

cylindrical far-field). These surfaces must be mapped to a flat surface before they

are discretized. Once discretization of these surfaces is complete, the 2-D mesh is

mapped back to the original, curved shape.

The cylindrical far-field is the simplest surface to map. The surface is a cylinder

with radius 7. When mapped to 2-D, it becomes a rectangle with long edge

length 7π. Equations 2.13a–b are used to map points between the 2-D and 3-D

representations. The flat representation of the cylindrical far-field is shown in

Figure 2.14. For the curved representation, see Figure 2.13.

x2D = 7 arccos

(
1− x3D

7

)
(2.13a)

y2D = y3D (2.13b)
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Figure 2.14: Cylindrical far-field mesh mapped to two dimensions.

To map the wing surface, the leading edge coordinates do not change between

the two representations. The wing is mapped by moving the trailing edge root,

trailing edge kink, and trailing edge tip along the root line, kink line, and tip

line respectively (see Figure 2.3). The curved and flat wing surface are shown in

Figure 2.15: Wing surface mapped to two dimensions.

Figure 2.15. The curved wing is drawn in red, the flat wing is drawn in black.

Once the flat representation of the wing is discretized, it is mapped back to the

curved surface by calculating the percent chord and percent span of each point on

the flat surface and mapping it back to the same percent chord and span on the

curved surface. The out-of-plane coordinates that give the wing its thickness are
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also calculated using percent chord and percent span. At each percent span, the

wing thickness is defined by the Tspan parameter from Table 2.1. Wing thickness

at each percent chord is defined by the root chord boundary line (i.e. the airfoil

shape). Using these parameters together, the thickness of the wing is calculated

at each point.

The curved wing tip boundary is formed by two airfoil-shaped curves on per-

pendicular planes. Line 16 lies on the X − Y plane, while line 18 is in a perpen-

dicular plane. The tip surface between these lines is similar to a quarter cylinder,

but it has a varying radius. Mapping to the flat surface results in the shape shown

in Figure 2.16. Points on the two surfaces are mapped according to the relation

x3D = x2D (2.14a)

y3D = T (x2D) sin

(
π

4

(
1− y2D

T (x2D)

))
(2.14b)

z3D = T (x2D) cos

(
π

4

(
1− y2D

T (x2D)

))
(2.14c)

where T (x2D) is the distance between the boundary lines and the midline at x2D.

Figure 2.16: Wing tip mapped to two dimensions.

2.4.7 Wing Tip Discretization

The 2-D discretization of the wing tip has been a difficult problem throughout the

life of the meshing code. Historically, it has been a common occurrence for the
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code to fail while attempting to create a mesh on the wing tip. Different solutions

have been attempted, but often, the user was forced to go into the source code

and alter the logic until a usable mesh was generated. To avoid issues like this, the

code has been updated to read in a user provided tip mesh which can be mapped

to any airfoil shape and thickness. This tip mesh can be generated automatically

in dfLap for a range of mesh densities. The dfLap method generates a mesh using

a repeating pattern and has proven very reliable. Using the AFM to discretize the

wing tip is still an option, but it is not recommended. Details of the tip meshing

process can be found in the dfLap User’s Guide in Appendix A.

2.4.8 The 3-D Mesh

Once the 2-D surfaces have been discretized, they are assembled as shown in Figure

2.17. Note that the tunnel far wall has been removed to allow for easier viewing.

At this point, the 3-D AFM is used to discretize the volume. The discretization

procedure employed in this work is the same as that presented by Hwang [46].

The process is similar to that of the 2-D AFM, but is more complicated due

to the additional dimension being considered. Once the half-domain has been

discretized, a mirror of it is created and attached to form the lower half of the

domain.

2.5 Mesh Motion

During the aeroelastic simulations, the wing deforms, and the aerodynamic mesh

must move to accommodate the changes in geometry. The mesh is fixed to the
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Figure 2.17: 2-D mesh.

wing, tunnel wall, and far-field boundaries, and a dynamic mesh motion algorithm

is used to calculate the position of the interior nodes. This mesh motion algorithm

treats each edge in the mesh as a spring. The stiffness of the spring is inversely

proportional to the square of the length of the edge. Jacobi iterations are used to

calculate the equilibrium of the system at each Runge-Kutta stage. Usually three

iterations are sufficient for convergence. The algorithm was originally proposed

by Batina [36, 113] and was implemented in the meshing code by Hwang [46]. It

has since been updated to the nonlinear spring analogy [49] that was designed to

handle larger wing deformation.

The mesh motion algorithm works with the Runge-Kutta integration scheme

from Section 2.3. For each Runge-Kutta stage, Jacobi iterations are used to
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calculate the equilibrium state of the spring system. Steps one and two below

are completed at only the first Runge-Kutta stage of each global time step, while

steps three through seven are completed at every stage of every time step.

1. Calculate the spring stiffness for a given edge, ij by

km =
1(

(x
[n]
j − x

[n]
i

)2

+
(

(y
[n]
j − y

[n]
i

)2

+
(

(z
[n]
j − z

[n]
i

)2 (2.15)

where superscripts in square brackets represent the global time step number.

2. Predict the displacements of each interior node, i, by extrapolating the

displacements from the previous two iterations as shown in Equation 2.16.

∀i interior: δPxi = 2δ[n]
xi
− δ[n−1]

xi
; δPyi = 2δ[n]

yi
− δ[n−1]

yi
; δPzi = 2δ[n]

zi
− δ[n−1]

zi

(2.16)

3. Multiply the predicted displacements of interior nodes from step 2 by the

Runge-Kutta coefficients from Equation 2.7.

∀i interior: δ(k)
xi

= αkδ
P
xi

; δ(k)
yi

= αkδ
P
yi

; δ(k)
zi

= αkδ
P
zi

(2.17)

Here, superscripts in parentheses, represent the Runge-Kutta stage number.

4. Get the location of the nodes on the wing surface, x
(k)
i , y

(k)
i , and z

(k)
i , for

stage (k) from the aeroelastic code. Use these to calculate the displacements

for each node on the wing.

∀i on wing surface: δ(k)
xi

= x
(k)
i − x

[n]
i ; δ(k)

yi
= y

(k)
i − y

[n]
i ; δ(k)

zi
= z

(k)
i − z

[n]
i

(2.18)
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5. Set the displacements for nodes on the tunnel walls and cylindrical far-field

to 0.

∀i on tunnel wall: δ(k)
xi

= 0; δ(k)
yi

= 0; δ(k)
zi

= 0 (2.19)

6. Use Jacobi iterations to solve the static equilibrium of the spring system.

Usually two or three iterations are required.

∀i interior: δ(k)
xi

=

∑
kmδ

(k)
xi∑

km
; δ(k)

yi
=

∑
kmδ

(k)
yi∑

km
; δ(k)

zi
=

∑
kmδ

(k)
zi∑

km
(2.20)

7. Update the locations of the nodes.

∀i interior: x
(k)
i = x

[n]
i + δ(k)

xi
; y

(k)
i = y

[n]
i + δ(k)

yi
; z

(k)
i = z

[n]
i + δ(k)

zi
(2.21)

After the calculations are made for the fourth Runge-Kutta stage, the nodal

locations for the current time step are updated.

∀i interior: x
[n+1]
i = x

(4)
i ; y

[n+1]
i = y

(4)
i ; z

[n+1]
i = z

(4)
i (2.22)

2.6 Boundary Conditions

The fluid model described in the previous sections interacts with the fixed tunnel

walls and the flexible wing structure at the fluid-structure boundary. Thus, an

appropriate description of the boundary conditions is necessary.

On the tunnel walls, the mesh velocity is zero. The boundary condition for

the walls is

u · n = 0 (2.23)

where u is the fluid velocity and n is the normal vector of the wall surface.
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On the wing surface, the mesh is moving with the wing, thus the boundary

condition for the wing is

(u−U) · n = 0 (2.24)

where U is the mesh velocity.

On the far-field boundary, non-reflecting boundary conditions are used to min-

imize the reflection of outgoing disturbances [106]. By assuming that the flow is

locally one-dimensional, the incoming Riemann invariant, R∞, can be calculated

from the freestream flow (Equation 2.25a), and the outgoing invariant, Ri, can be

determined by extrapolation from the interior domain (Equation 2.25b).

R∞ = u∞ · n−
2a∞
γ − 1

(2.25a)

Ri = ui · n−
2ai
γ − 1

(2.25b)

Because the mesh velocity at the far-field boundary is zero, the normal velocity

of the flow and the speed of sound can be calculated as

u · n =
1

2
(Ri +R∞) (2.26a)

a =
γ − 1

4
(Ri +R∞) (2.26b)

The tangential velocity and the entropy are also necessary to provide a com-

plete definition of the flow at the far field boundary. For an inflow boundary, the

tangential velocity and the entropy are set equal to their free stream values. For

an outflow boundary, they are extrapolated from the interior.
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CHAPTER 3

Nonlinear Structural Model

3.1 Introduction

In this chapter, the nonlinear structural model of the wing is presented. To

accurately model the response of a real wing, a geometrically nonlinear three-

dimensional model is created that accounts for large displacements and changes

in stiffness due to deformation. In Chapter 4, a finite element (FE) representation

of the wing structural model is coupled to the fluid model from Chapter 2. The

wing model presented here is a modified version of the model used in References

11,49–51,53–56.

The model is based on a type of aeroelastic wing that is often used in wind

tunnel tests [72, 73, 116]. The structural part of the wing consists of a thin alu-

minum alloy plate whose planform matches that of the wing. The plate is covered

by balsa wood or flexible plastic foam to create the desired airfoil shape with-

out adding mass or stiffness. Figure 3.1 shows a cutaway view of an example

aeroelastic wing.

The wing is modeled using triangular finite elements with five degrees-of-

freedom at each node (three translation and two out-of-plane rotation). Only the

in-plane rotation (drilling) degree of freedom is excluded. Large displacements are
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Figure 3.1: Aeroelastic wing cutaway courtesy of Reference 116.

accounted for by using element attached coordinate systems via a mixed Eulerian-

Lagrangian formulation. Details can be found in Section 3.2. Changes in plate

stiffness due to deformation are included by way of a stress-stiffening matrix based

on von Karman plate theory. Details can be found in Section 3.3.

3.2 Large Deformation and the Mixed Eulerian-Lagran-

gian Formulation

In flutter problems, the deformation of the flexible wing structure is often large

enough to affect the direction of both aerodynamic and internal elastic restoring

forces. The deformation does not necessarily result in large strains, but instead, is

mainly composed of rigid body motions. These large deformations can be repre-

sented in simulations as geometric nonlinearity, and have been modeled accurately

in previous studies using an updated element coordinate system approach.

The updated coordinate system approach used in this work is identified as the

mixed Eulerian-Lagrangian formulation since it uses a single global, fixed coordi-

nate system which is Eulerian along with multiple element-attached, local, moving

coordinate systems which are Lagrangian. The deformation of each element in its

local coordinate system is Eulerian. In this sense, the Eulerian and Lagrangian

descriptions of the deformation are truly “mixed.” Though sometimes identified
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by different names, similar formulations have been used by others working in

structural mechanics, structural dynamics, and aeroelasticity [64,65,117–121].

A triangular element is shown in Figure 3.2 along with the global and local

coordinate systems. Each structural finite element has its own local coordinate

system that moves with it throughout the simulation. The global coordinate

system is defined by the unprimed axes x, y, and z while the local coordinate

systems are defined by the primed axes x′, y′, and z′.

Figure 3.2: Eulerian and Lagrangian coordinate systems.

By carefully selecting the orientation of the local coordinate system relative to

its finite element, local displacement computations can be simplified. As shown in

Figure 3.2, the nodes of the element lie in the x′ − y′ plane. A unit vector in the

z′ direction, expressed in the global coordinate system, can be calculated using
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Equation 3.1.

êz′ =
R21 ×R31

|R21 ×R31|
(3.1)

Here, R21 and R31 are vectors in the x′ − y′ plane expressed in the global coor-

dinate system.

R21 = (x2 − x1)êx + (y2 − y1)êy + (z2 − z1)êz (3.2a)

R31 = (x3 − x1)êx + (y3 − y1)êy + (z3 − z1)êz (3.2b)

The x′ axis is chosen to be aligned on the finite element edge defined by nodes 1

and 2. The unit vector in the x′ direction can be calculated using Equation 3.3.

êx′ =
R21

|R21|
(3.3)

Once the x′ and z′ axes have been defined, the y′ axis can be calculated as the

cross product of the other two unit vectors.

êy′ = êz′ × êx′ (3.4)

Any vector can be expressed in either the local or the global coordinate system.

The relationship between the coordinate systems is defined by the orthogonal

transformation defined in Equations 3.5a and 3.5b,

qL =
[
e
]
qG (3.5a)

[
e
]

=


(ex′)1 (ex′)2 (ex′)3

(ey′)1 (ey′)2 (ey′)3

(ez′)1 (ez′)2 (ez′)3

 (3.5b)

where qL and qG are vectors expressed in local and global coordinates, and
[
e
]

is

an orthogonal direction cosine matrix that is constructed from the components of

the local unit vectors êx′ , êy′ , and êz′ expressed in the global coordinate system.
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Because of the careful selection of the local coordinate system orientation,

several local degrees of freedom are removed from the finite element formulation.

The full set of local in-plane degrees of freedom is represented by

q′uv
T

=

{
u′1 v′1 u′2 v′2 u′3 v′3

}
(3.6a)

As shown in Figure 3.3, q′uv reduces to

q′uv
T

=

{
0 0 u′2 0 u′3 v′3

}
(3.6b)

Figure 3.3: Local in-plane deformation.

Similarly, the local out-of-plane degrees of freedom shown in Figure 3.4 are

reduced from

q′w
T

=

{
w′1 βx′1 βy′1 w′2 βx′2 βy′2 w′3 βx′3 βy′3

}
(3.7a)

to

q′w
T

=

{
0 βx′1 βy′1 0 βx′2 βy′2 0 βx′3 βy′3

}
(3.7b)

It is important to note that because of the mixed Eulerian-Lagrangian formu-

lation, local deformations are not affected by element rigid body motion. The

out-of-plane displacement degrees of freedom, w′1, w′2, and w′3, are completely
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Figure 3.4: Local out-of-plane deformation.

eliminated. This allows for correct calculation of the local element elastic forces

including stress-stiffening. Without the removal of the rigid body motion, stiffen-

ing due to coupling between the in-plane and out-of-plane deformation would be

overestimated, leading to an overly stiff structural model [49]. Figure 3.5 shows

the deformation kinematics for the classical formulation, where rigid body motion

contributes to elastic deformation, and the mixed Eulerian-Lagrangian formula-

tion, where rigid body motion is not included in the elastic deformation. It should

also be noted that the deformations shown in Figures 3.2, 3.3, and 3.4 are exag-

gerated. The nonlinearity in the structural model is limited to elastic material

behavior.

Calculation of the in-plane displacements is straightforward and given by

Equations 3.8a-c where coordinates with a d subscript represent the deformed

nodal locations.

u′2 = (x′2)d − x′2 u′3 = (x′3)d − x′3 v′3 = (y′3)d − y′3 (3.8a-c)
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Classical Displacement Kinematics Mixed Eulerian-Lagrangian Kinematics

Figure 3.5: Classical and mixed Eulerian-Lagrangian kinematics.

The calculation of the local out-of-plane rotational deformations in q′w can be

determined using the finite rotation relation

nt
n+1

d = cos (∆φ) nt
n

d + (1− cos (∆φ))
(
n · ntnd

)
n + sin (∆φ)

(
n× nt

n

d

)
(3.9a)

∆φ =

√
(∆βx)

2 + (∆βy)
2 + (∆βz)

2 (3.9b)

n = (−∆βyi + ∆βxj + ∆βzk) (3.9c)

where ∆φ is the magnitude of the rotation, n is the normalized rotation vector,

and nt
n

d and nt
n+1

d are the deformed unit vectors at times tn and tn+1 expressed in

the global coordinate system. Local rotational deformations can be calculated in

terms of the deformed unit vector
(
nt

n

d

)L
expressed in local coordinates using the

relationships in Equations 3.10a and 3.10b.

βx′ =
(
nt

n

d

)L
x

cos−1
((

nt
n

d

)L
z

)
√(

(nt
n

d )Lx

)2

+
(

(nt
n

d )Ly

)2
(3.10a)
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βy′ =
(
nt

n

d

)L
y

cos−1
((

nt
n

d

)L
z

)
√(

(nt
n

d )Lx

)2

+
(

(nt
n

d )Ly

)2
(3.10b)

3.3 Components of the Structural Model

The deformation of a wing due to flutter is often large enough to alter the stiffness

of the structure. When the in-plane stresses become large enough, the out-of-plane

bending stiffness increases. This nonlinear stress-stiffening effect has been mod-

eled accurately in many problems of structural mechanics and dynamics using

variations of the von Karman plate theory, which accounts for changes in stiff-

ness due to in-plane forces generated by out-of-plane deflection. As mentioned in

Section 3.2, the classical von Karman formulation tends to overestimate the stiff-

ening when large deformations occur. This problem is removed when deformation

is calculated in an element attached, Lagrangian coordinate system as is done in

the present work.

The nonlinear structural model uses three finite elements to model in-plane,

out-of-plane, and nonlinear stress-stiffening behavior as shown in Figure 3.6. This

finite element formulation has been used in numerous computational flutter simu-

lations and has shown good correlation with experimental results [11,49–51,53–56].

The three finite elements used in the formulation are

1. A discrete shear triangle (DST) originally developed in Reference 122 and

extended to dynamics problems in Reference 123 is used to model the out-

of-plane bending and transverse shear behavior. This is a three node, nine

degree of freedom triangular plate bending element with proper rank that is
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valid for thin to thick plates. The formulation, based on Mindlin-Reissner

plate theory, is free of shear locking and coincides with the discrete Kirchhoff

triangular element if transverse shear deformation becomes negligible.

2. A constant strain triangle (CST) [124] is used to model the in-plane behavior.

3. A stress-stiffening matrix based on von Karman plate theory is used to model

the in-plane and out-of-plane coupling effects. It assumes that nonlinear

strains due to in-plane displacement can be neglected because they are small

relative to nonlinear strains due to transverse displacement gradients. These

assumptions limit the use of the element to small deformations. This is not

a problem when the mixed Eulerian-Lagrangian formulation is employed

because deformations in the local, element fixed coordinate system do not

include rigid body motion, as detailed in Section 3.2 .

Figure 3.6: Components of the nonlinear structural finite element.

The total strain energy of an element, U e
total, can be calculated as the sum

of the strain energies due to membrane stretching of the CST, Um, out-of-plane

bending, Ub, and shear, Us, from the DST, nonlinear coupling of in-plane and

out-of-plane motions, UN1, and the nonlinear coupling effect of slope due to large
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deflections, UN2.

U e
total = Um + Ub + Us + UN1 + UN2 (3.11)

The individual strain energy contributions from Equation 3.11 are given in Equa-

tions 3.12a–3.12e,

Um =
1

2

∫
A

{εm}T [Dm]{εm}dA (3.12a)

Ub =
1

2

∫
A

{κ}T [Db]{κ}dA (3.12b)

Us =
1

2

∫
A

{γ}T [Ds]{γ}dA (3.12c)

UN1 =

∫
A

{εm}T [Dm]{εn}dA (3.12d)

UN2 =

∫
A

{εn}T [Dm]{εn}dA (3.12e)

where Um, Ub, and Us are quadratic-order, UN1 is cubic-order, and UN2 is quartic-

order. The constitutive relations are given by Equations 3.13a-d. In Equation

3.13d, k is the shear correction factor, which is 5
6

for isotropic plates.

[D] =
E

1− ν2

1 ν 0

ν 1 0

0 0 1−ν
2

 (3.13a)

[Dm] = h[D] (3.13b)

[Db] =
h3

12
[D] (3.13c)

[Ds] = khG

1 0
0 1

 (3.13d)

The strain displacement relationships are defined in Equations 3.14a-d. Note

the nonlinear bending terms in 3.14c which contribute to the cubic-order and

quartic-order strain energy expressions in Equations 3.12d and 3.12e respectively.

{εm}T =

{
∂u′

∂x′
∂v′

∂y′
∂v′

∂x′
+ ∂u′

∂y′

}
(3.14a)
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{γ}T =

{
∂w′

∂x′
+ βx′

∂w′

∂y′
+ βy′

}
(3.14b)

{εn}T =

{
1
2
β2
x′

1
2
β2
y′ βx′βy′

}
(3.14c)

{κ}T =

{
∂βx′
∂x′

∂βy′

∂y′
∂βx′
∂y′

+
∂βy′

∂x′

}
(3.14d)

The displacements are defined as follows:

u′ = u′0(x′, y′, t) + z′βx′(x
′, y′, t) (3.15a)

v′ = v′0(x′, y′, t) + z′βy′(x
′, y′, t) (3.15b)

w′ = w′(x′, y′, t) (3.15c)

The principle of stationary potential energy can be used with the total strain

energy from Equation 3.11 to calculate the complete element stiffness matrix. The

stiffness matrix is organized as shown in Figure 3.7.

Figure 3.7: Partitions of an element stiffness matrix.

Each structural finite element has two element stiffness matrices associated

with it; these are the tangent stiffness matrix, [Kt], and the secant stiffness ma-

trix, [Ks]. The tangent stiffness matrix is used in the calculation of the incremental

deformation in the global system. The secant stiffness matrix is used to calcu-

late element elastic forces in the local coordinate system. These forces are then
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transformed to the global coordinate system to form the global elastic force vec-

tor. Details of the use of the tangent and secant stiffness matrices are included

in Chapter 4. For details on the derivation of these matrices, see Seber [51] and

Rajasekaran and Murray [125].

3.4 Finite Element Model of the Wing

The nonlinear triangular plate finite elements described in Section 3.3 are assem-

bled to form the full structural wing model as shown in Figure 3.8c. The model

is fully clamped along the edge closest to the wing root, with displacements and

rotations set to zero. The structural model root does not necessarily correspond

to the aerodynamic wing root. By moving the structural root outboard, the por-

tion of the wing inboard of the structural root will not deform during simulations,

making the structure rigid in this area. This is an important improvement over

previous versions of the code, as the inboard sections of some cranked wings are

much stiffer than the outboard portions. Assigning a high stiffness to these areas

can produce very high natural frequencies which can slow down the simulation or

generate high frequency oscillations that can corrupt the solution.

The discretization of the wing is controlled by two vectors: spanwise element

edge locations and chordwise element edge locations. Previous versions of the

code split the wing into evenly spaced regions to create the finite element model.

By using the vectors, the wing can be discretized as desired with more elements

concentrated in some areas than others. From the spanwise and chordwise vectors,

the following parameters, which describe the discretization, are defined:
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Figure 3.8: The (a) thickness distribution, (b) density distribution, and (c) finite

element discretization of the NEXST-2 wing structural model.

1. Nxe is the number of chordwise elements. This number is the same for both

the inboard and outboard sections of the wing.

2. Nye1 is the number of spanwise elements on the inboard section of the wing.

3. Nye2 is the number of spanwise elements on the outboard section of the wing.

The total number of finite elements in the wing model is 2×Nxe× (Nye1 +Nye2).

For the wing shown in Figure 3.8c, Nxe = 7, Nye1 = 3, and Nye2 = 4. The total

number of elements is 98. The planform of the structural wing model is defined by

the fluid mesh parameters discussed in Chapter 2. This ensures that the structural

and fluid models match each other and that no gaps exist between the two. The

wing discretization parameters are set in the aeroelastic program input files and

can be changed as needed by the analyst. All the parameters can easily be set

using dfLap (Appendix A).

The discretization occurs along lines of constant percent chord and constant
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percent span. This allows an even distribution of elements in the presence of kink

and/or tip sweep (when the kink/tip line(s) are not parallel to the root). The

percent chord/span calculations on the inboard and outboard sections of the wing

are kept independent of each other to simplify the formulation.

The mass and stiffness distribution over the wing can be controlled by adjusting

the plate thickness and plate density distribution. Both thickness and density can

be defined at any point on the wing. The properties must be defined at the

leading and trailing edge root, kink, and tip at a minimum. Bilinear interpolation

is used to determine the values between the defined locations. An example of the

thickness and mass distribution for the NEXST-2 SST wing model is shown in

Figure 3.8a-b. For details on how these parameters are input to the code, see the

dfLap User’s Guide (Appendix A).
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CHAPTER 4

Fluid-Structure Coupling by the Direct

Eulerian-Lagrangian Approach

4.1 Introduction

In this chapter, the method used to couple the computational fluid dynamic model

from Chapter 2 to the the structural dynamic model from Chapter 3 is presented.

In computational aeroelasticity, a great deal of attention must be paid to the

structural dynamic and fluid dynamic models, as their accuracy is of the utmost

importance. The coupling of the two models is often treated as if its importance

was secondary. This is problematic, as it has been shown that the accuracy of the

coupling between the fluid and the structure can have a large effect on the solution

[9–11]. It is at the fluid-structure boundary where energy is extracted from the flow

and imparted to the wing, and, at the most basic level, energy transfer between the

fluid and the structure is the process that determines the response of the system.

Accurate modeling of the energy transfer is dependent on the coupling of the fluid

and structural systems, and may be the most important numerical consideration

in any aeroelastic simulation. The coupling approach presented here is a modified

version of that used in References 4,9–11,37–42,44–51,53–56,126.
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Many aeroelastic codes employ classical methods that involve using separate

codes to model the fluid and the structure. The two independent solutions are

then coupled through the kinematic boundary conditions at the fluid-structure

boundary. There are two problems with this approach: time consistency and

boundary location accuracy.

To accurately calculate the energy exchange between the fluid and the struc-

ture, solutions of the two systems must move forward together in time. Time

consistency of the classical methods is complicated by the fact that enforcement

of the boundary conditions requires knowledge of the position and velocity of

the fluid-structure boundary, but the position and velocity of the boundary are

not known until the boundary conditions are used to calculate the surface pres-

sures and apply forces to the structure for the current time step. To manage the

problem, approximations are used. Usually the pressure from the previous time

step is extrapolated forward in time and applied to the system. In 1991, Bendik-

sen showed the errors that approximations like this can cause [9]. Despite this,

classical methods remain popular.

In addition to time consistency, the location of the moving fluid-structure

boundary must be modeled accurately if the energy exchange between the fluid

and the structure is to be calculated correctly. In classical aeroelastic simulations,

the location of the boundary is often estimated using interpolation functions. The

danger here is that the estimated boundary may not be close enough to the true

boundary to calculate accurate pressures, forces (both in magnitude and direc-

tion), or shock locations. Errors like this can lead to spurious energy generation

at the fluid-structure boundary and a violation of the conservation laws.
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4.2 Direct Eulerian-Lagrangian Coupling

The Direct Eulerian-Lagrangian method of coupling the fluid and structural mod-

els has proven to be an accurate way of modeling the energy exchange across the

fluid-structure boundary [4,9–11,37–42,44–51,53–56,126]. To avoid errors involved

with the location of the boundary, the structural finite element shape functions,

which are used to calculate the deformation of the wing structure, are also used

to define the location of the boundary. This results in the fluid-structure bound-

ary being consistent with the finite element modeling assumptions. The time

consistency problem is solved by modeling the fluid-structure system as a sin-

gle continuum dynamics problem at the element level. This is accomplished by

formulating the equations of motion in mixed Eulerian-Lagrangian coordinates

and switching from an Eulerian to a Lagrangian description at the fluid-structure

boundary. When this is done, the boundary conditions are satisfied as the con-

servation laws are integrated, and no time-lag is introduced to the system. The

Direct Eulerian-Lagrangian method is depicted in Figure 4.1.

Figure 4.1: The Direct Eulerian-Lagrangian approach to fluid-structure coupling.
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4.2.1 Boundary Location

Representing the location of the fluid-structure boundary accurately should be a

primary goal of any coupling method. In the Direct Eulerian-Lagrangian method,

the finite element shape functions are used to define the boundary. When this

is done, consistency with the finite element modeling assumptions is maintained,

and the conservation laws are not violated. When spline or interpolation functions

are used to represent the boundary, consistency with the finite element modeling

assumptions can be broken which can lead to a violation of the conservation laws.

Before the simulation is started, each fluid mesh node on the wing surface is

pinned to a structural element with a fixed offset, ∆z, with respect to the wing

mid-surface. The offset is defined by the thickness of the wing. The location of

the fluid node inside the structural finite element is defined in area coordinates as

depicted in Figure 4.2. The area coordinates for each node do not change during

the simulation, even when the element deforms under loading.

When the structural finite elements deform, the finite element shape functions

are used with the area coordinates to calculate the exact deformation at each

aerodynamic node. The new location of the aerodynamic nodes are then calculated

as illustrated in Figures 4.3 and 4.4. The new location of the nodes is calculated in

the structural element’s local coordinate system. The coordinate transformation

given in Equations 3.5a and 3.5b are used to calculate the location in the global

coordinate system.
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Figure 4.2: Aerodynamic node coupled to structural finite element with location

defined by area coordinates.

4.2.2 Time Consistency

It is important in fluid-structure interaction simulations that the fluid and struc-

tural models be integrated in time consistently. Time lag between the two systems

can result in convergence to an incorrect solution [10,11].

In Equation 2.24 from Chapter 2, the tangent flow boundary condition for

the fluid-structure boundary was established. By applying this condition directly

to the conservation equations for the fluid, and by calculating the mesh velocity

directly from the finite element shape functions, time lag is removed from the

solution process. In classical coupling schemes, the boundary location must be

estimated at the current time step based on motion from previous steps. In

the Direct Eulerian-Lagrangian method, this estimation is not necessary, as the
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Figure 4.3: Two-dimensional representation of fluid-structure boundary deforma-

tion.

location of the boundary is solved for exactly at the current time step as part of

the conservation equations.

4.2.3 Consistent Load Vector

For aeroelastic problems where large deformation is present, the direction of forces

acting on a structure can be altered by the deformation. These kinds of forces are

often referred to as follower forces. In the Direct Eulerian-Lagrangian method,

follower forces are modeled through a consistent load vector approach, as shown

in Figure 4.5.

To apply the aerodynamic loads as follower forces, pressures are calculated

on the deformed fluid-structure boundary in the local structural finite element

coordinate system and then transformed to forces in the global system. Before

the simulation is started, Gaussian quadrature points on each structural element

are assigned to a fluid element on the boundary. The location of the quadrature
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Figure 4.4: Three-dimensional representation of fluid-structure boundary defor-

mation.

point in the fluid element is represented in area coordinates (Figure 4.6). These

coordinates do not change during the analysis. At each step in the analysis, the

pressure is calculated in the local coordinate system at the quadrature points by

linear interpolation of the nodal pressures from the appropriate fluid elements.

The pressure is transformed to global coordinates using Equations 3.5a and 3.5b.

4.2.4 Conservation of Energy

A discussion of aeroelastic fluid-structure coupling would not be complete with-

out mentioning conservation of energy across the fluid-structure boundary. Both

the fluid and structural mathematical models are based on the principle that en-
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Figure 4.5: Consistent load vector calculation.

ergy is conserved. However, when these models are coupled together incorrectly,

the conservation laws can be violated. Bendiksen et al. have shown that the

Direct Eulerian-Lagrangian coupling method accurately satisfies the principle of

conservation of energy by comparing the kinetic and strain energy in the struc-

ture to the work done by the fluid on the structure throughout the simulation

time [4,9–11,37,49,50]. If energy is conserved (in the absence of structural damp-

ing), the difference between the energy and the work will be constant and equal

to the initial energy in the structure. If an aeroelastic code cannot show that the

kinetic and strain energy in the wing are only generated by the work that the fluid

does on the structure, the validity of the code should be questioned. Figure 4.7

shows the conservation of energy during limit cycle flutter of the NEXST-2 wing.

Additional details on this wing and the response are included in Chapter 6.
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Figure 4.6: Gaussian quadrature points and fluid elements.

4.3 Solution Procedure

The solution procedure for the static and flutter aeroelastic solutions are dis-

cussed in this section. The static solution uses the flow conditions from a steady

aerodynamic solution as initial conditions. The flutter solution uses the flow con-

ditions, wing deformation, and structural state from the static solution as initial

conditions. Before the time integration of either solution is started, the structural

model is built, and the assignment of fluid nodes to structural elements (Figure

4.2) and structural Gaussian force application points to fluid elements (Figure

4.5) is completed.
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Figure 4.7: Conservation of energy during flutter simulation of the NEXST-2

wing.

4.3.1 Static Aeroelastic Solution Procedure

The static aeroelastic solution uses a four-stage explicit Runge-Kutta scheme for

the fluid solution and Newton-Raphson iterations for the structure as follows:

1. Calculate the global tangent stiffness matrix, [Kt], for the structure.

2. Calculate the global aerodynamic load vector, {Faero}.

3. Calculate the linear displacements of the structure, {qt} using the tangent

stiffness matrix and aerodynamic load vector.

[Kt] {qt} = {Faero} (4.1)

4. Calculate the updated system geometry based on the linear displacements.
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5. Calculate the local element coordinate systems and deformation.

6. Calculate the local element elastic force vectors by multiplying the element

secant stiffness matrices, [Ks], by the local element deformation vectors from

Equations 3.6b and 3.7b.

7. Transform the local element elastic force vectors into the global elastic force

vector using the transformation from Equations 3.5a and 3.5b.

8. Calculate the force unbalance that will drive the structure to equilibrium by

taking the difference between the global aerodynamic load vector and the

global elastic force vector.

9. Calculate the incremental displacements using the global tangent stiffness

matrix and the force unbalance.

10. Add the incremental displacements to the current shape of the structure to

get the new coordinate of the structural nodes.

11. Update the deformed nodal vectors with the incremental rotations.

12. Calculate the updated local structural coordinates systems.

13. Calculate the new location of the fluid nodes on the wing using the local

structural coordinate systems and the incremental rotations.

14. Calculate the position of the remainder of the fluid nodes using the mesh

motion algorithm.

15. If this is the first or second stage of the Runge-Kutta scheme, calculate the

adaptive dissipation vector.
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16. Solve the right hand side of the Runge-Kutta equation (2.7) for the appro-

priate stage.

17. Update the conserved quantities of the flow (Equation 2.1b).

Each of these steps is repeated for each stage of the Runge-Kutta scheme. All

four stages of the Runge-Kutta scheme are run for each time step.

4.3.2 Dynamic Aeroelastic Solution Procedure

The dynamic aeroelastic solution uses a five-stage explicit Runge-Kutta scheme

to solve the second order differential equation,

[M ]{q̈t}+ [K]{qt} = {F} (4.2)

which describes the motion of linear structures in the absence of damping. Here,

[M ] and [K] are the structural system global mass and stiffness matrices, {qt}

is the global displacement vector, {F} is the global external force vector, and

overdots represent derivatives with respect to time. All the terms vary through

time with the exception of the mass matrix [M ]. Bathe et al. showed that this

matrix does not change as a function of time, so it only needs to be calculated

once at the onset of the simulation [117]. The external forces on the system are

a combination of aerodynamic forces and forces due to damping which can be

viscous or hysteretic.

The second term in Equation 4.2 represents the global elastic force vector,

{Felastic} mentioned in step 7 from Section 4.3.1. By moving this term to the

right hand side, the equation becomes

[M ]{q̈t} = {F} − {Felastic} (4.3)
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The solution of Equation 4.3 proceeds as follows:

1. The current state of the structure (acceleration, velocity, displacement) ei-

ther comes from the previous time step/Runge-Kutta stage or is defined as

an initial condition.

2. Calculate the global aerodynamic load vector, {Faero}.

3. Calculate the global element elastic force vectors as was done in steps 6 and

7 for the static solution.

4. Calculate any damping based on the current velocity and displacement of

the system. Include it as a component of the external applied forces, {F}.

5. Solve Equation 4.3 for the accelerations by multiplying the inverted mass

matrix by the terms on the right hand side of the equation.

6. Calculate the appropriate velocities and displacements by integrating the

accelerations.

7. Update the deformed nodal vectors with the incremental rotations.

8. Calculate the updated local structural coordinates systems.

9. Calculate the new location of the fluid nodes on the wing using the local

structural coordinate systems and the incremental rotations.

10. Calculate the position of the remainder of the fluid nodes using the mesh

motion algorithm.

11. If this is the first or second stage of the Runge-Kutta scheme, calculate the

adaptive dissipation vector.
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12. Solve the right hand side of the Runge-Kutta equation (2.7) for the appro-

priate stage.

13. Update the conserved quantities of the flow (Equation 2.1b).

Each of these steps is repeated for each stage of the Runge-Kutta scheme. All five

stages of the Runge-Kutta scheme are run for each time step.
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CHAPTER 5

Aeroelastic Model Validation

5.1 Introduction

The present research is a continuation of the work of Hwang [37,44–46], Seber [51],

and Bendiksen [10, 11, 47–50, 53–56, 126], and the computer codes used here are

modified versions of their codes. To establish confidence in the present work,

comparisons are made with published results. Structural dynamic free vibration,

steady CFD, static aeroelastic, and transonic flutter results are presented for the

ONERA M6 wing. This wing is often used in the validation of CFD and aeroelastic

codes due to a well documented database of wind tunnel test results [43].

Free vibration results are discussed in Section 5.2 and consist of normal modes

and fundamental frequencies of the linear structural model. Section 5.3 contains

comparisons of steady CFD pressure and Mach distributions. Static aeroelastic

results are compared in Section 5.4. Dynamic aeroelastic results can be found in

Section 5.5. The current set of results correlate well with both experimental and

computational published studies, thus validating the computer codes used in the

present work.
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5.2 Linear Free Vibration Results

The structural model of the wing consists of a thin aluminum alloy plate whose

planform matches that of the wing. The plate is covered by balsa wood or flexible

plastic foam to create the desired airfoil shape without adding mass or stiffness.

The plate is modeled using triangular finite elements. Details on the finite element

formulation are given in Chapter 3.

The structural model is a modified version of that used by Bendiksen, Hwang,

and Seber [10, 11, 37, 44–51, 53–56, 126] and should be able to reproduce results

from their research. In this study, the linear free vibration properties (natural

frequencies and normal modes) of multiple models of the ONERA M6 wing are

compared to published results. The wing is modeled as was done in Reference 47

with a 4x4x2 structural mesh (Figure 5.1) and the following material properties:

Density, ρp = 2700 kg/m3

Young’s Modulus, E = 7.102x1010 Pa

Poisson’s Ratio, ν = 0.32

Figure 5.1: Structural finite element mesh for the ONERA M6 wing.
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The thickness profiles of the models are shown in Figure 5.2. Wing A has a

uniform plate thickness of 0.025 m. Wing B also has a uniform thickness, but it

is reduced to 0.018 m. The thickness of wing S is 0.018 m on the inboard 50%

span and 0.01575 m on the outboard 50% span. Wing T has a tapered thickness,

such that the plate thickness to chord ratio (h/c) is always 0.018. The root chord

of the wing is 1.0 m.

(m
)

Figure 5.2: Structural thickness profiles.

Table 5.1 contains comparisons of the first four natural frequencies of each

model between the present work and Reference 47. For wing A and wing B, the

results are nearly identical. These two wings have constant structural thickness

along their span. For the wings with varying thickness, wing S and wing T, there

are differences in the results. The differences are due to a programming error

that was present in the code used in Reference 47. The error was discovered and

corrected for the present set of results. The programming error is discussed in

Section B.6 of Appendix B.
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Table 5.1: Natural frequencies of the ONERA M6 wing model.

Wing A Wing B

Present Ref. 47 Difference Present Ref. 47 Difference

ω1 64.76 64.78 0.0% 46.64 46.64 0.0%

ω2 294.72 294.9 0.0% 212.16 212.4 -0.1%

ω3 388.97 389.2 0.0% 280.20 280.2 0.0%

ω4 796.24 796.5 0.0% 573.09 573.5 -0.1%

Wing S Wing T

ω1 48.68 52.70 -7.6% 48.98 50.03 -2.1%

ω2 209.25 192.9 8.5% 190.49 196.5 -3.1%

ω3 267.37 235.6 13.5% 242.56 246.9 -1.8%

ω4 531.78 442.9 20.1% 453.34 467.9 -3.1%
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Normal mode shapes from wing B are shown in Figure 5.3. Upon visual

inspection, the modes match those provided in References 46 and 47.

Figure 5.3: First four normal modes of the ONERA M6 wing with structural

configuration B.

In general, the structural model comparisons presented here correlate well with

published results. Where the correlation is not as good, the differences are well

understood and justifiable. The computer code used to generate the structural

finite element model can be considered validated and ready for use in aeroelastic

studies.

5.3 Steady CFD Results

For the steady CFD analysis, flow around a rigid wing is simulated by time march-

ing the fluid model presented in Chapter 2 using a four-stage Runge-Kutta inte-

grator until the solution converges to steady state. Using this method, steady

aerodynamic results were computed for a rigid ONERA M6 wing for the following

flow conditions:

Angle of Attack, α = 3.06 degrees
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Mach Number, M∞ = 0.84

Air Density, ρ∞ = 1.223 kg/m3

Speed of Sound, a∞ = 338.82 m/s

The ONERA M6 wing has been studied at these conditions both in the wind

tunnel [43] and computationally [46, 51, 127] making for a good test case. To be

considered valid, the CFD code used in this work must be able to reproduce results

from these studies.

A new aerodynamic mesh was generated with the updated meshing program.

Portions of the mesh are shown in Figures 5.4 and 5.5 and described in Table 5.2.

The present mesh is denser than the one used by Hwang and Seber in References

46 and 51.

Figure 5.4: ONERA M6 wing model symmetry plane mesh.
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Figure 5.5: ONERA M6 wing surface mesh.

Table 5.2: Mesh details for the ONERA M6 wing model.

Present Refs. 46,51

Nodes 47,777 29,600

Faces 482,536 294,041

Cells 234,944 142,594

Nodes on Wing 10,583 7,468

Faces on Wing 20,792 14,670
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Comparisons between results from the steady CFD simulation and a wind

tunnel test [43] are presented in Figure 5.6. The steady pressure coefficients show

a supersonic region on the forward part of the wing from root to tip. On the

inboard portion of the wing, there are two shocks, one at approximately 10% of

chord and the second just aft of mid-chord. On the outboard portion of the wing,

the shock is stronger and closer to the leading edge.

The lower surface pressure coefficients correlate well with the test data. The

upper surface results accurately predict the minimum pressure at the wing leading

edge. On the inboard portion of the wing the pressure in the supersonic region

closer to the shock is slightly over-predicted. The predicted shock location tends

to be fairly accurate, but at some spans is approximately 5% of chord aft of

the experimental data. At the trailing edge tip, the upper surface pressure is

under-predicted. This could be due to differences in the shape of the wing tip

between the wind tunnel and simulation models. The results are similar to those

of Hwang [46].

The Mach distribution on the upper wing surface is shown in Figure 5.7.

The region of supersonic flow on the wing can easily be identified as any region

colored yellow, orange, or red. There is a strong shock on the outboard forward

portion of the wing. On the inboard section, there are two weaker shocks, one

near the leading edge, and one at about 65% chord. Upon visual inspection, the

distribution agrees with Figure 27 of Reference 46.

Total wing lift and drag coefficient comparisons are shown in Table 5.3. The

present results are in-line with other published results. Relative to Reference

46, the present simulation gives a CL that is about 4% smaller and a CD that

80



Figure 5.6: ONERA M6 wing steady pressure distribution at Mach 0.84, α = 3.06

degrees.
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Figure 5.7: ONERA M6 upper wing surface steady Mach distribution.

Table 5.3: CL and CD for the rigid ONERA M6 wing.

CL CD

Present 0.294 0.0216

Hwang [46], Mesh 1 0.303 0.0201

Hwang [46], Mesh 2 0.307 0.0190

Mavriplis [127] 0.292 0.0131
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is about 7% larger. The differences are due to the updated aerodynamic mesh

and the associated dissipation parameters used in the analysis. Also included are

results from Reference 127, where the mesh contained 357,900 nodes and over 2

million tetrahedra.

The steady CFD comparisons presented here correlate with published results.

The computer code used to generate the steady fluid response can be considered

validated and ready for use in aeroelastic studies.

5.4 Static Aeroelastic Results

In the static aeroelastic analysis, steady air flow around a flexible wing is simulated

by coupling the finite element Euler fluid model (Chapter 2) to the nonlinear finite

element structural model (Chapter 3) by the Direct Eulerian-Lagrangian method

(Chapter 4). The static analysis uses the flow conditions from a converged steady

CFD solution as the initial conditions. The simulation is run until the solution

converges. A four-stage explicit Runge-Kutta scheme is used for the fluid, and

Newton-Raphson iterations are used for the structure. The solution process is

described in Section 4.3.1.

Static aeroelastic results for the ONERA M6 wing were published by Seber [51]

using a nonlinear structural finite element formulation that is similar to the one

used in the present calculations (see Chapter 3). Comparisons are made for three

wings modeled with a 6x8x2 structural mesh. This mesh was chosen because it

matches the mesh used in Reference 51. The structural model of the wing is

shown in Figure 5.8. The wings each have a different structural thickness to root
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chord ratio, h/croot = 0.014, 0.018, 0.025, representing low, medium, and high

stiffness respectively. The structural thickness is constant over the entire wing.

The material properties, flow properties, and fluid mesh are the same as those

used in Section 5.3.

Figure 5.8: 6x8x2 structural finite element mesh for the ONERA M6 wing.

Tip displacement comparisons at the leading and trailing edge for the three

structural models are shown in Table 5.4. The high flexibility wing (0.14 structural

thickness) converged to nearly the same deflection reported in the previous work,

while the two thicker wings deflected slightly less. The results are all less than

6% different, and the differences in deflection are all less than 40% of the wing

thickness.

The smaller deflections in the present simulations are due to the smaller lifting

force produced with the updated aerodynamic mesh. The aerodynamic mesh for

the static analysis is the same mesh used in the steady analysis presented in

Section 5.3. The mesh used by Seber is the same as the mesh used by Hwang [46].

Table 5.5 shows that the updated aerodynamic mesh used in the present work

produces smaller lift coefficients for both the rigid and flexible wings. This results
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Table 5.4: Tip deflection for the flexible ONERA M6 wing.

Present Seber [51] Difference

0.025 Leading Edge 0.0662 0.0692 -4.3%

0.025 Trailing Edge 0.0680 0.0720 -5.6%

0.018 Leading Edge 0.159 0.165 -3.6%

0.018 Trailing Edge 0.165 0.172 -4.1%

0.014 Leading Edge 0.261 0.260 0.4%

0.014 Trailing Edge 0.276 0.275 0.4%

Table 5.5: CL for the flexible ONERA M6 wing.

h/croot Present CL Seber [51] CL Difference

Rigid 0.294 0.304 -3.3%

0.025 0.288 0.297 -3.0%

0.018 0.266 0.273 -2.6%

0.014 0.219 0.222 -1.4%

in smaller deflections for the updated simulation.

Sectional lift coefficient and angle of attack as a function of wing span are

shown in Figures 5.9 and 5.10. Both sectional lift and angle of attack are smaller

for the flexible wings relative to the rigid wing. This is due to the structural

washout effect which reduces the local angle of attack in the streamwise direction

for swept wings as they deflect. Upon visual inspection, the results agree with

Seber [51] after accounting for the lower lift generated in the present results.

Static aeroelastic deformations of the ONERA M6 wing are shown in Figure
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Figure 5.9: Lift coefficient vs. span of the ONERA M6 wing.
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Figure 5.10: Local angle of attack vs. span of the ONERA M6 wing.

86



5.11. The wing is shown from three orthogonal viewpoints. Both the tip deflection

and structural washout effect can be seen in the figure. Mach distribution is

plotted on the wing surface and on the tunnel attach wall. The two regions of

supersonic flow on the inboard portion of the wing are visible, as is the shape of

the supersonic region above the wing (at least at the root). The shock at the aft

end of the supersonic region is normal to the wing surface.

Figure 5.11: Static aeroelastic deformation and Mach distribution of the low stiff-

ness ONERA M6 wing.

The static aeroelastic results presented here correlate with published results.

The computer code used to generate the static aeroelastic response can be con-

sidered validated and ready for use in dynamic aeroelastic studies.

5.5 Dynamic Aeroelastic Results

In the dynamic aeroelastic (i.e. flutter) analysis, unsteady air flow around a flex-

ible wing is simulated by coupling the finite element Euler fluid model (Chapter

2) to the the nonlinear finite element structural model (Chapter 3) by the Direct
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Eulerian-Lagrangian method (Chapter 4). The flutter analysis uses the flow con-

ditions from a converged static aeroelastic simulation as the initial conditions for

the flow and the wing deformation. An initial velocity can be imparted to the

wing in the shape of any of the normal modes. A five-stage explicit Runge-Kutta

scheme is used to solve the coupled fluid-structural equations of motion. The

solution process is described in Section 4.3.2.

Flutter simulations were made for three different structural models of the

ONERA M6 wing. The models are similar to the ones used in Section 5.4 with

constant structural thickness to root chord ratios of h/croot = 0.016, 0.018, 0.025

for the three models. The material properties, flow properties, and fluid mesh are

unchanged from Sections 5.3 and 5.4. In all three cases, the wing was given a

small initial velocity in the shape of the first mode.

Results for the three flutter simulations are shown in Figures 5.12–5.17. For

each case, there are two figures: wing tip deflection time histories and wing total

energy/aerodynamic work time histories. In all the cases, results are plotted

against nondimensional time, which is normalized by the first torsion mode of the

wing (the second overall mode) as shown in Equation 5.1.

τ = t
ω1T

2π
(5.1)

The wing tip deflection time histories provide a good sense of the dynamic

stability of the fluid-structure system. If the response grows in time, the system

is unstable, i.e. the wing is fluttering. If the response decays, the system is stable

and the wing is not fluttering. Wing tip time histories are shown in Figures 5.12,

5.14, and 5.16.
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The wing total energy and aerodynamic work time histories are useful for ver-

ifying the accuracy of the fluid-structure coupling in the simulation. If energy is

conserved (in the absence of structural damping), the difference between the en-

ergy and the work will be constant and equal to the initial energy in the structure.

If an aeroelastic code cannot show that the kinetic and strain energy in the wing

is only generated by the work that the fluid does on the structure, the validity of

the code should be questioned. The Direct Eulerian-Lagrangian coupling method

used in the present work provides a very accurate transfer of energy between the

fluid and the structure. This statement is supported by Figures 5.13, 5.15, and

5.17.

Similar flutter results for the ONERA M6 wing were published by Seber [51].

Comparisons are made between these and the present results.

The flutter response of the softest wing (h/croot = 0.016) is shown in Figures

5.12–5.13. This simulation was run at Mach 0.84 and an angle of attack of 0

degrees. The growing tip displacement in Figure 5.12 indicates unstable dynamic

flutter. The response is predominately bending with some wing twist contributed

by the structural washout effect. The trailing edge oscillation magnitude is larger

than the leading edge oscillation magnitude causing the streamwise angle of attack

to decrease when the wing deflects up and increase when the wing deflects down.

The response growth rate for this case is the fastest of the three simulations.

Comparisons of the aerodynamic work and wing total energy in Figure 5.13 show

that energy is conserved in the simulation, thus we can be confident that Direct

Eulerian-Lagrangian coupling has been implemented correctly. There is no direct

comparison to the results from Reference 51, as the thinnest wing in those results
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Figure 5.12: Tip deflection time histories of the ONERA M6 wing, h/croot = 0.016,

Mach 0.84, α = 0 degrees.
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Figure 5.13: Total energy/aerodynamic work time histories of the ONERA M6

wing, h/croot = 0.016, Mach 0.84, α = 0 degrees.
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had a thickness of h/croot = 0.018. This wing does follow the trend observed by

Seber of thinner wings exhibiting a response rate that grows more quickly [51].

The flutter response of the h/croot = 0.018 wing is shown in Figures 5.14–5.15.

This simulation was run at Mach 0.84 and an angle of attack of 3.06 degrees.

Similar to the h/croot = 0.016 wing, this wing also exhibits unstable bending-

torsion flutter, though the response growth rate is slower than the thinner wing.

Comparisons of the aerodynamic work and wing total energy in Figure 5.15 show
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Figure 5.14: Tip deflection time histories of the ONERA M6 wing, h/croot = 0.018,

Mach 0.84, α = 3.06 degrees.

that energy is conserved in the simulation. The difference between the wing total

energy and the aerodynamic work is equal to the initial energy in the wing due

to static strain energy and kinetic energy from the initial velocity. A similar wing

was run at the same flow conditions in Reference 51. The results in Reference 51

exhibited a faster growth rate than the current simulation, but oscillated at the
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Figure 5.15: Total energy/aerodynamic work time histories of the ONERA M6

wing, h/croot = 0.018, Mach 0.84, α = 3.06 degrees.

same frequency. The different growth rates are due to differences in aerodynamic

forces between the two simulations which were noted for the static aeroelastic

results as well (Tables 5.4 and 5.5). A brief study showed that aerodynamic forces

and flutter growth rates were dependent on the artificial dissipation parameters

which themselves are sensitive to the aerodynamic mesh. By adjusting these

parameters, it is likely that the results could be made to match. Despite the

differences, qualitatively, the results are similar, and there is no reason to believe

that the present results are invalid.

The flutter response of the h/croot = 0.025 wing is shown in Figures 5.16

and 5.17. This simulation was run at Mach 0.84 and an angle of attack of 3.06

degrees. Unlike the other simulations, the response of this wing is stable. The

response is still bending-torsion, but the frequency is closer to the bending mode
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Figure 5.16: Tip deflection time histories of the ONERA M6 wing, h/croot = 0.025,

Mach 0.84, α = 3.06 degrees.

(first structural mode) than it is for the other two simulations. Comparisons of

the aerodynamic work and wing total energy in Figure 5.17 show that energy

is conserved in the simulation and that the flow is doing net negative work on

the wing during each oscillation cycle. A similar wing was run at the same flow

conditions in Reference 51. The reference wing had a small growth rate, as opposed

to the current simulation where the response is lightly damped. The wings both

oscillate at the same frequency. As with the h/croot = 0.018 wing, the difference

in response is due to differences in aerodynamic forces as a result of the artificial

dissipation parameters and the aerodynamic mesh.

In Reference 51, results were provided for an additional wing with h/croot =

0.027 at Mach 0.84 and an angle of attack of 3.06 degrees. The response of this

wing was neutrally stable. It was observed that as the wing thickness increases,
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Figure 5.17: Total energy/aerodynamic work time histories of the ONERA M6

wing, h/croot = 0.025, Mach 0.84, α = 3.06 degrees.

the growth rate of the response decreases, eventually transitioning from growth

to decay at some thickness associated with neutral stability. In Reference 51, the

thickness for neutral stability is approximately h/croot = 0.027. In the present

work, the thickness is somewhere between h/croot = 0.018 and 0.025, and, based

on the growth/decay of the simulated responses, likely closer to 0.025. Differences

in the stability behavior are likely due to the previously mentioned differences in

aerodynamic forces as a result of artificial dissipation parameter values and the

aerodynamic mesh. From these comparisons it is apparent how small variations in

the structural and aerodynamic system can result in larger variation in the flutter

behavior. This serves as a reminder of the delicate balance governing the dynamic

aeroelastic response of wings in transonic flow.

The dynamic aeroelastic results presented here differ slightly from published

94



results; the reasons for the variation are understood. The computer code used to

generate these responses can be considered validated and ready for use in dynamic

aeroelastic studies.
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CHAPTER 6

Aeroelastic Solutions for Cranked Wings

6.1 Introduction

In this chapter, results from transonic computational aeroelastic simulations of

two cranked wings are presented and analyzed. In all simulations, the wing is

modeled using nonlinear plate finite elements. Large deformation is accounted

for through the use of element-attached local coordinate systems referenced to

a single global coordinate system. The formulation of the structural model is

discussed in Chapter 3. The fluid is modeled using the mixed Eulerian-Lagrangian

formulation of the classical Euler equations and is discretized using a Galerkin

finite element approach on an unstructured tetrahedral mesh. Details of the fluid

model are included in Chapter 2. The fluid and structural models are coupled by

the Direct Eulerian-Lagrangian method where the finite-element shape functions

and the local element coordinate systems are used to describe the fluid-structure

boundary without approximation. Time synchronization and spatial accuracy

are maintained to ensure accurate exchange of energy between the fluid and the

structure. For details of the Direct Eulerian-Lagrangian coupling method, see

Chapter 4.

In Section 6.2, the response of the NEXST-2 supersonic transport wing is
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presented. The computational solutions exhibit multiple types of aeroelastic re-

sponse including transonic limit cycle flutter at a wide range of dynamic pressures

in addition to subsonic and supersonic bending-torsion flutter at higher dynamic

pressures and a wide range of Mach numbers. At dynamic pressures at and above

the bending-torsion flutter boundary, nonlinear limit cycle flutter was observed.

Shock motion dependent on wing deformation was found to play a major role in

the response of the wing, and, depending on the flow conditions, was shown to

either stabilize or destabilize the response. The computational results correlate

closely with observed wind tunnel test responses in Reference 72.

In Section 6.3, the results from a generic high-speed cranked wing are pre-

sented. The wing is studied both with and without the inboard sections. Re-

sponses show angle of attack and Mach number dependent transonic limit cycle

flutter in the second bending mode of the wing. Additionally, and somewhat coun-

terintuitively, the LCO amplitude increased as the wing was made stiffer. The

inboard section (when rigid) was observed to delay the onset of LCO to higher

angles of attack and Mach numbers due to aerodynamic interaction with the out-

board section. When compliance was added to the inboard section, no instability

was found. The softening of just a small portion of the inboard section stabilized

the response at all conditions tested.

6.2 The NEXST-2 Supersonic Transport Wing

The NEXST-2 supersonic transport wing was analyzed by the Japan Aerospace

Exploration Agency (JAXA) in their Transonic Flutter Wind Tunnel to determine
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its transonic flutter characteristics [72, 73] (Figure 6.1). Testing revealed a high

dynamic pressure flutter region between Mach 0.9 and Mach 1.1. At a narrower

range of Mach numbers (0.96–1.06), but lower dynamic pressures, a region of stable

limit cycle oscillations (LCO) was found (Figure 6.2). The dynamic responses in

the two regions were at unique frequencies, indicating that different modes of the

structure were being excited in each case.

Figure 6.1: Wind tunnel test model of the NEXST-2 SST wing courtesy of Ref-

erences 72,73.

Figure 6.2: Wind tunnel test flutter boundary for the NEXST-2 wing from Ref-

erence 72.
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6.2.1 NEXST-2 Wing Aeroelastic Model

The structural model used in the simulations is similar to the physical hardware

from the wind tunnel tests [72]. The wing stiffness is provided by a thin plate

with varying thickness whose planform matches that of the wing. The planform

is shown in Figure 6.3. The plate is covered by flexible plastic foam to create the

desired airfoil shape. The structural plate thickness and density along with the

finite element discretization of the NEXST-2 finite element model are shown in

Figure 6.4. The high-density, high-thickness section on the inboard, aft portion

of the wing represents the mass and added stiffness provided by the engine which

was mounted under and through the wing in the wind tunnel test (Figure 6.1).

There is a second high density region at the trailing edge tip that represents a

lead weight added at the same location in the tunnel model. The plate thickness

values are based on information in Reference 73. The full specifications of the

wind tunnel model (stiffness, density, mass of engine, etc.) are not available, so

the model is tuned to match the modal frequencies and descriptions in Reference

72.

The first four linear mode shapes of the NEXST-2 structural model are shown

in Figure 6.5. A comparison of these modes to published values from Reference

72 is shown in Table 6.1. Excellent agreement between the present model and

the wind tunnel hardware has been obtained. Both the frequencies and the mode

shapes match the published values. Additionally, it was reported in Reference

72 that the second and third modes featured significant pitching of the attached

engine. In the mode shape plots in Figure 6.5, the second and third modes of

the present model include large gains along the inboard trailing edge, indicating
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Figure 6.3: Planform of the NEXST-2 wing model.

similar deformation.

For the aerodynamic model of the NEXST-2 flutter simulation, an unstruc-

tured, tetrahedral mesh was created with the updated meshing program discussed

in Chapter 2. The mesh is pictured from four different viewpoints in Figure 6.6.

The model was created to match the published shape from Reference 72 which

is based on a symmetric NACA006 airfoil. Details of the mesh are provided in

Table 6.2.

6.2.2 NEXST-2 Wing Aeroelastic Results

Flutter simulations for the NEXST-2 wing were carried out at over 350 flow condi-

tions. The Mach number and dynamic pressure were varied to span a wide range

of conditions, including those used in the wind tunnel test. All simulations were

run at 0 degrees angle of attack, and started from a converged static solution with

a small initial velocity in the first mode of the wing.
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Figure 6.4: The (a) thickness distribution, (b) density distribution, and (c) finite

element discretization of the NEXST-2 wing structural model.

Much like the wind tunnel test, the computational solutions revealed multiple

types of aeroelastic response at different regions in the Mach versus dynamic

pressure plane. Response types are shown in Figure 6.7. A region of stable LCO

with the primary response in the first structural mode was found at a narrow range

of Mach numbers (0.94–1.04) and a wide range of dynamic pressures. The region is

shown in blue and labeled as the Transonic Dip Region in Figure 6.7. Responses

in this region are very similar to that described in Reference 72 and shown in

Figure 6.2. Additionally, subsonic and supersonic bending-torsion flutter regions

were found at higher dynamic pressures and a wide range of Mach numbers. Like

the wind tunnel test, responses in these regions were at a higher frequency than

the transonic dip responses. Shock motion dependent on wing deformation was

found to play a major role in defining the region boundaries. Depending on the

flow conditions, it was found that the position of the shock could either stabilize

or destabilize the response. An additional region labeled the High Frequency
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Figure 6.5: First four modes of the NEXST-2 wing structural finite element model.

Table 6.1: Natural frequencies of the NEXST-2 wing structural finite element

model.

Description

Mode Number from Ref. 72 Ref. 72 FE Model % Difference

1 1st bending 77 Hz 77.5 Hz 0.6%

2 2nd bending 117 Hz 124.9 Hz 6.8%

3 Outboard torsion 189 Hz 187.3 Hz -0.9%

4 Outboard bending 270 Hz 271.2 Hz 0.4%
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Figure 6.6: The aerodynamic mesh of the NEXST-2 wing model.

Table 6.2: Mesh details for the NEXST-2 wing model.

Nodes 37,791

Faces 384,489

Cells 187,566

Nodes on Wing 7,549

LCO Region was found at subsonic conditions (Mach 0.7-0.75) below the bending-

torsion flutter boundary. In this region there was a small persistent response at a

frequency above the fourth mode of the wing.

Each small dot in Figure 6.7 denotes conditions at which a simulation was run.

The larger, lettered dots represent a condition that was studied in greater detail.

These responses are discussed in Sections 6.2.2.1–6.2.2.5. Though the plot shows

a definitive line around each region, the responses, especially near the edges of

the regions, often gradually morph from damped response to flutter or from one
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Figure 6.7: The flutter boundary from nonlinear simulations of the NEXST-2

wing.

type of flutter response to another. For many flow conditions, characteristics of

multiple response types could be observed. In some cases, one response would

dominate over other weaker responses, causing them to decay. In other cases,

multiple responses existed together for many periods of oscillation.

The regions in Figure 6.7 are similar to the flutter boundary defined in Ref-

erence 72. The transonic dip region is at a Mach range approximately 0.02 lower

than observed in the wind tunnel. It is believed that this shift is due to shock-

boundary layer interaction which is not modeled by the inviscid Euler equations.
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As will be shown later, the termination of the transonic dip occurs when the Mach

number is increased to the point where the shock attaches itself to the wing trailing

edge and stops moving as freely on the wing surface. Shock-boundary layer inter-

actions have a tendency to slow the rearward movement of shocks with increasing

Mach number, resulting in their reaching the trailing edge and terminating the

transonic dip at higher Mach numbers [55].

Inaccurate model stiffness is believed to be the reason for differences in the

bending-torsion flutter boundary. Though the present model is dynamically sim-

ilar to the model used in the wind tunnel, export control laws prevented sharing

of detailed information, including mass and stiffness. Only the publicly available

data in References 72 and 73 could be used to assign the structural finite element

properties. It is likely that the computational model is overly stiff, and a re-

duction in the stiffness would shift the bending-torsion flutter boundary to lower

dynamic pressures. This seems especially likely based on the observations in Sec-

tions 6.2.2.1–6.2.2.5, where it is shown that deflection magnitude has a direct

impact on the nature of the response.

6.2.2.1 Responses in the Transonic Dip

In the present simulations, a region of stable LCO with the primary response in

the first structural mode was found at a narrow range of Mach numbers (0.94–

1.04) and a wide range of dynamic pressures. The response is very similar to

that described in Reference 72 and shown in Figure 6.2. The region is shaded

blue and labeled as the Transonic Dip Region in Figure 6.7. In this section,

the physical phenomena governing responses in the transonic dip are discussed.
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Detailed investigation is included for two responses in the transonic dip (points A

and B in Figure 6.7).

Researchers have long believed that the phenomenon known as the “transonic

dip” is due to mixed subsonic-supersonic flow and moving shocks on the wing sur-

face [2]. Recently, it was shown with great detail how the motion of shocks con-

tributes to the energy exchange between the fluid and the structure [55]. Bendik-

sen observed that, for a high aspect ratio swept wing, the mean location of the

shock on the wing has a direct effect on the nature of the response and determines

the shape of the transonic dip region. Two specific conclusions were drawn:

1. The mean position of the shock must reach 40% to 50% of the wing chord

before shock motion becomes destabilizing and the transonic dip is entered.

2. The transonic dip region abruptly ends once the shocks reach the trailing

edge and stabilize the response.

With this in mind, it is useful to review two fundamental concepts of transonic

flow over moving wings: shock motion and the structural washout effect.

At subsonic Mach numbers, as a wing approaches the critical Mach number,

Mcr, regions of supersonic flow begin to form on the wing surface. The flow

decelerates as it moves aft over the wing forming a shock wave nearly normal

to the wing surface at the aft end of the supersonic region (Figure 6.8). The

position of the shock wave is governed by the Mach number of the flow, the airfoil

shape, and the local angle of attack. For a given airfoil, and in the absence of flow

separation, the shock is further forward at lower Mach numbers and lower angles

of attack (including negative angles) and further aft at higher Mach numbers and
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Figure 6.8: Transonic flow over an airfoil.

higher angles of attack.

Any wing deformation that alters the local angle of attack can change the

airflow over the wing and cause the shock to move forward or aft. This type

of deformation is often due to the structural washout effect (Figure 6.9) which

couples bending and twist in swept wings (or wings with a swept elastic axis).

When an aft swept wing bends upward, the angle of attack of individual stream-

wise sections of the wing decreases. Conversely, when the wing bends down, the

Figure 6.9: The structural washout effect for swept wings.
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streamwise angle of attack is increased. The structural washout effect can interact

with the mixed subsonic/supersonic flow in the transonic region resulting in the

creation, destruction, or motion of shocks on the wing surface as the wing bends

up and down and the local angles of attack change.

With the observations of Bendiksen [55] in mind, the distribution of supersonic

flow on the wing surface for different Mach numbers was studied. Figure 6.10

shows the Mach distribution on the upper surface of the wing during steady flow

at 0 degrees angle of attack for multiple Mach numbers. Mach 0.9 is the lowest

Mach number for which a region of supersonic flow appears. At this condition a

weak shock is located at approximately 20% of the chord, and the transonic dip

only exists at dynamic pressures above 100 kPa. With a small increase of 0.04 in

the steady Mach number, the supersonic flow on the wing expands inboard and aft.

Additionally, the strength of the shock (indicated by the dark spot near the wing

tip) increases. At this condition, the wing is in the transonic dip and limit cycle

flutter in the first mode of the wing occurs even at very low dynamic pressure. As

the Mach number is increased further, the supersonic region continues to expand

and move further aft. The largest Mach number where the transonic dip region

exists is Mach 1.04. At this Mach number, the shock is at 99% of the chord near

the wing tip. With a small increase in Mach number to 1.06, the shock wave

reaches the trailing edge, and the transonic dip region is terminated.

One may wonder why the transonic dip region moves to lower Mach numbers

at higher dynamic pressures. This phenomenon can be explained by the larger

wing deformation that occurs at higher dynamic pressures. At Mach numbers

immediately below the transonic dip (Mach 0.85-0.9), when wing deformation is
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Figure 6.10: Mach distribution at a range of steady conditions for the NEXST-2

wing.
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small to moderate, shocks are either not present or are located on the most forward

part of the wing chord, and the initial velocity imparted to the wing damps out.

As the dynamic pressure is increased, the flow causes larger deformation and larger

angles of attack due to the structural washout effect. At some dynamic pressure,

the deformation becomes large enough to move the shock aft for enough of the

oscillation cycle to bring the wing into the transonic dip.

In the same manner, at Mach numbers near the right edge of the transonic

dip, larger wing deformation results in increased local angles of attack and pushes

the shock aft until it reaches the trailing edge. Shocks that reach the trailing edge

along the full span of the wing have a tendency to stick despite changes in angle

of attack [56]. This results in the shock spending larger portions of the cycle

attached to the trailing edge. When this occurs, the wing is stabilized against

the first mode response present in the transonic dip, but could be susceptible to

supersonic bending-torsion flutter, which can rapidly diverge.

To better demonstrate these concepts, two sets of responses from the transonic

dip region are presented. Flutter simulation responses for the NEXST-2 wing at

Mach 0.96 with a dynamic pressure of 86.4 kPa are shown in Figures 6.11–6.18.

This flow condition is labeled as point A in Figure 6.7. Wing tip time histories in

Figure 6.11 show the slow growing response moving toward limit cycle. Responses

of this type are typical in the transonic dip region, though the amplitude and

growth rate of the LCO vary depending on the flow conditions.

The shock response spectrum (SRS) of the trailing edge tip motion is shown

in Figure 6.12. The spectrum is nearly identical to the one measured in the wind

tunnel (Figure 6.2) [72]. The largest response is in a frequency between the first
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Figure 6.11: NEXST-2 wing tip time histories in the transonic dip region at Mach

0.96, q = 86.4 kPa.

and second modes. There is a secondary response at a frequency just above the

fourth mode.

Though the SRS provides valuable information regarding the frequency of the

response, it can not provide precise information as to which modes are partici-

pating. Because the models used in the simulation are in physical coordinates, a

transformation to modal coordinates must be made to determine the modal com-

position of the response. This transformation is accomplished using Equation 6.1,

where {q} are the system modal responses (either displacements, velocities, or

accelerations), [φ] are the mass orthonormalized system modes, [M ] is the system

physical mass matrix, and {x} are the system physical responses (either displace-

ments, velocities, or accelerations). The most helpful metric for determining the

modal composition of a response is the modal kinetic energy. This can be calcu-
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Figure 6.12: SRS of the NEXST-2 wing tip trailing edge at Mach 0.96, q = 86.4

kPa.

lated for each mode, i, with Equation 6.2 and is plotted for the first five modes

of the wing in Figure 6.13. The plot shows that the response is almost exclu-

sively in the first system mode, which is a bending mode. This type of response

was identified in Reference 126 as a natural mode instability or essentially single

degree-of-freedom (ESDOF) flutter. As the amplitude increases, the third mode

begins to respond at a very small magnitude. This is the mode causing the high

frequency peak in the SRS (Figure 6.12).

{q} = [φ] [M ] {x} (6.1)

KEi =
1

2
q̇i

2 (6.2)
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Figure 6.13: Modal kinetic energy of the NEXST-2 wing at Mach 0.96, q = 86.4

kPa.

In Figure 6.14, the aerodynamic work is compared to the total energy in the

structure (kinetic plus strain). Throughout the simulation, the difference between

the work and the energy is constant and equal to the initial energy of the system.

Because the Direct Eulerian-Lagrangian coupling methodology accurately models

the energy exchange between the fluid and the structure, the conservation laws

are satisfied and energy is neither created nor destroyed.

Plots of the Mach, pressure coefficient, and aerodynamic power distributions

on the wing surface are shown in Figures 6.15–6.17. Each figure shows ten time

points during a full period of oscillation occurring after the wing has reached

limit cycle amplitude. The deformed wing position at each of these time points is

easily observed in Figure 6.18, which shows the wing from a location beyond the

tip looking toward the root. In each of the figures, time (a) occurs when the tip
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Figure 6.14: Aerodynamic work and wing total energy of the NEXST-2 wing at

Mach 0.96, q = 86.4 kPa.

is at its maximum positive deformation and has just started moving downward.

The images show how the changing deformation of the wing affects the flow field,

shock motion, and energy transfer from the fluid to the structure. Because the

wing is in a stable limit cycle, the net energy transfer between the fluid and the

structure during one cycle is close to zero. The images reveal how the energy

transfer is balanced over different areas of the wing during the cycle. Energy

transfer, or aerodynamic work, is equal to the aerodynamic power integrated over

time. The aerodynamic power distribution on the wing is shown in Figure 6.17.

The convention used here is that positive power indicates the energy transfer

is from the fluid to the wing. In most of the images only the top surface of

the wing is visible, but because the wing is symmetric and is at an angle of

attack of zero degrees, the response is also symmetric. That is, the flow field on
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the upper surface during downward motion is identical to the flow field on the

lower surface during upward motion. The images of the wing are generated at

time points throughout the simulation and can be viewed as a 3-D interactive

animation. Videos created from these animations are included as supplementary

materials with this dissertation. Analysis of the animations has proven invaluable

in understanding the responses discussed here.

At time (a) in Figures 6.15–6.18, the wing is at the top of the cycle just after

it has started to move downward, and the structural washout effect results in a

large negative angle of attack at the wing tip (Figure 6.18). Because of this, the

only shock on the upper wing surface is weak and is located at the most inboard

region, where the deflection is small (Figure 6.15). There is, however, a strong

shock on the lower surface that can be seen in Figure 6.18. The corresponding

pressure distribution (Figure 6.16) shows a downward force on the upper surface

over the flexible part of the wing. An accompanying strong negative pressure

pulling downward on the lower surface cannot be seen, but exists. The power

plot for time (a) shows almost no energy transfer occurring (Figure 6.17). This

is due to the slow velocity of the outboard wing while it is near the peak of its

deformation.

As the wing tip accelerates downward in time points (b)–(e), the structural

washout effect causes the angle of attack to increase, cross through zero, and

become positive (Figure 6.18). As this happens, a strong shock begins to form

on the upper surface of the wing (Figure 6.15), and the upper surface pressure

becomes negative (Figure 6.16). The resulting energy transfer is negative (energy

being extracted from the wing) over much of the wing (Figure 6.17). This is due
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Figure 6.15: Mach distribution on the NEXST-2 wing during a period of limit

cycle flutter at Mach 0.96, q = 86.4 kPa.
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Figure 6.16: Pressure coefficient (Cp) distribution on the NEXST-2 wing during

a period of limit cycle flutter at Mach 0.96, q = 86.4 kPa.
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Figure 6.17: Aerodynamic power distribution on the NEXST-2 wing during a

period of limit cycle flutter at Mach 0.96, q = 86.4 kPa.
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Figure 6.18: Wing deformation as viewed from beyond the NEXST-2 wing tip

looking toward the root during a period of limit cycle flutter at Mach 0.96, q = 86.4

kPa.
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to the strong suction pulling the wing up as it moves down.

At time (f), the wing tip has reached the bottom of the cycle. The upper

surface now looks like the lower surface did at time (a). A strong negative pressure

region associated with the supersonic flow begins pulling the tip up. As the wing

moves upward through time points (f)–(j), the energy transfer is positive to the

wing, the angle of attack decreases, and the shock weakens. The wing continues to

extract energy from the flow until the upper surface shock disappears over most of

the outboard wing and a positive pressure region forms at time (j). At this point,

the wing tip has slowed down and is about to begin descending again. Because of

the motion, creation, and destruction of shocks and the strong pressure gradients

that occur, the energy transfer between the fluid and the structure is balanced.

The resulting limit cycle can continue indefinitely.

The Mach 0.96 flow condition is at a low Mach number in the transonic dip

region (Figure 6.7, point A). An improved understanding can be acquired by

studying a second condition at a high Mach number in the transonic dip. Re-

sponses for the NEXST-2 wing at Mach 1.02 with a dynamic pressure of 59.7 kPa

are shown in Figures 6.19–6.25. This flow condition is represented by point B in

Figure 6.7.

Wing tip time histories (Figure 6.19), SRS (Figure 6.20), and modal kinetic

energy plots (Figure 6.21) show ESDOF flutter in the first mode with magnitude

growing slowly to LCO. The Mach 1.02 response is similar to the Mach 0.96

response.

By examining the Mach, pressure, and power distributions in Figures 6.22–
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Figure 6.19: NEXST-2 wing tip time histories in the transonic dip region at Mach

1.02, q = 59.7 kPa.

50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

Frequency (Hz)

T
ip

 D
is

pl
ac

em
en

t S
R

S

Figure 6.20: SRS of the NEXST-2 wing tip trailing edge at Mach 1.02, q = 59.7

kPa.
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Figure 6.21: Modal kinetic energy of the NEXST-2 wing at Mach 1.02, q = 59.7

kPa.

6.25, the effect of increasing the Mach number is illustrated. The supersonic region

and terminating shock persist on the wing for a larger portion of the oscillation

than they did for the Mach 0.96 case. The shock is also located further aft, and

reaches the trailing edge, but only for a small part of the oscillation cycle (times

(f)–(h)). The power distribution oscillates between positive and negative on the

outboard portion of the wing, with a thin sliver of the trailing edge affected by the

shock moving over it. Because the shock does not attach itself to the wing trailing

edge, it is free to move on the wing surface, albeit only over a very small part.

It is this motion that keeps the wing in the transonic dip under these conditions.

As will be shown later, a slight increase in Mach number or deformation pushes

the shock further back on the wing, terminating the transonic dip response.
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Figure 6.22: Mach distribution on the NEXST-2 wing during a period of limit

cycle flutter at Mach 1.02, q = 59.7 kPa.
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Figure 6.23: Pressure coefficient (Cp) distribution on the NEXST-2 wing during

a period of limit cycle flutter at Mach 1.02, q = 59.7 kPa.
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Figure 6.24: Aerodynamic power distribution on the NEXST-2 wing during a

period of limit cycle flutter at Mach 1.02, q = 59.7 kPa.
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Figure 6.25: NEXST-2 wing deformation as viewed from beyond the wing tip

looking toward the root during a period of limit cycle flutter at Mach 1.02, q = 59.7

kPa.
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6.2.2.2 Subsonic Bending-Torsion Responses

Outside of the transonic dip region, the wing responds very differently to the

moving flow. At Mach numbers below the transonic dip, the only regions of

supersonic flow or shocks on the wing are near the leading edge, and for dynamic

pressures below 200 kPa, the wing response is stable. At higher dynamic pressures,

a subsonic bending-torsion flutter region exists. Responses typical of this region

are shown in Figures 6.26–6.32. These responses were generated at Mach 0.70

with a dynamic pressure of 295.3 kPa, corresponding to point C in Figure 6.7.
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Figure 6.26: NEXST-2 wing tip time histories in the subsonic bending-torsion

region at Mach 0.70, q = 295.3 kPa.

Wing tip time histories are plotted in Figure 6.26. The simulation is started

from zero displacement with an initial velocity in the first mode, and the wing

tip oscillations initially decrease in amplitude. After three cycles, the response
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Figure 6.27: SRS of the NEXST-2 wing tip trailing edge at Mach 0.70, q = 295.3

kPa.
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Figure 6.28: Modal kinetic energy of the NEXST-2 wing at Mach 0.70, q = 295.3

kPa.
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begins to quickly grow at a rate nearly double what was seen for responses in the

transonic dip region. Rapid growth like this is typical for bending-torsion flutter,

and it often leads to destruction of the wing. After approximately ten cycles,

the response magnitude stops growing and decreases slightly before settling at a

stable LCO. The frequency of the response, shown in Figure 6.27, is just below the

frequency of the third mode of the wing. Much like the wind tunnel test results

shown in Figure 6.7, the wing responds at a higher frequency in the bending-

torsion flutter region than it does in the transonic dip region. Examination of

the modal kinetic energy in Figure 6.28 shows that the response is composed of

multiple modes. The primary contributor is the second mode (second bending)

with participation from the first (first bending) and third (first torsion) modes.

Though the modes are identified as either bending or torsion modes, this is done

for explanation only. The first four modes all contain both bending and torsion

components on the outboard portion of the wing (Figure 6.5). Pictures of the

wing deflection during one cycle are shown in Figures 6.29–6.32. The deflection

is different than that observed in the transonic dip region, with the second and

third modes contributing significantly more outboard wing twist than the first

mode alone provides.

The nonlinear LCO response appears to be due to a mix of aerodynamic and

structural nonlinearity. The flow field around the wing is fully subsonic with the

exception of a small region of supersonic flow that forms near the wing leading edge

during brief periods when the deflection and local angle of attack are maximized.

The supersonic region can be seen in Figure 6.29(e)–(g). The aerodynamic power

distribution in Figure 6.31 shows that the supersonic region results in large positive
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Figure 6.29: Mach distribution on the NEXST-2 wing during a period of limit

cycle flutter at Mach 0.7, q = 295.3 kPa.
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Figure 6.30: Pressure coefficient (Cp) distribution on the NEXST-2 wing during

a period of limit cycle flutter at Mach 0.7, q = 295.3 kPa.
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Figure 6.31: Aerodynamic power distribution on the NEXST-2 wing during a

period of limit cycle flutter at Mach 0.7, q = 295.3 kPa.
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Figure 6.32: NEXST-2 wing deformation as viewed from beyond the wing tip

looking toward the root during a period of limit cycle flutter at Mach 0.7, q = 295.3

kPa.
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and negative energy transfer to the wing over a small area. Because the supersonic

region is small, it is unlikely that it alone is the cause of the nonlinearity. It

is believed that structural nonlinearity plays a large role as well. This seems

reasonable due to the nature of the deflection. Because the deflection occurs over

a small region of the wing, the local strains and the associated nonlinear effects

are large.

The subsonic bending-torsion flutter region intersects with the transonic dip re-

gion at Mach numbers above 0.8. Responses from a simulation in this overlapping

region are shown in Figures 6.33–6.39. The flow condition for these responses is

Mach 0.85 with a dynamic pressure of 223.9 kPa, and is labeled as point F in

Figure 6.7.

The wing tip time history in Figure 6.33 shows that the initial response magni-
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Figure 6.33: NEXST-2 wing tip time histories at Mach 0.85, q = 223.9 kPa.
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Figure 6.34: Waterfall SRS of the NEXST-2 wing tip trailing edge at Mach 0.85,

q = 223.9 kPa.
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Figure 6.35: Modal kinetic energy of the NEXST-2 wing at Mach 0.85, q = 223.9

kPa.
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tude varies from one oscillation cycle to the next. The variability in the response

eventually subsides and a stable limit cycle is reached. A waterfall SRS of the

wing tip trailing edge in Figure 6.34 shows how the frequency of the response

changes over time. Initially, there are two distinct frequencies. It appears that

the first mode response from the transonic dip region and the bending-torsion

response from the subsonic bending-torsion region are both present at the start

of the simulation. Based on Figure 6.34, one might be led to believe that the

bending-torsion response decays, and only the transonic dip response remains,

but the modal kinetic energy time histories show a different behavior (Figure

6.35). At the beginning of the simulation, the first and second mode participate

in the response at a similar magnitude, but at different frequencies. As the re-

sponse of the first mode grows, the response in the second mode does not decay,

but its phase and frequency shift and lock in with the first mode. This behavior

is typical in the areas where the response regions intersect.

Mach distribution on the wing during one period of LCO is shown in Figure

6.36. The wing deformation for this case is small compared to the other cases in

the transonic dip region and is difficult to see from the viewpoint in Figure 6.36.

Deformation can be seen more easily in Figure 6.39. The images show that a

supersonic region exists on the wing only when the wing tip is either at the top or

bottom of an oscillation (it is the bottom in this case since we are looking at the

upper surface of the wing). Examination of pressure coefficient and aerodynamic

power distributions in Figures 6.37 and 6.38 show that the largest negative and

positive work is done in the region of the supersonic flow and the shock, indicating

that the shock plays a large role in the energy transfer between the wing and the
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flow.

These responses exemplify the shift of the transonic dip to lower Mach numbers

at higher dynamic pressure. The increased wing twist caused by the participation

of the second mode pushes the shock further aft on the wing than it is at lower

dynamic pressures. In this case, the shock moves sufficiently aft for enough of the

cycle to result in transonic dip responses.

6.2.2.3 Supersonic Bending-Torsion Responses

At Mach numbers above the transonic dip region, the flow in front of the wing

is supersonic. Except in cases of large deformation at lower supersonic Mach

numbers (1.04-1.06), the flow on the entire wing surface is supersonic. Even for

moderate changes in angle of attack, the shock tends to stay attached to the

trailing edge. This phenomenon was recently observed by Bendiksen as an effect

of the stabilization law for transonic flutter [56]. At these lower supersonic Mach

numbers, the wing is stable at lower dynamic pressures. A supersonic bending-

torsion flutter region exists at higher dynamic pressures. The boundary of this

region moves to much higher dynamic pressures as the Mach number is increased

(Figure 6.7).

Responses typical of the supersonic bending-torsion flutter region are shown

in Figures 6.40–6.46. These responses occur at Mach 1.15 with a dynamic pres-

sure of 288.4 kPa. This condition is represented by point D in Figure 6.7. The

figures show limit cycle flutter with nearly equal participation from the first (first

bending) and second (second bending) modes of the wing. The third (first tor-

sion) mode is also involved, but at a smaller magnitude. This response is similar
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Figure 6.36: Mach distribution on the NEXST-2 wing during a period of limit

cycle flutter at Mach 0.85, q = 223.9 kPa.
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Figure 6.37: Pressure coefficient (Cp) distribution on the NEXST-2 wing during

a period of limit cycle flutter at Mach 0.85, q = 223.9 kPa.
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Figure 6.38: Aerodynamic power distribution on the NEXST-2 wing during a

period of limit cycle flutter at Mach 0.85, q = 223.9 kPa.
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Figure 6.39: NEXST-2 wing deformation as viewed from beyond the wing tip

looking toward the root during a period of limit cycle flutter at Mach 0.85, q =

223.9 kPa.
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Figure 6.40: NEXST-2 wing tip time histories in the supersonic bending-torsion

region at Mach 1.15, q = 288.4 kPa.

to that seen in the subsonic bending-torsion flutter region, where the first three

modes participated in the response, though at different ratios. The frequency of

the response is just below 200 Hz and slightly above the frequency of the third

mode of the wing.

Mach, pressure, and power distributions are shown in Figures 6.43–6.45. The

wing deformation can be seen more clearly in Figure 6.46. The time points shown

represent one full cycle during LCO. The images show that, with the exception of

the stagnation points on the leading edge, flow over the wing remains supersonic

for the entire simulation. As a result, the pressure distribution on the wing is

almost exclusively negative on both the top and bottom surfaces. Without the

presence of some nonlinearity, flutter under these conditions typically results in

increasing amplitudes without LCO. It is believed that nonlinear stiffening of the
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Figure 6.41: Modal kinetic energy of the NEXST-2 wing at Mach 1.15, q = 288.4

kPa.
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Figure 6.42: SRS of the NEXST-2 wing tip trailing edge at Mach 1.15, q = 288.4

kPa.
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Figure 6.43: Mach distribution on the NEXST-2 wing during a period of limit

cycle flutter at Mach 1.15, q = 288.4 kPa.
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Figure 6.44: Pressure coefficient (Cp) distribution on the NEXST-2 wing during

a period of limit cycle flutter at Mach 1.15, q = 288.4 kPa.
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Figure 6.45: Aerodynamic power distribution on the NEXST-2 wing during a

period of limit cycle flutter at Mach 1.15, q = 288.4 kPa.
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Figure 6.46: NEXST-2 wing deformation as viewed from beyond the wing tip

looking toward the root during a period of limit cycle flutter at Mach 1.15, q =

288.4 kPa.
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structure and consistent load vector application (follower forces) are responsible

for the limited amplitudes seen in these results.

Previously, in Section 6.2.2.2, a response that exhibited characteristics of both

the subsonic bending-torsion and transonic dip regions was discussed. In that

case, the responses merged at a common frequency and existed together for the

duration of the simulation. At the supersonic edge of the transonic dip, a very

different behavior can be observed. Responses from the NEXST-2 wing at Mach

1.04 with a dynamic pressure of 136.6 kPa are shown in Figures 6.47–6.53. This

flow condition is labeled in Figure 6.7 as point E.
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Figure 6.47: NEXST-2 wing tip time histories at Mach 1.04, q = 136.6 kPa.

For this flow condition, the initial response is a small amplitude LCO in the first

mode of the wing (Figures 6.47 and 6.49). During this portion of the simulation,

the shock is close to, but has not yet reached the trailing edge of the wing. The
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Figure 6.48: Waterfall SRS of the NEXST-2 wing tip trailing edge at Mach 1.04,

q = 136.6 kPa.
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Figure 6.49: Modal kinetic energy of the NEXST-2 wing at Mach 1.04, q = 136.6

kPa.
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response is identical to other responses in the transonic dip, but the deflections are

much smaller. As the LCO amplitude slowly increases, the shock moves further

aft on the wing. Eventually, the shock begins attaching to the trailing edge

for part of the LCO cycle. This initiates a transition away from transonic dip

type LCO to supersonic bending-torsion flutter. As the deformation increases,

the shock spends a larger portion of each cycle attached to the trailing edge.

Eventually, the wing is stabilized against the first mode, transonic dip response,

but is suddenly under the correct conditions for supersonic bending-torsion flutter.

At this point, the response of the third mode begins to rapidly increase, quickly

surpassing the contribution of the first mode. The response grows so quickly and

in such a manner that the fluid mesh cannot move properly to accommodate and

the simulation crashes.

Mach distribution during a single period of the higher frequency LCO is shown

in Figure 6.50. The images show that the shock moves away from the trailing

edge for more than half the cycle. Despite this fact, the response is firmly of the

supersonic bending-torsion nature, and no traces of the transonic-dip responses

remain.

6.2.2.4 High Frequency Region Responses

At dynamic pressures below the subsonic bending-torsion flutter region at Mach

0.7 and 0.75, a high frequency limit cycle oscillation region was identified. The flow

in this region is entirely subsonic, with no shocks forming on the wing. Responses

typical of this region are shown in Figures 6.54–6.56. These results were generated

at Mach 0.75 with a dynamic pressure of 129.1 kPa. This corresponds to point G
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Figure 6.50: Mach distribution on the NEXST-2 wing during a period of limit

cycle flutter at Mach 1.04, q = 136.6 kPa.
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Figure 6.51: Pressure coefficient (Cp) distribution on the NEXST-2 wing during

a period of limit cycle flutter at Mach 1.04, q = 136.6 kPa.
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Figure 6.52: Aerodynamic power distribution on the NEXST-2 wing during a

period of limit cycle flutter at Mach 1.04, q = 136.6 kPa.
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Figure 6.53: NEXST-2 wing deformation as viewed from beyond the wing tip

looking toward the root during a period of limit cycle flutter at Mach 1.04, q =

136.6 kPa.
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Figure 6.54: NEXST-2 wing tip time histories in the high frequency LCO region

at Mach 0.75, q = 129.1 kPa.

in Figure 6.7.

Responses in the high frequency LCO region are much smaller and higher

frequency than they are in other regions. In Figure 6.54, we can see that the

initial velocity imparted to the first mode quickly damps out. This is followed

by a brief period of transition before the frequency of the response triples, and

the high frequency LCO begins. The frequencies of the different responses can

be observed in the waterfall SRS in Figure 6.55. Figure 6.56 shows that the

LCO response is mainly composed of vibrations in the fourth mode of the wing.

As shown in Figure 6.5, the fourth mode has a significant amount of gain on

the inboard leading edge. Animations of the aerodynamic power (included as

supplementary material) show that the peak power transfer occurs at the inboard

leading edge.
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Figure 6.55: Waterfall SRS of the NEXST-2 wing tip trailing edge at Mach 0.75,

q = 129.1 kPa.
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Figure 6.56: Modal kinetic energy of the NEXST-2 wing at Mach 0.75, q = 129.1

kPa.
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Responses in the high frequency LCO region are so small in magnitude that

they do not persist at higher dynamic pressures, where the dominant response is

subsonic bending-torsion flutter in the first, second, and third modes. In fact, it is

difficult to believe that this response would be observable at all in a wind tunnel

where even a small amount of turbulence or structural damping would disrupt the

LCO.

6.2.2.5 Damped Responses

At Mach numbers above and below the transonic dip region for lower dynamic

pressures, responses damp out without the presence of any aeroelastic instability.

By examining results at these conditions, a better understanding of the responses

in the transonic dip and bending-torsion flutter regions can be gained. In this

section two sets of damped results are briefly discussed. The first condition is

at Mach 0.85 with a dynamic pressure of 107.8 kPa. The second condition is at

Mach 1.06 with a dynamic pressure of 103.2 kPa. The points are labeled H and

I in Figure 6.7.

Wing tip time histories for Mach 0.85 with a dynamic pressure of 107.8 kPa are

shown in Figure 6.57. The response is in the first mode and damps out quickly.

This condition is at the same Mach number as point F in Figure 6.7 which was

discussed in Section 6.2.2.2. For that condition, the higher dynamic pressure

resulted in deformation such that the supersonic region extended aft to a position

that resulted in transonic dip type responses. In the present case, the dynamic

pressure is not large enough to produce the deformation required to move the
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Figure 6.57: NEXST-2 wing tip time histories of a damped response at Mach 0.85,

q = 107.8 kPa.

shock aft to a position that will result in an unstable response. This can be seen

clearly in Figure 6.58 which shows the Mach distribution on the wing during one

of the initial cycles of the simulation.

Results from a second damped response flow condition (Mach 1.06, q = 103.2

kPa) are shown in Figures 6.59 and 6.60. This condition is at a Mach number just

above the transonic dip region, and the response damps out instead of increasing

in amplitude.

The Mach distribution in Figure 6.59 shows that the entire wing remains in

supersonic flow at every point during the cycle. When compared with the Mach

distribution at Mach 1.02 and lower dynamic pressure shown previously in Figure

6.22, the differences are easily observed. At the lower Mach number, the shock is
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Figure 6.58: Mach distribution on the NEXST-2 wing during the second cycle of

the simulation at Mach 0.85, q = 107.8 kPa.
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Figure 6.59: NEXST-2 wing tip time histories of a damped response at Mach 1.06,

q = 103.2 kPa.

able to move forward on the wing when deformation occurs, resulting in the first

mode LCO typical of the transonic dip. When the shock is firmly attached to the

wing trailing edge, this type of response does not occur.

6.3 Generic Cranked High Speed Wing (HC-Wing)

A generic cranked high speed wing (the HC-Wing) has been developed and studied

using the methods discussed in Chapters 2–4. The present work is an extension

of the work of Bendiksen who previously studied the outboard section of the wing

(identified as the H-Wing) using the Direct Eulerian-Lagrangian method [56,126].

He observed angle of attack and Mach number dependent transonic LCO in the

second bending mode of the wing. Additionally, and somewhat counterintuitively,
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Figure 6.60: Mach distribution on the NEXST-2 wing during the second cycle of

the simulation at Mach 1.06, q = 103.2 kPa.
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the LCO amplitude increased as the wing was made stiffer.

In the present research, the wing was studied both with and without the

inboard sections and, similar to Reference 126, showed angle of attack and Mach

number dependent transonic limit cycle flutter in the second bending mode of

the wing. The addition of a rigid inboard section shifted the onset of LCO to

higher angles of attack and Mach numbers due to aerodynamic interaction between

the inboard the outboard sections. When compliance was added to the inboard

section, no instability was found. The softening of just a small portion of the

inboard section stabilized the response at all conditions tested.

6.3.1 H-Wing Aeroelastic Model

To establish a baseline for comparisons of the cranked HC-Wing results, aeroelastic

models of the H-Wing were built based on the work of Bendiksen [56, 126]. The

planform and aerodynamic mesh of the present implementation of the H-Wing are

shown in Figure 6.61. Details of the aerodynamic mesh and a comparison to the

mesh used in Reference 126 are provided in Table 6.3. The aerodynamic mesh of

the present model is not as dense as the one used in Reference 126 away from the

wing, but the two meshes have a similar density on the wing. The current mesh

is seen as an improvement over the previous model, as the mesh from Reference

126 was not generated for the H-Wing, but was mapped from another wing with

a different planform.

Two structural models of the H-Wing were created using two different constant

thickness aluminum plates in the same shape as the wing. The thick model had a

plate thickness to root chord ratio, h/croot, of 0.0050 meters, and the thin model
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ΛLE = 66.40 deg. 
ΛTE = 14.28 deg."

Figure 6.61: Planform and fluid mesh of the H-Wing.

Table 6.3: Mesh details for the H-Wing model.

Present Ref. 126

Nodes 29,080 63,700

Faces 302,150 669,202

Cells 148,110 328,652

Nodes on Wing 7,658 9,263
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had an h/croot of 0.0045 meters. Ninety-six triangular finite elements were used

to discretize the wing (Figure 6.62). The mode shapes of the H-Wing model are

shown in Figure 6.63. Details of the natural frequencies of the wing are shown in

Table 6.4.

Figure 6.62: The structural finite element discretization of the H-Wing.

Figure 6.63: The first four normal modes of the H-Wing.

6.3.2 H-Wing Aeroelastic Results

Flutter simulations for the H-Wing were carried out at a variety of conditions for

both the thick and thin structural models. A Mach sweep was performed at 7.5

degrees root angle of attack (α), and an angle of attack sweep was performed at
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Table 6.4: Natural frequencies of the H-Wing structural finite element model.

Mode Description h/croot = 0.0050 (Thick) h/croot = 0.0045 (Thin)

1 1st bending 31.4 Hz 28.2 Hz

2 1st torsion 77.5 Hz 69.7 Hz

3 2nd torsion 143.1 Hz 128.8 Hz

4 2nd bending 177.9 Hz 160.1 Hz

Mach 0.99. All simulations were started from a converged steady solution with

sea level air density and a small initial velocity in the fourth mode of the wing.

This mode was identified as the primary LCO contributor in Reference 126.

Much like the results from Reference 126, the present set of computational

solutions revealed LCO that was dependent on both angle of attack and Mach

number. The frequency of the response was near the fourth mode of the wing.

LCO amplitudes of the thick model were larger than they were for the thin model.

At some conditions (usually higher Mach numbers and angles of attack) a “buzz-

like” instability was observed. This response was also noted in Reference 126.

The LCO amplitudes do not match the previously reported ones exactly, but the

differences are within reason considering the different aerodynamic meshes used in

the analyses. The LCO amplitude at a range of Mach numbers for α = 7.5 degrees

is shown in Figure 6.64. The LCO amplitude versus root angle of attack for Mach

0.99 is shown in Figure 6.65. In both plots, the lighter symbols and dashed lines

indicate that the buzz-like instability is affecting the results at that condition.

The LCO amplitude at these points is a best estimate, as the participation of

high frequency modes results in limit cycle amplitudes that do not always remain
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Figure 6.64: LCO amplitude of the tip angle of attack vs. Mach number for the

H-Wing at α = 7.5 degrees.

constant. Results from the H-Wing will be used as a baseline for comparisons

with the HC-Wing results.

Figures 6.66–6.68 show the response of the thick H-Wing model at Mach 0.99,

α = 8.0 degrees. Wing tip angle of attack time histories in Figure 6.66 show the

response growing to LCO. Modal kinetic energy time histories (Figure 6.67) show

that response is primarily in the third and fourth modes of the wing (second torsion

and second bending). SRS of the tip angle of attack shows that the response is

at 185 Hz, which is slightly higher than the frequency of the fourth mode of the

wing (Figure 6.68).
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Figure 6.65: LCO amplitude of the tip angle of attack vs. root angle of attack for

the H-Wing at Mach 0.99.
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Figure 6.66: Wing tip time histories of the thick H-Wing at Mach 0.99, α = 8.0

degrees.
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Figure 6.67: Modal kinetic energy of the thick H-Wing at Mach 0.99, α = 8.0

degrees.
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Figure 6.68: SRS of the thick H-Wing at Mach 0.99, α = 8.0 degrees.

168



6.3.3 HC-Wing Aeroelastic Model

The HC-Wing represents a generic high speed wing with high leading edge sweep.

The planform, shown in Figure 6.69, is composed of the H-Wing from Section

6.3.1 attached to an inboard section with 74 degree leading edge sweep. The span

of the inboard section is half of the H-Wing root chord.

Figure 6.69: Planform of the HC-Wing model.

The fluid mesh for the HC-Wing is shown in Figure 6.70. This mesh was

generated using the tools described in Chapter 2. Details of the mesh are provided

in Table 6.5.

Figure 6.70: Fluid mesh of the HC-Wing model.
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Table 6.5: Mesh details for the HC-Wing model.

Nodes 35,103

Faces 363,415

Cells 177,972

Nodes on Wing 5,549

Three different structural models were created for the HC-Wing. The first two

models were built by attaching the H-Wing models (thick and thin) from Section

6.3.1 to a rigid inboard section. The structural finite element model, mode shapes,

and natural frequencies of the models with the rigid inboard section are unchanged

from the H-Wing. For the third model, some flexibility was added to the inboard

section, and the thick outer section from the H-Wing was attached. Seventy-five

percent of the inboard section was left rigid to prevent high frequency modes

from corrupting the simulation. The finite element discretization and thickness

distribution of the model with the flexible inboard section is shown in Figure 6.71.

The addition of the flexible inboard section changes the mode shapes and natural

frequencies of the model. These are shown in Figure 6.72 and Table 6.6. The

natural frequencies of the H-Wing are included in Table 6.6 to show the effect of

the added flexibility.

6.3.4 HC-Wing Aeroelastic Results

Flutter simulations for the HC-Wing were completed at a range of conditions for

all three structural models. A Mach sweep was performed at α = 7.5 degrees,

and an angle of attack sweep was performed at Mach 0.99. All simulations were

170



Figure 6.71: Structural model of the HC-Wing with flexible inboard section (a)

finite element discretization and (b) thickness distribution.

Figure 6.72: The first four normal modes of the HC-Wing with flexible inboard

section.
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Table 6.6: Natural frequencies of the HC-Wing with flexible inboard section.

Mode Number Description Flexible HC-Wing Thick H-Wing

1 1st bending 25.1 Hz 31.4 Hz

2 1st torsion 60.0 Hz 77.5 Hz

3 2nd torsion 102.8 Hz 143.1 Hz

4 2nd bending 130.7 Hz 177.9 Hz

started from a converged steady solution with sea level air density and a small

initial velocity in the fourth mode of the wing.

Similar to the H-Wing results, the HC-Wing with the fully rigid inboard sec-

tion exhibited angle of attack and Mach number dependent LCO at a frequency

near the fourth mode of the wing. Also like the H-Wing, LCO amplitudes were

larger for the thick model. Additionally, the same buzz-like instability was present

at certain conditions. For the HC-Wing with the flexible inboard section, no in-

stability was found. The softening of just a small portion of the inboard section

stabilized the response at all conditions tested. Comparisons of the responses of

the thick and thin HC-Wings with rigid inboard sections are shown in Figures

6.73 and 6.74.

Response comparisons between the H-Wing and the HC-Wing are shown in

Figures 6.75–6.78. The addition of the highly swept inboard section of the HC-

Wing results in the LCO response shifting to higher Mach numbers and angles of

attack.

Figures 6.79–6.81 show the response of the thick HC-Wing at Mach 1.01,

α = 7.5 degrees. Similar to the H-Wing, the response is coupled bending-torsion
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Figure 6.73: LCO amplitude of the tip angle of attack vs. root angle of attack for

the HC-Wing at Mach 0.99.
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Figure 6.74: LCO amplitude of the tip angle of attack vs. Mach number for the

HC-Wing at α = 7.5 degrees.
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Figure 6.75: LCO amplitude of the tip angle of attack vs. Mach number for the

thin H-Wing and thin HC-Wing at α = 7.5 degrees.
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Figure 6.76: LCO amplitude of the tip angle of attack vs. root angle of attack for

the thin H-Wing and thin HC-Wing at Mach 0.99.
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Figure 6.77: LCO amplitude of the tip angle of attack vs. Mach number for the

thick H-Wing and thick HC-Wing at α = 7.5 degrees.
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Figure 6.78: LCO amplitude of the tip angle of attack vs. root angle of attack for

the thick H-Wing and thick HC-Wing at Mach 0.99.
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Figure 6.79: Wing tip time histories of the thick HC-Wing at Mach 1.01, α = 7.5

degrees.
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Figure 6.80: SRS of the thick HC-Wing at Mach 1.01, α = 7.5 degrees
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Figure 6.81: Modal kinetic energy of the thick HC-Wing at Mach 1.01, α = 7.5

degrees.

LCO in the third (second torsion) and fourth (second bending) modes of the wing.

This response is typical, with the exception of the high frequency buzz, of all of

the observed LCO. The SRS frequency is unchanged from the H-Wing. Based on

the similarities between the responses of the H-Wing and HC-Wing, it appears

that the physical mechanism driving the behavior is the same for both wings. The

differences are a result of the altered flow field on the HC-Wing caused by the

highly swept inboard section.

To better understand the relationship between the LCO response, Mach num-

ber, and wing angle of attack, the Mach distribution on both the thin H-Wing

and thin HC-Wing upper surface is shown in Figures 6.82–6.85. In these figures,

the wing is deformed under a static aeroelastic load.
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Figure 6.82: Mach distribution on the thin H-Wing upper surface at a range of

free stream Mach numbers for α = 7.5 degrees.
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Figure 6.83: Mach distribution on the thin H-Wing upper surface at a range of

root angles of attack for a free stream Mach number of 0.99.
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Figure 6.84: Mach distribution on the thin HC-Wing upper surface at a range of

free stream Mach numbers for α = 7.5 degrees.
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Figure 6.85: Mach distribution on the thin HC-Wing upper surface at a range of

root angles of attack for a free stream Mach number of 0.99.
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Comparison of Figures 6.82 and 6.84 shows that the presence of the inboard

section on the HC-Wing causes the formation of a supersonic flow region on the

flexible outboard portion of the wing to occur at higher Mach numbers relative to

the H-Wing. For the H-Wing (Figure 6.82), the supersonic region begins forming

at Mach 0.92, but for the HC-Wing (Figure 6.84), the supersonic region does not

reach a comparable position on the wing until Mach 0.96. This difference in flow

conditions on the wing surface results in the LCO of the HC-Wing shifting to

higher Mach numbers.

There is a similar explanation for the LCO response of the HC-Wing occurring

at higher angles of attack relative to the H-Wing. Figures 6.83 and 6.85 show both

wings at a range of root angles of attack for a free stream Mach number of 0.99.

The largest LCO response for the H-Wing occurs at 5.5 degrees root angle of

attack. The Mach distribution plots show that this corresponds to the condition

where the supersonic region on the upper surface of the wing has moved away

from the leading edge. As the angle of attack increases, the supersonic region

moves further from the leading edge, and the LCO response amplitude decreases.

For the HC-Wing, a similar Mach distribution near the wing leading edge does

not occur until 7 degrees root angle of attack. This corresponds to the largest

LCO amplitude for the HC-Wing.

Figure 6.63 shows that the third and fourth modes of the wing (modes that

participate in the LCO) both have a significant amount of gain near the leading

edge. It is believed that the LCO behavior observed in the simulations is a result

of the transition from subsonic to supersonic flow oscillating in the region of high

structural gain near the wing leading edge. The transition only exists in the
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correct location on the wing for a narrow range of Mach numbers and angles of

attack.

This theory is supported by Figures 6.86 and 6.87, which show the Mach and

aerodynamic power distribution on the upper surface of the thick H-Wing during

a full period of LCO at Mach 0.99, α = 8.0 degrees. At this condition, the thick

H-Wing exhibited LCO with a tip amplitude of 0.96 degrees. The deformation

is difficult to see in the images but is more visible in the supplementary videos.

Figure 6.87 shows that the largest contribution to the energy transfer between

the wing and the air occurs at the wing leading edge, especially near the tip. For

this reason, the flow conditions along the leading edge are vital to determining

the stability of the response.

The Mach distribution on the thick H-Wing upper surface during a period of

damped oscillation at Mach 0.99, α = 3.0 degrees is shown in Figure 6.88. This

is a condition for which the response was stable. Note that the supersonic region

covers the entire leading edge of the wing and does not move during the oscillation.

This provides further support to the theory that the flow on the leading edge plays

an important role in the flutter behavior of the H-Wing and HC-Wing.

Mach distribution plots for the flexible HC-Wing (Figures 6.89 and 6.90) do

not show significant differences from the rigid inboard HC-Wing (Figures 6.84 and

6.85). It is believed that the change in modes caused by the additional flexibility

(Figure 6.72) results in the aerodynamic forces acting at locations with lower

structural gain. The change is enough to result in a net loss of energy during an

oscillation cycle instead of a net gain, and the response is stable for all conditions

tested.
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Figure 6.86: Mach distribution on the thick H-Wing during a period of limit cycle

flutter at Mach 0.99, α = 8.0 degrees.
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Figure 6.87: Aerodynamic power distribution on the thick H-Wing during a period

of limit cycle flutter at Mach 0.99, α = 8.0 degrees.
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Figure 6.88: Mach distribution on the thick H-Wing during a period of damped

oscillation at Mach 0.99, α = 3.0 degrees.
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Figure 6.89: Mach distribution on the flexible inboard HC-Wing upper surface

over a range of free stream Mach numbers for α = 7.5 degrees.
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Figure 6.90: Mach distribution on the flexible inboard HC-Wing upper surface for

a range of root angles of attack for a free stream Mach number of 0.99.
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CHAPTER 7

Conclusions and Recommendations for Future

Research

7.1 Introduction

A three-dimensional computational aeroelastic simulation for cranked, highly-

swept wing planforms has been developed. The Direct Eulerian-Lagrangian cou-

pling method has been applied to problems of this type for the first time. The

simulation has accurately modeled transonic flutter behavior observed in wind

tunnel tests. Results from these simulations have revealed previously undocu-

mented aeroelastic behavior.

7.2 Conclusions

The main conclusions that may be drawn from this study are as follows:

1. The Direct Eulerian-Lagrangian coupling methodology has been applied to

highly-swept, cranked wings for the first time and has proven to be an

accurate way of modeling the energy exchange across the fluid-structure

boundary.
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2. Simulations of the NEXST-2 wing wind tunnel model revealed multiple types

of aeroelastic response at different regions in the Mach versus dynamic pres-

sure plane. A region of stable LCO with single degree-of-freedom response

in the first bending mode of the wing was found at a narrow range of Mach

numbers (0.94–1.04) and a wide range of dynamic pressures. Additionally,

subsonic and supersonic bending-torsion flutter regions were found at higher

dynamic pressures and a wide range of Mach numbers. Responses in these

regions were at a higher frequency than the transonic dip responses. The

simulated responses correlate closely with observed wind tunnel test data.

3. Shock motion dependent on wing deformation was found to play a major role

in defining the flutter response of both the NEXST-2 wing and a generic high

speed cranked wing. Depending on the flow conditions, it was found that

the position of the shock could either stabilize or destabilize the response.

4. For the NEXST-2 wing, at some flow conditions, characteristics of multiple

types of flutter response were observed. In some cases, one type of response

dominated over other weaker responses, causing them to decay. In other

cases, multiple responses existed together for many periods of oscillation.

5. Transonic dip LCO responses for the NEXST-2 wing were shown to be

dependent on supersonic flow and shocks moving on the wing surface. The

supersonic region must extend aft of 20% of chord for a significant portion

of the oscillatory cycle for LCO to occur. Additionally, the shock that

terminates the supersonic region must be free to move away from the wing

trailing edge for a significant portion of the oscillatory cycle or LCO will not
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occur.

6. The transonic dip for the NEXST-2 wing expanded to lower Mach num-

bers at higher dynamic pressures due to increased wing deformation which

tended to move shocks aft on the wing surface. For Mach numbers below

the transonic dip, the shock moved aft for enough of the oscillation cycle to

bring the wing into the transonic dip. For Mach numbers on the high end of

the transonic dip, increased deformation caused the shock to attach to the

trailing edge and stabilize the wing against transonic dip responses.

7. For the NEXST-2 wing, the response in the transonic dip showed the ability

to transition from small amplitude LCO to rapidly diverging bending-torsion

flutter when the shock attached to the wing trailing edge. This transition

only occurred for a narrow range of Mach numbers at the high end of the

transonic dip region.

8. Shock-boundary layer interaction is believed to shift the transonic dip re-

gion to higher Mach numbers because of its tendency to slow the rearward

movement of shocks with increasing Mach number.

9. Modal kinetic energy was shown to be a valuable metric for measuring the

contribution of individual modes to aeroelastic response.

10. Simulations of a generic high speed wing with and without an inboard region

with high leading edge sweep exhibited angle of attack and Mach number

dependent LCO at a frequency near the fourth mode of the wing. Two

structural models with a rigid inboard section were used in the simulations.
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Counterintuitively, LCO amplitudes were found to be largest for the stiffer

model.

11. The addition of a rigid highly swept inboard section to the generic high speed

wing resulted in LCO response shifting to higher Mach numbers and angles

of attack. The shift was found to be due to the inboard section altering the

flow field on the outboard section.

12. For the generic high speed cranked wing, the addition of inboard flexibility

was found to stabilize the response. It is believed that the change in modes

caused by the additional flexibility resulted in the aerodynamic forces acting

at locations with lower structural gain. The change was enough to result in

a net loss of energy during an oscillation cycle instead of a net gain, and the

response was stable for all conditions tested.

13. The aerodynamic meshing, structural modeling, and aeroelastic simulation

codes used in previous analyses have been simplified and improved. The pro-

cess of generating aeroelastic models for use in simulations is more straight-

forward and easier to complete.

14. The aeroelastic simulation codes have been updated to generate output files

that contain deformed wing geometry along with the pressure coefficient,

Mach number, pressure, fluid velocity vector, and aerodynamic power at

every grid point in the computational domain. The output files for the

flutter program can be used to create 3-D animations that have proven

useful in the evaluation of simulation results.
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7.3 Recommendations for Future Research

In this work, the Direct Eulerian-Lagrangian coupling method was applied to a

new class of problems. For the first time, flutter simulations have been run for

wings with high sweep, leading and trailing edge kinks, and complicated mass

and thickness distributions. With these improvements, it appears feasible that

the method could be applied to more complicated wing geometries and structural

models. Suggested improvements include:

1. Incorporate the ability to model more complex geometries including airfoil

camber and wing mounted stores/engines.

2. Incorporate the ability to model real-world aircraft structures including

spars, ribs, and stressed skin construction. Special attention should be

given to accurately characterizing the fluid-structure boundary using either

finite element shape functions or residual flexibility vectors with truncated

modes [128].

3. Incorporate the ability to model full aircraft with control surfaces and rigid

body degrees of freedom.

4. Incorporate the ability to model nonlinear behaviors of moving joints and

mechanisms such as those of the B-1 wing [69].
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1.0 Introduction

This document serves as the User’s Guide for dfLap, the Direct Flutter Analysis

Program. dfLap is a collection of Python [1] functions built using the NumPy [2]

and matplotlib [3] packages that work together through a graphical user interface

(GUI) to make the process of generating the input files for use in computational

aeroelasticity analyses as simple as possible. The program interfaces with the new

kink versions of the 2-D meshing, steady CFD, static aeroelastic, and flutter pro-

grams. dfLap can also be used to generate visualizations of meshes and aeroelastic

results. Since dfLap is built in Python, it is compatible with Windows, Mac and

Linux operating systems.

Figure 1: The dfLap interface.
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Prior to dfLap the process of generating the input files for a flutter analysis

was tedious and error prone. Users were forced to enter the same information

in multiple places, making sure that each entry matched. It was also the user’s

responsibility to keep track of input file requirements and formatting. With dfLap,

many of these problems are resolved. By filling in the blanks of the different input

modules and clicking the appropriate buttons, input files are generated, analyses

are run, and results are presented in a useful, visual format.

Chapter 2 of this user’s guide presents the eleven modules in the dfLap in-

terface. Chapter 3 discusses the Python functions used to generate and run the

meshing and aeroelastic programs. Chapter 4 contains an example of how dfLap

is used to calculate aeroelastic results.

2.0 The dfLap Interface

The dfLap interface is divided into eleven modules. The modules, shown in Fig-

ure 2, include: (1) Input/Output File Module, (2) Wing Planform Parameters

Module, (3) Mesh Parameters Module, (4) Airfoil Parameters Module, (5) Flow

Parameters Module, (6) Steady CFD Parameters Module, (7) Static Aeroelastic

Parameters Module, (8) Structural Model Parameters Module, (9) Flutter Param-

eters Module, (10) Analysis Module, and (11) Plotting Module,

2.1 Input/Output File Module

The Input/Output File Module is used to define the path for the input and out-

put files required by dfLap. Required files include executables for 2-D meshing
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Figure 2: The dfLap modules.

(g2dex kink), removal of similar nodes (triang kink), 3-D meshing (g3dex ), steady

CFD program (steady kink), static aeroelastic program (static kink), flutter pro-

gram (flutter kink), and the directory for the output files. The Input/Output File

Module is shown in Figure 3. The path can be typed into the text boxes manually

or can be selected after clicking on the buttons to the right of the text boxes.

2.2 Wing Planform Parameters Module

The Wing Planform Parameters Module is used to input the parameters that

define the shape of the wing. The module is shown in Figure 4. The parameters

are described in Table 1, and shown in Figure 5. All angles have units of degrees.

The length parameters YL1 and YL2 are based on a unit normalized root chord.

The thickness parameters T1 and T2 define the relative thickness of the airfoil at

the kink line and the tip line based on the root chord thickness.
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Figure 3: The Input/Output Module.

Table 1: Wing planform parameters.

Parameter Description

ΛL1 Inboard leading edge sweep angle

ΛT1 Inboard trailing edge sweep angle

ΛK1 Kink sweep angle

YL1 Span location of kink at leading edge

ΛL2 Outboard leading edge sweep angle

ΛT2 Outboard trailing edge sweep angle

ΛK2 Tip sweep angle

YL2 Span location of tip at leading edge

YT Thickness definition span locations

Tspan Thickness ratios relative to root
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Figure 4: The Wing Planform Parameters Module.

Figure 5: Wing planform parameters.

2.3 Mesh Parameters Module

The Mesh Parameters Module controls the overall mesh density, meshing of the

wing tip, and the location of the tunnel far wall. The module is shown in Figure

6.
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By selecting one of the radio buttons, the user can choose to generate the 2-D

wing tip mesh using a predefined mesh pattern available in dfLap or by using the

advancing front method (AFM). The AFM has historically proven problematic

for meshing the wing tip. Because of this, it is recommended to use the method

provided in dfLap. The dfLap method generates a mesh using a repeating pattern

with element size based on the Mesh Size parameter.

The Mesh Size parameter defines the average size of element edges on the wing

root. The mesh size on the wing surface, wing tip, and the area surrounding the

wing are also controlled by this parameter. It can be set to any value between

0.016 (dense mesh) and 0.041 (coarse mesh).

Figure 6: Mesh Parameters Module.

The tunnel far wall location can be adjusted to provide enough space beyond

the wing tip in the span direction such that the tunnel wall does not interfere

with the aerodynamics near the wing. This parameter should normally be ap-

proximately 1.0 larger than YL2 from the Wing Planform Parameters Module.

2.4 Airfoil Parameters Module

The Airfoil Parameters Module controls the thickness and shape of the wing cross

section. The module is shown in Figure 7. The thickness ratio of the wing at the
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root can be entered in the box. Three airfoil shapes are available: the ONERA

M6 airfoil, the NACA 00XX series, and the NACA 64-0XX series of airfoils.

The ONERA airfoil has been used previously with the meshing and aeroelasticity

programs, so it is included for continuity. The user selects an airfoil shape by

clicking one of the radio buttons. The airfoils are shown in Figure 8 with the

thickness increased to emphasize the differences.

Figure 7: Airfoil Parameters Module.

Figure 8: Airfoils available in dfLap.

2.5 Flow Parameters Module

The Flow Parameters Module controls the airflow conditions that will be used in

the static CFD, steady aeroelastic, and flutter simulations. This module is shown
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in Figure 9. Flow variables that can be set here include Mach number, angle of

attack, air density, the speed of sound, and gamma (the ratio of specific heats of

the fluid).

Figure 9: Flow Parameters Module.

2.6 Steady CFD Parameters Module

The Steady CFD Parameters Module controls the inputs for the steady CFD

analysis. The module is shown in Figure 10. Variables that can be set here include

continuation from a previous run (yes or no), local time-stepping (yes or no),

number of time steps, CFL number, K2 dissipation factor, K4 dissipation factor,

average error criteria for convergence, and max error criteria for convergence.

2.7 Static Aeroelastic Parameters Module

The Static Aeroelastic Parameters Module controls the inputs for the static aeroe-

lastic analysis. The module is shown in Figure 11. Variables that can be set here

include number of time steps, CFL number, K2 dissipation factor, K4 dissipation

factor, average error criteria for convergence, and max error criteria for conver-
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Figure 10: Steady CFD Parameters Module.

gence. Additionally, the option to continue from a previous static run is available.

This option uses the output from the previous run as the input for the current

run.

2.8 Structural Model Parameters Module

The Structural Model Parameters Module controls the inputs for the structural

model of the wing used in the static aeroelastic and flutter analyses. The module is

shown in Figure 12. Variables that can be set here include the number of Gaussian

integration points used in the consistent load vector calculation, Young’s modulus,

Figure 11: Static Aeroelastic Parameters Module.
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Figure 12: Structural Model Parameters Module.

shear correction factor, Poisson’s ratio, wing structural thickness and density, and

chordwise and spanwise finite element distribution.

The structural thickness and density values are set by entering comma sepa-

rated lists of numbers representing percent span and percent chord into the Span

Locations and Chord Locations boxes respectively. In the Thickness Values and

Density Values boxes, arrays of numbers are used to represent the thickness and

density at the percent span and percent chord locations that are listed in the Span

Locations and Chord Locations boxes. There is one row for each percent chord and

one column for each percent span. The Span Locations box requires two or more

comma separated numbers between 0 and 2. The first number must be 0 and the
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last number must be 2. The wing root is at 0, the kink is at 1, and the wing tip is

at 2. The Chord Locations box requires two or more comma separated numbers

between 0 and 1. The first number must be 0 and the last number must be 1.

The wing leading edge is at 0 and the trailing edge is at 1. Bilinear interpolation

is used to determine the thickness and density between the entered values.

The finite element discretization of the wing is set using similar comma sepa-

rated lists of numbers representing percent chord and percent span. These num-

bers will define the edges of the triangular finite elements. Each of these lists

requires at least two numbers. For the chordwise finite elements, the first number

must be 0 (representing the leading edge) and the last number must be 1 (repre-

senting the trailing edge). For the spanwise finite elements, the first element can

be any value greater than or equal to 0 and less than 2. The last value must be

2. Here, the wing root is at 0, the kink is at 1, and the wing tip is at 2. When

the first value in the list is larger than 0, the flexible finite element structure does

not begin at the wing root. In the simulation, anything inboard of the first finite

element is treated as rigid. If the first number in the spanwise list is less than 1,

then there must be a finite element edge at the kink (a value of 1 must be in the

list).

The difficult, confusing process of designing a structural wing model is simpli-

fied with the use of the Plot Planform with FE, thickness, and density distribution

plotting tool. This tool is described in more detail in Section 2.11.
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Figure 13: Flutter Module.

2.9 Flutter Parameters Module

The Flutter Parameters Module controls the inputs for the dynamic aeroelastic

analysis. The module is shown in Figure 13. Variables that can be set here

include maximum number of time steps, CFL number, K2 dissipation factor,

K4 dissipation factor, the normalizing mode, the initial condition mode, initial

velocity, structural damping, and how frequently Flow3d.vtk files (used for 3-D

visualization) are generated. Additionally, the option to begin the simulation from

a steady, static, or previous flutter run is available. These parameters are only

used to generate the flutter input files and move the flutter executable to the run

directory. Unlike the other programs, the flutter simulation cannot be started

from within dfLap. Once the parameters are set and the input files are generated,

the flutter analysis can be easily run from the command line.

2.10 Analysis Module

The Analysis Module allows the user to run different analyses and to save and

load dfLap input files. The module is shown in Figure 14.

Entering all the data into the dfLap panel can be a tedious process. To avoid

this redundant work, the user is able to load a previous dfLap state or save the

current state using the Load dfLap Input File and Save dfLap Input File buttons.

Upon clicking one of these buttons, a file selection window appears, and the user
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can select the location of the dfLap input file. Sample input files are provided

with dfLap to help users get started.

The six buttons below the Load and Save buttons are used to run different

meshing or analysis programs (or to generate the flutter input files). The programs

and the dfLap modules required to run them are listed in Table 2. It is assumed

that the correct executable files are entered in the Input/Output Files Module.

Also, with the exception of the flutter program, for each program to run, all of the

programs above it in the table must have already been run. For flutter analyses,

the requirements for previously run programs depend on the initial conditions

chosen. For example, static results are not necessary when the analysis is started

from the steady CFD solution.

2.11 Plotting Module

The plotting module gives users access to visualizations that can help with model

development and analysis of results. The module is shown in Figure 15. Each of

the plot buttons generates matplotlib [3] plot windows which are displayed on the

screen and a pdf file which is saved in the Output Directory from the Input/Output

File Module.

Figure 14: Analysis Module.
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Table 2: dfLap programs and requirements.

Program Description Required dfLap Modules

G2DEX KINK 2-D mesh generation

Wing Planform Parameters,

Mesh Parameters,

Airfoil Parameters

TRIANG KINK Removal of similar nodes None

G3DEX 3-D mesh generation None

STEADY KINK Steady CFD analysis
Flow Parameters,

Steady CFD Parameters

STATIC KINK Static aeroelastic analysis

Flow Parameters,

Structural Model,

Static Aeroelastic Parame-

ters

FLUTTER Files

Build flutter input files and

move flutter executable to

output directory

Flow Parameters,

Structural Model,

Flutter Parameters
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The Plot Planform with FE, thickness, and density distribution button gener-

ates four plots of the planform defined in the Wing Planform Parameters Module

with (1) finite element discretization, (2) structural thickness distribution, (3)

structural density distribution, and (4) mass distribution as defined in the Struc-

tural Model Parameters Module. The plots are saved in planform with FE.pdf.

Example output is shown in Figures 16-19.

The Plot 2D Mesh button generates six plots, one of each of the 2-D mesh

surfaces (symmetry plane, wing surface, wing tip, wing attach wall, far wall,

and tunnel ceiling). The plots are saved in a file called mesh plots 2d.pdf. Prior

to generating these plots, the 2-D meshing analysis must have been completed.

Example plots are shown in Figures 20-25.

The Plot Steady Flow Distribution and Plot Static Flow Distribution buttons

Figure 15: Plotting Module.

Figure 16: Wing planform with finite elements plot from dfLap.
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Figure 17: Wing planform with thickness distribution plot from dfLap.

Figure 18: Wing planform with density distribution plot from dfLap.
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Figure 19: Wing planform with mass distribution plot from dfLap.

Figure 20: Symmetry plane mesh plot from dfLap.
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Figure 21: Wing surface mesh plot from dfLap.

Figure 22: Wing tip mesh plot from dfLap.
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Figure 23: Attach wall mesh plot from dfLap.

Figure 24: Far wall mesh plot from dfLap.
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Figure 25: Tunnel ceiling mesh plot from dfLap.

generate plots of different flow parameters on the wing upper and lower surfaces.

For steady, the plots are: Mach number, pressure coefficient (Cp), and pressure on

the wing upper and lower surfaces. For static, seven plots are generated: deflection

and Mach number, Cp, and pressure for the wing upper and lower surfaces. Figure

26 shows an example plot of the upper surface static Cp distribution. The plots

are saved in files called steady flow plots.pdf and static flow plots.pdf.

The Plot Steady Time Histories and Plot Static Time Histories buttons gener-

ate plots that show the convergence of key parameters during the simulation. Pa-

rameters include average residual, maximum residual, wing tip deflection (static

only), lift coefficient, moment coefficient, drag coefficient, and maximum Mach

number. Example plots from a static analysis are shown in Figures 27 and 28.

The plots are saved in files called steady time plots.pdf and static time plots.pdf.
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Figure 26: Example of the steady flow distribution plots from dfLap.

Figure 27: Example of the first page of the static time plots from dfLap.
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Figure 28: Example of the second page of the static time plots from dfLap.

The Plot Mode Shapes button generates contour plots of the first six structural

modes. An example plot is shown in Figure 29. The plots are saved in a file called

structural modes.pdf.

3.0 dfLap’s Python Functions

The dfLap source code consists of a series of Python functions. The functions

are divided into four categories: input file generation, program execution, results

plotting, and basic dfLap actions. Each category of functions is contained in its

own Python module (A module is a single text file with a .py extension.). A brief

explanation of the modules is provided to aid the user should the need to modify

the source code arise.
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Figure 29: Example of a mode shape contour plot from dfLap.

3.1 Input File Generation

The input file generation functions create all required input files for use in the

meshing and analysis programs. The input files are built when the Run button

for each program is clicked. The input files are all text based and can be viewed

in the Output Directory once they have been generated. Input file generation

functions are all contained in the dfLap input file builder 3.0.py module. With

the exception of the parameters that can be set in the dfLap interface, the input

file parameters are hard coded in the functions. If the user desires, for example,

a different background grid connectivity, he will need to edit the bkgrd matrix in

the build g2dex kink input function.
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3.2 Program Execution

The program execution functions are responsible for calling the input file genera-

tion functions, copying the program executable files to the output directory, and

running the meshing and analysis programs. The functions share the dfLap 3.0.py

module with the basic dfLap actions functions. They are easy to find within the

module as all the function names begin with Run.

3.3 Results Plotting

The results plotting functions are used to generate the plots explained in Section

2.11. The functions are found in the dfLap plotting.py module.

3.4 Basic dfLap Action

The basic dfLap actions functions control the GUI and the file dialog interfaces

for the linking of executables, the loading and saving of the dfLap input file, and

the notification pop-up windows. These are by far the least interesting of the

functions in dfLap, and it is unlikely that the user will want or need to edit these.

4.0 Example Solution

dfLap provides a systematic method for generation of aeroelastic meshes and

analysis input files. Through the combination of dfLap and the new kink versions

of the meshing and aeroelastic programs, many problems that plagued previous

versions of the process have been removed. This chapter outlines the steps used

to calculate a set of static aeroelastic results using dfLap.
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4.1 Setup

Setting up an aeroelastic solution in dfLap is as simple as filling in the blanks. It

is recommended that the user follow the order in which the modules are described

in Chapter 2.

To run any of the meshing or aeroelastic analyses, the appropriate executable

programs must be available. These should be entered in the boxes in the In-

put/Output File Module. The location of the executables is unimportant, as they

will be copied to and run in the Output Directory. When setting up a new analy-

sis, it is recommended that the Output Directory be a new, empty directory. This

directory is where the input and output files for all the programs will be saved.

If the user is unsure of the exact planform parameters desired, the Plot Plan-

form with FE, thickness, and density distribution function in the Plotting Module

is useful for checking and refining the planform. This plot is generated based

only on planform, structural finite element, thickness, and density discretization

parameters. No analyses are run to generate this plot. The geometry is calculated

and plotted using only the Python functions. As with all the plotting functions,

the Output Directory must be defined so the plots can be saved.

Once the parameters in all of the modules have been filled in, the dfLap state

can be saved. By clicking the Save dfLap Input File button, the user can select a

location and file name for the input file. All dfLap input files have a .ifl extension.

The saved file contains plain text with all the parameters that were entered into

the interface (0’s and 1’s are used for parameters controlled by radio buttons).

The Load dfLap Input File button can be used to return the interface to a saved
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Figure 30: Example of a dfLap pop-up notification window.

state.

4.2 Generating the Fluid Mesh

Fluid mesh generation is started by clicking the Run G2DEX KINK button. Run-

ning the 2-D mesh program is a significant strength of dfLap. The background

mesh is automatically adjusted and the δ values defined at the background mesh

grid points are scaled based on the wing planform. This nearly guarantees a good

mesh every time the program is run. Prior to dfLap, this work had to be done by

hand, and often took hours to complete.

When any Run button is clicked in dfLap, the appropriate input files are

generated, the executable file is copied to the Output Directory, and the program

is run. A pop-up window appears to notify the user that the program has started.

The pop-up window has an option to open the output file (Figure 30). When the

Open Output File button is clicked, the program standard out will be opened in

the default program for displaying .txt files. Usually a quick look at the output

file will reveal if the program has executed successfully, has failed to complete, or

is in the process of running.
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Once the 2-D mesh program has run successfully, it is advisable to check the

resulting mesh with the Plot 2D Mesh function. As described in Section 2.10, this

function will generate a series of plots that show the 2-D mesh.

To prepare for 3-D mesh generation, TRIANG KINK must be run to identify

and remove nodes that are located on top of one another. After this, the 3-D

mesh can be generated by clicking Run G3DEX. This process can take several

minutes. It is advised that the user open the output file and monitor it as the

program is running. As stated previously, each time a program is run, a pop-up

notification will appear giving the user direct access to the output file without

having to locate it in the Output Directory.

4.3 Running the Aeroelastic Programs

Once the 3-D fluid mesh has been generated, the aeroelastic analysis programs

can be run. First, the steady CFD solution must be run to calculate the flow

around the rigid wing. After this has completed, the results are used as the

initial conditions for the static aeroelastic analysis. The steady CFD or the static

aeroelastic results can be used to initialize the flow for flutter calculations.

The steady CFD analysis is run by clicking the Run STEADY KINK button.

The first time this analysis is run, the Continue From Previous Run? option should

be set to No. Once the analysis has completed, the results can be checked by

plotting the steady flow distribution and the time histories. The flow distribution

should be examined for abnormal discontinuities or peaks in the flow parameters

that could imply a problem with the solution. The time histories can be used to

examine how the solution is converging. If a more converged solution is desired,
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the simulation can be restarted by setting the Continue From Previous Run?

option to Yes and running the program again. The output from the first run

will be copied into the initial conditions file and used to start the new run. This

process can be repeated until suitable convergence occurs.

After a steady CFD solution has been calculated, the static aeroelastic sim-

ulation can be run. The process for this is similar to the steady solution. Flow

distribution and time histories should be used to check the results.

The flutter program can use steady CFD or static aeroelastic results as initial

conditions. When the user clicks the Build FLUTTER Files button, all the nec-

essary files needed to run a flutter analysis are placed into the output directory.

Because the flutter program demands a large amount of resources and runs for a

long period of time, it is not started by dfLap. Instead, the user must run the pro-

gram outside of dfLap. The process of running the program differs by operating

system and hardware configuration.
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APPENDIX B

Modifications to the Aeroelastic Code

B.1 Introduction

Several updates were made to the existing computational aeroelastic code. Vari-

ations of this code were used in References [4, 9–11, 37–42, 44–51, 53–56, 96, 126].

The updates include:

1. The ability to model cranked wing planforms was added. This includes the

ability to sweep the kink line and the wing tip. This is discussed in Section

B.2.

2. A programming error that was prohibiting the generation of highly swept

wings was found and fixed. This is discussed in Section B.3.

3. The wing tip meshing algorithm for the CFD portion of the code was im-

proved. This is discussed in Section B.4.

4. The code was updated to make use of the standard LAPACK (Linear Al-

gebra Package) library. This was implemented using a new version of the

Intel Fortran compiler with the Intel Math Kernel Library (IMKL). This is

discussed in Section B.5.
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5. An improved wing density and thickness distribution scheme was imple-

mented. A programming error that was affecting the thickness distribution

was found and corrected. This is discussed in Section B.6.

6. The input files for the static aeroelastic and flutter programs were updated

to include the speed of sound and ratio of specific heats, γ. This is discussed

in Section B.7.

7. The input files for the static aeroelastic and flutter programs were updated to

include structural finite element discretization. Previously, FE discretization

was written into the source code, and changing it required a recompile. This

is discussed in Section B.8

8. A program with a graphical user interface (GUI) was created to simplify

the process of running the aeroelastic code. The program is called dfLap,

the Inviscid Flutter Analysis Program. It can be used to generate input

files, run simulations, and produce graphical output. dfLap is presented in

Section B.9.

9. The steady CFD, static aeroelastic, and flutter programs were updated to

produce new output files which are useful for analyzing simulation results.

The new output files are discussed in Section B.10.

Details on these updates are included in this appendix. They are also all

clearly commented in the program source code and flagged with the string “*K* ”

By searching for this string, the updates can be found.
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B.2 Cranked Wing Geometry

To generate cranked wing planforms, changes were made to the source code for

g2dex, triang, steady, static, and flutter. Most of the changes were made in the 2-D

meshing code, g2dex, and the structural modeling sections of the static aeroelastic

and flutter codes, but the other codes required at least minor updates.

B.2.1 G2dex Updates for Cranked Wing Geometry

The source code for the 2-D meshing program, g2dex, required several updates so

that cranked wing meshes could be generated. The updated version of this code

is called g2dex kink.

New lines were added to the input file, g2dex.dat, to define the inboard and

outboard leading and trailing edge sweep angles, the sweep angle of the kink line

and the tip, the location of the kink, and independent aerodynamic thickness ta-

pering of the inboard and outboard sections. Details of the parameters that define

the wing planform are given in Section 2.4.2. The new input file format is read by

an updated subroutine, DATAIN2, which replaces the old subroutine, DATAIN.

The coordinates of the wing boundary are calculated in a new subroutine, PLAN-

FORM. The updated version of g2dex.dat can be generated automatically with

dfLap [Appendix A].

Previous versions of the meshing code required the wing tip to be parallel to

the wing root. In the updated version, both the wing tip and the kink line (the

line between the leading edge kink and trailing edge kink) can be rotated. New

subroutines created to handle this change are listed below.
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1. PCHORD and PSPAN take an X, Y coordinate pair as input and return

the location of a point on the wing in percent chord (between 0 and 1)

or percent span (between 0 and 1 for the inboard portion of the wing and

between 1 and 2 for the outboard portion of the wing).

2. CHORDLEN takes an X, Y coordinate pair as input and returns the wing

chord length at that point. Chords for the cranked geometry are lines of

constant percent span.

3. WINGTHICKNESS takes an X, Y coordinate pair as input and returns the

aerodynamic thickness of the wing at that point. The thickness of the wing

varies linearly along lines of constant percent chord.

4. LINEX is used in the other subroutines listed here to calculate the inter-

section of line segments. This is useful for determining if points are on the

inboard or outboard portion of the wing.

The outboard portion of the cranked wing planform is defined by two new

boundary lines, numbered 21 and 22. The lines are shown in Figure 2.2. Adding

them to the code required changes to the boundary line discretization subroutines,

BLINES and BLINED, and the 2-D surface definition subroutine, PATCH, which

was updated to PATCH2. The updated 2-D surface definitions are listed in Table

2.2.

To pass the cranked planform geometry to other programs, the output file

wing.inf was updated. Wing geometry is stored in this file. It is used by triang,

steady, static, and flutter.
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B.2.2 Triang Updates for Cranked Wing Geometry

The source code for the program that removes overlapping nodes, triang, has been

updated to accommodate cranked wing planforms. The updated version of the

program is called triang kink.

Two changes were made to triang. The format of the input file, wing.inf,

generated by g2dex kink was changed, so triang was updated to read the new

format. Also, the output file, corner.inf was updated to include the new geometry.

This file is used by steady, static, and flutter.

B.2.3 Steady Updates for Cranked Wing Geometry

The source code for steady, the steady CFD program, was updated to accom-

modate cranked wing planforms. The updated version of the program is called

steady kink.

The steady code was updated to be compatible with the new version of wing.inf

generated by g2dex kink. In addition, the MIRROR subroutine was updated to

accommodate the cranked wing geometry. MIRROR takes the upper half of the

computational domain created by the 3-D meshing program and creates a mirror

image of it to create the full computational domain.

B.2.4 Static Updates for Cranked Wing Geometry

The source code for the static aeroelastic program, static, was updated to work

with cranked wing planforms. The updated version of the program is called

static kink.
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In the old version of static, the shape of the wing structural model was defined

in the input file, static.dat. This could cause problems, as the structural and

fluid models could have dissimilar geometry. To fix this, the lines defining wing

geometry were removed from static.dat, and the source code was updated to read

the geometry from the wing.inf file. The wing.inf file is generated by g2dex kink,

so the fluid and structural geometry is now guaranteed to be consistent. The up-

dated version of static.dat can be generated automatically with dfLap [Appendix

A].

The structural model discretization was previously completed in a subroutine

called ELEMTXY. This subroutine created the nodes and element connectiv-

ity that was used to generate the structural finite element model. ELEMTXY

was updated to accommodate the cranked wing geometry, and is now called EL-

EMTXY KINK. The new version generates element nodes along lines of constant

percent chord and constant percent span as shown in Figure 3.8(c).

The subroutine SDMAP, which establishes the connection between fluid nodes

and structural finite elements as shown in Figure 4.2 has been updated to ac-

commodate the cranked wing geometry. The updated subroutine is called SD-

MAP KINK.

The subroutine used to calculate structural element deformation and local co-

ordinate systems, DEFCOOR, has been updated. In the old version, the initial

local coordinate systems were always coincident with the global coordinate sys-

tem. This fact was used to simplify the element deformation calculations. In

the updated version, in general, the initial local coordinate systems are different

than the global coordinate system. Because of this, the first time DEFCOOR is
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run in the updated program, the initial nodal coordinates and element coordinate

systems are saved. They are then referenced each subsequent time DEFCOOR is

run to calculate element deformation.

Like the steady CFD program, static uses the subroutine MIRROR to create

the full computational domain. This subroutine was updated to accommodate

the cranked wing geometry.

Many of the changes to static relied on the subroutines PCHORD, PSPAN,

LINEX, and CHORDLEN. These were presented in Section B.2.1.

B.2.5 Flutter Updates for Cranked Wing Geometry

The source code for the flutter program is very similar to the static code. Because

of this, the flutter code updates match the static code updates.

B.3 High Wing Sweep

The old version of the 2-D meshing program, g2dex, would often fail to run when

it was used to generate wings with leading edge sweep greater than 30 degrees.

In addition, as the sweep was increased, the elements on the wing would become

increasingly distorted. A wing with distorted elements is shown in Figure B.1.

A programming error responsible for the distortion was discovered in the

PATCH subroutine. The error was in the process responsible for mapping be-

tween the curved and the flat representations of the wing surface. The error was

corrected, and the updated program is now able to create meshes for any lead-

ing edge sweep without distortion (Figure B.2). For an explanation of mapping
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between curved and flat representations of the 2-D mesh, see Section 2.4.6.

B.4 Wing Tip Meshing

The old version of the 2-D meshing program, g2dex, would often fail while at-

tempting to create a mesh on the wing tip. Two changes were made to correct

this problem. First, two files formerly being used to define the airfoil shape and

mesh discretization were combined into one. Second, the tip mesh can now be

explicitly defined in an input file, avoiding the use of the advancing front method

(AFM) on the wing tip altogether.

The old program used two files to define the mesh on the wing tip boundary

lines. One file, airfoil.dat, defined the shape of the airfoil and the boundary lines.

A second file, omesh.out, was used to define the location of the mesh grid points

on the boundary lines. Making these two files work together involved mapping the

grid points, defined by omesh.out, onto the shape, defined by airfoil.dat. These

Figure B.1: Wing surface with distorted elements.
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Figure B.2: Wing surface after code update.

files were also used to define the mesh on the wing surface. In the new version of

the code, g2dex kink, one file is used to define both the wing shape and boundary

line discretization. The combined file kept the name of the old omesh.out file.

The airfoil.dat file is no longer used.

The old program used the AFM to discretize the wing tip. This process has

created problems throughout the life of the meshing code. Different solutions have

been attempted, but often, the user was forced to go into the source code and alter

the logic until a usable mesh was generated. To avoid issues like this, the code has

been updated to read in a user provided tip mesh which can be mapped to any

airfoil shape. A new subroutine, TIPMESH, reads a pre-defined wing tip mesh

geometry from a connectivity file nds tip.txt, and a coordinates file, xyz tip.txt.

The files are in the 2-D flat wing tip coordinate system (see Section 2.4.6). The

coordinates are scaled based on the geometry defined in omesh.out and mapped

onto the curved 2-D tip surface. The omesh.out, nds tip.txt, and xyz tip.txt files

must all “match”. That is, they all must use the same number of points to define
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the airfoil shape.

One pre-defined mesh is provided with dfLap, but new meshes can be developed

and used. Using the AFM to discretize the wing tip is still an option, and if the

process is completed successfully, the tip mesh is saved for use in future meshes.

Details of the tip meshing process can be found in the dfLap User’s Guide in

Appendix A.

B.5 The Intel Fortran Compiler and LAPACK

The static aeroelastic and flutter programs require some basic linear algebra pro-

cesses including solving systems of equations, calculating matrix inverses, and

eigenvalue and eigenvector calculation. In the old code, these processes were ac-

complished using the International Mathematics and Statistics Library (IMSL)

numerical software libraries which were included with an old version of the DIGI-

TAL Visual Fortran compiler. Unfortunately, this compiler is no longer supported

by the manufacturer and getting it to work with new operating systems and com-

puter hardware has become problematic. The leading Fortran compiler in the cur-

rent marketplace is provided by Intel and is part of the Intel Parallel Studio [129].

It includes the Intel Math Kernel Library (IMKL) [130] , which is an optimized

version of several open source libraries including the Linear Algebra Package (LA-

PACK) libraries. The IMKL libraries are highly vectorized and threaded and are

designed to take advantage of modern Intel processors with multiple cores.

The new libraries were included in the static aeroelastic and flutter pro-

grams by writing a series of subroutines which are called the same way as old
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IMSL subroutines (same names and input/output). The new subroutines call the

IMKL/LAPACK subroutines and are included in a file called imsl replacement.f.

Using these subroutines with the new Intel Fortran compiler has improved static

aeroelastic run times by a factor of two on an eight core Intel CPU.

B.6 Thickness and Density Distribution

With the updated geometry described in Section B.2, an improved mass and stiff-

ness distribution scheme was also desired. The old version of the code allowed lin-

ear variation of structural density and thickness from root to tip. The new version

of the code uses text based input files to define the thickness (span thickness in.txt)

and density (span density in.txt) at 2000 locations along the wing span. The vari-

ation does not have to be linear or even continuous. The first 1000 lines apply to

the inboard portion of the wing, while the second 1000 lines apply to the outboard

portion. Input files can be generated using dfLap.

To handle the update, the subroutine that builds the structural finite ele-

ment mass and stiffness matrices, MKSTR, was updated to a new version, MK-

STR KINK. Also, a new subroutine, GET THICK RHO, was written to read the

input files, interpolate between the defined values, and pass the thickness and

density to MKSTR KINK.

I the process of updating the code, a programming error was discovered in

MKSTR that was affecting the thickness distribution. A loop was being incre-

mented incorrectly, which was causing incorrect thickness values to be applied to

nearly the entire wing. Once the error was corrected, linear frequencies were re-
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Figure B.3: Comparison of wing structural frequencies.

calculated and compared (Figure B.3). The correction resulted in a slightly stiffer

wing. Under aerodynamic loading, the tip displacement decreased by about 4.5%.

B.7 Flow Properties

The speed of sound and the ratio of specific heats for the fluid is now defined in

the input files for the flutter and static aeroelastic programs. In the old versions

of static and flutter, the ratio of specific heats was hard coded into the program,

and the speed of sound was calculated from the free stream velocity, which was

read from the input file. By moving the ratio of specific heats to the input file,

it can be changed without recompiling the source code. The free stream velocity

line of the input file was replaced with a line for the speed of sound. This was

done based on user preference.
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B.8 Structural Discretization

In the old version of the static aeroelastic and flutter programs, structural finite

element discretization was set by a series of parameters that were shared between

multiple subroutines. Changing the discretization required the parameter values

to be changed consistently in multiple places throughout the code and for the

code to be recompiled. The parameters could not be changed to regular variables

because their values were used to declare the size of the structural finite element

matrices

In the new versions, structural discretization is set in the program input files,

and can be changed quickly and easily. To implement the change, the source code

was updated to take advantage of some features of Fortran 90. All the parameters

from the old code still exist, but their values were set to a number larger than

would be required by the largest structural model expected. This process caused

a problem when the code was compiled with Fortran 77 when the structural finite

element matrices were passed as input or output to subroutines. In Fortran 77, the

subroutines expected a different sized matrix than was passed, and the program

crashed. As a work around, Fortran 90 array sections were used. Array sections

allow only a portion of an array to be passed to a subroutine. The updated version

of the programs must be compiled using Fortran 90.

B.9 dfLap

To aid in the creation of input files for all the programs, a simplified front end

program with a GUI was created. The program is called dfLap, the Inviscid
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Flutter Analysis Program. Along with creating input files, it makes the process

of generating the fluid mesh as simple as possible. It can also be used to generate

visualizations of meshes and aeroelastic results. The dfLap User’s Guide can be

found in Appendix A.

B.10 Output Files

Previous versions of the steady CFD, static aeroelastic, and flutter programs

produced output files to create flow visualizations on the wing surface. To im-

prove the understanding of the flow field around the wing, a new subroutine,

FLOW3D OUTPUT was written to generate output files (flow3d steady.vtk and

flow3d static.vtk) that contain flow parameters for the entire computational do-

main. The files are in the standard vtk file format [131] and are readable by a large

number of CFD visualization programs. The output files contain the deformed

wing geometry along with the pressure coefficient, Mach number, pressure, fluid

velocity vector, and aerodynamic power at every grid point in the computational

domain. The output files for the flutter program are generated at a user defined

time step and can be used to create 3-D animations. The supplementary videos

included with this dissertation were created using these 3-D animations. Images

generated from these files can be found throughout Chapter 6.
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