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ABSTRACT OF THE DISSERTATION 

 

Interface Energy and Particle Size Effects on Effective Properties 

and Damage Energy Dissipation in Nanocomposites 

 

by 

 

Chung-Wen Chuang 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2014 

Professor Jiann-Wen Ju, Chair 

 

Nowadays, since the materials science and technique have been further advanced to the 

characteristic size of solids in nano-size structures and nanocomposites, the interface/surface 

energy effect on mechanical and physical properties and damage energy dissipation of a 

nano-scale material or composite becomes significant and cannot be ignored. Therefore, the 

interface/surface energy and particle size effects on the effective properties and the damage 

dissipation in nanocomposites are investigated. In this research, two viewpoints of observing the 
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interface/surface energy effect are provided in Chapters 3-5 and Chapter 6. The first is to study 

the interface/surface energy effect on the effective properties of the composite material upon the 

mechanism of micromechanics, while the second is to investigate the interface/surface energy 

effect on the energy dissipation due to the interfacial debonding between the particles and the 

matrix in the framework of the probability, such as the logarithmic normal distribution and 

Weibull’s distribution function. In addition, another method, called Rigid-Body-Spring Model 

(RBSM) method, is introduced in Chapter 7. In reality, the practical construction materials 

usually contain multi-phases, like concrete, wood, brick, masonry, etc. Accordingly, finding an 

easy and convenient method to estimate the interface/surface energy effect on those materials 

with multiple phases, so as to replace time-consuming and complicated micromechanical 

operations for the multiple-phase composites, is worth investigating and developing. 3D RBSM 

method is easy to incorporate with our present model by adding the illustrative results based on 

the interface/surface energy effect into RBSM’s constitutive model. In conclusion, the objective 

of this research is to develop the characteristic analytical expressions of the effective properties 

and the damage energy dissipation of the composite, especially the nanocomposite, with the 

interface/surface energy and particle size effects. Furthermore, since parts of the special 

cases/illustrations and/or formulations in the research is simplified with some assumptions, such 

as the axisymmetric stresses or loads, symmetric geometry of structures, fewer phases of 
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composites, small deformations, linear elastic moduli of materials, linearized parameters, etc., 

more complicated conditions and/or multi-physical parameters can be modified and induced in 

the present analytical models in the future. 
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Chapter 1 

INTRODUCTION 

 

 

1.1 Introduction to Composite Materials 

 

The word “composite” means, “consisting of two or more distinct parts”. That is to say, a 

material consisting of two or more distinct constituent materials or phases can be considered as a 

composite material (Agarwal et al., 2006). In composite materials, one of the phases, called the 

“inclusion” or “reinforcement”, is usually stiffer and stronger than the continuous phase, whereas 

the less stiff and weaker continuous phase is called the “matrix”. The inclusions/reinforcements 

in composites can be of various forms, such as fibers, whiskers, and particulates, which can be 

made of alumina, silicon carbide, silicon nitride, boron, and graphite, etc. Otherwise, the matrix 

material in composites serves as the binder material, which is made of polymers, metals, 

ceramics, or carbons, etc. In essence, the matrix is used not only to support and protect the 

inclusions/reinforcements but also to transfer local stresses between perfectly bonded and 

partially debonded/broken from one inclusion/reinforcement to another under three-dimensional 

complex loadings. The properties of composites are strongly influenced by the properties of the 

constituent materials, their distributions, and the interactions between heterogeneous constituent 

materials. Furthermore, the properties of composite materials may be predicted by the 

volume-fraction sum of the properties of the constituents, or the constituents may interact with 

each other in a synergic manner to provide the properties of the composites, which may not be 
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accounted for by a simple volume-fraction sum of the constituent properties. Moreover, the 

geometry of inclusion/reinforcement, such as shape and size, usually dominates the properties of 

composites. In reality, however, it is challenging to take all of them into account in the 

development of theoretical descriptions of composites.  

Composite materials, consisting of two or more materials or phases, are admitted and 

employed extensively to form specific new materials with certain desirable material properties 

and advanced performance capabilities. Due to the outstanding features of low density/weight, 

high strength, high stiffness, high toughness, high corrosion resistance, high temperature 

resistance, better wear resistance, and better wear environmental durability, composite materials 

have been widely applied the aircraft, automobile, sporting goods, and biomedical industries in 

the late 1970s (cf. Figure 1.1). However, the origin of the composite material can be traced back 

earlier to straw-reinforced bricks in ancient Egypt. In the nineteenth century, the masonry 

reinforced by iron rods becomes the predecessor of the present reinforced concrete. In 1942, the 

first boat reinforced by the glass fibers was made, and extensive applications of reinforced 

plastics to aircraft and electrical components were introduced. In the 1960s, boron and high 

strength carbon fibers were developed with the application of advanced composites to aircraft 

components. Metal matrix composites (MMCs), such as boron/aluminum, were introduced in the 

late 1970s. In 1973, DuPont developed Kevlar fibers (Daniel and Ishai, 1994).  
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(a) A carbon-fiber composite fuselage section (Boeing) 

http://boeingblogs.com/randy/archives/photos/composite_barrel.html 
 

 
(b) A carbon-fiber composite frame and wheels (Lamborghini) 

http://www.autoblog.com/photos/lamborghini-aventador/ 
 

 
(c) A carbon fiber composite bike (Giant) 

http://sanfrancisco.olx.com/pictures/giant-tcr-0-carbon-fiber-composite-bike-iid-222119644 
 

Figure 1.1 Application of composite materials 
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In addition to the applications of composites in practice, the study of composite is a subject 

with a long history, and many theories and concepts of composites were developed by some of 

the greatest scientists. For example, Poisson (1826) established a theory of induced magnetism in 

the body, which was assumed to be composed of conducting spheres embedded in a 

nonconducting material. Faraday (1839) proposed a model for dielectric materials that composed 

of metallic globules separated by insulating material. Maxwell (1873) solved for the conductivity 

of a diluted suspension of conducting spheres in a conducting matrix. Rayleigh (1892) found a 

system of linear equation, which could five the effective conductivity of nondilute square arrays 

of cylinders or cubic lattices of spheres. Einstein (1905) calculated the effective shear viscosity 

of a suspension of a rigid sphere in a fluid. 

 

 

1.2 Classification of Composite Materials 

 

A brief classification of composite materials is shown in Figure 1.2. Ther are four commonly 

acknowledged types of composite materials, including  

(1) Fibrous composite materials that consist of fibers in a matrix. 

(2) Laminated composite materials that consist of layers of various materials. 

(3) Particulate composite materials that are composed of particles in a matrix. 

(4) Combinations of some or all of the first three types. 
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Figure 1.2 Classification of composite materials (Sun, 1998) 
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Composite materials can also be classified according to their matrix phase. For example, 

polymer matrix composites (PMCs), ceramic matrix composites (CMCs), and metal matrix 

composites (MMCs) are the most popular matrix materials in composites. Materials within these 

categories are often called the advanced composite materials. Advanced materials combine the 

properties of high strength, high stiffness, low weight, corrosion resistance, high temperature 

resistance, and in some cases special electrical properties. This combination of properties makes 

advanced composite materials very attractive in the applications of next generation aircraft and 

aerospace structural parts. Advanced composite materials are originally developed primarily for 

the applications of aerospace and defense industries. To date, the advanced composite materials 

are also widely adopted in civil engineering applications. For instance, carbon-fiber and 

glass-fiber have been used as prestressing materials, particularly for areas in which the corrosion 

and stress embrittlement of conventional prestressed steel easily take place. Moreover, a 

corresponding research has been conducted to enhance the efficiency and convenience of column 

retrofit by bonding jackets composed of composite materials, like glass-fiber and carbon-fiber, to 

the column with epoxy (Priestley et al., 1995). 

 

 

1.3 Micromechanics and Representative Volume Element (RVE) 

 

Traditional continuum mechanics deals with idealized materials under the assumptions of  

(1) The elastic properties of a solid at a given point are the same in every direction (isotropy). 

(2) The material property is the same at all points within the solid (homogeneity).  

These two assumptions render a uniform stress/strain distribution within an infinitesimal material 
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element. Through the optical morphology, however, it is found that the microscopic structure of a 

solid is complex, consisting of grain boundaries, inclusions, cracks and other defects 

(Nemat-Nasser and Hori, 1993). Obviously, the stress/strain fields within such an infinitesimal 

material element and its neighborhood are not uniform at the microscopic level. Furthermore, it 

is impractical, even impossible, to account for each of them in engineering design and analysis. 

Hence, it is adequate to characterize the overall or effective properties of those 

heterogeneous/anisotropic materials by taking advantage of a rigorous theoretical framework (Qu 

and Cherkaoui, 2006), and this is the major objective of micromechanics in practice. 

In micromechanics, an important concept used to characterize the effect of inhomogeneities 

is the RVE (Representative Volume Element) (cf. Nemat-Nasser and Hori, 1993). An RVE for a 

material point of a continuum mass defines a material volume that statistically represents the 

infinitesimal material neighborhood of that material point. In other words, an RVE features the 

“mesoscopic” length scale that is much larger than the characteristic length scale of 

inhomogeneity/inclusion but is much smaller than the characteristic length scale of the 

“macroscopic” specimen. On the foundation of the concept of the RVE, micromechanics can 

describe the continuum constitutive relations in terms of the properties and structure of the 

micro-constituents within the RVE. Mathematically, this type of procedure is related to the 

ensemble-average (homogenization) method and leads to an overall micromechanical governing 

field equation. 
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1.4 Nanocomposite and Interface/Surface Energy 

 

If a composite material contains nano-scale inclusions/reinforcements, this composite is 

called a nanocomposite. Moreover, in this research, the mechanism of nanocomposites is mainly 

derived based on the micromechanics of solids. The only difference is that the effect of the 

interface/surface energy between the particles and the matrix is considered in the derivations. 

Therefore, the interface/surface tension (and interface/surface energy) is introduced first here. 

Interface/surface tension is a contractive tendency of the surface of a liquid that allows the 

surface of the liquid to resist an external force. It is revealed, for example, in the floating of some 

objects on the surface of water, even though they are denser than water, and in the ability of 

some insects (e.g. water striders, as shown in Figure 1.3) to run on the water surface. This 

property is caused by cohesion of similar molecules, and is responsible for many of the behaviors 

of liquids. Furthermore, in composites, many researchers have been provided that the 

interface/surface tension also exists between inclusions and the matrix. Specifically, as the 

characteristic size of inclusions is smaller, the effect of the interface/surface tension becomes 

larger, especially in nano-scale composites. Therefore, since the nanocomposites is considered in 

this research, the effect of the interface/surface tension should be taken into account on the 

mechanical and physical properties of composites, for instance, such as the influence on the 

effective moduli in Chapter 3 and on the damage energy dissipation in Chapter 4. 

Interface/surface tension has the dimension of force per unit length, or of energy per unit 

area. These two are equivalent. But when the dimension of energy per unit of area is regarded, 

the term of “interface/surface energy”, which is a more general term in the sense that it applies to 

not only liquids but also solids, is commonly used. Moreover, in materials science, 
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interface/surface tension is used for either surface stress or surface free energy. 

The values at the specific temperature of the interface/surface energy, in the units of energy 

per unit area or force per unit length, for some kinds of common liquids are tabulated, as shown 

in Table 1.1. It is found that the typical values of the interface/surface energy are within the 

range between 10 and 90 mJ/m2, or 0.010 and 0.090 J/m2, except for the extreme value of 

Mercury. 

 

 

 

 

Figure 1.3 Water Strider (Charles Lewallen) 
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Liquid 
Temperature 

(°C) 

Interface energy 

(mJ/m2 or mN/m) 

Acetic acid 20 27.6 

Acetic acid (40.1%) + Water 30 40.68 

Acetic acid (10.0%) + Water 30 54.56 

Acetone 20 23.7 

Diethyl ether 20 17.0 

Ethanol 20 22.27 

Ethanol (40%) + Water 25 29.63 

Ethanol (11.1%) + Water 25 46.03 

Glycerol 20 63 

n-Hexane 20 18.4 

Hydrochloric acid 17.7M aqueous 

solution 
20 65.95 

Isopropanol 20 21.7 

Mercury 15 487 

Methanol 20 22.6 

n-Octane 20 21.8 

Sodium chloride 6.0M aqueous solution 20 82.55 

Sucrose (55%) + water 20 76.45 

Water 0 75.64 

Water 25 71.97 

Water 50 67.91 

Water 100 58.85 

Table 1.1 Values of the interface/surface energy for some kinds of common liquids (Dean,

 1985) 
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1.5 Objectives 

 

In this research, two viewpoints of observing the interface/surface energy effect are provided. 

First, in Chapters 3, 4, and 5, the interface/surface energy effect on the effective properties of the 

composite material upon the mechanism of micromechanics is studied. In Chapter 6, the 

interface/surface energy effect on the energy dissipation due to the interfacial debonding between 

the particles and the matrix in the framework of the probability, such as the logarithmic normal 

distribution and Weibull’s distribution function is investigated. In addition, another method, 

called Rigid-Body-Spring Method (RBSM), is introduced in Chapter 7, to provide an idea for 

future investigations in the interface/surface energy effect on the effective properties of the 

multi-phase composites. 
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Chapter 2 

LITERATURE REVIEW 

 

 

Based on the theory of micromechanics, when a material contains inhomogeneities of 

different material properties, such as voids, cracks, grains, inclusions and other defects, there 

exists an internal stress (eigenstress) field in that material, even if under no external load. Such 

an internal stress field may be caused by the eigenstrain inside the inhomogeneities due to the 

misfit and phase transformation. Eshelby (1957) first introduced that under an applied stress, and 

the stress perturbation due to the presence of an inhomogeneity can be simulated by an 

eigenstress due to an inclusion when an eigenstrain is chosen properly. 

 

 

2.1 Eshelby’s Micromechanical Theory 

 

Consider an infinitely extended material domain D of the elastic modulus  0L  containing 

an inclusion (inhomogeneity) domain   of the elastic modulus  1L . Suppose that the applied 

stress at infinity is  0 x  and the corresponding stain is  0 x . Moreover, the perturbed stress 

field and perturbed strain field are denoted by  ' x  and  ' x , respectively. In this regard, 

the Hooke’s law leads to the form 

         10 ' 0 '
ij ij ijkl kl klL       x x x x    in      (2.1) 
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         00 ' 0 '
ij ij ijkl kl klL       x x x x    in D     (2.2) 

 To deal with heterogeneous solids, it is convenient and effective to consider the equivalent 

homogeneous solids (Eshelby, 1957). First, an eigenstrain (eigenstress) field is developed to be 

equivalent to an inhomogeneity distribution. That is, such the distribution of inhomogeneities 

may be replaced by an eigenstrain field upon the equivalent mechanical effect. This equivalency 

mapping process is called the Eshelby’s equivalent eigenstrain (eigenstress) principle (or named 

Eshelby’s equivalence principle), which is a homogenization method. Specifically, Eshelby’s 

equivalent eigenstrain (eigenstress) principle is used to establish a homogenized field by 

replacing the inhomogeneity with a homogenized inclusion through a prescribed eigenstrain field, 

and this homogenized field can then be mechanically equivalent to the original inhomogeneous 

field, as shown in Figure 2.1. 

 

Figure 2.1 The equivalent RVE and eigenstrain 



D 
Matrix

Inclusion 

   1 0 ': L    

Original Heterogeneous RVE

*

Matrix 

Inclusion 

   0 0 ' *:  L   

 

Equivalent Heterogeneous RVE 
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 A stress-free strain  * x  is introduced in the inclusion domain   to account for the 

mismatch of the material properties between the matrix and inclusion. Through the Eshelby’s 

equivalence principle (see an illustrative scheme in Figure 2.2), the application of Hooke’s law 

in   and D  yields 

           00 ' 0 ' *
ij ij ijkl kl kl klL         x x x x x    in    (2.3) 

         00 ' 0 '
ij ij ijkl kl klL       x x x x      in D   (2.4) 

It is found apparently that the necessary and sufficient condition for the equivalency of Eqs. (2.1) 

and (2.3) is 

             1 00 ' 0 ' *
ijkl kl kl ijkl kl kl klL L             x x x x x      (2.5) 

In the case of an uniform stress  0 x  at the far field, this stress-free  * x  is supposed to be 

uniform in inclusion domain  . Alternatively, Eq. (2.5) can also be written in form of matrix 

notations as following, 

       1 00 ' 0 ' *: :   L L              (2.6) 

where  0L  and  1L  represent the elastic stiffness of the matrix and inclusion, respectively; 0  

and '  signify the far-field strain and perturbed strain, respectively. 

In addition, based on the local stress and strain field, the ensemble-averaging process 

(homogenization) can be performed within the representative volume element (RVE) to obtain 

overall effective constitutive equations and properties of the homogenized heterogeneous 

materials. For instance, the ensemble-averaged stress and strain are expressed by the following 

equations, 

     
0 1

1 1
r

n

V V V
r

d d d
V V 

    
  x x = x x x x         (2.7) 
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     
0 1

1 1
r

n

V V V
r

d d d
V V 

    
  x x = x x x x         (2.8) 

where V  is the volume of an RVE. Further, 0V  and rV  represent the volume of the matrix 

and the r th-phase inhomogemeity, respectively; n  denotes the number of phases of different 

material properties with an exception of the matrix material. By combining the Eshelby’s 

equivalence principle with the ensemble-averaging method, the overall constitutive relations and 

elastic and elastoplastic behaviors of the heterogeneous materials can then be described. 
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Figure 2.2 Schematic presentation of Eshelby’s equivalence principle and eigenstrain concept 

A composite RVE embedded in an infinite matrix 
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2.2 Interior-Point Eshelby Tensor 

 

The stress-free  * x  is referred to as the transformation strain by Eshelby (1957) or the 

eigenstrain by Mura (1987). Thermal expansion, phase transformation, initial strains, plastic 

strains and misfit strains can all be categorized as a form of eigenstrain. On the other hand, the 

eigenstress is a generic name for the self-equilibrated internal stresses caused by one or several 

of these eigenstrains in bodies, which are free from any other external force and surface 

constraint. The eigenstress is created by the incompatibility of the eigenstrain. For 

micromechanical modeling of elastic heterogeneous solids, Eshelby pointed out following 

significant results: 

If 

(1) The matrix is homogeneous, linearly elastic and extended infinitely. 

(2) The inclusion domain is ellipsoidal. 

Then 

(1) The eigenstrain is uniformly distributed within the inclusion domain. 

(2) Perturbed strain '
 
and the perturbed stress '

 
caused by the presence of the inclusions 

are also uniform within the inclusion domain. 

(3) Specifically, the perturbed strain in the inclusion domain is demonstrated by  

 

' *

' ' ';
i

id




  

S :

S G x x x x, x

 
    (2.9) 

Since the perturbed strain is evaluated in the inclusion in Eq. (2.9), the tensor of S  is called the 

interior-point Eshelby’s tensor. Furthermore, S  is dependent on not only the material properties 
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of the inclusion, but also the shape of the ellipsoidal inclusion in domain i  and Poisson’s ratio 

of the isotropic matrix material ( 0 ). 

 

 

2.3 Determination of Effective Moduli 

 

In this research, several methods to evaluate approximately the effective properties of 

heterogeneous materials are developed. All the approaches presented are based on the Eshelby 

inclusion solution. The basic idea of micromechanics is to derive solutions of either the global or 

local strain concentration tensors. Once such strain concentration tensors are known, the 

effective properties can be easily obtained. One common approach of developing the strain 

concentration tensors is to use Eshelby solution in conjunction with the equivalent inclusion 

method. For example, consider the r th ellipsoidal inhomogeneity r  with stiffness tensor rL  

is placed within a uniform matrix 0  of stiffness tensor 0L̂ , which is subjected to the uniform 

strain 
0̂  before the inhomogeneity is embedded, as shown in Figure 2.3.  
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Figure 2.3 (a) The r th inhomogeneity in the composite; (b) The r th inhomogeneity in a 

uniform matrix of stiffness 0L̂ , which is subjected to the uniform strain 0̂  before the 

inhomogeneity is embedded 

 

In this case, the equivalent inclusion equation is  

   0 ' 0 ' *
0

ˆˆ ˆ: :r r r r   L L            (2.10) 

and according to the Eshelby solution, 

' *ˆ
r r r S              (2.11) 

where ˆ
rS  is the Eshelby tensor computed using the elastic constants of 0L̂  and the geometry 

of the r th inhomogeneity r . Substitution of the Eshelby solution into the equivalent inclusion 

equation yields the eigenstrain 

r  0  

1  

2  

N  

(a) 

r   0ˆ   

0L̂

(b) 
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   1
* 0

0 0 0
ˆˆ ˆ ˆ ˆr r r r


     L L S L L L        (2.12) 

The total strain in the r th inhomogeneity can then be written as 

0 ' 0 * 0 0ˆ ˆˆ ˆ ˆr r r r    S A             (2.13) 

and  

  1
0 1

0 0
ˆ ˆ ˆ ˆ

r r


    A I S L L L         (2.14) 

where 0Â  is the local strain concentration tensor for the r th inhomogeneity. The 

corresponding stress on the r th inhomogeneity is  

0 0ˆ ˆ
r r r r L L A            (2.15) 

The strain and stress fields in the r th inhomogeneity are now related to an unknown strain field 

0̂  and a fictitious matrix material with 0L̂ . Once 0̂  and 0L̂  are known from the 

micromechanics schemes discussed in the following sections, the strain concentration tensors, as 

well as the effective properties of the composite, can be obtained. 

 

2.3.1 Eshelby Method 

If the inhomogeneities in the composite are far apart from each other, their interactions may 

be neglected. In other words, each inhomogeneity can be regarded as if it exists in a 

homogeneous matrix without the interference by other inhomogeneities. Therefore, a typical 

inhomogeneity, for example, the r th inhomogeneity, can be treated as an ellipsoidal 

inhomogeneity in an otherwise uniform matrix of 0L , which is subjected to a uniform strain 0  

before the inhomogeneity is imbedded. Hence, based on the scheme of the Eshelby method, 



23 

0 0

0 0

ˆ

ˆ





L L

 

           (2.16) 

and consequently, 

ˆ
r rS S            (2.17) 

Moreover, the average strain tensor of the composite can be easily seen to equal to 0 , namely, 

01
V

dV
V

             (2.18) 

Therefore, the strain in the r th inhomogeneity is expressed as 

0
r  A             (2.19) 

Accordingly, the global strain concentration tensor for the r th inhomogeneity can be found as 

      0
r A A            (2.20) 

Thus, the effective stiffness tensor of the composite is written by 

        0
0 0rf  L L L L A         (2.21) 

where f  is the volume-fraction sum of all inhomogeneities in the composite. Since the 

derivations given by Eshelby method assumes that the inhomogeneities in the composite are so 

far apart that they do not interfere with each other. Hence, the Eshelby estimate is valid only for 

very low volume fraction of inhomogeneities, or the dilute case. 

 

2.3.2 Ju and Chen’s Scheme and Mori-Tanaka Method 

For a typical inhomogeneity of the stiffness rL  ( r  > 0) in the composite, the effects (or the 

existence) of other inhomogeneities are communicated to it through the strain and stress fields in 

its surrounding matrix material. Although the strain and stress fields are different from one 
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location to another in the matrix, the averages ( 0  and 0 ) represent good approximations of 

the actual fields in the matrix surrounding each inhomogeneity, when a large number of 

inhomogeneities exist and are randomly distributed in the matrix (which is the case for most 

engineering composites). Moreover, it would be reasonable to assume that the overall elastic 

behavior of the composite cannot be affected if only one inhomogeneity is taken out. In other 

words, when the r th inhomogeneity is removed and replaced by the matrix material (or 

equivalently, let 0r L L ), the averages ( 0  and 0 ) would remain the same. Therefore, as far 

as the r th inhomogeneity is concerned, it can be viewed as an ellipsoidal inhomogeneity with 

the stiffness tensor rL  place within a uniform matrix of stiffness tensor 0L , which is subjected 

to the uniform strain 0  before the inhomogeneity is embedded. Hence, in the case of the Ju 

and Chen’s scheme (or equivalently, Mori-Tanaka method in this case), 

0 0

0
0

ˆ

ˆ





L L

 

           (2.22) 

and consequently, 

ˆ
r rS S            (2.23) 

Therefore, the strain in the r th inhomogeneity is described as 

0
0r  A            (2.24) 

Accordingly, the global strain concentration tensor for the r th inhomogeneity can be expressed 

as 

        10 01r f f


    A A I A        (2.25) 

Thus, the effective stiffness tensor of the composite is written by 
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       0 0r rf  L L L L A         (2.26) 

It is noted that in order to accelerate the understanding and formulating of the 

interface/surface energy effect on the composite, in this research, the derivations developed by Ju 

and Chen method are somewhat simplified and hence most of them coincide with the 

corresponding results given by Mori-Tanaka method. 

 

 

2.4 Various Stresses in Continuum Mechanics 

 

In continuum mechanics, stress is a measure of the internal forces acting within a deformable 

body. Quantitatively, it is a measure of the average force per unit area of a surface within the 

body on which internal forces act. These internal forces arise as a reaction to external forces 

applied to the body. Because the loaded deformable body is assumed to behave as a continuum, 

these internal forces are distributed continuously within the volume of the material body, and 

result in the deformation of the body’s shape. Beyond certain limits of the material strength, this 

can lead to a permanent shape change or structural failure. 

The most commonly used measure of stress is the Cauchy stress. However, several other 

measures of stress can be defined. Some such stress measures that are widely used in continuum 

mechanics, particularly in the computational context, are the Cauchy stress (or true stress), the 

Kirchhoff stress, the nominal stress, the first Piola-Kirchhoff stress, the second Piola-Kirchhoff 

stress and the Biot stress. Among them, the Cauchy stress (or true stress), the first 

Piola-Kirchhoff stress and the second Piola-Kirchhoff stress are emphasized here since these 

three stresses are further used in Chapter 3. 
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Consider the situation shown in Figure 2.4. In the reference (or original) configuration 0 , 

the outward normal unit vector of a surface element 0d  is 0n   and the traction acting on that 

surface is 0t  leading to a force vector 0df . In the current (or deformed) configuration  , the 

surface element changes to d   with outward normal unit vector n   and the traction vector t  

leading to a force df . It is noted that this surface can either be a hypothetical cut inside the body 

or an actual surface. 

 

 

 

Figure 2.4 Quantities used in the definition of stress measures 

 

2.4.1 Cauchy Stress 

The Cauchy stress (or true stress),  , is a measure of the force acting on an element of area 



0df0n  
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in the current configuration. The tensor is symmetric and is defined via 

d d d    f t n          (2.27) 

or 

T

i ji j j ij it n or t n 

 

 

t n
        (2.28) 

where t  is the traction and n   is the normal unit vector of the surface on which the traction 

acts. The Cauchy stress tensor is used for stress analysis of material bodies experiencing small 

deformation where the differences in stress distribution in most cases can be neglected. For large 

deformations, also called finite deformations, other measures of stress, such as the first and 

second Piola-Kirchhoff stress tensors, the Biot stress tensor and the Kirchhoff stress tensor, are 

required. 

 

2.4.2 First Piola-Kirchhoff Stress 

In the case of finite deformations, the Piola-Kirchhoff stress tensors express the stress 

relative to the reference configuration. This is in contrast to the Cauchy stress tensor which 

expresses the stress relative to the current configuration. For infinitesimal deformations or 

rotations, the Cauchy and Piola-Kirchhoff tensors are identical.  

The nominal stress TN P  is the transpose of the first Piola-Kirchhoff stress (PK1 stress) 

P  and is defined via 

0 0 0 0 0 0
Td d d d      f t n P n       (2.29) 

or 

0 0 0
T  t n = P n          (2.30) 
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This stress is not symmetric and is a two point tensor like the deformation gradient. This is 

because it relates the force in the current configuration to an oriented area vector in the reference 

configuration. 

 

2.4.3 Second Piola-Kirchhoff Stress 

If df  is pulled back to the reference configuration, then, 

1
0d d f F f           (2.31) 

or 

1 1
0 0 0 0 0

Td d d      f F n F t       (2.32) 

The second Piola-Kirchhoff stress (PK2 stress) S  is symmetric and is defined via  

1
0 0 0 0 0

Td d d    f S n F t       (2.33) 

Therefore,  

1
0 0

T  S n F t          (2.34) 

 

Whereas the first Piola-Kirchhoff stress relates forces in the current configuration to areas in the 

reference configuration, the second Piola-Kirchhoff stress relates forces in the reference 

configuration to areas in the reference configuration. 
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Chapter 3 

INTERFACE ENERGY EFFECT ON SIZE-DEPENDENT 

EFFECTIVE PROPERTIES OF A HETEROGENEOUS 

MATERIAL 

 

 

ABSTRACT 

 

In this chapter, the interface/surface energy effect is regarded as the change of the residual 

elastic field induced by the interface stress from the reference configuration to the current 

configuration. At the beginning, with consideration to the framework of finite deformation theory, 

the interface/surface energy effect is accounted into the governing equations. Then, upon the 

infinitesimal strain analysis, the approximate formulation of a finitely deformed multi-phase 

elastic medium is derived. Accordingly, after two kinds of fundamental equations, the 

interface/surface constitutive relations and the Young-Laplace equations, are executed, the 

analytical equations of the size-dependent effective moduli of a composite material containing 

heterogeneous particles with the interface/surface energy effect are developed. Lastly, the 

analytical equations together with the corresponding illustrative results in the cases of the 

influence of the liquid-like interface/surface energy, as a type of residual stress terms, on the 

effective properties of a heterogeneous material are discussed. By comparing the present model 

with other models established based on the Eshelby and Mori-Tanaka methods, it is 
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demonstrated that the present model is more applicable to characterize real composite materials. 

Further, it is found that the results with the interface/surface energy effect in our model, different 

from the results given by preceding researchers, can be applied to the nanocomposites. 

 

Key Words: Interface/surface energy effect; Two-phase composite; Finite deformation theory; 

Infinitesimal strain analysis; Nanocomposite 

 

 

3.1 Introduction 

 

Nowadays, since the materials science and technique have been advanced to the 

characteristic size of a nano-scale solid in structures and composites, the interface/surface energy 

effect on mechanical and physical properties of nanocomposites and nano-size structures 

becomes significant and cannot be ignored. Therefore, the interface/surface energy effect should 

be accounted into the deformation analysis of solids. 

Many studies have been published in the literature to present the concept of 

interface/surface energy in solids. Among them, Gibbs (1906) was the first researcher who 

introduced the concept of the interface/surface free energy in solids. Since then, this concept has 

been investigated by many researchers. For example, Shuttleworth (1950) and Herring (1953) 

worked on the interface/surface energy problems in solids; Orowan (1970) expanded the 

interface/surface energy problems to both solid and liquid materials; Gurtin and Murdoch (1975) 

established a continuum theory of elastic material surfaces. Moreover, the mechanism of the 

interface/surface energy was gradually developed by Cahn (1978), Cammarata (1994), Ibach 



32 

(1997), Haiss (2001), Muller and Saul (2004), Fried and Gurtin (2004), and Murdoch (2005). 

In Huang and Sun (2007), the change of the elastic fields induced by the interface energies 

and the interface stresses from the reference configuration to the current configuration was 

considered. It was emphasized that there are two kinds of fundamental equations required to be 

introduced in the solution of boundary-value problems for stress fields with the interface/surface 

energy effect. The first is the interface/surface constitutive relations, whereas the second is the 

discontinuity conditions of the stress across the interface, namely, the Young-Laplace equations. 

These two fundamental equations are used to predict the effective moduli of a composite 

material with the interface/surface energy effect. Although an infinitesimal strain analysis is 

employed to establish the governing equations induced by the interface/surface energy, the finite 

deformation analysis (also known as the large deformation analysis) of a multi-phase 

hyperelastic medium should be concerned at the beginning, according to reasons as follows:  

(1) The mechanical response from the reference configuration to the current configuration 

should be considered in the study of the mechanical behavior of a composite material or a 

structure. In this regard, the change of the size and the shape of the interface in the process 

of the deformation reflect the change of the curvature tensor in the governing equations. In 

other words, the change of the deformation and the configuration leads to the change of the 

residual elastic field induced by the interface energy. In essence, hence, this is a finite 

deformation problem. Furthermore, the interface/surface energy effect is explicitly verified 

by the change of the residual elastic field due to the change of the configuration. 

(2) To develop the governing equations with the interface/surface energy effect, a residual 

elastic field induced by the interface energy and the interface stress in the material should be 

introduced, even though there is no external loading. That is to say, through accounting for 
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the change of the residual elastic field upon the change of the configuration, the effect of the 

liquid-like interface/surface energy on the effective properties of a composite material can 

then be included. In this chapter, this type of the interface energy model is emphasized and 

discussed. 

(3) The constitutive relations for the hyperelastic solids with the interface/surface energy effect 

at the finite deformation have been formulated by Huang and Wang (2006) and Huang and 

Sun (2007), as introduced in Section 3.5 Appendix A. Moreover, the approximation 

expressions of the changes of the interface stress and the Young-Laplace equations due to 

the change of the configuration through the infinitesimal deformation analysis can be found 

in Section 3.6 Appendix B. These constitutive relations are expressed in terms of the free 

energy of the interface per unit area at the current configuration, denoted by   (see 

Section 3.6 Appendix B for more details). 

In addition, composite materials have developed rapidly over the last several decades. They 

are usually designed to meet the diverse needs for enhancing material performance with 

advanced thermo-mechanical properties, reduced unit weights, versatile directionality, optimal 

anisotropy, etc., and for improving material mechanical strengths, elastic moduli, delamination 

resistance, fracture toughness and fatigue resistance. Reinforcements could be continuous in the 

form of fibers, or discontinuous in the form of particles or whiskers. Especially, for engineers 

and scientists, to predict and estimate overall mechanical properties and behaviors of random 

heterogeneous multi-phase composites are of quite interest in many science, technology, 

engineering and mathematical disciplines. In general, mechanical properties and behaviors of 

composites are dependent on properties of constituent phases and microstructures of 

inhomogeneities, such as shapes, orientations, aspect ratios, volume fractions, random locations, 
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etc. 

 

 

3.2 Effective Moduli of a Particle-Filled Composite 

 

Based on the theoretical framework formulated in Section 3.5 Appendix A and Section 3.6 

Appendix B, analytical equations used to predict the effective properties of a composite 

reinforced by spherical particles are developed in this section. Many models in traditional 

micromechanics have been used to predict effective moduli of composites, such as the models 

developed by Mura (1987), Nemat-Nasser and Hori (1999), Milton (2002), and Torquato (2002). 

Moreover, many investigations on the inhomogeneities with the imperfect interfacial bonding 

conditions or the interface effects have been provided by the works of Benveniste(1985), 

Benveniste and Miloh (2001), Hashin (1991; 2002), and Duan et al. (2005). In the past, Sharma 

and Ganti (2004) have formulated the effective bulk moduli of spherical particle-filled 

composites with the interface effect using the composite spheres assemblage (CSA) model 

(Hashin, 1962). Duan et al. (2005) derived the effective bulk and shear moduli of such 

composites using the composite spheres assemblage model, the Mori-Tanaka method (MTM) 

(Mori and Tanaka, 1973) and the generalized self-consistent method (GSCM) (Christensen and 

Lo, 1979). The difference between the present work in this chapter and those of Sharma and 

Ganti (2004) and Duan et al. (2005) is that: at the outset with the finite deformation theory 

proposed by Huang and Wang (2006), the infinitesimal deformation approximations of the 

interface/surface constitutive relation and the Young-Laplace equation based on the Lagrangian 

description in consideration to the change of configuration are derived. Therefore, the 
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requirement for using the asymmetric interface stress in the Young-Laplace equation is clearly 

verified and the effect of the residual interface/surface energy *
0  on the effective elastic moduli 

is shown. Assuming that the inhomogeneity incorporated with the interface is regarded as an 

“equivalent inhomogeneity”, for a problem on the inhomogeneity with the interface/surface 

energy effect, the micromechanical scheme upon the present work for a two-phase composite is 

applicable immediately. In this case, the volume averages of the stress and strain for the 

“equivalent inhomogeneity” have to be calculated on the matrix side due to the discontinuity of 

the stress across the interface. Consequently, the explicit derivation of the stress discontinuity 

conditions across the interface is significant. The work in this chapter gives an understanding of 

the interface/surface energy effect by accounting for the change of the interface stress in Eq. 

(3.43) and Eq. (3.50) due to the change of configuration, and the interface moduli are directly 

related to the parameters of the interface energy. Moreover, in order for the comparison of the 

differences, as well as the finding of the advantages, between the present work and the models 

based on the Mori-Tanaka approximation method (Mori and Tanaka, 1973) and the Eshelby 

method (Eshelby, 1957), the corresponding expressions established by these two methods are 

also displayed in the following sections if they differ from those obtained by the present model. 

Consider a two-phase composite composed of the matrix and randomly distributed spherical 

inhomogeneities, in which the radius of the inhomogeneity is assumed to be a . The effective 

stiffness tensor of the composite, L , can be described as 

 0 * 0 :   rL L L L A        (3.1) 

where 0L  and *L  are the stiffness tensors of the matrix and the “equivalent inhomogeneity” 

(namely, an inhomogeneity incorporated with the interface), respectively;   is the volume 
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fraction of the sum of all inhomogeneities; rA  denotes the fourth-order global strain 

concentration tensor for the r th equivalent inhomogeneity. If the Ju and Chen’s scheme (1994a; 

1994b; 1994c) is applied, rA  is given by 

  1

* 0 0r


 A L - L L         (3.2) 

Assuming all particles are spherical and both matrix and particles are isotropic elastic, rA  in Eq. 

(3.2) can be advanced to express as  

  10 (1) 0: 1  


    rA A I A       (3.3) 

where (1)I  is the fourth-order unit tensor; 0A  is the strain concentration tensor of the 

equivalent inhomogeneity in an infinite matrix corresponding to dilute distribution of 

inhomogeneities, or simply named the local strain concentration tensor if rA  is relatively 

considered as a global strain concentration tensor. It can be found that Eq. (3.3) coincides with 

the corresponding results obtained by using the Mori-Tanaka method (Benveniste, 1987; Weng, 

1990) in the case of this section. Whereas, the corresponding expression of rA  given by the 

Eshelby method is written as 

0
r A A            (3.4) 

Eq. (3.4) implies that the interactions among equivalent inhomogeneities may be neglected. In 

other words, each equivalent inhomogeneity can be treated as if it exists in a homogeneous 

matrix without the interference by other inhomogeneities. 

In addition, if the inhomogeneities are randomly distributed, the composite material is 

statistically isotropic and the elastic moduli in Eq. (3.1) can be expressed as 
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0 0 0

* * *

3 2

3 2

3 2

m s

m s

m s

K

K

K







 

 

 

L I I

L I I

L I I

        (3.5) 

where 0K , *K  and K  are the bulk moduli of the matrix, the equivalent inhomogeneity and 

the composite, respectively; 0 , *  and   are the shear moduli of the matrix, the equivalent 

inhomogeneity and the composite, respectively. It is also known that 

1

3m  I I I , (1)
s m I I I        (3.6) 

Substituting Eq. (3.6) into Eq. (3.5), Eq. (3.1) is further decoupled into 

 

 

0 * 0

0 * 0



    

  

  

m

s

K K K K A

A

        (3.7) 

where mA  and sA  are the constants in the strain concentration tensors corresponding to the 

bulk and shear moduli, respectively, as follows, 

  

  

0

0 * 0

0

0 * 0

1

1

 


    


  


  

m
m

s
s

K
A

K K K

A

      (3.8) 

Here, 

 
 

0

0 0

0 0

0 0

3

3 4

6 2

5 3 4

m

s

K

K

K

K

















         (3.9) 

m  and n  are components of the fourth-order Eshelby inclusion tensor. It is noted that the 
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elastic moduli *K  and *  of the equivalent inhomogeneity can be obtained by using Eqs. (3.43) 

and (3.50) for this purpose. In the case of the spherical inhomogeneity of radius a , 0s u  can 

be described in terms of the physical components ( ru , u , u ) in a spherical polar coordinate 

system as the following equation, 

0

1
cot

sin

1
cot

sin

r r
s

r

u uu uu u

r r r r r r

u u u

r r r

  
     

 
 


   


 

                         

 
     

u e e e e e e

e e

 (3.10) 

For the axisymmetric loading, 0u  . Since ru  and u  are not dependent on  , 0s u  is a 

symmetric tensor, as shown below, 

0 cotr r
s

u uu u

r r r r
 

   


               
u e e e e        (3.11) 

In the above case, Eq. (3.50) may be replaced by Eq. (3.51). It is noticed that, in the reference 

configuration, the curvature tensor on the surface of the sphere with radius a  is 

0 0

1
 

a
b i           (3.12) 

Eq. (3.43) can be expressed as 
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39 

In order to compute the bulk modulus *K  of the equivalent inhomogeneity, suppose that a 

spherical inhomogeneity is embedded in an infinite medium under the hydrostatic loading with 

the remote strain as 

1

3 mE E I           (3.14) 

In this case, the displacement and stress fields in the inhomogeneity and matrix are given by 

2

3
3 4

i i
r i

i i
rr i i i

G
u F r

r

G
K F

r
 

 

 

        (3.15) 

The superscript 1, 0i   denotes the quantities of the inhomogeneity and matrix, respectively. 

1F , 0F , 1G  and 0G  are constants to be determined. In addition to the displacement continuity 

condition at the interface r a , the elastic solution needs to satisfy the stress discontinuity 

condition in Eq. (3.13), namely, 

    0 1 * *
0 1 12

2
| 2 |rr rr r a r r au

a
             (3.16) 

According to the above conditions, the non-singular condition at the origin and the 

condition at infinity, the constants in Eq. (3.15) can be determined. Therefore, the (secant) bulk 

modulus *K  of the equivalent inhomogeneity can be obtained by 

 * *
0 1 1*

* 1
*

2 2
|

3 3r a

tr
K K

tr a

  


 
  




    (3.17) 

where *  and *  represent the volume averages of the stress and strain of the equivalent 

inhomogeneity that includes the inhomogeneity and the interface, respectively. *
0 0 1 2      , 
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*
1 1 2 11 12 222 2          , and *

0  and *
1  form the residual interface/surface energy. 

Further, it is found that there are at least three independent material parameters *
0 , *

1  and 1  

required in the above equation. About the detailed description of the interface/surface free energy 

 , it can refer to Section 3.6 Appendix B. 

Moreover, the shear modulus *  of the equivalent inhomogeneity can be found by 

imposing a pure deviatoric remote strain at infinity as, 

 3 3 1 1 2 2

1

2eE         
E e e e e e e      (3.18) 

where 1e , 2e  and 3e  are the base vectors in a rectangular Cartesian coordinate system. From 

the solution of Lur’e (1964), the displacement and stress fields in the inhomogeneity and matrix 

can be written by 
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   (3.19) 

The superscripts 1 and 0 denote the quantities of the inhomogeneity and matrix, respectively. 1  

and 0  are Poisson’s ratios of the inhomogeneity and matrix, respectively.  2 cosP   is the 

second-order Legendre polynomial. A , B , C  and D  are constants to be determined. 

Similarly, in addition to the displacement continuity condition at the interface r a , the elastic 

solution needs to satisfy the stress discontinuity condition in Eq. (3.13). Then, the unknown 

constants can be determined in a way similar to that for the bulk modulus. The shear modulus 

*  of the equivalent inhomogeneity can be calculated by 
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        (3.20) 

where * e
  and * e

  are the effective average stress and the effective average strain of the 

equivalent inhomogeneity, respectively. It can be easily found that *K  and *  are not only 

functions of the elastic moduli of the inhomogeneity, such as 1K  and 1 , but also the functions 

of the size of particles, a . Substituting the obtained *K  in Eq. (3.17) and *  in Eq. (3.20) into 

Eq. (3.7), the analytical expressions of the effective moduli K  and   of the composite can be 

expressed by 
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Furthermore, it is found that the above effective bulk modulus can also be given by using the 

composite sphere assemblage (CSA) model, as referred to Sun et al. (2004). 

 In addition, the corresponding expressions of K  and   established upon the Eshelby 

method, by following the same procedure mentioned above, can be written as 
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3.3 Illustrative Results and Discussion 

 

Two special cases of the two-phase composite materials are discussed in this section. The 

first special case is a porous material containing spherical nano-voids, and the corresponding 

effective bulk and shear moduli of the composite with the interface/surface energy effect can be 

obtained by substituting 1 0K   and 1 0   into Eqs. (3.21) and (3.22), as follows, 
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As this special case is assumed to be a composite containing the liquid-like spherical 

inhomogeneities, namely, *
0 0  , *

1 1 0   . Furthermore, assuming the matrix material 

becomes incompressible, i.e., 0 0  , Eqs. (3.25a) and (3.26a) become,  
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It is noted that the same expressions of the effective bulk and shear moduli of a porous 

material containing nano-voids with the interface/surface energy effect can be found upon the 

Mori-Tanaka approximation method. In addition, if the Eshelby method is executed, the 

corresponding effective bulk modulus of a porous material containing spherical nano-voids with 

the interface/surface energy effect is given by 
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     (3.27) 

The second special case is a two-phase composite containing the liquid-like spherical 

inhomogeneities, namely, *
0 0  , *

1 1 0   , then the effective bulk and shear moduli of the 

composite with the interface/surface energy effect are 
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From Eqs. (3.28) and (3.29), it is obviously seen that the interface/surface energy 0  

affects the effective moduli of the composite. Furthermore, if the Mori-Tanaka approximation 

method is considered, the corresponding effective bulk modulus of a two-phase composite 

containing the liquid-like spherical inhomogeneities with the interface/surface energy effect is 

evaluated as 
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It can be found that the above expression of the effective bulk modulus of the composite is 
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slightly different from the one obtained by the Ju and Chen’s scheme. Moreover, if the Eshelby 

method is performed, the corresponding effective bulk modulus of a two-phase composite 

containing the liquid-like spherical inhomogeneities with the interface/surface energy effect is 

written by 
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In addition, in order to compare the above results with those obtained by other interface 

models, an interface with the following properties is considered: the displacement across the 

interface is continuous, but the traction is allowed to be a discontinuity across the interface; 

furthermore, assume that there is no residual elastic field induced by the interface/surface energy 

when the material is not under any external loading. This kind of interface can also be considered 

as an equivalency of a thin and stiff interphase, as referred to the works by Benveniste and Miloh 

(2001) and Wang et al. (2005). In the case of the infinitesimal deformation, the constitutive 

relation of the above interface can be expressed by 

 ' '
0 2s s s s str  σ E i E        (3.32) 

Eq. (3.32) can be given directly by setting *
0 0   in Eqs. (3.47), (3.48) and (3.52), where 
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           (3.33) 

In this case, there is no need to distinguish between the interface Piola-Kirchhoff stress of the 

first kind sS  and the Cauchy stress of the interface s . Therefore, we can apply the 

infinitesimal deformation formulation from the beginning. Further, based on Eq. (3.32), the 
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effective bulk and shear moduli of the composite filled with spherical particles can be calculated 

by simply substituting *
0 0   into Eqs. (3.21) and (3.22), as shown in the following equations, 
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It is obvious that the effective moduli obtained by this way are not influenced by the residual 

interface energy, *
0 . Meanwhile, Eqs. (3.34) and (3.35) become the same as the expressions 

based on the traditional micromechanics given by the previous researcher (e.g., Qu and 

Cherkaoui, 2006). In particular, from Eqs. (3.28) and (3.29), the effective moduli of the 

composite material with a liquid-like interface would be the same as those of a perfectly-bonded 

composite material, if Eq. (3.32) is employed. 

After the above formulations of the effective moduli of the composite with the 

interface/surface energy effect are derived, the corresponding illustrative results, for an example, 

are displayed as follows. Suppose that the bulk modulus of the matrix material is 0 2.5 GPaK , 

and the shear modulus is 0 0.5 GPa  . The surface is assumed to be liquid-like with a 

interface/surface energy 2
0 0.05 J/m  . The volume fractions of the sum of all voids are 

assumed to be 5%  , 10%  , 15%  , 20%   and 25%  , respectively. 

Accordingly, the variations of the normalized effective bulk and shear moduli proposed in Eqs. 

(3.25b) and (3.26b) for polypropylene containing spherical voids are illustrated in Figure 3.1 and 
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Figure 3.2. In the figures, 0K  and 0  are the effective bulk and shear moduli of the material 

without the interface/surface energy effect. From these two figures, it is found that the 

interface/surface effect decreases with the increase of the size of the voids and almost can be 

neglected when the radius of the void is larger than 10 nm. (The x-axis in Figure 3.1 used 

maximum of 5 nm is for the purpose of compactness). 

However, the experimental data for the nanocomposite particle sizes between 1 nm and 10 

nm are currently not available due to the difficulties in performing experimental works for the 

nanocomposite materials with such small particles. To the best of our knowledge, although the 

science and technology of the smallest characteristic sizes of nanocomposite particles have 

potentially advanced to about 25 nm to 75 nm, the experimental data within this scope are still 

unavailable. In other words, there exists difficulty in performing nanocomposite experiments 

containing the particles of smaller than 25-75 nm to compare with our model. 

Moreover, in order to fit the framework of the micromechanics, the theory of the continuum 

mechanics, and investigate the scope within the nano-scale level, we set the minimum size of 

nano-particles limited to 0.1 nm in our model. 

In addition, by comparing Figure 3.1 and Figure 3.2, it is interesting to note that the size of 

particles affected by the interface/surface energy in the effective bulk modulus is stronger than 

that in the effective shear modulus. For example, in Figure 3.1, the interface/surface energy 

effect is considered to influence the effective bulk modulus of the composite when the size of 

particles is smaller than 10 nm, whereas the interface/surface energy effect is considered to 

influence the effective shear modulus of the composite when the size of particles is smaller than 

around 0.18 nm, as shown in Figure 3.2. The reason is that a series expansion of the interface 

energy (Huang and Wang, 2006) is used in our model. As we know, in the sight of mathematics, 
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the effects/quantities of higher-order terms are getting smaller and smaller in the exact solution 

of a series expansion. Moreover, in the sight of micromechanics, the higher-order terms are 

composed of more deviatoric effect, whereas the volumetric effect greatly relies on the 

lower-order terms. Therefore, as a special case of the liquid-like interface materials, because the 

higher-order terms in the equation of the interface/surface energy are neglected, in contrast with 

the effective shear modulus, the effective bulk modulus is affected more by the volumetric 

effects of the interface/surface energy. In that event, as shown in Figure 3.1 and Figure 3.2, , we 

can hence explore that the effective bulk modulus, dependent more on volumetric effects of the 

liquid-like interface/surface energy, has stronger effect on particle sizes than the effective shear 

modulus does. This outcome meets our expectations. 
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Figure 3.1 Normalized effective bulk modulus against the radius of voids in the range  

of nanometer size with five different volume fractions and 2
0 0.05 J/m   
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Figure 3.2 Normalized effective shear modulus against the radius of voids in the range 

of nanometer size with five different volume fractions and 2
0 0.05 J/m   
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In Figure 3.3 and Figure 3.4, the variations of the normalized effective bulk and shear 

moduli against the radius of voids with various values of the interface/surface energy are plotted. 

It is found that the larger the interface/surface energy becomes, the more the effect of the 

interface/surface energy is on the effective moduli of the composite. Moreover, the effects of the 

different values of the interface/surface energy on the effective moduli of the composite may be 

convergent to coincide with the increase of the size of the voids. 

In addition, suppose that the bulk moduli of the matrix material and particles are 

0 2.5 GPaK  and 1 2.5 GPaK , respectively. The shear moduli of the matrix material and 

particles are 0 0.5 GPa   and 1 0.5 GPa  , respectively. The surface is assumed to be 

liquid-like with the interface/surface energy 2
0 0.05 J/m  . The volume fractions of the sum of 

all voids or particles are assumed to be 10%  , 20%   and 25%  , respectively. 

Accordingly, the variations of the normalized effective bulk and shear moduli proposed for 

polypropylene containing spherical particles are illustrated in Figure 3.5 and Figure 3.6, 

respectively. In the figures, 0K  and 0  are the effective bulk and shear moduli of the material 

without the interface/surface energy effect. Moreover, the variations of the normalized effective 

bulk modulus for polypropylene containing spherical voids are also illustrated simultaneously in 

Figure 3.5 for the purpose of a comparison; so are the variations of the normalized effective 

shear modulus for polypropylene containing spherical voids in Figure 3.6 for the purpose of a 

comparison.  

In Figure 3.5, it is found that the stiffer the inclusion becomes, the less the effect of the 

interface/surface energy is on the effective bulk modulus of the composite if the same volume 

fraction is proposed. However, it is obviously seen that the higher the volume fraction become, 

the more the effect of the interface/surface energy is on the effective bulk modulus of the 
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composite.  

By contrast, Figure 3.6 shows the variations of the normalized effective shear modulus 

proposed for polypropylene containing spherical particles. It can be seen that the effect of the 

interface/surface energy is quite significant on the effective shear modulus of the composite no 

matter which stiffness or volume fraction of the inclusions is proposed. In addition, if the higher 

volume fraction (with the same strength) of the particles is executed, it is found that the 

interface/surface effect on the effective shear modulus of the composite increases. Further, at the 

same strength of particles, more volume fraction used results in larger size of the particles is 

affected by the interface/surface energy. This phenomenon coincides with the result from the 

effective bulk modulus of the composite containing spherical particles in Figure 3.5, but 

becomes more obvious on the interface/surface energy effect.  

 

 

 

 

 

 

 

 

 

 

 

 



56 

 

 

 

 

 

 

Figure 3.3 Normalized effective bulk modulus against the radius of voids in the range of 

nanometer size with five different interface/surface energies and 20% volume fraction 

( 20%  ) 
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Figure 3.4 Normalized effective shear modulus against the radius of voids in the range of 

nanometer size with five different interface/surface energies and 20% volume fraction 

( 20%  ) 
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Figure 3.5 Normalized effective bulk modulus against the radius of voids and particles in the 

range of nanometer size with different volume fractions ( 10%  , 20%   and 25%  ) 

and 2
0 0.05 J/m   in two cases: 

1) 0 12.5 GPa & 0 K K  (void); 

2) 0 1 2.5 GPa K K . 
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Figure 3.6 Normalized effective shear modulus against the radius of voids and particles in the 

range of nanometer size with different volume fractions ( 10%  , 20%   and 25%  ) 

and 2
0 0.05 J/m   in two cases:  

1) 0 10.5 GPa & 0    (void);  

2) 0 1 0.5 GPa   . 
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Figure 3.7 shows the comparison among three different schemes developed by Ju and Chen 

(1994), Mori and Tanaka (1973) and Eshelby (1957). It can be seen that, except the result 

produced by the Eshelby method, the results developed by Ju and Chen’s model and 

Mori-Tanaka’s model are extremely approaching. Furthermore, Figure 3.8 illustrates the 

difference of the normalized effective bulk modulus against the radius of voids by using the Ju 

and Chen’s scheme and Eshelby method with different volume fractions of the voids. It can be 

found that while the volume fractions of the sum of all voids become smaller, the results 

obtained by these two schemes are closer. This is because the scheme developed by the Eshelby 

method neglects the interaction among the equivalent inhomogeneities. That is, each equivalent 

inhomogeneity is regarded as if it exists in a homogeneous matrix without the interference by 

other equivalent inhomogeneities. As a result, when the volume fraction is smaller, the 

interaction among the equivalent inhomogeneities becomes less. In other words, even if the 

interaction is considered in the model established by the Ju and Chen’s scheme, the smaller the 

volume fraction is, the less the interaction among the equivalent inhomogeneities becomes, 

leading to closer results from these two different schemes. 
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Figure 3.7 Comparison of the normalized effective bulk modulus against the radius of voids 

using three different models 
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Figure 3.8 Comparison of the normalized effective bulk modulus against the radius of voids 

using the Ju and Chen’s scheme and Eshelby method with different volume fractions of the voids 
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In order to investigate the parametric effects of the interface/surface energy, in Figure 3.9, 

we execute the primary term of the interface energy, 0 , from 0.05 J/m2, 0.10 J/m2 (cf. interface 

energy of water is 0.059 J/m2 (100℃) - 0.076 J/m2 (0℃)), 0.25 J/m2 and 0.50 J/m2 (cf. interface 

energy of mercury is 0.059 J/m2), respectively, to perform the interface/surface energy of 

liquid-like property. From Figure 3.9, it is seen that the interface energy will expand the effect to 

larger size of particles in a composite material when the primary term of the interface/surface 

energy, 0 , is getting larger and larger. For example, when the values of 0  are 0.05 J/m2, 0.10 

J/m2, 0.25 J/m2 and 0.50 J/m2, the interface/surface energy effect on the particle size of the 

composite are about 10, 20, 30, and 40 nm, respectively. In Figure 3.10, the normalized effective 

bulk modulus against the radius of voids with four different values of the liquid-like 

interface/surface energy is plotted together for the purpose of comparison. However, even though 

the interface/surface energy effect can reach to the scope of within 25 nm to 75 nm, as mentioned 

before, the experimental data with the characteristic size of nanocomposite particles within this 

scope are still unavailable. Therefore, further experimental validations and comparisons will be 

performed once the associated experimental data become available. 
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Figure 3.9 Individual plots for normalized effective bulk modulus against the radius of voids in 

the range of nanometer size with four different interface/surface energies and 20% volume 

fraction ( 20%  ) 
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Figure 3.10 Normalized effective bulk modulus against the radius of voids in the range of 

nanometer size with four different interface/surface energies and 20% volume fraction 

( 20%  ) 
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Lastly, a sequent discussion is followed by Figure 3.11, Figure 3.12, Figure 3.13, and 

Figure 3.14, we explore the effect of the secondary parametric term of the interface/surface 

energy, 1 , on the particle size of the composite when the 0  is assumed to be consistent. For 

instance, Figure 3.11 plots the variation of the effective bulk modulus for the five different 1  

when the 0  = 0.05 J/m2. In this case, in addition to the slightly variations of the effective bulk 

modulus of the composite within the range of 0.1 to 10nm, all of five sub-figures show that the 

interface/surface energy effect can be ignored when the particle size is greater than 10 nm. 

Therefore, we can conclude that the secondary term of the interface/surface energy influences 

much less than the primary term of the interface/surface energy. Moreover, the secondary term of 

the interface/surface energy performs barely on changing the interface/surface energy effect on 

the particle sizes of the composite. In other words, the interface/surface energy remains the effect 

on the particle size of smaller than 10 nm regardless of the change of the secondary term of the 

interface/surface energy. The similar results can be observed from Figure 3.12, Figure 3.13, and 

Figure 3.14 for the different cases of 0  = 0.10 J/m2, 0.25 J/m2, and 0.50 J/m2, respectively. 

Hence, we can bravely come to a conclusion that the other higher-order terms of the 

interface/surface energy would perform scarcely on the effect size change of the nanocomposite 

particles influenced by the interface/surface energy. 
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Figure 3.11 Individual plots for normalized effective bulk modulus against the radius of voids in 

the range of nanometer size with five different secondary terms, 1 , of the interface/surface 

energy with 0 = 0.05 J/m2 
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Figure 3.12 Individual plots for normalized effective bulk modulus against the radius of voids in 

the range of nanometer size with five different secondary terms, 1 , of the interface/surface 

energy with 0 = 0.10 J/m2 
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Figure 3.13 Individual plots for normalized effective bulk modulus against the radius of voids in 

the range of nanometer size with five different secondary terms, 1 , of the interface/surface 

energy with 0 = 0.25 J/m2 
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Figure 3.14 Individual plots for normalized effective bulk modulus against the radius of voids in 

the range of nanometer size with five different secondary terms, 1 , of the interface/surface 

energy with 0 = 0.50 J/m2 
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3.4 Conclusions 

 

The interface/surface energy effect on the macroscopic mechanical behavior of a composite 

is investigated through starting with the finite deformation theory of a multi-phase hyperelastic 

medium. Then, the approximate formulation of a finitely deformed multiphase elastic medium by 

an infinitesimal deformation analysis is executed. According to the existence of the interface 

energy, even though under no external loading, there is still a “residual elastic field” induced by 

the interface stress. During the deformation process of a composite from the reference 

configuration to the current configuration, the changes of the size and shape of the interface leads 

to the change of this “residual elastic field”. It is noticed that the governing equations describing 

the change of the “residual elastic field” due to the change of the configuration are formulated 

under the infinitesimal deformation approximation and hence lead to the use of the asymmetric 

interface stress in the prediction of the effective properties of heterogeneous materials with 

interface/surface energy effect. Therefore, the influence of the residual interface/surface energy 

can be taken into account. In particular, the theoretical framework is applied to obtain the 

analytical expressions of the effective bulk and shear moduli of a composite with spherical 

“equivalent inhomogeneities” (i.e. the inhomogeneities together with the interface/surface 

energy). Moreover, it can be seen that the mechanical behavior of the composite reveals the 

size-dependent effect when the interface energy effect is considered. Furthermore, it is found that 

the analytical results developed in this chapter are applicable in the study of nanocomposites, 

even if the formulations are mainly derived based on the mechanism of micromechanics. 

In addition, through the illustrative figures developed based on the analytical expressions, it 

is found that the interface/surface effect decreases with the increase of the size of the voids and 
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almost can be neglected when the radius of the void is larger than 10 nm. Moreover, it can be 

seen that the larger the interface/surface energy becomes, the more the effect of the 

interface/surface energy is on the effective moduli of the composite. In addition, if the higher 

volume fraction of the particles (with the same strength/stiffness) is executed, it is found that the 

interface/surface effect on the effective bulk and shear moduli of the composite increases. 

Further, at the same strength of particles, more volume fraction used results in larger size of the 

particles is affected by the interface/surface energy. Lastly, except the result produced by the 

Eshelby method, the results developed by Ju and Chen’s model and Mori-Tanaka’s model are 

extremely approaching. 

 

 

3.5 Appendix A: Formulations upon Finite Deformation Theory 

 

The constitutive relations of the interface have been widely investigated by many 

researchers in the literature. But most of works on this subject are confined to the infinitesimal 

deformation approximations. Suppose that the interface/surface energy per unit area in the 

current configuration is denoted by  . If the interface is assumed to be isotropic relative to the 

reference configuration 0 , i.e. the underlying reference configuration is an undistorted state, 

then   can be expressed as a function of the invariants of sU  and sV , or a function of 1J  

and 2J , as follows, 

1

2 det det

s s

s s

J tr tr

J

 

 

U V

U V

        (3.36) 
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where sU  and sV  are the right and left stretch tensors of the interface, respectively; 1J  and 

2J  are the first and second invariants of sU  and sV . If the small deformation is concerned, the 

strain at the interface may be approximately expressed by 

 0 0 0

1

2s s s s    E u u U i       (3.37) 

where 0s  is the surface gradient operator on operator in the reference configuration 0 ; 0su  

is the displacement gradient of the interface; 0i  is the second-order identity tensor in the tangent 

plane of the interface in the reference configuration. Substituting Eq. (3.37) into Eq. (3.36), 1J  

and 2J  can be re-written as 

1

2

2

1 det

s

s s

J tr

J tr

 

  

E

E E

        (3.38) 

In the case of the isotropic interface and the small deformation, the interface Piola-Kirchhoff 

stresses of the first kind and second kind including “out-of-plane term” can be formulated as 

     

 

     

 

   
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2 2 0 2 2 2 0
1 2 1 1 2

1

2 2
1 2

     

  

 

       
                 

 

  
     

 

in in

s s s

s s

out out

s s s
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s

in out

s s s

J J J J J
J J J J J

J J
J J

S F T

i E u

S F T
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S S S

  (3.39) 

2 2 0 2 2
1 2 1 2

2 2s sJ J J J
J J J J

    
      

              
T i E      (3.40) 
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where sF  is the “out-of-plane term” of surface gradient. And the Cauchy stress of the interface 

can be described by 

   

2 0 2
1 2 1 1 2

     
        

                    

Tout out

s s s sJ J
J J J J J

σ i E F F    (3.41) 

Therefore, it is found that sS , sT  and the Cauchy stress of the interface sσ  are not the 

same, even if the infinitesimal deformation approximation is performed. The situation is totally 

different from that in the three dimensional analysis in the traditional elasticity, in which there is 

no residual stress in the reference configuration. In other words, only through the beginning with 

the finite deformation theory, an appropriate infinitesimal interface stress is then chosen in the 

governing equations if the interface/interface energy effect is taken into account on the 

mechanical properties of a heterogeneous material. 

 

 

3.6 Appendix B: Approximations upon Infinitesimal Deformation Analysis 

 

In this section, the approximate equations of the changes of the interface stress and the 

Young-Laplace equation due to the change of configuration under the infinitesimal deformation 

is introduced. Then, the analytical equations for the effective moduli of a particle-reinforced 

composite is given through the application of the theory by Huang and Sun (2007), which depicts 

the effect of the liquid-like interface/surface energy on the effective moduli. 

The governing equations, such as the equilibrium equations, based on one configuration are 

well-known in the infinitesimal analysis in the traditional elasticity. In order to study the 

interface energy effect, however, the residual elastic field induced by the interface energy should 
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be taken into account. Although the interface induced the residual elastic field in the reference 

configuration or in the current configuration is not cared for, the change of the residual elastic 

field induced by the interface energy from the reference configuration to the current 

configuration is strongly concerned. Since after and before deformation, the Cauchy stresses (in 

the bulk material and at the interface) are not in the same configuration based on the Eulerian 

description, it is obvious that the difference of the Cauchy stresses cannot be used to represent 

this change. Therefore, the Lagrangian description is applicable, so that the generalized 

Young-Laplace equation based on the Lagrangian description given by Huang and Wang (2006) 

can then be expressed in terms of the interface Piola-Kirchhoff stress of the first kind in the 

following, 

   

   

0
0 0

0
0 0 0

0

  
       

  

  
        

  

  

   

   

in out

s s s

in out

s ss

N S N - S : b N S

P S N - S N S b

P I N N

    (3.42) 

where the symbol    denotes the discontinuity of a quantity across the interface; 0S  is the 

first kind Piola-Kirchhoff stress in the bulk material; I  is the unit tensor in three-dimensional 

space; N  is the unit normal vector to the interface in the reference configuration 0 ; 0b  is the 

curvature tensor of the interface in 0 .  

Obviously, the change of the residual elastic field induced by the interface energy can be 

re-written by adding the difference sign into the above equation, as follows, 
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in out

s s s
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s ss
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   (3.43) 

where   denotes the difference of the quantities between the current and reference 

configurations. In order to account for the interface energy effect, the interface Piola-Kirchhoff 

stress of the first kind sS  should be employed in the analysis, as shown in the equations above. 

This is the key point addressed by Huang and Wang (2006), but the previous researchers seemed 

to ignore that in the study of the effective properties of a heterogeneous material with interface 

energy effect. Next, an infinitesimal deformation approximation is executed. In the case of the 

infinitesimal deformation, 0S  in Eq. (3.43) could be approximated by the difference of the 

bulk Cauchy stress between the current and reference configurations, while sS  in Eq. (3.39) is 

described in terms of the interface/surface free energy  . 

In addition, the equation of the interface/surface free energy is linearized in order to 

simplify the algebraic operations at the beginning of the research. Accordingly,   can be 

written as 

          

1 2 1 2

2 2

0 1 1 2 2 11 1 12 1 2 22 2

1 2, 1 2 2, 1
1 2

1 1
2 1 2 2 1 1

2 2

| , |

      

     

             

 
 
 J J J J

J J J J J J

J J

 (3.44) 

Where 0 , 1 , 2  represent the intrinsic physical properties of the interface, and they are, and 

should be determined by the joining materials and the adhering condition.  0 2,1   is 
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equivalent to the interface/surface energy of a liquid-like material and hence reflects the nature 

of liquids, whereas 1  and 2  reflect the nature of solids; 1 2J   and 2 1J   are first-order 

small quantities. Suppose that only the first-order small quantities are considered in Eq. (3.39) 

and higher-order small quantities are neglected, from 

 * * *
2 2 0 0 1

1 2
sJ J tr

J J

     
  

       
E     (3.45) 

and 

 2 1 0 11 12
1

sJ tr
J

    
   


E       (3.46) 

Then, 

  
 

* * * * *
0 0 0 1 0 0 0 1 0         

out

s s s s strS i + E i u + E F   (3.47) 

 
   

* * *
0 0 1 0 1 0   
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      

 
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s s s s strσ i E i E F F    (3.48) 

where *
0 0 1 2      , *

1 1 2 11 12 222 2          , and *
0  and *

1  form the residual 

interface/surface energy. For small deformation, 
   

0

Tout out

s s

 
   
 

i F F = i  in the tangent plane yT . 

The similar expression with an assumption of the interface stress is dependent on the isotropic 

linear function of the interface strain can be found by Gurtin and Murdoch (1975). Here, the 

present formulation shows the interface stress in terms of the interface/surface energy. Later, as 

the change of the interface stress due to the change of the configuration is discussed, this 

theoretical framework is applied to predict the effective moduli of heterogeneous media with the 

interface/surface energy effect. In the reference configuration 0 , the “residual” interface 

Piola-Kirchhoff stress of the first kind is expressed by 
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*
0 0 0|s S i           (3.49) 

Accordingly, in the case of the infinitesimal deformation, the difference of the interface 

Piola-Kirchhoff stress of the first kind between the current and reference configurations, sS , 

can be written as 

  
 

* * * *
0 1 0 0 0 1 0        

out

s s s s strS + E i u + E F    (3.50) 

It is found that there are at least three independent material parameters *
0 , *

1  and 1  required 

in the above equation. For some special cases, such as a spherical inhomogeneity embedded in 

an infinite matrix material under the axisymmetric loading, 0s u  may be regarded as a 

symmetric second-order tensor in two-dimensional space. Eq. (3.50) is then written as 

    
 

 
 

* * * *
0 1 0 0 1 0
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0 0Or, 2
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s s s s s s
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tr

S E i E F
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   (3.51) 

where s  and s  are called interface moduli, shown as follows, 

   

* *
0 1
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0 1 0 2

1 1

2 2

s

s

  

    

 

     

      (3.52) 

It is noted that s  could be negative in some cases. In general, the interface/surface energy 0  

at 0  is positive; otherwise a liquid or a solid would gain energy upon fragmentation, for 

example, as referred to the research by Haiss (2001). 2  is the change rate of the interface 

energy due to the change of the interface area, and the negative s  has been confirmed by 

Shenoy (2005) in his atomistic calculations. Substituting sS  in Eq. (3.50) or (3.51) into Eq. 
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(3.43), the discontinuity conditions of the traction across the interface in the reference 

configuration 0  is generated. These discontinuity conditions, associated with other governing 

equations, can be used to predict the macroscopic mechanical response of composites with the 

interface energy effect. 
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Chapter 4 

INTERFACE ENERGY EFFECT ON SIZE-DEPENDENT 

EFFECTIVE ELASTIC MODULI OF THREE-PHASE 

COMPOSITES WITH RANDOMLY LOCATED AND 

INTERACTING SPHERICAL PARTICLES OF DISTINCT 

PROPERTIES 

 

 

ABSTRACT 

 

In Chapter 3, the interface/surface energy effect, regarded as the change of the residual 

elastic field induced by the interface stress from the reference configuration to the current 

configuration, has been derived. Accordingly, the analytical equations of the size-dependent 

effective moduli of a composite material containing identical spherical particles of the same 

property and size (so-called “two-phase” composite) with the interface/surface energy effect are 

thus developed. In this chapter, a micromechanical analytical framework is separately rendered 

to predict effective elastic moduli of “three-phase” composites containing many randomly 

dispersed and pairwisely interacting spherical particles with no interface/surface energy effect. 

Specifically, the two inhomogeneity phases feature distinct elastic properties. A higher-order 

structure is proposed based on the probabilistic spatial distribution of spherical particles, the 
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pairwise particle interactions, and the ensemble-volume homogenization method. Subsequently, 

by integrating the above two mechanisms, two non-equivalent formulations are considered in 

detail to derive effective elastic moduli of a three-phase composite containing two distinct 

heterogeneous particles with the interface/surface energy effect. Lastly, the analytical equations 

in some special cases for the influence of the liquid-like interface/surface energy on the effective 

properties of three-phase composites containing two distinct particles are discussed. Following 

numerical examples are implemented to illustrate the potential of the present method. Further, it 

is demonstrated that the results with the interface/surface energy effect in our model, different 

from the results given by preceding researchers, would be more applicable to the 

nanocomposites. 

 

Key Words: Interface/surface energy effect; Three-phase composite; Finite deformation theory; 

Infinitesimal strain analysis; Micromechanical analytical framework; Probabilistic spatial 

distribution; Pairwise particle interactions; Ensemble-volume homogenization; Nanocomposite 

 

 

4.1 Introduction 

 

There are many published literatures and studies on the subject of predicting the effective 

elastic moduli of random heterogeneous multi-phase particle/fiber-reinforced composites. Most 

researchers, however, mainly focus on conventional composites with a single type of 

fiber/particle embedded in the matrix without considering the effects of different fiber/particle 

properties. Among them, several categories are of considerable interest to investigate. 
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The first category employs variational principles or linear comparison composites to obtain 

mathematical lower and upper bounds for effective elastic moduli of composites. For example, 

Hashin and Shtrikman (1962a; 1962b; 1963) proposed the upper and lower bounds for effective 

elastic moduli of multiphase materials based on the variational principles within the linear 

elasticity theory and, in generally, it is better than the Voigt and Reuss bounds. Furthermore, Hill 

(1964a; 1964b), Hashin and Rosen (1964), Hashin (1965), Walpole (1966a; 1966b; 1969), and 

Hashin (1972) are also selected references for this category. Nevertheless, Silnutnzer (1972), 

Milton (1982), Milton and Phan-Thien (1982), and Torquato and Lado (1992) investigated the 

“improved” higher-order mathematical bounds, which depend on the statistical microstructural 

information of random heterogeneous composite. For instance, Silnutzer (1972) derived 

improved bounds, which are referred to as the third-order (three-point) bounds, on effective 

in-plane bulk and shear moduli. Moreover, it is noted that the third-order bounds are narrower 

than the two-point bounds of Hashin’s type. 

The second category is known as the “effective medium approach” used for 

micromechanical estimation about effective moduli of composites, including the self-consistent 

method, the differential scheme, the generalized self-consistent method, and the Mori-Tanaka 

method (Mori and Tanaka, 1973). In the meanwhile, Hill (1965a; 1965b), Christensen and Lo 

(1979), Mori and Tanaka (1973), Benveniste (1987), and Weng (1990) are the popular references 

for the effective medium method. However, the effective medium methods as a group depend 

only on geometries of particles (inclusions) and volume fractions; in other words, they do not 

consider the spatial locations and/or probabilistic distributions of particles (inclusions). As the 

effective medium methods are inherently independent of the spatial or statistical particles 

distribution, it is best appropriate for low particle concentrations or some limited special 
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configurations.  

The third category, in contrast with the second category, directly determined the 

micromechanics of effective properties of composites with randomly located and interacting 

inclusions by employing some approximations with certain special geometric configurations of 

inclusions dispersing in matrix materials. For example, Eshelby (1957) proposed an ellipsoidal 

inclusion embedded in an infinite matrix and developed the famous “Eshelby’s equivalence 

principle”. Mura (1987) mainly considered rigorous “local” micromechanics. Honein (1991) 

pointed out a general framework to solve the problem of two-circular inclusions in plane 

elastostatics, subjected to arbitrary loading by utilizing Kolosov–Muskhelishvili complex 

potentials. Nemat-Nasser and Hori (1993) also made a great contribution to this approach. 

However, only “local” field solutions were obtained through this approach. For this reason, a 

micromechanical higher-order ensemble-volume average method was constrcted by Ju and Chen 

(1994a; 1994b), based upon the framework by Eshelby (1957), to obtain the elastic effective 

moduli of multi-phase composites containing randomly dispersed ellipsoidal and spherical 

inhomogeneities, respectively. Upon this method, which considered the pairwise inclusion 

interactions, both “local” and “overall” field solutions can be obtained, and accordingly, the 

ensemble-volume averaged micromechanical field equations were formulated by the 

homogenization process. Soon after, along the line of Ju and Chen (1994a; 1994b), Ju and Zhang 

(1998), Ju and Yanase (2010; 2011), and Lin and Ju (2009) established the effective elastic 

moduli of composites with randomly located aligned circular fibers or randomly dispersed 

spherical particles featuring same/distinct elastic properties and the same sizes. Subsequently, Ko 

and Ju (2012; 2013) rendered the effective transverse elastic moduli of a three-phase composites 

with randomly located aligned circular fibers of distinct elastic properties and sizes. In addition, 
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emanating from the general framework of Ju and Chen (1994a; 1994b), Ju and co-workers 

further explored the micromechanical effective elastoplastic behaviors of two-phase metal matrix 

composites (Ju and Chen, 1994c; Ju and Tseng, 1996; Ju and Tseng, 1997; Ju and Zhang, 2001; 

Ju and Sun, 2001; Sun and Ju, 2001), the exact formulation for the exterior-point Eshelby’s 

tensor of an ellipsoidal inclusion (Ju and Sun, 1999) and micromechanical damage models for 

effective elastoplastic behaviors of ductile matrix composites accommodating evolutionary 

particle debonding/cracking and interfacial fiber debonding with/without thermal residual 

stresses effects (Ju and Lee, 2000; Ju and Lee, 2001; Sun et al., 2003a; Sun et al., 2003b; Liu et 

al., 2004a; Liu et al., 2004b; Ko, 2005; Ju et al., 2006; Liu et al., 2006; Ju et al., 2008; Ju and Ko, 

2008; Ju and Yanase, 2008; Lee and Ju, 2008; Ju et al., 2009; Ju and Yanase, 2009; Ju and Yanase, 

2011; Ko and Ju, 2012). 

Lastly, other categories utilized numerical solutions to analyze the effective properties of 

multi-phase composites. For example, Adams and Crane (1984), Nimmer et al. (1991), and 

Doghri and Friebel (2005) were based on the “finite element methods” to provide the effective 

properties of a composite by the developed “unit cell model” and some assumed periodic arrays 

of fibers. On contrast, “Rigid-Body-Spring-Model (RBSM) method” is another numerical 

approach to construct the effective properties of multi-phase composites, which can refer to 

Kawai (1978), Bolander and Saito (1998), Gedil et al. (2011; 2012), and Yamamoto et al. (2013). 

The introduction to RBSM and its application for finding the effective properties of multi-phase 

composites are presented in Chapter 7 of my research as well. 

Nowadays, since the materials science and technique have been advanced to the 

characteristic size of a nano-scale solid in structures and composites, the interface/surface energy 

effect on mechanical and physical properties of nanocomposites and nano-size structures 
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becomes significant and cannot be ignored. Therefore, the interface/surface energy effect should 

be accounted into the deformation analysis of solids. 

In Huang and Sun (2007), the change of the elastic fields induced by the interface energies 

and the interface stresses from the reference configuration to the current configuration was 

considered. It was emphasized that there are two kinds of fundamental equations required to be 

introduced in the solution of boundary-value problems for stress fields with the interface/surface 

energy effect. The first is the interface/surface constitutive relations, whereas the second is the 

discontinuity conditions of the stress across the interface, namely, the Young-Laplace equations. 

These two fundamental equations are used to predict the effective moduli of a composite 

material with the interface/surface energy effect. Although an infinitesimal strain analysis is 

employed to establish the governing equations induced by the interface/surface energy, the finite 

deformation analysis (also known as the large deformation analysis) of a multi-phase 

hyperelastic medium should be concerned at the beginning, according to reasons as follows:  

(1) The mechanical response from the reference configuration to the current configuration 

should be considered in the study of the mechanical behavior of a composite material or a 

structure. In this regard, the change of the size and the shape of the interface in the process 

of the deformation reflect the change of the curvature tensor in the governing equations. In 

other words, the change of the deformation and the configuration leads to the change of the 

residual elastic field induced by the interface energy. In essence, hence, this is a finite 

deformation problem. Furthermore, the interface/surface energy effect is explicitly verified 

by the change of the residual elastic field due to the change of the configuration. 

(2) To develop the governing equations with the interface/surface energy effect, a residual 

elastic field induced by the interface energy and the interface stress in the material should be 
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introduced, even though there is no external loading. That is to say, through accounting for 

the change of the residual elastic field upon the change of the configuration, the effect of the 

liquid-like interface/surface energy on the effective properties of a composite material can 

then be included. In this chapter, this type of the interface energy model is emphasized and 

discussed. 

(3) The constitutive relations for the hyperelastic solids with the interface/surface energy effect 

at the finite deformation have been formulated by Huang and Wang (2006) and Huang and 

Sun (2007), as introduced in Section 4.7 Appendix A. Moreover, the approximation 

expressions of the changes of the interface stress and the Young-Laplace equations due to 

the change of the configuration through the infinitesimal deformation analysis can be found 

in Section 4.8 Appendix B. These constitutive relations are expressed in terms of the free 

energy of the interface per unit area at the current configuration, denoted by   (see 

Section 4.8 Appendix B for more details). 

Furthermore, composite materials have developed rapidly over the last several decades. 

They are usually designed to meet the diverse needs for enhancing material performance with 

advanced thermo-mechanical properties, reduced unit weights, versatile directionality, optimal 

anisotropy, etc., and for improving material mechanical strengths, elastic moduli, delamination 

resistance, fracture toughness and fatigue resistance. Reinforcements could be continuous in the 

form of fibers, or discontinuous in the form of particles or whiskers. Especially, for engineers 

and scientists, to predict and estimate overall mechanical properties and behaviors of random 

heterogeneous multi-phase composites are of quite interest in many science, technology, 

engineering and mathematical disciplines. In general, mechanical properties and behaviors of 

composites are dependent on properties of constituent phases and microstructures of 
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inhomogeneities, such as shapes, orientations, aspect ratios, volume fractions, random locations, 

etc. 

The primary objective of the present chapter is to extend the work regarding the 

interface/surface energy effect on size-dependent effective moduli of a “two-phase” composite 

containing identical particles of the same property and size, based on the framework of Lin and 

Ju (2009) and the methodology of Huang and Sun (2007), to the one regarding the 

interface/surface energy effect on size-dependent effective moduli of a “three-phase” composite 

containing two particles of the distinct properties with the same size. This model is achieved with 

consideration to mechanical properties of the constituent phases, volume fractions, spatial 

distributions of particles, and direct inter-particle interactions. Specifically, the two 

inhomogeneity inclusions/phases feature distinct elastic properties. All particles are considered 

non-intersecting, randomly dispersed, and embedded firmly in the matrix with perfect interfaces. 

Two non-equivalent formulations are considered in detail to derive effective elastic moduli of 

three-phase composites leading to new higher-order bounds. Hence, a higher-order 

micromechanical analytical framework is constructed based on the probabilistic spatial 

distribution of spherical particles, pairwise particle interactions, and the ensemble-volume 

averaging (homogenization) procedure for three-phase elastic composites.  

In this chapter, before the analytical framework for the interface/surface energy effect on the 

size-dependent effective moduli of a three-phase composite with randomly located and 

interacting spherical particles of distinct properties is investigated, the interface/surface energy 

effect on the size-dependent effective moduli of a two-phase composite consisting of the matrix 

and randomly distributed spherical inhomogeneities is first considered in Section 4.2. 

Subsequently, in Section 4.3, the effective bulk and shear moduli of a three-phase composite 
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containing randomly dispersed spherical particles of distinct elastic properties are separately 

formulated based on another framework with consideration to the concepts of probabilistic 

spatial distribution of spherical particles, pairwise particle interactions, and the ensemble-volume 

averaging (homogenization) procedure for three-phase elastic composites. Those concepts can be 

found in Section 4.9 Appendix C and Section 4.10 Appendix D. Specifically, in Section 4.9 

Appendix C, the approximate analytical solutions for the direct interactions between two 

different randomly located elastic spheres embedded in the matrix material are presented, 

followed by the ensemble-volume averaged eigenstrains through the probabilistic pairwise 

particle interaction mechanism developed in Section 4.10 Appendix D. Also in Section 4.3, two 

non-equivalent formulations are considered in detail to derive effective elastic moduli of 

three-phase composites with no the interface/surface energy effect. Later on, in combination with 

the results from Section 4.2 and Section 4.3, effective elastic moduli of three-phase composites 

containing randomly dispersed distinct spherical particles with the interface/surface energy effect 

are analytically derived in Section 4.4. Numerical results and the corresponding discussions are 

rendered in Section 4.5 to demonstrate the potential of this present model. Specifically, some 

special cases of the interface/surface energy effect on a three-phase composite containing 

randomly dispersed spheres of same/distinct properties embedded in an elastic matrix are 

executed in Section 4.5. Lastly, the conclusion is summarized in Section 4.6. 

 

 

4.2 Effective Moduli of a Particle-Filled Composite 

 

Based on the theoretical framework formulated in Section 4.7 Appendix A and Section 4.8 
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Appendix B, analytical equations used to predict the effective properties of a composite 

reinforced by spherical particles are developed in this section. In the past, Sharma and Ganti 

(2004) have formulated the effective bulk moduli of spherical particle-filled composites with the 

interface effect using the composite spheres assemblage (CSA) model (Hashin, 1962). Duan et al. 

(2005) derived the effective bulk and shear moduli of such composites using the composite 

spheres assemblage model, the Mori-Tanaka method (MTM) (Mori and Tanaka, 1973) and the 

generalized self-consistent method (GSCM) (Christensen and Lo, 1979). The difference between 

the present work in this chapter and those of Sharma and Ganti (2004) and Duan et al. (2005) is 

that: at the outset with the finite deformation theory proposed by Huang and Wang (2006), the 

infinitesimal deformation approximations of the interface/surface constitutive relation and the 

Young-Laplace equation based on the Lagrangian description in consideration to the change of 

configuration are derived. Therefore, the requirement for using the asymmetric interface stress in 

the Young-Laplace equation is clearly verified and the effect of the residual interface/surface 

energy *
0  on the effective elastic moduli is shown. Assuming that the inhomogeneity 

incorporated with the interface is regarded as an “equivalent inhomogeneity”, for a problem on 

the inhomogeneity with the interface/surface energy effect, the micromechanical scheme upon 

the present work for a two-phase or three-phase composite is applicable immediately. In this case, 

the volume averages of the stress and strain for the “equivalent inhomogeneity” have to be 

calculated on the matrix side due to the discontinuity of the stress across the interface. 

Consequently, the explicit derivation of the stress discontinuity conditions across the interface is 

significant. The work in this chapter gives an understanding of the interface/surface energy effect 

by accounting for the change of the interface stress in Eq. (4.47) and Eq. (4.54) due to the change 

of configuration, and the interface moduli are directly related to the parameters of the interface 
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energy. 

In this section, before the analytical framework for the interface/surface energy effect on the 

size-dependent effective moduli of a “three-phase” composite with randomly located and 

interacting spherical particles of distinct properties is formulated, the interface/surface energy 

effect on the size-dependent effective moduli of a “two-phase” composite consisting of the 

matrix and randomly distributed spherical inhomogeneities is first considered. 

Consider a two-phase composite composed of the matrix and randomly distributed spherical 

inhomogeneities, in which the radius of the inhomogeneity is assumed to be a . The effective 

stiffness tensor of the composite, L , can be described as 

 0 * 0 :   rL L L L A        (4.1) 

where 0L  and *L  are the stiffness tensors of the matrix and the “equivalent inhomogeneity” 

(namely, an inhomogeneity incorporated with the interface), respectively;   is the volume 

fraction of the sum of all inhomogeneities; rA  denotes the fourth-order global strain 

concentration tensor for the r th equivalent inhomogeneity. If the Ju and Chen’s scheme (1994a; 

1994b; 1994c) is applied, rA  is given by 

  1

* 0 0r


 A L - L L         (4.2) 

Assuming all particles are spherical and both matrix and particles are isotropic elastic, rA  in Eq. 

(4.2) can be advanced to express as  

  10 (1) 0: 1  


    rA A I A       (4.3) 

where (1)I  is the fourth-order unit tensor; 0A  is the strain concentration tensor of the 

equivalent inhomogeneity in an infinite matrix corresponding to dilute distribution of 
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inhomogeneities, or simply named the local strain concentration tensor if rA  is relatively 

considered as a global strain concentration tensor. It can be found that Eq. (4.3) coincides with 

the corresponding results obtained by using the Mori-Tanaka method (Benveniste, 1987; Weng, 

1990) in the case of this section. Whereas, the corresponding expression of rA  given by the 

Eshelby method is written as 

0
r A A            (4.4) 

Eq. (4.4) implies that the interactions among equivalent inhomogeneities may be neglected. In 

other words, each equivalent inhomogeneity can be treated as if it exists in a homogeneous 

matrix without the interference by other inhomogeneities. 

In addition, if the inhomogeneities are randomly distributed, the composite material is 

statistically isotropic and the elastic moduli in Eq. (4.1) can be expressed as 

0 0 0

* * *

3 2

3 2

3 2

m s

m s

m s

K

K

K







 

 
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L I I

L I I

L I I

        (4.5) 

where 0K , *K  and K  are the bulk moduli of the matrix, the equivalent inhomogeneity and 

the composite, respectively; 0 , *  and   are the shear moduli of the matrix, the equivalent 

inhomogeneity and the composite, respectively. It is also known that 

1

3m  I I I , (1)
s m I I I        (4.6) 

Substituting Eq. (4.6) into Eq. (4.5), Eq. (4.1) is further decoupled into 
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where mA  and sA  are the constants in the strain concentration tensors corresponding to the 

bulk and shear moduli, respectively, as follows, 
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Here, 
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m  and n  are components of the fourth-order Eshelby inclusion tensor. It is noted that the 

elastic moduli *K  and *  of the equivalent inhomogeneity can be obtained by using Eqs. (4.47) 

and (4.54) for this purpose. In the case of the spherical inhomogeneity of radius a , 0s u  can 

be described in terms of the physical components ( ru , u , u ) in a spherical polar coordinate 

system as the following equation, 

0
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 (4.10) 

For the axisymmetric loading, 0u  . Since ru  and u  are not dependent on  , 0s u  is a 
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symmetric tensor, as shown below, 

0 cotr r
s

u uu u

r r r r
 

   


               
u e e e e        (4.11) 

In the above case, Eq. (4.54) may be replaced by Eq. (4.55). It is noticed that, in the reference 

configuration, the curvature tensor on the surface of the sphere with radius a  is 

0 0

1
 

a
b i           (4.12) 

Eq. (4.47) can be expressed as 
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In order to compute the bulk modulus *K  of the equivalent inhomogeneity, suppose that a 

spherical inhomogeneity is embedded in an infinite medium under the hydrostatic loading with 

the remote strain as 

1

3 mE E I           (4.14) 

In this case, the displacement and stress fields in the inhomogeneity and matrix are given by 
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The superscript 1, 0i   denotes the quantities of the inhomogeneity and matrix, respectively. 

1F , 0F , 1G  and 0G  are constants to be determined. In addition to the displacement continuity 

condition at the interface r a , the elastic solution needs to satisfy the stress discontinuity 

condition in Eq. (4.13), namely, 

    0 1 * *
0 1 12

2
| 2 |rr rr r a r r au

a
             (4.16) 

According to the above conditions, the non-singular condition at the origin and the 

condition at infinity, the constants in Eq. (4.15) can be determined. Therefore, the (secant) bulk 

modulus *K  of the equivalent inhomogeneity can be obtained by 
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0 1 1*

* 1
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2 2
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3 3r a

tr
K K

tr a

  


 
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


    (4.17) 

where *  and *  represent the volume averages of the stress and strain of the equivalent 

inhomogeneity that includes the inhomogeneity and the interface, respectively. *
0 0 1 2      , 

*
1 1 2 11 12 222 2          , and *

0  and *
1  form the residual interface/surface energy. 

Further, it is found that there are at least three independent material parameters *
0 , *

1  and 1  

required in the above equation. About the detailed description of the interface/surface free energy 

 , it can refer to Section 4.8 Appendix B. 

Moreover, the shear modulus *  of the equivalent inhomogeneity can be found by 

imposing a pure deviatoric remote strain at infinity as, 

 3 3 1 1 2 2

1

2eE         
E e e e e e e      (4.18) 

where 1e , 2e  and 3e  are the base vectors in a rectangular Cartesian coordinate system. From 
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the solution of Lur’e (1964), the displacement and stress fields in the inhomogeneity and matrix 

can be written by 
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   (4.19) 

The superscripts 1 and 0 denote the quantities of the inhomogeneity and matrix, respectively. 1  

and 0  are Poisson’s ratios of the inhomogeneity and matrix, respectively.  2 cosP   is the 

second-order Legendre polynomial. A , B , C  and D  are constants to be determined. 

Similarly, in addition to the displacement continuity condition at the interface r a , the elastic 

solution needs to satisfy the stress discontinuity condition in Eq. (4.13). Then, the unknown 

constants can be determined in a way similar to that for the bulk modulus. The shear modulus 
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*  of the equivalent inhomogeneity can be calculated by 
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where * e
  and * e

  are the effective average stress and the effective average strain of the 

equivalent inhomogeneity, respectively. It can be easily found that *K  and *  are not only 

functions of the elastic moduli of the inhomogeneity, such as 1K  and 1 , but also the functions 

of the size of particles, a .  

In order to simplify the discussion, the expression of the interface/surface free energy can be 

linearized. Therefore,   can be expanded as: 
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 J J J J
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 (4.21) 

where 0 , 1 , 2  represent the intrinsic physical properties of the interface, and they are, and 
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should be determined by the joining materials and the adhering condition.  0 2,1   is 

equivalent to the interface/surface energy of a liquid-like material and hence reflects the nature 

of liquids, whereas 1  and 2  reflect the nature of solids; 1 2J   and 2 1J   are first-order 

small quantities.  

Moreover, the expression of the (secant) bulk modulus *mK  of the equivalent 

inhomogeneity in Eq. (4.17) is derived for identical particles of the same property. Therefore, it 

is rewritten in a general form for two different particles of distinct properties as follows, 

 * *
0 1 1*

*
*

2 2
| ; 1, 2

3 3

  


 
   m

m r a m

m

tr
K K m

tr a




       (4.22) 

where * m
  and * m

  represent the volume averages of the stress and strain for two distinct 

equivalent inhomogeneities, and each equivalent inhomogeneity includes the inhomogeneity and 

the interface, respectively. *
0 0 1 2      , *

1 1 2 11 12 222 2          , and *
0  and *

1  

form the residual interface/surface energy. Further, it is found that there are at least three 

independent material parameters *
0 , *

1  and 1  required in the above equation. Here, the 

property of the interface/surface free energy   is assumed to be the same and the 

interface/surface surrounds two distinct particles.  

Similarly, the shear modulus * m  in Eq. (4.20) of the equivalent inhomogeneity for two 

distinct particles can be obtained as: 
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where * em
  and * em

  are the effective average stress and the effective average strain of the 

equivalent inhomogeneity, respectively. For each equivalent inhomogeneity ( 1, 2m ), it can be 

easily found that *mK  and * m  are not only functions of the elastic moduli of the 

inhomogeneity, such as mK  and m , but also the functions of the size of particles, a.  

 

 

4.3 Effective Bulk and Shear Moduli of Three-Phase Composites Containing Randomly 

Dispersed Spherical Particles of Distinct Elastic Properties (with No Interface Energy 

Effect) 

 

In this section, the effective elastic moduli of composites containing many randomly 

dispersed spherical particles of different elastic properties (with no interface/surface energy 

effect), based on the theoretical framework formulated in Section 4.9 Appendix C and Section 
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4.10 Appendix D, are derived. Specifically, the probabilistic ensemble-volume averaged pairwise 

local interaction solutions for  
*
i  and other ensemble-volume averaged field equations are 

utilized. In what follows, angle brackets for the ensemble-average operators will be dropped for 

the purpose of compactness. 

According to Ju and Chen (1994a) and Zhao et al. (1989), the following relations governing 

the ensemble-volume averaged stress  , the averaged strain  , the uniform remote strain 0  

and the averaged eigenstrain  
*

i
  take the form 

 

2
*

0
1

: i i
i




 
  

 
C                (4.24) 

 
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0 *

1
i i
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


  :S                 (4.25) 

Upon substitution of the solution of  
*

i
  in Eqs. (4.93) and (4.97) into Eq. (4.25), and invoking 

the relation between 0  and  
*0

i
  given by Eq. (4.65), the relations between the averaged 

eigenstrain  
*

i
  and the averaged strain   are rendered as 

   
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where 

    11 1 2
1 1 2 2 1  

         T Α S + S S Α S Α S         (4.27) 

    12 2 1
2 2 1 1 2  

         T Α S + S S Α S Α S        (4.28) 

Substituting Eq. (4.26) into (4.24) leads to the effective stiffness C  relating   and  : 
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Since all fourth-rank tensors on the right-hand side of Eq. (4.29) are isotropic in three 

dimensions, the effective stiffness tensor C  for a three-phase composite is isotropic as well. 

In what follows, two non-equivalent formulations are considered in detail to derive effective 

elastic moduli of three-phase composites with no interface/surface energy effect, that is, 

“Formulation II” and “Formulation I”. The following notations are adopted: the superscript “II” 

and “I” stand for Formulation II and Formulation I, respectively. 

 

Formulation II: the effective bulk modulus II
TK  and shear modulus II

T  of a three-phase 

composite with no interface/surface energy effect can be explicitly derived as 
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where 0K , mK  and 0 , m  denote the bulk and shear moduli of the matrix and the m-phase 

particle, respectively; r1, r2, r3 and r4 have been defined in Section 4.10 Appendix D. 
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where 0  and m  denote the shear moduli of the matrix and the m-phase particle, respectively; 

r1, r2, r3 and r4 have been defined in Section 4.10 Appendix D. 

 

Formulation I: The effective bulk modulus I
TK  and shear modulus I

T  of a three-phase 

composite with no interface/surface energy effect can be explicitly expressed as 
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where 0K , mK  and 0 , m  denote the bulk and shear moduli of the matrix and the m-phase 

particle, respectively; r1, r2, r3 and r4 have been defined in Section 4.10 Appendix D. 
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where 0  and m  denote the shear moduli of the matrix and the m-phase particle, respectively; 

r1, r2, r3 and r4 have been defined in Section 4.10 Appendix D. 

 

 

4.4 Effective Bulk and Shear Moduli of Three-Phase Composites Containing Randomly 

Dispersed Spherical Particles of Distinct Elastic Properties with Interface Energy Effect 

 

In combination with the results from Section 4.2 and Section 4.3, the effective elastic 

moduli of three-phase composites containing randomly dispersed distinct spherical particles with 

the interface/surface energy effect are analytically derived in this section. In what follows, two 

non-equivalent formulations are considered in detail to derive effective elastic moduli of 

three-phase composites with the interface/surface energy effect, that is, “Formulation II” and 

“Formulation I.” The following notations are adopted: the superscript “II” and “I” stand for 

Formulation II and Formulation I, respectively. 

 

Formulation II: the effective bulk modulus IIK  and shear modulus II  of a three-phase 

composite with interface/surface energy effect can be explicitly derived as 
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where 0K , *mK  and 0 , *m  denote the bulk and shear moduli of the matrix and the 

m-phase equivalent inhomogeneity, respectively. *mK  and * m  are defined in Eq. (4.22) and 

Eq. (4.23). r1, r2, r3 and r4 can be found in Section 4.10 Appendix D. 
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where 0  and *m  denote the shear moduli of the matrix and the m-phase equivalent 

inhomogeneity, respectively. * m  is defined in Eq. (4.22) and Eq. (4.23). r1, r2, r3 and r4 can be 

found in Section 4.10 Appendix D. 

 

Formulation I: The effective bulk modulus IK  and shear modulus I  of a three-phase 

composite with no interface/surface energy effect can be explicitly expressed as 
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     (4.36) 

where 0K , *mK  and 0 , *m  denote the bulk and shear moduli of the matrix and the 

m-phase equivalent inhomogeneity, respectively. *mK  and * m  are defined in Eq. (4.22) and 

Eq. (4.23). r1, r2, r3 and r4 can be found in Section 4.10 Appendix D. 
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        (4.37) 

where 0  and *m  denote the shear moduli of the matrix and the m-phase equivalent 

inhomogeneity, respectively. * m  is defined in Eq. (4.22) and Eq. (4.23). r1, r2, r3 and r4 can be 

found in Section 4.10 Appendix D. 

 

 

4.5 Some numerical examples 
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In the special event that a matrix material contains identical spherical particles (i.e., 1 2  ,  

1 2K K , 1 2a a ), Eqs. (4.36) and (4.37) reduce to 
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          (4.39) 

with * *1 *2    , * *1 *2    , r1 = r3, r2 = r4 and 1 2    . Here,   denotes the total 

particle volume fraction. * *1 *2 K K K  and * *1 *2     can be evaluated by using Eq. 

(4.22) and Eq. (4.23). r1, r2, r3 and r4 can be found in Section 4.10 Appendix D. 

Suppose that a porous material containing spherical nano-voids is analyzed, so that its 

corresponding effective bulk and shear moduli of the composite with the interface/surface energy 

effect can be obtained by substituting 1 0K  and 1 0   into Eqs. (4.38) and (4.39). Assume 

that the bulk modulus of the matrix material is 0 2.5 GPaK , and the shear modulus is 

0 0.5 GPa  . The surface is assumed to be liquid-like with a interface/surface energy 

2
0 0.05 J/m  . The volume fractions sum of all voids are assumed to be 20%   and 
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30%  , respectively. Accordingly, the variations of the normalized effective bulk and shear 

moduli proposed in Eqs. (4.38) and (4.39) for polypropylene containing spherical voids are 

illustrated in Figure 4.1 and Figure 4.2. In the figures, 0K  and 0  are the effective bulk and 

shear moduli of the material without the interface/surface energy effect. From these two figures, 

it is found that the interface/surface effect decreases with the increase of the size of the voids and 

almost can be neglected when the radius of the void is larger than about 10 nm. Furthermore, 

these two results pretty coincide with the illustrations in Figure 3.1 and Figure 3.2. It is further 

demonstrated that this developed analytical model for the interface/surface energy effect on 

effective moduli of three-phase composites containing randomly dispersed spherical particles of 

distinct elastic properties is applicable to reveal the influence of interface/surface energy in 

nano-scale composites.  
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Figure 4.1 Normalized effective bulk modulus against the radius of voids in the range  

of nanometer size with two different volume fractions and 2
0 0.05 /  J m  
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Figure 4.2 Normalized effective shear modulus against the radius of voids in the range 

of nanometer size with two different volume fractions and 2
0 0.05 /  J m  
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4.6 Conclusions 

 

The primary objective of the present chapter is to extend the work regarding the 

interface/surface energy effect on size-dependent effective moduli of a “two-phase” composite 

containing identical particles of the same property and size, based on the framework of Lin and 

Ju (2009) and the methodology of Huang and Sun (2007), to the one regarding the 

interface/surface energy effect on size-dependent effective moduli of a “three-phase” composite 

containing two particles of the distinct properties with the same size.  

First of all, the interface/surface energy effect on the macroscopic mechanical behavior of a 

composite is investigated through starting with the finite deformation theory of a multi-phase 

hyperelastic medium. Then, the approximate formulation of a finitely deformed multiphase 

elastic medium by an infinitesimal deformation analysis is executed. According to the existence 

of the interface energy, even though under no external loading, there is still a “residual elastic 

field” induced by the interface stress. During the deformation process of a composite from the 

reference configuration to the current configuration, the changes of the size and shape of the 

interface leads to the change of this “residual elastic field”. It is noticed that the governing 

equations describing the change of the “residual elastic field” due to the change of the 

configuration are formulated under the infinitesimal deformation approximation and hence lead 

to the use of the asymmetric interface stress in the prediction of the effective properties of 

heterogeneous materials with interface/surface energy effect. Therefore, the influence of the 

residual interface/surface energy can be taken into account. In particular, the theoretical 

framework is applied to obtain the analytical expressions of the effective bulk and shear moduli 

of a composite with spherical “equivalent inhomogeneities” (i.e. the inhomogeneities together 
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with the interface/surface energy). Hence, the interface/surface energy effect on the 

size-dependent effective moduli of a two-phase composite consisting of the matrix and randomly 

distributed spherical inhomogeneities is developed. 

Secondly, the effective bulk and shear moduli of a three-phase composite containing 

randomly dispersed spherical particles of distinct elastic properties are separately formulated 

based on another framework with consideration to the concepts of probabilistic spatial 

distribution of spherical particles, pairwise particle interactions, and the ensemble-volume 

averaging (homogenization) procedure for three-phase elastic composites. Specifically, the 

approximate analytical solutions for the direct interactions between two different randomly 

located elastic spheres embedded in the matrix material are presented, followed by constructing 

the ensemble-volume averaged eigenstrains through the probabilistic pairwise particle interaction 

mechanism. Moreover, two non-equivalent formulations are considered in detail to derive 

effective elastic moduli of three-phase composites with no the interface/surface energy effect.  

Later on, in combination with the above two formulations, effective elastic moduli of 

three-phase composites containing randomly dispersed distinct spherical particles with the 

interface/surface energy effect are analytically derived. In addition, numerical results and the 

corresponding discussions are presented to demonstrate the potential of this present model. 

Specifically, through the execution of some special cases, as well as the comparison with the 

results done in Chapter 3, it is further demonstrated that this developed analytical model for the 

interface/surface energy effect on effective moduli of three-phase composites containing 

randomly dispersed spherical particles of distinct elastic properties is applicable to reveal the 

influence of interface/surface energy in nano-scale composites. These comparisons and 

simulations encompass elastic matrices with randomly dispersed voids and/or particles. No 
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Monte Carlo simulations or finite element calculations are needed here. 

Lastly, experimental validations are key parameters in the calibration of proposed models. 

Further experimental validations and comparisons will be performed once the associated 

experiment data become available. To the author’s best knowledge, the experimental data 

associated with characterizations of effective elastic properties of three-phase composites 

containing particles and/or voids with the interface/surface energy effect are currently not 

available due to difficulties in performing such experimental works. For example, as the 

illustrative figures developed based on the framework in this chapter, it is found that the 

interface/surface effect decreases with the increase of the size of the voids and can be neglected 

when the radius of the void is larger than 10 nm. In other words, it is quite difficult to 

manufacture so small nanocomposites nowadays. 

 

 

4.7 Appendix A: Formulations upon Finite Deformation Theory 

 

The constitutive relations of the interface have been widely investigated by many 

researchers in the literature. But most of works on this subject are confined to the infinitesimal 

deformation approximations. Suppose that the interface/surface energy per unit area in the 

current configuration is denoted by  . If the interface is assumed to be isotropic relative to the 

reference configuration 0 , i.e. the underlying reference configuration is an undistorted state, 

then   can be expressed as a function of the invariants of sU  and sV , or a function of 1J  

and 2J , as follows, 
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1

2 det det

s s

s s

J tr tr

J

 

 

U V

U V

        (4.40) 

where sU  and sV  are the right and left stretch tensors of the interface, respectively; 1J  and 

2J  are the first and second invariants of sU  and sV . If the small deformation is concerned, the 

strain at the interface may be approximately expressed by 

 0 0 0

1

2s s s s    E u u U i       (4.41) 

where 0s  is the surface gradient operator on operator in the reference configuration 0 ; 0su  

is the displacement gradient of the interface; 0i  is the second-order identity tensor in the 

tangent plane of the interface in the reference configuration. Substituting Eq. (3.41) into Eq. 

(3.40), 1J  and 2J  can be re-written as 

1

2

2

1 det

s

s s

J tr

J tr

 

  

E

E E

        (4.42) 

In the case of the isotropic interface and the small deformation, the interface Piola-Kirchhoff 

stresses of the first kind and second kind including “out-of-plane term” can be formulated as 
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where sF  is the “out-of-plane term” of surface gradient. And the Cauchy stress of the interface 

can be described by 

   
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Tout out

s s s sJ J
J J J J J

σ i E F F    (4.45) 

Therefore, it is found that sS , sT  and the Cauchy stress of the interface sσ  are not the 

same, even if the infinitesimal deformation approximation is performed. The situation is totally 

different from that in the three dimensional analysis in the traditional elasticity, in which there is 

no residual stress in the reference configuration. In other words, only through the beginning with 

the finite deformation theory, an appropriate infinitesimal interface stress is then chosen in the 

governing equations if the interface/interface energy effect is taken into account on the 

mechanical properties of a heterogeneous material. 
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4.8 Appendix B: Approximations upon Infinitesimal Deformation Analysis 

 

In this section, the approximate equations of the changes of the interface stress and the 

Young-Laplace equation due to the change of configuration under the infinitesimal deformation 

is introduced. Then, the analytical equations for the effective moduli of a particle-reinforced 

composite is given through the application of the theory by Huang and Sun (2007), which depicts 

the effect of the liquid-like interface/surface energy on the effective moduli. 

The governing equations, such as the equilibrium equations, based on one configuration are 

well-known in the infinitesimal analysis in the traditional elasticity. In order to study the 

interface energy effect, however, the residual elastic field induced by the interface energy should 

be taken into account. Although the interface induced the residual elastic field in the reference 

configuration or in the current configuration is not cared for, the change of the residual elastic 

field induced by the interface energy from the reference configuration to the current 

configuration is strongly concerned. Since after and before deformation, the Cauchy stresses (in 

the bulk material and at the interface) are not in the same configuration based on the Eulerian 

description, it is obvious that the difference of the Cauchy stresses cannot be used to represent 

this change. Therefore, the Lagrangian description is applicable, so that the generalized 

Young-Laplace equation based on the Lagrangian description given by Huang and Wang (2006) 

can then be expressed in terms of the interface Piola-Kirchhoff stress of the first kind in the 

following, 
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    (4.46) 

where the symbol    denotes the discontinuity of a quantity across the interface; 0S  is the 

first kind Piola-Kirchhoff stress in the bulk material; I  is the unit tensor in three-dimensional 

space; N  is the unit normal vector to the interface in the reference configuration 0 ; 0b  is the 

curvature tensor of the interface in 0 .  

Obviously, the change of the residual elastic field induced by the interface energy can be 

re-written by adding the difference sign into the above equation, as follows, 
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   (4.47) 

where   denotes the difference of the quantities between the current and reference 

configurations. In order to account for the interface energy effect, the interface Piola-Kirchhoff 

stress of the first kind sS  should be employed in the analysis, as shown in the equations above. 

This is the key point addressed by Huang and Wang (2006), but the previous researchers seemed 

to ignore that in the study of the effective properties of a heterogeneous material with interface 

energy effect. Next, an infinitesimal deformation approximation is executed. In the case of the 

infinitesimal deformation, 0S  in Eq. (4.47) could be approximated by the difference of the 
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bulk Cauchy stress between the current and reference configurations, while sS  in Eq. (4.43) is 

described in terms of the interface/surface free energy  . 

In addition, the equation of the interface/surface free energy is linearized in order to 

simplify the algebraic operations at the beginning of the research. Accordingly,   can be 

written as 
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Where 0 , 1 , 2  represent the intrinsic physical properties of the interface, and they are, and 

should be determined by the joining materials and the adhering condition.  0 2,1   is 

equivalent to the interface/surface energy of a liquid-like material and hence reflects the nature 

of liquids, whereas 1  and 2  reflect the nature of solids; 1 2J   and 2 1J   are first-order 

small quantities. Suppose that only the first-order small quantities are considered in Eq. (4.43) 

and higher-order small quantities are neglected, from 

 * * *
2 2 0 0 1

1 2
sJ J tr

J J

     
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and 
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Then, 
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where *
0 0 1 2      , *

1 1 2 11 12 222 2          , and *
0  and *

1  form the residual 

interface/surface energy. For small deformation, 
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i F F = i  in the tangent plane yT . 

The similar expression with an assumption of the interface stress is dependent on the isotropic 

linear function of the interface strain can be found by Gurtin and Murdoch (1975). Here, the 

present formulation shows the interface stress in terms of the interface/surface energy. Later, as 

the change of the interface stress due to the change of the configuration is discussed, this 

theoretical framework is applied to predict the effective moduli of heterogeneous media with the 

interface/surface energy effect. In the reference configuration 0 , the “residual” interface 

Piola-Kirchhoff stress of the first kind is expressed by 

*
0 0 0|s S i           (4.53) 

Accordingly, in the case of the infinitesimal deformation, the difference of the interface 

Piola-Kirchhoff stress of the first kind between the current and reference configurations, sS , 

can be written as 

  
 

* * * *
0 1 0 0 0 1 0        

out

s s s s strS + E i u + E F    (4.54) 

It is found that there are at least three independent material parameters *
0 , *

1  and 1  required 

in the above equation. For some special cases, such as a spherical inhomogeneity embedded in 

an infinite matrix material under the axisymmetric loading, 0s u  may be regarded as a 

symmetric second-order tensor in two-dimensional space. Eq. (4.54) is then written as 
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where s  and s  are called interface moduli, shown as follows, 
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      (4.56) 

It is noted that s  could be negative in some cases. In general, the interface/surface energy 0  

at 0  is positive; otherwise a liquid or a solid would gain energy upon fragmentation, for 

example, as referred to the research by Haiss (2001). 2  is the change rate of the interface 

energy due to the change of the interface area, and the negative s  has been confirmed by 

Shenoy (2005) in his atomistic calculations. Substituting sS  in Eq. (4.54) or (4.55) into Eq. 

(5.47), the discontinuity conditions of the traction across the interface in the reference 

configuration 0  is generated. These discontinuity conditions, associated with other governing 

equations, can be used to predict the macroscopic mechanical response of composites with the 

interface energy effect. 

 

 

4.9 Appendix C: Approximate local solutions of two interacting particles 

 

Let us consider a three-phase composite consisting of an isotropic elastic matrix (phase 0) 

with the bulk modulus 0K  and shear modulus 0 , randomly dispersed elastic spherical 
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particles (phase 1) with the bulk modulus 1K  and shear modulus 1 , and randomly dispersed 

elastic spherical particles (phase 2) with the bulk modulus 2K  and shear modulus 2  (cf. 

Figure 4.3). In addition, the linearly elastic isotropic stiffness tensors for three distinct phases are 

expressed as 

    , 0,1, 2ij kl ik jl il jkijkl
C                      (4.57) 

where   and   are the Lamé constants of the phase-η material. 

 

Figure 4.3 The schematic diagram for the two-particle interaction problem. r: spacing  

between the centers of two interacting fibers;  - , 1,2i jr i j= x x = r  
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Following the eigenstrain concept introduced by Eshelby (1957; 1961), the perturbed strain 

field  ' x  induced by particles can be related to the specified eigenstrains  * x  by replacing 

the particles with the matrix material. The key equation can be rephrased as follows: 

     0 0 *
0: ' ' , 1, 2           C x C x x            (4.58) 

where 0  is the uniform strain field induced by the far-field loads for a homogeneous matrix 

material only. Throughout the paper, the colon symbol “ : ” denotes the tensor contraction 

between a fourth-rank tensor and a second-rank tensor, while the dot symbol “ ” represents the 

tensor multiplication between two four-rank tensors. 

According to Eshelby (1957; 1961), the perturbed strain field induced by the distributed 

eigenstrain  * x  in a representative volume element (RVE) V reads 

     *' ' : d ' 
V

'x G x x x x             (4.59) 

where , ' Vx x  and the components of the fourth-rank three-dimensional Green’s function 

tensor G take the form 

   0 0 0 03
0

1
15,3 ,3,3 6 , 1 2 ,1 2

8 1
   

 
     

ijkl ijklG F
r

     (4.60) 

where i, j, k, l = 1, 2, 3 (cf. Mura [36]), - 'r = x x  and - 'r  x x . The components of the 

tensor F – which depends on its arguments ( 1 2 3 4 5 6, , , , ,B B B B B B ) – are defined by (m = 1 to 6): 

   
 

1 2

3 4 5 6

ijkl m i j k l ik j l il j k jk i l jl i k

ij k l kl i j ij kl ik jl il jk

F B B n n n n B n n n n n n n n

B n n B n n B B

   

       

               

       
     (4.61) 

with the normal vector ' /n r r . All physical quantities refer to the Cartesian coordinates, and 

the summation convention applies here. Furthermore, ij  is the Kronecker delta, and 0  
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defines the Poisson’s ratio of the homogeneous matrix. 

From Eqs. (4.58) and (4.59), we arrive at 

     * 0 *-Α : ' : d '  i

V

'x G x x x x            (4.62) 

for Vx  and 

  1

0 0Α
  C C Ci i              (4.63) 

Within the present two-sphere interaction context, the integral Eq. (4.62) can be recast as 

               * 0 * *-Α : ' : d ' ' : d ', , , 1, 2
 

       
i j

i i i j' ' i j i jx G x x x x G x x x x     (4.64) 

where ix , and    * i 'x  is the eigenstrain at 'x  in the i th sphere within the domain i . 

As discussed earlier in Ju and Chen (1994a), the first-order solution for the eigenstrain, 

denoted by  
*0 i  for the i th phase, can be obtained by neglecting the last term in the right-hand 

side of Eq. (4.64), which represents the interaction effects due to the other sphere. The first-order 

formulation leads to 

     
*0 0 *0-Α : : i i ix S                (4.65) 

where the Eshelby tensor S is defined as 

 ' d ', , '


  
i

iS G x x x x x            (4.66) 

The components of the fourth-rank interior-point Eshelby tensor s depend on the Poisson’s ratio 

of the matrix ( 0 ) and the shape of the particle i . For a spherical particle, the tensor s reads 

       0 0
0

1
5 1 4 5 , , , , 1,2

15 1
       


     

ijkl ij kl ik jl il jkS i j k l    (4.67) 

We refer to Mura (1987) for more details. 
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By subtracting the first-order solution Eq. (4.65) from Eq. (4.64), the effects of inter-particle 

interactions can be derived by solving the following integral equation: 

             

     

* *0 *

*

- : ' d ' : ' : ' d '

' : ' d ', for , , , 1, 2

 



   

    

 


j i

j

i i j i

ij i j i j

Α d x G x x x G x x d x x

G x x d x x x



   (4.68) 

where 

         
* * *0 i i id x x               (4.69) 

To obtain the higher-order interaction correction for    * i x , one may expand the fourth-rank 

tensor  'G x x  in the domain i  with respect to its center point xj; i.e., 

       

     

' ' :

1
' ' :

2

j j j

j j j

         

               

x

x x

G x x G x x x x G x x

x x x x G x x
    (4.70) 

where the relation 

   ' ' '      x xG x x G x x           (4.71) 

has been employed. From Eqs. (4.68) and (4.70), we arrive a 

             

          

    

* *0 *

* *

2 *

- : ' d ' : ' : ' d '

: :

1
:

2

 

   

     

       

 

x

x x

Α d x G x x x G x x d x x

G x x d x G x x P

G x x Q

j i

i i j i

j j j j j jj j

j j j j

a

a

   (4.72) 

for ix  and i j  (i, j = 1, 2). Here 34 / 3i j       a  denotes the volume of a 

spherical particle, and i ja = a a  defines its radius. Moreover, the averaged fields involved in 

Eq. (4.72) are defined as follows: 
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     * *1
d




 d d x x

j

j j
j

             (4.73) 

       * *1
d



  
 P x x d x x

j

jj j
j ja

                    (4.74) 

         * *
2

1
d



    
 Q x x x x d x x

j

j jj j
j ja

                (4.75) 

The third-rank tensor  
*
jP  and the fourth-rank tensor  

*
jQ  correspond to the dipole and 

quadrapole of  
*

jd  in the domain j , respectively. Due to the spherical symmetry of particles, 

the leading order of  
*
jP  is of the order  4O , rather than  3O , by substituting Eq. (4.74) 

into Eq. (4.72). Here, /  a r , and r is the spacing between the centers of two spheres. By 

performing the volume average in Eq. (4.72) for the domain j  and truncating those terms of 

higher order moments, the approximate equations  
*
id  for the local two-sphere interaction 

problem can be exhibited: 

             * 2 *0 * 1 * 8- : : : :      i i j i ji j i j OΑ d G x x S d G x x d      (4.76) 

where 

       
1 2

1 3 1 5 2
2 1

0

1
d d

30 1
 

 

   
 G G x x x = G x x x = H H         (4.77) 

     
2

2 3 1 5 2

01

1 1
' d 'd 2

30 1
 

 

  
  G G x x x x = H H       (4.78) 

and the components of H1 and H2 are rendered by 

   1
1 2 0 0 0 05 15,3 ,3,3 6 , 1 2 ,1 2ijkl ijklH F          x x       (4.79) 

   2
1 2 3 35, 5, 5, 5,1,1ijkl ijklH F    x x           (4.80) 
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It is noted that the leading-order error induced by dropping the higher order moments in Eq. 

(4.76) is of the order  8O  since  
*
iP  and   a x G  are of the order  4O . 

Moreover, Eq. (4.76) can be recast as 

       
* 1 * 2 *0

1 1 2 2: : - : Α S d G d = G             (4.81) 

       
1 * * 2 *0

21 2 1: : - : G d Α S d = G             (4.82) 

Therefore, the solutions of Eqs. (4.81) and (4.82) are 

               

11 11 1* 1 1 2 *0 1 2 *0
1 2 21 1 2: :

                    
d G Α S Α S G Α S G G G   (4.83) 

               

11 11 1* 1 1 1 2 *0 2 *0
1 2 12 1 2: :

                    
d Α S G G Α S G G Α S G    (4.84) 

where the leading orders of   1 1
2

 Α S G  and    
11

1


 G Α S  are of the order  3O  and 

 3 O  in Eq. (4.83), respectively. It is interesting to note that   1 1
2

 Α S G  is truncated 

since its leading order is greater than the leading order of    
11

1


 G Α S . We also have 

1 / 2  . 

Therefore, the solution of Eq. (4.83) is 

             
1 1 1* 1 2 *0 2 *0

1 2 11 1 2: :
          d Α S G Α S G Α S G            (4.85) 

Similarly, Eq. (4.84) can be rephrased as 

             
1 1 1* 1 2 *0 2 *0

2 1 22 2 1: :
          d Α S G Α S G Α S G            (4.86) 

 

 



129 

4.10 Appendix D: Ensemble-volume averaged eigenstrains 

 

To obtain the probabilistic ensemble-averaged solution of  
*
id  within the context of 

approximate pairwise local particle interaction, one has to integrate Eqs. (4.83) and (4.84) over 

all possible positions ( jx ) of the second particle for a given location of the first particle ( ix ). The 

ensemble-average process takes the form 

           * * | d ,


  d x d x x x x x
i

i i j j i ji i
V

P i j               (4.87) 

in which  |j iP x x  is the conditional probability density function for finding the second 

particle centered at jx  given the first particle centered at ix . Moreover, angled brackets define 

the ensemble-average operator. In this paper, a three-dimensional statistically isotropic and 

homogeneous two-point probability density function  |j iP x x  is considered. The 

three-dimensional isotropic probabilistic integration domain V in Eq. (4.87) can therefore be 

evaluated as a sphere. Further, i  in Eq. (4.87) defines the probabilistic “exclusion zone” for 

jx . 

The two-point conditional probability function  |j iP x x  is determined by the 

microstructure of a composite, which in turn depends on the particle volume fraction and 

underlying manufacturing processes. For illustration, the two-point conditional probability 

density function is taken as statistically isotropic and uniform, and obeys the following: 

  if 2
|

0 otherwise
j i

N
r a

P V
  


x x                         (4.88) 
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where 
N

V
 is the three-dimensional number density of particles in a composite and r is the 

spacing between the centers of two spheres. By substituting Eq. (4.85) into (4.87), the explicit 

expression for    *
11d x  can be depicted as 

            

     

1 1* 1 2 *0
1 2 1 1 21 1

2

1 2 *0
2 1 1 2

2

| d d :

| d d :


 








 
       
 
 

    
 

 

 

a

a

P r

P r

d x x x Α S G Α S G

x x Α S G





      (4.89) 

where   signifies the spherical surface of radius r . 

In what follows, we present two non-equivalent formulations to predict the effective elastic 

moduli of three-phase composites, involving “Formulation I” here and “Formulation II” in 

Section 4.3.2. Specifically, the following identities can be easily proved: 

24
d

3

 


  i j ij

r
n n               (4.90) 

 
24

d
15

      


    i j k l ij kl ik jl il jk

r
n n n n           (4.91) 

where n is the normal vector at a point on  ; i.e., / rn r  with 2 1r = x x . Using Eqs. 

(4.74)–(4.75) and Eqs. (4.90)–(4.91), it is straightforward to verify that the surface integral of 

  1 2
1

 Α S G  in the second line of Eq. (4.89) is identically zero. By carrying out the lengthy 

algebra and utilizing the identities (4.90)–(4.91), the ensemble integration for    *
11d x  reads
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     

   

*
1 2 1 2 21

1 2 1 2

*0
1 3 1 4 12 2

1 1

90 135

64 64

90 135
:

64 64

ij kl ik jl il jk

ij kl ik jl il jk

q q

q q

       
   

       
 

            
    

   
       

   

d x



    (4.92) 

Here, 34

3
i

i

N

V
    

 
a , with i = 1, 2, is the volume fraction of the i-phase particle. Other 

parameters in the above equation are summarized in Eqs (4.32) and (4.33). 

 

Formulation II: The approximate ensemble-volume averaged eigenstrain tensor can be derived 

from Eqs. (4.73) and (4.88), and takes the form 

   
* 1 *0
1 1:                  (4.93) 

Here, the components of the isotropic tensor 1  are 

 1
1 2ijkl ij kl ik jl il jkr r                               (4.94) 

in which 

1 2 1 1 3

2 2 2 1 4

1

2

r t t

r t t

 

 

 

  
                            (4.95) 

with 

1 1
1 2

2 2
1 2

3 3 2
1

4 4 2
1

90 1

64

135 1

64

90 1

64

135 1

64

t q

t q

t q

t q

 

 





 
   

 
 

   
 
 

   
 
 

   
 

                          (4.96) 
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Similarly, the approximate ensemble-volume averaged eigenstrain tensor  
*
2  reads 

   
* 2 *0
2 2:                 (4.97) 

The components of the isotropic tensor 2  are 

 2
3 4        ijkl ij kl ik jl il jkr r             (4.98) 

where 

3 1 5 2 7

4 1 6 2 8

1

2

 

 

 

  

r t t

r t t
                            (4.99) 

Other parameters in Eqs. (4.99) are exhibited as follows: 

5 5
1 2

6 6
1 2

7 7 2
2

8 8 2
2

90 1

64

135 1

64

90 1

64

135 1

64

 

 





 
   

 
 

   
 
 

   
 
 

   
 

t q

t q

t q

t q

              (4.100) 

 

Formulation I: By neglecting the higher-order components  5O  in Eqs. (4.77) and (4.78) 

and following the similar procedure as in “Formulation II”, the approximate ensemble-volume 

averaged eigenstrain tensors become  

   

   

* 1 *0

1 1
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2 2
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
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               (4.101) 

where the components of the isotropic ensors 1  and 2  read 
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The parameters in Eq. (4.103) take the form: 
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where 0K , mK  and 0 , m  denote the bulk and shear moduli of the matrix and the m-phase 

particle. 
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Chapter 5 

INTERFACE ENERGY EFFECT ON SIZE-DEPENDENT 

EFFECTIVE TRANSVERSE ELASTIC MODULI OF 

THREE-PHASE HYBRID FIBER-REINFORCED COMPOSITES 

WITH RANDOMLY LOCATED AND INTERACTING ALIGNED 

CIRCULAR FIBERS OF DISTINCT ELASTIC PROPERTIES 

AND SIZES 

 

 

ABSTRACT 

 

In this chapter, the two-dimensional expressions of the interface/surface energy effect on 

size-dependent effective moduli of a composite material containing heterogeneous inclusions has 

been derived based on the similar procedure of formulations in Chapter 3, but the different part is 

to truncate “out-of-plane” terms in the first kind Piola-Kirchhoff surface stress and the 

Lagrangian description of the Young-Laplace equations. Associated with the applications of the 

probabilistic spatial distribution of circular fibers, the pairwise fiber interactions, and the 

ensemble-area homogenization method, the framework of effective transverse elastic moduli of a 

higher-order multi-scale structure for three-phase hybrid fiber-reinforced composites containing 

randomly located yet unidirectionally aligned circular fibers is then proposed. Specifically, the 
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two inhomogeneity phases feature distinct elastic properties and sizes. Two non-equivalent 

formulations are considered in detail to derive effective transverse elastic moduli of three-phase 

composites containing hybrid fibers with the interface/surface energy effect. Lastly, the 

analytical equations in some special cases for the influence of the liquid-like interface/surface 

energy on the effective transverse moduli of three-phase composites containing two distinct 

fibers are discussed. Moreover, numerical examples are implemented to illustrate the potential 

capability of the present method. It is further demonstrated that the results with the 

interface/surface energy effect in our model, different from the results given by preceding 

researchers, would be more applicable to the nanocomposites. 

 

Key Words: Interface/surface energy effect; Three-phase hybrid fiber-reinforced composite; 

Finite deformation theory; Infinitesimal strain analysis; Micromechanical analytical framework; 

Probabilistic spatial distribution; Pairwise fiber interactions; Ensemble-area homogenization; 

Nanocomposite 

 

 

5.1 Introduction 

 

In general, conventional fiber-reinforced composite is regarded as a composite consisting of 

a single type of fiber embedded firmly in the matrix. It is demonstrated that the impact, 

compressive, and tensile capacity due to various damage or failure mechanisms during the 

loading history is limited. In contrast, if the incorporation of several different types and/or sizes 

of fibers in a matrix is achieved, so-called hybrid fiber-reinforced composite, it leads to 
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appealing and superior mechanical properties compared to conventional composites, and has 

been extensively considered and increasingly adopted in engineering design and manufacturing. 

Applications of the hybrid composites are in the areas of civil infrastructures, aerospace, 

automobile industries, medical devices, military equipments, etc. In addition, the strength of 

using hybrid composites is that one type of fiber can complement the other’s weakness. In other 

word, they are complementary so that their strengths are standing out and their weaknesses can 

be prevented. Thus, optimum cost and performance can be achieved through proper material 

design. For example, Banthia and Nandakumar (2003) and Banthia and Gupta (2004) indicated 

that certain fiber combinations produce a best synergistic response. Banthia and Soleimani (2005) 

provided a state-of-the-art summary of various hybrid fiber combinations and correlative result 

effects on the flexural performance of the hybrid fiber-reinforced concrete (HyFRC). In addition, 

Blunt and Ostertag (2009) developed a numerical model that uses a nonlinear cracked hinge to 

characterize the flexural behavior of a beam element composed of hybrid fiber-reinforced 

concrete (HyFRC). Furthermore, Soliman et al. (2012) experimentally investigated the role of 

multi-walled carbon nanotubes (MWCNTs) on the tension (on-axis tension test) and in-plane 

shear (off-axis tension test) behaviors of carbon fiber-reinforced polymer composites. Wang et al. 

(2009) fabricated and investigated SiCF/CF and BF/CF fiber-reinforced epoxy resin hybrid 

composites by using carbon fiber (CF) as small-diameter fiber, and SiC fiber (SiCF) or boron 

fiber (BF) as larger-diameter fiber.  

There are many published literatures and studies on the subject of predicting the effective 

elastic moduli of random heterogeneous multi-phase particle/fiber-reinforced composites. Most 

researchers, however, mainly focus on conventional composites with a single type of 

fiber/particle embedded in the matrix without considering the effects of different fiber/particle 
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diameters. Among them, several categories are of considerable interest to investigate. 

The first category employs variational principles or linear comparison composites to obtain 

mathematical lower and upper bounds for effective elastic moduli of composites. For example, 

Hashin and Shtrikman (1962a; 1962b; 1963) proposed the upper and lower bounds for effective 

elastic moduli of multiphase materials based on the variational principles within the linear 

elasticity theory and, in generally, it is better than the Voigt and Reuss bounds. Furthermore, Hill 

(1964a; 1964b), Hashin and Rosen (1964), Hashin (1965), Walpole (1966a; 1966b; 1969), and 

Hashin (1972) are also selected references for this category. Nevertheless, Silnutnzer (1972), 

Milton (1982), Milton and Phan-Thien (1982), and Torquato and Lado (1992) investigated the 

“improved” higher-order mathematical bounds, which depend on the statistical microstructural 

information of random heterogeneous composite. For instance, Silnutzer (1972) derived 

improved bounds, which are referred to as the third-order (three-point) bounds, on effective 

in-plane bulk and shear moduli. Moreover, it is noted that the third-order bounds are narrower 

than the two-point bounds of Hashin’s type. 

The second category is known as the “effective medium approach” used for 

micromechanical estimation about effective moduli of composites, including the self-consistent 

method, the differential scheme, the generalized self-consistent method, and the Mori-Tanaka 

method (Mori and Tanaka, 1973). In the meanwhile, Hill (1965a; 1965b), Christensen and Lo 

(1979), Mori and Tanaka (1973), Benveniste (1987), and Weng (1990) are the popular references 

for the effective medium method. However, the effective medium methods as a group depend 

only on geometries of particles (inclusions) and volume fractions; in other words, they do not 

consider the spatial locations and/or probabilistic distributions of particles (inclusions). As the 

effective medium methods are inherently independent of the spatial or statistical particles 
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distribution, it is best appropriate for low particle concentrations or some limited special 

configurations.  

The third category, in contrast with the second category, directly determined the 

micromechanics of effective properties of composites with randomly located and interacting 

inclusions by employing some approximations with certain special geometric configurations of 

inclusions dispersing in matrix materials. For example, Eshelby (1957) proposed an ellipsoidal 

inclusion embedded in an infinite matrix and developed the famous “Eshelby’s equivalence 

principle”. Mura (1987) mainly considered rigorous “local” micromechanics. Honein (1991) 

pointed out a general framework to solve the problem of two-circular inclusions in plane 

elastostatics, subjected to arbitrary loading by utilizing Kolosov–Muskhelishvili complex 

potentials. Nemat-Nasser and Hori (1993) also made a great contribution to this approach. 

However, only “local” field solutions were obtained through this approach. For this reason, a 

micromechanical higher-order ensemble-volume average method was constrcted by Ju and Chen 

(1994a; 1994b), based upon the framework by Eshelby (1957), to obtain the elastic effective 

moduli of multi-phase composites containing randomly dispersed ellipsoidal and spherical 

inhomogeneities, respectively. Upon this method, which considered the pairwise inclusion 

interactions, both “local” and “overall” field solutions can be obtained, and accordingly, the 

ensemble-volume averaged micromechanical field equations were formulated by the 

homogenization process. Soon after, along the line of Ju and Chen (1994a; 1994b), Ju and Zhang 

(1998), Ju and Yanase (2010; 2011), and Lin and Ju (2009) established the effective elastic 

moduli of composites with randomly located aligned circular fibers or randomly dispersed 

spherical particles featuring same/distinct elastic properties and the same sizes. Subsequently, Ko 

and Ju (2012; 2013) rendered the effective transverse elastic moduli of a three-phase composites 
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with randomly located aligned circular fibers of distinct elastic properties and sizes. In addition, 

emanating from the general framework of Ju and Chen (1994a; 1994b), Ju and co-workers 

further explored the micromechanical effective elastoplastic behaviors of two-phase metal matrix 

composites (Ju and Chen, 1994c; Ju and Tseng, 1996; Ju and Tseng, 1997; Ju and Zhang, 2001; 

Ju and Sun, 2001; Sun and Ju, 2001), the exact formulation for the exterior-point Eshelby’s 

tensor of an ellipsoidal inclusion (Ju and Sun, 1999) and micromechanical damage models for 

effective elastoplastic behaviors of ductile matrix composites accommodating evolutionary 

particle debonding/cracking and interfacial fiber debonding with/without thermal residual 

stresses effects (Ju and Lee, 2000; Ju and Lee, 2001; Sun et al., 2003a; Sun et al., 2003b; Liu et 

al., 2004a; Liu et al., 2004b; Ko, 2005; Ju et al., 2006; Liu et al., 2006; Ju et al., 2008; Ju and Ko, 

2008; Ju and Yanase, 2008; Lee and Ju, 2008; Ju et al., 2009; Ju and Yanase, 2009; Ju and Yanase, 

2011; Ko and Ju, 2012). 

Lastly, other categories utilized numerical solutions to analyze the effective properties of 

multi-phase composites. For example, Adams and Crane (1984), Nimmer et al. (1991), and 

Doghri and Friebel (2005) were based on the “finite element methods” to provide the effective 

properties of a composite by the developed “unit cell model” and some assumed periodic arrays 

of fibers. On contrast, “Rigid-Body-Spring-Model (RBSM) method” is another numerical 

approach to construct the effective properties of multi-phase composites, which can refer to 

Kawai (1978), Bolander and Saito (1998), Gedil et al. (2011; 2012), and Yamamoto et al. (2013). 

The introduction to RBSM and its application for finding the effective properties of multi-phase 

composites are presented in Chapter 7 of my research as well. 

Nowadays, since the materials science and technique have been advanced to the 

characteristic size of a nano-scale solid in structures and composites, the interface/surface energy 
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effect on mechanical and physical properties of nanocomposites and nano-size structures 

becomes significant and cannot be ignored. Therefore, the interface/surface energy effect should 

be accounted into the deformation analysis of solids. 

In Huang and Sun (2007), the change of the elastic fields induced by the interface energies 

and the interface stresses from the reference configuration to the current configuration was 

considered. It was emphasized that there are two kinds of fundamental equations required to be 

introduced in the solution of boundary-value problems for stress fields with the interface/surface 

energy effect. The first is the interface/surface constitutive relations, whereas the second is the 

discontinuity conditions of the stress across the interface, namely, the Young-Laplace equations. 

These two fundamental equations are used to predict the effective moduli of a composite 

material with the interface/surface energy effect. Although an infinitesimal strain analysis is 

employed to establish the governing equations induced by the interface/surface energy, the finite 

deformation analysis (also known as the large deformation analysis) of a multi-phase 

hyperelastic medium should be concerned at the beginning, according to reasons as follows:  

(1) The mechanical response from the reference configuration to the current configuration 

should be considered in the study of the mechanical behavior of a composite material or a 

structure. In this regard, the change of the size and the shape of the interface in the process 

of the deformation reflect the change of the curvature tensor in the governing equations. In 

other words, the change of the deformation and the configuration leads to the change of the 

residual elastic field induced by the interface energy. In essence, hence, this is a finite 

deformation problem. Furthermore, the interface/surface energy effect is explicitly verified 

by the change of the residual elastic field due to the change of the configuration. 

(2) To develop the governing equations with the interface/surface energy effect, a residual 
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elastic field induced by the interface energy and the interface stress in the material should be 

introduced, even though there is no external loading. That is to say, through accounting for 

the change of the residual elastic field upon the change of the configuration, the effect of the 

liquid-like interface/surface energy on the effective properties of a composite material can 

then be included. In this chapter, this type of the interface energy model is emphasized and 

discussed. 

(3) The constitutive relations for the hyperelastic solids with the interface/surface energy effect 

at the finite deformation have been formulated by Huang and Wang (2006) and Huang and 

Sun (2007), as introduced in Section 5.7 Appendix A. Moreover, the approximation 

expressions of the changes of the interface stress and the Young-Laplace equations due to 

the change of the configuration through the infinitesimal deformation analysis can be found 

in Section 5.8 Appendix B. These constitutive relations are expressed in terms of the free 

energy of the interface per unit area at the current configuration, denoted by   (see 

Section 5.8 Appendix B for more details). 

In addition, composite materials have developed rapidly over the last several decades. They 

are usually designed to meet the diverse needs for enhancing material performance with 

advanced thermo-mechanical properties, reduced unit weights, versatile directionality, optimal 

anisotropy, etc., and for improving material mechanical strengths, elastic moduli, delamination 

resistance, fracture toughness and fatigue resistance. Reinforcements could be continuous in the 

form of fibers, or discontinuous in the form of particles or whiskers. Especially, for engineers 

and scientists, to predict and estimate overall mechanical properties and behaviors of random 

heterogeneous multi-phase composites are of quite interest in many science, technology, 

engineering and mathematical disciplines. In general, mechanical properties and behaviors of 
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composites are dependent on properties of constituent phases and microstructures of 

inhomogeneities, such as shapes, orientations, aspect ratios, volume fractions, random locations, 

etc. 

The primary objective of the present chapter is to extend the work regarding the 

interface/surface energy effect on size-dependent effective moduli of a three-phase composite 

containing two “particles” of the distinct properties with the same size, based on the framework 

of Ko and Ju (2013) and the methodology of Huang and Sun (2007), to the one regarding the 

interface/surface energy effect on size-dependent effective transverse elastic moduli of 

three-phase hybrid fiber-reinforced composites containing two “fibers” of the distinct properties 

sizes. This model is achieved with consideration to mechanical properties of the constituent 

phases, volume fractions, spatial distributions of fibers, and direct inter-particle interactions. 

Specifically, the two inhomogeneity inclusions/phases feature distinct elastic properties and sizes. 

All fibers are considered non-intersecting, randomly located, and embedded firmly in the matrix 

with perfect interfaces. Two non-equivalent formulations are considered in detail to derive 

effective transverse elastic moduli of three-phase composites leading to new higher-order bounds. 

Hence, a higher-order micromechanical analytical framework is constructed based on the 

probabilistic spatial distribution of spherical particles, pairwise particle interactions, and the 

ensemble-volume averaging (homogenization) procedure for three-phase elastic composites. 

In this chapter, before the analytical framework for the interface/surface energy effect on the 

size-dependent effective transverse elastic moduli of a three-phase hybrid fiber-reinforced 

composite with randomly located and interacting aligned circular fibers of distinct properties and 

sizes is investigated, the interface/surface energy effect on the size-dependent effective moduli of 

a two-phase composite consisting of the matrix and randomly distributed aligned circular fibers 
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is first considered in Section 5.2. Subsequently, in Section 5.3, the effective transverse elastic 

bulk and shear moduli of a three-phase composite containing randomly located cylindrical fibers 

featuring distinct elastic properties and sizes are separately formulated based on another 

framework with consideration to the concepts of probabilistic spatial distribution of spherical 

particles, pairwise particle interactions, and the ensemble-volume averaging (homogenization) 

procedure for three-phase elastic composites. Those concepts can be found in Section 5.9 

Appendix C and Section 5.10 Appendix D. Specifically, in Section 5.9 Appendix C, the 

approximate analytical solutions for the direct interactions between two different randomly 

located elastic fibers embedded in the matrix material are presented, followed by the 

ensemble-volume averaged eigenstrains through the probabilistic pairwise particle interaction 

mechanism developed in Section 5.10 Appendix D. Also in Section 5.3, two non-equivalent 

formulations are considered in detail to derive effective elastic moduli of three-phase composites 

with no the interface/surface energy effect. Later on, in combination with the results from 

Section 5.2 and Section 5.3, effective transverse elastic moduli of three-phase hybrid 

fiber-reinforced composites containing randomly located and interacting aligned circular fibers 

of distinct elastic properties and sizes with the interface/surface energy effect are analytically 

derived in Section 5.4. Numerical results and the corresponding discussions are rendered in 

Section 5.5 to demonstrate the potential of this present model. Specifically, some special cases of 

the interface/surface energy effect on a three-phase composite containing randomly dispersed 

fibers of same/distinct properties embedded in an elastic matrix are executed in Section 5.5. 

Lastly, the conclusion is summarized in Section 5.6. 
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5.2 Effective Moduli of a Circular Fiber-Filled Composite 

 

Based on the theoretical framework formulated in Section 5.7 Appendix A and Section 5.8 

Appendix B, analytical equations used to predict the effective properties of a composite 

reinforced by spherical particles are developed in this section. In the past, Sharma and Ganti 

(2004) have formulated the effective bulk moduli of spherical particle-filled composites with the 

interface effect using the composite spheres assemblage (CSA) model (Hashin, 1962). Duan et al. 

(2005) derived the effective bulk and shear moduli of such composites using the composite 

spheres assemblage model, the Mori-Tanaka method (MTM) (Mori and Tanaka, 1973) and the 

generalized self-consistent method (GSCM) (Christensen and Lo, 1979). The difference between 

the present work in this chapter and those of Sharma and Ganti (2004) and Duan et al. (2005) is 

that: at the outset with the finite deformation theory proposed by Huang and Wang (2006), the 

infinitesimal deformation approximations of the interface/surface constitutive relation and the 

Young-Laplace equation based on the Lagrangian description in consideration to the change of 

the configuration are derived. Therefore, the requirement for using the asymmetric interface 

stress in the Young-Laplace equation is clearly verified and the effect of the residual 

interface/surface energy *
0  on the effective elastic moduli is shown. Assuming that an 

inhomogeneity incorporated with the interface is regarded as an “equivalent inhomogeneity”, for 

a problem on the inhomogeneity with the interface/surface energy effect, the micromechanical 

scheme upon the present work for a two-phase or three-phase composite is applicable 

immediately. In this case, the volume averages of the stress and strain for the “equivalent 

inhomogeneity” have to be calculated on the matrix side due to the discontinuity of the stress 

across the interface. Consequently, the explicit derivation of the stress discontinuity conditions 
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across the interface is significant. The work in this chapter gives an understanding of the 

interface/surface energy effect by accounting for the change of the interface stress in Eq. (5.54) 

and Eq. (5.61) due to the change of the configuration, and the interface moduli are directly 

related to the parameters of the interface energy.  

In this section, before the analytical framework for the interface/surface energy effect on the 

size-dependent effective transverse elastic moduli of a three-phase hybrid fiber-reinforced 

composite with randomly located and interacting aligned circular fibers of distinct properties and 

sizes is investigated, the interface/surface energy effect on the size-dependent effective moduli of 

a two-phase composite consisting of the matrix and randomly distributed aligned circular fibers 

is first considered. 

Consider a two-phase composite composed of the matrix and randomly distributed circular 

fibers, in which the radius of an inhomogeneity is assumed to be a . The effective stiffness 

tensor of the composite, L , can be described as 

 0 * 0 :   rL L L L A        (5.1) 

where 0L  and *L  are the stiffness tensors of the matrix and the “equivalent inhomogeneity” 

(namely, an inhomogeneity incorporated with the interface), respectively;   is the 

volume-fraction sum of all inhomogeneities; rA  denotes the fourth-order global strain 

concentration tensor for the r th equivalent inhomogeneity. If the Ju and Chen’s scheme (1994a; 

1994b; 1994c) is applied, rA  is given by 

  1

* 0 0r

 A L - L L         (5.2) 

Assuming all fibers are circular and both matrix and fibers are isotropic elastic, rA  in Eq. (5.2) 

can be advanced to express as  



156 

  10 (1) 0: 1  


    rA A I A       (5.3) 

where (1)I  is the fourth-order unit tensor; 0A  is the strain concentration tensor of the 

equivalent inhomogeneity in an infinite matrix corresponding to dilute distribution of 

inhomogeneities, or simply named the local strain concentration tensor if rA  is relatively 

considered as a global strain concentration tensor. It can be found that Eq. (5.3) coincides with 

the corresponding results obtained by using the Mori-Tanaka method (Benveniste, 1987; Weng, 

1990) in the case of this section. Whereas, the corresponding expression of rA  given by the 

Eshelby method is written as 

0
r A A            (5.4) 

Eq. (5.4) implies that the interactions among equivalent inhomogeneities may be neglected. In 

other words, each equivalent inhomogeneity can be treated as if it exists in a homogeneous 

matrix without the interference by other inhomogeneities. 

In addition, if the inhomogeneities are randomly distributed and the composite material is 

statistically isotropic, then the elastic moduli in Eq. (5.1) can be expressed as 

0 0 0

* * *

3 2

3 2

3 2

m s

m s

m s

K

K

K







 

 

 

L I I

L I I

L I I

        (5.5) 

where 0K , *K  and K  are the bulk moduli of the matrix, the equivalent inhomogeneity and 

the composite, respectively; 0 , *  and   are the shear moduli of the matrix, the equivalent 

inhomogeneity and the composite, respectively. It is also known that 
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1

3m  I I I , (1)
s m I I I        (5.6) 

Substituting Eq. (5.6) into Eq. (5.5), Eq. (5.1) is further decoupled into 
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        (5.7) 

where mA  and sA  are the constants in the strain concentration tensors corresponding to the 

bulk and shear moduli, respectively, as follows, 
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and 

 
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         (5.9) 

m  and s  are components of the fourth-order Eshelby inclusion tensor. It is noted that the 

elastic moduli *K  and *  of the equivalent inhomogeneity can be obtained by using Eqs. 

(5.54) and (5.61) for this purpose. In the case of the spherical inhomogeneity of radius a , 0s u  

can be described in terms of the physical components ( ru , u , u ) in a spherical polar 

coordinate system as the following equation, 



158 

0

1
cot

sin

1
cot

sin

r r
s

r

u uu uu u

r r r r r r

u u u

r r r

  
     

 
 


   


 

                         

 
     

u e e e e e e

e e

 (5.10) 

For the axisymmetric loading, 0u  , and Eq. (5.10) is also applicable in plane coordinate. 

Since ru  and u  are not dependent on  , 0s u  is a symmetric tensor, as shown below, 

0 cotr r
s

u uu u

r r r r
 

   


               
u e e e e        (5.11) 

In the above case, Eq. (5.61) may be replaced by Eq. (5.62). It is noticed that, in the reference 

configuration, the curvature tensor on the surface of the sphere with radius a  is 

0 0

1

a
 b i           (5.12) 

Eq. (5.54) can be expressed as 
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   (5.13) 

where the symbol    denotes the discontinuity of a quantity across the interface. In order to 

compute the bulk modulus *K  of the equivalent inhomogeneity, suppose that a circular fiber is 

embedded in an infinite medium under the hydrostatic loading with the remote strain as 

1

3 mE E I           (5.14) 
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In this case, the displacement and stress fields in the inhomogeneity and matrix are given by 

2
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        (5.15) 

The superscript 1, 0i   denotes the quantities of the inhomogeneity and matrix, respectively. 

1F , 0F , 1G  and 0G  are constants to be determined. In addition to the displacement continuity 

condition at the interface r a , the elastic solution needs to satisfy the stress discontinuity 

condition in Eq. (5.13), namely, 

    0 1 * *
0 1 12

2
| 2 |rr rr r a r r au

a
             (5.16) 

According to the above conditions, the non-singular condition at the origin and the 

condition at infinity, the constants in Eq. (5.15) can be determined. Therefore, the (secant) bulk 

modulus *K  of the equivalent inhomogeneity can be obtained by 
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tr
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    (5.17) 

where *  and *  represent the volume averages of the stress and strain of the equivalent 

inhomogeneity that includes the inhomogeneity and the interface, respectively. *
0 0 1 2      , 

*
1 1 2 11 12 222 2          , and *

0  and *
1  form the residual interface/surface energy. 

Further, it is found that there are at least three independent material parameters *
0 , *

1  and 1  

required in the above equation. About the detailed description of the interface/surface free energy 

 , it can refer to Section 5.8 Appendix B.  

Moreover, the shear modulus *  of the equivalent inhomogeneity can be found by 
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imposing a pure deviatoric remote strain at infinity as, 

 3 3 1 1 2 2

1
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E e e e e e e      (5.18) 

where 1e , 2e  and 3e  are the base vectors in a rectangular Cartesian coordinate system. From 

the solution of Lur’e (1964), the displacement and stress fields in the inhomogeneity and matrix 

can be written by 

   

   

   

   

   

   

 

1 3
1 2

00
22 4

21 3
1

0 20
2 4

1 2
1 1 2

00
0 23 5

1 2
1 1

12 2 cos

2 5 4 3
cos

cos
7 4

2 4 cos1 1

2

2 6 2 cos

4 5 12
2 cos

2 7 2

r

r e

e

rr

rr e

r

u Ar Br P

u E r C D P
r r

dP
u Ar Br

d

dP
u E r C D

r r d

Ar B P

E C D P
r r

Ar B







 









 


   


  

  

 

 
   
 

    

 
   
 

  

 
   

 

  
 

   

2

0 20
0 3 5

cos

2 1 cos1 4
2

2r e

dP

d

dP
E C D

r r d




 
 



  

 
   

 

   (5.19) 

The superscripts 1 and 0 denote the quantities of the inhomogeneity and matrix, respectively. 1  

and 0  are Poisson’s ratios of the inhomogeneity and matrix, respectively.  2 cosP   is the 
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second-order Legendre polynomial. A , B , C  and D  are constants to be determined. 

Similarly, in addition to the displacement continuity condition at the interface r a , the elastic 

solution needs to satisfy the stress discontinuity condition in Eq. (5.13). Then, the unknown 

constants can be determined in a way similar to that for the bulk modulus. The shear modulus 

*  of the equivalent inhomogeneity can be calculated by 
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where * e
  and * e

  are the effective average stress and the effective average strain of the 

equivalent inhomogeneity, respectively. It can be easily found that *K  and *  are not only 

functions of the elastic moduli of the inhomogeneity, such as 1K  and 1 , but also functions of 

the size of particles, a .  

 In order to simplify the discussion, the expression of the interface/surface free energy 

can be linearized. Therefore,   can be expanded as: 
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where 0 , 1 , 2  represent the intrinsic physical properties of the interface, and they are, and 

should be determined by the joining materials and the adhering condition.  0 2,1   is 

equivalent to the interface/surface energy of a liquid-like material and hence reflects the nature 

of liquids, whereas 1  and 2  reflect the nature of solids; 1 2J   and 2 1J   are first-order 

small quantities.  

Moreover, the expression of the (secant) bulk modulus *K  of the equivalent 

inhomogeneity in Eq. (5.17) is derived for identical circular fibers of the same property. 

Therefore, it is rewritten in a general form for two different circular fibers of distinct properties 

and sizes as follows: 

 * *
0 1 1*

*
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2 2
| ; 1, 2

3 3
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 
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m r a m
mm

tr
K K m

tr a




       (5.22) 

where * m
  and * m

  represent the area averages of the stress and strain of two distinct 

equivalent inhomogeneities and each equivalent inhomogeneity includes the inhomogeneity and 

the interface, respectively. *
0 0 1 2      , *

1 1 2 11 12 222 2          , and *
0  and *

1  

form the residual interface/surface energy. Further, it is found that there are at least three 

independent material parameters *
0 , *

1  and 1  required in the above equation. Here, the 

property of the interface/surface free energy   is assumed to be the same and the 

interface/surface surrounds two distinct fibers.  



163 

Similarly, the shear modulus * m  in Eq. (5.20) of the equivalent inhomogeneity for two 

distinct fibers can be obtained as: 
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where * em
  and * em

  are the effective average stress and the effective average strain of the 

equivalent inhomogeneity, respectively. For each equivalent inhomogeneity ( 1,2m ), it can be 

easily found that *mK  and * m  are not only functions of the elastic moduli of the 

inhomogeneity, such as mK  and m , but also the functions of the size (radius) of fibers, ma . 

 

 

5.3 Effective Transverse Elastic Moduli of Three-phase Composites Containing 

Unidirectionally Aligned Circular Fibers with Distinct Elastic Properties and Sizes 
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(with No Interface Energy Effect) 

  

In this section, the effective transverse elastic moduli of composites containing many 

randomly dispersed unidirectionally aligned fibers of distinct elastic properties and sizes in 

three-phase composites (with no interface/surface energy effect), based on the theoretical 

framework formulated in Section 5.9 Appendix C and Section 5.10 Appendix D, are derived. 

Specifically, the probabilistic ensemble-area averaged pairwise local interaction solution for 

 
* i  and other ensemble-area averaged field equations are utilized. In what follows, angle 

brackets for the ensemble-area operators will be dropped for the purpose of compactness. 

According to Ju and Chen (1994a) and Zhao et al. (1989), the relations governing the 

ensemble-area averaged stress  , the averaged strain  , the uniform remote strain 0 , and the 

averaged eigenstrain  
*

i
  take the following form: 

 
 

2
*

0
1

:
i

i
i
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where the following relations are employed to derive the effective stiffness C : 
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Since all the fourth-rank tensors on the right-hand side of Eq. (5.26) are isotropic in 

two-dimension, the effective stiffness tensor C  for these three-phase composites is also 

isotropic in 2D (or equivalently transversely isotropic in three-dimension). For the two-phase 

composites, simply let the two inhomogeneity phases be of the same elastic properties and sizes 

as within the proposed framework for three-phase composites. It is noted that based on the Eqs. 

(5.117)–(5.128) and Eqs. (5.143)–(5.156) in the Formulation I for the two-phase composites, it 

can be proved that I I
1 11 12     and I I

2 21 22    .  

In what follows, two different radial distribution functions will be considered, that is, (1) the 

uniform radial distribution function   1g r , as shown in Section 5.10.1; and (2) the general 

radial distribution function   1g r , as shown in Section 5.10.2. Under each radial distribution 

function, two non-equivalent formulations are considered in detail to predict the effective 

transverse elastic moduli of three-phase composites with no interface/surface energy effect, that 

is, “Formulation II” and “Formulation I”. The following notations are adopted: the superscript 

“U”, “G”, “II”, and “I” stand for the uniform radial distribution function, the general radial 

distribution function, Formulation II and Formulation I, respectively. 

 

5.3.1 Uniform radial distribution function (URDF) 

Formulation II: The effective plane-strain bulk modulus UII
TK  and the shear modulus UII

T  of 

three-phase composites with no interface/surface energy effect can be explicitly evaluated as 
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        (5.30) 

where  2  and  1  are the fiber volume fractions of phase 2 and phase 1, respectively. It is 

noted that the definition of the effective plane-strain bulk modulus is   T TK  where   

and T  are the effective Lamé constants.  

 

5.3.2 General radial distribution function (GRDF) 

Formulation II: The effective plane-strain bulk modulus GII
TK  and the shear modulus GII

T  of 

three-phase composites with no interface/surface energy effect can be explicitly evaluated as 
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        (5.32) 

To obtain Formulation I, simply replace the superscript “II” by “I” in Formulation II. 

 

 

5.4 Effective Transverse Elastic Moduli of Three-phase Composites Containing 

Unidirectionally Aligned Circular Fibers with Distinct Elastic Properties and Sizes with 

Interface Energy Effect 
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In combination with the results from Section 5.2 and Section 5.3, effective transverse elastic 

moduli of three-phase hybrid fiber-reinforced composites containing randomly located and 

interacting aligned circular fibers of distinct elastic properties and sizes with the interface/surface 

energy effect are analytically derived in this section. In what follows, two different radial 

distribution functions will be considered, that is, (1) the uniform radial distribution function 

  1g r , as shown in Section 5.10.1; and (2) the general radial distribution function   1g r , 

as shown in Section 5.10.2. Under each radial distribution function, two non-equivalent 

formulations are considered in detail to predict the effective transverse elastic moduli of 

three-phase composites with no interface/surface energy effect, that is, “Formulation II” and 

“Formulation I”. The following notations are adopted: the superscript “U,” “G,” “II,” and “I” 

stand for the uniform radial distribution function, the general radial distribution function, 

Formulation II and Formulation I, respectively. 

Moreover, required parameters regarding the interface/surface energy effect can be recast as 

follows: 
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where 0k , *mk  and 0 , * m  ( 1,2m ) denote the bulk and shear moduli of the matrix and 

the m-phase equivalent inhomogeneity, respectively. *mk  and * m  are defined in Eq. (5.22) 

and Eq. (5.23). 

 

5.4.1 Uniform radial distribution function (URDF) 

Formulation II: The effective plane-strain bulk modulus UIIK  and the shear modulus UII  of 

three-phase composites with interface/surface energy effect can be explicitly evaluated as 
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       (5.36) 

where  2  and  1  are the fiber volume fractions of phase 2 and phase 1, respectively. In 

addition, the parameters for Eqs. (5.35) and (5.36), such as UII
*11 , UII

*21 , UII
*12 , UII

*22 , etc., can be 

re-derived by substituting the above required parameters, Eqs (5.33)-(5.34), into the 

corresponding equations introduced in Section 5.10 Appendix D, they are then established. 

5.4.2 General radial distribution function (GRDF) 

Formulation II: The effective plane-strain bulk modulus GIIK  and the shear modulus GII  of 
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three-phase composites with interface/surface energy effect can be explicitly evaluated as 
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The parameters for Eqs. (5.37) and (5.38), such as II
*11
GII , GII

*21 , GII
*12 , GII

*22 , etc., can be 

re-derived by substituting the above required parameters, Eqs (5.33)-(5.34), into the 

corresponding equations introduced in Section 5.10 Appendix D. To obtain Formulation I, simply 

replace the superscript “II” by “I” in Formulation II. 

 

 

5.5 Some numerical simulations 

 

In the special event, suppose the URDF and Formulation II are adopted, that a matrix 

material contains identical fibers (i.e., a a1 2 ,  1 2 , 1 2K K ), from Eq. (5.35) and Eq. 

(5.36), the effective moduli of the two equivalent inhomogeneities are the same, i.e., *1 *2K K , 

 *1 *2 . In the meanwhile, substituting the obtained *mK  in Eq. (5.17) and *m  in Eq. (5.20) 

into Eq. (5.34), the effective plane-strain bulk modulus K  and the shear modulus   of 
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three-phase composites with interface/surface energy effect in Eqs. (5.35) and (5.36) reduce to 
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   (5.40) 

Here,   denotes the total particle volume fraction. 

Two special cases resulting from Eqs. (5.39) and (5.40) are discussed in this section. The 

first special case is a porous material containing spherical nano-voids, and the corresponding 

effective bulk and shear moduli of the composite with the interface/surface energy effect can be 

obtained by substituting 1 0K   and 1 0   into Eqs. (5.39) and (5.40), as follows, 

   
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        (5.41) 
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  (5.42) 

The second special case is a composite containing liquid-like circular inhomogeneities, 

namely, *
0 0  , *

1 1 0   , then the effective moduli of the composite with the 

interface/surface energy effect are 
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    (5.43) 

 



172 

 
   

      

 

 

0

* *
0 0 1 0 0 3 0 1 2

0 * *
4 5 0 2 0 0 3

2
1 0*

2 2

1 0*
3

15 1

1 10 2 4 5 15 1

10 10 7

20 10 7

L L L L L

LL L L L L

L
a

L
a



     
 

    

 

 

        
        




 


   (5.44) 

From Eqs. (5.43) and (5.44), it is obviously seen that the interface/surface energy 0  

affects the effective moduli of the composite.            

Further, the effective bulk and shear moduli of the composite filled with spherical particles 

can be calculated by simply substituting *
0 0   into Eqs. (5.39) and (5.40), as shown in the 

following equations, 
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         (5.46) 

It is obvious that the effective moduli obtained by this way are not influenced by the residual 

interface energy, *
0 .  

The following figures from the special cases of the porous material containing fiber-shape 

nano-voids, and the corresponding effective bulk and shear moduli of the composite with the 

interface/surface energy effect can be obtained by substituting 1 2 0 K K  and 1 2 0    

into Eqs. (5.39) and (5.40). Assume that the composite contains the liquid-like spherical 



173 

inhomogeneities, namely, *
0 0  , *

1 1 0   , 0 0  . Suppose that the bulk modulus of the 

matrix material is 0 2.5 GPaK , and the shear modulus is 0 0.5 GPa  . The surface is 

assumed to be liquid-like with a interface/surface energy 2
0 0.05 J/m  . The volume fractions 

of the sum of all voids are assumed to be 20%   and 30%  , respectively. Accordingly, 

the variations of the normalized effective bulk and shear moduli for polypropylene containing 

fiber-shape voids are illustrated in Figure 5.1 and Figure 5.2. In the figures, 0K  and 0  are 

the effective bulk and shear moduli of the material without the interface/surface energy effect. 

From these two figures, it is found that the interface/surface effect decreases with the increase of 

the size of the voids and almost can be neglected when the radius of the void is larger than 30 nm. 

Although the result of effective shear modulus decreases with the decrement of the radius of the 

fiber-shape voids, this phenomenon is reasonable since the effective “plane-strain” shear 

modulus is applied to the three-phase hybrid fiber-reinforced composites in this chapter. It is 

obvious that the effect by the decrease of the surface area is much more than the effect by the 

interface/surface energy. It is further demonstrated that this developed analytical model for the 

interface/surface energy effect on effective moduli of three-phase composites containing 

randomly dispersed circular fibers of distinct elastic properties and sizes is applicable to reveal 

the influence of interface/surface energy in nano-scale composites. 
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Figure 5.1 Normalized effective bulk modulus against the size of fiber-shape voids in  

the range of nanometer size with two different volume fractions and 2
0 0.05 /  J m  
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Figure 5.2 Normalized effective shear modulus against the size of fiber-shape voids in  

the range of nanometer size with two different volume fractions and 2
0 0.05 /  J m  
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5.6 Conclusions 

 

The primary objective of the present chapter is to extend the work regarding the 

interface/surface energy effect on size-dependent effective moduli of a three-phase composite 

containing two “particles” of the distinct properties with the same size, based on the framework 

of Ko and Ju (2013) and the methodology of Huang and Sun (2007), to the one regarding the 

interface/surface energy effect on size-dependent effective transverse elastic moduli of 

three-phase hybrid fiber-reinforced composites containing two “fibers” of the distinct properties 

and sizes. 

First of all, the interface/surface energy effect on the macroscopic mechanical behavior of a 

composite is investigated through starting with the finite deformation theory of a multi-phase 

hyperelastic medium. Then, the approximate formulation of a finitely deformed multiphase 

elastic medium by an infinitesimal deformation analysis is executed. According to the existence 

of the interface energy, even though under no external loading, there is still a “residual elastic 

field” induced by the interface stress. During the deformation process of a composite from the 

reference configuration to the current configuration, the changes of the size and shape of the 

interface leads to the change of this “residual elastic field”. It is noticed that the governing 

equations describing the change of the “residual elastic field” due to the change of the 

configuration are formulated under the infinitesimal deformation approximation and hence lead 

to the use of the asymmetric interface stress in the prediction of the effective properties of 

heterogeneous materials with interface/surface energy effect. Therefore, the influence of the 

residual interface/surface energy can be taken into account. In particular, the theoretical 

framework is applied to obtain the analytical expressions of the effective bulk and shear moduli 
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of a composite with spherical “equivalent inhomogeneities” (i.e. the inhomogeneities together 

with the interface/surface energy). Hence, the interface/surface energy effect on the 

size-dependent effective moduli of a two-phase composite consisting of the matrix and randomly 

distributed fiber-shape inhomogeneities is developed. 

Secondly, the effective transverse elastic bulk and shear moduli of a three-phase composite 

containing randomly located cylindrical fibers featuring distinct elastic properties and sizes are 

separately formulated based on another framework with consideration to the concepts of 

probabilistic spatial distribution of spherical particles, pairwise particle interactions, and the 

ensemble-volume averaging (homogenization) procedure for three-phase elastic composites. 

Specifically, the approximate analytical solutions for the direct interactions between two 

different randomly located elastic fibers embedded in the matrix material are presented, followed 

by developing the ensemble-volume averaged eigenstrains through the probabilistic pairwise 

particle interaction mechanism. Moreover, two non-equivalent formulations are considered in 

detail to derive effective elastic moduli of three-phase composites with no the interface/surface 

energy effect.  

Later on, in combination with the above two formulations, effective transverse elastic 

moduli of three-phase hybrid fiber-reinforced composites containing randomly located and 

interacting aligned circular fibers of distinct elastic properties and sizes with the interface/surface 

energy effect are analytically derived. In addition, numerical results and the corresponding 

discussions are rendered to demonstrate the potential of this present model. Specifically, some 

special cases of the interface/surface energy effect on a three-phase composite containing 

randomly dispersed fibers of same/distinct properties embedded in an elastic matrix are executed. 

It is further demonstrated that this developed analytical model for the interface/surface energy 
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effect on effective moduli of three-phase composites containing randomly dispersed circular 

fibers of distinct elastic properties and sizes is applicable to reveal the influence of 

interface/surface energy in nano-scale composites. 

Lastly, experimental validations are key parameters in the calibration of proposed models. 

Further experimental validations and comparisons will be performed once the associated 

experiment data become available. To the author’s best knowledge, the experimental data 

associated with characterizations of effective transverse elastic properties of three-phase hybrid 

fiber-reinforced composites with the interface/surface energy effect are currently not available 

due to difficulties in performing such experimental works. For example, as the illustrative figures 

developed based on the framework in this chapter, it is found that the interface/surface effect 

decreases with the increase of the size of the fiber-shape voids and can be neglected when the 

radius of the void is larger than 30 nm. In other words, it is quite difficult to manufacture so 

small nanocomposites nowadays. 

It is known that continuous fiber-reinforced composites possess high strength and stiffness 

in the direction of fibers. The overall mechanical behavior of a fiber composite depends on the 

constituent properties of the matrix and reinforcements as well as the microstructure. Several 

possible damage modes exist for fiber composites, such as the interfacial fiber-matrix debonding, 

the matrix cracking, the fiber breakage, the fiber-pullout, and the shear sliding of fibers. 

Specifically, the dominant damage mechanism in continuous unidirectional two phase 

fiber-reinforced ductile composites featuring same elastic properties and sizes of fibers under 

transverse loading is the initiation and progressive interfacial partial fiber debonding (arc 

microcracks) or fiber cracking followed by plastic yielding (Ko, 2005; Ju et al., 2006; Ju et al., 

2008; Ju and Ko, 2008; Ju et al., 2009; Ko and Ju, 2012). 
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Current studies will pave the way for future investigations in various damage mechanisms 

of continuous unidirectional three-phase hybrid fiber-reinforced composites with the 

interface/surface energy effect under transverse loadings. Thus, optimum cost and performance 

of hybrid fiber-reinforced composites with the interface/surface energy effect can be achieved 

through proper material design. 

 

 

5.7 Appendix A: Formulations upon Finite Deformation Theory 

 

The constitutive relations of the interface have been widely investigated by many 

researchers in the literature. But most of works on this subject are confined to the infinitesimal 

deformation approximations. Suppose that the interface/surface energy per unit area in the 

current configuration is denoted by  . If the interface is assumed to be isotropic relative to the 

reference configuration 0 , i.e. the underlying reference configuration is an undistorted state, 

then   can be expressed as a function of the invariants of sU  and sV , or a function of 1J  

and 2J , as follows, 

1

2 det det

s s

s s

J tr tr

J

 

 

U V

U V

        (5.47) 

where sU  and sV  are the right and left stretch tensors of the interface, respectively; 1J  and 

2J  are the first and second invariants of sU  and sV . If the small deformation is concerned, the 

strain at the interface may be approximately expressed by 
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 0 0 0

1

2s s s s    E u u U i       (5.48) 

where 0s  is the surface gradient operator on operator in the reference configuration 0 ; 0su  

is the displacement gradient of the interface; 0i  is the second-order identity tensor in the 

tangent plane of the interface in the reference configuration. Substituting Eq. (5.48) into Eq. 

(5.47), 1J  and 2J  can be re-written as 

1
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s

s s

J tr
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 

  

E

E E

        (5.49) 

In the case of the isotropic interface and the small deformation, the interface Piola-Kirchhoff 

stresses of the first kind and second kind can be formulated as 

 2 2 0 2 2 2 0
1 2 1 1 2

s s sJ J J J J
J J J J J

     
       

                 
S i E u   (5.50) 

2 2 0 2 2
1 2 1 2

2 2s sJ J J J
J J J J

    
      

              
T i E      (5.51) 

and the Cauchy stress of the interface can be described by 

2 0
1 2 1

s sJ
J J J

  
   

       
σ i E           (5.52) 

Therefore, it is found that sS , sT  and the Cauchy stress of the interface sσ  are not the 

same, even if the infinitesimal deformation approximation is performed. The situation is totally 

different from that in the three dimensional analysis in the traditional elasticity, in which there is 

no residual stress in the reference configuration. In other words, only through the beginning with 

the finite deformation theory, an appropriate infinitesimal interface stress is then chosen in the 

governing equations if the interface/interface energy effect is taken into account on the 
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mechanical properties of a heterogeneous material. 

 

 

5.8 Appendix B: Approximations upon Infinitesimal Deformation Analysis 

 

In this section, the approximate equations of the changes of the interface stress and the 

Young-Laplace equation due to the change of configuration under the infinitesimal deformation 

is introduced. Then, the analytical equations for the effective moduli of a particle-reinforced 

composite is given through the application of the theory by Huang and Sun (2007), which depicts 

the effect of the liquid-like interface/surface energy on the effective moduli. 

The governing equations, such as the equilibrium equations, based on one configuration are 

well-known in the infinitesimal analysis in the traditional elasticity. In order to study the 

interface energy effect, however, the residual elastic field induced by the interface energy should 

be taken into account. Although the interface induced the residual elastic field in the reference 

configuration or in the current configuration is not cared for, the change of the residual elastic 

field induced by the interface energy from the reference configuration to the current 

configuration is strongly concerned. Since after and before deformation, the Cauchy stresses (in 

the bulk material and at the interface) are not in the same configuration based on the Eulerian 

description, it is obvious that the difference of the Cauchy stresses cannot be used to represent 

this change. Therefore, the Lagrangian description is applicable, so that the generalized 

Young-Laplace equation based on the Lagrangian description given by Huang and Wang (2006) 

can then be expressed in terms of the interface Piola-Kirchhoff stress of the first kind in the 

following, 
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where the symbol    denotes the discontinuity of a quantity across the interface; 0S  is the 

first kind Piola-Kirchhoff stress in the bulk material; I  is the unit tensor in three-dimensional 

space; N  is the unit normal vector to the interface in the reference configuration 0 ; 0b  is the 

curvature tensor of the interface in 0 .  

Obviously, the change of the residual elastic field induced by the interface energy can be 

re-written by adding the difference sign into the above equation, as follows, 

0
0

0
0 0
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s s

    

     

N S N - S b

P S N - S

   

   

       (5.54) 

where   denotes the difference of the quantities between the current and reference 

configurations. In order to account for the interface energy effect, the interface Piola-Kirchhoff 

stress of the first kind sS  should be employed in the analysis, as shown in the equations above. 

This is the key point addressed by Huang and Wang (2006), but the previous researchers seemed 

to ignore that in the study of the effective properties of a heterogeneous material with the 

interface energy effect. Next, an infinitesimal deformation approximation is executed. In the case 

of the infinitesimal deformation, 0S  in Eq. (5.54) could be approximated by the difference of 

the bulk Cauchy stress between the current and reference configurations, while sS  in Eq. (5.50) 

is described in terms of the interface/surface free energy  . 
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In addition, the equation of the interface/surface free energy is linearized in order to 

simplify the algebraic operations at the beginning of the research. Accordingly,   can be 

written as 

          

1 2 1 2

2 2
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            

 
 
 

 (5.55) 

where 0 , 1 , 2  represent the intrinsic physical properties of the interface, and they are, and 

should be determined by the joining materials and the adhering condition.  0 2,1   is 

equivalent to the interface/surface energy of a liquid-like material and hence reflects the nature 

of liquids, whereas 1  and 2  reflect the nature of solids; 1 2J   and 2 1J   are first-order 

small quantities. Suppose that only the first-order small quantities are considered in Eq. (5.50) 

and higher-order small quantities are neglected, from 

 * * *
2 2 0 0 1

1 2
sJ J tr

J J

     
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Then, 

  * * * *
0 0 0 1 0 0 0 1s s s str         S i E i u E    (5.58) 

 * *
0 0 1 0 1s s str    σ i E i E        (5.59) 

where *
0 0 1 2      , *

1 1 2 11 12 222 2          , and *
0  and *

1  form the residual 
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interface/surface energy. The similar expression with an assumption of the interface stress is 

dependent on the isotropic linear function of the interface strain can be found by Gurtin and 

Murdoch (1975). Here, the present formulation shows the interface stress in terms of the 

interface/surface energy. Later, as the change of the interface stress due to the change of the 

configuration is discussed, this theoretical framework is applied to predict the effective moduli of 

heterogeneous media with the interface/surface energy effect. In the reference configuration 0 , 

the “residual” interface Piola-Kirchhoff stress of the first kind is expressed by 

*
0 0 0|s S i           (5.60) 

Accordingly, in the case of the infinitesimal deformation, the difference of the interface 

Piola-Kirchhoff stress of the first kind between the current and reference configurations, sS , 

can be written as 

  * * *
0 1 0 0 0 1s s s str        S E i u E     (5.61) 

It is found that there are at least three independent material parameters *
0 , *

1  and 1  required 

in the above equation. For some special cases, such as a spherical inhomogeneity embedded in 

an infinite matrix material under the axisymmetric loading, 0s u  may be regarded as a 

symmetric second-order tensor in two-dimensional space. Eq. (5.61) is then written as 
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S E i E

S E i E

     (5.62) 

where s  and s  are called the interface moduli, shown as follows, 
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      (5.63) 

It is noted that s  could be negative in some cases. In general, the interface/surface energy 0  

at 0  is positive; otherwise a liquid or a solid would gain energy upon fragmentation, for 

example, as referred to the research by Haiss (2001). 2  is the change rate of the interface 

energy due to the change of the interface area, and the negative s  has been confirmed by 

Shenoy (2005) in his atomistic calculations. Substituting sS  in Eq. (5.61) or (5.62) into Eq. 

(5.50), the discontinuity conditions of the traction across the interface in the reference 

configuration 0  is generated. These discontinuity conditions, associated with other governing 

equations, can be used to predict the macroscopic mechanical response of composites with the 

interface energy effect. 

 

 

5.9 Appendix C: Approximate local solutions of two interacting fibers 

 

Let us consider a three-phase composite consisting of an isotropic elastic matrix (phase 0) 

with the plane-strain bulk modulus 0K  and the plane-strain shear modulus 0 , randomly 

located unidirectionally aligned elastic circular fibers (phase 1) with radius a1, the plane-strain 

bulk modulus 1K , and the plane-strain shear modulus 1 , as well as randomly located 

unidirectionally aligned elastic circular fibers (phase 2) with radius a2, the plane-strain bulk 

modulus 2K , and the plane-strain shear modulus 2  (cf. Figures 5.3 and 5.4). Since 
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plane-strain is assumed, the fiber interaction exists only in the same cutting plane as shown in 

Figure 5.2. In addition, the plane-strain linearly elastic isotropic stiffness tensors for three 

distinct phases are expressed as 

    , 0,1,2ij kl ik jl il jkijkl
C                      (5.64) 

where   and   are the Lamé constants of the phase-η material. 

 

Figure 5.3 A schematic plot for a composite reinforced by unidirectionally aligned yet  

randomly located cylindrical fibers 

 

 

 

O

X1 

X3 
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Figure 5.4 The schematic diagram for the two-fiber interaction problem. r: spacing  

between the centers of two interacting fibers;  - , 1,2i jr i j= x x = r  

 

Following the eigenstrain concept introduced by Eshelby (1957), the perturbed strain field 

 ' x  induced by fibers can be related to the specified eigenstrains  * x  by replacing the 

fibers with the matrix material. The key equation can be rephrased as follows: 

     0 0 *
0: ' ' , 1, 2           C x C x x            (5.65) 

1 

2 
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Xj ia  

ja  

j
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r


r
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where 0  is the uniform strain field induced by the far-field loads for a homogeneous matrix 

material only. Throughout the paper, the colon symbol “ : ” denotes the tensor contraction 

between a fourth-rank tensor and a second-rank tensor, while the dot symbol “ ” represents the 

tensor multiplication between two four-rank tensors. 

According to Eshelby (1957), the perturbed strain field induced by the distributed 

eigenstrain  * x  in a representative area element (RAE) A reads 

     *' ' : ' 
A

'x G x x x dx             (5.66) 

where , ' Ax x  and the components of the fourth-rank two-dimensional Green’s function 

tensor G are given by (i, j, k, l = 1, 2; cf. Mura (1987)): 

   0 0 0 02
0

1
8,2 ,2,2 4 , 1 2 ,1 2

4 1 '
   

 
     

ijkl ijklG F
r

     (5.67) 

where - 'r x x  and ' 'r  r . The components of the fourth-rank tensor F – which depends on 

its arguments ( 1 2 3 4 5 6, , , , ,B B B B B B ) – are defined by (m = 1–6): 

   
 

1 2

3 4 5 6

ijkl m i j k l ik j l il j k jk i l jl i k

ij k l kl i j ij kl ik jl il jk

F B B n n n n B n n n n n n n n

B n n B n n B B

   

       

               

       
     (5.68) 

with the normal vector ' /n r r . All physical quantities refer to the Cartesian coordinates, and 

the summation convention applies. Moreover, ij  denotes the Kronecker delta and 0  is the 

Poisson’s ratio of the matrix material. From Eqs. (5.65) and (5.66), we arrive at 

     * 0 *-Α : ' : d ',   i

A

' Ax G x x x x x           (5.69) 

  1

0 0Α
  i iC C C              (5.70) 

Within the present two-circular fibers interaction context, the integral Eq. (5.69) can be 
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recast as 

               * 0 * *-Α : ' : d ' ' : d ',

, , 1,2

 

    

 

 
i j

i i i j' '

i j i j

x G x x x x G x x x x   
   (5.71) 

where ix , and    * i 'x  is the eigenstrain at 'x  in the i th circular fiber within the domain 

i . 

As discussed earlier in Ju and Chen (1994a), the first-order solution for the eigenstrain, 

denoted by  
*0 i  for the i th phase, can be obtained by neglecting the last term in the right-hand 

side of Eq. (5.71), which represents the interaction effects due to the other circular fiber. The 

first-order formulation leads to 

     
*0 0 *0-Α : : i i ix S                (5.72) 

where the Eshelby tensor S is defined as 

 ' d ', , '


 
i

iS = G x x x x x            (5.73) 

The components of the fourth-rank interior-point Eshelby tensor S for a cylindrical fiber are 

given by Mura (1987), Ju and Sun (2001), Sun and Ju (2001), and Ju and Zhang (1998). It 

depends on the Poisson’s ratio of the matrix ( 0 ) and the shape of the fiber cross-sectional 

domain i . In particular, for a two-dimensional circular domain, the components of S are (see 

Mura (1987) for more details): 

       0 0
0

1
4 1 3 4 , , , , 1,2

8 1
       


     

ijkl ij kl ik jl il jkS i j k l    (5.74) 

By subtracting the first-order solution Eq. (5.72) from Eq. (5.71), the effects of inter-fiber 

interactions can be derived by solving the following integral equation: 
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             

     

* *0 *

*

- : ' d ' : ' : ' d '

' : ' d ', for , , 1,2

 



   

    

 


j i

j

i i j i

ij i j and i j

Α d x G x x x G x x d x x

G x x d x x x



  (5.75) 

where 

         
* * *0 i i id x x               (5.76) 

To obtain the higher-order interaction correction for    * i x , one may expand the 

fourth-rank tensor  'G x x  in the domain i  with respect to its center point xj; i.e., 

       

     

' ' :

1
' ' :

2

j j j

j j j

         

               

x

x x

G x x G x x x x G x x

x x x x G x x
    (5.77) 

where the relation 

   ' ' '      x xG x x G x x           (5.78) 

has been employed. From Eqs. (5.75) and (5.77), we arrive a 

             

          

    

* *0 *

* *

2 *

- : ' d ' : ' : ' d '

: :

1
:

2

 

   

     

       

 
j i

i i j i

j j j j j jj j

j j j j

a

a

x

x x

Α d x G x x x G x x d x x

G x x d x G x x P

G x x Q



   (5.79) 

for ix  and i j  (i, j = 1, 2). Here 2
i i  a  and 2

j j  a  denote the cross-sectional 

area of a fiber in phase i and j, respectively; ia  and ja  define the fiber radius in phase i and j, 

respectively. Furthermore, the average fields involved in Eq. (5.79) are defined as follows: 

     * *1
' d '




 

j

j j
j

d d x x  ;        * *1
' ' d '



  
 

j

jj j
j ja

P x x d x x      (5.80) 
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         * *
2

1
' ' ' d '



    
 

j

j jj j
j ja

Q x x x x d x x                 (5.81) 

The third-rank tensor  
*
jP  and the fourth-rank tensor  

*
jQ  correspond to the dipole and 

quadrupole of  
*

jd  in the domain j , respectively. Due to the circular symmetry of fibers, the 

leading order of  
*
jP  can be shown to be of the order  3O , rather than  2O , by 

substituting Eqs. (5.79) into (5.80). Here, / j ja r  and r are the spacing between the centers 

of two interacting fibers. By performing the area average of Eq. (5.79) for the domain j  and 

neglecting those terms of higher-order moments in Eq. (5.79), the approximate equations for 

 
*
id  for the local two-fiber interaction problem can be obtained. Let i = 1, j = 2, Eqs. 

(5.82)–(5.85) are derived. In addition, let i = 2, j = 1, Eqs. (5.86)–(5.89) are obtained. 

         * 21 *0 * 11 * 6
1 1 12 1 21 2 1 2- : : : :      OΑ d G S d G d       (5.82) 

where 

     
1

* *
1 1

1

1
' d '




 d d x x  ;  

1

1 1' d ', , '


  S = G x x x x x     (5.83) 

   
1 2

3 3
21 1 21 2 1 2

1 2
12 0

1 1
' d 'd

8 1 2

    
 

  
        

 G G x x x x = H H       (5.84) 

   
1

4
11 2 1 21

2 1 1 2 2
0

1
d , with ,

8 1 2




 
       
G G x x x = H H x x    (5.85) 

In addition, we have 

         * 12 *0 * 22 * 6
2 2 21 2 12 1 2 1- : : : :      OΑ d G S d G d      (5.86) 

in which 
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     
2

* *
2 2

2

1
' d '




 d d x x  ;  

2

2 2' d ', , '


  S = G x x x x x     (5.87) 

   
2 1

3 3
12 1 21 2 1 2

1 2
21 0

1 1
' d 'd

8 1 2

    
 

  
        

 G G x x x x = H H       (5.88) 

   
2

4
22 2 1 22

1 2 2 1 1
0

1
d , with ,

8 1 2




 
       
G G x x x = H H x x    (5.89) 

and the components of H1 and H2 are rendered by 

   
   

1
1 2 0 0 0 0

2
1 2

2 8, 2 , 2, 2 4 , 1 2 ,1 2

2 24, 4, 4, 4,1,1

         

    
ijkl ijkl

ijkl ijkl

H F

H F

x x

x x
      (5.90) 

Moreover, we define 1 1 /  a r , 2 2 /  a r , 12 1 2  a a , and 21 12 1 2    a a . 

It is interesting to note that 11G  in Eqs. (5.85) and 22G  in (5.89) are different from the 

Eshelby tensor S in Eqs. (5.83) and in (5.87). One may refer to 11G  and 22G  as the 

“exterior-point Eshelby tensors” since the integrals in Eqs. (5.85) and (5.89) involve an 

exterior-point outside the integration domain. It should be noted that the leading order induced 

by truncating the higher-order moments in Eqs. (5.82) and (5.86) is of the order  6O , since 

both  
*P j  and      x G x xj j ja  are of the order  3O . Moreover, Eqs. (5.82) and 

(5.86) can be recast as 

       

       

* 11 * 21 *0
1 1 2 121 2 2

22 * * 12 *0
1 2 2 121 2 1

: : - :

: : - :

   

   

Α S d G d = G

G d Α S d = G




        (5.91) 

Therefore, the solutions of Eq. (5.91) are 

         

       

11 1 1* 11 2212
1 21

1

11 12 *0 11 21 *0
2 1 2: :

  



         

       

d G Α S G Α S

Α S G G G 
       (5.92) 
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       

       

111* 11 2212
1 22

2

1 122 12 *0 21 *0
11 2: :



 

         

       

d G Α S G Α S

G G G Α S 
                (5.93) 

where the leading orders of   122
2

G Α S  and    
111

1


G Α S  are of the order of  2O  

and  2O  in Eq. (5.92), respectively. We note that   122
2

G Α S  is truncated since its 

leading order is greater than the leading order of    
111

1


G Α S . We also have 1 1 / 2  , 

2 1 / 2  , and 1 2 1   : 

           
1 1 1* 11 12 *0 21 *012

1 2 11 1 2
1

: :
             

d Α S G Α S G Α S G        (5.94) 

Similarly, Eq. (5.93) can be rephrased as 

           
1 1 1* 22 21 *0 12 *012

2 1 22 2 1
2

: :
             

d Α S G Α S G Α S G        (5.95) 

 

 

5.10 Appendix D: Ensemble-area averaged eigenstrains 

 

To obtain the probabilistic ensemble-averaged solution of  
*
1d  within the context of 

approximate pairwise local fiber interaction, one has to integrate Eq. (5.94) over all possible 

positions (x2) of the phase 2 fiber and positions (x1) of the phase 1 fiber for a given location of 

the phase 1 fiber (x1). Similarly, to find  
*
2d , one has to integrate Eq. (5.95) over all possible 

positions (x1) of the phase 1 fiber and positions (x2) of the phase 2 fiber for a given location of 

the phase 2 fiber (x2). The ensemble-average process takes the form: 
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         * * | d ,


  
i

i i j j i ji i
A

P i jd x d x x x x x         (5.96) 

         
1

* *
1 1 2 2 1 21 11, 2 : | d



   
A

i j Pd x d x x x x x        (5.97) 

         
2

* *
2 2 1 1 2 12 22, 1: | d



   
A

i j Pd x d x x x x x        (5.98) 

The two-point conditional probability function  |x xj iP  is determined by the microstructure 

of a composite, which in turn depends on the fiber volume fractions and underlying 

manufacturing processes. For illustration, the two-point conditional probability density function 

takes the following form: 

 
       1 2 1 2, if 1, / ,|

0, otherwise

 
      



  i j

j i

N N
g r r where r r a a r a aP Ax x    (5.99) 

where i, j = 1, 2, i j ; Ni and Ni / A are the numbers of fibers and the 2D number density of 

fibers in phase i in a composite, respectively; Nj and Nj / A are the numbers of fibers and the 2D 

number density of fibers in phase j (distinct material property and size of phase i ) in a composite, 

respectively; r is the spacing between centers of two fibers. Further,  g r  denotes the 2D 

transversely isotropic “radial distribution function” (Hansen and McDonald (1986); Torquato and 

Lado (1992)). 

By substituting Eqs. (5.94) into (5.97), the explicit expression for    *
11d x  can be 

depicted as 
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         

           

       

       

1

1

1 2

1

* *
1 1 2 2 1 21 1

1 1 111 12 *0 21 *012
1 2 1 2 1 21 2

1

2
1 111 12 *012

1 2 2 1 21
1 0

2
1 111 12 *012

1 2 1 1 11
1 2 0

| d

: : | d

: | d

: | d




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  




 




 

 

       

     

     





 

 

A

A

a a

a

P

P

P

P

d x d x x x x x

Α S G Α S G Α S G x x x

Α S G Α S G x x x

Α S G Α S G x x x

 





  (5.100) 

Here, we can prove that 

     
1

1 21 *012
1 2 1 22

1

: | d 0




    
A

PΑ S G x x x         (5.101) 

where  2
1

0
d 0


  H n ;  2

2

0
d 0


  H n  as shown in Ju and Zhang (1998); A is the 

infinitely large 2D transversely isotropic probabilistic (not physical) integration domain; 1  is 

the probabilistic “exclusion zone” for x2. In addition, the following identities can be easily 

derived: 

 
2 2

0 0

d ; d
4

              i j ij i j k l ij kl ik jl il jkn n n n n n        (5.102) 

Similarly, by substituting Eqs. (5.95) into (5.98), the explicit expression for    *
22d x  can 

be expressed as 

         

           

       

       

2

2

1 2

2

* *
2 2 1 1 2 12 2

1 1 122 21 *0 12 *012
2 1 2 1 2 12 1

2

2
1 122 21 *012

2 1 1 2 12
2 0

2
1 122 21 *012

2 1 2 2 22
2 2 0

| d

: : | d

: | d

: | d







  




 




 

 

       

     

     





 

 

A

A

a a

a

P

P

P

P

d x d x x x x x

Α S G Α S G Α S G x x x

Α S G Α S G x x x

Α S G Α S G x x x

 





  (5.103) 
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Here, we can also prove that 

     
2

1 12 *012
2 1 2 11

2

: | d 0




    
A

PΑ S G x x x          (5.104) 

In what follows, two different radial distribution functions will be considered, that is, (1) the 

uniform radial distribution function   1g r  and (2) the general radial distribution function 

  1g r  in Eq. (5.99). Under each radial distribution function, we present two non-equivalent 

formulations to predict the effective transverse elastic moduli of three-phase composites, that is, 

“Formulation II” and “Formulation I.” The following notations are adopted: the superscript “U,” 

“G,” “II,” and “I” stand for the uniform radial distribution function, the general radial 

distribution function, Formulation II and Formulation I, respectively. 

 

5.10.1 Uniform radial distribution function (URDF):   1g r  

This event corresponds to the simplest approximation for  g r  since it tends to 

underestimate the probability of the surrounding fibers at high fiber volume fraction during the 

ensemble-area averaging process. Therefore, this case may be regarded as the “lower bound” for 

microstructure and is more suitable for low fiber concentrations. 

 

Formulation II: By carrying out lengthy algebra and utilizing the identities of Eqs. (5.80), 

(5.99), and (5.102), the approximate ensemble-area averaged eigenstrain tensor  
*
1  can be 

derived as 

     

UII
* UII *0
1 1 1:


                 (5.105) 
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Here, the components of the isotropic tensor  
UII
1

  are as follows: 

   UII UII UII
11 211          


 ij kl ik jl il jk            (5.106) 

       2 1 2 1
UII UII UII UII UII UII

11 21 11 21 21 11

1
;

4 4 2 4 4

        U U V V       (5.107) 

   

2 4 4 6
UII U UII U
21 11 11 114 6 2

1 2 1

6 2 15
;

161 1

   
   

  
     

   
f tU U       (5.108) 

   

2 4 4 6
UII U UII U
21 21 11 214 6 2

1 2 1

6 2 15
;

161 1

   
   

  
     

   
f tV V       (5.109) 

   

   

1

2

0
1 0 0

1 0

0
2 0 0

2 0

4 1 3 4

4 1 3 4



  
 
  

 



   


   


a

a

            (5.110) 

where  2  and  1  are the fiber volume fractions of phase 2 and phase 1, respectively. 

Similarly, the approximate ensemble-area averaged eigenstrain tensor  
*
2  is 

     

UII
* UII *0
2 2 2:


                 (5.111) 

Here, the components of the isotropic tensor  
UII
2

  read: 

   UII UII UII
12 222          


 ij kl ik jl il jk            (5.112) 

       1 2 1 2
UII UII UII UII UII UII

12 12 22 22 12 22

1
;

4 4 2 4 4

        U U V V        (5.113) 

   

2 4 4 6
UII U UII U
12 12 22 124 6 2

1 2 2

6 2 15
;

161 1

   
   

  
     

   
f tU U       (5.114) 
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   

2 4 4 6
UII U UII U

12 22 22 224 6 2
1 2 2

6 2 15
;

161 1

   
   

  
     

   
f tV V       (5.115) 

   

   

2

1

0
1 0 0

1 0

0
2 0 0

2 0

1

4 1 3 4

4 1 3 4




  
 
  

 

 

   


   


a

a

            (5.116) 

 

Formulation I: By neglecting the higher-order components  4
1 / 2O   associated with H2 in 

Eq. (5.85),  4
2 / 2O   associated with H2 in Eq. (5.89), and 

3 3
1 2 1 2

2
O

    
 
 

 associated with 

H2 in Eq. (5.88) and following similar procedures as in “Formulation II,” the approximate 

ensemble-area averaged eigenstrain tensor  
*
1  becomes 

     

UI
* UI *0
1 1 1:


                  (5.117) 

Here, the components of the isotropic tensor  
UI
1

  are as follows: 

   UI UI UI
11 211          


 ij kl ik jl il jk            (5.118) 

       2 1 2 1
UI UI UI UI UI UI

11 21 11 21 21 11

1
;

4 4 2 4 4

        U U V V        (5.119) 

UI U UI U UI U UI U
21 11 11 11 21 21 11 21; ; ;   f t f tU U V V          (5.120) 
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 
    

  
 

 
 

 
 

2
1 2 0 2 1 0 2 0 2U

11 2
1 2 1 1 2 2

0 1U
11 2

1 1 1

2
2 2 0 2U

21 2
1 2 2 2

0 1U
21 2

1 1 1

2 3 2 4 2 14

1

1 21
2

2 3 24

1

1 21
2

        
     

 
  

   
   

 
  

           
 

 
    

 




 
   

f

t

f

t

    (5.121) 

   

   

0 0
1 0 0

1 0 1 0

0 0
2 0 0

2 0 2 0

4 1 4 1

4 1 4 1

  
 

  
 

 
       

 
       

k

k k

k

k k

         (5.122) 

Similarly, the approximate ensemble-area averaged eigenstrain tensor  
*
2  is 

     

UI
* UI *0
2 2 2:


                 (5.123) 

Here, the components of the isotropic tensor  
UI
2

  are as follows: 

   UI UI UI
12 222          


 ij kl ik jl il jk            (5.124) 

       1 2 1 2
UI UI UI UI UI UI

12 12 22 22 12 22

1
;

4 4 2 4 4

        U U V V        (5.125) 

UI U UI U UI U UI U
12 12 22 12 12 22 22 22; ; ;   f t f tU U V V          (5.126) 
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 
    

  
 

 
 

 
 

2
2 1 0 1 2 0 1 0 1U

12 2
1 2 1 1 2 2

0 2U
12 2

2 2 2

2
1 1 0 1U

22 2
1 2 1 1

0 2U
22 2

2 2 2

2 3 2 4 2 14

1

1 21
2

2 3 24

1

1 21
2

        
     

 
  

   
   

 
  

           
 

 
    

 




 
   

f

t

f

t

    (5.127) 

   

   

0 0
1 0 0

1 0 1 0

0 0
2 0 0

2 0 2 0

4 1 4 1

4 1 4 1

  
 

  
 

 
       

 
       

k

k k

k

k k

         (5.128) 

 

5.10.2 General radial distribution function (GRDF):   1g r  

This event corresponds to the complex approximation for  g r  since it tends to 

overestimate the probability of the surrounding fibers at low fiber volume fraction during the 

ensemble-area averaging process. Therefore, this case may be regarded as the “upper bound” for 

microstructure and is more suitable for high fiber concentrations. For example, at higher volume 

fractions, it is sometimes assumed that the two-point conditionally probability function obeys the 

so-called thermodynamic equilibrium radial distribution function (ERDF), also known as 

accurately in the Percus-Yevick approximation (Hansen and McDonald (1986); Torquato and 

Lado (1992)), as follows: 

       

   

1 2

1/22
1

1 1 ; /

4
2sin 1 2

2 4








      
          

    

   

   

g r H r A r r r a a

r r
A r r H r

       (5.129) 
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  0, if 0

1, if 0


  

x
H x

x
             (5.130) 

 

Formulation II: We write 

     

GII
* GII *0
1 1 1:


                 (5.131) 

   GII GII GII
11 211          


 ij kl ik jl il jk            (5.132) 

       2 1 2 1
GII GII GII GII GII GII
11 21 11 21 21 11

1
;

4 4 2 4 4

        U U V V       (5.133) 

       

   

GII G 4 2 6 4
21 11 32 52

1 2

GII G
11 11 31 512

1

1
24 2 Y 36 Y

1
72Y 72Y

   
 



           
 

      
 

f g g

t g g

U

U

    (5.134) 

       

   

GII G 4 2 6 4
21 21 32 52

1 2

GII G
11 21 31 512

1

1
24 2 Y 36 Y

1
72Y 72Y

   
 



            
 

       
 

f g g

t g g

V

V

    (5.135) 

       

       

1 1

1 1
3 5

32 2 2 2 52 2 2 2

0 0

1 1

2 2
3 5

31 1 1 1 51 1 1 1

0 0

Y d ; Y d

Y d ; Y d

 

     

     

 

 

 

 

 

g g g g

g g g g

       (5.136) 

Similarly, we have 

     

GII
* GII *0
2 2 2:


                 (5.137) 

   GII GII GII
12 222          


 ij kl ik jl il jk            (5.138) 
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       1 2 1 2
GII GII GII GII GII GII
12 12 22 22 12 22

1
;

4 4 2 4 4

        U U V V       (5.139) 

       

   

GII G 4 2 6 4
12 12 31 51

1 2

GII G
22 12 32 522

2

1
24 2 P 36 P

1
72P 72P

   
 



           
 

      
 

f g g

t g g

U

U

     (5.140) 

       

   

GII G 4 2 6 4
12 22 31 51

1 2

GII G
22 22 32 522

2

1
24 2 P 36 P

1
72P 72P

   
 



            
 

       
 

f g g

t g g

V

V

    (5.141) 

       

       

1 1

1 1
3 5

31 1 1 1 51 1 1 1

0 0

1 1

2 2
3 5

32 2 2 2 52 2 2 2

0 0

P d ; P d

P d ; P d

 

     

     

 

 

 

 

 

g g g g

g g g g

        (5.142) 

 

Formulation I: We write 

     

GI
* GI *0
1 1 1:


                  (5.143) 

   GI GI GI
11 211          


 ij kl ik jl il jk            (5.144) 

       2 1 2 1
GI GI GI GI GI GI
11 21 11 21 21 11

1
;

4 4 2 4 4
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Similarly, we write 

     

GI
* GI *0
2 2 2:
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1
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4 4 2 4 4

        U U V V        (5.152) 

GI G GI G GI G GI G
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Chapter 6 

PARTICLE-SIZE AND INTERFACE ENERGY EFFECTS ON 

ENERGY DISSIPATION DUE TO INTERFACIAL DEBONDING 

IN NANOCOMPOSITES 

 

 

ABSTRACT 

 

In this chapter, both of the particle-size and interface/surface energy effects on the energy 

dissipation due to the interfacial debonding between the particles and the matrix in 

nanocomposites are investigated. The size distribution of particles is supposed to comply to the 

logarithmic normal distribution, while the probability of the interfacial debonding between the 

particles and the matrix is considered to satisfy the Weibull’s distribution function. Then, the 

formulation of the energy dissipation due to the interfacial debonding is developed. Accordingly, 

several results regarding the particle-size and interface/surface energy effects on the energy 

dissipation due to the damage evolution are illustrated after a series of numerical calculations. 

Among these numerical results, the damage energy dissipation crest with respect to the average 

size of particles is found to demonstrate that the energy dissipation due to the damage evolution 

extremely depends on the size of particles and interface/surface energy in nanocomposites. 

 

Key Words: Particle-size effect; Interface/surface energy effect; Energy dissipation; Interfacial 
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debonding; Damage evolution; Nanocomposite 

 

 

6.1 Introduction 

 

It is well known that the toughness of materials mainly depends on the energy dissipation, 

and this topic is especially significant for the research on the mechanical behavior and physical 

property of composite materials. Hence, many researchers devote their attention to work on the 

mechanism of the energy dissipation in toughening polymeric matrix materials filled with 

nano-size particles (Kurauchi and Ohta, 1984; Bai et al., 2001). Nowadays, these kinds of 

nanocomposites have been extensively used as advanced engineering materials. When it comes 

to nano-size particles, for example, calcium carbonate (Avella et al., 2001; Thio et al., 2002), 

silica (Musto et al., 2004; Rong et al., 2004), and clay (Varlot et al., 2001) are very popular 

nano-size particles in composites.  

The energy dissipation due to the damage evolution in particle-filled polymers is mainly 

induced by the interfacial debonding between the particles and the matrix. Although the energy 

dissipation due to the damage evolution, namely damage energy dissipation, is usually much less 

than the viscous dissipation and/or plastic dissipation, it may cause the eventual failure of the 

composites. Accordingly, the strength of composites is definitely influenced by the damage 

evolution. Even though nano-size particles are relatively very small in composites, the interfacial 

debonding between the particles and the matrix could still happen under the action of some 

special conditions, such as the application of the high triaxial-stress loading. 

In this chapter, the damage energy dissipation between the nano-size particles and the 
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polymeric matrix in nanocomposites will be investigated based on the following assumptions and 

steps. Firstly, the size distribution of particles is supposed to obey the logarithmic normal 

function, and the probability of the interfacial debonding is considered to agree with the 

Weibull’s distribution function. Secondly, the total area of the interfaces is established in terms of 

the total number of the debonded particles per unit volume. Thirdly, by the combination of the 

concepts in the first two steps, the analytical equation of the energy dissipation due to the 

interfacial debonding can be formulated. Lastly, after the analytical equation is developed, a 

series of the numerical calculations, as well as several numerical results, would be executed. In 

the meanwhile, the effects of the loading magnitude, the interface/surface energy, the volume 

fraction of particles, the average radius of particles, and the particle-size dispersion on the 

damage energy dissipation may be discussed numerically as well. Therefore, the size effect of 

particles on the energy dissipation due to the damage evolution can be studied based on the 

numerical results. Further, the energy dissipation due to the damage evolution is found to be 

obviously affected by the size effect of particles. 

In addition, because the composites containing nano-scale particles are concerned, the 

damage energy dissipation is considered to be strongly affected by the interface/surface energy 

between particles and the matrix as well. The numerical results with the distinct interface/surface 

energies are discussed in the following. The introduction to the interface/surface energy can be 

found in Chapter 1. 

 

 

6.2 Formulation of Damage Energy Dissipation in nanocomposites 
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Suppose that the polymeric matrix can be treated as viscoelastic materials in 

nanocomposites, and the full damage evolution takes place due to the interfacial debonding 

between the particles and the matrix in nanocomposites under the application of external loads. 

Furthermore, the shape of particles is assumed to be spherical, and the full interfacial debonding 

between particles and the matrix comes up under the action of the high triaxial-stress loading. 

Suppose that there is a single particle embedded in the viscoelastic matrix material, the critical 

value of the average normal stress at the interface between a particle and the viscoelastic matrix 

can be approximately expressed by 

 
 
4 0
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         (6.1) 

where   is the interface/surface energy (both two bonded surfaces between the particle and the 

matrix); a  is the radius of a particle;  0E  is the initial modulus of the viscoelastic matrix;   

is the Poisson’s ratio of the matrix, which is assumed to be a constant. The detailed formulation 

of the critical value of the average normal stress at the interface between a particle and the 

viscoelastic matrix is derived in Section 6.5 Appendix A. From Eq. (6.1), it is found that the 

critical normal stress at the interface is related to the size of a particle, while the size of each 

particle is varied. 

In addition, suppose that the size distribution of particles obeys the logarithmic normal 

distribution, and the corresponding analytical equation can be obtained from the research by J.K. 

Chen et al. (2003; 2006), which is shown in the following 
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where oa  is the average radius of particles; mina  and maxa  are the minimum radius and 

maximum radius of particles, respectively;   is the particle-size dispersion; pN  is the total 

number of particles per unit volume. 

 Let the initial volume fraction of particles is 0pf , accordingly, pN  may be written as 

 
0

3
0

=
4 / 3

p
p

f
N

a
         (6.3) 

Moreover, the Weibull’s distribution function is used to represent the probability of 

interfacial debonding, P , and it can be characterized by 

1 exp

m

cr

u

cr

P
 


 

      
   


       (6.4) 

where u  and m  are material parameters;   is the average normal stress at the interface. 

Suppose that the stress tensor of a particle is denoted by pσ , then, the average normal stress at 

the interface can be formed by 

1
A

dA
A

    pσn n         (6.5) 

where A  is the total surface area of a particle; n is the unit normal vector of the surface. If the 

remote stress or remote strain is given, the stress tensor of a particle, pσ , may be derived by 

using the Eshelby’s equivalent inclusion method (Eshelby, 1957; Chen et al., 2003) and Ju and 

Chen’s scheme (Ju and Chen, 1994a; 1994b) or Mori-Tanaka’s scheme (Mori and Tanaka, 1973). 

The detailed derivation is described in Section 6.6 Appendix B. 

 Suppose that cr   is considered, the number of the debonded particles per unit volume 
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with the radius between a  and a da  can be expressed by 

   ,N pn a n a Pda          (6.6) 

Then, the total surface area of the debonded particles in a unit volume of the composite is 

obtained as the following equation, 

max

min

24
a

Na
S a n da           (6.7) 

 Further, suppose that the interfacial debonding between the particles and the matrix comes 

up, the elastic strain energy stored in the matrix and the particles will release to form new 

surfaces. If the interface/surface energy of all interfaces between the particles and the matrix is 

assumed to be the same, that is,   is a constant, the energy dissipation due to damage evolution 

may be developed by 

max

min

24
a

d Na
U S a n da             (6.8) 

where   is the interface/surface energy (both two bonded surfaces between the particle and the 

matrix). If the average normal stress of particles,  , is determined, therefore, the energy 

dissipation due to damage evolution, dU , can be obtained by Eq. (6.8). 

 

 

6.3 Numerical Results for Size Effect of Particles on Damage Energy Dissipation 

 

The research objective regarding the investigation of the size effect between the nano-size 

and micro-size particles on the energy dissipation due to the interfacial debonding between the 

particles and the matrix is pretty complex. In general, when the volume fraction, 0pf , is given, 
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the total surface area of the nano-size particles is much larger than that of the micro-size particles. 

Specifically, more energy dissipation due to the interfacial debonding between the particles of 

nanometer size and the polymeric matrix occurs than that between the particles of micrometer 

size and the polymeric matrix if supposed that full interfacial deboinding takes place between all 

particles and the matrix. In other words, the smaller the size of particles that the polymeric 

matrix is filled with, the more difficult the possibility of interfacial debonding becomes. 

Accordingly, it is also possible that the energy dissipation due to the damage evolution between 

the particles of nanometer size and the matrix is less than that between the particles of 

micrometer size and the matrix because of the decreased probability of the interfacial debonding. 

Therefore, the size effect of the energy dissipation due to the damage evolution is very 

challenging and worthy to study attentively. 

In nanocomposites, the size effect of the nano-size particles on the macroscopic properties 

of the composites is notable. Since the size distribution of particles is a continuous function, the 

size effect of particles on the damage evolution is studied statistically. Specifically, the variation 

of dU  against the average radius, 0a , the interface/surface energy,  , and particle-size 

dispersion,  , is investigated in this section. 

Suppose that the material parameters of the following numerical results are chosen as 
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Then, the numerical results of the energy dissipation due to the damage evolution, namely, the 

damage energy dissipation against the average radius of particles are illustrated in Figures 

6.1-6.13. Furthermore, the digitized points in Figures 6.1-6.6 are given by J.K. Chen’s research 

(Chen et al., 2007), which are used for the comparison of the numerical results between Ju and 

Chen’s scheme (Ju and Chen, 1994a; 1994b) and Mori-Tanaka’s scheme (Mori and Tanaka, 

1973). 

The plots of dU  against 0a  with different values of 0pf  are shown in Figures 6.1-6.4. 

From Figure 6.1, it can be seen that if the average radius of particles, 0a , is in the range of 

nanometer size, the damage energy dissipation increases monotonically with the increase of 0a . 

On the contrary, the illustrative result in Figure 6.2 shows that the damage energy dissipation 

decreases monotonically with the increase of 0a  if 0a  is in the range of micrometer size. 
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Similarly, Figures 6.3 and 6.4 display the curve of the damage energy dissipation against 

the average radius of particles in the case of the larger interface/surface energy, 20.05 /J m  . 

Under this situation, the damage energy dissipation in the composites filled with particles of 

nanometer size, called nanocomposites, could be less than that in composites filled with particles 

of micrometer size, called microcomposites. 

It is obvious that the size effect of the particles of nanometer size on the damage energy 

dissipation is quite different from that of the particles of micrometer size. This kind of 

phenomenon is deserving of notice and discussion. For the illustrations of the damage energy 

dissipation against the average radius of particles of micrometer size, as shown in Figures 6.2 

and 6.4, the results are acceptable. It is easy to recognize a concept that the interfacial debonding 

between the matrix and the particles of the smaller size may produce more damage energy 

dissipation since the particles of the smaller size have larger total surface area of all interfaces 

under a consistent volume fraction of 0pf . Hence, the results in Figures 6.2 and 6.4 

demonstrate this concept when the composite is filled with particles of micrometer size. 

However, for the illustrations of the damage energy dissipation against the average radius of 

particles of nanometer size, as shown in Figures 6.1 and 6.3, the results reveal a totally different 

phenomenon from that of particles of micrometer size. A widely accepted opinion is that the 

particles in the range of nanometer size become more difficult to debond with the decrease of 0a . 

In other words, the smaller size the particle is in nanocomposites, the less possibility that 

interfacial debonding occurs. Consequently, the energy dissipation due to the interfacial 

debonding decreases with the decrease of 0a . 

In addition, by the comparison between the nanocomposites and the microcomposites, it is 

found that the damage energy dissipation decreases with the increase of the interface/surface 
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energy, as compared Figure 6.1 with Figure 6.3, or Figure 6.2 and Figure 6.4.  

 

 

 

 

 

Figure 6.1 Damage energy dissipation against the average radius of particles in the range of 

nanometer size with the different volume fraction of particles and 20.01 /J m   
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Figure 6.2 Damage energy dissipation against the average radius of particles in the range of 

micrometer size with the different volume fraction of particles and 20.01 /J m   
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Figure 6.3 Damage energy dissipation against the average radius of particles in the range of 

nanometer size with the different volume fraction of particles and 20.05 /J m   
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Figure 6.4 Damage energy dissipation against the average radius of particles in the range of 

micrometer size with the different volume fraction of particles and 20.05 /J m   
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The size effect of particles with distinct interface/surface energies against the average radius 

of particles from nanometer size to micrometer size on the damage energy dissipation is shown 

in Figures 6.5 and 6.6. It can be found that there is a damage energy dissipation crest which 

locates close to a critical size, 0cra  (e.g. 0 140cra nm  for 30 MPa   and 20.01 /J m   

(Chen et al., 2007)). When 0 0cra a , the damage energy dissipation increases with the increase 

of 0a , and this portion of the curve could be defined as the characteristic of the nanocomposite. 

Otherwise, the damage energy dissipation decreases with the increase of 0a , and this portion of 

the curve could be defined as the characteristic of the microcomposite.  

In addition, under the same average normal stress at the interface and interface/surface 

energy, it can be observed that the critical size with the different volume fraction of particles is 

almost the same. That is, the position of the damage energy dissipation crest would not be 

affected by the change of the volume fraction of particles. 

 

 

 

 

 

 

 

 

 

 

 



228 

 

 

 

 

 

 

Figure 6.5 Damage energy dissipation against the average radius of particles of from nanometer 

size to micrometer size with the different volume fraction of particles and 20.01 /J m   
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Figure 6.6 Damage energy dissipation against the average radius of particles of from nanometer 

size to micrometer size with the different volume fraction of particles and 20.05 /J m   
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From Figure 6.7, it is seen that the crest of the damage energy dissipation moves with the 

different average normal stress at the interface,  . The numerical results regarding the 

movement of the crest and the variation of the value of the crests with the different   can also 

be observed in Figure 6.7. It can be noticed that the position of the crest of the damage energy 

dissipation changes towards small size direction of 0a  with the increase of  . For example, 

when   increases from 30 MPa to 90 MPa, the position of the crest moves from 140 nm to 16 

nm. The variation of the position of the damage energy dissipation crest, 0cra , with the different 

  is illustrated in Figure 6.8. 
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Figure 6.7 Damage energy dissipation crests against the average radius with the different 

average normal stresses at the interface 
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Figure 6.8 Critical sizes of the damage energy dissipation crest against the different average 

normal stress at the interface 
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In Figures 6.9, 6.10 and 6.11, the effects of the particle-size dispersion,  , the 

interface/surface energy,  , and the average normal stress at the interface,  , on the damage 

energy dissipation are illustrated, respectively. From Figure 6.9, it is found that the damage 

energy dissipation increases with the increase of  . From Figure 6.10, the damage energy 

dissipation decreases because the interfacial debonding occurs more difficultly with the increase 

of  . It can be seen that if   is larger than a threshold limit value, the damage energy 

dissipation does not occur. That is, none of the interfacial debonding between the particles and 

the matrix takes place. This situation is verified by the experimental results given by Zhang’s 

research group (Yang et al., 2006). They studied the tensile properties of polyamide 66 (PA66, 

DuPont Zytel 101) filled with TiO2 particles. The first type of the composite is PA/300 (PA66 

filled with TiO2 particles with the diameter of 300 nm), and the second type of the composite is 

PA/21 (PA66 filled with TiO2 particles with the diameter of 21 nm). Eventually, the tensile test 

shows that the modulus and the strength of two types of the composites are almost the same. This 

result implies that the interface/surface energy is large enough so that there is no damage 

evolution in the composites, even under the large difference in the size of two nano-particles. 

From Figure 6.11 (in which 
00 |cr cr a a   ), it is found that the damage energy dissipation 

increases with the increase of  , and this phenomenon reflects consistently with the result 

shown in Figure 6.12. 
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Figure 6.9 Damage energy dissipation against the particle-size dispersion with the different

 volume fraction of particles 
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Figure 6.10 Damage energy dissipation against the interface/surface energy with the diffe

rent volume fraction of particles 
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Figure 6.11 Damage energy dissipation against the average normal stress at the interface 

with the different volume fraction of particles 
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Figure 6.12 Damage energy dissipation against the interface/surface energy with the differe

nt average normal stress at the interface 
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Figure 6.13 shows the relation between the volume fraction of particles, 0pf , and the 

average radius, 0a , with the same damage energy dissipation. Suppose that the damage energy 

dissipation remains constant, the larger the value of 0pf  is, the bigger the 0a  becomes. 

Moreover, if the average radius, 0a , is fixed, the larger the value of 0pf  is, the more the 

damage energy dissipation in nanocomposites becomes. This conclusion is the same as the result 

shown in Figures 6.1 and 6.3. 
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Figure 6.13 Volume fraction of particles against the average radius of particles with the d

ifferent damage energy dissipation 
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6.4 Conclusions 

 

(1) There exists a characteristic crest for each curve of the damage energy dissipation with 

respect to the average radius of particles, 0a . Moreover, the position of the crest moves 

towards small size direction of 0a  with the average normal stress of   increases. When 

the average radius of particles is less than the critical average size, 0cra , the composite 

possesses the characteristic of the nanocomposite. That is, the damage energy dissipation 

increases with the increase of the average radius. This is the special phenomenon of the size 

effect on the damage energy dissipation in nanocomposites, which is completely different 

from that in microcomposites. 

(2) The effects of the larger particle-size dispersion, the larger average normal stress at the 

interface, and the smaller interface/surface energy between the particles and the matrix 

materials may result in more energy dissipation due to the interfacial debonding between 

particles and the matrix. 

(3) For a given damage energy dissipation, the larger average size of particles in the range of 

nanometer size is, the more volume fraction of particles requires. Moreover, if the average 

radius, 0a , is fixed, the larger the value of 0pf  is, the more the damage energy dissipation 

in nanocomposites becomes. 
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6.5 Appendix A: Critical Normal Stress at the Interface between the Particle and the 

Viscoelastic Matrix 

 

The effect of the remote deviatoric stress on the interfacial debonding between a particle 

and the matrix may be disregarded under the high triaxial remote stress (Chen et al., 2003). 

Therefore, only the spherical symmetric case is accounted for the calculation of the approximate 

critical normal stress, cr , and the corresponding illustration is shown in Figure 6.14. Suppose 

that the radii of an elastic particle and the viscoelastic matrix are denoted by a  and b  (b a ), 

respectively. Moreover, an uniform tensile normal stress,  , is applied to the surface of the 

matrix. The constitutive relation of the viscoelastic matrix may be expressed by 

     0 0:
t

t t d    


  L        (6.9) 

where  tL  is the fourth order relaxation modulus. 
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Figure 6.14 A spherical particle is embedded in the viscoelastic matrix 
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Suppose that the interfacial debonding occurs at an instantaneous moment, crt . At this 

moment, there are jumping values of the stress, strain, and displacement in the matrix and the 

particle. If the jumping value of A  is defined by 

     cr crA A t A t           (6.10) 

From Eq. (6.9), the jumping values of the stress and strain of the matrix can be described by 

       0 0 0 0:
cr

cr

t

cr cr crt
t t L t d    





          

That is to say, 

     0 00 :L           (6.11) 

Eq. (6.11) implies that the relation between the jumping values of the stress and strain in the 

viscoelastic matrix at the instantaneous moment, crt , is linear elastic. 

 Consider the energy conservation at crt , and neglect the kinetic energy in the system, it is 

found that 

    24m pW U U a             (6.12) 

where  W  is the jumping value of the work done by external forces;  mU  and pU    are the 

released strain energy from the matrix and the particle, respectively;   is the interface/surface 

energy between the particle and matrix (both two bonded surfaces). 

Since the condition shown in Fig. 4.14 is a spherical symmetric case, only one displacement 

component takes place in the matrix and the particle. Therefore, the jumping value of the 

displacement at the surface of the particle is obtained by 
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   
 

cr
p

p

u a
k

              (6.13) 

where cr  is the critical normal stress at the surface of the particle when crt t  ;  pk  is the 

bulk modulus of the particle. 

Meanwhile, it is known that 

        24cr mW t u b b            (6.14) 

    21
4

2p cr pU u a a               (6.15) 

           2 21
4 4

2m cr crm mU u a a t u b b              (6.16) 

where  mu 
   is the jumping value of the displacement in the matrix. Further, for the spherical 

symmetric problem, it is easy to obtain that 

   
   3 2

3 3

4 1
1 1 0

4

cr
m

p

a
u a

k b a
a b




 
           

 

    (6.17) 

where  0  is the initial shearing modulus of the matrix. Substituting Eqs. (6.13)-(6.17) into 

Eq. (6.12) and letting b a , it is found that 

 ( )

1

1 1
2 8 0

cr

p

a

k






 

  
 

       (6.18) 

If the value of the bulk modulus of the particle is much higher than that of the shearing modulus 

of the matrix, namely, the strength of the particle is much higher than that of the matrix, the Eq. 

(6.18) can be approximately expressed as 
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
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

      (6.19) 

 

 

6.6 Appendix B: Formulation of the Stress Tensor of a Particle under the Remote Strain 

 

Executing the Laplace transform of Eq. (6.9) leads to the following equation, 

0 0:s L            (6.20) 

Eq. (6.20) above implies that the Laplace transform of the constitutive relation of the viscoelastic 

matrix may be considered as a “linear elastic” material with the fourth order modulus “ sL ”. 

Therefore, the Eshelby’s equivalent inclusion method can be used to carry out the stress tensor of 

a particle, as follows, 

   *: :p p p p ps  L L          (6.21) 

where pL  is the modulus of the particle, *
p  is the Laplace transform of the eigen-strain of the 

particle. 

Since the Poisson’s ratio of the matrix material,  , is assumed to be a constant, based on 

the Eshelby’s formula, it is found that 

*:p p
   S          (6.22) 

where   is the Laplace transform of the remote strain, and S  is the Eshelby’s tensor. 

 Because the modulus of the particle is much higher than that of the matrix, the particle 
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could be regarded to be rigid. Consequently, the strain of the particle can be ignored, that is, 

0p             (6.23) 

Substituting Eqs. (6.22) and (6.23) into Eq. (6.21) results in 

1: :p s   L S          (6.24) 

Executing the inverse of Lapalce transform of Eq. (6.A16) obtains 

   1: :
t

p t d     


  L S       (6.25) 

If Ju and Chen’s scheme (Ju and Chen, 1994a; 1994b) or Mori-Tanaka’s scheme (Mori and 

Tanaka, 1973) is considered, Eq. (6.25) can be performed in the case of a great number of 

particles embedded in the matrix by replacing the remote strain with the average strain of matrix, 

0 . 
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Chapter 7 

INTRODUCTION TO RIGID-BODY-SPRING MODEL (RBSM) 

METHOD AND PAVE THE WAY FOR FUTURE 

INVESTIGATIONS IN INTERFACE ENERGY EFFECT 

 

 

ABSTRACT 

 

Rigid-Body-Spring Model (RBSM) method is recommended and introduced in this chapter. 

The reasons are as follows. Firstly, when the phases become more multiple, the formulations for 

analytical solutions are more complicated, difficult, tedious and time-consuming to derive. 

Secondly, in reality, the practical construction materials usually contain multi-phases, like 

concrete, wood, brick, masonry, etc. Accordingly, finding an easy and convenient method to 

estimate the interface/surface energy effect on those materials with multiple phases, so as to 

replace time-consuming and complicated micromechanical operations for the multiple-phase 

composites, is worth investigating and developing. Thirdly, 3D RBSM method is easy to 

incorporate with our present model by adding the illustrative results based on the 

interface/surface energy effect into RBSM’s constitutive model. Furthermore, the correlative 

constitutive model parameters/factors between theory and practice can be modified at all times 

through continuous experiments and accumulative experiences. In addition, RBSM is capable of 

simulating the crack propagation and patterns, illustrating stress distribution, providing effective 
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properties of the composite materials, etc. It is beneficial for researchers to observe the external 

internal variations in the materials by using visible illustrations. In this study, a case based on the 

numerically simulation for the degradation of the shear strength after flexural yielding of RC 

structures subjected to cyclic loading using three-dimensional Rigid-Body-Spring Model (3D 

RBSM) is introduced. Subsequently, the illustrative results of stress distributions and crack 

patterns are obtained. Specifically, through the cyclic loading, the phenomenon of the flexural 

behavior gradually replaced by the shear behavior is found based on the compressive stress 

distribution; in the meantime, the applicability of 3D RBSM is confirmed. Furthermore, a 

comparison of two RC structures under between cyclic loading and monotonic loading is 

executed to demonstrate different degradation mechanisms of the shear strength after flexural 

yielding. Finally, once this our present model with the interface/surface energy effect can be 

involved in the developed 3D RBSM method, the effective properties of multi-phase composites 

with the interface/surface energy effect is expected to be easily found through the RBSM method 

without complicated, difficult, tedious, and time-consuming formulations. However, 

nano-composite experiments are very expensive and difficult to execute at present technology. 

We hope in the early future, the science and technology will advance to implement 

nano-composite experiments easily, conveniently and cheap. 

 

Key Words: Rigid-Body-Spring Model; Cyclic Loading; Stress Distribution; Crack Pattern, 

Flexural Behavior; Shear Behavior; Failure Mode; Interface/surface energy 
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7.1 Introduction 

 

Some applicable methods and/or programs are able to cooperate with our present model 

with the interface/surface energy effect, such as Finite Element Method (FEM), 

Rigid-Body-Spring Model (RBSM) method, ABAQUS, COMSOL, etc. Among them, RBSM 

method is recommended and introduced in this chapter. The reasons are:  

(1) When the phases become more multiple, the formulations for analytical solutions are more 

complicated, difficult, tedious and time-consuming to derive.  

(2) In reality, the practical construction materials usually contain multi-phases, like concrete, 

wood, brick, masonry, etc. Accordingly, finding an easy and convenient method to estimate 

the interface/surface energy effect on those materials with multiple phases, so as to replace 

time-consuming and complicated micromechanical operations for the multiple-phase 

composites, is worth investigating and developing.  

(3) 3D RBSM method is easy to incorporate with our present model by adding the illustrative 

results based on the interface/surface energy effect into RBSM’s constitutive model. 

Furthermore, the correlative constitutive model parameters/factors between theory and 

practice can be modified at all times through continuous experiments and accumulative 

experiences. In addition, RBSM is capable of simulating the crack propagation and patterns, 

illustrating stress distribution, providing effective properties of the composite materials, etc. 

It is beneficial for researchers to observe the external internal variations in the materials by 

using visible illustrations.  

In the following sections, a case is used to introduce the methodology of 3D RBSM.  

As Furuhashi’s research (2013), the shear failure after flexural yielding occurs under cyclic 
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loading is investigated. The typical explanation is that the shear failure mode occurs under cyclic 

loading due to the degradation of the shear strength subjected to cyclic loading after flexural 

yielding based on the increase of the displacement, although the shear strength originally is 

higher than the flexural strength in the initial stage, as shown in Figure 7.1. According to the 

explanation, curves for the shear strength degradation were proposed by statistical procedures of 

many testing results (Priestley et al., 1996; Ohe and Yoshikawa, 2002). However, the mechanism 

of the shear failure under cyclic loading has not been clarified, and the degradation of the shear 

strength has not been evaluated determinately.  

Figure 7.1 Shear failure after flexural yielding 

 

In this study, the shear failure after flexural yielding of RC beams subjected to cyclic 

loading was simulated using 3D Rigid-Body-Spring Model (3D RBSM) with the constitutive 

model; meanwhile, the applicability of this method was confirmed. Moreover, by investigating 

illustrative results of compressive stress distributions and crack patterns, the degradation 
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mechanism of the shear strength according to the increase of the displacement, as well as the 

failure mode, was evaluated numerically. 

 

 

7.2 Numerical model 

 

7.2.1 Three-Dimensional Rigid-Body-Spring Model (3D RBSM) 

In RBSM, concrete is modeled as an assemblage of rigid particles interconnected by springs 

along their boundary surfaces, shown in Figure 7.2(a), which is easy to simulate concrete 

cracking process and its effects. The crack pattern is strongly affected by the mesh design as the 

cracks initiate and propagate through the interface boundaries of particles. Therefore, a random 

geometry of rigid particles is generated by a Voronoi diagram, as seen in Figure 7.2(b), which 

reduces mesh bias on the initiation and propagation of potential cracks. 

The response of the spring model provides an insight into the interaction among the particles, 

which is different from models based on continuum mechanics. In this model, each rigid particle 

has three translational and three rotational degrees of freedom defined at the nuclei (or nodal 

points) that define the particles according to the Voronoi diagram, as shown in Figure 7.2(a). 

The boundary surface of two particles is divided into several triangles with a center of gravity 

and vertices of the surface. One normal and two shear springs are set at the center of each 

triangle. By distributing the springs in this way, over the Voronoi facet common to two 

neighboring nodal points, this model accounts for the effects of bending and torsional moment 

without the need to set any rotational springs (Gedik et al., 2011). 
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 Figure 7.2 Rigid-Body-Spring model and Voronoi diagram 

 

7.2.2 Concrete Material Model 

The constitutive models for tension, compression and shear that are used in 3D RBSM are 

shown in Figure 7.3 (Yamamoto et al., 2013). The tensile model for normal springs is shown in 

Figure 7.3(a). Up to tensile strength, the tensile behavior of concrete is modeled as linear elastic 

and, after cracking, a bilinear softening branch according to 1/4 model is assumed. In the model, 

σt, gf and h represent tensile strength, tensile fracture energy, and distance between nuclei, 

respectively. Figure 7.3(b) shows the stress-strain relationship for compression of normal 

springs that was modeled as a S-shape curve combining two quadratic functions. The parameters 

of σc, εc2, αc1 and αc2 shown in Fig. 3b are material parameters which controlled the nonlinearlity 

of the compression behavior of the normal spring under hydrostatic pressure. 

The shear stress-strain relationship represents the combination of two shear springs. The 

envelope of the stress-strain relationship for shear is given in Figure 7.3(c). The stress elastically 

increases up to the shear strength with the slope of shear modulus G and softening behavior is 

also assumed. β is the shear-softening coefficient. It is assumed that the shear softening 

Centroid of boundary face 

Vertex of boundary face 

Evaluation point

          (a) Rigid‐Body‐Spring model                                  (b) Voronoi diagram
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coefficient β depends upon the stress of the normal spring as represented in Figure 7.3(d), where, 

β0, βmax and χ are the parameters of dependency on the normal spring for the shear-softening 

coefficient. The Mohr-Coulomb criterion is assumed as the failure criteria for the shear spring, as 

shown in Figure 7.3(e), where c and  are cohesion and the angle of internal friction, 

respectively. Moreover, it is assumed that the shear stress decreases with an increase in crack 

width at the cracked surface, which is similar to Saito’s model (Saito and Hikosaka, 1999). The 

calibrated parameters are shown in Table 7.1. 

 

 

Elastic modulus Elastic modulus

E  t g f  c c   b

N/mm2 N/mm2 N/mm2 N/mm2 N/mm2 degree N/mm2

1.4E* 0.8f t * 0.5G f * 1.5f c'* -0.015 0.15 0.25 0.35 0.14f c '* 37 f c'* -0.05 -0.02 -0.01 -0.3

Shear spring

 c2  c1  c2

Normal spring



Tensile response Compressive response Fracture criterion Softening behavior

* The macroscopic material parameters obtained from the concrete specimens tests

E * : Young's modulus,  f t * : Tensile strength, G f * : Fracture energy, f c '* : Compressive strength

 0  max  =G /E

0.65

Table 7.1 Model parameters
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Figure 7.3 Constitutive model for concrete 

 

 

Figure 7.4 Hysteresis of stress-strain relation 
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Figure 7.4(a) shows the typical hysteresis loop of the normal spring (Yamamoto et al., 

2013). The unloading paths in the tension zone pass toward the point of stress σ = -0.02fc’ on the 

compression loading path. The reloading paths in the tension zone pass toward the start point of 

the unloading. The stiffness of the unloading in the compression zone is initial elastic modulus E. 

Figure 7.4(b) shows the typical hysteresis loop of the shear spring. The stiffness of the 

unloading and reloading is initial elastic modulus G. In addition, after the stress reaches to zero 

on the unloading path, the stress keeps zero until the strain reaches to the residual strain of the 

opposite sign. 

 

 

7.2.3 Reinforcement Model 

Reinforcement is modeled as a series of regular beam elements (Figure 7.5) that can be 

freely located within the structure, regardless of the concrete mesh design. Three translational 

and three rotational degrees of freedom are defined at each beam node. The reinforcement is 

attached to the concrete particles by means of zero-size link elements that provide a load-transfer 

mechanism between the beam node and the concrete particles. For the reinforcing bar, the 

bilinear kinematic hardening model is applied. The hardening coefficient is 1/100. Crack 

development is strongly affected by the bond interaction between concrete and reinforcement. 

The bond stress-slip relationship is provided in the spring parallel to the reinforcement of linked 

element as shown in Figure 7.6.  
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7.3 Analytical Model 

 

7.3.1 Generation of Analytical Model 

The cantilever type of a RC beam, as shown in Figure 7.7, was simulated. The specimen 

has the uniform cross-section of 150×200 mm2 and shear span of 640 mm. Two longitudinal 

reinforcements of D13 were arranged at upper and lower sides with the cover thickness of 40 

mm, and web reinforcements were not arranged. This specimen was tested by Machida et al. 

(1985) and the shear failure after flexural yielding under cyclic loading was observed when the 

displacement is 20 mm (4δy). 
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Figure 7.8 shows analytical model which was modeled by Voronoi diagram. The average 

element size is about 20mm. The analytical model was modeled as a uniform cross-sectional 

member, and the plate element was modeled in the footing part to restrain the deformation. All 

reinforcements were modeled as beam elements. It is assumed that the compressive strength of 

the concrete is 40.5 N/mm2, and the yielding stress of longitudinal reinforcements is 380 N/mm2. 

In the analysis, the displacement of the loading plate element was controlled and alternative 

cyclic loading with an incremental deformation of δy (5mm) was applied. Monotonic loading 

analysis was also conducted in order to compare with the results under cyclic loading. 

 

 

7.3.2 Applicability of 3D RBSM to Shear Failure after Flexural Yielding 

Figure 7.9 shows the load-displacement relationship obtained by the analysis. The black 

line shows the result of cyclic loading analysis, the red line shows the result of monotonic 

loading analysis and the blue line shows the experimental results (Machida, 1985). The 
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Figure 7.8 Analytical modelFigure 7.7 Dimension of specimen
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envelopes for load-displacement curves of cyclic and monotonic loading are almost same until 

2δy (10 mm). However, the load carrying capacity under cyclic loading decreases after 3δy. At 

4δy, the shear failure occurs in the test, the load carrying capacity decreases rapidly, and the 

shape of the hysteresis loop changes to S-shape remarkably. This type of the behavior is usually 

observed in the test of the shear failure of RC columns. The difference between the results of 

cyclic and monotonic loading analysis increases with the increase of the displacement. 

Figure 7.10 and Figure 7.11 show the deformations at 20 mm (4δy) obtained from the 

monotonic and cyclic loading analysis, respectively. It is understood that the flexural behavior is 

dominant in the monotonic loading case. On the other hand, in the cyclic loading case, the 

diagonal crack is dominant and the flexure crack does not develop. Moreover, it is observed that 

the deformation extends to lateral direction and X-shape cracks occur. This result is clearly 

different from the monotonic one and shows typical shear failure behavior. The applicability of 

3D RBSM to the shear failure after flexural yielding under cyclic loading is confirmed. 
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Figure 7.9 Load-displacement 

Figure 7.10 Deformation under      
monotonic loading at 20mm (4δy)  

Figure 7.11 Deformation under cyclic 
loading at 20mm (4δy)  
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7.3.3 Evaluation of Shear Strength Degradation 

As described in Introduction, the reason why the shear failure after flexural yielding occurs 

is that the shear strength degrades under cyclic loading, although the shear strength (Vc in 

Figure 7.12) is higher than the flexural strength (Pu in Figure 7.12) in the initial stage. 

Therefore, the degradation mechanism of the shear strength should be clarified quantitatively in 

order to evaluate the shear failure after flexural yielding. However, it is difficult to understand 

the degradation behavior in the test, since the degraded shear strength in the test is given by only 

a point on load-displacement relationship (Point A in Figure 7.12). In order to obtain the shear 

strength degradation behavior, an analytical method was proposed. Figure 7.12 shows a concept 

of the proposed method (Furuhashi et al., 2013), and the detail of this method is explained in the 

following. 

Figure 7.12 Concept of method 
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It is supposed that shear failure after yielding occur due to the degradation of the shear 

strength as the blue line in Figure 7.12. The values of the shear strength on blue line, such as B1 

and B2, after the increase of the displacement under cyclic loading can not be obtained, because 

the load does not increase over Pu which corresponds to the flexural strength. However, if the 

flexural strength at each cycle is changed over the blue line in the analysis, the shear strength can 

be obtained. In order to achieve the requirement, it was proposed that the yielding stress of 

longitudinal reinforcements is replaced by the higher values at orange points in each cycle in 

Figure 7.12, which results in an increase of the flexural strength to Pu’. Then, the shear strength 

of the blue line less than increased flexural strength Pu’ is calculated. The proposed method is 

based on fact that the yielding stress of longitudinal reinforcements increase only on the flexural 

strength and does not influence on the shear strength. This method utilizes the merit of numerical 

analysis which can consider the virtual situation. 

The proposed method explained is applied to RC members. The yield stress of the 

longitudinal reinforcement is increased from 380 to 900 N/mm2 at each cycle, when the load is 

zero after unloading in negative loadings. 

Figure 7.13 shows load-displacement relationship obtained from the proposed method. The 

shear strength obviously degrades with the increase of displacement. The shear strength after 1δy 

loading degrades little from the initial strength and the strength is higher from the flexural 

strength. Therefore, the shear failure does not occur at the stage in the test. On the other hand, the 

shear strength after 3δy degrades remarkably. Because the degraded shear strength is lower than 

the flexural strength in Figure 7.9, the shear failure occurs independently on increasing the yield 

stress of the longitudinal reinforcement. 

The shear strength degradation under monotonic loading is evaluated using the same 
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method. The yield stress of the longitudinal reinforcement is increased after unloading until zero 

load at each displacement under monotonic loading. Figure 7.14 shows load-displacement 

relationship to obtain the shear strength after flexural yielding. The shear strength hardly 

degrades until 3δy loading. The shear strength gradually decreases after 3δy loading, and the 

each post-peak behavior coincides. This result shows obviously different from the result under 

cyclic loading.  
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Figure 7.13 Load-displacement relationship for RC member under cyclic loading 
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7.4 Results Discussion 

 

7.4.1 Stress Distribution and Crack Propagation of RC Structures under Cyclic Load 

In order to better observe the variation of the stress behavior and clearly recognize the 

degradation of the shear strength in the proposed RC cantilever beam subjected to cyclic loading, 

several illustrations of stress distributions in sequence for the middle longitudinal cross-section 

of the beam were developed using 3D RBSM programming. In the meanwhile, a series of 

illustrations of crack patterns corresponding to the stress distributions was also produced so as to 

reveal distinct crack types during different cycles of the loading. The load-displacement 

relationship for the applied cyclic loading is shown in Figure 7.15. The feature of 

load-displacement relationship is that the hysteresis loops change from the spindle-shape to the 

Figure 7.15 Load-displacement relationship of the applied cyclic loading 



265 

S-shape with the increasing displacement. 

 

7.4.1.1 Stress Distribution 

Two distinct cycles, in which the shapes of hysteresis loops are changed and maximum 

loads decrease, were implemented to display the distinct behavior of stress-distributions. The 

executive manner of the two cycles is illustrated in Figure 7.16.  

The first cycle starts from point A to point B through point A’, while the second cycle is 

from point B to point C via point B’. At each cycle, four points were picked for the purpose of 

investigating and comparing distinct stress distributions. For example, for the first cycle, A1, A2, 

A3 and A4 are selected; on the other hand, B1, B2, B3 and B4 are chosen for the second cycle. 

The results of the stress distributions under the first and second cycle, executed by means of 3D 
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Figure 7.16 Illustration of two distinct cycles 
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RBSM programming, are shown in Figure 7.17(a) and Figure 7.18(a), respectively. In the 

meantime, Figure 7.17(b) and Figure 7.18(b) represent the corresponding crack pattern to the 

stress distribution at each point generated for the assistance in understanding of correlative 

deformation of the beam at each point. In addition, Figure 7.17(b) and Figure 7.18(b) are 

further used to interpret the crack propagation in the following section. 

In Figure 7.17(a) and Figure 7.18(a), the largest to smallest quantity of the compression is 

exhibited as colors of red, orange, and yellow in order, and the green color represents the zero 

compressive stress. 

From Figure 7.17(a), it is discovered that in this cycle, the stress behavior is almost 

dominated by the compression behavior at upper and lower part of cross section. The distribution 

is usually observed in flexural behavior. Even after a full first cycle, the stress distribution at 

point A does not much differ from the stress distribution at point B. The only notice of interest is 

expansion to middle part of cross section. This implies that the stress behavior is going to 

change. 

From Figure 7.18(a), it is found that the stress behavior gradually converts from the 

flexural behavior to the shear behavior during the second cycle. Specifically, after half of the 

second cycle, the stress distribution of the compression behavior becomes diagonal. This means 

that the shear behavior forms progressively, as shown from the stress distribution at point B’ 

toward point C. Eventually, at point C, it is obvious that the shear behavior is dominant at this 

moment.  

In conclusion, the shear behavior would take over the compression behavior gradually with 

the increasing number of the cycles of the loading. As a result, a RC structure under more cyclic 

loading tends to perform a severer shear failure with the more remarkable shear behavior. 
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Figure 7.17 (a) Stress distributions at different points of the first cycle of the loading;  
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Figure 7.18 (a) Stress distributions at different points of the second cycle of the loading;  

(b) Crack patterns at different points of the second cycle of the loading 
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Furthermore, the simulated results obtained from 3D RBSM programming agree with the 

explanation of that the shear failure occurs due to the severe degradation of the shear strength 

under cyclic loading after flexural yielding as described in Introduction. 

 

7.4.1.2 Crack Propagation 

In Figure 7.17 (b) and Figure 7.18 (b), the magnification factor of 10 is used consistently 

throughout all the illustrations of crack patterns in order for the clear and accurate identifying the 

difference among the cracks and deformations at different points. 

From Figure 7.17 (b), it can be seen that within the first cycle of the loading, only the 

flexural cracks occur at each point, except that there begins a slight shear crack appearing at the 

last point (i.e. Point B). This phenomenon agrees with the description in Section 7.4.1.1 of the 

stress distribution. That is, the flexural behavior is dominant during this cycle in either the 

positive or negative deformation. In addition, from the observation of Point B in Figure 7.17 (a), 

a distinct stress distribution begins to occur at the top of the beam at Point B; accordingly, this 

result agrees with the initial appearance of the stress crack at Point B, as shown at Point B in 

Figure 7.17 (b). 

Figure 7.18 (b) demonstrates that the behavior of stress distributions changes from the 

flexural behavior to the shear behavior, as illustrated in Figure 7.18 (a). In other words, more 

and more shear cracks are appeared within the second cycle of the loading, whereas the flexural 

cracks don’t have outstanding variations of the width and amount at this stage. Eventually, at the 

last point (i.e. Point C), it is found that a remarkable shear crack is going to penetrate the lateral 

cross-section. The distinct shear cracks appear at B2 between the flexural cracks, though load 

value is small. The behavior from positive to negative deformation in cyclic loading may 



270 

influence to initiation of the shear crack. Thus, the illustrations of the crack pattern during the 

second cycle of the loading confirms that the eventually damage of this proposed RC cantilever 

beam subjected to cyclic loading results from the shear failure mode. 

 

7.4.2 Comparison of Stress Distribution and Failure Mode at Peak Load between Cyclic 

Loading and Monotonic Loading 

In order to study how significant the cyclic loading influences the RC structure on stress 

distributions and crack patterns, as well as failure modes, in this section, a contrast is induced for 

the comparison. That is, this contrast is an identical RC structure with the same properties and 

arrangements of both concrete and steel materials compared to the analytical model, except the 

applied loading conditions. To be specific, the monotonic loading is applied to the contrast. In 

this section, only three cycles/loops of loading conditions are developed and compared as it is 

quite time-consuming to simulate the entire load-displacement curves up to peak loads for the 

last two models under cyclic loading. However, from the results of RC structures subjected to the 

first three cycles/loops of either the cyclic loading or the monotonic loading, the data obtained 

from the 3D RBSM programming are much enough to investigate obviously the big difference 

between two RC structures under different loading conditions.  

Two identical RC structures with the same material properties and arrangements, but 

different loading conditions applied, are simulated in this section. Figure 7.19 (a) and Figure 

7.19 (b) show the stress distributions at individual peak load for the first three cycles of the 

cyclic loading and the first three loops of the monotonic loading, respectively. In the figure, the 

colorful patches have the same definition with the Section 7.4.1.1.  
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From the stress distributions illustrated in Figure 7.19, it is found that the range of the stress 

distribution at each peak load decreases extraordinarily from the first cycle to the third cycle 

under cyclic loading, as shown in Figure 7.19 (a). On the contrary, the range of the stress 

distribution at each peak load slightly decreases from the first loop to the third loop of the 

monotonic loading, as shown in Figure 7.19 (b). The difference is observed at the compression 

stress zone due to the bending moment. Under cyclic loading, the compression stress due to the 

bending moment is lost and flexural behavior does not contribute to the load carrying capacity. 

This phenomenon implies that the cyclic loading greatly affects the strength of RC structures. 

This strength should belong to the shear strength of RC structures as mentioned in Introduction 

so that the shear strength of RC structures degrades much while subjected to cyclic loading. 

 

7.4.2.1 Stress Distribution 

Two identical RC structures with the same material properties and arrangements, but 

different loading conditions applied, are simulated in this section. The upper portions of Figure 

7.19 (a) and Figure 7.19 (b) show the stress distributions at individual peak load for the first 

three cycles of the cyclic loading and the first three loops of the monotonic loading, respectively. 

In the figure, the colorful patches have the same definition with the Section 7.4.1.1. 

From the stress distributions illustrated in Figure 7.19, it is found that the range of the stress 

distribution at each peak load decreases extraordinarily from the first cycle to the third cycle 

under the cyclic loading, as shown in the upper portion of Figure 7.19 (a). On the contrary, the 

range of the stress distribution at each peak load slightly decreases from the first loop to the third 

loop of the loading. This phenomenon implies that the cyclic loading greatly affects the strength 

of RC structures. This strength should belong to shear strength of RC structures as mentioned in 



272 

Section 7.1 so that the shear strength of RC structures degrades much while subjected to the 

cyclic loading. 

 

7.4.2.2 Crack propagation 

In the lower portions of Figure 7.19 (a) and Figure 7.19 (b), the crack patterns are simulated 

as well in order to identify the failure modes for two identical RC structures under distinct 

loading conditions. In the figure, the magnification factor of 10 is used consistently throughout 

all the illustrations of crack patterns in order for the clear and accurate identifying the difference 

among the cracks and deformations at different points. 

From Figure 7.19 (a), it is discovered that within the cyclic loading, the shear cracks on RC 

structures become larger after a cycle, whereas the flexural cracks don’t grow a lot. That is, the 

shear cracks on RC structures under the cyclic loading apparently develop in width, length and 

number after every cycle, but there is not much change for the flexural cracks in width, length 

and number. This phenomenon agrees with the concept that the shear behaviour eventually 

dominates the failure mode when RC structures are subjected to the cyclic loading. 

On the contrary, the behaviour on RC structures subjected to the monotonic loading 

composes both compression behaviour and shear behaviour. As simulated in Figure 7.19 (b), not 

only the shear cracks on RC structures become larger after each loop, but also the flexural cracks 

grow. That is, the shear cracks and the flexural cracks on RC structures develop in width, length 

and number after every loop under the monotonic loading. This demonstrates that the failure 

mode on RC structures under the monotonic loading could be dominated by the shear failure or 

the flexural failure depending on the factors of materials, properties, etc. of the RC structures. 
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Figure 7.19 Stress distributions and crack patterns at the peak load of each cycle/loop  

condition for two identical RC cantilever beams under  

(a) the cyclic loading; (b) the monotonic loading, respectively 

(a)  (b) 
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7.4.3 Stress Distribution and Crack Propagation of RC Structures under Cyclic Load 

In this section, the RC structure with stirrups, shown in Figure 7.20, subjected to the cyclic 

loading is used to compare with the RC structure without stirrups. Similarly with the previous 

section, the stress distributions and crack patterns are investigated. Furthermore, the failure 

modes are studied as well.  

 

7.4.3.1 Stress Distribution 

Suppose the same cyclic loading shown in Figure 7.15 is acted on the RC structure with 

stirrups. The stress distributions of the Point A to Point C through A’ and B’ are shown in Figure 

7.21 (a), respectively. Compare this figure with Figure 7.17 (a) and Figure 7.18 (a), it is 

obvious that the stress distributions are clearly dominated by the compression behaviour. That is, 

few variation of the stress distribution is seen in different stages, which is quite different from the 

stress distributions shown in Figure 7.17 (a) and Figure 7.18 (a). Therefore, this phenomenon 

confirms that stirrups can improve the shear-resisting capacity of RC structures under the cyclic 

loading. 

 

Figure 7.20 Analytical model of RC structure with stirrups 
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7.4.3.2 Crack propagation 

In Figure 7.21 (b), the magnification factor of 10 is used throughout all the illustrations of 

crack patterns, consistent with the previous sections. 

From Figure 7.21 (b), it is seen that the crack patterns on RC structures with stirrups 

subjected to the cyclic loading are primarily flexural cracks. Moreover, after more cycles of the 

loading, only the flexural cracks on RC structures become larger in width, length and number. 

This demonstrates that the failure mode on RC structures with stirrups under the cyclic loading 

should be flexural failure, which is different from the case of the RC structure under the cyclic 

loading but without stirrups shown in Figure 7.17 (b) and Figure 7.18 (b). 
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Figure 7.21 (a) Stress distributions at different points for RC structure with stirrups under  

cyclic loading; (b) Crack patterns at different points for RC structure with stirrups under cyclic

 loading 
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7.5 Results Discussion 

 

(1) Technically speaking, RBSM method consists of the physical and mechanical behaviors of 

several constitutive models, such as concrete, steel rebar, etc. In the meanwhile, through 

various experimental designs, the corresponding parameters for the physical and mechanical 

behaviors used in the constitutive models are thus found. Therefore, after the constitutive 

model for nano-scale materials with the interface/surface energy effect based on the 

nano-mechanical framework in Chapters 3, 4, and 5 is formulated, 3D RBSM method is easy 

to incorporate with our present model by adding the analytical solutions and illustrative 

results into RBSM’s constitutive model. For example, most of the parameters in constitutive 

models have the proportional or linear relations between the theoretical model and practical 

experiment. Therefore, at the beginning of deciding the parameter/factor in the constitutive 

model regarding the nano-composite materials with the interface/surface energy effect, the 

proportional relation between the theoretical model and practical experiment can be assumed, 

as follows,  

'K K        (7.1) 

'          (7.2) 

Where K  and   are the effective moduli of the composite with the interface/surface 

energy effect, which can refer to Chapters 3, 4, and 5 for different types of inclusions and 

phases.   and   are the constitutive model parameters (corrected factors) between the 

theoretical model and practical experiment. They can be constants, polynomials, or functions. 

'K  and '  are the effective moduli of the composite with the interface/surface energy 

effect after correction. Moreover, operated with the correlative experiments regarding 
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nanocomposite materials, the constitutive model parameters for the nano-scale materials with 

the interface/surface energy effect can be obtained. Furthermore, the correlative constitutive 

model parameters between theory and practice can be modified at all times through 

continuous experiments and accumulative experiences. Once this expected constitutive 

model is completed and involved in the developed 3D RBSM method, the effective 

properties of multi-phase composites with the interface/surface energy effect can be easily 

found through the RBSM method without complicated, difficult, tedious, and 

time-consuming formulations. However, nano-composite experiments are very expensive 

and difficult to execute at present technology. We hope in the early future, the science and 

technology will advance to implement nano-composite experiments easily, conveniently and 

cheap. 

(2) 3D RBSM can simulate the shear failure after flexural yielding under cyclic loading. 

Accurate cracks and illustrative stress distribution can be developed and investigated using 

3D RBSM programming. 

(3) Curves for the degradation of the shear strength obtained by 3D RBSM analytical model 

show similar behavior with the proposed formula which obtained by statistical procedures, so 

that the possibility to evaluate the degraded shear strength using numerical analysis is 

confirmed. 

(4) It is found that the shear behavior would take over the flexural behavior gradually with the 

increasing number of the cycles of the loading. As a result, a RC structure under more cyclic 

loading tends to perform a severer shear failure with the more remarkable shear behavior. 

(5) It is discovered that within the cyclic loading, the shear cracks on RC structures become 

larger after a cycle, whereas the flexural cracks don’t grow a lot. That is, the shear cracks on 
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RC structures under cyclic loading apparently develop in width, length and number after 

every cycle, but there is not much change for the flexural cracks in width, length and number. 

This phenomenon agrees with the concept that the shear behavior eventually dominates the 

failure mode when RC structures are subjected to cyclic loading. 

 

 

7.6 Conclusions 

 

Some applicable methods and/or programs are able to cooperate with our present model 

with the interface/surface energy effect, such as Finite Element Method (FEM), 

Rigid-Body-Spring Model (RBSM) method, ABAQUS, COMSOL, etc. Among them, RBSM 

method is recommended and introduced in this chapter. The reasons are as follows. Firstly, when 

the phases become more multiple, the formulations for analytical solutions are more complicated, 

difficult, tedious and time-consuming to derive. Secondly, in reality, the practical construction 

materials usually contain multi-phases, like concrete, wood, brick, masonry, etc. Accordingly, 

finding an easy and convenient method to estimate the interface/surface energy effect on those 

materials with multiple phases, so as to replace time-consuming and complicated 

micromechanical operations for the multiple-phase composites, is worth investigating and 

developing. Lastly, 3D RBSM method is easy to incorporate with our present model by adding 

the illustrative results based on the interface/surface energy effect into RBSM’s constitutive 

model. Furthermore, the correlative constitutive model parameters between theory and practice 

can be modified at all times through continuous experiments and accumulative experiences. In 

addition, RBSM is capable of simulating the crack propagation and patterns, illustrating stress 



280 

distribution, providing effective properties of the composite materials, etc. It is beneficial for 

researchers to observe the external internal variations in the materials by using visible 

illustrations. 

Technically speaking, RBSM method consists of the physical and mechanical behaviors of 

several constitutive models, such as concrete, steel rebar, etc. In the meanwhile, through various 

experimental designs, the corresponding parameters for the physical and mechanical behaviors 

used in the constitutive models are thus found. Therefore, after the constitutive model for 

nano-scale materials with the interface/surface energy effect based on the nano-mechanical 

framework in Chapters 3, 4, and 5 is formulated, 3D RBSM method is easy to incorporate with 

our present model by adding the analytical solutions and illustrative results into RBSM’s 

constitutive model. Furthermore, operated with the correlative experiments regarding 

nanocomposite materials, the constitutive model parameters for the nano-scale materials with the 

interface/surface energy effect can be obtained. Moreover, the correlative constitutive model 

parameters between theory and practice can be modified at all times through continuous 

experiments and accumulative experiences. Once this expected constitutive model is completed 

and involved in the developed 3D RBSM method, the effective properties of multi-phase 

composites with the interface/surface energy effect can be easily found through the RBSM 

method without complicated, difficult, tedious, and time-consuming formulations. However, 

nano-composite experiments are very expensive and difficult to execute at present technology. 

We hope in the early future, the science and technology will advance to implement 

nano-composite experiments easily, conveniently and cheap. 
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Chapter 8 

SUMMARY AND FUTURE WORK 

 

 

8.1 Summary 

 

Nowadays, since the materials science and technique have been further advanced to the 

characteristic size of solids and liquids in the nano-size structures and nanocomposites, the 

interface/surface energy effect on the mechanical and physical properties and damage energy 

dissipation of a nano-scale material or composite becomes significant and cannot be ignored. 

Therefore, the interface/surface energy and particle-size effects on the effective properties and 

the damage dissipation in nanocomposites are investigated. In this research, two viewpoints of 

observing the interface/surface energy effect are provided in Chapter 3 and Chapter 4. The first is 

studying the interface/surface energy effect on the effective properties of the composite material 

upon the mechanism of micromechanics, while the second is investigating the interface/surface 

energy effect on the energy dissipation due to the interfacial debonding between the particles and 

the matrix in the framework of the probability, such as the logarithmic normal distribution and 

Weibull’s distribution function. 

In Chapters 3, the interface/surface energy effect, regarded as the change of the residual 

elastic field induced by the interface stress from the reference configuration to the current 

configuration, is investigated. Beginning with the finite deformation analysis of a multi-phase 

hyperelastic medium, the interface energy effect on the macroscopic mechanical behavior of a 
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composite is studied. In particular, the approximate formulation of a finitely deformed 

multiphase elastic medium by an infinitesimal deformation analysis is emphasized. Moreover, 

due to the existence of the interface energy, even under no external loading, there is still a 

“residual elastic field” induced by the interface stress. In the process of the deformation of a 

composite from the reference configuration to the current configuration, the changes of the size 

and shape of the interface result in the change of this “residual elastic field”. In addition, the 

governing equations describing the change of the “residual elastic field” due to the change of 

configuration are derived under the infinitesimal deformation approximation. Then, while the 

asymmetric interface stress is used in the Young-Laplace equation, the analytical equations of the 

size-dependent effective moduli of a particle-filled composite material with interface energy 

effect are developed. Therefore, the influence of the residual surface/interface tension can be 

taken into account. Later, the analytical expressions and corresponding illustrative results 

regarding the effective moduli of the composite containing spherical “equivalent 

inhomogeneities” (i.e. inhomogeneities together with the interface/surface energy) are discussed. 

It is found that the results with the interface/surface energy effect can also be applied to the 

nanocomposites, which is different from the results given by preceding researchers. In other 

words, the analytical results in this research can be applicable in nanocomposites, even if the 

formulations are mainly derived upon the mechanism of micromechanics. In addition, through 

the illustrative figures developed based on the analytical expressions, it can be found that the 

interface/surface effect decreases with the increase of the size of the voids and almost can be 

neglected when the radius of the void is larger than 10 nm. Moreover, it can be seen that the 

larger the interface/surface energy becomes, the more the effect of the interface/surface energy is 

on the effective moduli of the composite. Lastly, excluding the results produced by the Eshelby 
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method, the results developed by Ju and Chen’s model and Mori-Tanaka’s model are extremely 

approaching. 

In Chapter 4, the primary objective is to extend the work regarding the interface/surface 

energy effect on size-dependent effective moduli of a “two-phase” composite containing 

identical particles of the same property and size, based on the framework of Lin and Ju (2009) 

and the methodology of Huang and Sun (2007), to the one regarding the interface/surface energy 

effect on size-dependent effective moduli of a “three-phase” composite containing two particles 

of the distinct properties with the same size. Before the analytical framework for the 

interface/surface energy effect on the size-dependent effective moduli of a three-phase composite 

with randomly located and interacting spherical particles of distinct properties is investigated, the 

interface/surface energy effect on the size-dependent effective moduli of a two-phase composite 

consisting of the matrix and randomly distributed spherical inhomogeneities is first considered 

by executing similar procedure in Chapter 3. Subsequently, the effective bulk and shear moduli 

of a three-phase composite containing randomly dispersed spherical particles of distinct elastic 

properties are separately formulated based on another framework with consideration to the 

concepts of probabilistic spatial distribution of spherical particles, pairwise particle interactions, 

and the ensemble-volume averaging (homogenization) procedure for three-phase elastic 

composites. Specifically, the approximate analytical solutions for the direct interactions between 

two different randomly located elastic spheres embedded in the matrix material are presented, 

followed by constructing the ensemble-volume averaged eigenstrains through the probabilistic 

pairwise particle interaction mechanism. Moreover, two non-equivalent formulations are 

considered in detail to derive effective elastic moduli of three-phase composites with no the 

interface/surface energy effect. Later on, in combination with the above two formulations, 
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effective elastic moduli of three-phase composites containing randomly dispersed distinct 

spherical particles with the interface/surface energy effect are analytically derived. In addition, 

numerical results and the corresponding discussions are presented to demonstrate the potential of 

this present model. Specifically, through the execution of some special cases, as well as the 

comparison with the results done in Chapter 3, it is further demonstrated that this developed 

analytical model for the interface/surface energy effect on effective moduli of three-phase 

composites containing randomly dispersed spherical particles of distinct elastic properties is 

applicable to reveal the influence of interface/surface energy in nano-scale composites. These 

comparisons and simulations encompass elastic matrices with randomly dispersed voids and/or 

particles. No Monte Carlo simulations or finite element calculations are needed here. 

In Chapter 5, the primary objective of the present chapter is to extend the work regarding 

the interface/surface energy effect on size-dependent effective moduli of a three-phase composite 

containing two “particles” of the distinct properties with the same size, based on the framework 

of Ko and Ju (2013) and the methodology of Huang and Sun (2007), to the one regarding the 

interface/surface energy effect on size-dependent effective transverse elastic moduli of 

three-phase hybrid fiber-reinforced composites containing two “fibers” of the distinct properties 

sizes. Before the analytical framework for the interface/surface energy effect on the 

size-dependent effective transverse elastic moduli of a three-phase hybrid fiber-reinforced 

composite with randomly located and interacting aligned circular fibers of distinct properties and 

sizes is investigated, the interface/surface energy effect on the size-dependent effective moduli of 

a two-phase composite consisting of the matrix and randomly distributed aligned circular fibers 

is first considered. Subsequently, the effective transverse elastic bulk and shear moduli of a 

three-phase composite containing randomly located cylindrical fibers featuring distinct elastic 
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properties and sizes are separately formulated based on another framework with consideration to 

the concepts of probabilistic spatial distribution of spherical particles, pairwise particle 

interactions, and the ensemble-volume averaging (homogenization) procedure for three-phase 

elastic composites. Specifically, the approximate analytical solutions for the direct interactions 

between two different randomly located elastic fibers embedded in the matrix material are 

presented, followed by developing the ensemble-volume averaged eigenstrains through the 

probabilistic pairwise particle interaction mechanism. Moreover, two non-equivalent 

formulations are considered in detail to derive effective elastic moduli of three-phase composites 

with no the interface/surface energy effect. Later on, in combination with the above two 

formulations, effective transverse elastic moduli of three-phase hybrid fiber-reinforced 

composites containing randomly located and interacting aligned circular fibers of distinct elastic 

properties and sizes with the interface/surface energy effect are analytically derived. In addition, 

numerical results and the corresponding discussions are rendered to demonstrate the potential of 

this present model. Specifically, some special cases of the interface/surface energy effect on a 

three-phase composite containing randomly dispersed fibers of same/distinct properties 

embedded in an elastic matrix are executed. It is further demonstrated that this developed 

analytical model for the interface/surface energy effect on effective moduli of three-phase 

composites containing randomly dispersed circular fibers of distinct elastic properties and sizes 

is applicable to reveal the influence of interface/surface energy in nano-scale composites. 

In Chapter 6, both of the particle-size and interface/surface energy effects on the energy 

dissipation due to the interfacial debonding between the particles and the matrix in 

nanocomposites are investigated. The size distribution of particles is supposed to comply to the 

logarithmic normal distribution, while the probability of the interfacial debonding between the 
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particles and the matrix is considered to satisfy the Weibull’s distribution function. Then, the 

formulation of the energy dissipation due to the interfacial debonding is developed. Accordingly, 

several results regarding the particle-size and interface/surface energy effects on the energy 

dissipation due to the damage evolution are illustrated after a series of numerical calculations. 

Among these numerical results, the damage energy dissipation crest with respect to the average 

size of particles is found to demonstrate that the energy dissipation due to the damage evolution 

extremely depends on the size of particles and interface/surface energy in nanocomposites. From 

the analysis of the numerical results, it is found that there exists a characteristic crest for each 

curve of the damage energy dissipation with respect to the average radius of particles, 0a . 

Moreover, the position of the crest moves towards small size direction of 0a  with the average 

normal stress of   increases. When the average radius of particles is less than the critical 

average size, 0cra , the composite possesses the characteristic of the nanocomposite. That is, the 

damage energy dissipation increases with the increment of the average radius. This is the special 

phenomenon of the size effect on the damage energy dissipation in nanocomposites, which is 

completely different from that in microcomposites. In addition, the effects of the larger 

particle-size dispersion, the larger average normal stress at the interface, and the smaller 

interface/surface energy between the particles and the matrix materials may result in more energy 

dissipation due to the interfacial debonding between particles and the matrix. Finally, for a given 

damage energy dissipation, the larger the average size of particles in the range of nanometer size 

is, the more volume fraction the a particle requires. Moreover, if the average radius, 0a , is fixed, 

the larger the value of 0pf  is, the more the damage energy dissipation in nanocomposites 

becomes. 

Another method, called Rigid-Body-Spring Model (RBSM) method, is introduced in 
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Chapter 7. The reasons are as follows. Firstly, when the phases become more multiple, the 

formulations for analytical solutions are more complicated, difficult, tedious and time-consuming 

to derive. Secondly, in reality, the practical construction materials usually contain multi-phases, 

like concrete, wood, brick, masonry, etc. Accordingly, finding an easy and convenient method to 

estimate the interface/surface energy effect on those materials with multiple phases, so as to 

replace time-consuming and complicated micromechanical operations for the multiple-phase 

composites, is worth investigating and developing. Lastly, 3D RBSM method is easy to 

incorporate with our present model by adding the illustrative results based on the 

interface/surface energy effect into RBSM’s constitutive model. Furthermore, the correlative 

constitutive model parameters between theory and practice can be modified at all times through 

continuous experiments and accumulative experiences. In addition, RBSM is capable of 

simulating the crack propagation and patterns, illustrating stress distribution, providing effective 

properties of the composite materials, etc. It is beneficial for researchers to observe the external 

internal variations in the materials by using visible illustrations. Technically speaking, RBSM 

method consists of the physical and mechanical behaviors of several constitutive models, such as 

concrete, steel rebar, etc. In the meanwhile, through various experimental designs, the 

corresponding parameters for the physical and mechanical behaviors used in the constitutive 

models are thus found. Therefore, after the constitutive model for nano-scale materials with the 

interface/surface energy effect based on the nano-mechanical framework in Chapters 3, 4, and 5 

is formulated, 3D RBSM method is easy to incorporate with our present model by adding the 

analytical solutions and illustrative results into RBSM’s constitutive model. Furthermore, 

operated with the correlative experiments regarding nanocomposite materials, the constitutive 

model parameters for the nano-scale materials with the interface/surface energy effect can be 
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obtained. Moreover, the correlative constitutive model parameters between theory and practice 

can be modified at all times through continuous experiments and accumulative experiences. 

Once this expected constitutive model is completed and involved in the developed 3D RBSM 

method, the effective properties of multi-phase composites with the interface/surface energy 

effect can be easily found through the RBSM method without complicated, difficult, tedious, and 

time-consuming formulations. However, nano-composite experiments are very expensive and 

difficult to execute at present technology. We hope in the early future, the science and technology 

will advance to implement nano-composite experiments easily, conveniently and cheap. 

 

 

8.2 Future Work 

 

The main objective of this research is to develop the characteristic analytical expressions of 

the effective properties and the damage energy dissipation of the composite, especially the 

nanocomposite, with the interface/surface energy and particle-size effects. In general, since parts 

of the special cases/illustrations and/or formulations in the research is established with some 

assumptions, such as the axisymmetric stresses or loads, symmetric geometry of structures, 

fewer phases of composites, small deformation, linear elastic moduli of materials, linearized 

parameters, etc., our further work is to modify and impose more complicated conditions and/or 

multi-physical parameters into the present analytical expressions. In other words, there still exists 

some insufficient aspects in the present model, and these are particularly discussed in the 

following points: 

(1) In this research, two viewpoints of observing the interface/surface energy effect are 
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provided. For example, the influence of the interface/surface energy on the effective moduli 

of a composite upon the mechanism of micromechanics is investigated, while that on the 

damage energy dissipation based on the framework of the probability for the size 

distribution and interfacial debonding between particles and the matrix is studied. However, 

the interaction and connection between these two models is not developed yet. Thus, there 

still exists a big step for the complicated and challenging mathematical derivations and 

formulations. 

(2) It is known that continuous fiber-reinforced composites possess high strength and stiffness 

in the direction of fibers. The overall mechanical behavior of a fiber composite depends on 

the constituent properties of the matrix and reinforcements as well as the microstructure. 

Several possible damage modes exist for fiber composites, such as the interfacial 

fiber-matrix debonding, the matrix cracking, the fiber breakage, the fiber-pullout, and the 

shear sliding of fibers. Specifically, the dominant damage mechanism in continuous 

unidirectional two phase fiber-reinforced ductile composites featuring same elastic 

properties and sizes of fibers under transverse loading is the initiation and progressive 

interfacial partial fiber debonding (arc microcracks) or fiber cracking followed by plastic 

yielding (Ko, 2005; Ju et al., 2006; Ju et al., 2008; Ju and Ko, 2008; Ju et al., 2009; Ko and 

Ju, 2012). Current studies will pave the way for future investigations in various damage 

mechanisms of continuous unidirectional three-phase hybrid fiber-reinforced composites 

with the interface/surface energy effect under transverse loadings. Thus, optimum cost and 

performance of hybrid fiber-reinforced composites with the interface/surface energy effect 

can be achieved through proper material design. 

(3) Since some simpler special cases are used to create the illustrative results either in Chapters 
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3, 4, 5 and in Chapter 6, other physical and mechanical parameters may be considered in the 

following model, such as specific materials, dimensions, shapes and sizes of the composite 

constituents, thermal effect, dynamic-elastic, and even the interactions among the above 

parameters. However, the formulating and computational processes are usually 

time-consuming, especially if more types of multi-phase materials and multi-physical 

parameters are imposed in a model at the same time. Therefore, it is necessary and 

convenient to cooperate with some useful applicable programs, like ABAQUS, COMSOL, 

etc., in the analysis of multi-phase composites and multi-physical parameters. In the 

meantime, another method, called Rigid-Body-Spring Model (RBSM) method, is 

introduced in Chapter 7. 3D RBSM performs excellent in simulating the crack propagation 

and patterns, illustrating stress distribution, providing effective properties of the composite 

material, etc. Therefore, if constitutive illustrative or analytical models for nano-scale 

inclusions with the interface/surface energy effect can be formulated based on the 

framework constructed in Chapters 3, 4, and 5, combined with the execution of the 

correlative experiments regarding the specific nanocomposite materials, the model 

parameters for the nano-scale inclusions are thus obtained. Once this expected model is 

completed, the effective properties, including elastic and plastic parts, of multi-phase 

composites will be easy found by using RBSM method. 

(4) In general, the displacement gradient of the interface is not necessary to be symmetric in 

Chapters 3, 4, and 5. For instance, for a cylindrical inclusion embedded in an infinite matrix, 

the displacement gradient of the interface could be expressed in terms of the physical 

components ( ru , u , zu ) in a cylindrical polar coordinate system ( r ,  , z ), as follows 
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Obviously, under an anti-plane shear deformation, Eq. (8.1) is not a symmetric tensor. In 

this case, an asymmetric Piola-Kirchhoff stress, Eq. (3.50), has to be used in Eq. (3.43). 

(5) In Chapter 3, the Ju and Chen’s scheme, Mori-Tanaka approximation method and Eshelby 

method are used to predict the effective moduli of a composite. For spherical inclusions, 

pointed out by Weng (1990), the effective moduli derived from the Mori-Tanaka method are 

identical to the Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963). Actually, once 

*K  and *  are obtained, the effective moduli can also be calculated by using other 

micromechanical schemes such as the generalized self-consistent method (Christensen, 

1979), the double-inclusion method (Nemat-Nasser and Hori, 1999), and the IDD estimate 

(Zheng et al., 2001). It could be interesting to establish the corresponding expressions of the 

effective moduli of the composite in the future to provide different viewpoints to study the 

difference of various models. Moreover, it is very possible to improve the present model 

from the comparison among a variety of models. 

(6) In Chapters 3, 4, and 5, although circular or spherical inhomogeneities are only considered 

in the above discussion, the method can also be applied to the materials with 

inhomogeneities of different shapes and geometries. As *K  and *  are related to the size 

of the inhomogeneity, inhomogeneities with different shapes should be regarded as different 

“equivalent inhomogeneities”. 

(7) The interface is assumed to be elastically isotropic. However, in many materials such as 

single crystals, the interface may be anisotropic. In this case, the interface constitutive 

relations for anisotropic materials given by Huang and Wang (2006) may be used, and the 
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effective moduli and damage energy dissipation of the composite can still be predicted by 

using the similar procedure in Chapters 3, 4, 5 and 6. The greater difficulty lies in that there 

exists more material parameters and the algebraic operations for the analytical expressions, 

so the process of the formulations and derivations must be more complicated. 

(8) Experimental validations are key parameters in the calibration of proposed models. Further 

experimental validations and comparisons will be performed once the associated 

experimental data become available. To the author’s best knowledge, the experimental data 

associated with Chapters 3, 4, and 5 are currently not available due to difficulties in 

performing such experimental works. For example, as the illustrative figures developed 

based on the framework in Chapters 3, 4, and 5, it is found that the interface/surface effect 

decreases with the increase of the size of the fiber-shape voids and can be neglected when 

the radius of the void is larger than 5 nm. In other words, it is quite difficult to manufacture 

so small nanocomposites nowadays. Similarly, there exists an absence of the corresponding 

experimental data for the purpose of comparison with the present analytical models in 

Chapter 6. Once the corresponding experimental data become available, it would be very 

helpful to examine and test the accuracy and validity of the illustrative results and concepts 

developed by our present models and to further modify and improve the present models. 
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