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Abstract

Motivation: The diverse functionalities of RNA can be attributed to its capacity to form complex

and varied structures. The recent proliferation of new structure probing techniques coupled with

high-throughput sequencing has helped RNA studies expand in both scope and depth. Despite

differences in techniques, most experiments face similar challenges in reproducibility due to the

stochastic nature of chemical probing and sequencing. As these protocols expand to

transcriptome-wide studies, quality control becomes a more daunting task. General and efficient

methodologies are needed to quantify variability and quality in the wide range of current and

emerging structure probing experiments.

Results: We develop metrics to rapidly and quantitatively evaluate data quality from structure

probing experiments, demonstrating their efficacy on both small synthetic libraries and

transcriptome-wide datasets. We use a signal-to-noise ratio concept to evaluate replicate agree-

ment, which has the capacity to identify high-quality data. We also consider and compare two

methods to assess variability inherent in probing experiments, which we then utilize to evaluate

the coverage adjustments needed to meet desired quality. The developed metrics and tools will be

useful in summarizing large-scale datasets and will help standardize quality control in the field.

Availability and Implementation: The data and methods used in this article are freely available at:

http://bme.ucdavis.edu/aviranlab/SPEQC_software.

Contact: saviran@ucdavis.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA plays an integral role in many biological processes, spanning

an enormous range of functionalities (Sharp, 2009), whose root

often lies in structure. Discerning structure is thus of paramount im-

portance, but it remains a challenging task, as traditional methods

such as crystallography are time consuming whereas computational

approaches struggle to correctly predict it by sequence alone. The re-

cent advent of affordable and efficient high-throughput structure

probing experiments has helped address these deficiencies (Cheng

et al., 2015; Ding et al., 2014; Hector et al., 2014; Kertesz et al.,

2010; Kielpinski and Vinther, 2014; Lucks et al., 2011; Mortimer

et al., 2012; Poulsen et al., 2015; Rouskin et al., 2014; Sager et al.,

2015; Seetin et al., 2014; Smola et al., 2015; Spitale et al., 2014,

2015; Talkish et al., 2014; Underwood et al, 2010; Wan et al.,

2013; Watters et al., 2016). Furthermore, their outputs can be used

to constrain structure prediction algorithms and improve prediction

accuracy (Deigan et al., 2009; Lorenz et al., 2015, 2016; Markham

and Zuker, 2008; Reuter and Mathews, 2010) or utilized in other

applications (Kutchko et al., 2015, Lavender et al., 2015). Probing

experiments use reagents, such as SHAPE and DMS, which modify

RNA residues in a structure-dependent manner (Weeks, 2010).

Modifications are detected via reverse transcription, which
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terminates at modified sites. Noise due to random terminations is

measured in a control assay. Modification and control measure-

ments are then combined to yield a final reactivity score: residues

with high reactivities are more likely to be unstructured, while low

reactivities are suggestive of pairing interactions (Sükösd et al.,

2013).

The newest generation of experiments utilizes high-throughput

sequencing to detect modifications, allowing for unprecedented

multiplexing capabilities. Focus is now shifting towards in vivo and

transcriptome-wide studies, leading to a breadth of new insights

(Mortimer et al., 2014). While these developments are exciting, they

face significant challenges in standardizing data due to differences in

chemistries, protocols and analysis strategies. For example, most

techniques detect modifications as reverse transcriptase (RT) termin-

ations, but others induce mutations at modified sites (Smola et al.,

2015). Despite these differences, reactivity calculation reduces to a

comparison of detection rates between modified and control chan-

nels, giving rise to a unified approach for evaluating and optimizing

data analysis (Shih et al., in revision). But even if methods are stand-

ardized, tools are needed to evaluate data quality obtained by each

of these experiments (Aviran and Pachter, 2014).

The problem of quality control can be addressed in rudimentary

ways when examining a few transcripts, through visual inspection

or simple statistical tests. As the field moves towards large-scale gen-

ome-wide and in vivo experiments, evaluating quality of datasets or

individual transcripts becomes increasingly difficult. Examination of

these data must consider issues such as non-uniform coverage, pri-

ming biases, increased transcript lengths, large number of transcripts

and increased number of replicates. Similar to challenges faced in

early stages of microarrays and RNA-Seq (Bolstad et al., 2003;

Ritchie et al., 2015), a convenient and standardized method for

quality control must be developed.

We present broadly applicable methods to analyze and to im-

prove reproducibility of structural data. At the core of our approach

is a generalizable metric that we introduce, which quantifies agree-

ment among replicates. We validate and characterize it on SHAPE-

Seq data obtained in highly controlled in vitro conditions, featuring

multiple replicates and very deep coverage across eight well-

characterized RNAs (Loughrey et al., 2014). Our validation then

reveals a quality threshold to be used with this metric, thereby facili-

tating simple and rapid preliminary quality screenings. We also ad-

dress situations where multiple replicates are not available and

present methods for quality control, which quantify technical vari-

ability in experiments. Finally, we explore additional applications of

our approach, such as analysis of large-scale in vivo datasets, repro-

ducibility verification for differential analysis and experiment design.

Our tools are designed with simplicity in mind, making quality as-

sessment accessible to experimentalists. Our work represents the first

generation of broadly applicable quality control methods in structure

probing experiments, a necessary step in the maturation of this field.

2 Methods

We extracted SHAPE-Seq counts for three replicates of eight RNAs

with lengths ranging from 74 to 338 nt and for a single replicate of

TPP riboswitch in absence and presence of ligand, all probed in vitro.

Three processed SHAPE-Seq replicates of HIV RRE before and after

Rev-RRE complex formation in vitro were provided by Yun Bai. We

also processed raw reads into counts from two replicates of yeast and

mouse transcriptome-wide in vivo Mod-Seq and icSHAPE experi-

ments, respectively. See Supplementary Information for details.

2.1 Reactivity reconstruction
Extracted counts tally the number of modifications detected at each

residue k in the modified (plus) and control (minus) channels. In

SHAPE-Seq and similar assays, counts represent RT stop or termin-

ation events, obtained by identifying all sequenced cDNAs whose 30

ends map to one residue downstream of k. SHAPE-Seq profiles were

obtained by initializing RT at a single priming site at each tran-

script’s 30 end, resulting in cDNAs spanning sequences between pri-

ming and stop sites. Such targeted priming allowed us to recover the

local coverage, which is the sequencing depth at a residue, defined

as the number of reads that either stop at or pass through said resi-

due (see Supplementary Fig. S1). We denote stop counts in plus and

minus channels by Xk and Yk, respectively, and local coverages in

said channels by Ckþand Ck-, respectively. We then converted

counts into two stop rates, Xk/Ckþ and Yk/Ck-, to normalize them

for variation in local coverages among residues and channels.

Transcriptome-wide profiles were obtained from random primer

extension (RPE) experiments coupled with single-end reads to iden-

tify stop sites only. In such protocols, absence of mate-pair reads

precludes recovery of local coverages (Supplementary Fig. S1).

Instead, for each transcript, we used its average number of mapped

reads per residue.

Plus channel stop counts reflect a combined effect of modifica-

tion and natural RT termination, or noise. To measure the degree of

modification at residue k, we defined its reactivity, bk, as its prob-

ability of being modified. To estimate the noise component in the

plus channel counts, we introduced an auxiliary parameter, ck, as

the probability that RT stops at residue k due to factors others than

modification. Our goal was to estimate the bk’s from sequencing

data.

We used a model-based maximum-likelihood (ML) approach to

estimation, previously developed for similar data (Aviran et al.,

2011a). The ML estimate (MLE) of ck was directly recovered from

minus channel data as the ratio of the kth stop count to the kth local

coverage count, Yk/Ck-. A simple and intuitive way to account for

noise in plus channel is to estimate bk as the difference of stop rates

between channels (Eq. 1):

bbk ¼
Xk

Ckþ
� bck; bck ¼

Yk

Ck�

We chose this estimate for its simplicity and because its outputs

closely matched those of bk’s MLE, which takes a more complex

form (Aviran et al., 2011b; Shih et al., in revision). Note that while

bk is constrained by definition to lie in the unit interval, there is no

guarantee that bbk � 0, as it is a difference of two terms from inde-

pendent channels. Indeed, such data inconsistencies between chan-

nels arise in practice, and we employed a standard remedy of setting

negatives to 0. Notably, ML estimation yields the same principle

(Aviran et al., 2011b).

Differences in experimental conditions and transcript properties

result in varying degrees of modification (i.e. signal power) among

reactivity profiles. The extent to which a transcript was modified, or

its modification rate, was computed by summing the bbk’s. To bridge

these differences, we normalized each profile with the commonly

used 2–8% strategy (Sloma and Mathews, 2015; Low and Weeks,

2010). This step amounts to scaling by a constant and it is necessary

for placing all measurements on common scale prior to any com-

parative or joint analysis. Normalized values would then be placed

both below and above 1.

For transcriptome-wide data, reactivities were similarly recon-

structed, with the difference that stop rates were evaluated with
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respect to transcript coverages. See Supplementary Information for

further details.

2.2 SNR calculation
SNR per residue k was calculated as the ratio of its reactivity’s sam-

ple mean to sample standard deviation (Equation 2):

SNRk ¼
lk

rk
:

It is undefined when standard deviation is zero (reactivities are

equal). SNR can be summarized over a stretch of residues or entire

transcript in various ways, e.g. mean, boxplot or pie chart. To re-

duce the sensitivity of the mean to outliers and improve its robust-

ness, we clipped all values above 35 and set them to 35 (see

Supplementary Information for details).

2.3 Bootstrap analysis
Bootstrap resampling was performed using the sample function in

R. Resampling of both start and stop counts could be done for

paired-end reads. However, SHAPE-Seq experiments used single-

primer extension with fixed start site. Hence, only resampling of

stop counts was required. Local coverage was determined by sum-

ming stop counts at or downstream of a residue. More detail and

performance evaluation are included in Supplementary Information.

2.4 Variance estimates
A closed-form expression was derived to estimate variances of re-

activity estimates as alternative to bootstrap. Assuming (i) binomial

distribution; (ii) statistical independence of terminations in plus and

minus channels; and (iii) fixed local coverage; variance can be esti-

mated as (Equation 3):

dVar bbk

� �
¼
dVarðXkÞ

C2
kþ

þ
dVarðYkÞ

C2
k�

¼
bbk þbck 1� bbk

� �� �
1� bbk �bck 1� bbk

� �� �
Ckþ

þbck 1�bckð Þ
Ck�

:

Its derivation and the derivation for reactivity calculated as a

ratio are described in Supplementary Information.

2.5 Coverage quality index (CQI)
We developed a scoring strategy—coverage quality index (CQI)—to

assess coverage adjustments required to meet user-specified quality

criteria. Specifically, we asked for an acceptable range of variation

(ek) around the mean reactivity and a significance level, which repre-

sents the likelihood that reactivity estimates from experiments with

predicted coverage level would deviate from current estimates

within that allowed range. Range of variation is defined as a per-

centage error around the reactivity. Given the percentage error and

z-value corresponding to significance level, we estimated the vari-

ance of reactivities, under the assumption that they are Gaussian

random variable, as (Equation 4):

dVarNormal
bbk

� �
¼ ek� bbk

zvalue

 !2

:

This variance is then substituted into Equation (3) to solve for

desired local coverage, Ckþ, keeping bbk and bck fixed. CQI is calcu-

lated as the ratio of desired coverage to current coverage. The indi-

ces for low, medium and high reactivities were summarized as the

95th percentile for each category and presented together as what we

call ‘95% CQI’. See Supplementary Information for more details

and for validation.

3 Results

Differences in experimental conditions result in inevitable variability

between replicates. For experiments that probe a few RNAs, visual/

manual inspection of replicate data makes quality control relatively

straightforward (Aviran and Pachter, 2014). However, the recent

emergence of transcriptome-wide experiments presents challenges in

rapidly screening a multitude of long transcripts or regions within

them for strong or weak replicate agreement. Here, we propose a

quantitative and broadly applicable approach to automatically as-

sess this, which will be useful for researchers as they evaluate small

or large datasets. We first introduce the basic concept and validate

its efficacy using a small high-quality dataset obtained in well-

controlled conditions. This not only confirms the method’s indica-

tive power but also results in simple guidelines for rapid quality as-

sessment. With a simple approach at hand, we strive to broaden its

scope through its application to additional problems and biological

scenarios. These include reproducibility assessment in the absence of

replicates, experiment design for improved reproducibility, analysis

of transcriptome-wide data and reproducibility measurement in dif-

ferential analysis situations. Some of these instances also triggered

us to develop novel adjoining methods, which we describe below.

3.1 Using signal-to-noise ratio to assess reproducibility
At the core of our approach is a concept co-opted from signal pro-

cessing, the signal-to-noise ratio (SNR), as a simple and informative

metric of reproducibility, which quantifies disagreement between

replicates irrespective of the underlying sources of variation. Here,

we calculate SNR as ratio of a reactivity’s mean to its standard devi-

ation (see Section 2), as commonly done in image analysis (Bushberg

et al., 2012).

We use a SHAPE-Seq dataset (Loughrey et al., 2014) to demon-

strate our metric’s capacity to discern high-quality data, as this set

encompasses numerous well-characterized and highly structured

RNAs, featuring three replicates for each RNA (see Section 2). Even

though replicates were generated under the same conditions, differ-

ences arise in a similar manner to those observed in biological repli-

cates, though in this case RNAs were transcribed in vitro. This

allows us to validate our method in a simple setting before applying

it to more complex situations.

To establish the diagnostic capacity of SNR, we look at agree-

ment among pairs of replicates. We generate reactivity profiles for

each replicate using a previously derived estimation method coupled

with a widely used normalization strategy (see Section 2). Three rep-

licates of eight RNAs give rise to 24 pairwise comparisons. To quali-

tatively demonstrate how SNR measures replicate concurrence,

consider two pairs that contrast in their level of agreement: the

hepC IRES domain features consistent overlaps, while cyclic di-

GMP has several regions of discrepancies (Fig. 1A–B). SNR captures

these differences well, as can be seen from box plots of residue SNR

distributions per transcript. Such differences are clearly observed

when represented as the mean value of a transcript (Fig. 1A, insets).

Thus, summary statistics such as mean SNR may be useful in assess-

ing agreement over regions of RNA.

Next, we quantitatively evaluate how well mean SNR captures

replicate agreement for all 24 pairwise comparisons. We examine

mean SNR’s relationship with a common pairwise evaluation
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statistic—Pearson correlation. We find that both provide reliable

evaluations of agreement, as replicate pairs with strong SNR also

display high correlation coefficients (Fig. 1C). Notably, a sharp in-

crease in correlation coefficients toward 1 is associated with mean

SNR values ranging from 3 to 5, with 5 marking a plateauing of

such step-like relationship. This observation further simplifies the

use of mean SNR, as it allows for rapid preliminary screening: repli-

cates with SNR greater than 5 can be confidently classified as high

quality. It is also worth noting that values between 3 and 5 may also

signify good replicate agreement, although with lower confidence.

For transcripts that fall in this ambiguous range, we recommend fur-

ther examination via boxplot analysis of residue SNR scores, to re-

veal where the bulk of the distribution lies (Fig. 1A, insets). Finally,

SNR confers another advantage: it accommodates an arbitrary num-

ber of replicates, a feature that traditional correlation tests do not

have unless they involve complex statistical considerations.

3.2 Reproducibility assessment in the absence of

replicates
Numerous factors other than biological variation exert their effect

on probing measurements. For example, chemical reactions and de-

tections are inherently stochastic, and repeated library preparation

followed by sequencing results in technical variability. In the ab-

sence of multiple replicates, it is still possible to assess such form of

variability. Here, we propose two methods, one data-driven and the

other model-based.

Non-parametric approach. A simple and well-established ap-

proach is to leverage resampling methods in order to synthesize

‘fake’ replicates in lieu of real ones. An appealing feature is their

capacity to generate large numbers of replicates, which is infeasible

in the lab. This has the potential to improve mean and variance esti-

mation precision. It is thus advantageous to use SNR in such setting,

as traditional reproducibility metrics or visual inspection become

prohibitive when replicate numbers exceed 2 or 3. By readily accom-

modating a multitude of replicates, SNR allows us to reap the

benefits of both powerful computers and large-sample statistics. We

mimic replicates through bootstrap simulations, synthesizing mul-

tiple datasets from the original one rather than relying on any model

assumptions. We repeatedly resample the distribution of SHAPE-

Seq counts a hundred times and reconstruct reactivities as described

above, keeping coverage at original level (approximately 8000 reads

per residue on average). See Section 2 and Supplementary

Information for implementation details.

Parametric approach. It is important to acknowledge potential

limitations of bootstrap. The computational resources required in

resampling can be limiting, especially as complexity and scale of ex-

periments increase. Bootstrapping SHAPE-Seq data is straightfor-

ward because of the small number of RNAs and the usage of a single

primer. Thus, all reads start at the same site and one merely resam-

ples stop sites. In contrast, paired-end reads originating from RPE

experiments warrant greatly increased computational effort to ac-

count for both start and stop sites, amounting to quadratic growth

in the size of count distributions from which one resamples. This is

exacerbated in transcriptome-wide studies, as transcript numbers,

lengths and the sequencing volume render resampling computation-

ally demanding, if not infeasible.

To address such issues, we derive a formula to estimate variance

in reactivities given stop counts and local coverage at a residue (see

Section 2). We treat the probability of a read as binomially distrib-

uted and then express the standard deviation of the simplified MLE

described in Section 2. To validate the efficacy of such formula-

based estimate, we compare it to the bootstrap-based one (see

Supplementary Information for details). Overall, we find that for-

mula calculations yield results similar to those generated by labori-

ous simulations.

3.3 Application to experiment design
In experiment design, one seeks to identify key controllable deter-

minants to data variability (Aviran and Pachter, 2014). We accom-

plish this by comparing mean SNR per transcript with controllable

Fig. 1. Validation and characterization of SNR as a measure of replicate agreement in a small synthetic library. (A) Two RNAs that display strong or poor replicate

agreement (continuous and dashed lines). Insets show box plots of their residue SNR distributions, with corresponding mean SNRs marked by horizontal (blue)

lines as well as annotated on SNR axes. The box plots reveal the presence of high residue SNR values, leading to high mean SNR, for hepC IRES, while for

cdGMP, residue SNR is concentrated at low values, resulting in low mean SNR. (B) Scatter plot representations of pairwise replicate agreement for each RNA. (C)

Relationship of mean SNR and Pearson correlation for 24 pairwise replicate comparisons. Line marks high-quality threshold of 5. (D) Correlation of mean SNR

with the following controllable experimental parameters (top to bottom): minus channel coverage rate, plus channel coverage rate and modification rate. Each

panel features 24 dots corresponding to 24 SHAPE-Seq profiles. SNR for each profile was estimated from bootstrap simulations of stop counts (Color version of

this figure is available at Bioinformatics online.)
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factors from each probing experiment: plus and minus channel per-

residue coverage, total coverage per channel, ratio of channel cover-

ages, and modification rate (see Section 2). Interestingly, we find

that plus channel coverage shows a stronger correlation (r¼0.74)

than minus channel coverage (r¼0.4) (Fig. 1D). In contrast, modifi-

cation rate (Fig. 1D) and ratio of coverage between plus and minus

channels (not shown) have no correlation with SNR strength.

Notably, we see similar trends for experimental replicates, with

moderate correlation between SNR and coverage levels (not shown).

The agreement between experimental and simulated results not only

validates our method, but more importantly highlights how SNR

elucidates key determinants of quality.

3.3.1 Data-informed coverage adjustment

Increasing coverage is an obvious route to improving quality; yet, it

is costly. One may want to first evaluate the extent of necessary ad-

justments—a non-trivial task. Here, we address this need by de-

veloping a new metric: coverage quality index (CQI). Given desired

reproducibility, CQI measures if current local coverage levels are

sufficient to maintain them and, if not, approximates how much

more coverage is needed.

We first frame reproducibility in terms of individual constraints

on admissible degrees of fluctuation at each residue. For realistic

modeling, we turn to SHAPE-Seq data, where we observe differing

variabilities. We find that the relationship between a reactivity’s

mean and its standard deviation is linear on a log scale, such that

standard deviation increases at nearly the same rate as the mean

(Supplementary Fig. S2).

Based on this, we assume that a reactivity’s variability is propor-

tional to itself. A target coefficient of proportion (ek) is to be set by

the user. For example, if a reactivity is 0.5, e ¼ 20% would result in

values within (0.4, 0.6). We use ek and a user-defined significance

level (a) to calculate the corresponding variance (r2
k) of reactivities,

under the assumption that fluctuation magnitudes are Gaussian

(Fig. 2; see Section 2). For example, if we use a ¼ 95%, then r2
k

would be the variance at which Gaussian samples fall within the set

interval with 95% confidence. We then insert r2
k into our variance

estimation formula, which allows us to solve for the local coverage

(Ck*) required for maintaining the target variability (Equation 4; see

Section 2). CQI is the ratio of desired coverage to original coverage

(Ck*/Ck). Residues with CQI scores less than 1 are considered ad-

equately covered, while those higher than 1 may warrant higher

coverage to ensure desired quality. CQIs that exceed 1 can also pro-

vide an estimate of the fold-increase in coverage required.

An example of CQI calculation is shown for the SAM-I ribos-

witch (Fig. 2). As CQI is generated for each residue, we summarize

indices for an entire transcript by taking the 95th percentile of CQIs

(95% CQI) (vertical dashed line). This conservative metric identifies

the residue requiring the most coverage to ensure desired quality

after trimming potential outliers (see Supplementary Information for

details). Since low probability events require large sample sizes for

precise estimation, lower reactivities demand higher coverage to

meet desired quality criteria and can push 95% CQI to a high value.

But small reactivities remain small even in the face of large fluctu-

ations, and such imprecision may not be a major concern. To pro-

vide a comprehensive yet structurally relevant view of coverage, we

apply the same approach to three ranges: low, medium and high. In

our example, the SAM-I riboswitch has adequate coverage to limit

variability to 10% in high and medium reactivities, but not in low

ones (Fig. 2). 95% CQIs for each transcript and reactivity category

correlate well with their corresponding bootstrap-based mean

SNRs, where low 95% CQIs correlate with high mean SNRs

(Supplementary Fig. S3). This is consistent with our findings that

coverage and mean SNR are correlated (Fig. 1D).

For the target variabilities we tested, we find that all high reactiv-

ities and most medium ones in our data are adequately covered

(Supplementary Fig. S3), as well as a majority of low reactivities. To

test whether CQI is a good estimator of the coverage necessary to

confine variability, we simulate predicted coverage adjustments via

bootstrap (see Supplementary Information for details). We find that

CQI is an accurate predictor of necessary coverage adjustment; it ap-

propriately limits variability in 85% of our simulations, with better

Fig. 2. Workflow for CQI calculations. Top bar graph shows data for SAM-I

riboswitch. Dashed lines separate reactivities into low/medium/high catego-

ries. Zoomed inset of reactivities highlights two user-defined parameters: sig-

nificance level, illustrated by the shaded area under the Gaussian curves

placed on top of each reactivity bar, and desired fluctuation intensity, de-

picted by the dashed error bar. Vertical arrow and formulas below the inset

represent core calculations for each residue: extrapolation of desired variance

and its subsequent use in conjunction with reactivity and noise estimates to

determine desired local coverage and ultimately the ratio of desired to exist-

ing coverages (CQI). Lower two panels show the resulting CQI residue distri-

bution and its summarization for each category into a single number by

taking the 95% percentile of CQIs in that category (vertical dashed line).

Reactivities and CQIs in bottom panel are color-coded by categories (low/me-

dium/high) (Color version of this figure is available at Bioinformatics online.)
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success in high reactivities (94%) than low reactivities (71%)

(Supplementary Table F1). The dependence of success rates on re-

activity magnitude is consistent with our formula’s tendency to be

less accurate at low coverage. By utilizing variance estimates from

both bootstrapping and formula, we validate CQI as another in-

formative quality control and experiment design metric.

3.4 Application to other biological scenarios
3.4.1 Transcriptome profiling in vivo

Having demonstrated our method on a small synthetic library, we

now examine quality characteristics when data are obtained with

more advanced protocols and in a cellular environment. Such data

display significantly higher complexities in terms of spectrum of

coverages, lengths and structural properties. A Mod-Seq experiment

(Talkish et al., 2014) used DMS to probe yeast cells via RPE coupled

with single-end reads to map stop sites. To showcase SNR’s applica-

tion to identifying regions of high or poor quality within a long tran-

script, we consider a well-covered 18S rRNA from this dataset. We

calculate rolling mean SNR for center-aligned windows of 51 nt

(Fig. 3A). Since DMS probes only A and C and since zero reactivities

frequently arise in both replicates, the rolling mean summarizes only

a subset of residues in a window. For robust inference, we limit at-

tention to means reporting a relatively high fraction of residues

(dark bars) and identify two regions whose good/poor quality stands

out. We find that this quality disparity could be explained by local

stop counts statistics (see inset), which are less controllable with

RPE. Interestingly, the poor-quality region has very low counts in all

four channels, hinting at a possible systematic bias. Similar cause-

and-effect relationship can be seen at the 30 end, as commonly

observed in stop-based data. This analysis demonstrates SNR’s util-

ity in picking up variations within transcripts and in exploring tech-

nical biases.

Furthermore, differences in counts may be more dramatic when

gleaned across a transcriptome. Since Mod-Seq contains robust in-

formation for a small portion of cellular RNAs, we analyze a more

comprehensive icSHAPE dataset (Spitale et al., 2015) of mouse stem

cells in vivo. Here, large variation in transcript abundances, mani-

fested as coverage differences, is an additional factor modulating

quality. An SNR-Pearson plot reveals a trend reminiscent of

SHAPE-Seq’s step-like behavior, albeit with much greater scatter

(Fig. 3B). While this scatter may be expected due to noisy condi-

tions, we find that much of it is attributed to transcripts with low

coverage and to those in which a small proportion of residues dom-

inates the overall sum of residue SNRs (quantified by high Gini

index, marked by ‘þ’ in Fig. 3B). Indeed, when restricting analysis

to well-covered transcripts, a clearer and tighter trend emerges,

which closely matches SHAPE-Seq’s characteristics (Fig. 3B, inset).

This suggests simple guidelines for identifying subsets of better pre-

cision and more robust information. Interestingly, both datasets are

fit well by known theoretical relationship (see Supplementary

Information). Such quantitative agreement between two vastly dif-

ferent datasets attests to the generality of SNR as a quality metric.

Since coverage re-emerges as major determinant of quality, we

next screen for transcripts with mean SNR>5 and plus coverage

rate>25. Boxplot analysis (Fig. 3C) shows that for most of them,

SNR distributions substantially overlap medium (yellow) and high-

quality (green) zones. With the exception of a few RNAs with

borderline mean SNR, they display good correlation. This further

validates mean SNR’s discriminative power in preliminary screen-

ing. We further find that most transcripts with poor correlation also

have high Gini index (þmarks), suggesting simple quantitative tools

for further refinement. Our analysis also highlights that challenging

conditions might impact screening specificity, warranting careful

analysis. It is worth noting that both datasets appear to be of poorer

quality than SHAPE-Seq, possibly because of less favorable condi-

tions, randomness in priming and less precise reactivity calculation

due to missing coverage information when using single-end reads

(see Section 2).

3.4.2 Reproducibility of differential signals

Thus far, we have defined reproducibility in a restricted sense as

mean SNR>5, but other experimental situations may justify other

criteria. For example, Bai et al. (2014) used SHAPE-Seq to detect

differences between protein-bound and protein-free states of HIV’s

Rev-response element (RRE) in vitro. Reactivity changes observed in

three replicates, each consisting of profiles before and after Rev-

RRE complex formation, signified protein binding. In such differen-

tial analysis situations, we consider data as sufficiently reproducible

if replicate agreement within conditions exceeds that of in-between

conditions. This confirms that differential signals can be reliably

estimated. To address this notion quantitatively, we analyze five

SNR distributions: within conditions (two distributions, three repli-

cates each) and between conditions (one distribution each for three

replicates). Restricting analysis to binding sites (which consist a

small fraction of the entire sequence), we find that within each con-

dition, a greater fraction of residues shows strong agreement,

whereas agreement degrades in between-conditions comparisons

(Supplementary Fig. S4). This quantitatively validates that data are

sufficiently reproducible. See Supplementary Information for an

additional application to differential analysis of structural changes

in a riboswitch.

4 Scope and constraints

Current techniques encompass diverse chemistries, modification de-

tection methods, library preparation strategies (random/targeted pri-

ming, size selection), sequencing choices (single/paired-end reads)

and analysis pipelines. This diversity presents challenges for pro-

posed quality control methods, as they should bridge these differ-

ences to standardize assessment and facilitate comparative analysis.

Aside from its simplicity and computational ease, SNR is a versa-

tile metric applicable directly to reactivities, irrespective of how they

were reconstructed or of the specifics of the experiment and

sequencing. Another advantage that renders SNR suitable for com-

parative analysis of datasets is that it accommodates an arbitrary

number of replicates.

While SNR calculations may follow any reactivity reconstruc-

tion, for a given transcript, different reconstructions might result in

different SNR values. Consistency in the informatics approach taken

is thus imperative to quality comparisons across datasets. Due to a

multitude of proposed analysis options (Shih et al., in revision), here

we carried out all analyses using a single choice. We caution, how-

ever, that the dependency of SNR values on the analysis method

may warrant recharacterizing the ‘high quality’ threshold for other

choices. Note that we repeated the analysis in Figure 1C for another

commonly used alternative (i.e. ratio of stop rates) and found that

the general SNR-Pearson trend remains the same (see

Supplementary Information). Also, in less controlled conditions, it

may be beneficial to refine the threshold test by closely examining

its outcomes. Accounting for additional metrics may also be

informative.
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Fig. 3. Transcriptome profiling in vivo. (A) Mod-Seq data: bars represent center-aligned rolling mean of SNR over windows of 51 nt. Color gradient indicates

fraction of residues in a window for which SNR is defined. Windows of considerably high or low quality, where SNR is defined for high fraction of residues

(dark bars), are marked with arrows pointing to window range in inset. Inset shows mean of stop counts in both channels of two replicates. (B–C) icSHAPE data:

(B) Pearson correlation vs. mean SNR. Marker shapes denote Gini index of residue SNRs for a transcript. Colors indicate plus coverage rate averaged over repli-

cates. Inset highlights a more pronounced trend in well-covered transcripts (labeled blue in B) and their fit to a theoretical relationship. Also shown is a simi-

lar trend in pairwise SHAPE-Seq comparisons. (C) Tukey boxplots of residue SNRs for well-covered transcripts (labeled blue in B) with mean SNR> 5.

A continuous line connects their mean SNRs. Markers on top indicate their Gini index (as labeled in B) and color gradient indicates Pearson correlation. Ensembl

gene IDs are given, where * stands for ENSMUSG000000. In panels A and C, background is divided into three quality zones: green for good (>5), yellow for am-

biguous (3–5), red for poor (<3) (Color version of this figure is available at Bioinformatics online.)
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Direct applicability to reactivities grants SNR its universality, yet

it also results in ambiguity, particularly when zeros are concordantly

observed across replicates. If capturing a structure signal, they are

informative, but they could also be a manifestation of a fading

signal (i.e. no counts). Importantly, coverage disparities within

transcriptome-wide data make them more prone to this deficiency,

which can be remedied by sensible integration of coverage informa-

tion. Resolving such ambiguity may also improve data-directed

structure inference (Deng et al., 2016).

Finally, while SNR reveals discordant measurements, it cannot

resolve sources of variation. Possible sources include poor coverage,

low sequencing or alignment quality, structure differences, biolo-

gical/technical variability, high background and inefficient reac-

tions. Even design choices, such as single-end reads or cDNA size

selection, discard information that might then affect reproducibility.

Because SNR measures a compound effect as well as lacks an under-

lying statistical model, it cannot determine, for example, if variation

can be explained by changes in structure (up to a desired confidence

level). Although the approach can be equipped with such model to

facilitate hypothesis testing, this would compromise its simplicity,

which we consider to be its most appealing property for practical

purposes. Yet, in its present form, it may become useful as rapid

pre-screen for differential analysis, based on the expectation that

when differential effects are present, replicates would better agree

within conditions than between conditions.

The two approaches we proposed for estimating SNR’s variance

component differ in their generality. Bootstrap is straightforward to

apply and requires no modeling assumptions. In contrast, the for-

mula relies on simplifying assumptions and requires re-derivation to

other reconstruction methods, e.g. when estimating reactivity as a

ratio between plus and minus channel rates (see Supplementary

Information). It also makes direct use of local coverage information.

In its absence (e.g. when combining single-end sequencing with

RPE), its accuracy might degrade. Note that these limitations carry

over to CQI.

When deriving the formula, we also fixed the local coverage, al-

though it is currently unclear how realistic this is, especially in

transcriptome-wide setting, where coverage is not easily control-

lable. Loss of coverage may also adversely affect the formula’s per-

formance, as we diverge from our assumption as well as deviate in

the parameter estimates we use. Our tests using simulations indicate

that while our formula performs well at high coverage, its robust-

ness breaks down at low coverage (see Supplementary Information).

Thus, we recommend using it in high coverage situations to save

time while maintaining accuracy, whereas bootstrap may be favor-

able at low coverage, for its consistency and speed.

5 Discussion

As structure probing experiments increase in scope and complexity,

analytical tools must keep pace to ensure efficient processing and re-

liable results. Whereas manual inspection of data was once suffi-

cient, the extent of newer experiments precludes such approaches.

The quantitative tools and framework we presented here are a first

step in addressing this deficiency, providing quality controls that are

standardized, generally applicable, automatable and scalable. We

envision these tools to be used in design and analysis of new and

emerging large-scale experiments.

To evaluate reproducibility, we used the concept of SNR as well

as developed a new metric, CQI, which predicts coverage levels

needed to achieve a desired fluctuation level. Both metrics involve

straightforward calculations; yet they are informative at both the

replicate and transcript levels. One favorable characteristic of SNR

is its flexibility to handle multiple replicates, experimental or simu-

lated. While it is a useful quantification at both the residue and

whole-transcript levels, the mean SNR statistic has the advantage of

distilling reproducibility information across any number of residues

into a single number, allowing for rapid preliminary screening of

large-scale datasets. More elaborate summarizations of residue SNR

distributions or subsets thereof, such as boxplot and categorical

chart analyses, may complement this approach as means of inspect-

ing borderline outcomes, detecting regions of special interest, or

accommodating alternative criteria for overall reproducibility.

CQI performs a similar task, aggregating coverage information

across a transcript into three indices. This metric has similar ad-

vantages as SNR: it serves as rapid quantification with a clear

quality threshold and is easily automated. It provides a preliminary

estimate of the coverage increase necessary to limit variability and

can be subsequently fine-tuned via resampling. Importantly, the

variability we simulated does not encapsulate all sources of noise;

thus, recommendations by CQI should be seen as a minimum rec-

ommended coverage increase rather than a fix-all solution. This

metric builds off of our formula-based estimate, which explicitly

links coverage to data variability. It thereby demonstrates the use-

fulness of this classical approach compared to modern resampling

methods. The formula also has the added benefit of rapid estima-

tion compared to bootstrap, though the latter may be more accur-

ate at low coverage. Nonetheless, the tandem of bootstrap and

formula provide a computational way to quantitatively evaluate

data quality.

The data summarization we employed here is readily generaliz-

able to other proposed quality measures (Smola et al., 2015; Talkish

et al., 2014; Yang et al., 2002). One common strategy in micro-

arrays is to report the ratio of signal to background (Yang et al.,

2002). We derived a formula for this ratio’s variability (see

Supplementary Information). While this may be a good way to

evaluate enrichment, it did not perform as well as the mean SNR as

summary statistic when correlated with coverage or modification

rate (not shown). The ratio measure is also not as broadly applic-

able, as it is limited to single residues/transcripts.

The presented methods are relatively straightforward and by no

means address all issues, but are a first step towards ensuring high-

quality data. As the field continues to grow, effort must be spent on

both pioneering new techniques as well as analysis and visualization

tools (Choudhary et al., in revision). One plausible avenue for im-

provement is to combine RPE with paired-end sequencing for better

consistency in recovering local coverage information. Our methods

attempt to unify how researchers quality-control their data. We kept

our work simple and accessible, to make its adoption as painless and

fruitful as possible. We aim to establish a foundation for more

sophisticated platforms, which will ultimately bridge differences

among protocols and expedite the field’s maturation.
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