
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
A New Resource-Efficient 3D SLAM Framework Using Adaptive Interval Rates

Permalink
https://escholarship.org/uc/item/9pj1f8jc

Author
Lee, Seungjoon

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9pj1f8jc
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

A New Resource-Efficient 3D SLAM Framework using Adaptive Interval Rates

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Computer Engineering

by

Seungjoon Lee

June 2023

Thesis Committee:

Dr. Hyoseung Kim, Chairperson
Dr. Nael Abu-Ghazaleh
Dr. Jiasi Chen

Copyright by
Seungjoon Lee

2023

The Thesis of Seungjoon Lee is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am immensely grateful to my advisor, Hyoseung Kim, for his guidance, expertise, and

continuous support throughout the entire research process. His invaluable insights and

constructive feedback have been instrumental in shaping this work. I would like to extend

my heartfelt appreciation to my wife Sori, my son Junseo, and my parents for their endless

love, understanding, support, encouragement and sacrifices they have made throughout

my academic pursuits. I would also like to acknowledge the support and encouragement I

have received from my brother, SeungHwan. His belief in my abilities and bright insights

have been a driving force behind my accomplishments. Furthermore, I want to express my

deepest gratitude to my parents and father-in-law for their love. Their belief in my potential

and relentless encouragement have been the foundation of my success. Lastly, I would like

to express my appreciation to the Korea Navy for providing me with the opportunity to

pursue my master’s degree. Their support and belief in my abilities have been instrumental

in my personal and professional development. I truly thankful for people who love and

protect my family in belief. Without your help, I would not have been able to accomplish

what I have today. Thank you all from the bottom of my hear.

iv

ABSTRACT OF THE THESIS

A New Resource-Efficient 3D SLAM Framework using Adaptive Interval Rates

by

Seungjoon Lee

Master of Science, Graduate Program in Computer Engineering
University of California, Riverside, June 2023

Dr. Hyoseung Kim, Chairperson

Simultaneous Localization and Mapping (SLAM) is a fundamental task in robotics

and computer vision, allowing a robot to build a map of its environment while estimating its

own pose. In real-time SLAM scenarios, the processing time plays a critical role in achieving

accurate and timely results. However, varying processing times due to computational load

or system constraints can directly impact the performance of SLAM algorithms.

In this thesis, a new resource-efficient 3D SLAM framework is proposed using

adaptive interval rates under consistent uncertainty. The proposed approach incorporates

an adaptive mechanism that dynamically adjusts SLAM parameters based on the avail-

able processing time, allowing the system to adapt to changing computational loads and

achieve real-time performance while maintaining accuracy. Specifically, upgrading the pop-

ular method, named Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping

(LIO-SAM)[17] is utilized, which combines LiDAR and inertial sensor data for 3D SLAM.

The proposed approach utilizes processing time measurement and control of a key

SLAM parameter such as key-frame frequency. By dynamically adapting this parameter,

v

the system can optimize its performance based on the available processing time, maximizing

the efficiency of system resources. We conduct extensive experiments and evaluations on

real-world datasets to validate the effectiveness of the proposed approach and compare it

with existing SLAM approaches.

The results demonstrate that the adaptive-SLAM approach enhances the adapt-

ability and efficiency of LIO-SAM in real-time visual odometry scenarios. It achieves ac-

curate and timely pose estimation while effectively utilizing the available processing time,

making it suitable for applications that require real-time and adaptive SLAM capabilities,

such as autonomous robotics, augmented reality, and virtual reality. The findings of this

thesis contribute to the field of SLAM by providing a novel approach for maximizing the

utilization of processing time in SLAM algorithms, opening up new possibilities for robust

and efficient localization and mapping in dynamic environments.

vi

List of Figures

1.1 Need for Adaptive Processing Intervals in 3D LiDAR-based SLAM 2

2.1 LIO-SAM Scheme in ROS [17] . 7

3.1 Proposed Framework . 10

4.1 Map of Park dataset aligned with Google Earth 21
4.2 Trace of position covariance matrix by varying processing interval 24
4.3 Trace of orientation covariance matrix by varying processing interval 24
4.4 The graph showing the difference in consecutive trOCov values along with

the Google Earth map. 25
4.5 The graph illustrating the variation of the processing interval over time when

applying the threshold-based interval strategy 26
4.6 Graph of the Adaptive Strategy Function for Mapping Processing Time In-

terval (0.1s - 2.0s) . 28
4.7 The Graph Depicting the Temporal Variation of the Processing Interval with

the Adaptive Interval Strategy. 29
4.8 Comparative Analysis of CPU Utilization Across Different Methods. 30
4.9 Temporal Variation of Memory Utilization Across Different Methods. 31
4.10 Temporal Variation of Error Distance Across Different Methods. 31
4.11 Path map for each method. 32

vii

List of Tables

4.1 Dataset details . 21
4.2 Processing metrics by interval time using Park dataset 23
4.3 Comparison of Memory and Error for Fixed, Threshold-based, and Adaptive

Interval Mapping Processing . 33

viii

Chapter 1

Introduction

Simultaneous Localization and Mapping (SLAM) is a fundamental task in robotics

and computer vision that enables a robot to construct a map of its environment while

estimating its own position. In real-time scenarios, robots equipped with multiple sensors,

such as three-dimensional (3D) light sensing and ranging (LiDAR) sensors or vision sensors,

often face resource limitations while performing tasks, including SLAM. However, existing

3D SLAM frameworks, such as Lidar Odometry and Mapping (LOAM)[22] and Tightly-

coupled Lidar Inertial Odometry via Smoothing and Mapping (LIO-SAM)[17], struggle to

efficiently utilize limited resources due to their fixed processing cycles. This limitation

becomes particularly challenging for robots based on embedded systems, where regular

processing of large data sets can quickly deplete the battery, hindering the robot’s long-

term mission.

Figure 1.1 illustrates the need for an adaptive processing interval. 3D LiDAR

sensors typically generate 600,000 point clouds per second. Continuous processing of these

1

Figure 1.1: Need for Adaptive Processing Intervals in 3D LiDAR-based SLAM

3D point clouds using CPU and memory consumes significant amounts of power, leading to

premature battery drain and requiring the robot to halt operations for recharging.

In this thesis, I propose a novel resource-efficient 3D SLAM framework with adap-

tive intervals, aiming to utilize limited resources effectively. The processing interval is

dynamically calculated based on the current pose covariance, a measure of uncertainty in

the estimated robot pose. Most SLAM algorithms operate by minimizing the covariance

of SLAM state variables. Therefore, the processing interval is determined as a function of

pose covariance and is controlled to prevent its increase.

The remaining chapters of this thesis are organized as follows. Chapter 2 provides

an overview of related research works and briefly introduces the fundamental framework,

LIO-SAM. In Chapter 3, I present a detailed description of the proposed framework. The

experiments conducted and their analysis are presented in Chapter 4. Lastly, Chapter 5

summarizes the entire contents and concludes the thesis.

2

Chapter 2

Related Works

2.1 SLAM

Several research works related to SLAM have been classified and summarized in

[3]. Additionally, J. A. Placed et al. conducted a comprehensive investigation of SLAM

in their study [14]. They compared various studies in terms of SLAM methods, sensor

equipment, map representation, formulation, exploration methods, utility function, valida-

tion environments, stopping criteria, and availability of public resources. Furthermore, they

presented challenging objectives in the field.

There is a wide range of 2-dimensional (2D) SLAM approaches. The initial solution

for the SLAM problem involved the use of extended Kalman filter (EKF) [4] that are the

extended version of a Kalman filter. The Kalman filter [18]utilizes observers, which are

mathematical models of linearized systems that aid in estimating the behavior of the real

system. These filters also incorporate an optimal state estimator that deals with white

noise in system measurements [12]. In the context of SLAM, the EKF predicts the state

3

of a robot pose and maps in real-time using a state equation of the robot’s movement and

environment. In several research works, the commonly employed sensor is LiDAR (Light

Detection and Ranging), although solutions using sonars or monocular cameras [2] have

also been developed.

For more accurate SLAM, another strategy involves the use of particle filters with

a number of particles [1]. Although there are a lot of differences between particle filters

and Kalman filters, the main distinction lies in the type of data distribution they can

handle. Kalman filters are designed for linear Gaussian distributions, whereas particle

filters can handle arbitrary non-Gaussian distributions and non-linear process models. In

SLAM, particle filters include a set of particles, each representing a specific estimation of

the robot state (pose and map) [13]. As the robot moves through the given environment

and gathers sensor data, the filter consistently eliminates erroneous particles (those with

the low probability of occurrence) and introduces new particles that are close to those with

the highest probability of occurrence. Those are called particle rejection and replication.

Over time, the erroneous particles are removed while the correct ones converge to similar

estimates of pose and map. It is called a particle poverty problem [10], which sometimes can

cause another problems. Typically, LiDAR sensors are used in particle filter-based SLAM.

The representative approaches include Gmapping [21], and Hector SLAM [9].

A more recent approach to SLAM involves the utilization of graph-based method-

ologies [2]. This approach deals with a graph structure consisting of nodes and edges.

Nodes correspond to the robot poses at different points in time, and edges denote physical

constraints between the poses. The graph is constructed through environment observations

4

or the robot’s movement actions. Once the graph is optimized, the map can be computed

by finding the spatial configuration of the nodes that best aligns with the measurements

represented by the edges. This process is typically performed using standard optimization

methods such as Gauss-Newton or Levenberg–Marquardt [6], or nonlinear sparse optimiza-

tion techniques [19].

In recent years, there has been significant development in 3D LiDAR-based SLAM

approaches. The LOAM algorithm suggested by Zhang [22] played a pivotal role in pop-

ularizing and garnering attention for LiDAR-based 3D SLAM technology. Zhang’s work

focused on extracting crucial information from complex point clouds, particularly effective

edge and plane feature points. The algorithm leveraged point-to-line and point-to-plane

distances to construct an error function and solve the nonlinear optimization problem of

the robot poses. However, LOAM lacks loop closure detection and global pose optimiza-

tion in the back-end. Subsequent to LOAM, many LiDAR-IMU loosely coupled systems

have been improved and refined. The works presented in this section not only focuses on

sensor data fusion, but also improving the point cloud registration of the front end and

the overall optimization of the back end. Shan proposed the LeGO-LOAM algorithm [16]

based on LOAM, introducing point cloud clustering and ground segmentation into the data

preprocessing stage to expedite point cloud registration. Furthermore, a simple acceleration

formula is employed to process IMU data for point cloud distortion correction and provide a

priori pose. The IMU plays a similar role in line/plane feature-based LOAM and two-stage

LOAM. Feature extraction has received increased attention, with both methods utilizing

the normal vector of points to extend the types of considered features. CSS-based LOAM

5

[5]and ALeGO-LOAM[11] further enhance feature quality compared to previous methods.

However, this loosely integrated approach does not effectively mitigate the influence of IMU

measurement bias, with the IMU serving merely as a supplementary means.

2.2 LIO-SAM

LIO-SAM[17], as recently introduced, represents a notable method for 3D SLAM.

This approach excels in achieving highly accurate robot trajectory estimation and real-time

map-building capabilities. By combining LiDAR and inertial measurements, LIO-SAM

enables real-time motion estimation for a robot. The estimation problem is formulated as

a factor graph, facilitating the integration of diverse measurement types, including relative

and absolute measurements, loop closures, and others.

Initially, the system employs inertial measurements from an IMU to generate an

initial motion estimate for the robot. Subsequently, this estimate is refined by using LiDAR

measurements. The LiDAR odometry solution also aids in estimating the IMU bias. To

achieve high real-time performance, LIO-SAM utilizes a selective approach when integrating

LiDAR scans. Instead of matching every new scan to a global map, the system marginal-

izes older scans and registers new scans with a fixed-size set of prior ”sub-keyframes.” This

strategy greatly improves real-time performance, especially when combined with the intro-

duction of keyframes based on their importance. As a result, the system excels in performing

local-scale scan-matching, enabling efficient and accurate real-time motion estimation. In

figure 2.1, the scheme of LIO-SAM within the Robot Operating System (ROS) [15], a col-

lection of software libraries and tools, is depicted. The LIO-SAM workflow begins with the

6

Figure 2.1: LIO-SAM Scheme in ROS [17]

generation of a cloud information message using the imageProjection module. Subsequently,

this message is passed to the featureExtraction module, which extracts the features from

the point cloud. The cloud information message, along with the extracted features, is then

delivered to the mapOptimization module.

Within the mapOptimization module, a series of crucial operations are conducted

to enhance the accuracy and reliability of the mapping process. Firstly, the point cloud

registration algorithm is employed to align the successive point clouds, ensuring seamless

integration and minimizing inconsistencies. Additionally, LiDAR odometry acquisition is

executed to estimate the robot’s motion based on the LiDAR measurements. By analyz-

ing the changes in the point cloud data over time, the system can accurately track and

predict the robot’s position and orientation, crucial for effective mapping. Finally, graph

optimization is carried out to refine the estimated motion based on the available constraints.

7

These techniques utilize the available constraints and measurements to iteratively optimize

the estimated motion trajectory, ensuring alignment with the observed data and minimiz-

ing errors. The LiDAR odometry information is further passed to the imuPreintegration

module.

In the imuPreintegration module, various tasks are performed. Firstly, IMU bias

estimation takes place utilizing the LiDAR odometry information. Subsequently, graph

optimization is performed to further refine the motion estimation using the IMU and LiDAR

odometry measurements. Finally, IMU odometry, representing the estimated robot motion

based on the IMU measurements, is generated. The IMU odometry is then fed back to the

imageProjection module. Within this module, initial value estimation is performed based

on the IMU odometry information. Additionally, point cloud distortion removal is carried

out to mitigate any distortions present in the point cloud data.

However, since SLAM in robots is based on embedded systems, it cannot be free

from energy efficiency issues. In [7], they produced strong statistical evidence, based on

the pose error, map accuracy, CPU usage, and memory usage. Especially, in their work,

KARTO-SLAM outperformed all the other algorithms because it balances the use of re-

sources and holds a good SLAM performance. Therefore, in addition to the SLAM accuracy

problem, an energy-efficient strategy on the embedded systems is required.

8

Chapter 3

Proposed Framework

In this Chapter, I provide a comprehensive description of the proposed framework.

Initially, I present the overall structure of the framework, outlining its key components

and their interrelationships. This serves as a foundation for understanding the subsequent

detailed discussion.

Subsequently, I delve into each part of the framework, offering an in-depth analysis

of its functionalities and contributions to the overall framework. I highlight the unique

features and innovations brought forth by each component, emphasizing their significance

in enhancing the effectiveness and performance of the proposed framework.

3.1 Framework Design

Technically, the proposed framework builds upon the foundation of LIO-SAM,

which is recognized as one of the prominent 3D LiDAR SLAM frameworks that have gained

popularity in recent times. In the previous chapter, we provided a brief overview of LIO-

9

Figure 3.1: Proposed Framework

SAM, highlighting its capabilities and contributions in the field of SLAM. While LIO-SAM

has demonstrated powerful SLAM performance, especially with the integration of IMU

data, it is important to acknowledge that its regular execution interval may pose certain

challenges in embedded robot systems characterized by limited resources. Specifically, these

challenges manifest in the form of excessive CPU and memory usage, as well as accelerated

battery discharge.

In the context of the proposed framework, I aim to address these concerns and

optimize the performance of LIO-SAM for deployment in resource-constrained embedded

robot systems. By carefully considering the system’s limitations and the specific require-

ments of such systems, we devise strategies and optimizations to mitigate the negative

effects associated with regular execution intervals.

Through my proposed framework, I strive to strike a balance between maintaining

SLAM performance and ensuring efficient resource utilization. This entails devising tech-

10

niques that minimize CPU and memory usage, thereby alleviating the burden on limited

resources, and implementing power management strategies to optimize battery consump-

tion. By doing so, I enable the application of LIO-SAM in embedded robot systems without

compromising their operational efficiency.

The structure of the proposed framework is illustrated in the figure 3.1. A notable

addition to the conventional LIO-SAM structure is the inclusion of an adaptive interval

update component. This component plays a crucial role in determining the interval at which

the SLAM process is executed. The interval is determined based on the three strategies,

which include a constant interval, a threshold based interval, and an adaptive interval. All

of these approaches, with the exception of the first one, specifically address the handling of

uncertainty related to the 6D position estimation results, focusing on the pose covariance

information.

The 6D position estimation results, denoted as X, consist of the coordinates x,

y, and z, as well as the orientation angles ϕ, θ, and ψ. A 6x6 covariance matrix that

provides information about the uncertainty or confidence in the estimated pose at time t is

represented as follows:

Pt =


Pxx . . . Pxψ

...
. . .

...

Pψx . . . Pψψ

 (3.1)

where the total variance related to a current estimated 3D geometric position is represented

as tr(P1:3,1:3). It is abbreviated as trPCov. tr(·) is the sum of the diagonal elements in

a matrix. In addition, the total variance of 3D orientations is computed using tr(P4:6,4:6),

which is described as trOCov. Even though the purpose of SLAM is accurate localization

11

and mapping (minimization of P), energy-efficient processing is also significant in embedded

robot systems. Therefore, it is important to ensure that SLAM does not diverge and that

energy efficiency can be maximized. However, those are a trade off relationship. Therefore,

the problem to be solved in this thesis can be defined as a loss function Lt at time t as

follows:

Lt = minPt +ΣNi=0λEpower (3.2)

where N is the number of SLAM operations up to time t. Et,power is the amount of the

power consumption from total resources. λ is a transfer coefficient between the uncertainty

and the power consumption.

In this thesis, Ei,power is assumed to be a constant value, which means Ei,power

equals to Epower. Eq(3.2) can be reformulated as follows:

Lt = minPt +NλEi,power (3.3)

where N should be minimized while maintaining the minimum of Pt. Pt can be separated

by terms of the 3D position and orientation. If minPt is replaced with the minimization of

total variances, it can be represented as follows:

Lt = min(trPCovt + trOCovt +NλEi,power) (3.4)

where N , trPCovt and trOCovt are the functions of the SLAM interval I. ∆trPCov and

∆trOCov represent the rate of change of trPCov and trOCov, respectively, per unit of time.

As I increases, N tends to decrease. If the interval is fixed, N = Ttotal/I. Conversely, as

12

I increases, trPCovt and trOCovt decrease. Based on these correlations, several strategies

are suggested to minimize Lt by controlling I in the following sections.

3.2 Static Interval-based Strategy

Intuitively, it is possible to find a proper interval I that minimizes the loss function

Lt(·) by considering various candidates of I within a specific environment. The proper IF

satisfies the following equation:

IF = argmin
I
L(I) (3.5)

where L(I) is denoted as Lt(I), representing the loss function calculated at the final time.

The candidates for I can range from Ic,min to Ic,max. Ic,min represents the minimum inter-

val at which the processor can handle the 3D SLAM process, while Ic,max represents the

maximum interval within which the SLAM process does not diverge. This approach relies

on selecting a fixed static interval for SLAM processing. However, it does not allow for

modifications in the middle of the SLAM process. Since the covariance matrix Pt is con-

tinuously updated over time, it becomes challenging to adequately adapt a fixed constant

interval to accommodate the changes in Pt at each moment.

3.3 Threshold-based Interval Control Strategy

A threshold-based approach in the context of SLAM provides a mechanism to

dynamically adjust the processing interval based on a specific covariance threshold. This

threshold serves as a reference point to detect when the covariance value reaches a critical

13

level that may lead to the divergence of the SLAM process. In this approach, the interval

I becomes a time-varying variable denoted as It. It is defined as follows:

It =


k1, if ∆trPCovt ≤ p1 or ∆trOCovt ≤ p2

k2, otherwise

(3.6)

∆trPCovt =
trPcovt − trPCovt−1

Tt − Tt−1
, ∆trOCovt =

trOcovt − trOCovt−1

Tt − Tt−1
(3.7)

where p1 and p2 represent upper bounds on the total variance of 3D positions and orien-

tations, respectively. If they are more than that, SLAM can diverge. The interval k1 is

typically set to be larger than k2. As previously mentioned, N , trPCovt, and trOCovt are

related to the interval I. Consequently, N is reformulated as follows:

N = N1 +N2 (3.8)

N1 =
Ttotal,k1
k1

, (3.9)

N2 =
Ttotal,k2
k2

, (3.10)

where Ttotal,k1 represents the total time affected by the interval k1, while Ttotal,k2 represents

the total time affected by the interval k2. The problem can be reformulated as follows:

Lt = min(trPCovt + trOCovt + λ(N1 +N2)Epower) (3.11)

14

Since k1 is larger than k2, it is possible for trPCovt and trOCovt to be relatively large when

using k2 as the interval.

3.4 Adaptive Interval-based Strategy

The final approach in our study is the adaptive interval-based strategy, which of-

fers a different approach compared to the threshold-based interval control strategy. While

the threshold-based strategy discretely modifies the processing interval It based on pre-

defined constraints such as trPCovt ≤ p1 and trOCovt ≤ p2, the adaptive interval-based

strategy focuses on consistently adjusting It to maximize the efficient utilization of available

resources. In this approach, Lt is defined as a function of It, which means Nt, trPCovt and

trOCovt are the function of It as well as follows:

Lt(It) = min(trPCovt(I) + trOCovt(I) + λNt(I)Epower) (3.12)

In the adaptive interval-based strategy, the interval should be changed consistently during

a short time. trPCovt(I) and trOCovt(I) are represented by the first-order Taylor series

approximation as follows:

trPCovt(I) ≃ trPCovt(0) + trPCov′t(I)I (3.13)

trOCovt(I) ≃ trOCovt(0) + trOCov′t(I)I (3.14)

15

where trPCov′t(I)I and trOCov′t(I) are the derivatives of each trace of the covariance. If

Nt(I) is proportional to the inverse of the interval, I, the loss function, Lt(It) is reformulated

as follows:

Lt(It) = min(trPCovt(0)+trPCov
′
t(I)I+trOCovt(0)+trOCov

′
t(I)I+λ(

1

It
)Epower) (3.15)

The minimization of the loss function Lt(It) is equal to the ∂Lt(It)
∂It

= 0. It is

computed as follows:

∂Lt(It)

∂It
= trPCov′t(I) + trOCov′t(I)− λ(

1

I2t
)Epower = 0 (3.16)

It =
λEpower

trPCov′t(I) + trOCov′t(I)
(3.17)

It =
λEpower

∆trPCovt +∆trOCovt
(3.18)

where ∆trPCov and ∆trOCov denote the difference of the trace of covariance between t

and t− 1, respectively. Although It should be larger than zero, ∆trPCovt and ∆trOCovt

can be negative or zero. To solve this, It is considered as a sigmoid function with ∆trPCovt

and ∆trOCovt. It can be represented as follows:

x = λP · wP ·∆trPCovt + λO · wO ·∆trOCovt (3.19)

It = Imin + (Imax − Imin) ·
1

1 + eα·(x+β)
(3.20)

wP + wO = 1 (3.21)

16

Here, λP and λO are scaling factors that determine the relationship between the

interval and the inverse of the variance. wP and wO represent the weights assigned to the

total pose variance and orientation variance, respectively, in order to determine appropriate

intervals. α and β are smoothing parameters that affects the steepness of the adaptive

interval change. It is important to note that the sum of wP and wO should be equal to

one. Overall, these parameters and their relationships are essential in the adaptive interval

control strategy, allowing the system to dynamically adjust processing intervals based on

the level of uncertainty and the specific requirements of pose and orientation estimation

tasks.

3.5 Discussion of Three Strategies

The discussion for the three interval-based strategies (static interval, threshold-

based interval control, and adaptive interval) can be summarized as follows:

static Interval-based Strategy: The static interval-based strategy suggests select-

ing a fixed interval, denoted as I, for the SLAM process. The goal is to find a proper I that

minimizes the loss function Lt(I). This approach involves considering various candidates for

I within a specific environment. The range of candidates typically spans from the minimum

interval that the processor can handle (Ic,min) to the maximum interval within which the

SLAM process remains stable without divergence (Ic,max). However, this approach does

not allow for dynamic modifications of I during the SLAM process, which can make it

challenging to adapt to changes in the pose covariance information over time.

17

Threshold-based Interval Control Strategy: The threshold-based interval control

strategy introduces a dynamic adjustment of the interval value based on predefined covari-

ance thresholds. The interval, denoted as It, becomes a time-varying variable. If the total

variances of 3D positions and orientations, represented as trPCovt and trOCovt respec-

tively, exceed certain threshold values (p1 and p2), the interval is set to a larger value k1.

Otherwise, if the variances are below the thresholds, the interval is set to a smaller value

k2. The aim is to prevent divergence of the SLAM process by adapting the interval based

on the pose covariance information. This strategy allows for discrete modifications of It at

specific instances.

Adaptive Interval-based Strategy: The adaptive interval-based strategy aims to

consistently adjust the interval It to efficiently utilize resources. The interval is set as a

function of the pose covariance information, specifically trPCovt and trOCovt. In this

thesis, the proposed function is defined as a linear relationship between the inverse of the

variances and the interval. This adaptive strategy allows for continuous adjustments of the

interval based on the varying pose covariance information.

Overall, these three strategies aim to optimize the performance of the LIO-SAM

framework in resource-constrained embedded robot systems by considering different ap-

proaches for interval control. The static interval strategy selects a fixed interval, the

threshold-based strategy dynamically adjusts the interval based on predefined thresholds,

and the adaptive interval strategy continuously adapts the interval based on the pose co-

variance information. Each strategy has its own advantages and trade-offs, and the choice

depends on the specific requirements and constraints of the system.

18

Chapter 4

Performance Evaluation

In this thesis, I have investigated three strategies for determining the processing

interval in my proposed framework: a constant interval, a threshold-based interval, and an

adaptive interval. This chapter focuses on analyzing the characteristics and performance of

these strategies. To facilitate a comprehensive comparison and evaluation, I utilized public

datasets in my experimental setup.

Several performance factors were considered in my analysis, including processing

time over cycles, the number of cycles, total consumed time, maximum CPU usage, memory

usage, and SLAM errors. These metrics provide valuable insights into the effectiveness and

efficiency of each strategy. Note that, the goal is to find the better way having both high

resource efficiency and moderate accuracy with these factors.

By examining the processing time over cycles, I assessed the computational effi-

ciency of the strategies throughout the SLAM process. Additionally, the number of cycles

provided an indication of the frequency at which processing occurred, further contribut-

19

ing to my understanding of the strategies’ behavior. To evaluate the impact on system

resources, I measured the total consumed time, maximum CPU usage, and memory us-

age associated with each strategy. These metrics offer valuable insights into the resource

utilization patterns and efficiency of the strategies.

Furthermore, I considered SLAM errors as an essential performance metric. By

comparing and analyzing the errors produced by each strategy, I gained insights into their

accuracy and reliability in mapping and localization tasks.

The results of these evaluations provide a comprehensive understanding of the

characteristics and performance of the proposed strategies. By considering multiple perfor-

mance factors, I ensure a thorough assessment of their suitability for resource-constrained

robotic systems.

In a nutshell, this chapter focuses on the public dataset and setup used in the

study, as well as the presentation of three strategies. Additionally, an analysis of the results

is conducted to compare each strategy based on the aforementioned factors.

4.1 Public Dataset and Setup

The dataset used in my experiments was obtained from the open-source data

provided by LIO-SAM. The dataset employed a Velodyne VLP-16 LiDAR, a MicroStrain

3DM-GX5-25 IMU, and a Reach M GPS device. Park dataset is collected in Pleasant

Valley Park, New Jersey. This is open source data which was once used by LIO-SAM.

The trajectory direction is from left to right in figure 4.1. The park where data collection

took place is characterized by a significant presence of trees, resembling a trail. For specific

20

Table 4.1: Dataset details

Dataset Scans
Elevation Trajectory Max rotation

Play time(s)
change(m) length(m) speed(°/s)

Park 24691 19.0 2898 217.4 560

Figure 4.1: Map of Park dataset aligned with Google Earth

details regarding the dataset, please refer to the table 4.1. In this experiments, a laptop

computer with Intel i7-12650, 16GB RAM and Nvidia GeForce GTX 3070M was used.

There are several evaluation factors, such as the number of processing time, the

number of cycles Nt, the total processing time Ttotal, power consumption Epower, the max-

imum usage of CPU and memory related to max(Epower), and the SLAM error EP . EP is

computed as follows:

EP =

√
XL,true − X̂L (4.1)

21

4.2 Static Interval

Typically, the static interval strategy is the simplest approach used in SLAM

(Simultaneous Localization and Mapping), where the interval value i is fixed as a constant.

This chapter addresses the various processing metrics according to each interval value. In

the evaluation, I examined the impact of different fixed processing interval values on the

mapping process. Table 4.2 shows key metrics such as mapping process duration, CPU

utilization, memory usage, and GPS position error corresponding to each fixed interval

value.

The findings indicate that as the interval lengthens, the processing time for a sin-

gle mapping cycle exhibits a slight increase. However, the total number of cycles decreases,

leading to reduced CPU utilization and overall processing time. Moreover, elongating the in-

terval results in a decreased number of poses that need to be stored in memory, consequently

leading to lower memory usage. Note that, if the distance between two adjacent points are

too far, pose estimation may fail. This implies that accurate pose estimation cannot be

achieved if the interval exceeds the optimal threshold. Table 4.2 effectively demonstrates

the failure of mapping processing when it exceeds 2.2 seconds, highlighting this fact.

These observations provide valuable insights into the performance and trade-offs

associated with different fixed processing interval values in the proposed memory-efficient

3D SLAM framework.

The table 4.2 reveals the processing time per a cycle, the number of processing

cycles during mapping, the maximum CPU utilization (%), the resident memory size in

megabytes, and the distance error compared to GPS, with respect to the processing interval

22

Table 4.2: Processing metrics by interval time using Park dataset

Interval 0.1 sec 0.3 sec 0.5 sec 1sec 1.5 sec 2 sec 2.2 sec

P.T./Cycle(ms) 59.27 65.12 69.02 72.37 73.95 77.47 Fail

Num of Cycles 2990 1812 1091 546 364 273 Fail

Consumed time(s) 177.2 117.9 75.3 39.4 26.9 21.1 Fail

MaxCPU(%) 100 90.7 54.0 48.7 32.9 20.3 Fail

Mem(MB) 325 309 280 269 216 201 Fail

Error(m) 0.53 0.72 1.03 1.02 1.89 23.29 Fail

time, using the park dataset. As shown in table 4.2, the experimental results using LIO-

SAM indicate that as the processing time interval becomes longer, the processing time per

cycle increases slightly, but the overall efficiency in terms of SLAM processing time, CPU

resource consumption, and memory utilization is improved. In other words, as the time

interval increases, resource efficiency improves, but the uncertainty of the robot’s position

increases, and localization and mapping may fail after a certain point.

The value of trPCov represents the uncertainty of the robot’s x, y, z positions,

while trOCov represents the uncertainty of the roll, pitch, and yaw information. figure 4.2

and 4.3 depict the variations of trPCov and trOCov, respectively. The significant changes

occurring within the first 30 seconds are attributed to the influence of GPS, which records

differences in GPS positions to track accuracy. While trPCov shows minimal changes from

its initial value, trOCov exhibits significant variations over time due to the robot’s motion.

It implies that the uncertainty in the position variables are stable, while the uncertainty in

the orientation variables varies over time.

If we look at figure 4.4, which represents the graph of the difference in trOCov,

it provides an easier way to understand the variations. The values of trOCov are close to

23

Figure 4.2: Trace of position covariance matrix by varying processing interval

Figure 4.3: Trace of orientation covariance matrix by varying processing interval

24

Figure 4.4: The graph showing the difference in consecutive trOCov values along with the
Google Earth map.

zero or negative when there is information from the already traversed path, and they show

a linear increase when moving into unexplored areas. This phenomenon is related to the

given information at each state. In the blue and green regions, the trOCov values tend to

be below 0, indicating that the pose estimation is converging. As a result, even if the robot

has a longer interval, I believe the system will be safe from divergence. This is because

there is existing information that aligns with the expected movement, leading to reduced

uncertainty. Similar to how we pay more attention to unfamiliar paths compared to known

areas, adjusting the interval speed in resource-limited regions and slowing it down in stable

positions can help optimize resource usage.

25

4.3 Threshold-based Interval Control Strategy

As for the equation 3.6 mentioned earlier, the threshold-based interval control

strategy returns one of two constants based on the system’s state. Additionally, figure 4.4

provides insights on setting the values of p1 and p2. In this experiment, the values of k1

and k2 are assumed to be 0.1 and 2.0, respectively, while both p1 and p2 are set to 0. Each

k1 and k2 represents the minimum and maximum intervals. The values of p1 and p2 are

set to 0 when the pose estimation converges, specifically when the trPCov value reaches 0.

Therefore, the processing interval It follows equation 4.2.

It =


0.1, if ∆trPCovt ≤ 0 or ∆trOCovt ≤ 0

2.0, otherwise

(4.2)

The result is shown in figure 4.5, where the processing interval in the blue and green boxes

corresponding to figure 4.4 increases to 2.0 seconds, while in other regions, it is set to a

shorter duration of 0.1 seconds.

Figure 4.5: The graph illustrating the variation of the processing interval over time when
applying the threshold-based interval strategy

26

4.4 Adaptive Interval Control

The adaptive interval control strategy in this study employs a sigmoid function,

as defined in Equation 3.20. This function allows for a smooth and gradual adjustment of

the processing interval based on the input factor values. In the experiment conducted, the

parameters α and β are set to 0.4 and 2, respectively.

The sigmoid function used in the adaptive interval control strategy is represented

by the equation It = Imin+(Imax−Imin) · 1
1+eα·(x+β) , where It denotes the processing interval

at time t, Imin and Imax represent the minimum and maximum intervals, respectively. The

parameters α and β control the shape and steepness of the sigmoid curve. In this experiment,

α is set to 0.4 and β is set to 2.

By using the sigmoid function, the adaptive interval control strategy ensures a

smooth and continuous transition of the processing interval in response to changes in the

input factor values. This allows the system to dynamically adjust the interval based on

the level of uncertainty or complexity in the environment, providing a more efficient and

accurate motion estimation process.

Similar to the threshold-based interval control, the adaptive interval control also

ranges between minimum and maximum intervals of 0.1 second and 2.0 seconds, respectively.

The graph in figure 4.6 illustrates the shape of the sigmoid function used for adaptive interval

control. As shown in the graph, the processing interval smoothly adapts to changes in the

input factor values.

Figure 4.7 demonstrates the variation of the processing interval when applying the

adaptive interval strategy on the park dataset. While the overall pattern of interval changes

27

is similar to the threshold-based interval strategy, the adaptive interval strategy exhibits a

smoother transition of intervals. This smooth transition of the processing interval in the

adaptive interval strategy can potentially improve accuracy in situations where uncertainty

abruptly increases. By adjusting the interval smoothly, the system can allocate more pro-

cessing resources and time to handle challenging or uncertain conditions, thereby enhancing

accuracy.

The adaptive approach in interval control enables the system to dynamically re-

spond to changes in the environment and allocate resources effectively. This leads to im-

proved performance in uncertain or challenging scenarios. By adapting the processing inter-

val based on the input factors, the system can optimize its performance and provide more

accurate and reliable results.

Figure 4.6: Graph of the Adaptive Strategy Function for Mapping Processing Time Interval
(0.1s - 2.0s)

28

Figure 4.7: The Graph Depicting the Temporal Variation of the Processing Interval with
the Adaptive Interval Strategy.

4.5 Result Analysis

In the evaluation of the performance of the discussed methods, several metrics

were analyzed, including CPU utilization, memory utilization, and error distance. Figure

4.8 illustrates the changes in CPU utilization over time. When the interval is fixed at 0.1

seconds, the CPU maintains full utilization (100%). Conversely, with a static interval of

2.0 seconds, the CPU utilization remains around 20%. However, both the threshold-based

and adaptive approaches, as shown in Figures 4.5 and 4.7, exhibit CPU utilization that

increases or decreases in proportion to the interval size. The memory utilization, measured

in terms of resident memory size (RES) in MB, is depicted in Figure 4.9. The amount

of memory used varies based on the number of keyframes and point cloud data stored in

memory. Comparing the threshold-based and adaptive approaches to the static 0.1-second

and static 2.0-second strategies, it can be observed that the amount of information lost is

29

Figure 4.8: Comparative Analysis of CPU Utilization Across Different Methods.

relatively low. This is further supported by Figure 4.10, where the error distance is nearly

negligible due to the minimal information loss.

These evaluations demonstrate the efficiency and effectiveness of the threshold-

based and adaptive approaches in terms of resource utilization and estimation accuracy. The

dynamic adjustment of intervals allows for optimal allocation of CPU resources, resulting in

improved performance. Additionally, the minimal information loss and low error distance

indicate the robustness of the methods in preserving the accuracy of motion estimation

while efficiently managing memory usage.

Starting from approximately 150 seconds, the error distance gradually increases

for both the threshold-based and adaptive approaches, indicating that a smooth transition

of intervals during directional changes can reduce errors compared to abrupt changes. In

the time range of 480 to 490 seconds, where loop closing takes place, the error distance

decreases significantly once again. Figure 4.11 illustrates the trajectories obtained by each

30

Figure 4.9: Temporal Variation of Memory Utilization Across Different Methods.

Figure 4.10: Temporal Variation of Error Distance Across Different Methods.

method on a map, with the loop closing observed around the x-axis value of 200. From the

observations, it can be seen that the error increases gradually as time passes after a heading

transformation of the robot. Particularly, the adaptive approach (blue) closely overlaps

with the Static 0.1-second interval (black) method, while the threshold-based method (red)

gradually diverges from the position estimation results of the Static 0.1-second interval

31

method as it moves from left to right. This implies that the adaptive approach provides

more accurate and consistent position estimation results, especially in scenarios involving

heading changes.

Figure 4.11: Path map for each method.

The experimental results at the end state are summarized in table 4.3. In com-

parison to the Static Interval 0.1-second strategy, the Threshold-based approach showed a

total processing time of 67.2 seconds, while the Adaptive approach required 77.2 seconds.

These values correspond to 38.1% and 43.5% of the minimum static interval, respectively,

indicating a substantial improvement in resource efficiency of more than twofold. This high-

lights the effectiveness of adjusting the processing interval based on covariance information,

enabling efficient mission execution in resource-limited scenarios where multiple tasks must

be performed simultaneously.

In terms of accuracy, the Adaptive approach outperformed the Threshold-based

approach by reducing the error by approximately 3 meters. This demonstrates the efficacy

of employing the adaptive processing interval to achieve superior accuracy while efficiently

32

Table 4.3: Comparison of Memory and Error for Fixed, Threshold-based, and Adaptive
Interval Mapping Processing

Interval 0.1s(static) 2.0s(static) Threshold-based Adaptive

N (Num of Cycles)
2990 273 1171 1243

(100%) (10.9%) (39.1%) (41.5%)

Total Computation time(s)
177.2 21.1 67.6 77.2
(100%) (11.9%) (38.1%) (43.5%)

Resident Memory Size(MB)
340.3 212.6 321.5 294.3
(100%) (62.4%) (94.4%) (86.4%)

Error from GPS(m)
1.63 23.29 5.21 2.16
(0m) (21.6m) (3.58m) (0.53m)

utilizing resources.

The results presented in Table 4.3 clearly demonstrate the advantages of the adap-

tive interval control strategy in terms of both resource efficiency and accuracy. By dynam-

ically adjusting the processing interval based on covariance information, the system can

effectively allocate resources and optimize performance in real-time SLAM applications.

These findings contribute to the advancement of SLAM techniques in resource-constrained

embedded environments, allowing for improved accuracy and efficient utilization of available

resources.

33

Chapter 5

Conclusions

In this thesis, I have presented a novel 3D SLAM framework that addresses the

challenge of limited memory resources by incorporating adaptive interval rates. The pro-

posed framework builds upon the well-established LIO-SAM 3D SLAM framework, utilizing

it as the fundamental basis for our approach. By dynamically adjusting the processing in-

terval rates based on the current covariance of states, I aim to optimize the utilization of

available resources.

To evaluate the effectiveness of our framework, I conducted extensive experiments

using various publicly available datasets and modified parameters. The performance of

our SLAM approach was assessed in terms of position error, as well as the efficiency of

resource utilization, including memory and CPU usage. Through comparative analysis with

conventional SLAM frameworks, I demonstrated that our proposed framework maintains

robust SLAM performance while achieving efficient resource utilization. These findings

highlight the significance of the resource-efficient 3D SLAM framework, which not only

34

maintain the overall SLAM performance but also ensures the optimal utilization of limited

resources. By adaptively adjusting the processing interval rates, our framework provides a

practical solution for real-time robotics applications that face resource constraints.

The outcomes of this research contribute to the advancement of SLAM techniques

and provide valuable insights for the development of resource-efficient robotics systems.

Further research can explore additional enhancements and optimizations to improve the

adaptability and performance of our framework in diverse real-world scenarios.

35

Bibliography

[1] Particle filter. https://en.wikipedia.org/wiki/Particle filter. Accessed: 2023-05-22.

[2] Guillaume Bresson, Zayed Alsayed, Li Yu, and Sébastien Glaser. Simultaneous lo-
calization and mapping: A survey of current trends in autonomous driving. IEEE
Transactions on Intelligent Vehicles, 2(3):194–220, 2017.

[3] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José
Neira, Ian Reid, and John J. Leonard. Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age. IEEE Transactions on
Robotics, 32(6):1309–1332, 2016.

[4] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part i. IEEE
Robotics Automation Magazine, 13(2):99–110, 2006.

[5] Clayder Gonzalez and Martin Adams. An improved feature extractor for the lidar
odometry and mapping (loam) algorithm. In 2019 International Conference on Control,
Automation and Information Sciences (ICCAIS), pages 1–7, 2019.

[6] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, and Wolfram Burgard. A tutorial
on graph-based slam. IEEE Intelligent Transportation Systems Magazine, 2(4):31–43,
2010.

[7] M. Bolanos J. Fallas K. Trejos, L. Rincon and L. Marin. 2d slam algorithms charac-
terization, calibration, and comparison considering pose error, map accuracy as well as
cpu and memory usage. Sensors, 22(18):1–37, 2022.

[8] Stefan Kohlbrecher, J Meyer, K Petresen, and T Graber. Hector slam for robust
mapping in usar environments. ROS RoboCup Rescue Summer School Graz, 2012.

[9] Stefan Kohlbrecher, Oskar von Stryk, Johannes Meyer, and Uwe Klingauf. A flexible
and scalable slam system with full 3d motion estimation. In 2011 IEEE International
Symposium on Safety, Security, and Rescue Robotics, pages 155–160, 2011.

[10] Nosan Kwak, In-Kyu Kim, Heon-Cheol Lee, and Beom-Hee Lee. Analysis of resam-
pling process for the particle depletion problem in fastslam. In RO-MAN 2007 - The

36

16th IEEE International Symposium on Robot and Human Interactive Communication,
pages 200–205, 2007.

[11] Sheng-Wei Lee, Chih-Ming Hsu, Ming-Che Lee, Yuan-Ting Fu, Fetullah Atas, and
Augustine Tsai. Fast point cloud feature extraction for real-time slam. In 2019 Inter-
national Automatic Control Conference (CACS), pages 1–6, 2019.

[12] Leonardo Maŕın, Marina Vallés, Ángel Soriano, Ángel Valera, and Pedro Alber-
tos. Event-based localization in ackermann steering limited resource mobile robots.
IEEE/ASME Transactions on Mechatronics, 19(4):1171–1182, 2014.

[13] Michael Montemerlo, Sebastian Thrun, Daphne Roller, and Ben Wegbreit. Fastslam
2.0: An improved particle filtering algorithm for simultaneous localization and mapping
that provably converges. In Proceedings of the 18th International Joint Conference
on Artificial Intelligence, IJCAI’03, page 1151–1156, San Francisco, CA, USA, 2003.
Morgan Kaufmann Publishers Inc.

[14] Julio A. Placed, Jared Strader, Henry Carrillo, Nikolay Atanasov, Vadim Indelman,
Luca Carlone, and José A. Castellanos. A survey on active simultaneous localization
and mapping: State of the art and new frontiers. IEEE Transactions on Robotics,
pages 1–20, 2023.

[15] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source robot operating system. In
ICRA workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

[16] Tixiao Shan and Brendan Englot. Lego-loam: Lightweight and ground-optimized lidar
odometry and mapping on variable terrain. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4758–4765. IEEE, 2018.

[17] Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang, Carlo Ratti, and Rus Daniela.
Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
5135–5142. IEEE, 2020.

[18] Dan Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches.
John Wiley & Sons, Hoboken, NJ, USA, 2006.

[19] Cyrill Stachniss, John J. Leonard, and Sebastian Thrun. Simultaneous localization and
mapping. In Springer Handbook of Robotics, pages 1153–1176. Springer International
Publishing, Berlin/Heidelberg, Germany, 2016.

[20] Wei Xu, Yixi Cai, Dongjiao He, Jiarong Lin, and Fu Zhang. Fast-lio2: Fast direct
lidar-inertial odometry. IEEE Transactions on Robotics, 38(4):2053–2073, 2022.

[21] Rauf Yagfarov, Mikhail Ivanou, and Ilya Afanasyev. Map comparison of lidar-based
2d slam algorithms using precise ground truth. In 2018 15th International Conference
on Control, Automation, Robotics and Vision (ICARCV), pages 1979–1983, 2018.

37

[22] Ji Zhang and Sanjiv Singh. Loam : Lidar odometry and mapping in real-time. Robotics:
Science and Systems Conference (RSS), pages 109–111, 01 2014.

38

