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Network Medicine in Disease Analysis and Therapeutics

Bin Chen1 and Atul J. Butte1,*

1Division of Systems Medicine, Department of Pediatrics, Stanford University School of Medicine, 
1265 Welch Road, Room X-163 MS-5415, Stanford, CA, 94305, USA

Abstract

Two parallel trends are occurring in drug discovery. The first is that we are moving away from a 

symptom-based disease classification system to a system based on molecules and molecular states. 

The second is that we are shifting away from targeting a single molecule towards targeting 

multiple molecules, pathways or networks. Network medicine is a network-based approach to 

understanding disease and discovering therapeutics, and it may play a critical role in the adoption 

of both trends.

The contemporary classification of diseases based on signs and symptoms relies on expert 

observational skill and cognitive pattern-matching. However, this approach lacks sensitivity 

with respect to identifying early stage preclinical disease and lacks specificity in defining 

disease unambiguously (1). Symptom-based classification may miss opportunities for 

prevention especially for many diseases that are asymptomatic in early stages. For example, 

women who carry mutations in BRCA1 or BRCA2 are now well known to have a higher risk 

of breast cancer, and while early breast cancer can be found through mammography, these 

mutations obviously cannot be detected by simple observation and the use of risk-reducing 

surgery would otherwise be missed.

As the generation of various types of molecular data in the genomic era continues to 

increase, a molecular characterization of diseases is now required to build a new taxonomy 

of disease (or nosology) to devoid the problems of symptom-based classification. Among its 

benefits, the new disease classification will facilitate more precise diagnosis and 

personalized treatment. Again, breast cancer, for instance, can now be categorized into major 

classes by analyzing data from genomic DNA copy number arrays, DNA methylation, 

exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase 

protein arrays. These classes are encouraging for the discovery of effective individualized 

treatments (2).

In addition to a molecular-based taxonomy of disease, the ideal level of understanding of 

disease would include all levels of molecular changes, from DNA to RNA to microRNA to 

proteins, and even include disease determinants such as environmental factors. With so many 

complex and interacting factors that may contribute to disease, networks of these interacting 

factors are a more optimal way to represent and model our understanding of disease. For 
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example, analysis of a disease-gene network would reveal diseases that are closely related 

genetically (3), and an integrated analysis of disease-related mRNA expression data and the 

human protein interaction network can identify common functional modules enriched for 

pluripotent drug targets as well as some surprising new relationships among diseases (4).

It is evident that many diseases are complex, and caused not by a single factor or genetic 

variation. Instead, they are consequences of defects in a complex network comprising a 

multitude of environmental factors, genetic mutations and polymorphisms, whose effects 

operate from conception through adulthood. Nonetheless, contemporary drug discovery 

efforts have largely relied on a “magic bullet” to perturb the network by targeting a key 

component. This approach has led to a number of drugs, such as trastuzumab (HER2 in 

breast cancer), crizotinib (ALK in non-small cell lung carcinoma), and dabrafenib (BRAF in 

melanoma). However, as many diseases are driven by complex molecular and environmental 

interactions, targeting a single component may not be sufficient to disrupt them. For 

example, EGFR inhibitors are used to treat lung tumors, but the tumors typically develop 

resistance and relapse occurs due to EGFR-T790M gate-keeper mutations, MET 

amplification, or induction of FGFR1 and FGF2. This process suggests that targeting other 

molecules in the tumors may be necessary (5). Furthermore, functional genomics studies 

have also revealed that many single gene knockouts have no or little effect on phenotype (6).

Given the inherent shortcomings of the “magic bullet” approach, a more appealing strategy 

in the drug discovery stage is to modulate the disease network by targeting multiple 

components using a designed polypharmacological ligand or a combination of drugs (6). 

Examples include trastuzumab in combination with paclitaxel in breast cancer, cetuximab in 

combination with irinotecan in metastatic colorectal cancer and lapatinib (a dual inhibitor of 

the EGFR and HER2 tyrosine kinases) in combination with capecitabine in advanced breast 

cancer. Additionally, combination antiretroviral therapy is known as an effective treatment 

for HIV.

Integration of disease analysis and drug discovery

Integrating disease analysis into drug discovery is critical to find effective therapeutics for 

complex diseases. For example, gefitinib was discovered to treat lung cancer patients, but a 

subsequent study showed that it was only effective in a subset of patients. Analysis of the 

patient samples identified that EGFR mutations account for the efficacy. This information 

guides the application of gefitinib only to those patients with EGFR mutations. However, 

many of those patients tend to develop resistance later on due to compensatory pathways, 

secondary mutations or other issues. Analysis of the resistant samples may enable 

elucidation of drug resistance networks or pathways and further sub-classify patients based 

on resistance mechanisms. This could guide discovery of new drugs to treat each specific 

subgroup. For instance, an FGFR inhibitor (AZD4547) may have the potential to treat 

patients who relapse because of the bypass pathway induced by FGFR1 and FGF2 (5). 

Likewise, in breast cancer, hormone therapy was first discovered for ER+/PR+ patients; 

subsequently, trastuzumab was discovered to treat patients with HER2 amplification or 

overexpression. Patients with the triple-negative breast cancer (TNBC) still have a poor 

prognosis. However, prognosis improves if complete pathologic response is achieved 
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following administration of genotoxic drugs. Lee et al. recently found that EGFR inhibitors 

can sensitize TNBC cells to these genotoxic drugs. Further transcriptional, proteomic and 

computational analyses of signaling networks and phenotypes in drug-treated cells has 

revealed that the rewired oncogenic signaling pathway is involved in the efficacy increase 

(7).

The role of public data

But if our goal is thus to study diseases and drugs through layers of molecular measurements 

made at various levels of resolution, connected by networks of across layers and disease 

progression and time, it quickly becomes apparent that no one researcher, lab, or institute 

will be able to collect enough samples to reach this goal. This is why public datasets will 

continue to be important elements in the analysis of disease and therapeutic discovery using 

network-based approaches. Table 1 lists public data sources that can be harnessed to create 

and study networks linking drugs, diseases and other biological factors in specific contexts 

(e.g., cells, tissues, organisms, populations). For example, biclustering of drug-induced gene 

expression profiles taken from the Connectivity Map (CMap) revealed transcription modules 

that can predict novel gene functions, give insights into the mechanisms of drug actions, and 

provide leads for drug repositioning projects (8). Combining gene expression profiles of 

diseases from the National Center for Biotechnology Information (NCBI) Gene Expression 

Omnibus (GEO) and drug-induced gene expression profiles from CMap can help identify 

novel drug-disease relations (9).

In particular, the recent release of several new flagship datasets in chemical genomics, 

functional genomics and clinical trials will aid efforts to cross-link multiple data sources. 

For example, a large-scale drug response network could be created from the NIH Library of 

Integrated Network-Based Cellular Signatures (LINCS) project. LINCS aims to create over 

1 million gene expression profiles of transcriptional response data for off-patent drugs and 

thousands of genetic reagents, across 15 cell lines including primary and cancer cells. 

Another source of data with high potential comes from Chip-Seq experiments from 

ENCODE. Their goal is to create the first complete regulatory networks of the relationships 

between vital transcription factors and their target genes. Links between clinical outcomes 

and genomics and cellular measurements could be established using data from the NIAID 

Immunology Database and Analysis Portal (ImmPort).

There are challenges to realizing the potential of network medicine using public sources, 

however. For example, the structure of the data is complex and the lack of standards for data 

representation may hinder integration. Clinical trial datasets, for instance, have different data 

schemas and ontologies. Semantic web technologies might help to formalize data 

representation. In addition, current network measurements (e.g., scale-free property) and 

modeling methods (e.g., random walk algorithm) developed for homogeneous networks 

need to be adjusted for heterogeneous networks, where a semantic type is assigned to each 

node (e.g., disease, gene, protein, drug) and each edge (e.g., protein-protein interaction, 

DNA-protein interaction). Moreover, biological networks are context-dependent. Two 

transcriptional response networks of the same drug in two cell lines can be completely 

different. Thus, integrating a drug-response network from one cell line into a network from 
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another cell line would be problematic. Sometimes, the findings from different studies may 

be neither reproducible nor robust due to reasons such as improper analysis or validation, 

small sample size, insufficient control of false positives, etc. Meta-analysis has the potential 

to increase statistical power and generalizability of single-study analysis (10). Finally, 

neither the models nor the findings should be complicated from a clinical perspective. For 

example, there are significant hurdles in executing, interpreting, and paying for multi-marker 

tests. Nevertheless, these issues are solvable, and as they continue to be resolved, network 

medicine will continue to increase our understanding of diseases and aid discovery of new 

therapeutics.
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