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ABSTRACT OF THE DISSERTATION

Estimating Student Competence in Engineering Statics from a Lexical Analysis
of Handwritten Equations

by

Hanlung Lin

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2015

Professor Thomas Stahovich, Chairperson

We present a technique that examines handwritten equations from a student’s solution

to an engineering statics problem and estimates the correctness of the work. The solution

is recorded with a smartpen that digitizes the writing with time stamps. Our technique

first separates equation pen strokes from other content, such as diagrams. Then the

equation pen strokes are grouped first into individual equations, then into individual

characters. A character recognizer is used to recognize each character, and then a Hidden

Markov Model is used to correct recognition errors. The equation text is characterized

by a set of features. Some of these describe the frequency of various symbols and symbol

combinations, such as a letter following a mathematical operator. One feature describes

the frequency with which units of measure (e.g., “kg”) appear, while another describes

inter-character pauses. This set of features is used to construct SVM regression models

to predict the correctness of the work. We tested our approach on a corpus of solutions

to exam problems from an undergraduate statics course. The models predicted the grade

assigned by the instructor with an average coefficient of determination of 36%. We also

vii



combined our features with an existing set of features that describe the temporal and

spatial organization of a handwritten solution to a statics problem. Using both sets of

features, the SVM regression models predicted the grade on the exam problems with an

average coefficient of determination of 56%. This is a surprising result given that none

of the features consider the semantic content of the writing, or even the correctness of

a student’s final answer.
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Chapter 1

Introduction

The goal of educational data mining is to apply data mining techniques to

understand learning and improve teaching (Romero and Ventura [3]). Traditionally,

large-scale education research studies have relied on summative assessments, such as

measuring changes from pre-test to post-test (e.g., Garcia [4]). Because capturing and

analyzing students’ ordinary learning activities (for example by using video recording

(Blanc et al. [5])) can be impractical for large scale studies, instruments such as surveys

(e.g., Jordan [6] and Lee [7]) are often used for formative assessment. Current efforts

in educational data mining, examine readily available digital data sources, such as data

from course management systems like iLearn, Loncapa, and Moodle (e.g., Kruger, Mer-

ceron, and Wolf [8]; Romero et al. [9])and log files from intelligent tutoring systems

(e.g., Beal and Cohen [10]; Shanabrook et al. [11]; Mostow, Gonzalez-Brenes, and Tan

[12]). However, these are only a small part of learning.

Our goal is enable data mining for formative assessment of students’ ordinary

handwritten work. Handwritten homework is an essential component of undergraduate
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instruction in STEM fields as it allows students to put into practice what is taught in

lecture. It also enables instructors to assess a student’s understanding of the material.

Despite advances in computational systems, computer-based homework has not replaced

handwritten assignments. Such systems often grade only the final answer and thus do

not directly examine a student’s problem-solving processes. However, the alternative —

manually grading homework — can be intractable. For example, grading every problem

in a homework assignment for an engineering course could take 30 to 45 minutes per

student. Thus, a course with 150 students could require more than 100 hours per week

just to grade homework. As a work around, some instructors grade only a subset of the

problems or assign a grade based solely on submission of the assignment. However, this

reduces the feedback that students receive and feedback is critical for learning.

We aim to build an automatic grading system to help instructors and teaching

assistants (TAs) do this tedious work. However, it is a challenging problem. As shown in

Figure 1.1, a typical handwritten statics solution comprising equations (green strokes),

free body diagrams (cyan strokes), and cross-outs (black strokes). It needs a perfect

recognizer to identify shapes in the three semantic classes to enable accurate grading.

Our goal is to provide an inexpensive means of estimating the correctness of a student’s

work. In this way, our techniques may be useful for creating an automated early-warning

system that monitors a student’s coursework and identifies when the student may be

having difficulty.

2



Figure 1.1: A solution to a statics problem. Cyan = free body diagram, green =
equation, black = cross-out.

1.1 Approach

Figure 1.2 is a typical statics problem. It asks a student to calculate forces.

Figure 1.3 is what a student’s solution looks like. Figure 1.4 demonstrates what our

system does. It predicts the grade that the student gets on the problem. This graph

shows the relationship between the grade our system predicted and the grade assigned

by a grader. There is a very strong correlation between the two.

Figure 1.5 shows an overview of our system. In this research, we use Livescribe

smartpens to capture students’ handwritten homework and exam solutions. These de-

vices have an integrated camera and are used with dot-patterned paper. They serve

3



the same function as a traditional ink pen and also record the work as time-stamped

pen strokes, thus enabling both temporal and spatial analysis of the writing. Students

use the digital pen to write their homework assignments and exams. We then collect

digitized pen stroke data from the pen. Our techniques first extract features from this

data and then build regression models, for example, to predict grades.

4



Figure 1.2: A sample statics problem.
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Figure 1.3: A sample solution made by student.

6



Figure 1.6 is another student’s handwritten solution. To extract features from

the solution, our technique begins with identifying the semantic type of a stroke and

separating it into one of three classes: equation, free body diagram, and cross-out (Figure

1.7). We present a two-stage approach to automatically classify pen strokes in this

manner. We first use a special-purpose classifier to identify them. We then use a second

classifier, which builds on Peterson’s technique, to separate the remaining pen strokes

into equations and diagrams.

Next, our algorithm groups strokes into equation groups and character groups

(Figure 1.8 and Figure 1.9). After separating the strokes by their semantic type, group-

ing becomes much easier. We only focus on the equation part which allows us to develop

a model with less features and higher accuracy. Our equation grouper only needs three

features and our character grouper needs only two features. We then apply shape recog-

nition again with the image-based recognizer and Hidden Markov Model for refining the

results (Figure 1.10).

Once the equations have been recognized, we compute a variety of features

from the text. One feature describes temporal properties of the writing. The remain-

der describe the frequency of occurrence of various patterns of characters. This set of

features is used to construct SVM regression models to predict the correctness of the

work.

We evaluated the performance of our stroke classifier, equation and character

groupers using our homework dataset. We used our exam dataset to investigate the

7
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ability of our features to predict student competence. Full descriptions of these datasets

can be found in Chapter 6.
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Figure 1.6: Another solution to a statics problem.
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Figure 1.7: Separate free body diagrams, equations, and cross-outs. Cyan = free body
diagram.Green = equation. Black = cross-out
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Figure 1.8: Grouping equations.
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Figure 1.9: Grouping characters.
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Figure 1.10: Character recognition.
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1.2 Contributions

In this work we examine stroke separating, grouping in handwritten sketches

and estimating student competence from a lexical analysis of handwritten equations.

This dissertation makes contributions in sketch understanding and student modeling.

1.2.1 Sketch Understanding

1. We present an algorithm for stroke classification. Our method is more accurate

than the previous methods we tested.

2. We have developed an efficient and accurate technique for grouping handwritten

pen strokes into equation groups and character groups that is as accurate as, or

more accurate than, other methods we tested. These grouping techniques are

typically more efficient than previous approaches.

1.2.2 Educational Informatics / Student Modeling

1. We present the first method which uses lexical properties of handwritten equations

on predicting student’s performance.

2. We demonstrated that an analysis of the lexical properties of handwritten equa-

tions can be used to inexpensively evaluate their correctness.

3. We identified characteristics of high-performing students.

4. This work has several applications. For example, our techniques may provide

the basis of an automated student feedback system. It may be useful for creat-

ing an automated early-warning system that monitors a student’s coursework and
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identifies when the student may be having difficulty. In addition, our work may

have application to online education, especially for massive open online courses

(MOOCs). For MOOCs to become an effective part of our higher education sys-

tem, new assessment methods are needed. Our technique provides one means for

automated assessment of students’ handwritten problem-solving.

1.3 Outline

This dissertation is organized as follows: Chapter 2 places our work in the

context of related work. Chapter 3 details our approach to stroke classification. Chapter

4 describes our techniques for grouping strokes into equations and characters. Chapter 5

presents the features we extracted from sketches. Chapter 6 describes data sets we used

in this dissertation. Chapter 7 presents results of the methods described in Chapter

3,4, and 5. Chapter 8 is the discussion of the methods. Finally, Chapter 9 presents our

conclusions.
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Chapter 2

Related Work

An important application in biomedical studies is virtual screening, a very effi-

cient computer-aided process in rational drug design. Historically, drugs were discovered

through identifying the active ingredient from traditional remedies or by serendipitous

discovery. However, the speed of accumulating knowledge for the use of medicine drugs

by these conventional methods prohibits us from tackling various critical diseases in a

reasonable time and within reasonable cost today. To increase the chance of discovering

effective medicine drugs, virtual screening is a widely used technique to search possi-

ble drug candidates from known chemical compound libraries. The steps of conducting

virtual screening experiments involve the identification of screening hits, medicinal chem-

istry and optimization of those hits to increase the affinity, selectivity (to reduce the

potential of side effects), efficacy/potency, metabolic stability, and oral bioavailability.

Once a compound that fulfills all of these requirements has been identified, the process

of drug development prior to clinical trials will begin.

A number of techniques have been developed to classify strokes. Peterson et al.
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[13], Patel et al. [14], and Bhat et al. [15] each use a feature-based technique to classify

pen strokes. They all characterize each pen stroke using several features. Patel et al.

[14] used a set of features describing the temporal and spatial organization of the work

while Bhat et al. [15] used the zero-order entropy as a feature to identify shape and

text strokes. Bishop et al. [16] trained and evaluated a classification algorithm using

a Hidden Markov Model. Wang et al. [17] extend Bishop’s approach by integrating a

neural network. Gennari et al. [18] segmented pen strokes and then used properties

of the pen stroke segments to interpret hand-drawn diagrams. Such approaches have

typically been tested and developed using neatly-written pen strokes data, and can be

less robust when applied to real world data. In our research, we extend the technique

presented by Peterson et al. [13] by adding ten new domain-dependent features to

characterize statics solutions

Grouping strokes into equations or distinct objects is one of the most diffi-

cult problems in sketch understanding. Some systems require that users complete an

equation before beginning another [[19], [20]]. Stahovich et al. [1] present a two-stage

clustering algorithm that first classifies pen strokes into different classes of objects, and

then groups strokes with like classifications into clusters representing individual objects.

Blagojevic et al. [21] presented a feature-based technique which is similar to Stahovich’s.

They use more than 100 features on classifying strokes. Some other systems require that

the user explicitly specify which strokes belong to which object by pausing between each

strokes. These techniques are possible when using writing equations or characters on a

PC while it is almost impossible to apply the techniques on students’ solutions which

are written on paper. Josiah developed a feature-based technique to group pen strokes
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into characters.

Research in educational data mining has seen a dramatic increase in the past

few years (Romero and Ventura [3]). Much of the data used in this work is extracted

from log files of intelligent tutoring systems (Beal and Cohen [10]; Shanabrook et al.

[11]; Mostow, Gonz‘alez-Brenes, and Tan [12]) and learning management systems such

as Moodle or Blackboard (Kruger, Merceron, and Wolf [8]; Romero et al. [9]). This work

relies on a variety of data mining techniques including clustering (Stevens, Johnson, and

Soller [22]; Trivedi et al. [23]), model prediction (Mostow, Gonz‘alez-Brenes, and Tan

[12]; Li et al. [24]), and sequence analysis (Beal and Cohen [10]; Shanabrook et al. [11];

Kruger, Merceron, and Wolf [8]; Romero et al. [9]). Our work differs from this in that

we record and mine data from learning activities in natural environments, rather than

in artificial online environments. The work of Oviatt et al. [25] suggests that natural

work environments are critical to student performance.

Researchers have used video recordings to examine student problem solving

(Blanc [5]). However, video analysis is labor-intensive. Our pen stroke data is better

suited for automated analysis.

Recently, researchers have begun to use smartpens to examine the relationship

between homework activities and academic performance. For example, Rawson and Sta-

hovich [26] examined the relationship between homework effort and course performance.

Effort was represented by a set of features describing the amount of writing (in pixels)

and the distribution of the writing activity over the assignment period. These features

were used to construct models predicting course grade. Herold, Stahovich, and Rawson

[27] used a similar approach that considered effort on an assignment as a whole and on
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individual problems.

Herold, Zundel, and Stahovich [28] represent homework activity as sequences of

actions, including diagram drawing, equation writing, and breaks. Differential data min-

ing techniques were used to differentiate the activity sequences of students who achieved

a high exam grade from those who achieved a low grade. All of these studies examined

homework activity (effort) to predict future achievement in the course. By contrast, our

work examines the lexical properties of equations to predict their correctness.

Herold and Stahovich [29] used smartpens as assessment tool to examine how

self-explanation affects the order in which students solve assigned homework problems.

The study found that students who generated self-explanations of their work were more

likely to finish each problem before starting the next than were students who did not

generate self-explanations.

Van Arsdale and Stahovich [30] developed a technique for estimating the cor-

rectness of a student’s handwritten solution to a statics problem. They computed 10

features describing the spatial and temporal organization of the solution process and used

them to construct stepwise regression models predicting the grade students achieved on

the work. Our work is complementary in that we consider lexical properties of equations

rather than the organization of the solution process.

Cheng and Rojas-Anaya [31] examined pauses that occurred as students copied

equations, and found that the number of long pauses was indicative of competence. A

pause is the interval of time from a pen up event to the next pen down event. They

defined a long pause as one longer than twice the median pause occurring while the stu-

dent wrote his or her name. In our work, we consider pauses between characters rather
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than pen strokes. To apply our technique to large datasets collected in the classroom,

it was necessary for us to develop techniques to automatically identify equation groups.

Similarly, as we consider inter-character pauses, it was necessary to develop a character

grouper.

There is a long history of research on information extraction (IE) techniques

(Hobbs et al. [32]) for extracting relations from machine readable documents. This is

distinguishable from attempting to understand the entire content of such documents.

Older techniques typically relied on domain dependent attributes and were rule-based

(Miller et al. [33]) or used machine learning (Culotta [34]). More recently, researchers

have focused on open IE techniques that are more extensible than prior methods because

they do not require domain knowledge (e.g., (Banko et al. [35]; Soderland et al. [36])).

Recently, Herold and Stahovich [29] used an open IE technique to determine if students’

self-explanation of their work contained concepts that experts used to explain their work.

Our work differs from IE techniques in that we do not extract relations or

concepts from the text. Instead, we examine how the frequency of patterns of symbols

correlate with the correctness of the work. In this sense, our work is similar to that

of Rhodes et al. [37] which characterized the words in students’ self-explanations with

“term frequency inverse document frequency” (Robertson and Jones [38]) and used this

to predict student grades on homework assignments.
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Chapter 3

Stroke Classification

Before the equations can be interpreted, they must be distinguished from dia-

grams and cross-outs. (Because the digital pens use ink which cannot be erased, students

must cross out incorrect work.) We explored the use of Peterson’s [13] general-purpose

pen stroke classifying algorithm for this task. Although it achieved high accuracy, we

were able to develop a special-purpose technique that was both more efficient and more

accurate for our task.

Our technique is illustrated in Figure 3.1. Because cross-outs are a rare class,

we first use a special-purpose classifier to identify them. We then use a second classifier,

which builds on Peterson’s technique, to separate the remaining pen strokes into equa-

tions and diagrams. We have found that using this two-stage classification approach

is far more accurate than directly performing three-way classification using a single

general-purpose classifier.

To help distinguish free body diagrams from equations, we perform preliminary

shape recognition to attempt to identify alpha-numeric characters and arrows. The goal
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of this first step is to identify likely characters and arrows to help identify regions

containing equations and diagrams, respectively. We use the results of the preliminary

recognition to compute 10 features which we use to extend the 27 features that Peterson

uses.

Identify Cross-outs

Separate FBD and EQN

Figure 3.1: Stroke classifier overview.

3.1 Cross-Out Classifier

Handwritten problem solutions typically contain few cross-outs. Creating a

classifier to accurately identify rare cases can be challenging. To create an effective

classifier to distinguish cross-outs from other objects, we developed 10 special-purpose
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features. These features are listed in Table 3.1. We used them to train an Adaboosted

C4.5 decision tree.

Feature Name Description

SXBBW Width of the minimum bounding box

SXBBH Height of the minimum bounding box

SXDENS Compactness of the stroke

SXST Straightness of the current stroke

SXPOX Binary feature – is the stroke part of a cross

SXPOP Binary feature – is the stroke
part of a set of parallel lines

SXROCA Ratio of the area which the stroke covers
other strokes which were drawn earlier

SXROCBA Ratio of the area which the stroke covered by
other stroke which were drawn later

SXUH Average height of the underlying strokes

SXT2FU Time to the first underlying stroke

Table 3.1: Features used by classifier for identifying cross-outs.

The first three features are also used by Peterson’s method. These characterize

the size and compactness of a stroke. Bounding Box Width (SXBBW ) and Height

(SXBBH) are properties of the minimum, coordinate-aligned bounding box of the stroke.

The Ink Density (SXDENS) feature measures the compactness of the stroke. Cross-out

strokes often have high ink density because their purpose is to mask previously drawn

strokes. Ink Density is defined as the ratio of stroke length squared to the bounding box

area:

SXDENS(i) =
L(i)2

BBA(i)
(3.1)

where L(i)2 is square of the arc length of the ith stroke and BBA(i) is its bounding box

area.
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As the name suggests, Stroke Straightness (SXST ) is a measure of the straight-

ness of a pen stroke. It is defined as the ratio of the arc length of the stroke and the

Euclidean distance between its endpoints:

SXST (i) =
L(i)

ED(i)
(3.2)

where ED(i) is the Euclidean distance between the two endpoints of the ith stroke.

The next two features characterize the geometric relationship between a set

of consecutive strokes. The Part of Cross feature (SXPOX) indicates whether or not

the stroke forms a cross with either the previous or next stroke. To form a cross, both

strokes must be approximately straight lines that intersect near their midpoints. More

specifically, the strokes must have a straightness of at least 0.7. Additionally, for each

stroke, the distance between the intersection point and its midpoint must be less than

10% of its arc length. For example, the two pen strokes in Figure 3.2 do intersect

near their midpoints, and thus form a cross. However, the strokes in Figure 3.3 do not

intersect near their midpoints and are not considered to form a cross.

The Part of Parallel feature (SXPOP ) indicates whether the stroke belongs to

a set of parallel lines. Such lines must be drawn consecutively and must be relatively

straight (straightness ratio of at least 0.7).

As pen strokes are rarely, if ever, perfectly straight, our definition of parallel is

approximate. For each point on a stroke, the program calculates the minimum distance

to a point on the other stroke. If all of these minimum distances are about the same,
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Figure 3.2: Example of strokes that form a cross. The distances between the intersection
point (red circle) and the midpoint of each stroke (yellow circles) are less than 10% of
the stroke lengths.

the program then considers the two lines to be parallel. Consider, for example, Stroke

A and Stroke B in Figure 3.4. The program calculates the average of the minimum

point-to-point distances from both A to B and B to A. (The green arrows in Figure

3.4 are the minimum point-to-point distances from A to B.) If all of these distances are

between 50% and 150% of the average, the strokes are considered to be parallel.

By their very nature, cross-outs are drawn over other strokes, and typically

other strokes are not subsequently drawn over a cross-out. We use two features to

characterize this (Figure 3.5. The first is the Ratio of Covered Area feature. To compute
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Figure 3.3: Example of strokes that do not form a cross. The distance between the
intersection point (red circle) and the centroid (yellow circle) of one of the strokes is
greater than 10% of the length of the stroke.

this feature for a candidate cross-out stroke, the program first identifies all strokes that

were drawn before the candidate and whose bounding boxes intersect the bounding box

of the candidate. This set of strokes comprise the “underlying strokes.” Ratio of Covered

Area is the fraction of the candidate’s bounding box that intersects with the bounding

box of the underlying strokes.

The second feature is the Ratio of the Area Covered by Other Strokes feature.

This feature is similar to the first by considering the “overlying strokes.” This is the

set of strokes that were drawn after the candidate and whose bounding boxes intersect
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Stroke A

Stroke B

Figure 3.4: Identification of parallel strokes. Yellow circles are sample points in stroke
A. Blue circles are sample points in stroke B. Green arrows are the minimum distances
from points on stroke A to points on stroke B.

its bounding box. Ratio of the Area Covered by Other Strokes is the fraction of the

candidate’s bounding box that intersects with the bounding box of the overlying strokes.

It is common for students to cross-out an equation with a single horizontal line

as illustrated in Figure 3.6. As the bounding box of a horizontal line often has little

area, it can be difficult to detect this kind of cross-out by the two area ratio features.

The Average Height of the Underlying Strokes feature is designed for this situation. As

the name suggests, this feature is the average height of underlying pen strokes. Recall

that pen strokes for the characters in an equation tend to be smaller than those in a
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Figure 3.5: The Ratio of Covered Area feature (Left) and the Ratio of the area covered
by other strokes feature (Right). The yellow area indicates overlapped area.

diagram.

Figure 3.6: Example of a horizontal cross-out line (black). The underlying strokes are
in green.

The last feature captures the temporal relationship of a cross-out stroke with

its underlying strokes. The Time to First Underlying feature is the elapsed time between

the first underlying stroke and the candidate cross-out stroke.
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3.2 Preliminary Recognition

Our goal at this stage is to compute the probability that a pen stroke is an

alpha-numeric character or an arrow. This information will help identify regions contain-

ing either equations or diagrams. As shown is Figure 3.7, free body diagrams typically

contain arrows which represent forces. Free body diagrams also contain some alphabetic

characters which are used as force labels. However, by their very nature, equations

typically contain far more alpha-numeric characters than do free body diagrams. We

perform the first stage of preliminary recognition with a general-purpose image-based

recognizer [39]. In the second stage, we then use two domain-specific recognizers and a

special-purpose arrow recognizer.

To perform complete character recognition, it is first necessary to perform

grouping so that multi-stroke symbols can be identified. However, the results of stroke-

classification are needed to perform grouping. This is a chicken-and-egg problem. For-

tunately, it is unnecessary to accurately recognize all of the symbols at this stage.

We use the image-based recognizer because of its tolerance for over-stroking,

which is common in free form drawing and writing. This recognizer is also capable

of recognizing multi-stroke characters. (While we do not rely on this capability for

preliminary recognition, we do use it later for final recognition.) During preliminary

recognition, we apply the image-based recognizer to single pen strokes to identify single-

stroke characters. Many characters are commonly drawn with a single stroke such as

“C” and “O”, but some characters require multiple strokes. Thus, at this stage in the

processing, we will identify only a subset of the characters.
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Figure 3.7: Arrows are usually in free body diagrams while characters are usually in
equations.

As described below, we built simple heuristic, domain-specific recognizers for

two important symbols: “+” and “=”. These symbols are formed from straight lines

and can be easily identified by their geometric properties. The heuristics are applied to

the output of the image-based recognizer.

Arrows can be drawn with a wide variety of aspect ratios. For example, some

arrows are long with small heads, while others may be short with large heads. Also

arrows can be drawn in arbitrary directions. Because of this wide range of variation,

it is inefficient to use template-based recognizers to identify them. Therefore, we use a

special-purpose recognizer, described below, to recognize arrows. Our arrow recognizer
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can handle multi-stroke arrows drawn in any direction.

We compute a number of features from the output of these recognizers. For

example, we compute the average size of strokes that have been positively identified as

alpha-numeric characters. This gives a good estimate of the expected size of a character

in the sketch. Strokes that are much larger than this average are likely to be elements

of a free body diagram.

3.2.1 Image-based Recognizer

The image-based recognizer [39] is a trainable recognizer based on a multi-layer

recognition scheme. It represents symbols as binary templates and then compares and

ranks definition symbols according to their similarity to the unknown symbol using four

different classifiers. These include the Hausdorff Distance, modified Hausdorff Distance,

Yule Coefficient, and Tanimoto Coefficient. Typically the results of these four classifiers

are combined with a voting scheme. To reduce computational cost, we use only the

modified Hausdorff distance.

The image-based recognizer is designed to be insensitive to the orientation of

the symbol. As we are recognizing letters and numbers which typically appear in a fixed

orientation, we do not use the rotation processing portion of the recognizer. This further

reduces the computation cost of recognition.

We trained the image-based recognizer with the symbols from Data Set A de-

scribed in Section 6.1. Because this data set contained very few lower case letters, we

excluded them from the training. Our training symbols include all 10 digits, 22 capital

letters, eight arrows, and five mathematical symbols (“−”, “Σ”, “/”, “(”, “)”). For con-
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venience, we refer to all 45 symbol classes, except arrows, as “characters.” We selected

10 training examples for each type of symbol, for a total of 450 training templates. As

our goal is only to determine if a stroke is or is not a character, the precise identifi-

cation of a pen stroke is not important. Thus, we combined eight symbol types into

four. For example, “I” and “1” are represented by the same templates. Likewise, the

pairs “B” and “8”, “O” (letter) and “0” (number), and “S” and “5” are combined. The

eight types of arrows included arrows drawn in the four cardinal directions and the four

inter-cardinal directions.

The output of the recognizer is the modified Hausdorff distance from the un-

known to each of the 450 training templates. We then sort this in increasing order of

distance. If the top two templates (the two with the shortest distances) represent the

same symbol, and that symbol is not an arrow, the unknown is assumed to be a charac-

ter for the purposes of computing the average character size. If the top two templates

represent different symbols, the recognition results are uncertain and the unknown is not

include in the calculation of the average character size. In either case, if the top-ranked

template is not an arrow, the modified Hausdorff distance to that template is used as an

indication of the probability that the unknown is a character – the smaller the distance,

the greater the probability. If the top-ranked template is an arrow, the probability that

symbol is a character is taken to be zero, and the Hausdorff distance is replaced with

the value 10,000.

The trained classifier achieved 90% accuracy on 3087 examples of the 45 sym-

bols classes from Data Set A. Here accuracy is defined as assigning the unknown char-

acter to the correct one of the 45 symbol types (i.e., both the top and penultimate
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templates are the correct class). For example, an “A” recognized as an “A” is consid-

ered correct. Similarly, an “S” recognized as a “5” is considered correct.

3.2.2 Arrow Recognizer

The image-based recognizer is trained to identify only single-stroke arrows

drawn in one of eight directions. Also, the training examples include only a small range

of aspect ratios. These limitation prevent the recognizer from correctly identifying many

types of arrows. As a remedy we developed a special-purpose arrow recognizer that can

identify either one or two-stroke arrows drawn in arbitrary directions with varying aspect

ratios.

Arrows can be drawn with a wide variety of aspect ratios. For example, some

arrows are long with small heads, while others may be short with large heads. Also

arrows can be drawn in arbitrary directions. Because of this wide range of variation,

it is inefficient to use template-based recognizers to identify them. Therefore, we use a

special-purpose recognizer, described below, to recognize arrows. Our arrow recognizer

can handle multi-stroke arrows drawn in any direction.

Table 3.2 describes the types of arrows that exist in Data Set A. 76% of the

arrows have straight shafts (Figure 3.8) while only 7% are curved (Figure 3.9). 41% of

the arrows are drawn with a single stroke, while 59% are drawn with two. A total of

17% of the arrows are drawn either with an unusual shaft (e.g., a squiggle) or an unusual

head (e.g., “ ”). We designed our recognizer to handle both single-stroke and two-stroke

arrows with strait shafts. This comprises 76% of the arrows in Data Set A.

To recognize a single-stroke arrow, the program first orients the candidate
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shape so that it is pointing upward. Then the image is divided at roughly the widest

point (see below for more precise description) to from the top and bottom of the im-

age. A recognizer attempts to identify the top as an arrow head and the bottom as a

straight shaft. If they are both identified as such, and they have the appropriate relative

arrangement, they are classified as an arrow.

To recognize a stroke as a portion of a two-stroke arrow, the program attempts

to identify it as an arrow head. If it is identified as such, the program attempts to

recognize the previously drawn stroke as a shaft. If it is a shaft, and the relative

arrangement of the shaft and head are appropriate, the two strokes are classified as an

arrow. If this previously drawn stroke does not form an arrow, then the subsequently

drawn stroke is examined in the same way.

Straight Arrow Curved Arrow Others

Single stroke 31% 3% 7%

2 strokes 45% 4% 10%

3 strokes 0.30% 0% 0%

Total 76% 7% 17%

Table 3.2: Distributions of each type of arrow.

Figure 3.8: Example of a straight arrow.
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Figure 3.9: Curved arrow (red) in moment equation.

Orienting a Candidate Single-Stroke Arrow

To orient a candidate single-stroke arrow, the program first uses a simple ap-

proach to find corners on the pen stroke (Figure 3.10b). A corner is defined as a sample

point on the pen stroke that forms an acute angle with the previous and subsequent

samples points. More precisely, if the three points form an angle less than 900 and

greater than 150, the point is a corner point. The distance between all pairs of corner

points is computed. The image is then rotated so that the two most distant corner

points lie on a vertical line (Figure 3.10c). Next, the image is split vertically into two

equal halves. The density of samples points in each half is computed, and the image is

rotated so that the most dense half is at the top (Figure 3.10d).

Once the image has been oriented, the widest points are identified (Figure

3.11e). These points are the ones that lie on the vertical sides of a coordinate aligned

bounding box. The image is split vertically at the lowest of these points (Figure 3.11f).

The portion of the image above the split is considered a candidate arrow head. If it is

recognized as an arrowhead, then the portion of the image below the split is considered

a candidate shaft. Otherwise, the entire stroke is considered a candidate arrowhead.
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(a) (b)

(c) (d)

Figure 3.10: Steps in orienting a Candidate Single-Stroke Arrow. Red circles are the
corners. Yellow line is the longest distance between two corners.

Recognizing Arrowheads

Our arrowhead recognizer computes a boundary for the candidate stroke that

is somewhat related to a convex hull. While the convex hull of a pen stroke may contain

both points belonging to the stroke and points which do not lie on the stroke, our

boundary contains only points that belong to the stroke. We approximate the boundary

with least squares lines and examine those lines to determine if they form either a

triangle-shaped arrowhead or a “V”-shaped arrowhead.

To construct our boundary, we use a line-scanning algorithm to determine

which sample points on the pen stroke can be viewed from each of the four cardinal
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Stroke1

Stroke2

(e) (f)

Figure 3.11: Steps in orienting a Candidate Single-Stroke Arrow. Red circles are the
widest points.

directions (Figure 3.12 parts (b), (d), (f), and (h)). For example, Point “A” in Figure

3.12 can be viewed from the right, while points “B,” “C,” and “D” cannot. We then

compute four additional views which are the intersections of the views from adjacent

cardinal directions. For example, part (a) of Figure 3.12 shows the points that are

viewable from both the left and the top.

The program then constructs a single least-squares line for each of the eight

views. Consider the viewable points in Figure 3.14. These points are grouped into sets

comprising consecutive sample points. In this case, there is one large set of consecutive

points, and many smaller sets. If the largest set contains at least 80% of the viewable
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points, a least squares line is constructed from the set. Otherwise, no least squares line

is constructed for this view. This threshold is used so that a line will not be constructed

for a curved shape. For example, for the circle in Figure 3.15, there are two large sets

of consecutive viewable points, with neighbor containing more than 80%.

If least squares lines are computed for fewer than three views, the candidate

is rejected as an arrowhead. Otherwise, the three lines with the least error of fit are

identified. If the angles between these three lines are all between 15o and 165o, the

candidate is classified as an arrowhead.

(a) (b) (c)

(f)

(i)(h)(g)

(d) (e)

Figure 3.12: Points(Yellow) can be seen from the eight directions.
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A B C D

Figure 3.13: Points(Yellow circle) can be seen from the right.

Figure 3.14: Point groups on a rectangle(Red rectangles).
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Figure 3.15: Points groups on a circle. Yellow circles can be seen from right direction.
Green circles are the point groups.
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Recognizing Arrow Shafts

For a pen stroke to be the shaft of an arrow, the stroke must form a straight

line. To determine if a stroke is straight, we compute the straightness ratio. This

is computed as the ratio of the arc length of the stroke to the distance between the

endpoints. If this ratio is greater than 0.7, the stroke is classified as a valid shaft.

Arrowhead and Shaft Alignment

If one of the ends of a shaft lies within the bounding box of an arrowhead, the

two satisfy the geometric requirements to be an arrow. However, they are classified as

such only if the two belong to the same pen stroke or are two consecutive strokes.
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3.2.3 Heuristic Recognizers for Two-Stroke Math Symbols

Two of the most frequent mathematical symbols, “+” and “=”, cannot be

recognized by the image-based recognizer because we apply it only to individual strokes.

Thus, we identify these two symbols as a post-process.

If two consecutively-drawn strokes that are recognized as a “1” and a “-”, they

are examined further to determine if they form a “+”. To do so, the two must intersect,

and the intersection point must be roughly in the middle of each stroke. The latter

condition is satisfied if the distance from the intersection point to each end of the stroke

is at least 10% of the stroke’s length. Finally, the heights and widths of the bounding

boxes of the two strokes must be no larger than twice the average height of the characters

in the sketch. (Note that this average can be computed once the image-based recognizer

has been applied.) If all of these conditions are satisfied, the pair of strokes is classified

as a “+”.

An “=” is identified in an analogous fashion. In equal is identified as a pair of

consecutively drawn pen strokes that were both recognized as a “-” by the image-based

recognizer. The two strokes must not intersect each other and both the height and width

of the bounding box of the two must be less than twice the average width of a character.

3.3 Stroke Classification

The task of the stroke classifier is to assign each pen stroke to one of two

semantic classes: free body diagram or equation. (Recall that cross-outs are identified by

a separate classifier.) The stroke classifier is an AdaBoosted decision tree implemented
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in WEKA [40] with the following settings: AdaBoostM1 with 10 iterations, a seed of

1, no resampling, and a weight threshold of 100. The base classifier is a J48 decision

tree (an implementation of C4.5) with the following settings: pruned, confidence value

of 0.25, and minimum number of instances in a leaf of 2.

Our classifier employs a set of 10 features, several of which are computed from

the results of the preliminary recognition process. It also uses the 27 features from

Stahovich et al.’s [1] feature-based classification algorithm. As described in Section

7.1.2, combining these two feature sets results in high accuracy. However, our set of 10

features alone outperforms their 27 alone.

3.3.1 Our Stroke Classification Features

Feature Name Description

LNDT Normalized Drawing Time

LPC Modified Hausdorff Distance

LLS Binary feature: Is long Stroke?

LNCR Number of characters in the range

LNLR Number of long strokes in the range

LNAR Number of arrows in the range

LNU Number of underlying strokes

LUD Density of underlying strokes

LD2N Direction to the next stroke

LNS Number of segments

Table 3.3: Our 10 features for single-stroke classification.

Our 10 features for distinguishing free-body diagram and equation strokes are

listed in Table 3.3.

We have found that a stroke that was drawn earlier in the sketch is more likely

to be a free body diagram. Therefore, we compute the normalized time, TNDT , for each

44



stroke:

TNDT (i) =
TS(i)− TS(0)

TS(n)− TS(0)
(3.3)

where TS(i) is the start draw time of the ith stroke in a sketch, 0 is the first stroke,

and n is the last stroke. The normalized drawing time ranges from 0 to 1.0, with the

former corresponding to the first stroke drawn and the latter corresponding to the last

one drawn.

Five features are computed from the results of preliminary recognition. The

feature LPC is inversely related to the probability that a stroke is a character. If the

stroke was identified as a character by the image-based recognizer during preliminary

recognition, LPC is assigned the value of the Hausdorff distance between the stroke and

the best-matching template. However, if the stroke was identified as an arrow by the

image-based recognizer, LPC is set to 10,000.

The binary feature LLS indicates if the stroke is a long stroke. A long stroke

is defined as one that is at least three times taller or five times wider than the average

character size. Long strokes are more likely to belong to free body diagrams than

equations. We obtained these thresholds using exhaustive search of a small search space.

We considered five values for the thresholds for these features ranging from one to five

in steps of one.

The features LNCR and LNLR are the number of nearby characters and long

strokes, respectively. Here, two strokes are near each other if the minimum point-to-

point distance between them is less than twice the average character height. In the
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example in Figure 3.16, there are six character strokes near the letter “a”. The circle in

the figure provides an estimate of the “nearby” region. (The actual region is the locus

of points that are no father than twice the average character height from a point on the

“a”.)

Figure 3.16: Calculating the number of characters near the red stroke. The strokes in
green are within the threshold distance of twice the average character height. The circle
is a simple approximation of the region containing “nearby” strokes.

Arrows occur frequently in free body diagrams as forces. Thus, the proximity

of a large number of arrows may be indicative of a free body diagram. The feature

LNAR is the number of arrows that intersect the bounding box of the stroke.

The strokes in an equation typically do not overlap each other, while those

in a free body diagram often do. For example, Figure 3.17 shows a pen stroke from a

free body diagram which has numerous underlying pen strokes. LNU is the number of

underlying strokes while LUD is the underlying stroke density:

46



Figure 3.17: The strokes in cyan are the underlying strokes of the red stroke.

LUD =
L2
U

ABB
(3.4)

where L2
U is the square of the sum of the arc lengths of the underlying strokes and ABB

is the area of the stroke in question.

Equation strokes (in English) are typically drawn from left to right, while free

body diagrams can be drawn in any fashion. The feature LD2N is useful for capturing

this distinction. The feature is defined as the angle from the centroid of the current

stroke to the centroid of the next stroke.

This last feature, LNS is the number of segment points (corners) in the pen

stroke calculated with Herold and Stahovich’s [41] Classyseg technique. Figure 3.19

shows examples segmentation. For example, the letter “E” has six segment points while

a circle has none.
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Figure 3.18: (Left) Red arrows show direction from the centroid of one pen stroke to
the next in an equation. (Right) Red arrows show direction from the centroid of one
pen stroke to the next in a free body diagram.

Figure 3.19: Example of segments found in a stroke.
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3.3.2 Stahovich’s Features

Our stoke classifier also uses the 27 features from the stroke classifier in [13].

These features are listed in the Table 3.4. (See [13, 1] for more details about these

features.) The first four features describe the size of a stroke. For example, PAL is

the arc length of the stroke. These features are normalized by their average values in

the sketch. The next two features describe the position of a stroke. The next eight

features describe the shape of a stroke. For example, PEPR measures the degree to

which the stroke forms a closed path. It is defined as the Euclidean distance between

the endpoints of the stroke divided by the arc length. The next four features describe

temporal properties of a stroke. The remaining features characterize the geometric and

temporal relationship between the stroke and other strokes in the sketch.
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Category Feature Name Description

Size

PBBW Width of the minimum bounding box
PBBH Height of the minimum bounding box
PBBA Area of the minimum bounding box
PAL Total length of the stroke

Location

PD2LR Minimum distance between the stroke and the
closer of the left or right edge of the canvas

PD2TB Minimum distance between the stroke and the
closer of the top or bottom edge of the canvas

Shape

PEPR Degree to which the stroke forms a closed
path

PSE Binary version of End Point Ratio
PSI Number of times the stroke intersects itself
PSOC Sum of all curvature values along the stroke
PSOCABS Sum of all curvature values along the stroke
PSOC2 Sum of all curvature values along the stroke
PSOCR Sum of all curvature values along the stroke
PID Compactness of the stroke

Drawing Kinematics

PAPS Average Speed while drawing
PMaxPS Maximum instantaneous speed for the pen
PMinPS Minimum instantaneous speed for the pen
PDMaxMin Maximum pen speed minus minimum pen

speed
PT2D Time from pen down to pen up

Geometric Relations

PILL Count of endpoint-to-endpoint intersections
with other strokes

PIXX Count of midpoint-to-midpoint intersections
with other strokes

PIXL Count of midpoint-to-endpoint intersections
with other strokes

PILX Count of endpoint-to-midpoint intersections
with other strokes

PCP Binary feature - does the stroke help form a
closed path

PIP Binary feature to indicate whether the stroke
is enclosed inside a closed path

Temporal Relations

PT2P Time between the end of the previous stroke
and the beginning of the current stroke

PT2N Time between the end of the current stroke
and the beginning of the next stroke

Table 3.4: Stahovich’s features for single-stroke classification.
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Chapter 4

Interpreting the Text

4.1 Grouping Equations

Once the equation pen strokes have been identified, it is necessary to group

them into individual equation groups (Figure 1.1). We explored the use of Stahovich,

Peterson, and Lin’s (2014) general-purpose pen stroke grouping algorithm for this task.

Although the algorithm achieved high accuracy, we were able to develop a special-

purpose technique that was both more efficient and more accurate for our task. This

technique employs three features and is trained with J48 tree implemented in WEKA.

To group pen strokes into equations, the classifier is applied to every pair of strokes

to determine if the pair belongs to the same equation. Pairs of grouped strokes chain

together to form equation groups.
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4.1.1 Pairwise Classifier

Our approach uses pairwise classifiers to identify pairs of strokes that belong to

the same equation. It considers three features and has two classes (Join and NoJoin).

The three features describe properties of the bounding boxes of a pair of pen strokes.

GY OR describes the vertical overlap of the bounding boxes of two strokes defined as:

GY OR = max(
yO
yA
,
yO
yB

) (4.1)

where yA and yB are the heights of the two bounding boxes, and yO is their vertical

overlap as shown in Figure 4.1. GMMD is related to the Manhattan distance defined as:

GMMD = xD − yO (4.2)

where xD is the horizontal distance between two bounding boxes. If the bounding boxes

overlap horizontally, xD = 0. G2BOR is the ratio of the area of the intersection of the

bounding boxes to the area of their union. However, before computing this ratio, the

bounding boxes are expanded if they are too small. If the height of a bounding box

is less than the median bounding box height, the box is expanded to that height. The

width is adjusted analogously. To emphasize the relationship between two strokes in an

equation, we double the width of the bounding box (Figure 4.2). Strokes in an equation

are usually written horizontally. So, here we only double the width of the bounding

box. The medians are computed separately for each problem solution. We then train

the model using WEKA’s (Hall et al. [40]) J48 tree technique with default parameter
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values.

4.1.2 Chain stroke pairs

Our equation classifier uses two join classes (Join or NoJoin) to identify pairs

of strokes that belong together. After these pairs have been identified, we groups joined

pairs that have a stroke in common, to form a small stroke group. In the same way, if

two groups have strokes in common, we chain the two groups to form a larger group.

For example, the strokes groups are chained, as illustrated in Figure 4.3. Here, the

classifier identifies that group AB and CD should be in the same group, while all other

groups should not. The chainer then forms two groups. The first contains groups A and

B because the group A and B have a character “=” in common. The second contains

groups C and D because the group C and D have a character “T” in common. The

new strokes group A’ and B’ don’t have strokes in common, so we don’t chain the two

groups. This chaining technique is applied to all grouping algorithms in this thesis.

4.1.3 Merging the rest of the small groups

Sometimes subscripts are not properly grouped with an equation (Figure 4.4.

As a remedy, small equation groups containing less than five strokes are merged with

the nearest equation group if the distance between that group and the nearest equation

group is less than a medium character height.
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Figure 4.1: yA,yB, yO, and xD.

Figure 4.2: Expanded bounding box.
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Figure 4.3: The chainer forms two groups which have a stroke in common.

Figure 4.4: Subscripts on equations.
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4.2 Grouping Characters

Once the pen strokes have been grouped into equations, it is necessary to

group the strokes into individual characters so they can be recognized. We do this using

a variation on the equation grouper. Here we use only two features, GBOR and GXOR.

GBOR is similar to G2BOR but does not double the width of the bounding box. GXOR

is similar to GY OR but considers horizontal overlap of the bounding boxes defined as:

GXOR = max(
xO

xA
,
xO

xB
) (4.3)

where xA and xB are the widths of the bounding boxes of the two strokes, and xO is

their horizontal overlap. As before, we then trained the model using WEKA’s J48 tree

technique. The features are computed for every pair of strokes in an equation group.

Grouped pairs can chain together to form larger characters.

4.3 HMM

After the individual characters in a solution have been identified, we use Kara

and Stahovich’s image-based recognizer [39] to recognize them. While this recognizer has

high accuracy, recognition errors are still problematic. Some errors are due to variations

in writing style. Others result from ambiguity. For example, a lowercase “t” can be

confused with a “+” and a zero can be confused with the letter “o”. We correct this

using a HMM-based approach from (Lee et al. [2]).

A HMM is characterized by the three-tuple λ(Aij , Bj(k), πi). Aij is a matrix
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describing the probability of transitioning from state i to state j, Bj(k) is a matrix

describing the probability of observing symbol k in state j, and πi is a vector describing

the probability that the initial state is state i (Rabiner [42]). Our HMM has 50 states

including letters, numerical digits, ‘(’, ‘)’, ‘+’, ‘-’, ‘*’, ‘/’, ‘=’, ‘sigma’, ‘theta’, ‘phi’, “co”,

“si”, “cos”, and “sin”. The last four states are designed to facilitate identifying “sin”

and “cos”. Our 50 observation symbols match the 50 states. As in (Lee et al. [2]), we

compute the Aij matrix based on a simple grammar for legal equations described in Table

4.1. We assume all legal state transitions defined by the grammar are equally likely, with

the total probability of such transition summing to 99%. Conversely, we assumed that

all illegal transitions from a state are equally likely, with the total probability of such

transitions summing to 1%. However, while Lee et al. [2] use heuristics and recognizer

accuracy data to create the Bj(k) matrix, we compute our matrix using maximum-

likelihood estimation (Rabiner [42]).

During error correction, we treat the output of the image-based recognizer as

the observations and the true identity of the characters as the hidden states. We use the

Viterbi algorithm (Rabiner [42]) to compute the most likely sequence of hidden states

to produce the observations. This sequence is then used as the interpretation of the

equation.
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Si Si+1

= digit, alpha, ‘(’

‘(’ digit, alpha,‘θ’,‘φ’

‘)’ op, ‘=’

op digit, alpha, ‘(’

digit digit, op

alpha cs digit, op, ‘=’, ‘)’

‘c’ op, ‘=’, ‘)’,”co”

‘s’ op, ‘=’, ‘)’,”si”

“co” “cos”

“si” “sin”

“cos”,”sin” ‘(’, ‘θ’,‘φ’

‘Σ’ ‘f’,‘m’

‘θ’,‘φ’ op, alpha,‘)’

Table 4.1: Equation grammar: Legal transitions. digit = digits ‘0’ – ‘9’; alpha= letters;
alpha cs = letters except ‘c’ and ‘s’; op = ‘+’, ‘-’,‘*’, and ‘/’.

58



Chapter 5

Extracting Features from Text

Once the equations have been recognized, we compute a variety of features

from the text. One feature describes temporal properties of the writing. The remainder

describe the frequency of occurrence of various patterns of characters. The complete set

of features is listed in Table 5.1.
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Features Description

FP No. of long pauses

FE No. of equations

FD No. of digits

FL No. of letters

FM No. of mathematical symbols

FΣ No. of Σ

FC No. of characters

FD/L Ratio of FD to FL

FD/M Ratio of FD to FM

FL/M Ratio of FL to FM

FU No. of units

FDD No. of pattern DD

FDM No. of pattern DM

FDL No. of pattern DL

FLD No. of pattern LD

FLM No. of pattern LM

FLL No. of pattern LL

FMD No. of pattern MD

FMM No. of pattern MM

FML No. of pattern ML

F=D No. of pattern =D

FDMD No. of pattern DMD

FDML No. of pattern DML

FLMD No. of pattern LMD

FLML No. of pattern LML

Table 5.1: Features for characterizing equations. D = digit, L = letter, M = mathe-
matical symbol, “units” are units of measure such as “kg” and “lb”.
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5.1 Features

5.1.1 Pause Count Features

Cheng and Rojas-Anaya [31] propose two different measures based on the tem-

poral chunk signal. There are Long Pause Count (LPC) and Long Pause Duration

(LPD). Long Pause Count (LPC) is the number of inter-stroke pauses longer than a

threshold.Long Pause Duration (LPD) is the average of the ratio of the difference be-

tween the pause duration and baseline to the baseline itself:

LPD =

∑N
i=1

PDi−BL
BL

N
(5.1)

where N is the number of inter-stroke pauses in the equation, PDi is the pause between

stroke i and i + 1, and BL is the baseline (a threshold). Cheng and Rojas-Anaya

[31] calculate LPC and LPD for each individual equation while we calculate these two

measures for the equations in each problem solution. They use the pause duration in the

participant’s name as a baseline and claims that two or three multiples of the baseline

is the best threshold for their dataset.

In this thesis, we evaluated not only inter-stroke pauses but also inter-character

and inter-equation pauses. We used the median, which is computed for each individual

problem solution, as a baseline and explored a range of thresholds between half and

30 times the median. We used our exam dataset to investigate the ability of LPC

and LPD to predict student competence. We trained the models using WEKA’s ([40]

) SVM regression technique (SMOreg) with default parameters. Our search process
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thus considers 21 thresholds. Figure 5.1 shows the coefficient of determination (R2) of

LPCs and LPDs using the 21 thresholds. Table 5.2 shows that for our data, the median

pause with inter-character LPC was the most effective threshold for predicting student

performance.

0

0.05

0.1

0.15

0.2

0.25

0.5 1 2 3 4 5 6 7 8 9 10 20 30

R
2

Threshold

LPC_C LPD_C LPC_S LPD_S LPC_E LPD_E

Figure 5.1: Thresholds for LPC and LPD. LPC C = inter-character LPC. LPD C =
inter-character LPD. LPC C = inter-stroke LPC. LPD S = inter-stroke LPD. LPC E =
inter-equation LPC. LPD E = inter-equation LPD.

As shown in Table 5.2, using one or two times the median of LPC as the

threshold was the most effective threshold for predicting student performance. In this

thesis, we use the median as the threshold.

The feature FP is the number of inter-character pauses longer than the median

inter-character pause.
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Rank Type Threshold R2

1 LPC 1 0.19971768

2 LPC 2 0.199673185

3 LPC 0.5 0.19540232

4 LPC 3 0.194353752

5 LPC 4 0.175949322

6 LPC 5 0.157028346

7 LPC 6 0.152254633

8 LPC 7 0.151372364

9 LPC 8 0.138143552

10 LPC 9 0.131658656

Table 5.2: Top 10 thresholds.

5.1.2 Our Features

Single Item Frequency Features

The feature FE is the number of equation groups identified by the equation

grouper. Recall that an equation group is a string of characters belonging to a single

equation and written on the same line. Thus, an equation group may not be a complete

equation (Figure 1.1). For example, if an equation wraps to a second line, the grouper

will identify each line as an equation group. Similarly, if a fraction is written with a

horizontal fraction bar (vinculum), the numerator and denominator will likely each be

identified as a separate equation group.

Several features describe the frequency of occurrence of various classes of sym-

bols. FD is the number of single digits in the solution (i.e., 0 – 9). FL is the number of

letters, including both the English alphabet and the Greek letters ’θ’ and ’φ’. The latter

two letters are often used to represent angles. We include only these two Greek letters

(and Σ) because they occur far more frequently in our dataset than other Greek letters.

FM is the number of mathematical symbols in the solution including ‘(’, ‘)’, ‘+’, ‘-’, ‘*’,
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‘/’, and ‘=’. FΣ is the number of occurrences of the symbol ‘Σ’, which is typically used

in equation prototypes, such as “ΣFx = 0.” Finally, FC is the total number of charac-

ters in the solution: FC = FD + FL + FM + FΣ. Three features describe the relative

frequency of the three most common symbol classes: FD/L = FD/FL, FD/M = FD/FM ,

and FL/M = FL/FM .

The proper use of units of measure is often important for achieving the correct

solution to an engineering or science problem. FU is the number of units of measure in

the solution, including “kg”, “g”, “kN”, “N”, “m”, “lb”, “ft”, and “in”. To be identified

as such, units must be immediately preceded by a digit such as “7 lb”.

Binary Pattern Frequencies Features

The last category of features are the frequency of occurrence of binary and

tripartite sequences of digits (D), letters (L), and mathematical symbols (M). The

features Fij for i,∈ {D,L,M} are the number of occurrences of binary sequences. For

example, FDM is the number of pairs of characters containing a digit followed by a

mathematical symbol. The feature F=D considers a special instance of a binary sequence.

F=D is the number of equal signs followed by a digit, such as “= 4”. The occurrence of

this pattern may indicate that an equation has been reduced to numbers, rather than

variables.

Tripartite Pattern Frequencies Features

The features FiMj for i, j ∈ {D,L,M} are the number of occurrences of tri-

partite sequences. For example, FDML is the number of character sequences containing
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a digit followed by a mathematical symbol, followed by a letter.

5.1.3 Van Arsdale’s Features

Van Arsdale and Stahovich [30] characterize a solution history in terms of the

temporal and spatial organization of the work. More specifically, they consider five types

of features describing properties of the temporal organization, the spatial organization,

the spatial clustering, the cross-outs, and the pen strokes.

Temporal Organization Features

They use nine features to describe this distribution. The first four describe the

amount of time spent on various activities. TNF is the total number of intervals spent

on free body diagrams, TNE is the number spent on equations, TNB is the number in

which no work was done, and TND is the number of digressions (TND = m). Taking

breaks and digressing may indicate that the student is struggling on a problem. They

define the complexity, TC of the sequence as the length of the compressed string. A

random sequence of activities will result in a large value for this feature, while a sequence

comprising a few large blocks of activities will result in a small value. We use entropy as

a measure of the balance of effort between the free body diagram and equation writing

activities:

TEnt = −(TNF /N)ln(TNF /N)− (TNE/N)ln(TNE/N) (5.2)

where N = TNF + TNE . If the sequence is dominated by one or the other of these two

types of activities, the entropy is relatively small. However, if an equal amount of time

is spent on both, the entropy is maximal.
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Two additional features consider the frequency of transitions between free body

diagram and equation activity. TF2E is the number of transitions from the former to

the latter, while TE2F is the converse. The cross-out, break, and digression intervals are

removed from the activity sequence before computing these two features.

Three additional features characterize the size distribution of the periods of

inactivity. TSBr is the number of small breaks lasting between 2 and 40 sec., TMBr is

the number of medium breaks lasting between 40 and 160 sec., and TLBr is the number

of large breaks lasting at least 160 sec.

Spatial Organization Features

They define six features representing the fraction of strokes with various amounts

of out-of-order timing. These features are SOO:i where i ∈ (10-20, 20-30, 30-40, 40-50,

50-60, and 60+). For example, SOO:10−20 is the fraction of strokes that are out of order

by 10% to 20% of the total solution time, while SOO:60+ is the fraction that are out of

order by at least 60%. The reference timeline provides a global view of the progression

of work. A second type of feature provides a more local view by comparing the time

stamp of a stroke to those of nearby strokes that were drawn earlier. Two strokes are

considered to be near each other if their expanded bounding boxes intersect. For this

calculation, the coordinate-aligned bounding boxes of the strokes are expanded in all di-

rections by 0.8. (We obtained this value using a search process aimed at optimizing the

predictive ability of the features.) Each stroke is then characterized by the time delay

between it and its earliest nearby neighbor. Analogous to the out-of-order features, six
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Features Description

TNF Number of activity intervals spent on FBD activity.

TNE Number of activity intervals spent on equation activity.

TNB Number of activity intervals in which a student had no activity.

TND Number of times the student interrupted their work on a problem
to work on other problems.

TEnt Entropy of the discretized activity sequence.

TC Complexity of the discretized activity sequence.

TF2E Number of activity changes from FBDs to equations.

TE2F Number of activity changes from equations to FBDs.

TSBr Number of breaks between 2 and 40 seconds in duration.

TMBr Number of breaks between 40 and 160 seconds in duration.

TLBr Number of breaks at least 160 seconds in duration.

Table 5.3: Summary of the Temporal Organization features.

features are used to characterize this time delay: SEN :i where i ∈ (10-20, 20-30, 30-40,

40-50, 50-60, and 60+. For example, SEN :10−20 is the fraction of strokes with a delay

between 10% and 20% of the total solution time.

Features Description

SOO:10−20 Fraction of strokes that differ from their reference time by
10% to 20% of the total problem time.

SOO:20−30 Fraction that differ by 20%-30%.

SOO:30−40 Fraction that differ by 30%-40%.

SOO:40−50 Fraction that differ by 40%-50%.

SOO:50−60 Fraction that differ by 50%-60%.

SOO:60+ Fraction that differ by over 60%.

SEN :10−20 Fraction of strokes that have a delay from neighboring strokes of
10% to 20% of the total problem time.

SEN :20−30 Fraction that have a delay of 20%-30%.

SEN :30−40 Fraction that have a delay of 30%-40%.

SEN :40−50 Fraction that have a delay of 40%-50%.

SEN :50−60 Fraction that have a delay of 50%-60%.

SEN :60+ Fraction that have a delay over 60%.

Table 5.4: Summary of the Spatial Organization features.
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Spatial Cluster Features

They characterize the clusters with seven features. CNF and CNE are the

numbers of free body diagram and equation clusters, and CEAR is the ratio of the area

of the equation clusters to the total area of all clusters. CFR is the number of times the

student returned to a free body diagram cluster to revise it, and CFRS is the number

of pen strokes added in that way. CER and CERS are the analogous properties of the

equation clusters.

Features Description

CNF Number of FBD pen stroke clusters.

CFR Number of times a student returned to a previous
FBD cluster.

CFRS Fraction of strokes in a solution that were added
during FBD revisits.

CNE Number of equation pen stroke clusters.

CEAR Ratio of the net area of the equation clusters to
the total area of all clusters.

CER Number of times a student returned to a previous
equation cluster.

CERS Fraction of strokes in a solution that were added
during equation revisits.

Table 5.5: Summary of the Spatial Cluster features.

Cross-Out Features

They characterize cross-out gestures with five features. XT and XPS are the

number of typo and problem-solving cross-outs, respectively. The former are cases

in which the student writes something and quickly crosses it out, as if correcting a

typographical error. The latter are cases in which there is a substantial delay between

the time the ink was written and when it was crossed out: these cases are more likely
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to be corrections of problem-solving errors. XB is the number of “big” cross-outs that

delete 10 or more pen strokes, and thus represent a revision of a substantial amount

of work. Finally, XF and XE are the number of crossed-out free body diagram and

equation strokes, respectively.

Features Description

XF Number of FBD strokes that were crossed-out.

XE Number of equation strokes that were crossed-out.

XB Number of cross-out gestures which removed 10 or more strokes.

XT Number of cross-out gestures which occurred within 16 seconds
of underlying ink.

XPS Number of cross-out gestures which occurred after 16 seconds
of underlying ink.

Table 5.6: Summary of the Cross-out features.

Basic Pen Stroke Features

They include six features describing the properties of the pen strokes. PNF ,

PNE , and PNX are the number of free body diagram, equation and cross-out strokes,

respectively. Likewise, PLF , PLE , and PLX are the median length of the free body

diagram, equation, and cross-out strokes, respectively.

Features Description

PNF The total number of FBD strokes in the problem solution.

PNE The total number of equation strokes in the problem solution.

PNX The total number of cross-out strokes in the problem solution.

PLF Median length of FBD strokes in the problem solution.

PLE Median length of equation strokes in the problem solution.

PLX Median length of cross-out strokes in the problem solution.

Table 5.7: Summary of the Basic Pen Stroke features.
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Chapter 6

Dataset

We used LiveScribe digital pens to collect homework and exam solutions from

an undergraduate mechanical engineering course in statics from 2010 to 2013. Students

enrolled in the course were given LiveScribe digital pens which they used to complete

their homework, quizzes, and exams. These pens serve the purpose of a traditional ink

pen but additionally digitize the ink. This provides a digital record of the students’

coursework in the form time stamped (x, y) coordinates of every pen stroke.
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Figure 6.1: LiveScribe digital pen

6.1 Set A - Homework

In the winter quarter of 2010, we conducted a study with 132 students. In

total, 6,562 sketches were collected from 12 exams, 30 homework assignments, and 7

quiz problems. We hand labeled 8 homework problems in a total of 810 homework

sketches, of which 69% are equation strokes to provide ground truth data for training

and testing our stroke classifier.

6.2 Set B - Homework

In this set, we use solutions to four homework problems from one course offering

in 2013 to train our algorithms. This dataset, which we refer to as the homework dataset,

comprises a total of 131,304 pen strokes, of which 72% are equation strokes. We hand

labeled this dataset to provide ground truth data for training and testing our text
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interpretation techniques including the groupers and HMM.

6.3 Set C - Exams

We use solutions to six midterm exam problems from a different course offering

in 2012 to evaluate the predictive power of our features. This dataset, which we call

the exam dataset, comprises a total of 1,069,918 pen strokes, of which 72% are equa-

tion strokes. The exam problems were graded by teaching assistants based on rubrics

developed by the course instructor. These rubrics assigned credit for the correctness of

individual problem-solving steps as well as the overall correctness of the solution. We

use our features to predict the assigned grade. Appendix A includes examples of the

exam we used in this data set.

6.4 Image-based Recognizer

Our image-based recognizer was trained on a separate set of 450 symbols com-

prising 10 digits, 22 capital letters, 8 arrows, and 5 mathematical symbols (“−”, “Σ”,

“/”, “(”, “)”) from Set A. The eight arrows here mean that arrows point to eight direc-

tions. Each symbol (digits, letters, symbols and arrows) has 10 templates in the training

set.
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Chapter 7

Results

7.1 Stroke Classifier

7.1.1 Cross-out Classifier Accuracy

As previously mentioned, homework solutions typically contain few cross-outs.

To evaluate the cross-outs classifier, we first randomly pick up free body diagram strokes

and equation strokes with the same amount of cross-outs strokes from the Set A. We

then evaluated the cross-outs classifier with the 10 cross-outs stroke feature as described

before. Table 7.1 shows the accuracy for our cross-outs classifier and Stahovich’s. Our

method had an overall accuracy of 92.2% in classifying cross-outs and non-cross-outs.

7.1.2 Stroke Classification Accuracy

We used an Adaboosted C4.5 Decision Tree, implemented in WEKA [40], with

its default parameters, and 10 fold cross-validations to train and evaluate the test set.
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Method Actual Class
Classified As

Accuracy
Cross-out Non Cross-out

Ours
Cross-out 3154 424 88.15%
Non Cross-out 342 6812 95.22%
Overall 92.86%

Peterson’s
Cross-out 2658 920 74.30 %
Non Cross-out 960 6164 86.52 %
Overall 80.43 %

Table 7.1: Comparison results.

All results in the following section were obtained using user hold-out-cross-validation.

The final accuracy is averaged across all users.

We compare the performance of our classification technique to that of Sta-

hovich et al. [1] and Blagojevic el al. [21]. To provide additional insights into the

differences between the three-feature sets, we created stroke classifiers which contains

all combinations of the three sets of features. Figure 7.1 presents the result of the com-

parisons. We evaluated all methods using the original data and balanced data. As we

can see in the previous section, around 70% of strokes in a static solution are equation

strokes. Therefore, we balanced the data so that it contains the same amount of equa-

tion strokes and free body diagram strokes. Since free body diagram is the minor class,

we randomly picked up the same amount of strokes from equation strokes to generate a

balanced dataset. Our approach alone performed better than Stahovich’s, and Blagoje-

vic’s in both data sets. It also indicates we can combine all three feature-set to achieve

high accuracy. However, because of the large number of features, the stroke classifier

uses combined features-set requires more training and calculation time.

Table 7.2 contains confusion matrices for FBD versus Equation classification for
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Figure 7.1: Comparison results.

our method, Stahovich’s, Blagojevic’s and combined. Our method achieved an overall

recognition accuracy of 88.28% while Stahovich’s method has an accuracy of 79.85%,

and Blagojevic’s has accuracy of 85.24%. If we combined the three feature sets, it can

achieve an accuracy of 91.93%; however, it take more time on training and testing.

7.1.3 Stroke Feature Importance

To determine the most important features, we used the information gain al-

gorithm, implemented in WEKA, to rank the individual discriminating power of each

feature as shown in Table 7.3. Six of our features can be found within the top 10 of the

list. The first and the third feature are temporal features. duration time between two

consecutive strokes in an equation is usually shorter than that in a free body diagram.

Table 7.3 shows these two are useful on classifying equation strokes and free body dia-

gram strokes. In the sketch of a statics solution, free body diagram strokes usually have
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Method Actual Class
Classified As

Accuracy
Equation FBD

P29
Equation 5141 1262 80.28%
FBD 1317 5086 79.43%
Overall 79.85%

B
Equation 5483 920 85.63%
FBD 945 5458 85.24%
Overall 85.43%

L
Equation 5714 689 89.23%
FBD 812 5591 87.32%
Overall 88.28%

ALL
Equation 5946 457 92.87%
FBD 577 5826 90.99%
Overall 91.93%

Table 7.2: Confusion matrix.

other free body diagram strokes nearby, as well as having many other strokes overlap

with its bounding box area. In addition, free body diagrams usually have force ar-

rows, and the direction to the next stroke is usually not consistent. On the other hand,

equation strokes usually have other equation strokes nearby. Our features reflect these

characteristics ranked in top 10 of the list. The feature Distance To Top or Bottom

Edge (PD2TB) also seems important in the statics problems because free body diagram

strokes are usually drawn at the top of the sketch.

7.1.4 ANOVA

We performed repeated measures analysis of variance (ANOVA) on the accu-

racy of each method on the original data. Table 7.4 revealed that the difference in the

accuracy between the method which combined our features and Blagojevic’s (LB) and

the method which combined all features (A) is not significant (p = 0.453) while the dif-

ference in the accuracy between all other methods are significant. The result indicates
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Rank Features

1 PT2N

2 LNAR

3 PT2P

4 LNCR

5 LNLR

6 LNDT

7 LD2N

8 PD2TB

9 LUD

10 PILL

11 PBBH

12 PT2D

13 PBBW

14 PSOCR

15 PILX

16 PIXL

17 PSOCABS

18 PIXX

19 PBBA

20 PSOC2

21 PID

22 PIP

23 LLS

24 PAL

25 PAPS

26 PMinPS

27 PSI

28 PD2LR

29 PSOC

30 PMaxPS

31 LPC

32 PDMaxMin

33 PCP

34 LNS

35 LNU

36 PEPR

37 PSE

Table 7.3: The best features for classification of individual strokes. Features are ranked
according to their average merit as determined by WEKA’s information-gain- ratio
attribute-selection algorithm.
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that the effect is less when adding Stahovich’s features on classifying strokes.

S27 S29 B L LS27 LS29 LB BS29 A

S27 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

S29 0.000 0.000 0.000 0.000 0.000 0.000 0.000

B 0.000 0.000 0.000 0.000 0.000 0.000

L 0.000 0.000 0.000 0.000 0.000

LS27 0.000 0.000 0.000 0.000

LS29 0.000 0.000 0.000

LB 0.000 0.453

BS29 0.000

A

Table 7.4: Significant values.

7.2 Interpreting the Text

We evaluated the performance of our equation and character groupers using

Set B. We trained and tested our algorithms using a problem-holdout approach. In each

of the four folds of training and testing, solutions to three of the four problems were used

for training, and solutions to the fourth were used for testing. We then averaged the four

results. We use three metrics from (Stahovich, Peterson, and Lin [1]) to measure the

accuracy of our groupers. Ink-Found is the percentage of a group’s ink (by arc length)

that was correctly located. Ink-Extra is the percentage of ink that was erroneously

added to a group, with the ground truth ink as the basis. Both of these are computed

on a per-group basis, and then averaged across all groups. The third measure is the

percentage of groups that have no more than a given number (X) of erroneous strokes.

X = 0 is “all-or-nothing” accuracy. For example, an equation group that contains one

extra pen stroke and no other errors would be counted as having “one or fewer errors”
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(X = 1).

Before evaluating the performance with these metrics, we mapped the com-

puted groups to the ground truth groups. We exhaustively calculated the ratio of the

common strokes in the pair of the computed groups and ground truth groups. The ratio

defined as:

Rij =
Commonij
NGSj

(7.1)

where Commonij is the number of strokes exists in both group i in the computed groups

and group j in the ground truth groups. NGSj is the number of strokes in group j in the

ground truth groups. We then mapped two groups in each group set from the highest

ratio Rij until no more groups could be mapped. Finally, the rest of the groups were

added as extra groups or missing groups.

Table 7.5 compares that accuracy of our equation grouper to that of Sta-

hovich’s grouper (2014). We trained and tested our algorithms using a problem-holdout

approach. In each of the four folds of training and testing, solutions to three of the

four problems were used for training, and solutions to the fourth were used for testing.

We then averaged the four results. In addition to being more computationally efficient,

our approach performs better on all three accuracy measures. For example, our grouper

located an average of 93.8% of the ink for each equation group, while Stahovich’s lo-

cated an average of 93.0%. More importantly, our method achieved an all-or-nothing

accuracy of 80.5%, while Stahovich’s achieved 75.5%. Lee et al. (2012) extended Sta-

hovich’s grouper for use in grouping pen strokes into characters. Table 7.6 compares the
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accuracy of our character grouper to that of Lee’s grouper. Our grouper has about the

same accuracy as Lee’s.

We performed repeated measures analysis of variance (ANOVA) on the four

problem set and accuracy of the groupers. Table 7.7 represents that ANOVA revealed

that the difference in the accuracy between our equation grouper and combined grouper

is significant while the accuracy between Stahovich’s grouper and combined grouper is

not significant (p = 0.78). The result indicates that the effect is less to add Stahovich’s

features. Table 7.8 reveal that the difference in the accuracy between our character

grouper and Lee’s grouper is not significant (p = 0.699).The results show there is no

difference in accuracy between Lee’s grouper and ours. However, ours only uses two

features while Lee’s uses six features.Just as our equation grouper is more efficient than

Stahovich’s, our character grouper is more efficient than Lee’s.

We also evaluated the accuracy of our HMM using the Set B. Here, we used

10-fold cross validation and averaged the results. The image-based recognizer achieved

an average recognition accuracy of 85.1%. Using the HMM to correct recognition results

improved the average accuracy to 92.6%.

Ink Eqns: X Errors or fewer
Found Extra 0 1 2

L 93.8% 6.2% 80.5% 97.1% 99.4%

S 93.0% 7.0% 75.5% 96.8% 99.3%

A 94.0% 6.0% 80.5% 97.1% 99.3%

Table 7.5: Equation grouping accuracy. L = our equation grouper. S = the grouper
from [1]. A = the grouper which combined our feature set and Stahovich’s
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Ink Eqns: X Errors or fewer
Found Extra 0 1 2

L 94.6% 5.4% 89.9% 99.3% 99.9%

J 94.6% 5.4% 90.2% 99.4% 99.9%

A 93.9% 6.1% 92.1% 99.5% 99.9%

Table 7.6: Character grouping accuracy. L = our character grouper. J = the method
from [2]. A = the grouper which combined our feature set and Lee’s
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Figure 7.2: Equation grouping accuracy for each problem. L = our character grouper.
S = the grouper from [1]. A = the grouper which combined our feature set and Lee’s

A L P

A 0.000 0.78

L 0.000

S

Table 7.7: Equation grouping significant values. L = our equation grouper. S = the
grouper from [1]. A = the grouper which combined our feature set and Stahovich’s

A L J

A 0.062 0.000

L 0.699

J

Table 7.8: Character grouping significant values. L = our character grouper. J = the
method from Lee’s [2]. A = the grouper which combined our feature set and Lee’s
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Figure 7.3: Character grouping accuracy for each problem. L = our character grouper.
J = the method from [2]. A = the grouper which combined our feature set and Lee’s
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7.3 Extracting Features from Text

7.3.1 Our Features

We used the Set C to investigate the ability of our features to predict student

competence. More specifically, we used the features to train a classifier to predict the

grade assigned to each exam solution by the instructor. We again used a problem

hold-out approach with the six problems in the dataset. We trained the models using

WEKA’s (Hall et al. [40]) SVM regression technique (SMOreg) with default parameter

values. For this analysis, we trained our groupers and HMM on the complete homework

dataset.

We used a beam search process, with a beam width of five, to determine which

sets of features are the most effective for predicting the correctness of a student’s exam

solution. To begin, all possible single-feature classifiers were trained and then evaluated

on the test data. The five most accurate classifiers were then expanded to produce

a set of two-feature classifiers. The five best of these were then expanded to produce

three-feature classifiers, and so on. The results of this analysis are plotted in Figure 7.4.

The best classifiers (Table 7.10) used between three and eight features and

achieved a coefficient of determination (R2) ranging from 0.099 to 0.53. The average

value of R2 across all six problems was 0.36. FMM , FP , FE , and FΣ are the features that

occurred most frequently in these models (Table 7.9). They appeared in the best models

for half of the six problems. FLL, FLM , FLD, and FDMD are the next most frequently

appearing features. They appeared in the best models for a third of the problems.

To gain additional insights into the predictive power of the features, we con-
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structed additional models using the top four most frequently occurring features and

the top eight. Both sets of features achieved an average R2 of 0.21. Thus, the top four

features had about two-thirds of the predictive power of the complete set of features.

Our features (Table 7.9) represent a variety of properties of equations. Here, we

examine their relative predictive power. We consider four types of features: (LA) pause

count, {FP }; (LB) single item frequencies, {FE , FD, FL, FM , FΣ, FC , FD/L, FD/M , FL/M , FU};

(LC) binary pattern frequencies, {FDD, FDM , FDL, FLD, FLM , FLL, FMD, FMM , FML, F=D};

and (LD) tripartite pattern frequencies, {FDMD, FDML, FLMD, FLML}. We constructed

separate models for each feature type. We again used 10-fold cross validation and beam

search to determine the best models for each problem and then averaged the results

across the 6 problems (Table 7.12). The item count features (LB) had the greatest

predictive power, with an average R2 = 0.29. While the pause count feature type (LA)

comprises only a single feature, it achieved an average R2 = 0.20. The off-diagonal terms

in the table contain the average R2 values for combinations of two types of features. The

item frequency features (LB) combined with the binary pattern features (LC) are the

most effective pair of feature types, with R2 = 0.34.

7.3.2 Van Arsdale’s Features

Van Arsdale [30] uses 41 features on predict student performance. Here we

used our dataset (Set C) to evaluate the ability of their features. In the same fashion,

we used the features to train a classifier to predict the grade assigned to each exam
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Features Occurrence

FP 3

FE 3

FD 1

FL 1

FM 1

FΣ 3

FC 0

FD/L 1

FD/M 1

FL/M 0

FU 1

FDD 1

FDM 1

FDL 0

FLD 2

FLM 2

FLL 2

FMD 1

FMM 3

FML 1

F=D 0

FDMD 2

FDML 0

FLMD 1

FLML 0

Table 7.9: Features occurrence using our feature set. D = digit, L = letter, M =
mathematical symbol, “units” are units of measure such as “kg” and “lb”.

85



0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

R2

Number of Features

M1P1 M1P2 M1P3 M2P1 M2P2 M2P3

Figure 7.4: Coefficient of determination (R2) achieved by SVM regression models vs. the
number of features used in our feature set.

solution by the instructor. We again used a problem hold-out approach with the six

problems in the dataset. We trained the models using WEKA’s (Hall et al. [40]) SVM

regression technique (SMOreg) with default parameter values.

We used a beam search process as we did in the previous section to determine

which sets of features are the most effective for predicting the correctness of a student’s

exam solution. The results of this analysis are plotted in Figure 7.5.

Data Best Model R2

M1P1 FLM FD/M FDMD FΣ FD/L 0.51

M1P2 FP FΣ FLL FDM 0.29

M1P3 FP FU FMD FDMD FD FLD FMM FE 0.53

M2P1 FE FDD FLD 0.23

M2P2 FMM FL FE FM 0.099

M2P3 FMM FLMN FP FΣ FLL FML FLM 0.49

Ave 0.36

Table 7.10: The best coefficient of determination (R2) and the corresponding feature
set identified by beam search using our feature set.
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Problem R2 for Top 4 R2 for Top 8

M1P1 0.16 0.20

M1P2 0.25 0.26

M1P3 0.45 0.44

M2P1 0.01 0.05

M2P2 0.05 0.05

M2P3 0.35 0.28

Ave 0.21 0.21

Table 7.11: Coefficient of determination (R2) achieved by SVM regression models using
the top four and top eight features in our feature set.

LA LB LC LD

LA 0.20 0.31 0.27 0.23

LB 0.29 0.34 0.33

LC 0.26 0.27

LD 0.18

Table 7.12: Average R2 values of SVM regression models for various types of features
in our feature set. LA = {FP}, LB = {itemfreq.}, LC = {binarypatternfreq.},
LD = {tripartitepatternfreq.}. Diagonal elements are single types; off-diagonal are
pairs of types.

The best classifiers (Table 7.13) used between ten and twenty-one features and

achieved a coefficient of determination (R2) ranging from 0.23 to 0.70. The average value

of R2 across all six problems was 0.51. PLX ,TNE , and XE are the features that occurred

most frequently in these models (Table 7.14). They appeared in the best models for five

out of the six problems. TSBr,SOO:20−30,SOO:50−60,TEnt,SEN :40−50,TNB,XPS ,CER,and

PNE are the next most frequently appearing features. They appeared in the best models

for half of the problems.
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Figure 7.5: Coefficient of determination (R2) achieved by SVM regression models vs. the
number of features used in Van Arsdale’s feature set.

7.3.3 Combined Features

Since our work is complementary to that of Van Arsdale’s, we combined our

features with theirs to see if we could produce more predictive models.

We applied same analysis on the combined features. Figure 7.6 demonstrates

the results of the sets of features which are the most effective for predicting the correct-

ness of a student’s exam solution.

The best classifiers (Table 7.15) used between thirteen and twenty-two features

and achieved a coefficient of determination (R2) ranging from 0.37 to 0.73. The average

value of R2 across all six problems was 0.56. TNB is the feature that occurred most

frequently in these models (Table 7.16). It appeared in the best models for four out of

the six problems. FLL,FML, PLX ,CNF ,FL,FP , SEN :10−20, XE , FC ,FE , and FD/L are the

next most frequently appearing features. They appeared in the best models for half of
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Best R2 n

M1P1 0.50 12

M1P2 0.43 18

M1P3 0.62 21

M2P1 0.51 13

M2P2 0.27 15

M2P3 0.70 10

Ave 0.51 15

Table 7.13: SVM regression models for 6 problems using Van Arsdale’s feature set. Best
= R2 of best models obtained using beam search. n = number of features in the best
models.

the problems. More than half of the features which appeared in the best model shown

above are from our features set.

We again used 10-fold cross validation and beam search to determine the best

models for each problem and then averaged the results across the 6 problems (Table

7.12). The temporal feature (TT ) from Van Arsdale’s feature had the greatest predictive

power, with an average R2 = 0.39. The temporal feature (TT ) combined with our item

count features (LB) are the most effective pair of feature types, with R2 = 0.43.
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Features Occurrence

PLX 5

TNE 5

XE 5

TSBr 3

SOO:20−30 3

SOO:50−60 3

TEnt 3

SEN :40−50 3

TNB 3

XPS 3

CER 3

PNE 3

TLBr 2

TMBr 2

TND 2

TF2E 2

TE2F 2

SOO:10−20 2

SOO:60+ 2

PNF 2

TC 2

SEN :10−20 2

SEN :20−30 2

SEN :30−40 2

SEN :60+ 2

TNF 2

XT 2

XB 2

CNE 2

PLE 2

CERS 2

PNX 1

SOO:30−40 1

SOO:40−50 1

PLE 1

CFRS 1

CFR 1

SEN :50−60 1

XF 1

CEAR 1

Table 7.14: Features occurrence using Van Arsdale’s features. (Only listed features
which occur more than once.)
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Figure 7.6: Coefficient of determination (R2) achieved by SVM regression models vs. the
number of features used in combined feature set.

Best R2 n

M1P1 0.55 21

M1P2 0.56 22

M1P3 0.60 14

M2P1 0.55 15

M2P2 0.37 19

M2P3 0.73 13

Ave 0.56 17

Table 7.15: SVM regression models for 6 problems using combined features. Best = R2

of best models obtained using beam search. n = number of features in the best models.
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Features Occurrence Features Occurrence

TNB 4 FD 2

FLL 3 PNX 2

FML 3 XF 2

PLX 3 PLE 2

CNF 3 CERS 2

FL 3 CER 2

FP 3 PNE 2

SEN :10−20 3 TLBr 1

XE 3 TSBr 1

FC 3 TND 1

FE 3 FLM 1

FD/L 3 FMM 1

TMBr 2 FNL 1

TF2E 2 FNM 1

TE2F 2 FNN 1

FMN 2 PNX 1

SOO:30−40 2 SOO:20−30 1

SOO:40−50 2 SOO:50−60 1

TEnt 2 SOO:60+ 1

F=N 2 PLF 1

CERS 2 SEN :20−30 1

PNF 2 FNML 1

FU 2 FNMN 1

FM 2 XPS 1

SEN :40−50 2 FD/M 1

SEN :50−60 2 FΣ 1

TNF 2 CNE 1

TNE 2

Table 7.16: Number of times the feature appeared in a “best” model in combined feature
set.
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LA LB LC LD TT TS TC TX TP
LA 0.20 0.31 0.27 0.23 0.39 0.31 0.29 0.25 0.29

LB 0.29 0.34 0.33 0.433 0.35 0.36 0.32 0.33

LC 0.26 0.27 0.430 0.35 0.33 0.32 0.33

LD 0.18 0.38 0.30 0.28 0.24 0.26

TT 0.36 0.39 0.38 0.36 0.40

TS 0.18 0.31 0.23 0.34

TC 0.21 0.26 0.31

TX 0.03 0.27

TP 0.22

Table 7.17: Average R2 values of SVM regression models for various types of
features in combined feature set. LA = {FP}, LB = {itemfreq.}, LC =
{binarypatternfreq.}, LD = {tripartitepatternfreq.}, TT = {temporalorganization},
TS = {spatialorganization}, TC = {cluster}, TX = {cross − out}, TP = {penstroke}.
Diagonal elements are single types; off-diagonal are pairs of types.
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Chapter 8

Discussion

The results in Table 7.12 indicate that various types of frequency features are

all predictive of correctness. This demonstrates that it is possible get a useful measure

of correctness without a full interpretation of the equations. Table 7.12 suggests that the

frequency features tend to be more predictive than the pause count feature. However,

FP was selected for the best models for half of the problems (Table 7.9). Thus, this

feature is useful in conjunction with the frequency features.

In the combined model, the temporal organization features are the most predic-

tive features. However, only the feature (TNB), which indicates the number of times in

which no work was done in the solving process, has ranked in the top 12 features which

were selected for the best models for half of the problems. On the other hand, we have

eight features selected in the top twelve features - five frequency features, one the pause

count feature, and two binary pattern frequency features (Table 7.16). It indicates that

the combination of our features and the temporal features from Van Arsdale’s features

are useful in predicting students performance.
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For all but exam problem M2P2, the SVM regression models achieved high

correlations. We expected that the predictive power of the features might depend on

the difficulty of the exam problems. However, there was only a slight negative correlation

between the R2 values of the best models and the average grades students achieved on

the problems. Further analysis is needed to understand the lack of predictive ability for

problem M2P2.

The four most predictive features in our features set are FP , FMM , FE , and FΣ.

FP has a moderate positive correlation with grade, with R2 = 0.22. FMM has a smaller

positive correlation, with R2 = 0.11. FE and FΣ have weak positive correlations with

grade, with R2 values of 0.07 and 0.04, respectively. It appears that high-performing

students tend to have more long pauses than low-performing students. Cheng and

Rojas-Anaya [31], by contrast, found a negative correlation between long pauses and

competence. The difference between our results and theirs is likely due to the nature of

the tasks considered. We examined a problem-solving task, while they considered the

task of copying equations.
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Chapter 9

Conclusion

In this paper, we have presented an automatic stroke labeling technique and

demonstrated a technique that uses lexical properties of a student’s handwritten equa-

tions to evaluate the correctness of the work. Our technique first classifies single strokes

into one of the three semantic classes by using machine learning techniques;group clas-

sified strokes into equations and characters; and lastly extracts features from the inter-

preted results.

We characterize a solution with a number of quantitative features describing

inter-character pauses and the frequencies of various classes of symbols and binary and

tripartite sequences of symbols.We use these features to construct SVM regression mod-

els to predict the correctness of the work, i.e., the grade a human expert would assign.

We evaluated these techniques on a dataset containing solutions to exam problems from

an undergraduate engineering course in statics. Students completed the exam problems

using digital pens that recorded the work as time-stamped pen strokes. SVM regression

models revealed that, on average, 36% of the variance in student performance on these
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problems could be explained by our features. This is a surprising result given that our

approach does not attempt to interpret the equations or even the final numerical answer.

Our approach for assessing the correctness of a student’s work employs simple

lexical analysis. This approach is attractive because it does not require recognition of

diagrams and equations, nor does it require knowledge of the subject. Consequently,

our approach should be readily extensible to other subject areas. In particular, we

expect that our techniques will be useful for assessing student learning in a variety of

engineering, science, and math domains.
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Appendix A

Set C - Exams
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Features Description

FP No. of long pauses

FE No. of equations

FD No. of digits

FL No. of letters

FM No. of mathematical symbols

FΣ No. of Σ

FC No. of characters

FD/L Ratio of FD to FL

FD/M Ratio of FD to FM

FL/M Ratio of FL to FM

FU No. of units

Features Description

FDD No. of pattern DD

FDM No. of pattern DM

FDL No. of pattern DL

FLD No. of pattern LD

FLM No. of pattern LM

FLL No. of pattern LL

FMD No. of pattern MD

FMM No. of pattern MM

FML No. of pattern ML

F=D No. of pattern =D

FDMD No. of pattern DMD

FDML No. of pattern DML

FLMD No. of pattern LMD

FLML No. of pattern LML
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M1P1: The crane is hoisting a 4000 kg bulldozer. 
The mass center of the 2000 kg boom is located 
at G. The system is in equilibrium in the 
configuration shown. In your analysis, neglect 
the width of the boom. 

a) Draw a large, clearly-labeled free body 
diagram. 

b) Determine the tension T in the cable 
where it attaches at C. 

c) Determine the magnitude of the force 
applied to the boom at its hinge D. 
 

 

 

  
M1P2: Determine the reactions on the bent rod 
which is supported by a smooth surface at B and 
by a collar at A. The rod is fixed to the collar, 
which prevents the rod from rotating in the 
plane, but allows the rod to slide freely over the 
fixed inclined rod. Your solution must include a 
large, clearly-labeled free body diagram. Your 
answers should include both magnitudes and 
directions. Neglect the weight of the bent rod. 
 

 
 

M1P3: Force F is applied to point E which is 
located 60 mm above the plane containing the 
centerlines of bearings A, B, C, and D. Force F lies 
in a plane parallel to the x-z plane and is inclined 
15o from the z-axis as shown. 900 N forces are 
applied to bearings C and D. Neglect the weight 
of the structure. 

a) Draw a large, clearly-labeled free body 
diagram. 

b) Determine the magnitude of force F 
required to maintain equilibrium. 

c) Determine the radial and axial 
components of the forces in bearings A 
and B. Assume that B does not support a 
thrust force. 

 

 

Figure A.1: Problem M1P1, M1P2, and M1P3.
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M2P1: Determine the forces in members CD, JI, and DI 

and indicate if they are in tension or compression. 

 
M2P2: The 800-lb crate is held in equilibrium by the 

lifting device.  

(a) Determine the forces in members CE and ED 

and indicate if they are in tension or 

compression. 

(b) Determine the force in member AB and indicate 

if it is in tension or compression. 

 

 
 

M2P3: The tractor shovel carries a 600-kg 

load of soil, having a center of gravity at G.  

EJ = 100mm. JH = 100mm. 

(a) Identify all of the bodies that are 

two-force members.  List them by 

the points on the bodies, e.g., 

“DFG”.  

(b) Determine the force in hydraulic 

cylinder BC and indicate if it is in 

tension or compression. 

(c) Determine the magnitude of the 

force acting on the shovel at point F. 

(d) Determine the force in hydraulic 

cylinder IJ and indicate if it is in 

tension or compression. 

 
 

 

Figure A.2: Problem M2P1, M2P2, and M2P3.
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