
UCLA
UCLA Electronic Theses and Dissertations

Title
Conditional Divergence Triangle for Joint Training of Generator, Energy-based and Inference
Models

Permalink
https://escholarship.org/uc/item/9nc0g0hq

Author
Zhu, Shuai

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9nc0g0hq
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Conditional Divergence Triangle for Joint Training of

Generator, Energy-based and Inference Models

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Statistics

by

Shuai Zhu

2019

c© Copyright by

Shuai Zhu

2019

ABSTRACT OF THE THESIS

Conditional Divergence Triangle for Joint Training of

Generator, Energy-based and Inference Models

by

Shuai Zhu

Master of Science in Statistics

University of California, Los Angeles, 2019

Professor Yingnian Wu, Chair

This paper proposes a conditional version of Divergence Triangle [1] as a framework to train

generator, energy-based and inference models jointly with the information of labels, where the

learning of the above three models are integrated perfectly in a unified probabilistic formulation.

Experiments demonstrate that, within this one framework, we are able to complete the following

tasks together, (1) control the fine-grained categories to generate realistic images, (2) obtain the

meaningful representation of observed data in the low dimensions, and also (3) conduct label

classification on unobserved data. Additionally, I also discuss a possible extension on Conditional

Divergence Triangle model at the end of this paper for future work.

ii

The thesis of Shuai Zhu is approved.

Hongquan Xu

Jingyi Li

Yingnian Wu, Committee Chair

University of California, Los Angeles

2019

iii

To my mother . . .

who always believes in me and

supports all the dreams I have

iv

TABLE OF CONTENTS

1 Introduction . 1

2 Representing models with label information . 4

2.1 Generator model representation . 4

2.2 Energy-based model representation . 5

2.3 Inference model representation . 6

2.4 Brief summary . 7

3 Conditional Divergence Triangle Learning . 8

3.1 Generator model learning . 8

3.2 Energy-Based model learning . 9

3.3 Inference model learning . 11

3.4 Objective function for joint learning three models 11

3.5 Training algorithm . 13

4 Experiments . 16

4.1 Generating images in fine-grained categories . 16

4.2 Obtaining meaningful lower-dimensional representation 23

4.3 Label classification on unobserved data . 25

5 Conclusion and Future Work . 27

A Network Structures . 28

References . 31

v

LIST OF FIGURES

2.1 Modified generator model diagram . 5

2.2 Modified energy-based model diagram . 6

2.3 Modified Inference model diagram . 6

3.1 Conditional Divergence Triangle learning diagram . 13

3.2 Diagram for Training Algorithm . 14

4.1 Training examples of MNIST . 17

4.2 Generated results from Conditional GAN . 18

4.3 Generated results from Conditional Divergence Triangle 18

4.4 Training examples from Fashion-MNIST . 19

4.5 Generated Fashion-MNIST results from Conditional GAN 20

4.6 Generated Fashion-MNIST results from Conditional Divergence Triangle 20

4.7 Training examples from Cifar10 . 21

4.8 Synthesized conditional results from Conditional Divergent Triangle 22

4.9 Conditional Linear interpolation in z for MNIST . 23

4.10 Linear interpolation in z for Fashion-MNIST . 24

4.11 Linear interpolation in z for Cifar-10 . 24

vi

LIST OF TABLES

4.1 Comparisons of classification accuracy between different algorithms 25

A.1 Network structure of Generator Model for MNIST & Fashion-MNIST 28

A.2 Network structure of Energy-based Model for MNIST & Fashion-MNIST 28

A.3 Network structure of Inference Model for MNIST & Fashion-MNIST 29

A.4 Network structure of Generator Model for Cifar 10 29

A.5 Network structure of Energy-based Model for Cifar 10 30

A.6 Network structure of Inference Model for Cifar 10 . 30

vii

CHAPTER 1

Introduction

Learning generative models of images is an essential problem in computer vision, and the goal is

to construct flexible models to fit complex data distributions as well as enable people to generate

highly realistic samples from those distributions conveniently.

Energy-based models [2, 3, 4, 5, 6] and latent variable models [7, 8, 9, 10] are thought to be

two major classes for the family of generative models; furthermore, the latent variable models

can also be divided into the generator model for image generation and inference model to infer

the latent vector from the image. Previous researches have demonstrated that learning the energy-

based and generator models together will benefit each other [11, 12]. A metaphor might be used

to describe this cooperative relationship between those two models: a company hires an entry-

level analyst, and he finishes a report to let his supervisor revise. After that, they send this revised

report to their manager, and the manager provides some feedback to the supervisor so that the

supervisor know where to improve; then, the supervisor will let the analyst modify this report.

Hence, the analyst will learn from his supervisor, while the supervisor learns from the manager. In

this metaphor, the supervisor will provide guidance to the analyst, but most of the work is done by

this analyst. Actually, the analyst and supervisor correspond to the generator model and energy-

based model respectively. For the generator model, the image is treated as a transformation of the

latent variable whose prior distribution is known, and we can generate an image by transforming

a sampling latent vector into a higher dimension; for the energy-based model, an energy function

can be defined as a mapping from an image to its energy value, where the energy value might be

understood as a combination of various feature statistics of the image. Hence, if images come

from the same distribution, they should have similar energy values; otherwise, their energy values

suppose to be different. In this respect, the energy-based model is similar to a discriminator, which

1

can distinguish the generated images from the real ones as well as provide the feedback to the

generator model.

Both the generator model and energy-based model can be parameterized by the deep neural

networks. However, learning the two models through maximum likelihood estimation (MLE) will

involve intractable integrals that have to use expensive Markov chain Monte Carlo (MCMC) to

approximate. In order to get rid of the costly MCMC approximation, the original Divergence

Triangle [1] is proposed, and it introduces an inference model which defines an explicit approxi-

mation to the posterior distribution of the latent variables. With this inference model, we are able

to approximately maximize the likelihood of models through directly minimizing the upper bound

of Kullback–Leibler divergences. Hence, without the need for expensive MCMC methods, the

original Divergence Triangle can make the processes of image samplings, energy computation as

well as feed-forward inference readily available by training the above three models jointly.

Although the original Divergence Triangle framework is able to generate highly realistic im-

ages without using MCMC, it cannot decide the mode of images being generated since the models

involve no extra information y, such as class labels; hence, the motivation of Conditional Diver-

gence Triangle framework is to control the categories of the generated results through conditioning

models on the label information. Aiming for an easier understanding, we need to clarify the mean-

ing of ”conditional” in my approach. The term ”conditional” means that both my generator model

and energy-based model will be conditioned on the label y, and we can perform this conditioning

by feeding y, as an additional input layer, into the models. The ideal result is when we input certain

label information and the sampling latent vectors together into the well-learned generator model,

only the images under that specific category will be generated, which cannot be achieved by the

original Divergence Triangle. Thus, I believe the generation process can be directed by adding

information of labels into the models for the Conditional Divergence Triangle framework.

As we have the label information, the classification task can also be completed using the well-

learned inference model within the framework of Conditional Divergence Triangle, which is con-

sidered to be an expanded functionality. Besides, we also discover some meaningful relationships

between sampling latent vectors and the generated images through experiments, indicating the

inferred latent vectors in the low dimension reflect the patterns of images in the high dimension.

2

My major contributions include the following:

• Enable the original Divergence Triangle [1] to generate fine-grained images with specific

label information (condition).

• Compelete conditional image generation, image classification and meaningful dimensional-

ity reduction within in one unified probabilistic framework.

3

CHAPTER 2

Representing models with label information

The original Divergence Triangle is an unsupervised framework for joint training of energy-based

model, generator model and inference model, where both generator and inference models belong

to the latent variable family. In this chapter, let’s go through the above three probabilistic models

and also talk about how to represent them with label information.

2.1 Generator model representation

The generator model [2, 3, 4, 5, 6] can be formulated as below.

z ∼ N(0, Id), x = gθ(z) + ε (2.1)

where z is a d-dimensional signal latent vector sampled from the normal distribution N(0, Id), and

gθ, a deep network parameterized by parameters θ, is a top-down mapping function to map z into

D-dimensional signal x, where x usually represents an image; ε denotes the noise that follows the

normal distribution N(0, σ2ID); hence, x|z will follow N(gθ(z), σ
2ID) which is a normal distri-

bution as well. In general, the observed-data model is pθ(x) =
∫
pθ(x, z)dz =

∫
pθ(x|z)p(z)dz,

where p(z) is a prior distribution and pθ(x|z) can be expressed by the deep network gθ.

Supposing we introduce the label information y, we may modify the generator model as below:

z ∼ p(z), y ∼ p(y), x = gθ(z, y) + ε (2.2)

where z, a latent vector, follows prior distribution p(z), ε is the noise and y, independent of z,

follows the label distribution p(y); in the meanwhile, gθ is still a deep network except treating

both z and y as its inputs. We can write the observed-data model as pθ(x) =
∫
pθ(x, z)dz =

4

∫ ∫
pθ(x, z, y)dydz =

∫ ∫
pθ(x|z, y)p(z)p(y)dydz, where the generator gθ denotes pθ(x|z, y). See

the diagram below:

Figure 2.1: Modified generator model diagram

2.2 Energy-based model representation

For the energy-based model [7, 8, 9, 10], we can define the following probability model

πα(x) =
1

Z(α)
exp[fα(x)] (2.3)

where fα is the energy function parametrized by a bottom-up deep neural network with parameters

α, fα(x) represents the energy value (scalar) of image x, and Z(α) is a normalizing constant to

make πα(x) a probability. Therefore, πα(x) can be used to model the probability of image x, the

real images should have high energy fα(xreal) and fake images possess low energy f(xfake); in

this way, high probabilities can be assigned to those real images and low probabilities go to the

fake ones.

If we introduce the label information y, we can modifiy the energy-based model as below:

πα(x, y) =
1

Z(α)
exp[fα(x, y)] (2.4)

where we consider (x, y) as paired data, and πα(x, y) should only assign high probability to those

real images whose labels are exactly y, which means x and y have to be matched; otherwise, πα

should learn to assign low probabilities through energy function fα. Although Z(α) is intractable,

the energy-based model still defines an explicit likelihood via fα(x, y). It is hard to sample from

πα due to this intractable issue; however, with help of the other models, we can avoid this sampling

step in the energy-based model. See the diagram of energy-based model below:
5

Figure 2.2: Modified energy-based model diagram

2.3 Inference model representation

The original inference model refers to the mapping function from image x to latent vector z̃. We

can formulate this inference model as z̃ = Iφ(x), where Iφ is a bottom-up mapping deep neural

network parametered with parameters φ, and z̃ is an inferred latent vector. We want that the

inferred z̃ also follows the prior distribution p(z), which can be constrainted by the Kullback-

Leibler divergence.

For the Conditional Divergence Triangle, we let the deep network Iφ use image x to infer both

z̃ and ỹ at the same time (z̃ and ỹ share the body of the nerual network), where the inferred ỹ can

be seen as the predicted labels. Thus, the inference model can be written as pφ(z, y|x). Since ỹ and

z̃ should be independent, we can also write pφ(z, y|x) = pφ(z|x)pφ(y|x), where pφ(y|x) represents

a classifier. See the diagram of inference model below:

Figure 2.3: Modified Inference model diagram

6

2.4 Brief summary

With the label information y, we can interpret the generator, energy-based and inference models in

the probabilistic language as:

• Generator model: pθ(x|z, y).

• Energy-based model: πα(x, y)

• Inference model: pφ(z, y|x) = pφ(z|x)pφ(y|x)

With the probabilistic representations of the three models, we will discuss how to use the

Conditional Divergence Triangle to jointly learn those three models in the next chapter.

7

CHAPTER 3

Conditional Divergence Triangle Learning

In this chapter, we will formally present the Conditional Divergence Triangle framework and focus

on more details about the learning process.

3.1 Generator model learning

For the generator model, it’s trivial to sample from latent distribution p(z) and label distribution

p(y); we can define generative process as following: z ∼ p(z), y ∼ p(y) and x̃ ∼ pθ(x|y, z).

Since p(y) and p(z) are independent, the parameters θ can be learned by the maximum likelihood

of pθ(x), where pθ(x) =
∫ ∫

pθ(x|z, y)p(y, z)dydz =
∫ ∫

pθ(x|y, z)p(y)p(z)dydz.

Assume we observe paired training data {(xi, yi) ∼ pdata(x, y)}ni=1, where pdata(x, y) repre-

sents the real joint distribution of images and labels. Hence, we will have the following loglikeli-

hood function,

l(θ) =
1

n

n∑
i=1

logpθ(xi) (3.1)

In order to maximize this l(θ), we calculate its derivative,

l
′
(θ) =

1

n

n∑
i=1

1

pθ(xi)

∂

∂θ
pθ(xi)

=
1

n

n∑
i=1

1

pθ(xi)

∂

∂θ

∫ ∫
pθ(xi|yi, zi)p(yi)p(zi)dyidzi

=
1

n

n∑
i=1

1

pθ(xi)

∫ ∫
∂

∂θ
pθ(xi, yi, zi)dyidzi

=
1

n

n∑
i=1

1

pθ(xi)

∫ ∫
∂

∂θ
log(pθ(xi, yi, zi))dyidzi × pθ(xi, yi, zi)

8

=
1

n

n∑
i=1

Epθ(yi,zi|xi)[
∂

∂θ
log(pθ(xi, yi, zi))] (3.2)

If we want to continue the above updates, we have to compute the expectation corresponding

to the posterior distribution pθ(y, z|x), which is analytically intractable. One way to solve this

problem is applying computational expensive MCMC, such as Langevin dynamics or HMC [13],

to approximate. Another way is to use the inference model pφ(y, z|x) to estimate pθ(z, y|x) as in

variational auto-encoder(VAE) [14]. The objective of VAE is to minimize KL(pdata(x)||pθ(x)) +

KL(pφ(z|x)||pθ(z|x)), and in our case, we need modify θ and φ to minimize our generator objec-

tive as below:

KL(pdata(x)||pθ(x)) +KL(pφ(z, y|x)||pθ(z, y|x)) = KL(Aφ||Bθ) (3.3)

where we define A-distribution as Aφ = pdata(x)pφ(z, y|x) = pφ(x, y, z) and B-distribution as

Bθ = pθ(x)pθ(z, y|x) = pθ(x, y, z) = p(z)p(y)pθ(x|y, z).

Actually, maximizing the loglikelihood l(θ) is equivalent to minimizing KL(pdata(x)||pθ(x))

when n is large enough. Since KL divergence is non-negative, we know KL(pdata(x)||pθ(x)) ≤

KL(Aφ||Bθ), which is an upper bound. Similar to VAE, we may choose to minimize the upper

bound KL(Aφ||Bθ) instead of directly minimizing KL(pdata(x)||pθ(x)) to learn the generator

model.

3.2 Energy-Based model learning

For the energy-based model, we have πα(x, y) = 1
Z(α)

exp[fα(x, y)]. We can use the paired sample

{(xi, yi) ∼ pdata(x, y)}ni=1 to learn the parameter α through MLE, where the loglikelihood l(α) =
1
n

∑n
i=1 logπα(xi, yi) [Note: when n is large enough, maximizing l(α) is equivalent to minimizing

9

KL(pdata(x, y)||πα(x, y))]. Taking the derivative of l(α), we have,

l
′
(α) =

∂

∂α

1

n

n∑
i=1

logπα(xi, yi)

=
∂

∂α

1

n

n∑
i=1

log(
1

Z(α)
exp[fα(xi, yi)])

=
1

n

n∑
i=1

∂

∂α
fα(xi, yi)− Eπα(x,y)[

∂

∂α
fα(x, y)]

(3.4)

However, due to the normalizing constant Z(α), πα(x, y) is also analytically intractable. We con-

sider to replace πα(x, y) with pθ(x, y) =
∫
pθ(x|y, z)p(y)p(z)dz; then, l′(α) = 1

n

∑n
i=1 fα(xi, yi)−

Epθ(x,y)[
∂
∂α
fα(x, y)], which is equivalent to,

min
α

KL(pdata(x, y)||πα(x, y))−KL(pθ(x, y)||πα(x, y)) (3.5)

For the first term KL(pdata(x, y)||πα(x, y)) in equation (3.5), we wish to multiply p(z|x, y)

on both sides to turn them into joint distributions (The value of KL divergence won’t change, if

we multiply the same value on both sides); The first idea is to make use of the inference model

to find pφ(z|x, y); however, our original inference model is pφ(z, y|x) = pφ(z|x)pφ(y|x), which

seems different. But since images x and its corresponding label y should be highly correlated, we

may consider pφ(z|x, y) ≈ pφ(z|x), which happens to be a part of our original inference model.

Therefore,

KL(pdata(x, y)||πα(x, y)) = KL(pdata(x, y)pφ(z|x)||πα(x, y)pφ(z|x))

≈ KL(pdata(x, y)pφ(z|x, y)||πα(x, y)pφ(z|x, y))

= KL(Aφ||Cα,φ)

(3.6)

where Aφ = pφ(x, y, z) is same as in the generator learning, and Cα,φ = πα(x, y)pφ(z|x, y) =

pα,φ(x, y, z); Thus, minimizing KL(pdata(x, y)||πα(x, y)) is able to be replaced by minimizing

KL(Aφ||Cα,φ).

For the second termKL(pθ(x, y)||πα(x, y)), which is related to both the learning of parameters

θ (for generator) and α (for energy-based model), we also wish to change them into the form of

KL divergence between two joint distributions. Consider the following equation:

KL(pθ(x, y)||πα(x, y)) +KL(pθ(z|x, y)||pφ(z|x, y)) = KL(Bθ||Cα,φ) (3.7)
10

where the definitions of both Bθ and Cα,φ are the same as above.

For updating the parameters α, we may consider KL(pθ(z|x, y)||pφ(z|x, y)) as a constant,

since it has nothing to do with α. When learning the energy-based model, we want to maximize

KL(pθ(x, y)||πα(x, y)); hence, we just need to maximize KL(pθ(x, y)||πα(x, y)) + Constant =

KL(Bθ||Cα,φ), i.e.,

max
α

KL(pθ(x, y)||πα(x, y)) ⇐⇒ max
α

KL(Bθ||Cα,φ) (3.8)

For updating the parameters θ in the generator model, in addition to what we discussed in

Section 3.1, we also need to minimizeKL(pθ(x, y)||πα(x, y)). SinceKL(pθ(z|x, y)||pφ(z|x, y)) is

non-negative, KL(pθ(x, y)||πα(x, y)) ≤ KL(Bθ||Cα,φ) is an upper bound; therefore, minimizing

the upper bound KL(Bθ||Cα,φ) is equivalent to minimize KL(pθ(x, y)||πα(x, y)).

3.3 Inference model learning

Actually, the inference model is used as a ”bridge” to help us avoid the computational expensive

MCMC, and its parameters φ are also updated during the learning of generator and energy-based

models.

3.4 Objective function for joint learning three models

Combining the above three sections, the objective function of Conditional Divergence Triangle

should involve the three joint distributions on (x, y, z) as below:

• Aφ-distribution: A(x, y, z) = pφ(x, y, z) = pdata(x, y)pφ(z|x, y) ≈ pdata(x, y)pφ(z|x)

• Bθ-distribution: B(x, y, z) = pθ(x, y, z) = pθ(x|z, y)p(z)p(y)

• Cα,φ-distribution: C(x, y, z) = πα(x, y, z) = πα(x, y)pφ(z|x, y) ≈ πα(x, y)pφ(z|x)

The above three joint distributions over (x, y, z) are modeled from different perspectives. The

four distributions pdata(x, y), pdata(x), p(z) and p(y) are all easy to know, and other distributions

11

above can also be obtained from the deep neural networks. Hence, we propose to learn the gener-

ator model, energy-based model and inference model through optimizing the following objective

function L(α, θ, φ) for Conditional Divergence Triangle,

max
α

min
θ

min
φ

L(α, θ, φ);

L(α, θ, φ) = KL(Aφ||Bθ)−KL(Aφ||Cα,φ) +KL(Bθ||Cα,φ)
(3.9)

For the above objective function, we can also explain it from another perspective. Intuitively,

we want the above three joint distributions Aφ, Bθ and Cα,φ get closer after jointly training the

three models.

First, we consider minimizing φ. We know KL(Aφ||Cα,φ) ≈ KL(pdata(x, y)||πα(x, y)) from

equation (3.6), which has nothing to do with φ; hence, min
φ

L(α, θ, φ) is approximately equivalent

to:
min
φ

[KL(Aφ||Bθ)−KL(Aφ||Cα,φ) +KL(Bθ||Cα,φ)]

≈ min
φ

[KL(Aφ||Bθ) +KL(Bθ||Cα,φ)]
(3.10)

It means we update φ to push the joint distributions Aφ, Cα,φ to get closer to the distribution Bθ.

Then, we consider minimizing θ, and which is equivalent to,

min
θ

[KL(Aφ||Bθ) +KL(Bθ||Cα,φ)] (3.11)

It indicates we update θ to push the joint distribution Bθ to get closer to both Aφ and Cα,φ distri-

butions.

Finally, we consider maximizing α over L(α, θ, φ), and it is equivalent to,

max
α

[KL(Bθ||Cα,φ)−KL(Aφ||Cα,φ)] (3.12)

Actually, the equation (3.12) is the same as the equation (3.5) for learning the energy-based

model, and equation (3.12) implies that the joint distributionCα,φ tends to chase the distributionAφ

(produced by the real data) and stay far away from the distribution Bθ (produced by the generator

model), performing like a judge so that the well-learned energy based model could assign higher

probability to the real paired data, and lower probability to the ”fake” pairs.

12

In summary, the learning of Conditional Divergence Triangle is based on the three Kull-

back–Leibler divergences within the three joint distributions on (x, y, z). The updating process

is as follows: Aφ and Cα,φ try to get close to Bθ; Bθ also tends to chase Aφ and Cα,φ; Cα,φ seeks

to get close to Aφ and stay away from Bθ. Note that we update parameters α, φ, θ one by one,

and other parameters are fixed during the update of one parameter. The figure below illustrates the

learning process,

Figure 3.1: Conditional Divergence Triangle learning diagram

3.5 Training algorithm

The generator, energy-based and inference models are all parameterized by deep neural networks.

We use stochastic gradient descent to jointly learn the three models within the framework of Con-

ditional Divergence Triangle, and the expectations will be approximated by the sample averages.

The figure below shows the procedure of our training algorithm.

13

Figure 3.2: Diagram for Training Algorithm

We first sample z and y from their prior distributions, and then use the generator model G :

pθ(x|y, z) to generate the image x̃. Comparing (x̃, y) with true paired images and labels (xtrue,

ytrue), we can learn the energy-based model E: πα(x, y). After that, we mix x̃ and xtrue to infer z̃

and ỹ; then, compare z̃, ỹ with their prior distributions p(z) and p(y). In this cycle, we will learn

all the parameters for these three networks.

The pseudocode for the training of Conditional Divergence Triangle is provided at below,

Algorithm 1 Joint Training for Conditional Divergence Triangle Model
Input:

1: training images and their corresponding labels {(xi, yi) i = 1, ..., n}

2: testing images {xj j=1,...,m}

3: number of training iterations T

4: α, φ, θ: initialized network parameters.

14

5: Let t← 0 and define L=L(α, θ, φ)

6: repeat

7: z(1), z(2), ..., z(ñ) ∼ p(z)

8: y(1), y(2), ..., y(ñ) ∼ p(y)

9: x̃(i) ∼ pθ(x|z(i), y(i)), i = 1, ..., ñ

10: (x1, y1), (x2, y2) ..., (xn, yn) ∼ pdata(x, y)

11: z̃i, ỹi ∼ qφ(z, y|xi), i = 1, ..., n

12: α update: Having {(x̃(i), y(i)), i = 1, ..., ñ} and {(xi, yi), i = 1, ..., n}, update α ← α −

ηα
∂
∂α
L using learning rate ηα.

13: φ update: Having {z(i), y(i), x̃(i), i = 1, ..., ñ} and {z̃i, ỹi, xi, i = 1, ..., n}, update φ ←

φ+ ηφ
∂
∂φ
L using learning rate ηφ.

14: θ update: Having {z(i), y(i), x̃(i), i = 1, ..., ñ} and {z̃i, ỹi, xi, i = 1, ..., n}, update θ ←

θ + ηθ
∂
∂θ
L using learning rate ηθ.

15: Let t← t+ 1

16: until t = T

17: classification: Having {xj , j=1,...,m}, obtain z̃j , ỹj ∼ qφ(z, y|xj), and ỹj is used as the pre-

dicted result for xj .

Output:

18: learned parameters α, θ and φ

19: synthesized samples {x̃i, i = 1, ..., ñ} given certain condition yi

20: classification result ỹj on testing images xj , where j=1,...,m

15

CHAPTER 4

Experiments

In this chapter, we use experiments to demonstrate that the Conditional Divergence Triangle model

is not only able to generate highly realistic images in fine-grained categories, infer meaningful low-

dimensional representations, but also conduct label classification on unobserved data.

The only pre-processings needed for the training images are resizing to 32 × 32 as well as

scaling to [-1,1], which is the range of tanh activation function, and the network parameters are

initialized with zero-mean normal distribution with standard deviation 0.02 and our optimizer is

Adam[15] with decay rate 0.0005; besides, we also use batch normalization[16]. The specific

network structures can be found in the Appendix A.

4.1 Generating images in fine-grained categories

In the image generation experiments, we use the well-trained generator model from the Condi-

tional Divergent Triangle framework to generate highly realistic images with given label informa-

tion. The obtained results from the generator pθ(x|z, y = i) should be realistic and similiar to

the visualized features of training images under i, where i represents the ith class of the training

images.

We first learn our model from MNIST [17] dataset of handwritten digits. The training images

are grey-scale with the size of 28 × 28 pixels, and we resized them to 32 × 32. For the generator

model (a top-down deep network), there are two inputs which are a 100-dimensional latent vector

z and a 10-dimensional one-hot vector y. We first up sample both the two inputs to 4 × 4 × 256;

then, concatenate them together to make the shape become 4× 4× 512. After that, using 4 layers

of deconvolution by linear superposition with up-sampling, the number of filters at each layers are

16

512, 256, 128, 1 respectively, and our output shape is 32×32×1. In addition, batch normalization,

ReLU for non-linearity as well as the tanh activiation function at the bottom-layer are used to make

sure signals in the output fall within the range [-1, 1]. For the energy-based model, we have image

x (shape : 32 × 32 × 1) and label y (shape : 32 × 32 × 10), where the yth channel are all ones;

while, other channels are all zeros) as our inputs. We first apply 64 filters with stride 2 on each

input to make them 16 × 16 × 64; then, we contatenate them together and apply 4 convolutional

layers , where the number of channels are 128, 256, 512, 1 from bottom to top. The output of the

energy-based network should be a scalar, representing the energy value f(x, y). For the inference

model, the input is image x (shape : 32×32×1), and we adopt a 5 layer bottom-up deep network,

the channels for the first 4 layers are 128, 256, 512, 1, and the last layer is fully connected with

three heads: two 100-dimensional heads respectively represent the mean and standard deviation of

the inferred latent vector z̃ for applying reparametrization trick, and the other 10-dimensional head

stands for the inferred label ỹ.

At below, we show the training MNIST examples, results generated from Conditional GAN

[18] and results from our approach in order.

Figure 4.1: Training examples of MNIST

17

Figure 4.2: Generated results from Conditional GAN

Figure 4.3: Generated results from Conditional Divergence Triangle

18

Obviously, the synthesized results from our approach (Figure 4.3) are more sharp and clear

than the results from Condtional GAN (Figure 4.2). The generated images in each row share the

same label vector y (given condition) and in each column share the same latent vector z; hence,

we prove our approach is able to generate highly realistic images in fine-grained categories given

certain conditions.

In addition to the MNIST, we also try learning from a relatively more complex dataset: Fashion-

MNIST [19]. Fashion-MNIST contains 60,000 training examples and 10,000 testing examples.

Each example is a 28 × 28 grayscale image, associated with a label from 10 classes. Similarly,

we resize those training images to 32× 32 and feed them with labels into the three deep networks

described above. After training 30 epoch, we get the synthesized images from our well-trained

generator model.

At below, we also show the training Fashion-MNIST examples, results generated from Condi-

tional GAN [18] and results from our approach in order.

Figure 4.4: Training examples from Fashion-MNIST

19

Figure 4.5: Generated Fashion-MNIST results from Conditional GAN

Figure 4.6: Generated Fashion-MNIST results from Conditional Divergence Triangle

20

Again, the synthesized results on Fashion-MNIST using Condition Divergence Triangle seems

better than the results from Conditional GAN. The layout of above images is also same as above,

each row shares the same label information and each column shares the same latent vector; hence,

the generated results in each row belong to the same category, which proves our Conditional Di-

vergence Triangle can generate highly realistic images with given conditons another time.

What’s more, we also want to check the ability of Condtional Divergence Triangle on gen-

erating colorful images under certain conditions. Thus, we modify our framework to learn from

the famous Cifar-10 objects [20] datasets. Cifar-10 has 60,000 training images of 32 × 32 pixels

with RGB three channels, and those images belong to 10 classes. In order to adopt our framework

on the colorful images, we modify both the shapes of our input and output from 32 × 32 × 1 to

32×32×3 and keep other structures as the same. We show the original Cifar-10 training examples

and synthesized images in each category generated by Conditional Divergent Triangle at below:

Figure 4.7: Training examples from Cifar10

21

Figure 4.8: Synthesized conditional results from Conditional Divergent Triangle

22

The above results verify that the Conditional Divergent Triangle is also eligible to synthesize

colorful images in fine-grained categories under certain conditions.

4.2 Obtaining meaningful lower-dimensional representation

Besides, we also implement experiments to show that our latent vector z is meaningful. In Figure

4.9, each column shares the same z value, and the value starts from -1 to 1 with step size 0.2

(skip z=0 for symmetry); the images in each row have the same condition y. From the result

below, the digits seem thin and inclined when z is small; the digits seem fat and upright when z

is relatively large, which means the latent vector z is meaningful. As we discover the styles of

digits in each column are pretty similar, it indicates that z truely capture the visualized features of

the images. Hence, we may use well-trained pφ(z|x) in Conditional Divergence Triangle to infer

those meaningful latent vector z̃ from given images, and some useful information about the images

might be discovered by looking directly at those meaningful lower-dimensional representations.

Figure 4.9: Conditional Linear interpolation in z for MNIST

23

We also perform similiar experiments on Fashion-MNIST as well as Cifar 10 datasets at below.

The visualized features in images are gradually changed as z increases and each column maintains

similar style, which further consolidate our conclusion above.

Figure 4.10: Linear interpolation in z for Fashion-MNIST

Figure 4.11: Linear interpolation in z for Cifar-10

24

4.3 Label classification on unobserved data

Finally, we can also make use of the well-trained pφ(y|x), which is a part of the inference model,

as a classifier to predict the labels for unobserved data. We implement the experiment on MNIST

dataset, and the following table shows the accuracy comparsions between Conditional Divergence

Triangle and other learning algorithms.

Accuracy on MNIST [21]

Algorithm Name Classification Accuracy

Logistic Regression 24.37%

Decision Tree (gini) 51.24%

KNN (10 neighbours) 76.40%

SVM (polynomial kernel) 87.11%

Plain DNN 90.72%

Conditional Divergence Triangle 92.39%

Conditional Divergence Triangle (double filters) 93.52%

ResNet-101 99.71%

Table 4.1: Comparisons of classification accuracy between different algorithms

From table 4.1, the classification accuracy of Conditional Divergence Triangle beats all other

listed learning algorithms above except ResNet-101 [22]. I think there may exist two main rea-

sons for the gap between our method and ResNet-101: (1) For the inference model of Conditional

Divergence Triangle, we only use a simple four-layer convolutional nets structure to conduct the

label classification; however, the ResNet-101 consists 100 convolutional layers and 1 fully con-

nected layer, which is much more complex than the architecture of our approach. We try to double

the number of filters in each layer for the inference model in our method, and find out the accuracy

increase from 92.39% to 93.52%; hence, I believe if we have enough computational resources to

increase the complexity of our inference model, our accuracy will also become higher. (2) Our

inference model pφ(y|x) is trained jointly, where the loss caused by both label y and latent vector

25

z; meanwhile, ResNet-101 only focuses on minimizing the Cross-entropy loss for label y, which

has advantages on label classification.

The Conditional Divergence Triangle model is not just designed for classification, and our

goal is to compelete multiple tasks within in one unified probabilistic framework through end-to-

end training. In this respect, we believe the accuracy of our approach on label classification is

acceptable.

26

CHAPTER 5

Conclusion and Future Work

In this study, we present the so-called Conditional Divergence Triangle model, which is an unified

probabilistic framework for jointly learning generator, energy-based and inference models with

the label information. Comparing to the original Divergence Triangle, the biggest improvements

of our model are controlling the categories of synthesized images and expanding the ability of the

framework to implement classification tasks on unobserved data.

Our extensive experiments above not only prove that Conditional Divergent Triangle model

is able to synthesize high quality images under specific conditions, but also demonstrate that this

framework can infer meaningful latent vectors as well as achieve relative high accuracy on the

classification tasks.

In future work, we seek to extend the Conditional Divergent Triangle model from supervised

learning to semi-supervised learning. Our initial idea is to use the limited paired data and augmen-

tation techniques [23, 24, 25] to train a reasonable inference model as our classifer. After that, we

use this classifer to predict labels for those unlabeled images and use them as new paired data to

continue training the framework. In this way, we hope the Conditional Divergent Triangle model

could still have good performance under limited training data.

27

Appendix A

Network Structures

Generator Model

Layers In/Out Shape Stride BN Layer name

Input: z 1x1x100 input z
Input: y 1x1x10 input y
4x4 convT(256), ReLU 4x4x256 1 Yes 1st layer for z
4x4 convT(256), ReLU 4x4x256 1 Yes 1st layer for y
Concatenate 4x4x512 cat above 2 layers
4x4 convT(256), ReLU 8x8x256 2 Yes 2nd layer
4x4 convT(128), ReLU 16x16x128 2 Yes 3rd layer
4x4 convT(1), tanh 32x32x1 2 No output

Table A.1: Network structure of Generator Model for MNIST & Fashion-MNIST

Energy-based Model

Layers In/Out Shape Stride BN Layer name

Input: x 32x32x1 input x
Input: y 32x32x10 input y
4x4 conv(64), LReLU 16x16x64 2 Yes 1st layer for z
4x4 conv(64), LReLU 16x16x64 2 Yes 1st layer for y
Concatenate 16x16x128 cat above 2 layers
4x4 conv(256), LReLU 8x8x256 2 Yes 2nd layer
4x4 conv(512), LReLU 4x4x512 2 Yes 3rd layer
4x4 conv(1), Squeeze Scalar 1 No output

Table A.2: Network structure of Energy-based Model for MNIST & Fashion-MNIST

28

Inference Model

Layers In/Out Shape Stride BN Layer name

Input: x 32x32x1 input x

4x4 conv(64), LReLU 16x16x64 2 Yes 1st layer

4x4 conv(128), LReLU 8x8x128 2 Yes 2nd layer

4x4 conv(256), LReLU 4x4x256 2 Yes 3rd layer

4x4 conv(100) 1x1x100 1 No output: µ for z̃

4x4 conv(100) 1x1x100 1 No output: σ for z̃

reshpae fc(10) 10 No output:predicted ỹ

Table A.3: Network structure of Inference Model for MNIST & Fashion-MNIST

Generator Model

Layers In/Out Shape Stride BN Layer name

Input: z 1x1x100 input z

Input: y 1x1x10 input y

4x4 convT(256), ReLU 4x4x256 1 Yes 1st layer for z

4x4 convT(256), ReLU 4x4x256 1 Yes 1st layer for y

Concatenate 4x4x512 cat above 2 layers

4x4 convT(256), ReLU 8x8x256 2 Yes 2nd layer

4x4 convT(128), ReLU 16x16x128 2 Yes 3rd layer

4x4 convT(3), tanh 32x32x3 2 No output

Table A.4: Network structure of Generator Model for Cifar 10

29

Energy-based Model

Layers In/Out Shape Stride BN Layer name

Input: x 32x32x3 input x

Input: y 32x32x10 input y

4x4 conv(64), LReLU 16x16x64 2 Yes 1st layer for z

4x4 conv(64), LReLU 16x16x64 2 Yes 1st layer for y

Concatenate 16x16x128 cat above 2 layers

4x4 conv(256), LReLU 8x8x256 2 Yes 2nd layer

4x4 conv(512), LReLU 4x4x512 2 Yes 3rd layer

4x4 conv(1), Squeeze Scalar 1 No output

Table A.5: Network structure of Energy-based Model for Cifar 10

Inference Model

Layers In/Out Shape Stride BN Layer name

Input: x 32x32x3 input x

4x4 conv(128), LReLU 16x16x128 2 Yes 1st layer

4x4 conv(256), LReLU 8x8x256 2 Yes 2nd layer

4x4 conv(512), LReLU 4x4x512 2 Yes 3rd layer

4x4 conv(100) 1x1x100 1 No output: µ for z̃

4x4 conv(100) 1x1x100 1 No output: σ for z̃

reshpae fc(10) 10 No output:predicted ỹ

Table A.6: Network structure of Inference Model for Cifar 10

30

REFERENCES

[1] T. Han, E. Nijkamp, X. Fang, M. Hill, S.C. Zhu and Y, N, Wu, ”Divergence Triangle for Joint
Training of Generator Model, Energy-based Model, and Inference Model”, arXiv preprint
arXiv:1812.10907, 2018.

[2] D. P. Kingma and M. Welling, “Auto-encoding variational bayes”, arXiv preprint
arXiv:1312.6114, 2013.

[3] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate
inference in deep generative models,” in International Conference on Machine Learning,
2014, pp. 1278– 1286.

[4] A.MnihandK.Gregor, “Neural variational inferenceand learning in belief networks,” in In-
ternational Conference on Machine Learning, 2014, pp. 1791–1799.

[5] I.Goodfellow,J.Pouget-Abadie,M.Mirza,B.Xu,D.Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing sys-
tems, 2014, pp. 2672–2680.

[6] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep
convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[7] Y. Lu, S.C. Zhu, and Y. N. Wu, “Learning FRAME models using CNN filters,” in Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

[8] J. Xie, Y. Lu, S.-C. Zhu, and Y. N. Wu, “A theory of generative convnet,” in International
Conference on Machine Learning, 2016, pp. 2635–2644.

[9] J. Ngiam, Z. Chen, P. W. Koh, and A. Y. Ng, “Learning deep energy models,” in Interna-
tional Conference on Machine Learning, 2011, pp. 1105–1112.

[10] J. Dai, Y. Lu, and Y.-N. Wu, “Generative modeling of convolutional neural networks,” arXiv
preprint arXiv:1412.6296, 2014.

[11] J. Xie, Y. Lu, S.-C. Zhu, and Y. N. Wu. ”Cooperative training of descriptor and generator
networks,” arXiv preprint arXiv:1609.09408, 2016.

[12] J. Xie, Y. Lu, R. Gao, S.-C. Zhu, and Y. N. Wu. ”Cooperative learning of energy-based
model and latent variable model via mcmc teaching,” In AAAI, 2018.

[13] R. M. Neal, “Mcmc using hamiltonian dynamics,” Handbook of Markov Chain Monte
Carlo, vol. 2, 2011.

[14] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative adversarial network,” arXiv
preprint arXiv:1609.03126, 2016.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014. 1

31

[16] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by re-
ducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[17] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. [Online]. Available:
http://yann.lecun.com/exdb/mnist/.

[18] Mirza, Mehdi and Osindero, Simon. Conditional generative adversarial nets.CoRR,
abs/1411.1784, 2014.

[19] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[20] N. Krizhevsky, H. Vinod, C. Geoffrey, M. Papadakis, and A. Ventresque, “The cifar-10
dataset,” http://www.cs.toronto.edu/kriz/cifar.html, 2014.

[21] X. Chen, Z. Ye, Y. Zhang (2018). MNIST-baselines, Availabel at:
https://github.com/cxy1997/MNIST-baselines [Last accessed 09 Feb 2019].

[22] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR,
(2016).

[23] E. Jannik Bjerrum. SMILES Enumeration as Data Augmentation for Neural Network Mod-
eling of Molecules. ArXiv e-prints, Mar. 2017.

[24] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell. Understanding data augmenta-
tion for classification: when to warp? CoRR, abs/1609.08764, 2016.

[25] Y. Xu, R. Jia, L. Mou, G. Li, Y. Chen, Y. Lu, and Z. Jin. Improved relation classification by
deep recurrent neural networks with data augmentation. CoRR, abs/1601.03651, 2016.

32

