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ABSTRACT OF THE THESIS 

 

Gene Annotation in Rice Genome 

Using Homology 

 

by 

 

Pavitra Athakitakarnka 

 

Master of Science in Biomedical Engineering 

University of California, Los Angeles, 2013 

Professor Matteo Pellegrini, Chair 

In the functional genomics era, systems-level analysis of genomic and proteomic data quickens 

the pace of gene-function discovery. I created a program and collected cross-referenced database 

for the rice genome. This program utilizes sequence similarity as a way to annotate all genes 

with the gene ontology (GO) terms and performs a functional analysis on genes in rice, an 

economically important crop with limited functional analysis tools. For demonstration purpose, 

application of the tool to one gene list created from cytokinin oxidase/ dehydrogenase activity 

reveals two GO terms that suggest the relevance for cytokinin associated terms as cytokinins was 

used to generate the gene list. To my knowledge, while there are tools available on the web to 

interpret the biological function of a gene list, none are set up for use with rice protein 

sequences. My program overcomes this limitation by permitting the functional analysis of rice 

amino acid sequences.  The example gene list and code are available to reproduce the results. 
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Background 

In the functional genomics era, systems-level analysis speeds the pace of gene-function 

discovery. The number of genes that have been functionally characterized in rice in the Rice 

Genome Annotation Project (Oryza sativa subspecies japonica and indica) lags far behind that of 

Arabidopsis thaliana, which is an experimentally tractable model organism.[4] After the rice 

genome has been sequenced completely, the amino acid sequences of putative rice genes were 

generated by the Rice Genome Annotation Project. These putative genes are candidates that 

would benefit from experimental work to further understand their functions. This experimental 

approach, however, involves labor-intensive techniques used for experimentally validating the 

putative genes. [4] To facilitate the discovery of novel genes and their biological context,  the 

program that automatically identifies putative functions and biological properties [5] of putative 

rice genes hold promise for providing clues for experiments most likely to yield successful 

results [6]. 

     

Sequence annotation is one of the computational approaches which overcome the limitations of 

the experimental approaches and allow for simultaneous characterization of all gene candidates. 

It takes advantage of sequence and functional conservation among all eukaryotes. Eukaryotes 

inherit sequences and functions of homologous genes from a common evolutionary ancestor. [7] 

Knowledge of the relevant features and biological roles of a shared gene in one organism allows 

us to infer its biological functions in another organism [8]. The shared genes whose functions 

have been experimentally determined in one organism can be used to infer the functions of 

related genes in other organisms. We take advantage of genomic DNA sequence known in one 

organism to predict new genes and their pathways and phenotypes in another organism. The 

shared genes guide experimental design to enable characterization of DNA sequences encoding 
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proteins with no known function [9].  These predictions have led to the identification of 

thousands of new genes, some of which have been experimentally validated. [4] This type of 

sequence annotation represents a way to efficiently fill in the knowledge gap. 

 

One way to predict genes and their functions in rice is automatic protein sequence annotation 

[10-12]. Protein sequence annotation is more efficient when used to align the genomic DNA 

segments with proteins rather than with transcribed DNA sequences from other organisms. [13]  

In specific, this technique of protein sequence annotation helps predict a gene based on sequence 

similarity between its amino acid sequence and its homologous protein sequences. From its 

homologous protein sequences, we can infer structure and function of the amino acid sequence 

into which a DNA gene is translated. Thus homology is used for its structural and functional 

annotation [10]. For example, a locus (recognized by a locus identifier) in the genomic DNA 

sequence is predicted to be a putative gene due to sequence similarity between its amino acid 

sequence, into which this predicted gene is translated, and its homologous protein sequences. 

 

In the context of protein sequence annotation, homology of an amino acid sequence to another 

protein sequence refers to the existence of a common ancestor between the two sequences as 

discussed above. Homology is detected by sequence similarity of this amino acid sequence with 

known proteins. Homology is a transitive relation where given three proteins A, B, and C, 

proteins A and B as well as proteins B and C have structural similarity due to a common 

evolutionary ancestor (implied by sequence similarity above a threshold). Hence proteins A and 

C have structural similarity due to a common evolutionary ancestor. Since homology is evidence 

for structural and functional annotation of protein sequences, protein sequence annotation is also 

a transitive relation. In short, sequence similarity between an amino acid sequence and its 



3 

 

homologous protein sequences enable the transfer of functional annotation from homologous 

protein sequences to the amino acid sequence. This technique of protein sequence annotation 

represents sequence alignment for functional interference. (However, this technique has 

limitations when dealing with multi-domain proteins, promiscuous domains, and fragmented 

proteins which would benefit from another mode of functional interference, i.e. the presence of 

protein domains (domain search).) 

A genomic version of this technique of functional annotation includes annotating putative 

functions of hypothetical amino acid sequences of the putative genes. The hypothetical amino 

acid sequences are gene products of the putative genes. To investigate the functional and the 

structural information of the hypothetical amino acid sequences of genes [14], we have used the 

gene ontology (GO), which is the standard for annotating genes. The GO is the result of an effort 

to provides a consistent terminology to describe functional information pertaining to gene 

products and applicable across information repositories [14] when knowledge of what a gene and 

gene product for which it encodes does is changing rapidly[15]. The GO consists of three 

ontologies used to describe Molecular Function, Biological Process and  Cellular Compartment 

attributes of gene products. [8] The GO describes the normal biochemical activities and 

biological goals that a gene product is involved in as well as captures its place in non-disease 

cells where it is active.[8] What I would like to achieve in this project is to determine the 

functions associated to the amino acid sequences of putative rice genes at loci (recognized by 

locus identifiers) in the rice genomic DNA sequence. In doing so I make use of the GO term 

annotations of rice-specific proteome provided by UniProt (The Universal Protein Resource) [3], 

which is a central member of the GO consortium and maintains high-quality gene annotation 

data. 
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Data and Method  

I. The Importance of Annotating Rice Genome   

In this project, I created a tool to use the gene ontology (GO) terms to annotate functions of all 

putative genes in the genome of the two rice subspecies japonica and indica in the Rice Genome 

Annotation Project and then perform GO term enrichment from the annotations of these putative 

genes. Functionally annotating and then charactering rice genes using my program might offer 

the opportunity for both life science and agricultural research, including improvement of grain 

yield.[16] Oryza sativa is one of the most important grain crops because it is staple food for 

people especially those in Asia, Latin America and Africa. Additionally, Oryza sativa has 

emerged as a model plant for other grass species including major crop species maize (Zea mays), 

wheat (Triticum aestivum), barley (Hordeum vulgare), sorghum (Sorghum bicolor), oats (Avena 

sativa) and millet (Eleusine coracana) even though it has not been as extensively studied in the 

lab as A. thaliana.[9] Due to the conservation of gene order within linkage groups in these 

agriculturally important grasses[17], researchers can take advantage of genes known in rice for 

investigating genes, cellular pathways, phenotypes in other grass species in further analysis. 

II. Collecting Database and Cross Referencing  

Towards the goal of facilitating our ability to gain insight into a given list of putative genes in 

rice and other grasses, I wrote a program to access annotations and identify enriched functions of 

putative rice genes and their amino acid sequences. My program can be divided in to several 

steps (schematically illustrated in Figure 1). To begin with, I explain how I created the total set 

of genes from the Rice Genome Annotation Project data in Step 1 (as shown schematically in 

Figure 2). In addition, I summarize the efforts to create the UniProt protein database. Next, 

taking advantage of the gene data made available by the Rice Genome Annotation Project, I use 

the rice genome database to include genes into the total set. Last, I discuss the principles of the 
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basic local alignment search tool (BLAST) implemented by the National Center for 

Biotechnology Information (NCBI) to find local similarity between two amino acid sequences.  

Figure 1 Schematic showing how the program created in this project functionally annotates the rice 

reference genome by homology and then functionally categorize a subset of rice genes by GO term 

enrichment analysis 
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Step 1: Gene Data Sets and GO Annotations 

A reference rice genome was taken from the Rice Genome Annotation Project while all of the 

rice proteins and their functional annotations were downloaded from UniProt. A full set of the 

putative genes in the genome of the two rice subspecies japonica and indica, along with their 

translated amino acid sequences (all.faa; March 2011; 67,393 amino acid sequences) were taken 

from the Department of Plant Biology at Michigan State University website ( 

http://rice.plantbiology.msu.edu/data_download.shtml ). All of the rice-specific protein 

sequences (uniprot_organism_oryzaANDsativa.fasta; March 2011; 47,742 proteins) and their 

functional annotations (gene_associatin.gramene_oryza; March 2011; 49,966 proteins) were 

downloaded from UniProt (http://www.uniprot.org/taxonomy/39947) and the GO consortium 

website (http://www.geneontology.org/GO.downloads.annotations.shtml) respectively. These 

two online data sets (the Rice Genome Annotation Project and UniProt) are publicly available. 

The data set of functional annotation from UniProt contains 49,966 rice protein sequences each 

Figure 2 production of the total set of genes in rice genome for GO term enrichment analysis   
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of which is functionally annotated by a GO term. Another dataset from the Rice Genome 

Annotation Project contains 67,393 amino acid sequences of all the genes in the rice genome. 

BLAST alignment of the amino acid sequences of all genes in the rice genome against the rice-

specific protein sequence database, followed by transferring GO term annotations from the 

UniProt rice-specific protein sequences to these amino acid sequences in the Rice Genome 

Annotation Project identified 41,086 close matches, and thus resulted in the production of GO 

term annotations of 41,086 putative genes in the rice genome.  These GO term annotations were, 

in this place, GO term annotations of 41,086 locus identifiers in the rice genome, and thus 

became the total set of genes in the rice genome for subsequent enrichment analysis of GO 

terms. By the total set of genes in the rice genome, I mean the follows: the reference rice 

genome, or all putative genes in the rice genome, or all putative rice genes is the full set of 

putative genes in the two rice subspecies japonica and indica. 

 

As background to the GO annotations being used, UniProt (The Universal Protein Resource) 

provides a gene annotation file (gene_associatin.gramene_oryza; March 2011) of the rice-

specific proteome (uniprot_organism_oryzaANDsativa.fasta; March 2011) [18]. The GO is a 

structured source of information. I elected to include proteins and their respective annotations 

that are related to Oryza sativa subspecies japonica only. To construct the most accurate 

proteome based on existing evidence, UniProt only includes canonical sequences and isoforms. 

Each protein is a product encoded by one gene. In addition, annotations of rice proteins which 

are obtained from the UniProt database were done using GO terms (GO term annotations of rice 

proteome) as depicted in Figure 3. UniProt proteins have both manually curated GO term 

annotations and predicted GO term annotations. To help provide high-quality descriptions of the 

functions of gene products, the GO consortium uses curators who are experts in gene families 
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[10, 19] to review experimental evidence as well as the automatic predictions by Ensembl, 

EnsemblGenomes, InterPro and UniProt. These automatic predictions exploit gene orthology, 

protein sequence signatures, and existing cross-references from external controlled vocabularies. 

If no accession numbers are available for some proteins, these proteins will not be annotated with 

GO terms. As a consequence, the UniProt data set of functional annotation 
1
 

(gene_associatin.gramene_oryza; March 2011) contains only 49,966 rice proteins out of all 

63,535 proteins in the rice proteome set (uniprot_organism_oryzaANDsativa.fasta; March 2011). 

viii                                                 
1
 Reprinted with permission from "The UniProt-GO Annotation database in 2011,"by E. C. Dimmer, et al., Jan 

2012. Nucleic Acids Res, vol. 40, pp. D565-70, Copyright the Author(s) 2011. Published by Oxford University Press 

Figure 3 flow of data to create a gene annotation file: Proteins from UniProtKB are 

annotated using GO terms[1] and AmiGO is a web application that gives access to the 

resources at the GO consortium. Using GO terms, members of the GO consortium, of 

which UniProt is a central member, submit annotations to the annotation dataset.
 1
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Step 2: Inclusion of Putative Genes 

 Equally important for creating the total set of all genes in the rice genome for enrichment 

analysis of GO terms is the inclusion of putative genes. For this purpose, I used the Osa 1 

genome annotation database (The Institute for Genomic Research (TIGR) rice genome 

annotation database) which collects putative genes for Oryza sativa subspecies japonica and 

indica (all.faa) from the Rice Genome Annotation Project. Each putative rice gene is recognized 

by a unique locus identifier (LOC_OsXXgXXXX), a model of the gene structure and functional 

annotations. [10] This attempt to identify all the gene content in the genomes of japonica and 

indica was first carried out by the Institute for Genomic Research (TIGR). TIGR references a 

gene to a gene index, or initially a pseudo-molecule, through the probes and primers used to 

identify the loci as shown in Figure 4. The resulting rice genome data set contains all putative 

genes in the rice genome. The size of the current data set of the rice genome is 63,535 putative 

rice genes. In addition to the results of using gene prediction programs, TIGR gathered evidence 

for genes in the rice genome from  the rice full-length cDNA and assemblies of expressed 

portions of the genomic DNA sequences (or assemblies of expressed sequence tags (EST))[20]. 

In 2002, TIGR also integrated protein sequence homology as evidence for genes to support the 

identification of functional genes in the genomic DNA sequence. In 2007, a tool called EuCAP 

was built to enable the rice experts (called community curators) to submit functional annotations 

of the pre-determined genes, and these pre-determined genes are subsequently matched with the 

genes in the Rice Genome Annotation Project data set.[10]  Today’s putative rice genes in the 

current rice genome maintained by the Rice Genome Annotation Project contain evidence from 

different studies including the results of gene prediction programs, DNA transcription as well as 

homology to fully characterized proteins.[21] In 2011, Rice-Map was built to incorporate 

epigenetic modifications, including DNA methylation, to provide additional evidence for the 
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genes in the rice genome of the Rice Genome Annotation Project where no other biological 

information is available [10].  Despite the effort of the Rice Genome Annotation Project, there is 

still much room for improvement to identify gene content in the genomes of Oryza sativa 

subspecies japonica and indica. To my knowledge, no tool has been set up to use GO terms to 

annotate the amino acid sequences of rice genes in the Rice Genome Annotation Project. 

Because GO term annotations of amino acid sequences enable us to subsequently perform 

enrichment analysis, functional characterization works well for any input gene list. This makes 

the tool more suitable for rice’s situation where results of DNA methylation experiments are 

locus identifers. 

 

Figure 5 existence of genes for gene-function discovery in the functional genomics era 

genomic DNA 

sequence of rice

transcription for

full-length cDNA and and EST
homology to proteins DNA methylation

functional annotation 

on the rice genome

identification of

novel genes and their 

biological context 
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Step 3: Homology Mappings 

I use BLAST as a way of assessing homology, and thus transferring GO term annotations to 

putative genes. Most importantly, BLAST is an algorithm to search for regions of local similarity 

by comparing pairs of sequences using a heuristic approach. Generally, of the various tools for 

comparing similarities between biological sequences, the most widely used is ncbi BLAST. First, 

BLAST measures sequence similarity by approximate matches in local pairwise alignment. Put 

simply, sequence similarity is computed between two protein sequences by scoring matches/ 

mismatches according to some measure of  ‘sameness’/ ‘difference’[22]. A commonly used 

measure of matches/ mismatches is a matrix for substitutions of amino acids with respect to a 

pair of sequences, which is calculated from the probability of a biologically meaningful amino 

acid pair occurring in an alignment [22]. Commonly used substitutions matrices are BLOSUM62 

(blocks substitution) and PAM30  (point accepted mutation). It is true that BLAST local 

alignment is similar to global pairwise alignment with regard to searching for approximate 

matches. However, insertions and deletions with respect to mutation events are penalized 

differently in local alignment by comparison to global alignment. Although local alignment and 

global alignment both penalize for opening a gap (an affine gap penalty) and having an 

additional gap (an extension penalty)[22], they use different numerical values to achieve 

different goals. The highest scoring local alignment is achieved by aligning segments of one 

sequence to segments of the other. On the other hand, the global alignment aims to align two 

entire sequences from beginning to end.  Second, BLAST makes an assumption to decrease the 

number of comparisons of letters between a pair of sequences being aligned.[22]. Stated briefly, 

BLAST assumes that the best local alignment will contain at least some words (‘hits’) that are 

high-scoring. During the first pass, BLAST finds the high-scoring ‘hits’ that are not exact 

matches between the pair of sequences being aligned but are high-scoring alignments 
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nevertheless. Then in the subsequent pass, BLAST ‘extends’ the hits. Prior to BLAST, the 

highest scoring local alignment of two sequences is exhaustively searched using dynamic 

programming algorithms, such as Smith-Waterman algorithm to compare every letter to every 

other. In other words, every single letter of one sequence is compared to every single letter of the 

other sequence. Certainly, heuristic approaches such as BLAST decrease the search space and 

therefore increase the speed of finding , but are not guaranteed to find the highest scoring local 

alignment that Smith-Waterman algorithm is guaranteed to find (but BLAST almost always do).  

III. Synthetic Gene List: Proteins Involved in Cytokinin Accumulation and Increased 

Grain Yield  

Previously I discussed how GO term annotations of UniProt protein sequences were transferred 

to the reference rice genome from the Rice Genome Annotation Project. Now I will discuss 

below how I sought a list of genes to which genes for known processes are added (as depicted in 

Figure 6) so that I subsequently applied a GO term enrichment analysis on this input gene list as 

a demonstration case. In this example gene list described below, I focus on the cytokinin 

regulating- cytokinin aspect of the OsCKX2 gene. Phytohormone (plant hormone) cytokinin 

(http://www.plant-hormones.info/cytokinins.htm) plays an essential role in promoting cell 

division, growth and development. The decrease in OsCKX2 expression has been shown to 

cause cytokinin accumulation in fluorescence meristems and increase the number of reproductive 

organs, resulting in increased grain yield. [23] Knowing the biology of OsCKX2 will help 

engineer the rice that has increased yield. Through querying OsCKX2 on Gramene 

(http://gramene.org/protein/ ; a comparative mapping resource for grains) for its biological 

properties, I found that this protein is associated with a single GO term in the Molecular 

Function ontology, i.e. ‘cytokinin dehydrogenase activity’ whose GO identifier is GO:0019139. 

Afterwards, this information was used by my program to identify additional proteins. To try to 
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create an example set of genes of interest, I queried by ‘cytokinin dehydrogenase activity’ [24] to 

search for associated rice-specific protein sequences in UniProt at the GO website using AmiGO 

version 1.8 (http://amigo.geneontology.org/cgi-bin/amigo/go.cgi; a web app to browse the gene 

ontology) [25] as shown in Figure 3.  After I queried ‘cytokinin dehydrogenase activity’, AmiGO 

returned a set of 29 orthologous proteins that were annotated to this GO term ‘cytokinin 

dehydrogenase activity’. Four out of these 29 proteins which share ‘cytokinin dehydrogenase 

activity’ are in Oryza sativa. [24] In fact, these four rice proteins were experimentally annotated 

with ‘cytokinin dehydrogenase activity’. To pull a list of protein sequences related to cytokinin 

dehydrogenase activity, these four rice proteins known to be annotated with cytokinin 

dehydrogenase activity was downloaded in the GO consortium’s gene association file format 

(idCytokininDehydrogenase.txt).  

 

Subsequently, in order to test my MATLAB tool, I combined these 4 cytokinin dehydrogenase 

activity proteins and 96 random rice proteins to create an example set of genes for subsequent 

enrichment analysis of GO terms. Because 4 of the rice proteins in this list were obtained from 

the GO consortium (through AmiGO) and the remaining 96 proteins were obtained from 

UniProt, it is true that these 100 proteins (gene_association.cytokinDehydrogenaseList) were 

annotated with at least one GO term. Nevertheless, only 23 of these 100 proteins, including 4 

cytokinin dehydrogenase activity proteins, belong to UniProt rice-specific proteome. (Only 23 of 

the 100 accession numbers in the original gene list belong to 

uniprot_organism_oryzaANDsativa.fasta.) This set of 23 proteins (cytokininDehydrogenase.faa 

for 23 accession numbers, their amino acid sequences, and their annotations using GO terms) 

serves as an example input to the enrichment analysis (a list of genes of interest for enrichment 

analysis) of the MATLAB tool written for this project. 
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Step 4: Enrichment analysis of GO terms  

A high-throughput assay usually outputs a list of genes that are biologically related. The 

comparison between the relative frequency of a GO term in the gene list versus the relative 

frequency in the reference genome allows us to decide what the biological meaning of the gene 

list is. The enrichment analysis of GO terms assesses whether each GO term is significant based 

on its p value [26] that is computed for a gene list of interest relative to the entire genome. In a 

way the enrichment analysis allows us to functionally categorize any gene list based on enriched 

Figure 7 p value of a particular GO term is computed by hypergeometric test and then 

corrected using Benjamini-Hochberg procedure 

hypergeometric 

test

Benjamini-

Hochberg 

procedure

p-value 

smaller 

than 

0.00001The relative frequency of 

a particular GO term in 

the gene list versus the 

relative frequency in the 

reference genome 

This particular GO 

term is significant. 
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GO terms. Thus, no doubt the enrichment analysis of GO terms is the most commonly used type 

of GO analysis. In this section III, I first describe the hypergeometric test and multiple testing 

correction that are used to compute p value for statistical significance testing of each GO term in 

this project. Finally, I also explain how I did a proof of principle experiment/ example of using 

the MATLAB tool in this project to perform enrichment analysis of GO terms.  

 In the enrichment analysis of GO terms in this manuscript, the exact p value is calculated using 

hypergeometric tests for �� number of genes that are annotated with a specific GO term � as 

shown in Figure 8. In the context of the enrichment analysis, a p-value is the probability of 

finding ��  or more genes that are annotated with this GO term by chance [3].  The gene list is a 

subset of the entire genome. Hence, the exact p-value, rather than the approximate p-value, is 

Figure 8 a 2 by 2 contingency table and hypergeometric test for each GO term �: N – the number 

of genes in the genome, n - the number of genes in the subset of genes, �� – the number of genes 

in the genome with annotation of the GO term �, �� – the number of genes in the subset of genes 

that were annotated with this specific GO term � 

(http://great.stanford.edu/help2/index.php/Statistics#What_is_the_hypergeometric_test_formally.3

F) 
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usually calculated for statistical significance testing of a GO term using a permutation-based test 

such as a hypergeometric test or a binomial test. In this project, the tool for enrichment analysis 

of GO terms specifically uses hypergeometric tests to compare GO terms between a gene list and 

its entire genome by calculating exact p value for a specific GO term because a large number of 

GO terms are associated with at least one gene and most GO terms are each associated with only 

a small number of genes[26]. Note that the genes in the entire genome in this project are amino 

acid sequences from the Rice Genome Annotation Project. 

 

In an enrichment analysis of GO terms, the hypothesis tests are performed for all GO terms and 

GO terms are not independent. For these two reasons, the need for multiple testing corrections 

for the p-values becomes even more critical in the enrichment analysis of GO terms. First, the 

hypothesis tests for 35,119 GO terms (OBO.sgd; October 2011) in each of the two data sets (the 

total set and the subset) will very likely run into the multiple test problem. If the p-value 

computed for a GO term is less than a cutoff, which is 0.00001 in this project, this particular GO 

term in the gene list is then said to be over-represented/ enriched, and so describe the function of 

the gene list. It is true that the p-value cutoff of 0.00001 in this project is very small. 

Nevertheless, given that the same hypothesis test (hypergeometric test) was performed 35,119 

times to determine enriched GO terms by p-value cutoff of 0.00001, one had already expected 

some GO terms to be deemed enriched by chance alone. Second, although the Molecular 

Function, Biological Process and Cellular Compartment attributes of genes are independent, the 

data structure underlying each of these three ontologies is a hierarchical tree, which is 

represented by a directed acyclic graph and can represent knowledge to varying levels of 

completeness[8]. Thus doing hypothesis tests for every GO term violates the independent and 

identically distributed assumption (iid assumption) of the studied GO terms.[3]  
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IV. Example: Computing P-value For a Statistically Significant GO Term 

The demonstration case described below uses a synthetic gene list. I will explain how I assessed 

whether a GO term is significantly enriched to identify the function of genes in the subset of 23 

genes. In proof of principle experiment, the example set of 23 genes was not known by the 

program to contain four cytokinin dehydrogenase activity genes. To calculate the enrichment of a 

GO term, I took two sets of genes, the total set and the subset [27], and then performed a test for 

statistical significance of the GO term. A total set contains annotations of the reference rice 

genome was obtained from transferring GO term annotations from UniProt protein sequences to 

the amino acid sequences of the reference rice genome in the Rice Genome Annotation Project. I 

previously explained in Step 1: Gene Data Sets and GO Annotations of the section II how the 

pairwise similarities between the rice-specific proteome from UniProt and amino acid sequences 

of the reference rice genome from the Rice Genome Annotation Project were detected by 

BLAST alignments, and then used to infer homology and thus to transfer GO term annotations 

from UniProt protein sequences to the reference rice genome from the Rice Genome Annotation 

Project.  A subset contains annotations of a subset of genes. I obtained an example subset from 

query by ‘cytokinin dehydrogenase activity’ (GO:0019139) for protein sequences. Then I used a 

hypergeometric test (which is equivalent to a one-tailed Fisher’s exact test [3]) to compare the 

relative frequency of each GO term in the subset of genes of interest versus the frequency in the 

overall gene set [19] by computing p-value. After the hypergeometric test, a multiple testing 

correction called Benjamini-Hochberg procedure was also applied to the p-value. If a GO term 

had p-value less than 0.00001, this GO term was deemed over-represented/ enriched in this 

subset of rice genes with respect to the total set of rice genes. 
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V. Implementation 

To determine the functions associated to the reference genome from the Rice Genome 

Annotation Project, I first make use of the protein sequences and their annotating GO terms from 

the UniProt database to annotate the amino acid sequences which the putative genes in the 

reference rice genome encode. Next, to demonstrate the feasibility of the tool written to do GO 

term enrichment for this project, I perform the enrichment analysis of GO terms for a set of 

cytokinin dehydrogenase activity genes. All the codes were written in MATLAB. In addition to 

generic statistical tests (hypergeometric test and Benjamini-Hochberg procedure) used to 

calculate p values, MATLAB also has Bioinformatics toolbox 2.2 that has codes to read 

proteomic file formats (FASTA), do the gene ontology analysis (GO terms and structure), and 

visualize a tree display of GO terms (biograph) of gene lists. 

 

As previously discussed in Step 1: Gene Data Sets and GO Annotations of the section II, I wrote 

MATLAB code to annotate 41,086 putative genes in the rice genome from the Rice Genome 

Annotation Project to Molecular Function, Biological Process and Cellular Compartment 

ontologies with GO terms. After downloading all protein sequences of rice from UniProt, their 

GO term annotations from the GO consortium web page, and rice locus identifiers 

(LOC_OsXXgXXXX) along with the gene models at those loci (translated amino acid 

sequences) from the Rice Genome Annotation Project, I performed an all-against-all pairwise 

alignments for sequence similarities between the amino acid sequences of the reference rice 

genome (the Rice Genome Annotation Project) and rice-specific protein sequences ( UniProt)[7]. 

This all-against-all pairwise alignment was performed using the command BLASTP in the ncbi 

BLAST version 2.2.25 package (ncbi-blast-2.2.25) to align UniProt protein sequences to the 

amino acid sequences of the reference rice genome from the Rice Genome Annotation Project. 
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To consider only high-scored alignments, I set the E-value to 10��	 , a small negative value as a 

high restrictive threshold. Default values were adopted for the alignment parameters (gap 

opening = -11, gap extension = -1, substitution matrix = BLOSUM62). [3] Along with 

alignments between the two rice databases (One contains UniProt proteome and the other 

contains amino acid sequences of the Rice Genome Annotation Project genome.) which allow for 

calculating sequence similarity, I annotated putative functions of 41,086 rice genes in the rice 

genome in the Rice Genome Annotation Project with GO terms. Using the most similar 

annotated sequences (the top similarity and within 98% of it), I transferred GO annotations from 

the UniProt rice protein sequences to these amino acid sequences of the reference rice genome in 

the Rice Genome Annotation Project. At this point, each locus identifier of a rice gene was 

annotated with GO terms for a total of 41,086 locus identifiers. 

Performance Requirement 

One difficulty that arises from local sequence alignments is the speed. As fast as personal 

computers are and as efficient as the local sequence alignments by heuristics using BLAST are, a 

search of the sequence repository (UniProt rice-specific proteome) in this project on my 

computer is still too slow. It is clear that all the BLAST sequence alignments need to be carried 

out in parallel using multiple processors [3]. In this project, I was able to search 67,393 rice 

amino acid query sequences against the protein sequence database of 49,966 rice-specific protein 

sequences using the computing power of the Hoffman2 cluster. The Hoffman2 cluster is a grid 

resource in the UCLA grid and is accessed via the UCLA grid portal, which is operated by the 

Institute of Digital Research and Education (IDRE) research technology group. The grid 

infrastructure focuses on resource sharing across institutional borders and among dynamic 

collections of institutions to enable the collaboration of distributed computing. In the case of the 

UCLA grid, the Hoffman2 cluster works with 84 UCLA departments, centers and institutes.  To 
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meet the high need for computing power and storage capacity, the Hoffman2 cluster provides 

more than 9,000 processors in three data centers. The grid technologies provide direct access to 

computers, software, and data. Data center centers, computer nodes and data storage are 

connected by Ethernet and InfiniBand networks. Globus online (https://www.globusonline.org/), 

which is a grid middle-ware, enables secure data transfer between my personal computer and the 

Hoffman2 cluster. 

  

GO terms GO 

identifiers 

 Ontology  Number 

of genes 

in the 

subset 

Number 

of genes 

in the 

total set 

P value P value 

after 

multiple 

testing 

correction 

   'low-affinity zinc 

ion transmembrane 

transporter activity' 

6 Molecular 

Function 

23 5982 5.455e-020 3.1929e-016 

    'riboflavin 

synthase activity'  

3674 Molecular 

Function 

21 2838 8.6515e-023 6.0766e-019 

    'ribonucleoside-

diphosphate 

reductase activity'  

3676 Molecular 

Function 

12 719 8.4156e-016 3.6943e-012 

    'plasma 

membrane acetate 

transport'  

5488 Molecular 

Function 

16 1486 1.5063e-018 7.557e-015 

    'positive 

regulation of 

natural killer cell 

activation'  

16491 Molecular 

Function 

4 27 1.2952e-009 5.0541e-006 

Table 1 enriched GO terms based on p-values from the analysis for cytokinin dehydrogenase genes 
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Figure 9 the gene ontology of ‘cytokinin dehydrogenase activity’ (GO:0019139) 

constructed by me on the GO consortium website: The GO term ‘cytokinin 

dehydrogenase activity’ is a leaf (that has no children) in the Molecular Function 

ontology. ‘Cytokinin dehydrogenase activity’ had been experimentally determined for 

the four rice proteins. 

Figure 10 An example output generated by my MATLAB program: to visualize the 

Molecular Function ontology of enriched terms and the relationships 
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Discussions of the Enriched GO Terms 

The regulation and metabolism of the two types of cytokinin in plants, i.e. trans-zeatin -type 

cytokinin and isopentenyladenine-type (iP-type) cytokinin, was previously defined by 

experimental work [2, 28-33]. It is well known that zeatin, which is adenine-type cytokinin, 

is the most common form of natural cytokinin. Trans-zeatin cytokinin has trans-zeatin-riboside 

as its side chain while iP-type cytokinin has iP-riboside as its side chain. The enzyme OsCKX2, 

which is encoded by gene Gn1a,  is an enzyme that catalyzes the degradation of cytokinin 

through cytokinin oxidase/ dehydrogenase (CKX) activity[23] to regulate cytokinin level in 

plants. Taking advantage of GO term annotations of genes in the example list of 23 genes 

including four genes related to cytokinin dehydrogenase activity, I applied my tool to perform 

the enrichment analysis of GO terms. 

 

The p-values of enriched GO terms allow one to predict the biology of genes in the cytokinin 

dehydrogenase activity gene list for exploratory purpose at the molecular level. Overall I found 

five enriched GO terms i.e. 'low-affinity zinc ion transmembrane transporter activity’, 'riboflavin 

synthase activity’, 'ribonucleoside-diphosphate reductase activity’, ‘plasma membrane acetate 

transport’  and   'positive regulation of natural killer cell activation‘. Table 1 demonstrates a 

typical result from the enrichment analysis on the cytokinin dehydrogenase activity gene list. All 

five enriched GO terms were in the Molecular Function ontology. Figure 10 created by my 

MATLAB tool enables us to observe a Molecular Function ontology graph of the five enriched 

GO terms in Table 1, which had p-values greater than zero and less than the 0.00001 cutoff.  

 

In particular, applying this MATLAB tool to perform enrichment analysis on the list of 23 genes, 

out of which 4 were cytokinin dehydrogenase activity proteins, I was able to find two enriched 
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GO terms that gave clues about the regulation of cytokinin, namely 'ribonucleoside-diphosphate 

reductase activity' and 'plasma membrane acetate transport'. Nevertheless, the mechanisms of one 

of the five enriched GO terms, i.e. 'positive regulation of natural killer cell activation’ with 

respect to the biology of cytokinin is unclear to me while 'low-affinity zinc ion transmembrane 

transporter activity’ and 'riboflavin synthase activity’ might describe functions and associated 

processes for many transcription factors and enzymes respectively.  

 

Take 'ribonucleoside-diphosphate reductase activity’ as an example. It is in agreement with the 

fact that cytokinin biosynthesis happens through the biochemical modification of adenine, which 

is a riboside. Most important, ribonucleoside is another form of riboside (trans-zeatin-riboside 

and iP-riboside), and nucleotide of cytokinin can be formed from phosphorylation of nucleoside 

by adenosine kinase[33]. In addition, the N6-substituted isoprene chain of trans-zeatin type 

cytokinin or their ribonucleoside was cleaved by cytokinin oxidase, which is also expressed at 

the base of the flower of mature plants like Dendrobium sp [33] and has similar expression to 

isopentenyladenine transferase gene at the base of siliques. [33, 34]  

 

To illustrate how the enriched GO terms proved of definite help in designing experiments, I will 

also elucidate how the enrichment of GO term ‘plasma membrane acetate transport‘ is consistent 

with the fact that endogenous cytokinin was extracted from tissue samples using a 2% acetic acid 

solution. Going to the original literature conducting biochemical experiments, endogenous 

cytokinins were extracted from maize using cold methanol:water:acetic acid (70:30:3, v/v) [33]. 

Furthermore, trans-zeatin-riboside was purified and subsequently separated with linear gradients 

of a 2% acetic acid solution. Finally, the solution was dried and dissolved in 2% acetic acid[28]. 
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The solubility of cytokinins in acetic acid may account for the enrichment of GO term ‘plasma 

membrane acetate transport’.  

 

Last but not least, cytokinin can be connected to transport based on two of the enriched terms: 

‘low-affinity zinc ion transmembrane transporter activity’ and ‘plasma membrane acetate 

transport.’ These two concepts annotating multiple genes in this cytokinin related gene set make 

biological sense. Transport of cytokinin in is known to cause its accumulation which could be 

explained by the fact that cytokinin regulation involves transportation of this hormone into 

tissues. Cytokinin is generally found in higher concentrations in meristematic (growing) tissues. 

2
It is believed that trans-zeatin type cytokinin is transported from root to the shoot [28] and thus 

accumulation of zeatin-riboside in roots could be attributed partly to the decreased rate of 

transport of trans-zeatin type cytokinin to the shoots. The decreased iP-type cytokinins in roots 

may account for the reduced transport of cytokinin in/from source leaves. [28] Furthermore, the 

finding that the putative signal peptide on the cytokinin oxidase targets it outside of the plasma 

membrane[33] reiterates the transmembrane property of cytokinin as shown in Figure 11. 

Conclusions 

I have presented a MATLAB tool that can be used to make sense of the results of high-

throughput scanning approaches to increase both the resolution of functional annotations and the 

xxiv                                                 
2
 Reprinted with permission from "Receptor properties and features of cytokinin signaling,” by 

S. N. Lomin, et al., Jul 2012. Acta Naturae, vol. 4, pp. 31-45, Copyright 2012 Park-media Ltd. 

http://www.actanaturae.ru/  

Figure 11 model of cytokinin receptor (exemplified by CRE1/AHK4 from Arabidopsis) 

TM – transmembrane, HK – histidine kinase, Ck - cytokinin[2]
 2
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inclusion of other yet unknown rice proteins. In this study, the enrichment analysis performed by 

my tool reveals two GO terms that suggest the relevance for cytokinin associated terms as 

cytokinins was used to generate the gene list. As already observed in similar enrichment 

analyses, it is true that some of the GO terms with over-represented numbers of genes from a list 

of putative genes of interest might be particularly useful for predicting the structure and function 

of that gene list before confirming these predictions through biochemical experiments. The 

example gene list (idCytokininDehydrogenase.txt, cytokininDehydrogenase.faa) is available to 

reproduce the results. My MATLAB tool is particularly valuable to perform functional genomics 

analysis on rice omics data. As shown above, this tool can annotate lists of rice genes derived 

from high-throughput profiling approaches, i.e. genes in flowering plants like rice with CG 

methylations, by performing functional analyses [35].  

 

This tool uses functional inference from sequences to study gene lists. Example future directions 

include domain searches, excluding annotations that are not experimentally verified, or 

correcting for multiple testing when calculating the probability of observing a particular 

enrichment by chance.[36] 
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Availability and Requirement 

MATLAB files 

cell2csv.m 

cell2float.m 

countterm.m 

fexact.m 

fileread.m 

findtag.m 

getenrichedterm.m 

getgenes.m 

gethighscoringpair.m 

GOannotate.m 

GOannotate2.m 

goid2num.m 

GOidfrequency.m 

main.m 

makequeryseqfile.m 

opttf.m 

printsortblast.m 

putgoid.m 

quicksort.m 

readenrichedterm.m 

readtermfrequency.m 

savetermcount.m 

sortbycol.m 

strtok.m 

textscantool.m 

updateAncester.m 

updateGOidfrequency.m 

viewsubontology.m 

writedatabasefile.m 

writequeryseqfile.m 
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