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The emergence of the stem cell niche
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Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los 
Angeles, CA, USA

Abstract

Stem cell niches are composed of dynamic microenvironments that support stem cells over a 

lifetime. The emerging niche is distinct from the adult because its main role is to support the 

progenitors that build organ systems in development. Emerging niches mature through distinct 

stages to form the adult niche and enable proper stem cell support. As a model of emerging 

niches, this review highlights how differences in the skeletal muscle microenvironment influence 

emerging versus satellite cell (SC) niche formation in skeletal muscle, which is among the most 

regenerative tissue systems. We contrast how stem cell niches regulate intrinsic properties between 

progenitor and stem cells throughout development to adulthood. We describe new applications 

for generating emerging niches from human pluripotent stem cells (hPSCs) using developmental 

principles and highlight potential applications for regeneration and therapeutics.

Introduction

Precise control over stem cell self-renewal and differentiation is essential for proper 

organogenesis and tissue homeostasis. Immediately juxtaposed to stem cells are specialized 

microenvironments, termed ‘niches’, containing multiple cell types guiding stem cell 

behavior. Just as adult stem cells are dynamically regulated by their niche, embryonic 

niches formed in development equivalently control cell fate decisions to mature from an 

early precursor or progenitor and eventually to an adult quiescent stem cell. Importantly, 

embryonic niches also change over these developmental contexts. This review seeks to 

identify how changes during development in both the stem cell and its niche affect behavior 

and characteristics of one another. We examine the idea of the emerging niche, defined 

as initial niches in development that help to capture or support fetal progenitor cells and 

direct their proliferative nature and eventual generation of quiescent adult stem cells. We 

specifically focus on niche emergence in skeletal muscle, but we highlight universal themes 

in emerging niche biology broadly across multiple stem cell systems and compare these with 

adult niches.
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Overview and importance of emerging stem cell niches in multiple systems

The initial niches formed in development are likely the most regenerative and pristine but 

may evolve over a lifespan or become altered in disease. Niches across tissue systems share 

common features, such as regulating progenitor to adult cell maturation, self-renewal, and 

activation states during regeneration.

A common theme for many niche systems is supporting waves of developing progenitors 

and stem cells. One of the best understood emerging niche systems is the hematopoietic 

stem cell (HSC) niche, which supports two HSC waves that give rise to all blood cells. 

The first primitive hematopoiesis wave produces transient hematopoietic cells to meet the 

immediate needs of the embryo, including primitive erythroid progenitors required for 

oxygenation. Definitive hematopoiesis then generates HSCs that give rise to all mature blood 

cells and have long-term repopulation potential.

Hematopoiesis occurs in discrete anatomical niches, including from the aorta-

gonadmesonephros region, arteries, yolk sac, and placenta, that are age-matched for 

appropriate maturation and lineage specification [1,2]. Fetal HSCs seed the fetal liver, 

expand, and migrate to the adult niche in the bone marrow stroma, where they reside 

throughout adult life and become predominantly quiescent. As fetal HSCs mature, they 

begin to express receptors, including integrin-αM and GPI-80, that support migration from 

the liver and interaction with the stromal niche [3]. Interestingly, some definitive HSCs that 

originate from distinct fetal niches cease to persist into adulthood and instead are the cell 

of origin for tissue-resident innate-like lymphocytes [4]. In HSCs, the emerging niche is 

key for preventing alternate fate specification, such as to a cardiomyogenic fate [5]. The 

generation and maturation processes of HSCs during embryonic and neonatal development 

are primarily stimulated by inflammatory cytokines, which change over time, and there is 

still much debate on the role of intrinsic and extrinsic regulation of true HSC potential in the 

niche.

Interestingly, another common theme for many adult niche systems is reversion toward 

the developmental-like niche after an injury to support stem cell regeneration. The brain 

houses at least two well-studied neural stem cell (NSC) niches in the subgranular zone in 

the hippocampal dentate gyrus and the subventricular zone around the lateral ventricles 

[6,7]. A recent study performed single-cell profiling plus lineage tracing of mouse 

forebrain NSCs and showed that dormant NSCs reacquire developmental-like states when 

activated to generate adult-born neurons [8]. Notably, almost half of all transcriptomic 

differences were involved in regulating and/or sensing the niche environment, including cues 

from neurotransmitters, receptor ligands, and extracellular matrix (ECM) proteoglycans. 

Bidirectional switches between activated and dormant states during brain development 

or regeneration may be determined by the niche environment, including proper vascular 

formation, ECM, and supportive niche cells such as microglia that secrete neurogenic 

factors.
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The making of the stem cell niche in skeletal muscle

The adult skeletal muscle SC niche is a precise anatomical location between the plasma 

membrane of myofibers and a laminin-rich basal lamina. In contrast, emerging niches of 

skeletal muscle loosely consist of minimal basal lamina and immature myofibers that enable 

progenitor expansion of the rapidly growing muscle [9,10].

Skeletal muscle precursor/progenitor cells (SMPCs) in trunk and limb originate through 

segmentation of the paraxial mesoderm, leading to somitogenesis, which results in the 

formation of distinct anterior/posterior compartments important for specification of the 

dermomyotome and myotome structures that produce embryonic SMPCs. Key components 

of the dermomyotome and myotome niches, including signals from the emerging neural 

tube/ectoderm and mesenchyme, are reviewed elsewhere [10].

Once embryonic progenitor cells emerge from the myotome, one of the first steps in 

the formation of the niche is cell–cell adhesion between SMPCs and the sarcolemma of 

newly formed myofibers through interactions with M- and N-cadherins and CD82 [11,12]. 

This interaction occurs prior to the formation of the basal lamina (M.R. Hicks et al., 
unpublished). As multiple myofibers aggregate to form myobundles, a subset of progenitors 

become encompassed by fusing myofibers, noted by spectrin-positive cross-bridges [13] 

(Figure 1). Between human fetal weeks 11–13 (approximately embryonic day e14 in 

mouse), myofibers begin to express basal lamina such as laminin-211 that ensheathes the 

myobundles and associated progenitors to form the fetal niche [14,15].

Fetal SMPCs produce an order of magnitude greater level of ECM than adult SCs, 

which contributes to autonomous niche building [16]. The fetal niche includes fibronectin, 

collagens, nidogens, matrix metalloproteases, tenascin C, and others that provide scaffolding 

for fetal SMPCs and also serve as a reservoir for growth factors such as insulin-like growth 

factor 1 and transforming growth factor-β superfamily members to promote fetal muscle 

hypertrophy [19,20] and fibroblast growth factors (FGFs) essential to SMPC expansion 

[17–20]. The composition of fetal ECM differs from the adult niche, which includes 

embryonic laminin isoforms LAMA511 and LAMA111, which may facilitate formation 

of new myofibers [15,21]. ECM composition also influences niche stiffness, allowing loose 

association of the SMPCs to the myofibers through multiple binding sites, including fetal 

integrins such as integrin-α6 [22], and potentially regulates lineage commitment through 

YAP/TAZ signaling.

Over development, the skeletal muscle dynamically changes to support three waves of 

myogenesis in part by tendon connections that apply tensile forces [23] and motor neuron 

innervation leading to contraction [24] and structural maturation of the myofiber. The first 

primary skeletal muscles arise in the limb from e10.5 to e12 in the mouse [25] or weeks 

6–9 in humans [26] to establish basic muscle patterning and are usually considered to be 

slow-twitch fibers marked by embryonic MYH3 [27]. Primary myofibers support adjacent 

progenitors in the limb that express PAX3 and the transition to early PAX7 progenitors 

[28]. Motor neurons emerge from the ectoderm in weeks 6–9 in the human limb [29] 

and continue to mature and innervate in concert with the formation of secondary fetal 
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myofibers. Secondary myofibers transition to fast-twitch fibers characterized by fetal myosin 

MYH8 and fetal actin ACTC1 that support the rapid expansion of fetal PAX7+ SMPCs 

and contribute to growing muscle. Secondary myogenesis is thought to occur around e12–

e16 in mouse limbs and corresponds with innervation in humans by weeks 9–11 [30,31], 

but timing may vary depending on anatomical location. Secondary myofibers are initially 

polyinnervated and express fetal acetylcholine subunits, but this begins to decrease at 

fetal week 16 in humans [30]. Interestingly, fetal acetylcholine receptors are re-expressed 

during regeneration throughout adult muscle [32], similar to what is seen in other niche 

systems. Structural maturation of fetal myofibers corresponds with changes to their plasma 

membrane, including expression of potassium-gated ion channels and calcium channels such 

as Piezo1 that regulate sarcolemma phospholipids and begin to assemble the components 

needed to build the SC niche [33,34]. Adult myofibers of the limb are made up of multiple 

myosins, which include MYH1 and MYH2, unless they are undergoing regeneration, in 

which case they re-express embryonic and fetal myosin isoforms, such as what is seen in 

emerging niches in development.

Microenvironment of emerging niches

Emerging niches are also composed of several nonmyogenic cell types in the developing 

limb that are nearby or in contact with SMPCs (Figure 1). Prominent cell populations 

include preosteogenic SHOX2+ progenitors and prechondrogenic SOX9+ progenitors 

involved in bone or cartilage formation, respectively [26,35]. SHOX2-deficient limbs have 

aberrant neural and muscle formation during forelimb development [36]. The developing 

microenvironment also contains mesenchymal DUSP6+ progenitors that provide key 

morphogens needed for support and lineage specification of skeletal muscle [37,38]. 

DUSP6+ progenitors are multipotent but become more lineage restricted overtime, forming 

dermal TWIST2+ fibroblasts of the fascia, tenogenic TNMD+ cells that subdivide muscle 

masses [23], and fetal CD73+ stromal cells that differentially remodel the emerging niche. 

Fetal stromal cells coexpress platelet-derived growth factor receptor-α (PDGFRα), a marker 

for adult fibroadipogenic progenitors (FAPs), which are important support cells during adult 

SC regeneration [39,40]. However, fetal stromal cells differ from adult FAPs, including 

by increased hepatocyte growth factor and reduced interleukin-6 (IL-6) secretion, which 

regulate migration and expansion of SMPCs [43]. Also abundant in human fetal muscles are 

AIF1-expressing hematopoietic lineages that may give rise to tissue-resident macrophages 

[26]. Macrophage subtypes regulate SMPC activation, clearance of cellular debris, tissue 

immune surveillance, and the resolution of inflammation [41]. Model organisms have 

demonstrated that macrophages provide a transient muscle stem cell niche via nicotinamide 

phosphoribosyltransferase secretion during regeneration [42]. Table 1 provides a summary 

of emerging niche populations.

Niche support of intrinsic differences between progenitor and stem cell 

states

Fetal progenitors and adult stem cells have key intrinsic differences that are tightly regulated 

by their niches. In skeletal muscle, both SMPCs and SCs express the quintessential 
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transcription factor PAX7, but many other myogenic regulatory factors and signaling are 

markedly different. Adult SCs have tightly controlled transitions between quiescent and 

activated states that are PAX7+MYF5− or PAX7+MYF5+ [48]. When adult SCs express 

MYOD, they readily and robustly differentiate to myofibers. Unlike adult SCs, fetal PAX7+ 

SMPCs coexpress myogenic regulatory factors MYF5 and MYOD without differentiating 

into myofibers and are maintained in an activated state for extended periods of time, 

enabling expansion of the progenitor pool in vivo until the niche matures [49].

Niche-regulated proliferation

One of the most striking differences in the fetal niche is the presence of amplifying 

progenitors in S/G2/M phases [50]. Progenitors are marked by high levels of EdU and 

Ki67 during limb development and at myotendinous junctions. Coinciding with proliferative 

differences, the fetal niche supports progenitors at densities 100-fold greater than the adult 

niche. Proliferative demands are reflected in SMPC metabolism, which is highly glycolytic 

and has mitochondrial respiratory capacity more similar to activated adult SCs after injury. 

The fetal niche tightly regulates low oxygen levels through hypoxia-inducible factor-1α 
and is used to drive proliferation and muscle mass [51]. Skeletal muscle growth is also 

particularly vulnerable in the fetus exposed to undernutrition from placental insufficiency. 

In contrast, adult SCs primarily metabolize through oxidative phosphorylation [26,52]. 

Adult stem cells maintain the quiescent G0 state for extended periods of time, although 

a limited number of SCs fuse with adult myofibers to maintain homeostasis [53]. Cell stress 

regulation induced by the niche is a key feature of quiescence that is required to prevent 

replication-associated mutations [54]. Key cellular responses to DNA damage pathway 

modulators, p53 and p16, have been shown to control quiescence across many adult stem 

cell systems not seen in fetal progenitors [55].

Niche signaling

Signaling pathways that regulate the interaction of the myofiber with progenitor or stem 

cells are key components helping to regulate the sequential colonization of the niche (Figure 

2). Among the best-defined niche signals is the highly conserved Notch signaling system, 

which transduces short-range signals by interacting with transmembrane ligands such as 

Delta (DLL1) and Jagged-1 on neighboring cells [56]. While Notch signaling is a shared 

pathway between both SMPCs and SCs, Notch may interact with different coreceptors to 

induce niche colonization by SMPCs or maintain quiescence by SCs. Emerging SCs are 

driven into the interstitial space by a lack of Notch signals which is mediated through 

Rpbj. Mislocated SCs do not contribute to normal fiber growth in fetal development [14]. 

Another important signaling pathway are the integrins that interact with fetal and adult 

laminin isoforms that form the basal lamina of the niche. Integrin-α6 interacts with fetal 

laminin-111 and stimulates regeneration [22], whereas integrin-α7 and −β1 interact with 

adult laminin-211 but not embryonic isoforms [57] and are involved in several downstream 

signaling cascades, including focal adhesion kinases, cytoskeletal rearrangement, and RhoA 

[58], which regulates the quiescent state.
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Niche engulfment

As fetal myofibers undergo hypertrophy and fusion, the SMPCs adhered to the myofibers’ 

periphery become ‘engulfed’ by the niche. A multitude of receptors promote adhesion sites 

between fetal SMPCs and myofibers; these include M-cadherin, Mcam, Megf10, several 

α-integrins, and Vcam-1 [14,59,60]. Of these, Megf10 is an epidermal growth factor (EGF) 

repeat-containing transmembrane protein that is known for functioning as an engulfment 

receptor across tissues that can lead to actin polymerization [61] and, when overexpressed, 

can lead to cell engulfment of other cell types [62]. Megf10 is highly expressed in SMPCs 

and interacts with Notch and integrins, and Megf10 knockout mice have impaired muscle 

regeneration [63], which may in part be due to Megf10’s importance for SMPC engulfment 

into the niche.

Niche-regulated cell polarity

Acquisition of cell polarity is an important parameter of stem cell maturation for many 

tissues, including the hair follicle, blood, nervous system, and skeletal muscle [64]. In 

HSCs, loss of the key polarity protein Lis1 prevents blood formation, resulting in embryonic 

lethality, and impairment of cell polarity in NSCs is linked to neurodevelopmental disorders 

such as Down syndrome, fragile X syndrome, autism spectrum disorder, and schizophrenia 

[65]. In the adult, when polarity goes awry, HSCs accelerate differentiation, which, in this 

context, prevents their ability to transform to myeloid leukemia by regulating inheritance of 

cell fate determinants [66].

Upon formation of the skeletal muscle niche, cells begin to establish an apical and a basal 

side, which enables polarity and asymmetric divisions of SCs both to form myoblasts 

and to self-renew. In contrast, fetal SMPCs are more prone to symmetrically divide [67]. 

Through an in vitro muscle stem cell niche screen, epidermal growth factor receptor 

(EGFR) and Aurora kinase pathways were identified as key determinants of SC polarity 

through peroxisome proliferator-activated receptor-γ and CARM1 [68]. In contrast, early 

fetal SMPCs do not express EGFR but highly express other family members of the EGFR 

pathway, such as ERBB3, which is shown to promote SMPC expansion and survival. 

ERBB3 is not expressed by adult SCs unless activated [69]. ERBB family members dimerize 

to affect downstream signaling, and the divergent expression between ERBB3 and EGFR 

and cosignaling pathways may represent a key transitory period between activation and 

quiescence states [70]. Indeed, as SCs are displaced from their niche, EGFR is among the 

first receptors to reduce expression [68].

Niche receptors of SC quiescence

The calcitonin receptor (Calcr) is uniquely expressed by quiescent adult SCs and inhibits 

SCs from escaping the SC niche [71]. The Notch-COLV-Calcr signaling cascade maintains 

SCs in a quiescent state in a cell-autonomous fashion [72] that is thought to occur in mouse 

by 2 weeks postnatally [73]. Oncostatin M (OSM) receptor is a member of the IL-6 family 

and another important receptor of adult SCs. OSM is expressed by nascent myofibers in 

the niche 4–10 days after injury and is a potent molecule for reinduction of SC quiescence 

[74]. OSM stimulates the Stat3 pathway, which is among the most potent drivers of adult SC 

quiescence [75] and is weakly expressed or not expressed at all in fetal SMPCs.
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Stem cell niches regulate functional potential

In mouse, a single adult SC transplanted into a recipient muscle can self-renew to form 

many myofibers and re-establish the stem cell pool [76] and can be serially transplanted 

into multiple recipients with continued stemness [77]. This is the gold standard test for 

stem cells, as is shown in multiple stem cell systems, including the Lrg5+ stem cells 

in intestine [78] and epithelial progenitor cells in the skin [79], with strikingly similar 

outcomes. However, fetal SMPCs have limited self-renewal potential and poor survival 

upon transplantation in vivo and lack a strong ability to form adult myotubes in vitro 
[80]. It remains unknown whether these self-renewal defects are due to the fact that 

most transplantations are into matured adult microenvironments, such as during transplants 

of fetal SMPCs into adult muscle tissue, as it has not been tested in utero, where the 

developmental stage would more closely match the fetal niche. In other tissue systems, on 

the one hand, developmental timing has been shown to be important for cell competition 

following transplantation in which immature cells lose stemness when transplanted into 

more mature skin niches [81] or immature cells improve engraftment when transplanted 

into developing brain niches [82]. On the other hand, fetal SMPCs can be enriched at far 

greater numbers per gram of tissue than in the adult for therapeutic use but have limited true 

repopulation potential needed for use in cell-based therapies.

Modeling emerging niche formation in vitro

Directed differentiation of hPSCs to skeletal muscle is among the few robust in vitro systems 

able to increase PAX7 expression by 1000-fold [83–85]. PAX7 cells not only are generated 

from hPSCs but also can be maintained in directed differentiation cultures for weeks to 

months [86]. Directed differentiation produces an in vitro niche that is not equivalent to 

the typical well-studied adult niche. Across many lineages, differentiation of hPSCs results 

in phenotypes more closely aligned with embryonic to fetal progenitor cells [26], and 

therefore, the niches that support hPSC muscle are more likely to be similar to an early 

developmental state. Just as with fetal development, an expected key component of emerging 

niches is the myofibers that are present in all directed differentiation strategies, and it is 

thought that secondary myogenesis in a dish can enhance maturation of Pax7 cells [87]. 

During directed differentiation, many nonmyogenic lineages concurrently arise that may 

serve supportive functions through secretion of growth factors, ECM, cell–cell contact, or 

mechanical cues to create an in vitro niche for PAX7 SMPC generation. Many supportive 

cells found in emerging fetal niches (Table 1) are also found during directed differentiation, 

including neural progenitor cells, neurons, and mesenchymal cells, and, depending on the 

protocol, can also contain epithelial cells, skeletal cells, and chondrocytes. Depending on the 

timing and directed differentiation strategy, the supportive cells that emerge may differ [26]. 

The role of these emerging populations has yet to be tested, but these populations have the 

potential to inform how to better generate or support PAX7 cells during human development.

A cutting-edge area of emerging in vitro niches may include engineering 3D human 

skeletal muscle systems to provide a more long-term environment for support of PAX7 

cells. In vitro myobundles have been developed that resemble the fetal myobundle niche 

and that exhibit calcium transients and nearby PAX7 SMPCs [88]. Over a 4-week culture 
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period, 3D induced skeletal muscle bundles undergo progressive myotube hypertrophy and 

functional enhancement and attain more advanced levels of myogenic differentiation than 

do age-matched 2D monolayers. In another format, induced myogenic progenitors (iMPCs) 

can undergo direct reprogramming and conversion to the myogenic program to generate 

spontaneously contractile myotubes with abutting Pax7+ cells near most fibers, suggesting 

the formation of in vitro emerging niches in an iMPC system [89].

Despite advances in generating PAX7 cells in 2D and 3D systems, there are currently still no 

protocols that can fully support or mature the equivalent of an adult muscle SC from hPSCs 

in vitro. Avenues to induce maturation could include addition of vascular cells, including 

endothelial cells, pericytes, or integration with motor neurons, to fully support generation 

of more mature adult SC-like cells in vitro. Recent work has shown that both muscle 

and neuronal cells can be generated in a new organoid system called the ‘neuromuscular 

organoid’ [90], but whether this organoid model better supports developing or more mature 

adult PAX7 cells is not known. Vascular support would also improve survival of larger 

constructs in vitro and in vivo, which require vascularization to prevent hypoxia-induced cell 

death. Towards this end, it has been shown that generation of 3D muscle models alone, with 

injury [114] or containing multiple supportive cells in addition to skeletal muscle, including 

vascular endothelial cells, pericytes, and motor neurons, can be generated, but the potential 

of PAX7 cells grown in 3D to engraft into the SC niche in vivo better than 2D conditions is 

still underway [91].

In addition, the in vivo environment may provide a better system for generating more 

mature and potentially quiescent adult SCs [92,93]. However, even in these conditions, 

the maturation does not occur without serial transplantation in vivo and/or after injury. 

Recapitulating the in vivo niche in a dish will be needed to overcome these hurdles and 

generate an SC equivalent without the need to mature these cells in animal models.

Generating new niches for therapeutics

Regulating the stem cell niche set point

Can we use the information gained from emerging niches to improve niche formation for use 

in regenerative medicine applications? Within any given organ, the niche tightly regulates 

the number of stem cells within it, termed the ‘niche set point’. The niche set point varies 

widely across organs; for example, the intestinal crypt, dental pulp, skin, and hair follicle 

bulge contain densely packed stem cells, whereas the liver and skeletal muscle niche contain 

more sparse stem cells [94]. Understanding the cues that regulate the stem cell niche set 

points could be harnessed to potentially increase stem cell numbers in the niche and the 

robustness of the regenerative response [95].

Emerging niches can be generated from hPSC SMPCs that recapitulate the early stages seen 

in muscle regeneration in vivo (M.R. Hicks et al., unpublished). During regeneration in the 

adult, new myofibers are formed, and PAX7 cells associate with regenerating myofibers 

[96]. Both in development and in regeneration, there are more SMPCs per unit of myofiber 

than at homeostasis, but whether we can regulate stem cell densities or set points is less well 

understood. This work suggests that a better understanding of the interaction of the SMPCs 
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with the niche, perhaps in the context of emerging niche formation, similar to what is seen 

in regeneration, will provide clues as to how SMPCs can be remodeled to generate more 

functional SCs.

It is interesting that as niches in development support more progenitor cells than the adult, 

it could be possible to rejuvenate the aging or diseased niches by recapitulating the niche 

set points, such as those that are created in development. Recently, overexpression of the 

Yamanaka factors (Oct3/4, Sox2, Klf4, and c-Myc) in myofibers caused changes to the 

myofibers, which included upregulation of cytoskeletal reorganization pathways and induced 

the activation of SCs, which could be similar to the SMPC state and in turn accelerated 

muscle regeneration in young mice [97]. Regulation of the niche has also been accomplished 

using receptor–ligand combinations, such as using myofiber-derived Wnt4, which was 

shown to regulate the stem cell niche set point [98], and knockout of signaling pathways 

such as with Stat3 in the SCs that makes them nonresponsive to myofiber-induced signals 

such as with OSM [99]. Manipulating these or similar pathways in the emerging niches 

could help shift SMPCs toward an adult SC-like state.

Modulating niche ECM/signaling

It has been shown that injecting niche factors that target the receptors and ECM can 

modulate regeneration. For example, monoclonal antibody augmentation of β1-integrin 

activity can restore Fgf2 sensitivity and improve regeneration after experimentally induced 

muscle injury [100]. To improve niche formation, it has been shown that treatment with fetal 

laminin-111 enhances symmetric cell division and improves regeneration in the adult, and 

this may harness aspects of a fetal-like regenerative state [15]. A powerful tool to enhance 

regeneration may be to develop artificial niches to support SCs in vitro [101]. Others 

have also targeted the supportive cells in the microenvironment to regulate the regeneration 

through Notch signaling [102], and depletion of niche cells reduces regeneration [103].

Aging and diseased niches

It is important to note that the niche is not static but changes over the lifespan to regulate 

stem cell function in aging and disease contexts [104]. For example, in the aging intestinal 

niche, loss of barrier function in the epithelium alters stem cell fate [105], and shifts in the 

number of Paneth cells in the niche reduce regenerative potential. In neurogenic niches, high 

vascular density and disruption of vascular remodeling in early development may play a 

long-term role in regulating neural organization, and vascular cell loss in the brain may be 

a contributor to neurodevelopmental disorders such as autism, schizophrenia, and epilepsy 

[106].

Some of the worst muscle diseases occur from genetic defects in key components of the 

SC niche. Mutations in laminin-2 or collagen-6 genes result in congenital myopathies 

and Emery-Dreifuss disease, respectively, and lead to loss of Pax7 cells and muscle 

wasting [107]. In one of the most devastating muscle-wasting diseases, Duchenne muscular 

dystrophy (DMD), SCs deficient in dystrophin lose polarity and are unable to appropriately 

form a niche, leading to a dysfunctional progenitor state, failed regeneration, and/or disease 

exacerbation [108]. Recent work has shown that SCs survey their niche via cell protrusions 

Hicks and Pyle Page 9

Trends Cell Biol. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[109], which, when impaired, such as in Piezo1 knockout or DMD, primes SCs to activate 

from quiescence [33].

A key unresolved question is whether defects in emerging niche formation lead to 

incomplete maturation of the stem cell or a propensity for birth defects or developmental 

delays. Convincing evidence has demonstrated that some pediatric leukemias can originate 

before birth and that these cancers retain fetal niche properties postnatally [110,111]. 

Understanding the ontology of fetal hematopoiesis is of particular interest in understanding 

the pathogenesis of childhood blood disorders [112]. Similarly, understanding how fetal 

skeletal muscle growth adapts to nutrient availability is important for determining deficits in 

muscle growth in adulthood. Because skeletal myofiber number is set at the time of birth, 

low birth weight infants may have lower muscle mass in adulthood, resulting in increased 

risk for metabolic syndrome and type 2 diabetes. Thus, suppressed development of muscle 

by inefficient niche formation or control could be a major contributor to increased risk of 

sarcopenia, obesity, or diabetes later in life [113].

Concluding remarks

Stem cell niches range in biological diversity across development to adulthood. The niches 

not only promote regeneration but also regulate the maturation and functional potential of 

the progenitors or stem cells they support. Niches should be considered as a therapeutic 

target to readily influence both intrinsic and extrinsic activity of progenitors and stem cells 

in development and disease. hPSCs offer a powerful system to generate robust regenerative 

cells, and this could have implications for use across many different cell-based therapeutic 

applications, especially if they can be directed to generate fully functional adult SCs. 

Evaluation of the differences in emerging compared with adult niches using new tools, 

including spatial sequencing, multiomics, and niche-specific computational platforms, will 

accelerate our understanding of how progenitor and stem cells are controlled differently 

in each niche state. Harnessing the power of emerging niches could shed light on new 

approaches to enhance regeneration and support human health (see Outstanding questions).
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Highlights

Niches coevolve with the maturation of progenitor and stem cells from development 

through to adulthood.

Fetal progenitors in emerging niches are highly expansive, whereas adult niches regulate 

stem cell quiescence.

Fetal progenitors are less able to occupy adult niches during transplantation.

Niche formation is stepwise, involving cell–cell contact, followed by cell– extracellular 

matrix contact, to affect cell polarity and maturation.

Emerging niches use similar pathways and mechanisms during regeneration.

Understanding niche formation may improve the quality and quantity of stem cells within 

niches.

Supportive cell types in emerging niches are different from homeostatic adult niches.

Human pluripotent stem cell lineages can be used to model components of niche 

development in vitro and in vivo.

Hicks and Pyle Page 16

Trends Cell Biol. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Outstanding questions

What dictates progenitor differentiation versus niche formation?

How does adherence to the emerging niche make the transition to adult SC niches over 

time?

How do SMPCs transition into a quiescent SC?

How many transitional states are there between fetal progenitor and adult stem cells?

What regulates stem cell set point and number of niches across tissues?

What are the roles of supportive cells in the emerging progenitor niche compared with the 

adult niche?

What are similarities and differences between development and regeneration?

Can new niches be rejuvenated in settings of aging or disease?

Would the formation of new niches improve the rate or magnitude of regeneration?

Is the myofiber plasma membrane specialized at the myofiber SC contact point, and how 

does this regulate SC set points?

Can maturation of hPSC SMPCs be promoted by modulating the niche?

What are the cues that are driving maturation in vivo?

Are the processes that regulate the formation of the first niches from hPSCs the same as 

in vivo emerging niches?
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Figure 1. The emerging fetal and adult skeletal muscle niche.
Shown is an example of differences between (A) fetal skeletal muscle precursor/progenitor 

cells (SMPCs) at the beginning of secondary myogenesis and (B) adult skeletal muscle 

satellite cells (SCs) within their niche and microenvironment [26]. Multiple SMPCs in the 

emerging niche illustrate increased number or set point. SMPCs adhere to clusters of small 

secondary myofibers termed ‘myobundles’, and SCs reside at the periphery of large adult 

myofibers with a laminin-rich basal lamina. In contrast, SMPCs produce high levels of 

extracellular matrix proteins and are in direct contact with multiple nonmyogenic cell types 

that are unique from the adult niche.
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Figure 2. Intrinsic differences in skeletal muscle precursor/progenitor cells (SMPCs) and satellite 
cells (SCs).
Cartoon depicts key differences in niche-derived signaling pathways identified between (A) 

SMPCs and (B) SCs. These ligands and receptors present on stem cells, or their niche cells, 

may influence cell behavior that includes proliferation, maturation, and quiescence.

Hicks and Pyle Page 19

Trends Cell Biol. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hicks and Pyle Page 20

Table 1.

Supportive cell types in the emerging niche.
a

Cell populations in the 
emerging niche

Markers Potential roles in emerging niche formation

Fetal myofibers MYH8, ACTC1, 
spectrin

Adhesion to fetal SMPCs, building of ECM needed to support SMPCs

Prechondrocyte SOX5, SOX6, SOX9 Specification and support of muscle development, BMP production

Preosteoblast SHOX2 Specification and support of muscle [36]

Limb mesenchyme DUSP6 Wnt regulation and limb formation

Tendon precursors SOX9, TNMD, SCX Skeletal muscle patterning and tensile forces inducing structural maturation 
[23,37]

Dermal fibroblasts TWIST2, KRT19 Chromatin remodeling and maturation [43], formation of the fascia

Stromal cells CD73, PDGFRα Regulation of immune system and SMPC activation through cytokine section 
and adipocyte versus fibrotic differentiation [44]

Neural crest SOX10, Wnt1 Prevention of premature differentiation of fetal SMPCs [45]

Schwann cells CDH19 Neuromuscular junction formation and maintenance [46]

Vascular and endothelial cells ESAM, AP Metabolite and growth factor support to the skeletal muscle [47]

Macrophages SRGN, AIF1 Regulates muscle regeneration, stromal cell activation and maturation

a
Abbreviations: BMP, bone morphogenetic protein; ECM, extracellular matrix; SMPC, skeletal muscle precursor/progenitor cell.
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