




Copyright 2016

by

Charles Harold Greenberg

ii



This thesis is dedicated to my family.

Especially:

Jayne, Amy, Allen

Edie and Sandy

and

Rebecca

iii



Acknowledgements

During my time at UCSF, I have benefited enormously from the knowledge and advice of many

mentors. First, thanks to my advisor Andrej Sali. Andrej has taught me the importance of clearly

defining a research question before beginning the long work of answering it. He has also helped me

understand that, as method developers, we should focus on doing things right, rather than worrying

too much about being first.

I have learned so much from all the members of the Sali lab, but I want to especially thank my

two primary mentors, Keren Lasker and Riccardo Pellarin. Keren guided me through my rotation

project and helped me understand structure modeling and the particular challenges of electron

microscopy data. She also taught me some very cool algorithms. Riccardo taught me everything

I know about Bayesian inference and helped me understand the connections between physics,

probability theory, and data modeling. He also became a very good friend.

I could not have done my work without the computational infrastructure of the Sali lab (every-

thing from the smooth running of our cluster to our lab software, IMP), so I want to thank Ben

Webb and Daniel Russel. They (along with Keren, Riccardo, and a long list of other lab members)

built the tools I use every day, taught me how to use them, answered my endless emails, and made

me a better coder and scientist.

The Sali lab is full of brilliant people who each bring a unique perspective to the shared domain

we all work in. They’re also very silly. Thanks for all the good conversations over fine beverages

to, in random order, Ilan, Adrian, Daniel 2, Avner, Dave, Ignacia, Sara, Kate, Javi, SJ, Jeremy, Pat,

Ursula, Max, Dina, Elina, GQ, Seth, Shruthi, and Barak. Thanks also to Hilary, our lab manager

iv



for many years, who helped me countless times and always had a good story to share.

Thanks to my committee members David Agard and Yifan Cheng. I could always count on

them to bring new perspectives to the problems I worked on, ask challenging questions, and re-

mind me that I am not developing methods for their own sake but for the advancement of the EM

community. I also want to thank professors Matt Jacobson, who helped clarify my thesis proposal

and gave me science and career advice many times; Ajay Jain, an early mentor of mine in his al-

gorithms class; Joe DeRisi, who led the Team Challenges which got me so excited for research at

UCSF; Tanja Kortemme, who among other things helped me give better talks; and Patsy Babbitt,

who helped with my thesis proposal. I also want to thank my rotation mentor Eugene Oh, who was

incredibly patient and helpful despite my lack of lab experience.

I want to thank my collaborators, especially Justin Kollman (formerly of the Agard lab), and

Alex Zelter of Trisha Davis’ lab, who were extremely helpful when writing the manuscript that

forms Chapter 3 of this thesis. I also would like to thank Geir-Arne Fuglstad, who has been

incredibly generous with his time helping me to understand spatial statistics.

Thanks as well to my funding sources, the NSF Graduate Student Research Fellowship, NIH

training grant and R01, and the UCSF Discovery Fellowship.

It has truly been an honor to be a student at UCSF, a place where creativity and collaboration

are valued and where virtually anyone is ready to chat with or help out a fellow scientist. This

culture is maintained in part by the professors, but also by the program administrators. I want

to especially thank Rebecca Brown, the biophysics student coordinator, who keeps the program

thriving and who has been mind-bogglingly helpful to me many times over the years.

I am enormously grateful to my very good friends and classmates Erik Jonsson, Aram Avila-
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Abstract

Advances in electron microscopy (EM) allow for structure determination of large macromolecular

machines at increasingly high resolutions. A key step in this process is interpreting the EM density

map with structural models of maximal accuracy and optimal precision. Model precision should

be determined by the uncertainty in the experimental data; however, current methods only set

uncertainty in an ad hoc manner with arbitrary weight terms. Thus, there is a need for more

objective methods.

In Chapter 2, I present a novel Bayesian approach to modeling macromolecular structures based

on EM density maps. The key advancement is the development of a scoring function that uses the

local uncertainty of the density map to set the data weight and allows for correlation between

neighboring density values. Unlike traditional approaches, the score does not require an expert

user to set arbitrary parameters. I assessed the accuracy of models generated by this approach

with a set of experimentally-derived, previously-published EM data of macromolecular complexes

at varying resolutions from 3 to 6Å. I found that this approach leads to higher fluctuations in the

model ensemble in locations with higher local uncertainty, and obtained accurate ensembles for a

3.2Å resolution map of Trpvl and 3.4Å and 5.4Å resolution maps of g-secretase.

In Chapter 3, I present models of the �-tubulin small complex in two functional states based

on a challenging data set consisting of low-resolution EM density maps and a remotely related

structure. Here, I used traditional scoring techniques, but extensively sampled alignments and

conformations in order to ensure that the model ensemble reflected the uncertainty in the data.

The resulting models form a tight cluster for each state and were consistent with a set of newly

reported chemical cross-links. Comparing the two states, I found significant structural differences

and predict stabilizing interactions of the two states. The work in this chapter shows the difficulties

of traditional modeling and serves as motivation for the methods developed in Chapter 2.

Both approaches are incorporated into the open source Integrative Modeling Platform (IMP)

package, enabling integration with multiple other data types and usage of myriad sampling and

analysis tools.
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Chapter 1

Introduction

The aim of structural biology is to create models of the structure and dynamics of macromolecular

machines. Modeling these large, complex systems will help us understand how they function, how

they evolved, and perhaps how they can be modified or even designed. The best way to determine

these models is to utilize all available information simultaneously, including experimental data,

physical principles, statistical inference, and intuition, in a modeling approach known as Integrative

Structural Biology (Sali et al. 2015).

The process of Integrative Structural Biology has 4 stages: gathering information, designing

model representation and evaluation, sampling good-scoring models, and analyzing the ensemble

of models produced by sampling (Alber et al. 2008; Fernandez-Martinez et al. 2012; Lasker et

al. 2010; Lasker et al. 2012; Schneidman-Duhovny et al. 2014). For fixed data input, two key fac-

tors shape the success of this process: choosing an accurate scoring function to encode agreement

to the gathered information, and thoroughly sampling the space of models that score well against

the data. Demonstrating the accuracy of the score and the completeness of the sampling are par-

ticularly needed for communicating the results of a structural study to the scientific community, as

these markers indicate that the model-generating process was as accurate and precise as possible,

given the input data.

The goal of this thesis is to develop procedures to generate accurate ensembles of structures

1



given data from cryo-electron microscopy (cryo-EM) density maps. Below, we discuss the chal-

lenges of incorporating experimental data during modeling, investigate the specific sources of un-

certainty in EM density maps, and discuss other approaches to generating good models from these

data. In Chapter 2 I present a novel, probabilistic scoring approach that explicitly models the un-

certainty in cryo-EM data and uses it to set the tolerance for data violations. In Chapter 3 I focus

on ensemble generation for a challenging application with significant biological implications.

Uncertainty in EM data

Building models of a biological system consistent with all input data is a significant challenge in

biology. Four data issues can lead to uncertainty about the model: (i) sparseness (lack of total cov-

erage by the data); (ii) ambiguity (observations in the data do not map 1:1 to system components);

(iii) incoherence (data points are not assignable to a specific state of the system); and (iv) random

and systematic errors that affect the data values directly (Schneidman-Duhovny et al. 2014). Dur-

ing modeling, we should identify how these types of uncertainty arise from the experiments and

create ensembles of models that indicate, to the degree possible, how much can be said about the

system due to those uncertainties.

In the case of electron microscopy density maps, some of the above sources of uncertainties

are present: (i) sparse sampling of projection angles by the 2D image set (which may even prevent

reconstruction); (ii) ambiguity is only an implicit problem for EM density maps, as the data is

applicable instead to the system as a whole; (iii) EM images may represent a mixture of multiple

states; and (iv) random error results from noise in the images and systematic error results from

mistakes in the correction of the contrast transfer function (CTF, defined below) (Penczek 2010)

as well as the alignment of the 2D images (Scheres 2012b; Grigorieff 1998).
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Error mitigation during reconstruction

2D image model and corrections

The first step towards reconstruction is to correct for distortions created by the microscope. The

basic image formation model in electron microscopy is:

gn(x) = psfn(x)⇤ en(x)⇤
h
Rnr+mS

n(x)
i
+mB

n (x) (1.1)

where gn is a 2D image; psfn is the point spread function of the image (the inverse Fourier transform

of the CTF, which is affected by the voltage of the microscope and its defocus as well as other

parameters); en is an envelope function in real space; Rn is a Radon transform computing line

integrals of the molecule in the direction of the image plane; and mB and mS are background and

scattering noise, respectively (Penczek 2010).

The model (1.1) is normally written in reciprocal space, where the convolutions become mul-

tiplications, and the 2D frequency components of the image inform a central section of the 3D

frequency components of the 3D density (Penczek 2010). Usually the CTF can be determined

from the settings of the microscope, but a more exact procedure fits parameters of the CTF directly

to the micrograph (Mindell et al. 2003; Rohou et al. 2015). The envelope function, which trun-

cates high frequency information due to various deficiencies in the experiment including radiation

damage, is usually approximated as a Gaussian function and can in some cases be fitted to the data

(Scheres 2016). With these parameters known, the images can be corrected to reduce distortion

(although the CTF does reduce the signal to zero at some frequencies, this can be corrected by

taking the data at multiple defocus settings, (see Penczek 2010)).

Recently, the quality of data sets was significantly improved by developments in detector tech-

nology and image processing (see comprehensive reviews Cheng et al. 2015; Bai et al. 2015a).

Direct electron detectors have replaced film and CCDs due to their much improved quantum effi-

ciency (a measure of how well a medium converts incident radiation to photons) (Li et al. 2013b;

Ruskin et al. 2013). Image processing improvements are twofold: first, beam-induced motion was
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reduced by capturing EM "movies" (multiple short-exposure snapshots) instead of longer-exposure

images (Brilot et al. 2012; Campbell et al. 2012; Li et al. 2013a). The multiple snapshots can dra-

matically improve the signal:noise ratio when aligned, leading to reconstructions based on far

fewer images than before (e.g., reconstruction of the ribosome at 4.5Å using only 30,000 images

was achieved in Li et al. 2013a). The second image processing improvement was in the treatment

of heterogeneity and uncertainty during 3D reconstruction, discussed below.

Creating EM density maps from 2D images

Successful 3D reconstruction can be hindered by heterogeneity in the sample. The best way to

reduce compositional heterogeneity is with improved purification; conformational heterogeneity

may be reduced with biochemical techniques (Cheng et al. 2015). Furthermore, if the states

are sufficiently distinct, the images may be amenable to clustering techniques—these include

multi-reference alignment, outlined in Frank 2006; likelihood-based classification (Sigworth 1998;

Scheres et al. 2007); and bootstrapping EM images to identify substates within the data (Penczek

et al. 2011). If only a part of the molecule is heterogeneous, one can even focus the classification in

that region, leaving the most alignable regions fixed (a recent example is Bai et al. 2015b). If these

techniques fail to separate the images into states, then likelihood-based tools such as RELION

(Scheres 2012a) and FREALIGN (Grigorieff 1998) can sometimes still succeed by performing

classification simultaneously with reconstruction.

Both RELION and FREALIGN use the same general approach: assume the 3D frequency

components of each state (number of states specified at the beginning) are independent random

variables, and find their optimal values based on the data and prior knowledge. Each tool uses the

same core likelihood function to evaluate how well the 3D model matches the 2D frequencies of

each image (also assumed independent). And, finally, both tools use expectation-maximization to

optimize the 3D frequencies of each state as well as the noise in each image.

The crucial difference is in how the two methods treat "nuisance parameters" including the

orientation of each image and what state it belongs to. Here, a nuisance parameter is a quantity
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whose value is not of direct interest, but is needed for the likelihood calculation. FREALIGN

finds optimal values for these parameters, reasoning that the likelihood is sharply peaked around

orientations and assignments that are accurate—thus FREALIGN is a "maximum likelihood" (ML)

method.

In contrast, RELION makes no such assumption, instead marginalizing over values of these

parameters and thus propagating their uncertainty to that of the final map(s). This procedure,

called "maximum a posteriori" (MAP), is more objective but can be slower than FREALIGN.

However, a key benefit to considering uncertainty in angle and state assignment is that RELION can

benefit from setting priors on the maps’ 3D frequency components to keep them close to zero—the

Bayesian equivalent of regularization. This treatment imposes smoothness on the density maps, so

that high-frequency components only move from zero if the uncertainty in the data is minimized.

Thus, RELION has a more rigorous uncertainty-reduction approach. In Chapter 2, I utilize the

expected smoothness of the EM density map to write the expected covariance in real space; this

formulation enables evaluation of the significance of an atomic model built into the map.

Quality metrics

Evaluating the effect of these uncertainties on the quality of the EM density map is difficult, as

the errors principally affect the underlying images, but the density map is a model generated from

those images. A common metric for quality of a 3D reconstruction is "resolution," defined by the

"gold standard" Fourier shell correlation procedure (Scheres et al. 2012). In this process, the EM

images are divided into half-sets and reconstructed independently. The two "half-maps" are then

compared in reciprocal space by the correlation at each frequency shell:

FSC =
F1F⇤

2p
Â |F1|2 Â |F2|2

(1.2)

where FSC is the correlation at one resolution shell, F1 and F2 are the Fourier transforms of the

half maps of the two densities, and the sums run over all the values at each shell.
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Starting at low frequencies, the two maps are expected to agree; at higher frequencies, the

individual noise of each half-map become more significant. The resolution is usually reported

as the frequency at which the correlation drops below a specified threshold. A common choice

is 0.143, which was the result of calculating the expected FSC between half-sets when the full

data set contains just enough information to support allowing one additional frequency shell to be

considered signal (Rosenthal et al. 2003).

Recognizing that the uncertainties may vary throughout the density map, a method for eval-

uating "local resolution" was recently published (Kucukelbir et al. 2014). In this approach, 3D

sinusoids of different size are fitted at each voxel of the density map. The largest sinusoid that

correlates well with the density (according to a probabilistic measure) gives the local resolution at

that point. While this approach is useful for evaluating the data quality in different regions, one

must be careful about using the local resolution values themselves as estimates of local uncer-

tainty. Feature sizes in real space are defined by a combination of the inherent shape of structural

elements as well as the degree of uncertainty. In contrast, the gold standard FSC is more rigorously

defined to explicitly calculate the overall degree of uncertainty.

Approaches for building models with EM data

Many techniques have been developed to build models into these density maps, starting with struc-

tures of related proteins or the same proteins in different states. These "flexible fitting" methods

are local optimizers relying on a weighted scoring function, generally written as:

Etotal(X) = wdataEdata(X)+Ephys(X) (1.3)

where X is the coordinates of the model and wdata controls the importance of the data with re-

spect to the force field, which often needs to be set by an expert user. I discuss issues with this

formulation of scoring functions later in this section.

A commonly used score for evaluating fit quality (Edata above) is the cross-correlation coeffi-

6



cient, a measure of shape overlap between the target density and a simulated map:

CCC =
Âi, j r

EM
i r

P
j

Âi(r
EM
i )2 Â j(r

P
j )

2 (1.4)

where r

EM
i is the EM density value at voxel i, r

P
j is the density of the theoretical map (computed

by convolving the atoms of the model with a Gaussian function with variance calculated from the

resolution) at voxel j, and the sums run over all the voxels. This score is the target function of Flex-

EM (Topf et al. 2008). Other techniques include Molecular Dynamics Flexible Fitting (MDFF),

which avoids map simulation by converting the target density map into a vector field based on the

density gradient (Trabuco et al. 2008); and Direx, which uses deformable elastic networks (Wang

et al. 2012).

Each of these tools can generate useful structural models; however, as local optimizers, none

are specifically designed with the goal of sampling the ensemble of structures that are consistent

with an EM density map. In Chapter 3, I used MDFF to solve a challenging modeling problem at

low resolution. As I describe, MDFF did not automatically find a wide range of solutions; I had to

repeatedly randomize the starting configuration (which was generated from a related molecule) in

order to obtain enough structures to claim that the precision of the model ensemble reflected the

uncertainty in the data.

A further limitation of the above approaches is that they each require ad hoc choices for weight-

ing the experimental data against prior knowledge (wdata in Equation 1.3). These techniques do

not explicitly consider the information content of the data (i.e., the number of images that were

used during reconstruction or the resolution of the map) nor the variability in that information (i.e.,

the presence of higher or lower resolution regions of the data (Kucukelbir et al. 2014)). Rather,

the user must make their own assessment when choosing the relative weight, and this can dramat-

ically affect resulting models. For example, in Direx the user sets a parameter which controls the

extent to which the mean positions of an elastic network of the target structure is allowed to shift

during sampling; good results were only obtained for specific values of this parameter, and it is not
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clear whether it can be generalized between systems (Wang et al. 2012). This deficiency limits the

accuracy of the produced model and the accuracy of its precision estimate. Thus, there is a need

for a method that uses the data uncertainty to automatically weight the EM density map. Such

weighting is the motivation for the method developed in Chapter 2.

For very high resolution systems (<4Å), it has become common to use tools developed for

interpreting X-ray crystal structures, such as Refmac (Murshudov et al. 2011). In this approach,

as in RELION and FREALIGN, the 3D frequency components of the density map are considered

independent random variables with Gaussian noise. The score calculates the likelihood of the

residual values between the observed frequencies and theoretical ones based on the current model.

The noise terms can be set by comparing frequencies of half-sets of the images (Murshudov 2016).

A limitation of this approach, however, is in the assumption of independence of the frequency

components, which ignores the statistical effects of locally-varying uncertainty. Furthermore, as a

maximum a posteriori approach, Refmac does not create ensembles of solutions.

Lastly, two new techniques incorporate local uncertainty into the model-building process.

Rosetta incorporated a score that is a weighted combination of global and local cross-correlation

coefficients and other score terms (where local CCC is just Equation 1.4 evaluated in the vicin-

ity of a residue) (Wang et al. 2016). The weights were set by calibration on a different system

from the target density map; thus, it is unclear how generalizable the values are. Additionally,

a variant of MDFF was recently developed to improve convergence during sampling by (i) using

"resolution exchange" to simultaneously run MDFF at a variety of map weights and (ii) scaling the

map weight in different regions based on the local resolution (Singharoy et al. 2016). The results

indicate higher fluctuations in lower-resolution regions; however, the new techniques are aimed at

encouraging more sampling to escape local minima, rather than trying to score more accurately

based on the data quality.
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Outlook for new approaches

The explosion in availability of high-resolution EM density maps has been termed "The Resolu-

tion Revolution" (Kühlbrandt 2014). Improvements in microscopy and detector technology, image

processing, and computational power have combined to make it possible to create models of bio-

logical macromolecules that are more accurate and precise than ever before. A small collection of

these results includes Trpv1 at 3.1Å (Liao et al. 2013) and more recently at 2.9Å (Gao et al. 2016);

�-galactosidase at 3.3Å (Bartesaghi et al. 2014) and 2.2Å (Bartesaghi et al. 2015); �-secretase at

3.4 Å (Bai et al. 2015c); 20S proteasome at 3.3Å (Li et al. 2013a) and 2.8Å (Campbell et al. 2015);

ryanodine receptor at 4.9Å (Wei et al. 2016); and the structures of a eukaryotic motor protein in

multiple states from 6.9-8.3Å (Zhao et al. 2015).

At these near-atomic resolutions, it becomes possible to explore many interesting questions

about the function and dynamics of macromolecules, particularly since cryo-EM data is obtained

essentially for macromolecules in solution. To explore the implications of these data sets, it is

more important than ever to create models with precision that reflects the uncertainties in the data.

For new methods, this will require rigorously evaluating the uncertainty created by the images and

using that information to set tolerances between the model and the data.
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Introduction

Building structural models of a biological system that are consistent with the myriad data describ-

ing them is one of the key challenges in biology. Integrative structure modeling addresses this

challenge by utilizing all data simultaneously. The end result is an ensemble of structural mod-

els, the variation of which should be indicative of the input data and prior knowledge (Ward et

al. 2013). In other words, the goal of modeling is to find an ensemble of models whose computed

data match the experimental data within the experimental uncertainty.

Any modeling requires a scoring function for ranking and a conformational sampling algo-

rithm guided by the function. Probabilistic techniques such as Inferential Structure Determination

have been shown to obtain accurate results while limiting overfitting (Rieping et al. 2005). In this

approach, the score is written as the posterior probability, defined as the distribution over possi-

ble models conditional on all evidence obtained from an experiment as well as prior knowledge.

Accordingly, "weight" terms assigned (often arbitrarily) to experimental data are reinterpreted as

parameters expressing the uncertainty of experimental information (e.g., if the data have indepen-

dent Gaussian noise, then the "weight" of a data point is the variance of the noise). Such "nuisance

parameters" control the relative importance of the data and prior information. The immediate ben-

efit of using probabilities is that all terms in the scoring function are commensurate and obey the

rules of statistics and information theory, in stark contrast with traditional scoring functions where

there is no rigorous procedure on how to combine the individual energy terms or assess the pre-

cision of the models (Habeck et al. 2006); in other words, the Bayesian posterior density is more

"objective" than the traditional scoring functions.

Here, we develop the posterior density for the model given an EM density map. We consider

the EM density map as a joint probability distribution over the values at each voxel. For the first

time, we explicitly model the variability of the uncertainty in the EM density map as well as the

spatial correlation of this uncertainty across neighboring voxels. This approach is more objective

than traditional scoring because data weight is automatically set by the data quality. We achieve

this goal using the formalism of Gaussian processes, taking advantage of recent developments
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in spatial statistics that make computation of the likelihood possible. We illustrated this method

by applying it to a synthetic and real benchmark. The method has been made available to other

researchers as part of the open-source Integrative Modeling Platform (Russel et al. 2012).

Approach

Overview

We represent our structure as a set of spheres with coordinates, radius, and mass corresponding to

the primary sequence. We develop a scoring function that first simulates a "noiseless" theoretical

density map on the same grid as the experimental map, and then calculates the residual voxel values

between the two maps. The key advancements with this scoring function are in the consideration of

expected value for these residuals, namely that they are not independent of each other. Specifically:

1. The amount of uncertainty in voxel values correlates with neighbors.

2. The degree of that correlation varies with location in the density map.

These assumptions are justified below as being caused by the errors in the underlying images,

which also affects the measured local resoluion in the EM density map.

Bayesian scoring function

The posterior probability of model M given data D and prior knowledge I is

p(M|D, I) µ p(D|M, I)p(M|I) (2.1)

The model M consists of a structure X and unknown parameters s , such as noise in the data.

The prior p(M|I) is the probability density of model M given I. The prior can reflect prior knowl-

edge, such as excluded volume, statistical potentials, a molecular mechanics force field, and other
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experimental measurements. The likelihood function p(D|M, I) is the probability density of ob-

serving data D given M and I, and is often expressed as the product of distributions over each

observation based on a noise model of the experiment:

p(D|M, I) = ’
i

N( fi(X),Di) (2.2)

where f (X) is a forward model that predicts the data that would have been observed for structure X

in an experiment without uncertainty and N( f (X),D) is a noise model that specifies the probability

density of the the deviation between the predicted and observed data.

For EM density maps, this formulation of the likelihood would consider each voxel as an in-

dependent measurement and write the likelihood as a product of univariate distributions centered

around the theoretical voxel value at each point, modulated by the estimated noise. However, the

voxel density values are not direct measurements; the raw data is contained in the pixel intensi-

ties in the underlying images (even these pixel values are not independent measurements because

they are obtained by superposing and averaging multiple image snapshots). The density maps are

actually models that were fit to the images, usually with iterative back-projection (Scheres 2012).

As a consequence, all 2D images inform all parts of the map; thus, there may be statistical depen-

dence between the voxels. Therefore, our goal is to find an appropriate functional form of the joint

distribution of the voxel uncertainties.

Gaussian process model

The joint distribution

EM density maps consist of 3D voxels whose values correspond to the Coulomb potential of the

molecule at the voxel location. In the following, we consider any location in the EM map as a

random variable; our goal is to compute, as the likelihood, the distribution of these variables given

the current structural model of the system and an estimate of uncertainty in the voxel values. We

justify our approach by referencing the procedure used for 3D reconstruction in RELION (Scheres
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2012), though the results are general for any reconstruction that employs priors or regularization

to reduce high-frequency noise.

In RELION, the posterior density of 3D frequency components of the density map is sampled

(Scheres 2012). Each image is taken as an independent set of observations. The likelihood of one

image is given as the product of Gaussians over each 2D frequency component, with variances (one

per 2D frequency component per image) that are also sampled. Importantly, model complexity is

minimized by imposing a prior on the 3D frequency components, which expresses the assumption

that the density map is perfectly smooth in the absence of data. Consequently, higher-frequency

terms grow only with the coherence and coverage of the images.

We approximate this procedure as a pseudo-experiment in which the signal of the molecule

is observed directly, with added white noise, but the result has high frequencies truncated (i.e., a

linear filter is applied). In real space one may write:

y(s) = ks(s)⇤ (m(s)+ x(s)) (2.3)

where ks(s) is a point spread function, or kernel, that is allowed to vary in space (as some regions

may have higher frequencies activated); m(s) is the Coulomb potential of the molecular model;

x(s) is a white noise process; and ⇤ is convolution. The first term, V := k ⇤m, is a deterministic

function of the current model calculated by spreading the potential of each atom (see below). The

second term, k ⇤ x, is a smooth random process.

With little loss of generality, we model y(s) with a Gaussian process, defined as a collection

of random variables, any finite number of which have a joint Gaussian distribution. A Gaussian

process is defined entirely by its mean function (here V) and a covariance function (not yet defined)

(Rasmussen et al. 2006). We choose this process because it is quite general; many types of noise

behavior can be modeled by parameters within the covariance.

The likelihood of the Gaussian process model is given by:
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p(y) = N (V,K)

= (2p)�
Nvox

2 |K|�
1
2 exp

✓
�1

2
(y�V)T K�1(y�V)

◆ (2.4)

where K is the covariance matrix. Note that a stationary Gaussian process is one in which the

covariance is only a function of distance, not of location (Rasmussen et al. 2006). By allowing our

kernel to vary in space, we are developing an inherently non-stationary process for the residuals

between the data y and simulated density map V. In the next section, we present a model for the

covariance K that is consistent with the linear model (2.3).

Real-space covariance set by the local uncertainty

Smoothed noise processes like (2.3) have been studied previously and are known as process con-

volutions (Higdon et al. 1999). It has been shown that if one defines the kernel at each point in

space, and assuming it is finite, then a valid covariance is given by convolving the kernel with

itself (Paciorek et al. 2006). For example, if one models the kernel as a Gaussian function with

spatially-varying covariance matrix S(s), then the covariance function is:

k(xi,x j) = N (xi �x j|Si +S j) (2.5)

While this formulation is appealing for its simplicity, the covariance matrix of the process is,

in general, dense. Considering that the number of voxels in an EM map is on the order of 106, the

matrix K has 1012 entries and cannot be decomposed with usual methods. Techniques to improve

the tractability of the likelihood computation, such as Kronecker techniques (Gilboa et al. 2015),

only work in the case of a stationary process. Other methods require some arbitrary assumptions

to enforce sparseness in K, as in the case of covariance tapering (Kaufman et al. 2008) or block-

composite likelihoods (Eidsvik et al. 2014).

Instead of attempting to construct an appropriate and tractable non-stationary covariance, we
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simply assume that the process is locally stationary and avoid explicitly writing the kernel. That is,

given some voxel xo and neighborhood N(xo), then for all points xi,x j 2 N(xo), cov(xi,x j) is only

a function of the distance |xi � x j|. Within these neighborhoods, we model the covariance with a

generalization of the Gaussian distribution called the Matérn family of covariances:

rs(u,v) =
s

2

2n�1 (k||u�v||)K
n

(k||u�v||), u,v 2 N(s)✓ R (2.6)

which defines the covariance between points within local region N(s) and where K
n

is the modified

Bessel function of the second kind and order n > 0. The parameter k is related to the "range" of

the process r =
p

(8n)/k , defined as the distance at which the correlation is 0.1 for any n . The

parameter n sets the "smoothness" of the covariance; integer values correspond to the degree of

differentiability at distance zero. For n = 0.5 the covariance reduces to s

2 exp� |u�v|
r

, and as

n ! • the covariance approaches s

2 exp� |u�v|2
2r

2 . In practice it is usually difficult to determine n ,

but we have found for EM density maps that n = 2.5 is a good balance between smoothness and

computational tractability.

The final missing piece to this model is deciding how to set the covariance range r for each

neighborhood. Recall that in (2.3) we modeled the data processing in EM density maps as a

truncation of higher frequencies, and this effect can be spatially varying. A tool called ResMap

has been developed to estimate this effect in different regions of the EM density map (Kucukelbir

et al. 2014). This tool estimates "local resolution" by fitting sinusoids in the vicinity of each voxel

and reporting the largest frequency that matches the data. We assume that the values provided by

ResMap are proportional to the true ranges, and set:

ri = x · resi (2.7)

where ri is the local range, resi is the local resolution given by ResMap, and x is a global nuisance

parameter. Choosing the covariance range this way can be seen as an application of the Weiner-

Khinchin theorem, which states that the autocorrelation of a stationary process is the Fourier dual
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of its spectral density (Rasmussen et al. 2006).

Approximating the Gaussian process with a Gaussian Markov Random Field

We have now (i) established the probabilistic framework of the residual map as a Gaussian process,

(ii) demonstrated the expectation that within local regions, the covariance should be Matérn with

the range parameter related to the local resolution, and (iii) realized that the matrix K needs to be

decomposable to be useful for fitting a molecular model to the EM density map. Here, we show

how it is possible to obtain such a covariance by only specifying local conditional probabilities as

entries in the highly sparse precision matrix Q = K�1.

Sparse approximation for the stationary case

A recent landmark result in spatial statistics showed that one can approximate a Gaussian process

exhibiting the Matérn covariance (2.6) (and thus estimate our likelihood) with very high accuracy

and vastly improved calculation speed using a Gaussian Markov random field (GMRF) (Lindgren

et al. 2011). A GMRF is a set of normally distributed random variables that have a Markov property

with respect to an undirected graph (i.e., missing edges in the graph correspond to zeros in the

precision matrix (inverse covariance) of the distribution) (Rue et al. 2005).

In general it can be difficult to find appropriate values for the precision such that it is positive

definite. However, it was shown some time ago that solutions to the following stochastic partial

differential equation (SPDE) exhibited the Matérn covariance (Whittle 1954):

(k2 �D)u(s) = W (s), s 2 Rd,k > 0 (2.8)

where D = — ·— = Âd
∂

2

∂d2 is the Laplacian; k is the same as in the Matèrn covariance, related to

the covariance range via r =
p

8n/k; and W is a white noise process defined by
R

V W dV = |V |.

The degree of smoothness is set by the value of r .1

1To understand why solutions to the SPDE are locally smooth, consider segmenting the space into sub-regions.
The SPDE requires that, on average, k

2u in a region is equal to the sum of the second derivatives of u in that region.
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The next step in (Lindgren et al. 2011) was to replace the continuous process u(s) with a

discrete process u on a grid or a triangulation, followed by solving (2.8) with the finite element

method (i.e., on each grid volume separately). A key approximation is that the neighborhoods of

grid points define their conditional dependencies; that is, a voxel is independent of far-away voxels

given average values of its neighbors. This is not a particularly severe assumption for a continuous

process, as discussed in (Simpson et al. 2012).

As a consequence of this approximation, on the discrete space the operator (k2 �D) can be

written as a matrix B and the SPDE reduces to:

B(k2)u ⇠ N (0,I) (2.9)

where the white noise process W is now just a set of independent normally distributed random

variables at each voxel (Fuglstad et al. 2013). The entries of the highly sparse matrix B are easy

to calculate; for a row i, the only non-zero columns entries are the those corresponding to the

neighbors of grid point i. The actual values are calculated in Addendum 1. Following directly

from (2.9), the approximated likelihood of the spatial process u is given by:

p(u) = exp

�1

2
�
B(k2)u

�T �B(k2)u
��

= exp

�1

2
uT Q(k2)u

� (2.10)

where Q(k2) = B(k2)T B(k2) is the precision matrix.

To summarize, the neighborhood graph defines the independencies of the voxels, and we

have solved the discrete SPDE (2.9) by calculating the precision matrix; thus, we have approx-

imated a stationary Gaussian process (i.e., (2.4) with entires of K only a function of distance)

using a tractable GMRF. We conclude this section by extending this approximation to a higher-

differentiability SPDE and then the full non-stationary process.

Thus for small values of k (large values of the range r), the second derivatives are very small, and u is more closely
related to neighboring region values. In contrast, large values of k (small ranges r) require large second derivatives
and so u changes faster. Thus, k controls the smoothness, and the SPDE is expressing a kind of conservation law.

22



Higher order SPDE

The SPDEs presented in (2.8) and (2.9) lead to a stationary 3D Matérn covariance with order

n = 0.5. Recall that the parameter n sets the differentiability of the covariance, with n ! •

corresponding to the infinitely differentiable Gaussian function. As mentioned above, we found

that a higher differentiability of the covariance was required for good results with EM density maps

(data not shown). These values can be achieved, even with fractional differentiability, by taking the

operator of the SPDE (2.8) to power a/2 where a = n +d/2. This is necessary when the ranges

of interest are low. Extending the solution to second order simply requires expanding the set of

neighbors; the solution is Q(k2) = B(k2)T B(k2)T B(k2)B(k2)

Non-stationary extension

The final missing piece is the fact that the SPDE (2.8) assumes uniform range, but the Gaus-

sian process model (2.4) is non-stationary (though we assume it is locally stationary). Luckily,

it was shown that the SPDE can be extended to a non-stationary process with very little addi-

tional computational burden (Lindgren et al. 2011). More recently, this result was extended to

allow non-stationary and non-isotropic covariance structure (Fuglstad et al. 2013). Here we use a

non-stationary but isotropic variant of the SPDE:

(k2(s)�D)2(u(s)) = W (s) (2.11)

where k(s) controls the locally-varying range. Assuming the range parameter does not change

too quickly (equivalent to our assumption that the process is locally stationary), the covariance is

still Matérn. We solve the SPDE for 3D cases in Addendum 1, calculating the precision matrix Q

explicitly.

In conclusion, we have approximated the Gaussian process model with a locally Matérn co-

variance and spatially-varying range set by the local resolution via (2.7). The solution to the

non-stationary SPDE (2.11) exhibits the desired local behavior while also being computationally
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tractable due to the explicitly sparse terms of the precision matrix. The full covariance matrix K

never has to be computed or inverted.

As a test, we can draw random samples from the Gaussian process likelihood (2.4) with a

random number generator and using the Cholesky decomposition of the covariance (or precision)

matrix to smooth out the random numbers (Rasmussen et al. 2006; Rue et al. 2005). We drew

random samples in 2D and 3D using the non-stationary precision matrix via solutions to the SPDE

(2.11) and displayed them in Figure 1; these samples represent random residuals between a model

and a density map. Note that in regions with longer range, the sample is "clumpier." This effect

indicates that voxels in regions of high uncertainty (long range) are less informative than those in

regions of low uncertainty (short range).
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Figure 1: Samples from the likelihood. (A) Here, we created a non-stationary 2D distribution by
setting the covariance to be large at the center and small at the edges (arrow indicates the smooth
progression of range) with periodic boundary conditions. Color is the random number in each bin.
(B) Same calculation but in 3D, with the range only changing along the indicated axis. All units
are in pixels/voxels.
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Calculation notes and caveats

Determinant

Calculating the likelihood (2.4) requires the computation of the determinant of K. This computa-

tion usually requires the calculation of the Cholesky decomposition of K which is difficult for the

typically large sample sizes. Therefore we used a method for estimating the log-determinant with a

short Monte Carlo sampling procedure (⇠30 seconds for a 150x150x150 system) (Han et al. 2015).

Correcting the marginal variance

A bigger challenge is the fact that the non-stationary covariance model creates a non-uniform

marginal variance that scales with the correlation distance. This scaling may be undesired. To

remove this effect, one must correct Q by the diagonal of its inverse, the covariance:

Qfix = DiQDi (2.12)

where Di is the diagonal of K = Q�1. The computation of the diagonal of the inverse (the covari-

ance matrix) is a difficult problem; the straightforward approach is to solve Qx = I where I is the

identity matrix. However, this approach is intractable due to the large number of data points. We

have attempted to employ a method designed for very large GMRFs (Malioutov et al.). The idea

is to solve a reduced rank problem Qx = A where A is an Nvox ⇥M matrix and M << Nvox, that

assigns each voxel to a "color." The number of colors, and their assignments, are chosen in such a

way that voxels of the same color are far beyond the maximum correlation distance of the GMRF.

The advantage is that Qx = A is a much faster problem to solve using sparse iterative solvers.

While this successfully corrected problems up to size 50⇥ 50⇥ 50, we have not yet successfully

scaled it to larger sizes. In the future we hope to parallelize this approach to handle larger systems.
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The simulated density map

In the likelihood (2.4), the sampled density map is given as the deterministic function V= k⇤m, the

convolution of the current model atom positions (as point particles with mass) with the spatially-

varying kernel function. However, in the GMRF approach we avoid explicitly calculating the

kernel function, instead directly constructing a spatial process with the desired local covariance.

For complete accuracy, the sampled density map V should be obtained by solving a non-stochastic

version of (2.11), replacing the noise term with a vector of mass values of the model in each voxel.

This would be impractical since the simulated density map needs to be calculated every time the

likelihood is evaluated. Instead, we simply convolve m with a spatially-varying Gaussian function

with standard deviation set to 0.425 times the local resolution, as suggested in (Topf et al. 2008).

In the future, we plan to explore more ways of simulating the density map that are consistent with

the SPDE approach.

Sampling procedure

We can sample the model with a molecular dynamics (MD) algorithm in which the potential energy

of the system is replaced by the model posterior, consisting of a physics-based force field prior

and the data likelihood (2.4). The calculation of derivatives require little additional work (see

Addendum 2). While currently we keep the resolution multiplier x fixed, in the future we will

employ a Monte Carlo sampler (random number generator) and sample this value together with

model coordinates in a Gibbs sampling scheme (Rieping et al. 2005).

Results

The goals of this approach are to maximize the accuracy and optimize the precision of the ensem-

ble of structures sampled from the model posterior. Criteria for achieving these are: the model

ensemble should be centered around the true structure, as measured by its agreement to a higher-

resolution reference data set; and the size of the ensemble should closely match the uncertainty of
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the data, as measured by its local resolution.

To evaluate our progress towards these goals, we test that (i) sampling the model posterior

leads to local fluctuations of the model that are driven by the uncertainty; (ii) the data likelihood

(2.4) correctly sets the tolerance of disagreement between the model and the data based on the

uncertainty (local resolution); and (iii) good structures are found during sampling when starting

far away, resulting in the size of the sampled ensemble reflecting the uncertainty of the target

density map.

Local resolution drives local fluctuations

We first explored how setting the local resolutions of a density map manually in a simulated setting

would affect the size of fluctuations (measured by the C↵ root mean square fluctuation, or RMSF)

during sampling (Figure 2). As local resolution is used to define the covariance range (and thus

the effective "weight" of the data likelihood in different regions) we expected that, no matter how

the resolution values are distributed, higher fluctuations should correlate with lower resolutions.

We simulated two different maps with very different local resolutions, and performed short MD

simulations. The result is that local resolution can control RMSF in a predictable fashion, and that

this effect can override any inherent variable flexibility of the structure.

Tolerance of model-data violations is controlled by estimated uncertainty

Next we explored how modifying the local resolution parameters affected the magnitude of data

likelihood (2.4), and its ranking of good structures. We expected that lowering input resolution

(i.e., increasing the covariance range) should rank a set of fixed models more closely together,

indicating that tolerance is being correctly set by the resolution.

Recall that the local covariance range is set as a constant multiple (within one data set) of

the local resolution: the parameter x is the multiplier. In this test we varied the value of x to

see its effect on tolerance (Figure 3). For this test we used a real data set, g-secretase at 5.4Å

resolution (EMDB: 2678, Lu et al. 2014). As x increases, the correlations become longer, causing
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Figure 2: Effect of local resolution on fluctuations. (A) Left half, simulated map with 5Å resolution
at the top and 8Å resolution at the bottom, with continuously interpolated resolutions in between.
Right side is the same analysis on map with reversed resolutions. Structures are colored by the
root mean square fluctuations of the C↵ position during sampling. (B) Same arrangement as (A),
plotting root mean squared fluctuation as a function of the average local resolution of each atom.
Circles are averages at each resolution. Empty circles had <20 atoms and were not included in fit.
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two effects: the scores overall get worse, and the score gradually loses the ability to distinguish

models. In contrast, for small values of x , the differences between models become very severe,

since this is effectively assuming that all voxels are independent. Notably, a minimum is apparent

for each structure, and the best aligned structure has the absolute minimum at the lowest value of

x .

The previous test showed that higher values of x increase tolerance, as expected. We next

wanted to test whether a similar effect was observed between data sets of the same system at mul-

tiple resolutions. We expected that, as before, lower resolution data should have more tolerance.

Continuing to study the behavior of the score for g-secretase, we scored the decoy set (described

in Figure 3) against two different maps, 3.4Å (EMDB:3061, Bai et al. 2015) and 5.4Å (EMDB:

2678) (Figure 4). Notably, the score is much sharper for the high resolution map, and has a smaller

range of convergence (as visible by the score being roughly flat for the 5.4Å map under 1.5Å, al-

though this is partially an artifact due to the RMSD comparison being to the deposited structure for

the high-resolution map, which does not fit perfectly into the low-resolution map). Furthermore,

the relationship between local resolution and local fluctuations is still apparent (even though the

3.4Å map is much more uniform in resolution).

Note that for the tests with g-secretase at 3.4Å and 5.4Å we fixed x to 1.15 and 0.8, respec-

tively. These numbers were chosen by finding the value of x for the most accurate structure that

optimizes the score (i.e., looking at plots like Figure 3 and finding the lowest value for the "RMSD

0.0" structure). Surprisingly, the slopes of the two fluctuation plots are quite different: 0.516 for

the 3.4Å map, and 0.225 for the 3.4Å map, and both are much higher than the slopes in Figure 2.

This may be a consequence of the choices for x , or perhaps the effect of local resolution on RMSF

is nonlinear; more effort is needed to understand this effect.

Sampling the model posterior leads to more accurate ensembles

Finally we explored the accuracy of the model ensemble produced during a hard sampling problem,

fitting Trpv1 (EMDB: 5778, Liao et al. 2013) with molecular dynamics (Figure 5). The best way
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Figure 3: Effect of setting the correlation to various constant multiples of the local resolution.
Target system is g-secretase at 5.4Å resolution. Each line corresponds to a decoy of the low-
RMSD structure. The decoy models were generated with a short MD simulation using only a
stereochemistry force field with secondary structure restraints. Black dots are the best-scoring
values of x for each model.
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Figure 4: Scoring the same system at multiple resolutions. (A) Fitting scores for g-secretase at
3.4Å. We scored the same decoy set described in Figure 3 against the map to observe the effect
of resolution on the score. X-axis is the root mean squared deviations between each decoy model
and the deposited model for g-secretase at 3.4Å. Red dotted line and number indicate the spread
between best and worst scoring model in the set. (B) Decoy set fitted against g-secretase at 5.4Å.
Note that this is not the same test as Figure 3, which varied the resolution multiplier x ; here, we
have fixed the resolution multiplier at the lowest-scoring value for each structure, and varied the
map. (C) Root mean squared fluctuations as a function of local resolution for g-secretase at 3.4Å
and (D) g-secretase at 5.4Å.
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to assess accuracy of the ensemble would be to use a higher-resolution reference; however none

is available in this case. The accuracy of the ensemble as a whole, though, can be evaluated by

checking if the variety of models visited during sampling matches the uncertainty in the map. We

expected that averaging the electron density of the model ensemble should produce a density map

that looks like the target map—this would indicate complete sampling took place.

We began with the deposited model (PDB: 3j9j), randomizing it with a short MD simulation,

with a standard CHARMM force field and secondary structure restraints, up to an RMSD of 5Å. We

then sampled models using the model posterior and, separately, with a traditional cross-correlation

based score with weight set to 105 (chosen by guessing and checking if the model fit well). Once

again the fluctuations are highly correlated with the local resolution. To evaluate ensemble accu-

racy, we created an "ensemble map" by simulating density maps (at Nyquist resolution, or two

times the voxel size) of each model in the ensemble of solutions after convergence and then aver-

aged all the maps together, for each score separately. We compared each ensemble map against the

target map and found that the cross-correlation was higher for the new probabilistic score (0.6576)

than for the conventional score (0.6189), indicating a better capture of the original data.
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Figure 5: Sampling structures of Trpv1 using the probabilistic score. (A) Initial structure used for
fitting. (B) Top-scoring fit using the probabilistic score. (C) Same structure as in (B) but colored
by root mean square fluctuations of C↵. (D) Local resolution map of Trpv1. (E) Local fluctuations
plotted against local resolution for this fit.
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Discussion

We have implemented, for the first time, a probabilistic scoring function for single-particle cryo-

electron microscopy data that directly models the varying uncertainty of the data points and the

correlations between the neighboring data points. The benefit of this approach is that the prob-

abilistic score is automatically weighted by the uncertainty of the data, as estimated by its local

resolution. As a result, the score has few arbitrary parameters, only requiring the user to determine

the approximate total mass of the input EM density map.

We have shown that the local resolution directly controls the fluctuations of the model during

sampling against simulated data (Figure 2), indicating that the variable fluctuations in real data are

at least partially data-driven, and not solely due to inherent flexibility of the system. Moreover, the

tolerance of the scoring function for violations of the data is set by the local resolution (Figure 3).

For real data, g-secretase at 3.4Å and 5.4Å, we found that the score range between good and bad

models was much wider in the higher quality data set, indicating that the probabilistic model is

more tolerant at lower resolutions (Figure 4). This effect normally requires user intervention, but

here it is a direct result of setting the uncertainty based on the local resolution. Finally, we showed

that for a hard sampling problem, Trpv1 at 3.2Å, it was possible to sample good structures from a

starting configuration with high initial deviation (Figure 5). Crucially, we found that the ensemble

of sampled structures better resembled the target density map than the ensemble from a traditional

scoring technique.

These results show that the score is utilizing the local resolution to guide the fit, and that the

approach sets the weight automatically based on data quality. However, more work is needed to

prove that the accurate ensemble is being generated during sampling. In the future, we will model

into EM density maps that have a high-resolution reference, such as a higher-quality EM density

map or an X-ray crystal structure. A critical barrier to such testing is ensuring that reference

structure is sufficiently close to the structure from which the fitted EM density map was derived

(on the scale of the uncertainty of the fitted EM density map). For example, in the g-secretase

comparison in Figure 4, the best-scoring solution does not have the lowest RMSD; this finding is
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likely due to the maps being slightly different (such as a systematic error in the lower-resolution

map).

Additionally, we will test the effect of allowing the resolution multiplier x to vary simulta-

neously with sampling the model coordinates. Such a variation likely increases the width of the

ensemble, as can be seen in Figure 3; at larger correlation multiples, the scoring differences be-

tween structure is smaller, so we can expect higher fluctuations farther from the model. Hybrid

sampling may also improve the radius of convergence by encouraging more motion when far from

the correct solution. We also will explore fitting the local resolution map during modeling (e.g., us-

ing N resolution "knots" at locations in the density and sampling their local correlations). A large

computational burden can be avoided by using suitable priors to keep the correlations smooth.

Extensions of the SPDE allowing this effect are discussed in (Fuglstad et al. 2015).

The new probabilistic score is implemented in our open source Integrative Modeling Platform

(IMP) package (http://integrativemodeling.org) (Russel et al. 2012), which will allow it to be used

simultaneously with many other scoring functions. When other data are present, the benefit of

using probabilistic scores is apparent: no expertise in choosing arbitrary weights is needed by the

user.
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Addendum 1: Non-stationary precision matrix

The first goal is to solve the non-stationary SPDE:

(k(s)2 �D)(u(s)) = W (s) (2.13)

where k(s) is related to the locally-varying range, D = — · — is the Laplacian (sum of second

derivatives in each dimension, or the divergence of the gradient), and W is a white noise process.

Following the notation in Fuglstad et al. 2013, we will solve this differential equation with the finite

element method, where each element is a single voxel of the EM density map. Suppose the size of

the map is M⇥N ⇥P voxels, and each voxel is symmetric with edge length h and volume V = h3.

Furthermore assume periodic boundary conditions, which makes the calculation much simpler and

only requires padding the input density map. Consider integrating over one voxel Ei, j,k:

Z

Ei, j,k

k(s)2u(s)ds�
Z

Ei, j,k

Du(s)ds =
Z

Ei, j,k

W (s)ds (2.14)

In the following, we calculate values for each term in Equation 2.14 and solve for the distribution

of u. We can approximate the first term on the left by assuming that the range and the density u(s)

are constant within a voxel:
Z

Ei, j,k

k(s)2u(s)dV ⇡V k

2
i, j,kui, j,k (2.15)

Thus, considering u(s) as a vector of density values on each voxel, we can write the first term in

Equation 2.13 as a matrix-vector product:

k(s)2u(s) =V D
k

2u (2.16)

where D
k

2 is the diagonal matrix whose diagonal entries are k

2
i, j,k.

Now consider the second term on the left in Equation 2.14. We can simplify this volume
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integral using the divergence theorem:

Z

Ei, j,k

Du(s)ds =
Z

Ei, j,k

— ·—u(s)ds =
I

∂Ei, j,k

—u(s) ·nds (2.17)

where ∂ indicates we are calculating the surface integral over the boundary of the voxel, and n is

the normal vector to that surface.

The boundary of the voxel consists of six faces, each aligned along the x, y, or z axis. The

gradient of u is given by —u(s) = ∂u(s)
∂x x̂+ ∂u(s)

∂y ŷ+ ∂u(s)
∂ z ẑ. Thus, for each face —u(s) ·n only has

one non-zero component, which is the derivative in the direction orthogonal to that face. For

example let us solve the face pointing to the positive x axis:

I

s

x+
i, j,k

—u(s) ·nds =
I

s

x+
i, j,k

∂u(s)
∂x

ds

⇡ h2 ∂u(s)
∂x

���
ui+1/2, j,k

⇡ h2
✓

ui+1, j,k �ui, j,k

h

◆
(2.18)

where in the second line we assume the derivative at all points on the face are equal to the derivative

at the center of the face, and in the third line we approximate the derivative as the average change

from the neighboring voxel to the current one.

For the face pointing to the negative x-axis, the calculation is nearly the same:

I

s

x�
i, j,k

—u(s) ·nds =�
I

s

x�
i, j,k

∂u(s)
∂x

ds

⇡�h2 ∂u(s)
∂x

���
ui�1/2, j,k

⇡�h2
✓

ui, j,k �ui�1, j,k

h

◆
(2.19)
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Repeating these approximations for all faces we get:

I

∂Ei, j,k

—u(s) ·nds ⇡

h
⇥
(ui+1, j,k +ui�1, j,k +ui, j+1,k +ui, j�1,k +ui, j,k+1 +ui, j,k�1)�6ui, j,k

⇤
(2.20)

We have thus approximated the integral of the divergence of u(s) with averages of neighboring

values. When we use this approximation for all the voxels, we can store these relationships in a

matrix:
Z

Ei, j,k

k(s)2u(s)dV ⇡ AIu (2.21)

where AI has size MNP⇥MNP. To simplify notation, define ip and in to be the rows (in the

original density map) of voxels before and after row i. Similarly define jp, jn, kp, and kn. Note that

due to periodic boundary conditions, these values wrap around the density map (e.g. if i is M �1

then in is 0. With this notation we write the entries of one row AI corresponding to voxel ui, j,k:

(AI)kMN+ jM+i,kMN+ jM+i =�6h

(AI)kMN+ jM+i,kpMN+ jM+i = h

(AI)kMN+ jM+i,knMN+ jM+i = h

(AI)kMN+ jM+i,kMN+ jpM+i = h

(AI)kMN+ jM+i,kMN+ jnM+i = h

(AI)kMN+ jM+i,kMN+ jM+ip = h

(AI)kMN+ jM+i,kMN+ jM+in = h

(2.22)

Finally, the right hand side Equation 2.14 is the integral of a white noise process over a finite

element with volume V , which gives a Gaussian variable with mean 0 and variance V (Fuglstad

et al. 2013). Each of these variables is independent for each voxel since the voxels do not overlap.
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Thus:
Z

Ei, j,k

W (s)ds =
p

V zi, j,k (2.23)

where zi, j,k is a standard Gaussian variable for each voxel. Now we can combine Equations

2.16,2.21, and 2.23 together to form the discrete approximation of the full SPDE (Equation 2.13):

V D
k

2u�AIu =
p

V z (2.24)

where z ⇠ NM,N,P(0,IM,N,P) is a multivariate normal distribution with identity covariance (uncor-

related variables). Thus we can re-write Equation 2.24 as:

z =V�1/2Au (2.25)

where A :=V D
k

2 �AI. Following Fuglstad et al. 2013, this gives the joint distribution of u:

p(u) µ p(z) µ exp
✓
�1

2
zT z

◆

p(u) µ exp
✓
� 1

2V
uT AT Au

◆

p(u) µ exp
✓
�1

2
uT Qu

◆
(2.26)

where Q = 1
V AT A is the precision matrix of u. This is a sparse matrix with a maximum of 37

non-zero elements on each row, consisting of the point itself, its 6 closest neighbors, and the 6

closest neighbors of those neighbors.
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Addendum 2: Derivatives

This is the likelihood:

p(y|V ) = (2p)�
Nvox

2 |K|�
1
2 exp

✓
�1

2
(y�V )|K�1(y�V )

◆
(2.27)

Where the contribution to each voxel i from atom j is given by:

Vi j =
Z jp
2ps

exp

"
�1

2

✓
~r j �~ri

s

◆2
#

(2.28)

Now due to the product rule:

d p(y)
d~r j

=�1
2

p(y)
d
~dr j

(y�V )|K�1(y�V )

= p(y)(y�V )|K�1 d(V )

d~r j

(2.29)

Where each component i of the derivative is a vector given by:

dVi

d~r j
=Vi j

✓
~ri �~r j

s

2

◆
(2.30)
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Chapter 3

Structure of �-tubulin small complex based

on a cryo-EM map, chemical cross-links,

and a remotely related structure
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Abstract

Modeling protein complex structures based on distantly related homologues can be challenging

due to poor sequence and structure conservation. Therefore, utilizing even low-resolution exper-

imental data can significantly increase model precision and accuracy. Here, we present models

of the two key functional states of the yeast �-tubulin small complex (�TuSC): one for the low-

activity “open” state and another for the higher-activity “closed” state. Both models were com-

puted based on remotely related template structures and cryo-EM density maps at the 6.9 Å and

8.0 Å resolution, respectively. For each state, extensive sampling of alignments and conforma-

tions was guided by the fit to the corresponding cryo-EM density map. The resulting good-scoring

models formed a tightly clustered ensemble of conformations in most regions. We found signifi-

cant structural differences between the two states, primarily in the �-tubulin subunit regions where

the microtubule binds. We also report a set of chemical cross-links that were found to be con-

sistent with equilibrium between the open and closed states. The protocols developed here have

been incorporated into our open-source Integrative Modeling Platform (IMP) software package

(http://integrativemodeling.org), and can therefore be applied to many other systems.
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Introduction

Biologists are often interested in computing structural models of protein assemblies for which elec-

tron microscopy density maps and atomic structures of remotely related systems are available. In

such cases, the integrative approach that relies on input structural information of multiple types

can provide models that are more accurate, precise, and complete than models based on traditional

methods, such as X-ray crystallography, NMR spectroscopy, and electron microscopy (Alber et

al. 2008; Alber et al. 2007; Russel et al. 2012; Sali et al. 2015; Ward et al. 2013). Key challenges

include: data ambiguity, such as regions of a density map that are not assignable to particular com-

ponents of the system or cross-links that may apply to one of many states or copies of the structure;

information uncertainty, including the limited resolution of the map, errors in the template struc-

tures, and target-template differences; and data completeness, including missing regions of the

density map and incomplete coverage by the templates and cross-links (Schneidman-Duhovny et

al. 2014). While numerous tools exist to construct models based on density maps (Topf et al. 2008;

Trabuco et al. 2008), it is essential to find all models that fit the data, allowing an estimate of

model precision. Here, we describe an ad hoc approach to inferring a pseudo-atomic model from

a cryo-EM density map and atomic structures of related proteins, with an estimate of model pre-

cision based on variation among good-scoring models, and an estimate of model accuracy based

on agreement with an independently determined set of chemical cross-links. We illustrate the

approach by its application to the �-tubulin small complex (�TuSC).

�-tubulin complexes control the location and timing of microtubule nucleation. �TuSC is a

300 kDa complex consisting of four components: GCP2, GCP3, and two copies of �–tubulin in a

V-shaped structure with the �–tubulin subunits at the top (Choy et al. 2009; Kollman et al. 2008).

As revealed by an 8 Å cryo-EM map, the complex assembles into a single helical turn in yeast

consisting of 7 �TuSC units, leaving 13 exposed �-tubulins, thus allowing 13-protofilament mi-

crotubule filaments to template from the complex (Kollman et al. 2010). �TuSC comprises the

“minimal” nucleation machinery, as it lacks numerous accessory proteins found in related com-

plexes from other species. In previous studies, we have shown that �TuSC adopts two confor-
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mations that differ significantly in the geometry of the �-tubulin ring—a low-activity "open" state

and a higher-activity "closed" state—and have proposed that this conformational switch provides a

mechanism for regulating microtubule nucleation in vivo (Kollman et al. 2011). We have reported

the cryo-EM structure of the "open" state at 8 Å resolution, and more recently reported the cryo-

EM structure of the "closed" state at 6.9 Å resolution, by trapping this transient conformation with

engineered disulfides (Kollman et al. 2015). Here, we describe reliable pseudo-atomic models of

both open and closed complexes, and present new data consistent with equilibrium between two

conformational states.

Approach

Closed-state model building

We followed an iterative procedure (Figure 1) to generate and fit comparative models (Topf et

al. 2006). The initial alignment of the entire TUBGCP family was performed in Promals3D (Pei

et al. 2008). Additionally, we aligned yeast �-tubulin to representative proteins from the tubulin

family (including human �-tubulin, the template). After alignment, regions of the human GCP4

sequence that were not present in the crystal structure were omitted. We utilized an iterative pro-

cedure to improve the alignment and optimize models with respect to the density map, including

the following steps:

1. Four copies of each template (human GCP4 and human �-tubulin) were rigidly docked into

the closed-state map to form an approximate shape of two side-by-side �TuSC structures

using UCSF Chimera (Pettersen et al. 2004).

2. The template complex in step 1 was used as the basis for simultaneous homology modeling

of yeast GCP2, GCP3, and �-tubulin in MODELLER using the current alignment. Symme-

try restraints were added to preserve the complex structure.

3. The �TuSC homology model was flexibly fitted into the closed-state density map using
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Figure 1: Method overview.
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Molecular Dynamics Flexible Fitting (MDFF) (Trabuco et al. 2008), with additional sec-

ondary structure restraints. Symmetry restraints were added between the two copies of

�TuSC. The “gscale” parameter of MDFF was set to 1.0, and 200ps simulations were run.

4. Upon inspection of the fitted model, the pairwise human-GCP4/yeast-GCP2 and human-

GCP4/yeast-GCP3 alignments were edited. Changes included adding secondary structure

restraints when these elements were clearly observed in the density map and were predicted

using PSIPRED (Buchan et al. 2013) and removing long insertions (>5 residues) unless the

insertions could be unambiguously assigned to density. The �-tubulin alignment was left

unchanged.

Steps 2-4 were repeated until no further adjustments to the alignment improved the model. With

the alignment fixed via the above procedure, we produced 300 comparative models as in Step

2. Finally, these models were optimized into the closed-state density map using MDFF with the

same restraints as above. Results contained a number of clear outliers, with structural helices

crossing obvious helices in the map. We removed these common local minima by performing k-

means clustering with k=10, keeping the largest two clusters containing 158 total structures, which

formed a narrow ensemble with average C↵ root-mean-square fluctuation (RMSF) 1.88 Å. The 5

top scoring structures from each cluster were deposited into the PDB: 5FLZ.

Open-state model building

Reasoning that the closed-state model was more accurate than the starting comparative model,

we used the closed-state model ensemble as the initial structures for open-state modeling. For

every closed model, each component was rigidly fitted into the open-state density map. These

models were refined into the open-state density map using MDFF, with the “gscale” parameter

set to 0.1 (reflecting our increased uncertainty in the data due to its lower resolution) and allowed

to sample for 250ps. Secondary structure, domain (rigidity), and symmetry restraints were added

as in the closed state. The open-state ensemble consisted of all fitted structures, since the lower

50



resolution did not allow us to remove obvious outliers. We performed k-means clustering with

k=10 and selected the top-scoring structure in each cluster—this forms the ensemble deposited

into the PDB: 5FM1.

Model evaluation

To evaluate model precision, we calculated the RMSF for each C↵ position in the model ensemble.

To evaluate sampling density, we divided the ensemble into half-sets, computed the RMSF values

for each set, and verified that they were similar. For contact evaluation (Table 1), UCSF Chimera’s

“find H-bond” tool was used on each model in the ensemble, relaxing H-bond parameters by

2 Å and 90�. The final reported contacts were those present in at least 25% of the structures

in each ensemble. To evaluate model accuracy, we compared models against external data not

used in the modeling process. A set of 135 chemical cross-links, with DSS as the linker, was

obtained. We computed the distance between cross-linked residues within the closed- and open-

state models, allowing for ambiguity in the cross-links’ assignments due to the presence of two

�-tubulin molecules in �TuSC, as well as multiple copies of �TuSC. A cross-link was considered

a “violation” if the median ensemble distance was greater than a threshold in both the closed-

and open-state models. The maximal cross-link distance of 35 Å was based on flexibility of the

cross-linker (Chen et al. 2010).

Cross-linking of recombinant �TuSC and mass spectrometry analysis

�TuSC (146 Mg protein in 331 ML 40 mM HEPES, 100 mM NaCl, pH 8) was cross-linked for

2 min at room temperature with disuccinimidyl suberate (Pierce, 0.86 mM final). The reaction

mix was quenched with 26 ML of 500 mM NH4HCO3 and the buffer was exchanged to 40 mM

HEPES, 500 mM NaCl, pH 7.5 using protein desalting spin columns (Pierce) according to the

manufacturer’s instructions. Two 90 uL aliquots of cross-linked protein were subsequently reduced

with 10 mM dithiothreitol for 30 min at 37oC and alkylated with 15 mM iodoacetamide for 30 min

at room temperature. Heavy oxygen labeling (Zelter et al. 2010) was performed by adding 25%
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volume of heavy water to one (labeled) aliquot. A second, unlabeled, sample was produced by

adding 25% volume of standard water. Both aliquots were then separately subjected to overnight

digestion with trypsin at a substrate to enzyme ratio of 60:1. Samples were acidified with 5 M HCl

and stored at -80oC.

0.5 to 1.5 Mg of each sample was loaded onto a fused-silica capillary tip column (75-Mm

i.d.) packed with 40 cm of Reprosil-Pur C18-AQ (3-Mm bead diameter, Dr. Maisch). Peptides

were eluted from the column at 250 nL/min using a gradient of 2-35% acetonitrile (in 0.1% formic

acid) over 120 min, followed by 35-60% acetonitrile over 10 min. Mass spectrometry was per-

formed on a Q-Exactive (Thermo Scientific), operated using data dependent acquisition where a

maximum of six MS/MS spectra were acquired per MS spectrum (scan range of m/z 400-1600).

At m/z 200, the resolution for MS and MS/MS was 70,000 and 35,000, respectively. Six tech-

nical replicates were performed using the heavy oxygen labeled sample and 14 technical repli-

cates were performed using the unlabeled sample. Cross-linked peptides were identified using

the Kojak cross-link identification software (Hoopmann et al. 2015) (version 1.4.1) available at

(http://www.kojak-ms.org/). The Kojak results of all 20 LCMS runs were combined and exported

to Percolator (Kall et al. 2007) to produce a statistically validated set of cross-linked peptide iden-

tifications at a false discovery rate threshold of 1%. The full cross-link dataset is available online

at http://proxl.yeastrc.org/proxl/viewProject.do?project_id=15 .

Results

Initial model accuracy and coverage

GCP2 and GCP3 are members of the TUBGCP family, which are named Spc97 and Spc98 in yeast.

The TUBGCP family also includes GCP2/3/4/5/6 in humans. The architecture of the complex is

shown in Figure 2A. A crystal structure of human GCP4 provided a suitable starting point for

homology modeling of both GCP2 and GCP3 (Guillet et al., 2011) (Figure 2B,C). Additionally, a

crystal structure of human �-tubulin (PDB: 3CB2) served as a suitable template (sequence identity
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37%) for yeast �-tubulin. Modeling challenges included the presence of several large insertions in

GCP2 and GCP3, regions of GCP4 that were not observed in the crystallographic density, and low

sequence identity to GCP4 (13% and 18% for GCP2 and GCP3, respectively) (Figure 2B). We

first modeled the closed-state structure due to the higher resolution of the corresponding EM map.

Despite the low sequence identity to the homologue GCP4, the initial model of closed-state

TuSC, consisting of flexibly fitted homology models of GCP2 and GCP3 and two identical ho-

mology models of yeast �-tubulin, fit the EM map surprisingly well (Figure 3). Most secondary

structure elements could be uniquely assigned to regions of the map; however, there were clear er-

rors in the length and location of some helices. We improved the model using an iterative process,

editing the GCP2/3/4 alignment to improve the fit and using other sources of information to reduce

over-fitting. The best-scoring model resolves the locations of all secondary structure elements,

though many loops were difficult to localize Figure 4A. Large insertions are still missing from

the model; these would likely need higher-resolution data to complete de novo building of these

sections.

In comparison to the closed-state density map, the open-state map is lower resolution. We

reasoned that the final closed-state model is likely closer to the open-state structure than the initial

homology model. Therefore, we used closed-state models as starting points for open-state mod-

eling. While the resolution limits our ability to precisely localize secondary structure segments,

the overall shape could be determined from the density map. The final model has significantly

improved cross-correlation in comparison to the starting closed-state model (Figure 3).

Estimating model precision and accuracy

The final structures of the closed and open states were selected based on the cross-correlation

coefficient against their respective maps. To use any model judiciously, it is essential to assess

its precision and accuracy. Here, we estimate the precision by quantifying the variation in the

ensemble of good-scoring solutions. For each state, we defined the precision of each C↵ position

as the root-mean-square fluctuation (RMSF) from the mean position in the models scoring at least
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Figure 2: Data overview. (A) Architecture of �-TuSC. Left, single �-TuSC V structure with
sequence endpoints. These colors are used in all figures. Right, ring structure. (B) Coverage map.
Blue regions have structure coverage from the homologue GCP4. (C) Rigid fit of templates into
closed cryo-EM density map. Details indicate regions of significant difference between the model
and the map. (D) Rigid fit of templates into open cryo-EM density map.
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Figure 3: Progress of modeling of each state. On the left, showing three stages of the closed
model: initial comparative model, improved alignment model, and flexibly fitted model. Numbers
show the cross-correlation coefficient. Arrow to the right indicates using the final structure of the
closed state to fit into the open map. Two open-state modeling stages are shown: initial rigid fit
and flexible fit.
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Figure 4: Modeling results. (A) Left, closed-state final fit, shown in closed-state density map at
two different contour levels. Right, open-state final fit, again at two contour levels. (B) Sausage
plots of the variability in the model ensemble fits. Red regions are more variable than blue regions.
Left, closed-state; and right, open-state.
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one standard deviation above the median score, with each model fit in the EM map Figure 4B.

We verified our estimate of precision by showing similar estimates for two random halves of the

solution ensemble (data not shown). Regions with high variability were primarily in loops, and

appear to be largely a result of the limited map resolution. RMSF is generally larger in the closed

state.

Additionally, we validated the �TuSC models by comparing them against a set of DSS cross-

links not used in the modeling process (Figure 5). An ensemble of models satisfies a given cross-

link if the ensemble median of the shortest distance among possible C↵-C↵ assignments within

a model was less than 35 Å (corresponding to the maximum DSS length with small tolerance

(Chen et al. 2010)). Only 67 of the 135 observed cross-links could be used for this assessment

because others applied to missing regions. Of these 67 cross-links, 62 were consistent with either

the closed or open state, including some that matched exclusively with a single state. Of the 5

“violated” cross-links, one had median distance just over the threshold, and the remaining 4 had

median distances over 50Å and are likely false positives.

Comparing the open and closed states

After aligning models from the two states, significant differences—which are larger than the esti-

mated precision—are apparent (Figure 6). The differences are particularly notable for the locations

of the �-tubulin subunits, which bind to the minus end ↵-tubulin subunits within the microtubules.

In the open state, microtubule symmetry is broken: GCP2 is bent 8� towards the helical axis and

GCP3 is bent 8� backwards, creating varying spacing and orientation between the �-tubulin sub-

units. The helical parameters of the open state, rotation of 54.3� and rise of 22.2 Å do not match

those of a microtubule, with rotation of 55.4� and rise of 18.7 Å. In contrast, in the closed state,

the �-tubulin subunits are evenly distributed around the ring, with the same side facing the helical

axis, matching the symmetry of a microtubule. Helical spacing parameters of the closed state also

match those of a microtubule: rotation of 55.4� and rise of 18.8 Å. The arrangement of three con-

tiguous ↵-tubulin subunits from a mammalian microtubule (PDB: 3JAL) is similar to that of the
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Figure 5: Cross-linking data analysis. Illustrating the histogram of median crosslink distances in
the models. Dotted line is “violation” cutoff at 35Å.
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yeast �-tubulin subunits in the closed state, with 90% C↵ overlap at 4 Å. While the centers of mass

of the �-tubulin subunits vary significantly between the two states, there is no clear pivot point.

The structural changes are widely distributed from the central to C-terminal regions of GCP2 and

GCP3.

Two key interfaces underlie the stability of each state: “intra”- TuSC (within the V structure)

and “inter”- TuSC (between each copy of the complex). We examined each interface in detail to

explore which contacts are unique to each state in our models (Table 1). First, we observed that

the N-terminal regions of GCP2 and GCP3 are largely static, whereas the C-terminal interfaces

shear ⇠ 15 Å. Secondly, the C-terminal contacts are primarily made between the �-tubulin sub-

units. Multiple key interactions at the closed “inter” interface are also preserved at the “intra”

interface, supporting the observation of symmetry. Furthermore, many of these contacts also occur

at the open “inter” interface, despite the significant conformational differences. This observation is

consistent with the apparent rotation around this interface (Figure 6). In contrast, the open “intra”

interface shares no contacts with the other three, though a similar list of residues are involved in

contacts.
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Figure 6: Model comparison. Arrows indicate structural changes from open (top two rows) to
closed state (bottom row). Each row depicts only the state listed at the left. Left column is side
view of a single �-TuSC subunit, right column is top view showing two side-by-side subunits.
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Contact Closed/Inter Closed/Intra Open/Inter Open/Intra

55R-291S X X
56E-288G X X
57N-286H X X X
57N-288G X X
57N-291S X
58S-286H X X X
58S-287K X X X
58S-289H X
58S-327E X
58S-370N X
59R-282D X
59R-283D X X
59R-284I X X
59R-285A X
59R-286H X X X
59R-287K X
59R-369E X
59R-370N X X
59R-371E X X
90R-291S X
90R-300D X

121N-218R X
121N-311N X
124D-218R X
125K-282D X
125K-283D X
125K-291S X
128D-218R X
129S-283D X
129S-290S X

Table 1: List of residue pairs involved in key interfaces. "X" indicates that the residue pair is found
at that surface.
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Discussion

Our goal was to compute and validate models for the two structural states of the �-tubulin small

complex, followed by comparing the two states. For modeling, we used all available information

(Figure 1). We used the known structures of homologues of GCP2, GCP3, and �-tubulin to create

initial models; used predicted secondary structure segments to explore alternative alignments; and

used cryo-EM density maps to refine a model for each state. We also utilized chemical cross-

linking data as an external validation, finding that 62/67, or 93%, of the cross-links are consistent

with the two models (Figure 5). This finding is particularly notable due to the low sequence iden-

tity of the templates (13%, 18%, and 37% for GCP2, GCP3, and �-tubulin, respectively) including

large insertions (Figure 2). To evaluate the precision of these models, we performed extensive

sampling and reported the fluctuations of each C↵ atom (Figure 4B). As expected, we found that

the largest fluctuations were in regions with relatively low density in EM maps, which were typi-

cally loop regions. Thus, we are relatively confident in the placement of secondary structure units

and the overall fold (Figure 4A).

The structural differences between the closed and open states include both rigid body and con-

formational changes (Figure 6). However, despite the significant differences between the states,

many key interface contacts are preserved, particularly at the “inter”-�TuSC interface, which may

be critical for ring assembly. The “intra”-�TuSC interface, while making a completely different

set of contacts between the open and closed states, does involve a similar set of residues, suggest-

ing that any evolutionary pressure that preserves ring assembly may also maintain the activation

mechanism. A more complete understanding of the cause of conformational change may require

modeling that is more precise, accurate, and complete, including building models for the substan-

tial numbers of insertions (with respect to the template, human GCP4), some of which are located

at �TuSC interfaces (Figure 2).

The description of the differences between the two end states does not allow us to speculate

about the order of events corresponding to a transition between them. However, the cross-linking

data suggests that the system exists in equilibrium between the two states, thus transiently explor-
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ing both states; the equilibrium between the two states is suggested because both are needed to

explain all the cross-links (Figure 5). In a previous study (Kollman et al. 2015), we showed that

the open state nucleates less well than the disulfide-closed state, suggesting that some activation

event likely takes place in the cell to optimize nucleation efficiency.

The approach we have developed here is suitable for challenging problems where structural

information is incomplete or low-resolution. The increased uncertainty in these cases requires

sampling the full range of models consistent with the available data, evaluating the precision of the

ensemble, and, if possible, using independent data to estimate model accuracy. We have incorpo-

rated tools to perform these steps in our open-source Integrative Modeling Platform (IMP) package,

available at http://integrativemodeling.org (Russel et al. 2012). Specific code used to generate the

models is available at https://github.com/integrativemodeling/gamma-tusc. Future improvements

include using scoring functions and sampling techniques that do not rely on manually set data

weights—for example, Bayesian methods (Rieping et al. 2005).
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Appendix 1:

EM Methods for the molecular architecture

of the yeast mediator complex

66



Summary

The Megadalton Eukaryotic Mediator complex plays an essential role in transcription initiation

acting as a scaffold for the recruitment of the general transcription apparatus and communication

of regulatory signals via direct interaction with DNA bound activators. Currently, our structural

understanding of the complex is limited: roughly one third of the complex has been determined at

high resolution but the remainder is limited to coarse subunit mapping onto 2D EM projections.

In this project, we combined an extensive crosslink dataset with 3D EM restraint in an integrative

modeling approach to produce a detailed 3D subunit architecture map of the S. cerevisiae Mediator

complex. Our modeling results provide a number of striking new architectural features such as the

important roles of Med17 and Med14 in connecting Mediator Modules. Furthermore, we presented

a detailed description of the domain-level localization and organization of Mediator subunits such

as the colocalization of the N-termini of Med2 and Med3 in a probable coiled coil motif and the

scaffolding role of a seven- bladed Beta propeller within the N-terminus of Med16. The model

was highly consistent with both structural and proteomics data that were not employed as input

modeling restraints.

In this Appendix, we only report the EM methods relevant to the overall thesis. The approach

was designed for fitting large systems into their EM density maps, particularly in the case of large

rigid bodies. The idea is to approximate the electron density of both the model and the target with

a Gaussian Mixture Model (GMM) and then use an analytic overlap function originally developed

in Kawabata 2008. The advantage is that the score is quite fast to calculate, as no map simulation

is required.

Representation

To maximize computational efficiency while avoiding model oversimplification, we represented

the Mediator complex subunits in a multi-scale fashion (Figure 1). This representation employed

spherical beads of varying sizes and 3D Gaussians, which coarsen domains of the complex us-
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ing several resolution scales simultaneously. The spatial restraints discussed below are applied

to individual resolution scales as appropriate (below). To improve the accuracy and precision of

the model ensemble obtained by satisfaction of spatial restraints, beads and Gaussians of a given

domain were arranged into either a rigid-body or a flexible string, based on the available crystal-

lographic structures and comparative models. In a rigid-body, all the beads and the Gaussians of a

given domain have their relative distances constrained during configurational sampling, while in a

flexible string the beads and the Gaussians are restrained by the sequence connectivity.

Three scales were used to represent the crystallographic structures and the comparative models.

Two scales, here named fine and coarse, were determined by applying two different coarse-graining

criteria to the molecular volume of the atomistic structure. In both representations the volume was

decomposed into beads. For the fine scale, each bead corresponded to individual residues, and was

centered at the position of the C↵ atom. For the coarse scale, each bead represented 10-residue

segments and was positioned on the center of mass of all atoms of the corresponding segment. The

third scale is the Gaussian mixture model (GMM) approximation of the atomic electron density of

the corresponding structure. The atomistic structures were converted into a GMM by first sampling

points from the density, and then fitting the sample using the EM algorithm implemented in scikit-

learn (Buitinck et al. 2013). We set the number of Gaussians to the number of residues in a

component divided by 50.

We adopted a two-scale representation for the flexible strings (i.e. domains without crystallo-

graphic structures or comparative models). Each element in the string corresponded to up to 40

residues and was represented by a bead (coarse scale) and a spherical Gaussian. The fine scale rep-

resentation was omitted for computation efficiency. The radius of the bead and the variance of the

Gaussians were suitably determined to describe the average molecular volume and the molecular

electron density of polypeptide segments, respectively. The bead and the Gaussian centers were

enforced to be identical.
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Figure 1: Schematic of the integrative modeling approach highlighting the individual data inputs
and the four stages in our modeling strategy.
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EM scoring

The EM 3D restraint was imposed on the Gaussian Mixture Model (GMM) representation of each

domain, using the cross-correlation coefficient between GMM representations of the EM volume

and model components (Kawabata 2008). The weights of each GMM component were normalized

to the relative mass of the component to the mass of the module. The density of a molecule with a

GMM is given by:

f (r|Q) =
N

Â
i=1

pif(r|µ i,Si)

Here pi are the mixing weights (normalized to 1) and f(r|µ i,Si) is a Gaussian density function

with mean µ i and covariance Si:

f(r|µ i,Si) =
1

(2p)3/2|Si|1/2 exp

�1

2
(r�µ i)

|S�1
i (r�µ i)

�

The GMM approximation for an electron density map (the data) can be calculated using the

standard expectation-maximization approach using scikit-learn. The overlap function between the

model (M) and the data (D) GMMs is defined by:

ov(fM,fD) =
Z

f(r|µM,SM)f(r|µD,SD)dr

=
1

(2p)3/2|SM +SD|1/2 exp

�1

2
(µM �µD)

|(SM +SD)
�1(µM �µD)

�

That can be generalized as the overlap function between two GMMs:

ov( fM, fD) =
NM

Â
i=1

ND

Â
j=1

1
(2p)3/2|SMi +SD j|1/2 exp


�1

2
(µMi �µD j)

|(SMi +SD j)
�1(µMi �µD j)

�

70



The cross-correlation function is, as suggested elsewhere (Sfikas et al. 2005):

CC( fM, fD) =
2
R

fM(x) fD(x)dx
R

f 2
M(x)+ f 2

D(x)dx

=
2ov( fM, fD)

ov( fM, fM)+ov( fD, fD)

The negative logarithm of the cross-correlation is the EM score. We empirically found a scaling

factor of ⇠ 100.
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The γ-tubulin ring complex (γTuRC) is the primary microtubule nucleator in cells.  γTuRC 

is assembled from repeating subunits of the γ-tubulin small complex (γTuSC) and is 

thought to function as a template by presenting a ring of γ-tubulins that mimic microtubule 

geometry.  However, the yeast γTuRC structure showed each γTuSC is in an open 

conformation that prevents matching to microtubule symmetry. By contrast, here we show 

that γ-tubulin complexes are in a closed conformation when attached to microtubules. To 

confirm the functional importance of ring closure we trapped a closed state of the complex 

and determined its structure to show that the γ-tubulin ring precisely matches microtubule 

symmetry.  Importantly, the closed state is a stronger nucleator, suggesting the switch 

between open and closed states provides a means for allosteric control of gTuRC activity.  

We also show that γTuRCs have a profound preference for tubulin from the same species. 

Lastly, the structure of the closed state allows detailed insight into the architecture of 

γTuSC and γTuRC.  

 Microtubule nucleation is mediated in vivo by g-tubulin complexes, which allow cells to 

control both the location and timing of new microtubule growth.  The conserved core of the 

nucleating machinery is the g-tubulin small complex (gTuSC), a 300 kDa V-shaped structure 

with two copies of g-tubulin and one each of the accessory proteins GCP2 and GCP3, which are 

distant homologs of each other.  GCP2 and GCP3 form the elongated arms of the complex, with 

g-tubulin at each tip of the V1,2.  Low-resolution structural studies of isolated gTuSCs showed 

that it is flexible, with a hinge-like motion near the center of the GCP3 arm2.  In most eukaryotes 

several other accessory proteins, GCP4-6, assemble with multiple gTuSCs to form the g-tubulin 

ring complex (gTuRC)3,4.  gTuRC has long been thought to function as a template, presenting a 

ring of g-tubulins from which microtubules grow3-7. 
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Saccharomyces cerevisiae lacks the gTuRC-specific accessory proteins found in other 

eukaryotes, and nucleates microtubules from gTuSC oligomers.  These oligomers are anchored to 

the nuclear face of the spindle pole body by the coiled-coil protein Spc1108,9.  Isolated gTuSCs 

have a weak propensity to self-assemble, and the N-terminal domain of Spc110 (Spc1101-220) 

stabilizes these interactions to promote formation of extended spiral-shaped oligomers that have 

13 g-tubulins per turn10, matching the protofilament number of in vivo microtubules11. Extended 

gTuSC polymers are not observed at spindle pole bodies12, and although some estimates of the 

subunit number have been made13, the overall size and organization of the functional gTuSC 

oligomer in vivo is unclear. 

While the nucleation activity of yeast gTuSC is entirely dependent on its oligomerization, 

unexpectedly the oligomers are configured with microtubule-like g-tubulin lateral contacts only 

between gTuSCs, while within each gTuSC the two g-tubulins are held apart in an open 

conformation2,10.  A consequence of the staggered lateral g-tubulin interactions is a gTuSC ring 

with a pitch ~25 Å larger than that of microtubules (Fig. S1). This conformation seems 

inconsistent with gTuSC assemblies acting as efficient microtubule templates; indeed, MT 

nucleation experiments showed only a modest enhancement over background. Based on 

flexibility observed within individual gTuSCs2, however, we proposed that an allosterically 

regulated conformational change could result in a precise match to microtubule geometry, 

forming a template with increased nucleating activity5,10.  

Here, we demonstrate that in vivo the minus ends of microtubules are anchored to the 

spindle pole body via a gTuSC ring that is in a closed conformation and has a defined number of 

subunits. While the in vivo drivers of ring closure are unknown, we could trap a closed state of 
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gTuSC oligomers by disulfide crosslinking, and determined its structure at 6.9 Å resolution by 

cryo-EM.  The closed state closely resembles the structure observed at minus ends, and 

conformational changes within each gTuSC result in a nearly perfect match between the g-

tubulin ring and thirteen protofilament microtubule geometries. The closed state is more active 

than the open state, confirming that gTuRC activity can be conformationally regulated.  We also 

show that yeast gTuSC is much more active with yeast tubulin than with vertebrate tubulin, 

demonstrating the importance of species specificity in nucleating activity.  The high-resolution 

structure of the closed state allowed us to generate a pseudo-atomic model that provides a more 

detailed view of the interactions of components within the gTuSC and the nature of assembly 

contacts between gTuSCs. 

 

RESULTS 

gTuSC binds microtubules in a closed conformation 

A key question is whether or not gTuSCs can actually form a structure that better matches 

microtubule symmetry.  To answer this, we determined the conformational state of γTuSC rings 

interacting with microtubules at the spindle pole. We examined the in situ structure of 

microtubule minus ends attached to the nuclear face of purified spindle pole bodies using cryo-

electron tomography (Fig. 1a). We averaged 1156 individual capped microtubule minus ends to 

generate a structure at 38 Å resolution (FSC0.5 criterion). The structure reveals an asymmetric cap 

in which individual γTuSC subunits can be discerned in most directions. The γTuSCs form a 

lock-washer shaped spiral that rises 120 Å (Fig. 1b), similar to the pitch of 13-protofilament 

microtubules14.  This pitch is in contrast to the 147 Å pitch of reconstituted gTuSC-Spc1101-220 



	 78 

spirals10, indicating that when bound to microtubules in vivo the conformation of the γTuSC ring 

is different than that observed for our unbound rings in vitro (ref). 

Spc110 promotes formation of a defined yeast gTuRC 

The structure of capped minus ends also reveals the number of gTuSC oligomers in vivo.  

It has been assumed that functional gTuSC oligomers would have either six copies (with twelve 

g-tubulins and a gap at the thirteenth position), seven copies (with an overlapping, inaccessible 

fourteenth g-tubulin at the end), or be variable in number6,15,16. In the minus end structure the last 

γTuSC can be see to overlap vertically with the first γTuSC (Figure 1b), indicating that the ring 

is formed from seven subunits.  Unlike these defined seven subunit rings, in vitro assembly of 

γTuSC and Spc1101-220 yields extended spirals10.  However, we found that a longer Spc110 

fragment (residues 1-401), with an additional 180 residues of predicted coiled coil, limited 

γTuSC assemblies to single rings and smaller oligomers, suggesting Spc110 sterically interferes 

with addition of more than seven γTuSCs (Fig. 1c,d).  Thus, Spc110 both promotes γTuSC 

assembly and limits oligomer size, forming well-defined yeast gTuRCs.  

gTuSC oligomers trapped in a closed state 

 Since gTuSCs adopts a closed, microtubule-like geometry when interacting with 

microtubules, we sought to trap this closed state with engineered disulfide bonds to test the 

functional consequences of closure. Assuming that in a closed state g-tubulin makes lateral 

contacts between the M- and H1-S2 loops similar to those observed in the microtubule lattice14 

or g-tubulin crystals17,18 (Fig. 2a),  we designed four sets of paired cysteine mutations: 

Asn57/Gly288, Ser58/Gly288, Asp128/Ser291, and Arg161/Arg341. These sites were predicted 

to be juxtaposed at the inter-gTuSC assembly interface, but widely separated at the intra gTuSC 

interface (Fig. 2a). Thus, under oxidizing conditions a disulfide bond should readily form 
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between g-tubulins from adjacent gTuSCs, but would only form between g-tubulins within the 

same gTuSC if that gTuSC sampled a closed state.  Disulfide bond formation was only observed 

in the N57C/G288C and S58/G288C mutants.  Of the two S58C/G288C was better behaved in 

terms of oligomeric assembly, so we pursued structural and functional characterization of this 

complex, which we refer to as gTuSCCC.  The gTuSCCC mutations were introduced into yeast on 

the only copy of g-tubulin, where they did not affect viability or metaphase spindle organization 

(Fig. S2).  Thus, the mutations do not impair gTuSC function in the context of the cell.  

Under reducing conditions individual gTuSCCC had the same overall structure as the 

wildtype complex2 (Fig. S3a).  Wildtype gTuSC has a weak propensity to self-assemble into 

ring-like oligomers under a narrow range of salt concentrations (<200 mM KCl) and pH (6.4-

7.0).  After removal of reducing reagents, however, gTuSCCC spontaneously assembled into large 

oligomers at pH 7.6 and 500 mM KCl, conditions that strongly disfavor spontaneous assembly of 

wildtype gTuSC (Fig. S3b).  This suggested that inter-gTuSC disulfide bonds stabilize weak 

interactions between gTuSCs. SDS-PAGE of non-reduced gTuSCCC revealed a ladder of cross-

linked g-tubulin oligomers, indicating that disulfide crosslinks had formed both within and 

between gTuSCs (Fig. S3c).  The presence of g-tubulin oligomers with greater than two chains 

means that both inter- and intra-gTuSC disulfide crosslinks were formed, indicating trapping of a 

novel conformation of gTuSC that allowed formation of intra-gTuSC disulfide. 

Next, we co-purified the gTuSCCC-Spc1101-220 complex and observed that under reducing 

conditions it formed filaments similar to the wildtype complex.  Under weakly oxidizing 

conditions, however, there were clearly two populations of filaments in the sample, one similar 

to the open wildtype filaments (Fig. 2b, red arrows), and a new, more compact or closed form 
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with a different helical pitch (Fig. 2b, green arrows).  The power spectrum of single filaments of 

the open form had a strong layer line at 147 Å, corresponding to the pitch of the wildtype 

filament, while the closed form had a layer line at 122 Å, very close to the pitch of a 13 

protofilament microtubule.  Single filaments appeared to be predominantly of one form or the 

other, suggesting a cooperative transition from the open to closed morphology. 

The structure of closed gTuSC oligomers 

 We determined the structure of the closed form of gTuSCCC-Spc1101-220 filaments by 

cryo-EM and iterative helical real space reconstruction19.  To minimize heterogeneity in filament 

morphology gTuSCCC-Spc1101-220 was extensively dialyzed against an oxidizing buffer to 

promote full disulfide crosslinking (Fig. S3d,e).  An initial structure was determined at 9.4 Å 

resolution, from about 94,400 gTuSC subunits.  To eliminate residual open/closed heterogeneity 

in the filaments we sorted the dataset by comparing filament segments to the initial gTuSCCC and 

the open wildtype structures, and omitted segments that matched better to the open structure 

(Fig. S3f).  This yielded a final dataset with about 76,000 gTuSC subunits, and a structure at 6.9 

Å resolution (Fig. S3g); the map appears to have anisotropic resolution, with the core density (N-

terminal domains of GCP2/3) more well defined than peripheral densities (C-terminal domains 

of GCP2/3 and g-tubulin).   

The refined helical symmetry parameters for the closed structure (-55.4° rotation and 18.8 

Å rise per subunit, versus -54.3°/22.2 Å for the open structure) match 13-protofilament 

microtubule geometry (Fig. 3a), and are a close match to the helical pitch of the subtomogram 

average of capped minus ends from spindle pole bodies (Fig. 1b).  Moreover, in contrast to the 

staggered pairs of g-tubulins in the open state, the intra- and inter-gTuSC lateral contacts are very 

similar to each other, and closely resemble the microtubule lattice (Fig. 3b).  Thus, in a single 
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turn of the closed state, the ring of g-tubulins is positioned to act as a nearly perfect microtubule 

template. 

The closed conformation enhances nucleation activity 

The similarity to the microtubule lattice suggested that the nucleating activity of gTuSC 

would be enhanced in the closed state.  We tested the difference in activity between the open and 

closed states with solution nucleation assays.  We previously tested the nucleation activity of 

gTuSC in the context of filaments formed in the presence of Spc1101-220 10.  This likely 

underestimated the full activity because only gTuSCs at the end of a filament would have been 

accessible for interaction with α/β-tubulin.  Here, we used individual gTuRCs in which all of the 

g-tubulin is available for interaction with α/β-tubulin, formed with the longer Spc1101-401 

construct that promotes assembly but blocks filament extension (Fig. 1d). 

We compared nucleating activity of reduced and oxidized single rings of gTuSC-Spc1101-

401 and gTuSCCC-Spc1101-401.  Assays performed with mammalian brain tubulin showed only a 2-

3 fold increase in activity over buffer controls when using assembled yeast gTuSCs10.  Given the 

quality of the symmetry match, we became concerned that there could be some problem in using 

mammalian tubulin with yeast gTuSCs. So despite general assumptions of strong conservation of 

tubulins across species, we repeated these assays with wild-type gTuSC and purified recombinant 

S. cerevisiae α/β-tubulin20.  With yeast tubulin we observed an approximately 300-fold increase 

in the number of microtubules (Fig. 3c,d), indicating a remarkably strong species-specificity in 

the gTuSC:α/β-tubulin interaction (Fig. S4a).  

The activities of gTuSC and gTuSCCC were tested under reducing (open) and oxidizing 

(closed) conditions.  Wild-type gTuSC had similar nucleation rates under both conditions, while 

gTuSCCC nucleation was similar to wildtype under reducing conditions but doubled under 
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oxidizing conditions (Fig. 3c,d).  Thus, artificially forcing the geometry of the gTuSC ring to 

better match that of the microtubule results in enhanced nucleating activity.  While the 

improvement demonstrates the importance of geometric fidelity, the modest increase suggests 

that other conformational changes, such as a curved to straight transition within the g-tubulin19, 

may be required to fully activate the complex. 

Pseudo-atomic model of gTuSC 

We generated a pseudo-atomic model of gTuSC by fitting and refining homology models 

of g-tubulin, GCP2, and GCP3 into the cryo-EM density of a single closed state gTuSC subunit 

(Fig. 4a,b) and the lower resolution open state we determined previously10.  We faced several 

challenges in generating the model: the very low sequence identity between GCP2/3 with GCP4 

(the only homolog with a crystal structure determined) made generating reliable homology 

models difficult, GCP2 and GCP3 are in different conformations than GCP4, and the anisotropic 

resolution of the EM structure led to less reliable fitting of the C-terminal domains of GCP2/3 

and g-tubulin.  We developed several new tools to perform the modeling and to validate the 

model; the approach is outlined below in Methods, and a full description of the modeling 

procedure will be described elsewhere. 

  GCP2 and GCP3, which have similar overall shapes, were distinguished by previous 

labeling experiments1. The primary difference between the open and closed states is the degree 

of flexing in GCP2 and GCP3.  Both change conformation, with GCP3 straightening by about 9° 

and GCP2 bending by about 8° in the closed state (Fig. S5a).  In the closed state GCP2 and 

GCP3 are similar to each other and to the human GCP4 crystal structure, while GCP2 and GCP3 

are in different flexed conformations in the open state (Fig. S5b).  



	 83 

Density in the EM map that we previously suggested corresponds to part of Spc11010 is 

more easily resolved in the new, higher-resolution map and now clearly resembles a two-

stranded coiled coil.  The model includes 44 residues of Spc110 as a generic two-stranded coiled 

coil (Fig. 4, Fig. S6a).  This density makes contacts with N-terminal regions of GCP2 and GCP3, 

with closest contacts near the base of GCP2 and the side of the coiled coil.  Near the top (as 

depicted in Fig. S6), the Spc110 density splays apart, with one strand bending back toward 

GCP3, and the other extending away from GCP2 toward a g-tubulin in the next layer of the helix.  

This model accounts for about 20% of the mass of the Spc1101-220 construct.  Much of the 

remainder of the molecule is likely near the center of the filament, where the ordered density on 

the outer surface connects to disordered density than runs through the core of the structure (Fig. 

S6b).  This positioning of Spc110 is consistent with the fact that longer lengths of coiled coil 

inhibit filament elongation (Fig. 1d), as adding additional mass to the center of the filament 

would likely disrupt the helical packing. 

 The model also provides new insights into the contacts between g-tubulin and 

GCP2/GCP3 (Fig 4b).  Both GCP2 and GCP3 C-terminal domains make contacts with the minus 

end longitudinal surface of g-tubulin, with the strongest contacts made with the T7 loop of g-

tubulin.  The major difference between GCP2 and GCP3 in their interactions with g-tubulin is an 

interaction between the H1-S2 loop of g-tubulin with a loop in GCP3; the corresponding region 

of GCP2 is shifted away from g-tubulin (Fig. 4b).  The H1-S2 loop is at the lateral g-tubulin 

interaction surface, and the interactions with GCP3 may serve to modulate lateral interactions. 
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DISCUSSION 

Here, we have demonstrated that gTuSC can adopt a closed conformation upon which g-

tubulin becomes organized as a precise microtubule template (Fig. 3a,b). Flexing of both GCP2 

and GCP3 in the closed state brings together the two g-tubulins in each gTuSC with microtubule-

like lateral contacts.  GCP2 and GCP3 were modeled on the distant homolog GCP4.  In the open 

state the conformations of both GCP2 and GCP3 differ from GCP4, whereas in the closed state 

all three are in similar conformations.  This suggests that specific evolutionary changes in GCP2 

and GCP3 have stabilized their open, less active, conformations.  The advantage of stabilizing 

the lower-activity state would be the ability to rapidly and specifically upregulate gTuRC activity 

through allosteric activation.  What remains to be determined is what factor or factors might 

induce conversion from the open to closed state. 

Consistent with the idea that gTuSC conformation plays a role in modulating nucleating 

activity, the closed state is about twice as active as the open state (Fig. 3c).  Importantly, yeast 

gTuRC demonstrated strong species specificity, being about 100-fold more active with yeast 

tubulin than with vertebrate tubulin.  Previous assays of gTuSC and gTuRC activity, all 

performed with mammalian brain tubulin, found animal gTuRC to be much more active than the 

yeast counterpart3,10,21,22.   However, our current results using yeast gTuRC with yeast tubulin 

show levels of activity similar to those of the animal complex with animal tubulin, emphasizing 

the importance of pairing tubulin and gTuRC from the same species in microtubule nucleation 

assays (Fig. S4a).  A number of amino acid substitutions between vertebrate and yeast sequences 

at the α-tubulin to γ-tubulin contact surfaces may account for the species specificity (Fig. S4b,c).   
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The modest two-fold enhancement of activity is in line with the enhancement levels 

previously observed with gTuRC activating proteins in metazoans, where in vitro assays using 

isolated human gTuRCs in the presence of CDK5RAP2 activating proteins resulted in 5-fold 

enhancement of activity.  Overexpression or depletion of CDK5RAP2 resulted in large-scale 

changes to the microtubule cytoskeleton in cells, suggesting that small shifts in the activity of the 

nucleating complex can have a large impact on cytoskeletal organization22.  It is also possible 

that, in this artificial cross-linked system, other potentially important allosteric activations are not 

being recapitulated.  For example, α/β-tubulin undergoes a dramatic curved-to-straight 

conformational change on polymerization23,24, and a similar transition may accompany normal 

closure of gTuSC but not be induced in our cross-linked system, thus underestimating the 

enhancement of nucleation in a natively closed structure. 

The gTuSC pseudo-atomic model was expanded by the helical symmetry of the closed 

gTuSCCC filament to generate a model of the full gTuRC (Fig. 5a).  We extrapolated from this to 

create a structural model of gTuRC bound to the minus end of a microtubule, assuming that 

longitudinal contacts between g-tubulin and α-tubulin are similar to the α- to β-tubulin contacts 

(Fig. 5b).  This model, in both overall morphology and helical symmetry, is remarkably similar 

to the microtubule minus end we observed in SPBs.  In the model, thirteen g-tubulins make 

contact with the microtubule; a fourteenth g-tubulin, bound to GCP2 in the terminal gTuSC, lies 

directly below the first g-tubulin, but does not make contact with the microtubule. Intriguingly, a 

novel interaction appears between one end of the ordered Spc110 density and the H6-H7 loop of 

the fourteenth g-tubulin, suggesting a possible role for Spc110 in stabilizing the gTuRC ring at 

this overlapping position (Fig. 5c).  In addition to the 13 longitudinal contacts between g- and α-

tubulin around the ring, the model predicts a single lateral contact between α-tubulin and γ-
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tubulin at the first position in the ring; a lateral interaction between the GCP3 C-terminal domain 

and an adjacent β-tubulin may also occur here (Fig 5d).  

A large number of phosphorylation sites have been identified on g-tubulin, GCP2 and 

GCP3 in S. cerevisiae25-30. Phosphorylation at a few sites has been shown to affect organization 

of the mitotic spindle28,30,31, but the functional roles of most sites remain unknown.  Mapping the 

sites on the gTuRC model shows they fall broadly into three categories: on the exterior of the 

gTuRC, at the exposed plus end of g-tubulin, and on the interior of the gTuRC (Fig. S7).  Exterior 

sites may be involved in modulating gTuRC interaction with binding partners, potentially 

affecting localization or activation.  Sites at the plus end of g-tubulin would be expected to 

directly modulate interactions with α/β-tubulin; similarly, sites at the lateral contact surfaces 

between GCP3 or g-tubulin and α/β-tubulin may directly influence microtubule interactions (Fig. 

5d).  The phosphorylation sites on the ring interior, lying mostly near the minus end of g-tubulin, 

would likely be inaccessible to kinases when gTuRC is bound to a microtubule, suggesting that 

phosphorylation at these sites occurs when gTuRCs are unoccupied, or possibly prior to 

assembly of gTuSCs into gTuRC and may serve to down regulate nucleation activity. 

Here, we have demonstrated that gTuSC can adopt a closed conformation that closely 

resembles the morphology of capped microtubule ends in vivo and is more active for microtubule 

nucleation than the previously observed open conformation.  The transition from an open to a 

closed state likely provides an allosteric mechanism for modulating gTuSC activity.  It remains 

to be seen what factor or factors are involved in promoting this transition in vivo, and post-

translational modification of gTuSC components28,31 or direct binding by regulatory proteins may 

be required22,32,33.  Regulation of gTuRC at the levels of gTuSC assembly, post-translational 
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modification, and open-to-closed conformation are likely all involved in providing precise 

control of nucleating activity. 
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METHODS 

Spindle pole body purification and imaging.  Spindle pole bodies from Saccharomyces 

cerevisiae were purified following previous published procedures 34,35.  The purified SPB 

sample, initially in high concentration of sucrose, was first dialyzed at 4ºC overnight in a buffer 

containing 10 mM Bis-Tris/Cl (pH=6.5), 0.1 mM MgCl2, 20% (v/v) DMSO. Next day, after 

mixing with 10 nm colloid gold, the sample was applied onto either a home-made holey carbon 

grid or a Quantifoil grid (PSI, Inc.) in a humidity chamber, then blotted and plunged into liquid 

ethane using a home-made plunger or a Vitrobot (FEI, Inc.). Frozen grids were stored in liquid 

nitrogen before use.  Tomography data were collected on a Polara electron microscope (FEI, 

Inc.) running at 300kV. A post-column energy filter (GIF, Gatan, Inc.) was used and the slit 

width was set at 25 eV.  Automatic data collection was carried out by UCSF Tomography 

software 36. Single-axis tilt series were collected at a nominal magnification of 41,000. Images of 

dimension 2032x2032 were recorded on a CCD camera (UltraCam, Gatan, Inc.). The final pixel 

size on the images was 5.32 Å. The specimen was tilted from -60º to +60º in 1.5º step. The 

microscope defocus values were set in the range of 10 to 15 µm. The accumulated dose for each 

tilt series was ~60 e-/Å2. 

Subvolume averaging of capped minus ends.  For averaging γ-TuRC, the minus-end caps of 

microtubules attached to the nuclear face of the spindle pole body were identified manually. A 

total of 1156 subtomograms containing the MT minus-end were selected from 61 tomograms. 

They were boxed out and subjected to reference-free alignment by either a maximum-likelihood 

algorithm in Xmipp package 37 or a constrained cross correlation algorithm 38. The alignment 

was carried out progressively with improvement in resolution. The structure converged after 

about 5 rounds of iterations 
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Generation of γTuSCCC and Spc1101-401 expression vectors. Spc1101-401 was generated using 

Spc110 and GST DNA from the Spc110-GST pFastBac vector21. Primers were designed to 

amplify the Spc110(1-401) coding sequence while adding: 1) a BamHI site immediately upstream 

of the open reading frame; 2) a PstI site immediately downstream of the 401st Spc110 codon. 

Primers were designed to amplify the GST coding sequence while adding: 1) a PstI site followed 

by a TEV cleavage site immediately upstream of the GST open reading frame; 2) a HindIII site 

immediately downstream of the GST stop codon.  The resulting PCR products were cloned into 

the Invitrogen Zero Blunt TOPO vector according to the manufacturer’s instructions. BamHI and 

PstI were used to excise Spc110(1-401) and HindIII and PstI were used to excise TEV-GST from 

their respective TOPO vectors. The resulting fragments were ligated into pFastBac (Invitrogen) 

linearized using HindIII and BamHI. The Bac-to-Bac baculovirus expression system (Invitrogen) 

was used to produce protein from Sf9 cells according to the manufacturer’s instructions using Sf-

900 II SFM liquid media (Invitrogen) supplemented with 2.5% fetal bovine serum.  

 To generate γTuSCCC, S58 and G288 of γ-tubulin were mutated to cysteines using the 

QuikChange Multi Site-Directed Mutagenesis Kit (Agilent Technologies) according to the 

manufacturer’s instructions. The resulting mutant sequence was PCR amplified and cloned into 

the Invitrogen Zero Blunt TOPO vector according to the manufacturer’s instructions. XhoI and 

HindIII were used to excise the mutant Tub4 sequence. The resulting fragment was ligated into 

pFastBac (Invitrogen) linearized with the same enzymes.  

 For viability testing, integrating vectors based on the pRS30639 backbone were 

constructed. These contained either wild-type or mutant (S58C G288C) Tub4. 432 bp of 
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upstream and 334 bp of downstream flanking genomic DNA sequence was included in the vector 

surrounding the Tub4 coding sequence. 

Preparation of recombinant γTuSC and γTuSC complexes.  γTuSC or γTuSCCC was co-

expressed with GST-tagged Spc110 constructs in Sf9 cells and purified as described10.  Briefly, 

cell lysate was incubated with glutathione resin, washed in H100 (40 mM Hepes PH 7.6, 100 

mM KCl, 1 mM EGTA, 1mM MgCl2), and eluted from the resin by cleavage of the GST tag 

with TEV protease as the final purification step.  For cryo-EM γTuSCCC-Spc1101-220 filaments 

were at 2 mg/ml total protein in H100 and 1 mM oxidized gluathione. Negative stain samples 

were prepared as described40 in 0.75% uranyl formate, and cryo-EM samples were prepared on 

C-FLAT holey carbon grids41 using a Vitrobot (FEI Co.). 

Imaging and three-dimensional reconstruction of γTuSC and γTuSC complexes.  Negative 

stain samples were imaged on a Tecnai Spirit G2 Biotwin electron microscope (FEI, Inc.)  

operating at 120 kV, and images were recorded on an Ultrascan 4000 CCD detector (Gatan, 

Inc.).  Cryo-EM images were recorded on a Tecnai TF20 electron microscope operating at 200 

kV, and images were recorded on 8k x 8k TemCam-F816 camera (TVIPS, GmbH) with a pixel 

size of 0.94 Å/pixel.  Images were acquired in a defocus range of 0.8-2 µm. Defocus was 

determined with CTFFIND42, and each micrograph was corrected by application of a Wiener 

filter.  Particles were boxed out in 485 Å segments, overlapping by 448 Å.  After several initial 

rounds of unrestrained alignment search the particles were centred with respect to the helix axis 

by integer pixel shifts.  

Iterative helical real space reconstruction was performed essentially as described by 

Egelman43 and Sasche, et al.44, using SPIDER45, using a low-pass filtered cylinder was used as 

the initial reference volume. Initial helical symmetry parameters were taken from the open state 
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gTuSC filament (-54.3° rotation, 22.2 Å rise per subunit), and refined at each iteration with the 

program hsearch_lorentz43.  Initial centering of the particles was carried out on 4x binned 

images, with subsequent refinement on 2x binned images. An initial structure was determined at 

~9.6 Å resolution.  To reduce open/closed heterogeneity in the data set cross correlations were 

calculated for each helical segment to the initial reconstruction and the original open state 

structure10, and particles matching better to the open state were omitted from further rounds of 

refinement. After sorting five rounds of unrestrained alignment search were carried out with the 

2x binned images.  To minimize effects of bending in the helix each segment was masked to 200 

Å along the helical axis and 340 Å perpendicular to the axis with a cosine-edged mask.  These 

masked particles were then subjected to five rounds of local refinement of the unbinned images.  

Resolution was assessed by the FSC0.5 criterion.  Volumes were viewed and segmented using 

Chimera46.   

Fluorescence imaging of yeast cells carrying the γTuSCCC mutation.  All yeast strains were 

derived from W303.  Fluorescent tags were introduced by PCR as described 

(http://depts.washington.edu/yeastrc “Plasmids and Protocols”), and TUB4(S58C/G288C) was 

integrated at the TUB4 locus into glr1Δ cells, which carry a deletion for the gene encoding 

glutathione reductase and have high levels of oxidized glutathione47.  The glr1Δ strain was used 

to increase the favorability of forming disulfides in the TUB4 mutant. Live cells were mounted 

for microscopy on a 1% agarose pad48.  Images were acquired at a single focal plane, with 1x1 

binning,  using a U Plan Apo 100× objective lens (1.35 NA), an Olympus IX70 inverted 

microscope, and a CoolSnap HQ digital camera (Photometrics) managed by softWorX software 

(Applied Precision). Exposures were 0.4 s for both mCherry and GFP.  The images were 
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processed as previously described49 using custom Matlab programs (available upon request) to 

identify and quantify mCherry and GFP fluorescence intensities. 

Yeast Strains Used: 

All yeast strains also have ade2-1oc ade3Δ-100 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1 

except as shown.  

Yeast Strains  

KFY36-13C MATalpha LEU2::GFP-TUB1 lys2Δ::HIS3 SPC42-mCherry::hphMX 

KFY42-1C MATa LEU2::GFP-TUB1 lys2Δ::HIS3 glr1Δ::TRP1 SPC42-mCherry::hphMX 

KFY91 MATa LEU2::GFP-TUB1 lys2Δ::HIS3 glr1Δ::TRP1 SPC42-mCherry::hphMX  

TUB4(S58C/G288C) 

KFY135-8B MATa lys2Δ::HIS3 TUB4(S58C/G288C)::URA3::tub4Δ::kanMX glr1Δ::TRP1 

SPC42-mCherry::hphMX NUF2-GFP::kanMX 

KFY135-47A MATa glr1Δ::TRP1 SPC42-mCherry::hphMX NUF2-GFP::kanMX 

KFY138-5A MATa NUF2-GFP::kanMX  SPC42-mCherry::hphMX 

Microtubule nucleation assays 

Yeast tubulin was over-expressed and purified as described20.  Pure gTuSC-Spc110, gTuSC 

alone, or buffer control (40mM K-HEPES pH6.9, 100mM KCl, 1mM EGTA, 1mM MgCl2, 20% 

glycerol, 100m M GTP, 100m M oxidized or reduced glutathione) and S. cerevisiae tubulin were 

diluted at the appropriate concentrations into microtubule assembly buffer (80mM K-PIPES pH 

6.9, 125mM KCl, 20% glycerol, 1mM EGTA, 1mM MgCl2, 1mM GTP, 100m M oxidized or 

reduced glutathione) on ice.  Reactions were incubated at 30°C for 20 min, fixed 3 min in 10 

volumes of 1% glutaraldehyde in BRB80 (80mM K-PIPES pH 6.9,1mM EGTA, 1mM MgCl2), 

and then diluted 10 times into BRB80 (final volume 1.5ml).  1ml of the resulting fixed reactions 
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was layered onto 20% glycerol/BRB80 cushions and centrifuged for 45 min, 24,000 x g, onto 

18mm round coverslips.  Microtubules were visualized on the coverslips by immunofluorescence 

with FITC-mouse-anti-a-tubulin (Sigma F2168) and 5-10 fields of microtubules were counted 

for each experiment. 

Homology modeling and flexible fitting.   

Models of γ-TuSC were computed using a combination of comparative protein structure 

modeling and flexible fitting into the EM density map of the closed state. To create a template 

structure for γ-TuSC, we rigidly docked 2 copies of the crystal structure of human GCP4 into the 

density map using UCSF Chimera46. Independently, initial alignment of the sequences in the 

TUBGCP family was performed with Promals3D50. Next, we produced an initial homology 

model of the Spc97-Spc98 dimer based on the initial alignment and the GCP4 template, using 

MODELLER 9.1351. The alignment was then iteratively refined by hand to improve the fit of the 

model into the density map. Using the final alignment, 200 homology models of the dimer were 

produced. We completed each dimer into a model of γ-TuSC by rigidly docking two copies of γ-

tubulin and a coiled-coil fragment of Spc110. An additional neighboring copy of the complete γ-

TuSC structure was added to model the inter-γ-TuSC interface. Subsequently, each γ-TuSC 

dimer was flexibly fitted into the density map using MDFF52, with additional restraints to 

preserve helical symmetry, secondary structure, and conformation of the γ-tubulin domains. The 

best scoring model, as defined by the highest cross-correlation coefficient between the model and 

the map, was subjected to additional local sampling to estimate model precision, using 

MODELLER to randomize loops and MDFF to re-optimize the structures. The above process 

was repeated for the open state, using the open-state EM density map and the final alignment 

from the modeling of the closed state. 
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Figure 1.  The yeast γTuRC is formed from seven γTuSCs and is limited in size by Spc110.  
a) A slice from a tomogram of isolated spindle pole bodies clearly shows the capped minus ends 
of microtubules.  b) Subtomogram averaged structure of microtubule minus end. Red arrows 
indicate the position of the half-subunit overlap between the first and seventh gTuSC (outlined in 
yellow and orange, respectively). The 120 Å longitudinal rise of the gTuSC ring is indicated. c) 
γTuSC assembles extended filaments when bound to Spc1101-220.   Spc110 binds the outer 
surface of γTuSC, and fits within the groove of the filament (cartoon).  d) Spc1101-401 promotes 
assembly of γTuSC rings, but prevents extension beyond a single ring, suggesting that the longer 
predicted coiled-coil domain interferes with formation of oligomers greater than 7 γTuSC 
subunits. 
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Figure 2.  Engineered disulfides alter γTuSC filament morphology a) The lateral interface 
between β-tubulin subunits in the 13-protofilament microtubule, and the corresponding lateral 
interactions between γ-tubulins in the open state filament are shown.  At the intra-γTuSC 
interface residues S58 and G288 are widely separated, but are close enough to potentially form a 
disulfide at the inter-γTuSC interface.  b) Negative stain electron micrograph of the double 
mutant S58C G288C (γTuSCCC) in complex with Spc1101-220.  The sample was dialyzed against 
an oxidizing buffer, after which two distinct filament morphologies were apparent (red and green 
arrows).  c) Power spectra of individual filaments of different morphologies from (b) have 
different layer line spacing indicating different helical pitch.  The more open morphology (red 
arrows in b) has a pitch of 147 Å, matching the previously reported structure of wildtype gTuSC, 
and the closed morphology (green arrows in b) has a pitch of 122 Å, matching the pitch of 13-
protofilament microtubules. 
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Figure 3. In the closed state γTuSC matches microtubule symmetry and has increased 
nucleation activity.  a) The open state γTuSC filament, closed state γTuSCcc filament, and 13-
protofilament microtubule structure.  γ-tubulin is highlighted in gold in the γTuSC structures, 
and the pitch of the 3-start helix in the microtubule is highlighted in cyan.  Refined helical pitch 
and rotation per subunit are indicated.  The rotation per subunit for the closed state γTuSCcc, with 
two γ-tubulins, is exactly double the rotation between α/β tubulin subunits, indicating that the 
tubulin symmetries in the two structures match. b) The γ-tubulin crystal structure was fit into the 
γTuSC structures in the open and closed state.  γ-tubulins from two adjacent γTuSCs are shown 
in gold, and the spacings between inter- and intra-γTuSC γ-tubulin pairs are indicated.  The γ-
tubulin indicated by the arrow was superimposed on a β-tubulin from the microtubule (cyan).  In 
the open state (left) the intra-γTuSC γ-tubulin is displaced 25 Å from the corresponding position 
in the microtubule lattice.  In the closed state (right) the γ-tubulin arrangement closely matches 
the β-tubulin lattice positions. c) Yeast tubulin (2.5 µM) was incubated at 30 °C with  γTuSC-
Spc1101-401, γTuSCcc-Spc1101-401 complexes (100 nM) or buffer/γTuSC control under reducing 
or oxidizing buffer conditions.  The resulting microtubules were fixed, centrifuged onto 
coverslips, visualized by immunofluorescence, and counted.  d) Microtubules were counted for 
five fields per experiment (n=4), and the fold increase over buffer/γTuSC alone controls is 
plotted.  Activity of γTuSCs alone was similar to buffer controls, with only a few microtubules 
on the entire coverslip (not shown).  Error bars represent the standard error of the mean.    T-tests 
confirm significant differences between activity of ɣTuSC110CC complexes under oxidizing and 
reducing conditions (p ⦤ 0.013) , or between mutant and wild-type: (p ⦤ 0.055). 
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Figure 4.  Pseudo-atomic model of gTuSC in the closed conformation.  a) A pseduo-atomic 
model (ribbon diagram) was generated by molecular dynamics based flexible fitting of homology 
models of γTuSC components into the cryo-EM structure (semi-transparent surface).  Spc110 
was modeled as a generic length of coiled-coil.  b) Close up views of the interactions of γ-tubulin 
with the C-terminal domains of GCP2 and GCP3, compared to longitudinal interactions within 
the α/β-tubulin heterodimer.  The T7 loop (red) makes contact with GTP in α/β-tubulin and 
interacts with GCP2/GCP3 in γ-tubulin.  The top view is the view from inside the microtubule, 
and the bottom view is looking at lateral interaction surfaces.  In γTuSC both GCP2 and GCP3 
bind the minus end of g-tubulin, including the T7 loop.  Contacts are made between the H1-S2 
loop of g-tubulin and residues 524-536 of GCP3; the corresponding region of GCP2 is shifted 
away from g-tubulin in the GCP2 structure (arrows). 
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Figure 5.  Pseudo-atomic model of γTuRC and its interactions with microtubules.  a) The 
pseudo-atomic model of an complete yeast gTuRC with seven gTuSCs.  b)  A model of yeast 
gTuRC interacting with the minus end of a microtubule.  c) A potential contact between the last 
g-tubulin in the ring, which is not directly interacting with the microtubule, and Spc110 bound to 
the first gTuSC (arrow) is seen in the gTuSCCC structure.  d) Magnified view of interactions 
between the first gTuSC and the microtubule.  A lateral contact is made between the first g-
tubulin in the ring and an adjacent α-tubulin.  Just below this, a potential contact may be made 
between β-tubulin and the C-terminal domain of the first GCP3 in the gTuRC.  Known 
phosphorylation sites on gTuSC that could potentially modulate these lateral interactions are 
indicated with red spheres. 
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Figure S1.  The structure of wildtype gTuSC oligomers does not perfectly match 13 
protofilament microtubule geometry.  a) Two laterally-associated gTuSC subunits from ring-
like gTuSC assemblies are shown.  The two g-tubulins (gold) within each gTuSC are held 
separate from each other by GCP2 and GCP3, while the g-tubulins at the inter-gTuSC interface 
are positioned with microtubule-like lateral contacts.  b) The intra-gTuSC separation results in a 
staggered pattern of g-tubulin in gTuSC assemblies, with a helical pitch of 147 Å.  c) By contrast, 
lateral contacts between tubulin subunits in a microtubule are uniform around the filament, and 
have a helical pitch of 122 Å.  d) To illustrate the mismatch between gTuSC oligomers and the 
microtubule, the upper g-tubulin in the ring has been aligned to make longitudinal contacts with 
α-tubulin at the minus end of the microtubule.  This would result in a large gap between α- and g-
tubulin at the last position in the ring. 
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Figure S2.  γTuSCCC does not affect cell viability.  a) Representative images of WT, glr1Δ, 
and γTuSCCC glr1Δ fluorescent strains.  GLR1 encodes glutathione reductase; glr1Δ cells were 
used to maximize the chance that the γTuSCCC disulfides would be oxidized. Cells in the top row 
have the spindle pole bodies marked by Spc42-mCherry and the microtubules marked by GFP-
Tub1. Cells in the bottom row have the spindle pole bodies marked by Spc42-mCherry and the 
kinetochores marked by Nuf2-GFP.  b) The doubling times of WT and γTuSCCC strains.  c) 
Average GFP-Tub1 fluorescence distributions show that γTuSCCC has no effect on tubulin 
distribution across three spindle length classifications.  d) Average Nuf2-GFP fluorescence 
distributions show that γTuSCCC  has no effect on kinetochore clustering in metaphase spindles 
(1.28-1.59 µm), while shorter spindles show kinetochores cluster slightly closer to the spindle 
pole bodies.  Error bars represent the standard error of the mean. 
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Figure S3.  Crosslinking and structural analysis of gTuSCCC. a) gTuSCCC in the presence of 5 
mM DTT is predominantly monomeric complex, although gTuSC pairs were frequently 
observed.  b) Under non-reducing conditions gTuSCs spontaneously assemble into oligomers, 
even in the presence of 500 mM KCl, which prevents association of wildtype gTuSC.  c) SDS-
PAGE of gTuSCCC under reducing conditions (5 mM DTT), and non-reducing conditions (0 mM 
DTT).  In the non-reducing condition g-tubulin forms disulfide crosslinks, resulting in a ladder of 
1-5 g-tubulin chains.  Formation of g-tubulin oligomers greater than two chains indicates that 
crosslinks were formed at both inter-gTuSC and intra-gTuSC interfaces. d) Co-purified gTuSCCC 
and Spc1101-220 was dialyzed for 72 h. against an oxidizing buffer containing 1mM oxidized 
glutathione.  On SDS-PAGE the reduced sample has the expected bands for Spc1101-220, g-
tubulin, and GCP2/GCP3, while in the unreduced sample extensive g-tubulin crosslinking 
prevents its migration into the gel.  This highly-cross-linked sample was used for cryo-EM 
imaging.  e)  Cryo-EM image of cross-linked gTuSCCC-Spc1101-220 filaments (same sample as in 
d).  f) Segments of gTuSCCC filaments were compared to projections of the gTuSC filament in 
the open state and a preliminary reconstruction of the closed state.  The histogram plots the 
fractional difference in correlation coefficient, with negative values representing a better match 
to the open state.  Segments matching better to the open state were omitted from the final 
refinement of the closed filament structure.  c) Fourier shell correlation (FSC) of the final 
gTuSCCC-Spc1101-220 reconstruction  indicates a resolution of 6.9 Å at the 0.5 cutoff. 
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Figure S4.  Yeast gTuSC nucleation activity is species-specific.  a) Comparison of nucleating 
activity of gTuSC rings with yeast and pig brain tubulin.  Nucleation assays were performed as in 
Fig. 3C (data for yeast tubulin is the same as Fig. 3C), except that the experiments with brain 
tubulin were at 12 µM tubulin and 37° C.  b)  The predicted longitudinal interaction between α- 
and g-tubulin is shown at left.  Human g-tubulin and pig α-tubulin are shown as these are the 
existing crystal structures.  At right the interaction surfaces are highlighted as a function of the 
conservation between yeast and vertebrate tubulin: grey sites are identical, yellow have 
conservative amino acid substitutions, red have non-conservative substitutions, magenta is a two 
amino acid insertion in γ-tubulin, and GTP is shown in orange.  c) Binary sequence alignments 
of yeast and vertebrate homologs, color coded as in (b). 
 
 
 
 
 
 
	



	 103 

	

	
 
Figure S5.  Differences in GCP2 and GCP3 in the open and closed states.  a) Comparison of 
the open and closed states of gTuSC.  The elongated GCP2 and GCP3 structures each appear 
slightly straightened.  b) Overlay of GCP3 in the open (grey) and closed (blue) states shows that 
it straightens by about 9°.  c)  Overlay of GCP2 in the open (grey) and closed (blue) states shows 
that it straightens by about 8°. d) Superposition of GCP2 and GCP3 in the closed state shows that 
they are in very similar overall conformation.  GCP4, which was used as the starting structure for 
homology modeling both GCP2 and GCP3, is in a similar overall conformation.  e) 
Superposition of GCP2 and GCP3 in the open state.  For B-E all structural alignments were done 
using the two N-terminal helical bundles. 
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Figure S6.  Spc110 coiled-coil interacts with N-terminal domains of GCP2 and GCP3.  a) 
The density predicted to correspond to part of Spc1101-220 resembles a two-stranded coiled-coil. 
A generic two-stranded coiled coil was used to model Spc110, and flexibly fit into the EM 
density.  The closest contacts with Spc110 are between residues 77-97 of GCP2 (which includes 
9 residues not included in our model) near the very base of gTuSC, and further up the structure 
with residues 119-126 of GCP3.  b) A central slice of the gTuSCCC filament in the closed state, 
low-pass filtered at 15 Å.  The gTuSC and modeled Spc110 structure is colored grey, and 
disordered density that runs along the center of the filament is colored green.  Arrows denote the 
connections between the ends of the modeled Spc110 structure and the disordered density, which 
suggest that the disordered density is composed of flexible regions of Spc1101-220. c) Predicted 
propensity for coiled-coil formation of the Spc1101-220 primary sequence, calculated over 
windows of 14, 21, or 28 amino acids.  d) Secondary structure prediction of Spc1101-220, with α-
helices denoted as boxes.  Pink boxes have a weaker predicted coiled-coil probability, and red 
boxes a high probability. 
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Figure S7.  Mapping phosphorylation sites on the gTuSC structure. a) A single gTuSC is 
shown with residues known to be phosphorylated highlighted as spheres in red, yellow, and 
orange for sites on g-tubulin, GCP2, and GCP3 respectively. c) The model of yeast gTuRC with 
known phosphorylation sites rendered as spheres.  Sites freely accessible on the outer surface of 
the ring are colored purple, sites at the plus end of g-tubulin predicted to be involved in 
longitudinal contacts with the microtubule in blue, and sites on the ring interior that would be 
inaccessible when a microtubule is bound are coral.   
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