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Abstract

Numerical Modeling of Soil Fabric of Naturally Deposited Sand

by

Peng Tan

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Nicholas Sitar, Chair

This dissertation provides a systematical investigation of computational approaches to mod-
eling of granular materials. Granular materials are ubiquitous in everyday life and in a
variety of engineering and industrial applications. Despite the apparent simplicity of the
laws governing particle scale interactions, predicting the continuum mechanical response of
granular materials still poses extraordinary challenges. This is largely due to the complex his-
tory dependence resulting from continuous rearrangement of the microstructure of granular
material, as well as the mechanical interlocking due to grain morphology and surface rough-
ness. X-Ray Computed Tomography (XRCT) is used to characterize the grain morphology
and the fabric of the granular media, naturally deposited sand in this study. The Level-Set
based Discrete Element Method (LS-DEM) is then used to bridge the granular behavior gap
between the micro and macro scale. The LS-DEM establishes a one-to-one correspondence
between granular objects and numerical avatars and captures the details of grain morphology
and surface roughness. However, the high fidelity representation significantly increases the
demands on computational resources. Herein, we introduce an enhanced image processing
workflow for XRCT images in order to optimize the grain and fabric resolution. A parallel
version of LS-DEM is then introduced to significantly decrease the computational demands.
The code employs a binning algorithm, which reduced the search complexity of contact de-
tection from O(n2) to O(n), and a do- main decomposition strategy is used to elicit parallel
computing in a memory- and communication- efficient manner. The parallel implementation
shows good scalability and efficiency.

High fidelity LS avatars obtained from XRCT images of naturally deposited sand are then
used to replicate the results of triaxial tests using the new parallel LS-DEM. Both micro-
and macro-mechanical behaviors of natural materials were well captured and validated with
experimental data. The results of the numerical modeling show that the primary source
of peak strength of sand is the mechanical interlocking between irregularly shaped grains.
Flexible membrane simulations with a rotatable loading platen were found to accurately
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match experimentally observed relationships between deviatoric stress and mobilized friction
angle with axial shortening for naturally deposited sand. Finally, we investigated the viability
of modeling dynamic problems with newly formulated impulse-based LS-DEM. The new
formulation is stable, fast and energy conservative, however, it may be numerically stiff
when the assembly has a substantial mass difference or badly reconstructed particles as a
result of poor image resolution. We also demonstrated the feasibility of modeling deformable
structures in the rigid body framework and proposed several enhancements to improve the
convergence of collision resolution, including a hybrid time integration scheme to separately
handle at rest contact and dynamic collision. We also extended the impulse-based LS-DEM
to include arbitrarily shaped topography surfaces and exploited algorithmic advantages to
investigate interactions between topography and colliding objects. The novel formulation
significantly improves performance and allows for larger timesteps, which is advantageous
for observing the full development of physical phenomena such as rock avalanches.
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3.8 Flowchart of näıve binning algorithm where bins are basic elements in iteration. 68
3.9 Flowchart of proposed binning algorithm where grains are basic elements in iter-

ation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.10 Border/ghost communication step one, exchange left and right layers. . . . . . . 70
3.11 Border/ghost communication step two, exchange up and bottom layers. . . . . . 71
3.12 Illustration of data containers for basic grain information in across-block migration. 73
3.13 Illustration of data containers for contact history in across-block migration. . . . 73
3.14 Illustration of the mechanism of MPI Alltoall(). . . . . . . . . . . . . . . . . . . 74
3.15 Comparison between obtained speed-up and idealized speed-up for a series of

small numerical experiments, to study strong scalability. . . . . . . . . . . . . . 75
3.16 Relationship between running-time and number of processors for a series of small

numerical experiments, to study of weak scalability. . . . . . . . . . . . . . . . . 76
3.17 Running time decompositions for simulation with 4763 grains. . . . . . . . . . . 78
3.18 Corrected speed up relationship considering actual workload on processors, study

of strong scalability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.19 Simulation times for problem of different sizes and fixed workload for processors,

study of weak scalability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



viii

4.1 Numerical illustration of isotropically consolidation stage (a) before consolidation;
(b) after consolidation; (c) membrane deformation. . . . . . . . . . . . . . . . . 91

4.2 Numerically assembly reconstruction from (a) low-resolution (∼ 70, 000 grains,
9 ∼ 10µm/voxel); (b) high-resolution (∼ 17, 000 grains, 4.3µm/voxel). . . . . . . 93

4.3 The effect of reducing confining pressure due to change of scaling factor. . . . . 97
4.4 The effect of membrane sphere’s radius. . . . . . . . . . . . . . . . . . . . . . . 99
4.5 The effect of membrane stiffness Km. . . . . . . . . . . . . . . . . . . . . . . . . 100
4.6 The effect of restricting coordination number for numerical stability concerns. . 102
4.7 The effect of avatar node density. . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.8 The effect of confining pressure, simulations with σc = 200kPa and σc = 500kPa

ended earlier due to membrane distortion. . . . . . . . . . . . . . . . . . . . . . 105
4.9 The effects of ratio of normal and shear stiffness Ks/Kn. . . . . . . . . . . . . . 106
4.10 Left: An assembly of spherical particles. Right: An assembly of LS reconstructed

avatars. Both specimens have identical void ratio. . . . . . . . . . . . . . . . . . 107
4.11 The effect of internal friction coefficient of spherical grains. . . . . . . . . . . . . 108
4.12 The effect of void ratio, considering both the effect of grain shape and the effect

of reconstruction fidelity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.13 Frictional response, i.e., deviatoric stress, mobilized friction angle and volumet-

ric strain for numerically low- and high-resolution specimen in comparison with
experimental data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.14 Evolution of coordination number during deviatoric loading. . . . . . . . . . . . 113
4.15 Single shear band pattern obtained from high-resolution specimen between 0 ∼

15% axial shortening with internal friction coefficient, (a) µ = 0.6; (b) µ = 0.7;
(c) µ = 0.75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.16 Grains with rotation greater than the mean rotation by two standard deviations
(2σ) obtained from high-resolution specimen between 0 ∼ 15% axial shortening
with internal friction coefficient, (a) µ = 0.6; (b) µ = 0.7; (c) µ = 0.75. . . . . . 116

4.17 Single shear band pattern obtained from low-resolution specimen between 0 ∼
30% axial shortening with internal friction coefficient, (a) µ = 0.6; (b) µ = 0.7;
(c) µ = 0.75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.18 Force chain evolution obtained from low-resolution specimen between 0 ∼ 30%
axial shortening with internal friction coefficient, (a) µ = 0.6; (b) µ = 0.7; (c)
µ = 0.75, forces change directions when they passing through the shear band. . . 118

4.19 Cross-like localization pattern obtained from low-resolution specimen between
0 ∼ 30% axial shortening, with Knbb = Ksbb = 100N/m. . . . . . . . . . . . . . . 120

4.20 Evolution of force chain for low-resolution specimen between 0 ∼ 30% axial short-
ening, with Knbb = Ksbb = 100N/m. . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.21 Surface plots of the distribution density of deviatoric fabric tensor and the anisotropy
factor of grain inside the shear band orientation. . . . . . . . . . . . . . . . . . . 121

4.22 Surface plots of the distribution density of deviatoric fabric tensor and the anisotropy
factor of grain outside the shear band orientation. . . . . . . . . . . . . . . . . . 122

4.23 Spherical histogram of grain inside the shear band orientation. . . . . . . . . . . 122



ix

4.24 Spherical histogram of grain outside the shear band orientation. . . . . . . . . . 123
4.25 Mobilized friction angle of two numerical specimens under strain-controlled load-

ing and unloading cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1 Collision between bodies bA and bB: VA and VB are linear velocities of the center
of mass, ωA and ωB are angular velocities, riA and riB are the vectors from the
center of mass of bodies to the contact point where the i-th impulse Pi applied,
ui
A and ui

B are the velocities at the contact points, and ni is the contact normal. 128
5.2 Energy conservative property of impulse-based collusion resolution, kinetic energy

(blue) and elastic energy (red) converts to each other compression and separation
phases. The coefficient of restitution is 0.5. . . . . . . . . . . . . . . . . . . . . . 136

5.3 Left: A small grain is sandwiched by two larger grains. Right: A small grain is
resting on rigid plane while colliding against a large grain. The collision resolution
algorithm for these cases might take extremely large number of iterations. . . . 138

5.4 Flowchart of proposed time stepping integration, post-collision velocities were
corrected by checking grain-boundary contact, membrane sphere’s velocity was
corrected after it advanced to the next time step to ensure impenetrability. . . . 141

5.5 Demonstration of proposed time sequence, gray grain obtains post-collision veloc-
ity, temporarily translates to the position marked in yellow, subject to repulsive
forces and correct velocities to satisfy impenetrability constraints. . . . . . . . . 142

5.6 modeling of complex shaped grains falling into a flexible net. . . . . . . . . . . . 143
5.7 Demonstration of proposed time stepping scheme to handle rigid boundary-grain

interaction and modeling of flexible membrane in impulse-based LS-DEM. . . . 144
5.8 Two scenarios resulting numerical instability. Left : One avatar entrapped by

another with peculiar geometry; Right : Small avatars completely wrapped inside
another. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.9 Illustration of contact islands (indicated in different colors) where a group of
bodies are associated via a contacting chain which could span over several sub-
domains. For example, two red bodies in a same group can influence each other
possibly via several ways. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.10 Flowchart of parallelized impulse-based method. . . . . . . . . . . . . . . . . . . 149
5.11 Initial configuration of 1600 very high-resolution grains in 800×800×800 domain

for impulse-based method with large timesteps. . . . . . . . . . . . . . . . . . . 152
5.12 Specimen height and spread after 8s settlement under gravity with varying timesteps.153
5.13 Simulation time breakdown for various timesteps. . . . . . . . . . . . . . . . . . 154
5.14 Computing time for islands having different number of collisions, all measured

for 5 timesteps and 10 sub-iterations for rigid boundary correction. . . . . . . . 155
5.15 155, 016 low-resolution grains in 1, 200 × 1, 200 × 1, 200 domain to benchmark

parallel impulse-based LS-DEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.16 Simulation time breakdown for parallel impulse-based LS-DEM, modeled with

155, 016 grains, with 1, 8, 27, 64, 216 processors, respectively. . . . . . . . . . . 157



x

5.17 (a) Entire digitalized topography. (b) A zoomed in region marked in yellow. (c)
A zoomed in region concatenated by a flat plane. . . . . . . . . . . . . . . . . . 158

5.18 Rock avalanche runs into a flat plane. . . . . . . . . . . . . . . . . . . . . . . . . 159
5.19 Rock avalanche runs into a tilted plane. . . . . . . . . . . . . . . . . . . . . . . 160
5.20 Rock avalanche impacts a single protection net. . . . . . . . . . . . . . . . . . . 161
5.21 Rock avalanche impacts a double-layer protection net. . . . . . . . . . . . . . . . 161



xi

List of Tables

3.1 Serial friction for simulations on 4, 763 grains. . . . . . . . . . . . . . . . . . . . 79
3.2 Runtime breakdown for simulations of 42, 684 grains in a 600×600×600 domain,

with bin size 50, simulations ran for 1, 000 steps, (time is in seconds). . . . . . . 81
3.3 Estimated workload of different number of processors, and corresponding theoret-

ical speed-up. NLower, NUpper, NMiddle, NTrue: lower bound, upper bound, mean,
and measured speed-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Domain angularity parameters for studies of weak scalability . . . . . . . . . . . 84

4.1 Unit conversion with scaling factor k (µm/pixel) . . . . . . . . . . . . . . . . . . 92
4.2 Microparameters used in LS-DEM of triaxial compression test . . . . . . . . . . 94

5.1 List of model parameters and values used for the simulations. . . . . . . . . . . 151
5.2 Comparison of CPU time and speed up of impulse-based methods. . . . . . . . . 152



xii

Acknowledgments

I would like to thank my advisor, Prof. Nicholas Sitar, for his persistent guidance and
encouragement as I pursued scientific curiosity freely. I am grateful that Prof. Sitar accepted
me into his group and taught me everything, beginning with computer assembly and English
practice. He has offered a wealth of advice and some of which I am certain to carry with
me for the rest of my life. He also educated me how to think independently, communicate
efficiently and plan strategically. Feeling confused and frightened, I spent half a year in a
shipping container chamber at GCF, HKUST, contemplating what I genuinely want to do in
my twenties. Pursuing a PhD was the best decision I have ever made, and I have treasured
memories with his group in this lovely place.

I greatly appreciate Prof. Kenichi Soga, Prof. Tarek Zodhi, Prof. James Demmel and
Prof. Jon Wilkening for their willingness to serve on my qualifying/thesis committee. I
know Prof. Soga before I arrived in Berkeley, and I have benefited greatly from his help
and valuable advice. I have been benefited greatly from Prof. Zohdi’s valuable advice
on simulating particulate flow and deformable network. I have particularly enjoyed Prof.
Demmel and Prof. Wilkening’s class, which piqued my long-standing interest in mathematics
and the knowledge I learned from them forms the foundation for substantial portion of my
research.

I believe I learned a lot from with Prof. Jonathan Bray, Prof. Robert Kayen, Prof. Lin
Lin, Prof. Sanjay Govindjee in my first year. Their classes enable me to segue smoothly
from employment to research.

I would want to express my gratitude to Prof. José Andrade and Dr. Reid Kawamoto
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Chapter 1

Introduction

1.1 Motivation and Background

The purpose of this dissertation is to present an investigation into the char- acterization
and simulation of the fabric of naturally deposited sands at the micro scale. The importance
and influence of the geologic setting and of the depositional environment on the mechanical
properties of granular deposits, sands, gravels, and silts has been long recognized in geotech-
nical engineering (Terzaghi, 1955). Since then, numerous investigators have examined the
influence of the depositional fabric on the mechanical properties of sands prepared in the
laboratory and showed that sand samples prepared by different methods exhibited different
mechanical response even when the sand was compacted to the same relative density (See
e.g. Oda, 1972; Mulilis et al., 1977; Ochiai & Lade, 1983; Lam & Tatsuoka, 1988; Ishi-
hara, 1993; Zlatovic & Ishihara, 1997; Yoshimine et al., 1998; Vaid et al., 1999; Wood &
Maeda, 2008). Most importantly, all of these studies involved samples reconstituted in the
laboratory. Thus, the focus of this study was naturally deposited sand.

The opportunity for the study of the fabric and of the mechanical properties of naturally
deposited sand arose as a result of a geotechnical investigation of the liquefaction potential
of the hydraulic fill on Treasure Island in the San Francisco Bay. The island was constructed
by hydraulic filling over a natural, sand shoal deposit in the San Francisco Bay in the late
1930’s. The investigation revealed that the natural, shoal sand had much higher liquefaction
resistance than the hydraulic fill, pointing to the difference in the depositional fabric of
the two deposits as the most likely explanation for the observed difference in liquefaction
resistance. A scanning electron microscope (SEM) photograph of an undisturbed sample of
the shoal sand (Figure 1.1) shows that the sand is tightly packed, and the sand grains are
arranged in an interlocking fabric. Garcia et al. (2022) used X-Ray Computed Tomography
(XRCT) to obtain detailed images of the grain morphology and of the depositional fabric
of the shoal sand and performed a series of small-scale triaxial tests to characterize the
mechanical properties of the sand. The results of the triaxial tests (Figure 1.2) show that
the peak mobilized friction angle of the undisturbed sand, with its intact depositional fabric,
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Figure 1.1: SEM image of the depositional fabric in a sand shoal in San Francisco Bay,
California (courtesy ENGEO). The black box shows an example of small particles or clay
attached on the surface of a large particle.

is significantly higher than that of the disturbed sample, and it also exhibits a much higher
initial stiffness.

This new data set consisting of XRCT images and triaxial test results provided the
opportunity to model the micromechanical behavior of the naturally deposited material and
to explore the available methodology. Specifically, Kawamoto et al. (2016) transformed an
XRCT image of a granular object into a mathematical descriptor (an ”avatar”) of the grain
using a Distance Regularized Level-Set Evolution (DRLSE) formulation proposed by Li et al.
(2005) and developed a Level-Set (LS) Discrete Element Method (DEM, Cundall & Strack,
1979) code, LS-DEM. They used LS-DEM to demonstrate the significance of accurately
modeling sand grain morphology and modeling its micromechanical behavior in a simulated
triaxial test. The high fidelity of the reconstructed sand samples and the ability to faithfully
model the micromechanical properties of the sand made it an attractive candidate for the
work presented here. The challenge, however, was the large computational cost of the code
developed by Kawamoto et al. (2018) which made it prohibitively expensive for analysis of
data sets with large numbers of particles. Thus, the objectives of this study were to produce
level set avatars from the XRCT scans, develop a parallel LS-DEM code capable of modeling
large data sets, and to use the newly developed code to model the mechanical response of
the naturally deposited shoal sand.
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Figure 1.2: Mobilized friction angle and stiffness in triaxial tests on undisturbed and dis-
turbed samples of shoal sand from the San Francisco Bay (from Garcia et al., 2022).

1.2 Thesis Content

The following chapters of this thesis are drafts of papers to be submitted for publication
and therefore, some content may be repeated for the sake of completeness.

Chapter 2 is a discussion of image preprocessing workflow that incorporates image de-
noising, single image super resolution, image segmentation and level-set reconstruction. To
begin, we shows that the Non-Local Mean (NLM) filter enhances the visible structures in
XRCT images of granular material. We then discuss different techniques for image super-
resolution based on sparse signal representation and capable of recovering high-resolution
images from low-resolution input images. Finally, an image binarization algorithm based
on Hidden Markov Random Fields (HMRF) is presented. This is a statistical model for
binarizing particle morphologies from XRCT images that incorporates spatial information
and strikes a balance between simple thresholding and more expensive neural networks.

Chapter 3 focuses on the development of a LS-DEM code using a variant of the binning
algorithm and a spatial domain decomposition strategy to model arbitrarily complex-shaped
grains with a history-dependent contact model. The algorithm is optimized for the existing
LS-DEM code, and the majority of the parallel algorithms and implementation details can
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also be ported to other disciplines. In this implementation, performance-critical implemen-
tation details are optimized for high performance and scalability, and the performance of
parallelized LS-DEM is benchmarked in terms of speedup, efficiency, scalability, and granu-
larity for problems of various sizes and using different amount computing resources.

Chapter 4 presents numerical triaxial compression simulations of uncemented sands re-
constructed from XRCT images with different resolutions. A calibrated linear elastic model
with the Coulomb friction yield criterion is used to simulate the frictional response. A sig-
nificant conclusion reached in this study is that the primary source of mobilized strength is
the result of mechanical interlocking between irregularly shaped grains; thus, even the sim-
plest contact model is consistent with the micro- and macromechanical responses observed
in experimental data, provided the microstructure of the grains and grain-to-grain contacts
is accurately captured. Flexible membrane simulations with a rotatable loading platen are
found to be more accurate at predicting the stress-strain and volumetric response, and the
onset and growth of strain localization. Our simulation results match experimentally ob-
served relationships between deviatoric stress and mobilized friction angle as axial shortening
increases.

Chapter 5 presents a parallel LS-DEM algorithm and code reformulated in an impulse-
velocity framework. The results of numerical experiment are presented to show that the
impulse-based method is compelling in large part because it circumvents the need for small
time step and saves significant amounts of computational effort for complex shaped objects.
To improve convergence of collision resolution, we modify an existing collision resolution
algorithm and propose a novel time integration scheme. Additionally, we demonstrate the
modeling of protection nets on arbitrarily shaped topography, showing that impulse-based
methods can also be used to simulate the dynamics of deformable structures. The results
show that the primary limitation of the impulse-based method remains its inability to model
a system of irregular, non-convex, non-uniform objects, particularly in a highly confined
quasi-static environment where objects of very different shapes and sizes interact at numerous
contact points and travel at low speeds.

Chapter 6 is a summary of the major findings, including recommendation for future
extensions of the numerical modeling techniques presented herein.
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Chapter 2

XRCT Image Processing for Sand
Fabric Reconstruction

2.1 Introduction

It is well established that the interaction of individual particles contributes significantly to
the macroscopic behavior of granular materials under various loading conditions. In naturally
deposited granular materials, sands, silts and clays, the process of deposition in different
depositional environments results in a unique arrangement of the particles/grains, referred
to as fabric. A good understanding the soil fabric and the grain micromorphology, which
includes the surface texture and irregularities, is important in understanding the macroscopic
mechanical properties, such as shear strength, dilatancy, crushability, and localization. The
SEM image (see Figure 1.1) of a sand sample taken from a sand shoal in the San Francisco
Bay illustrates the intimate arrangement of the grains in this type of deposit. The major
challenge of imaging and reconstructing this fabric is the small size of the grains on the order
of 0.1mm and their close packing which makes it difficult to distinguish the grain boundaries.

In numerical modeling of granular media, Discrete Element Method (DEM, Cundall &
Strack, 1979) has been the go-to technique. While spherical grains are readily modeled in
DEM, more complex shapes of grains and their packing in natural sands, required creation of
more complex objects such as clumped spheres (Garcia et al., 2009; Tamadondar et al., 2019;
Wu et al., 2021), and simplex or polyhedron (Zhao et al., 2006; Zhao & Zhao, 2021; Wang
et al., 2021). Most recenttly, the level-set (LS, Vlahinić et al., 2014; Kawamoto et al., 2018)
approach offers high-fidelity depiction of arbitrary shaped grains, allowing for unparalleled
capture of granular materials’ macroscopic and local behaviors. LS is preferred over other
approaches for describing and reconstructing grain morphology because other widely used but
conceptually distinct approaches have inherent disadvantages. For instance, mathematical
Fourier descriptors may lose some local information regarding the surface morphology due to
the artificial selection of cross-sections, particularly for extremely irregular grains. Whereas
the spherical harmonic function is incapable of addressing non-convexity in natural sand
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caused by weathering and erosion.
However, the quality of the LS reconstruction is highly dependent on the accuracy with

which the true shape of the grains can be captured. The XRCT technique, developed
over the last two decades is an excellent tool for 3D imaging and characterization of the
microstructure and micromorphology of real sand particles and also for capturing the fabric.
While the current workflow has been successful in obtaining the shapes of clean, pluviated
sand (Vlahinić et al., 2013; Kawamoto et al., 2018) and clean natural sands (Fu et al., 2017),
the image reconstruction becomes a lot more challenging in resolving the individual grains
and fabric of naturally deposited fine sands, such as shown in Figure 1.1. Specifically, in this
case, the presence of clay adhesions and very fine particles which are clumped on the larger
grain surfaces alters the natural shape boundary captured during the XRCT. Moreover, due
to the polymineralic nature of the natural sands, the presence of minerals (i.e., Magnetite)
opaque to X-Rays makes the reconstruction process even harder and makes it a challenging
task to identify the true grain boundaries.

Herein we explore different techniques for processing XRCT images with the aim of im-
proving the grain segmentation process for naturally deposited sands. Firstly, the images
were denoised by non-local means filter, this filter identifies and averages neighborhoods
across an entire image based on the degree of similarity with the target rather than the
proximity. Resulted denoised images preserve edge sharpness and removes noise to a greater
degree. Secondly, a learning-based image super-resolution method (Yang et al., 2010) was
utilized to enhance the resolution of images based on sparse signal representation. The aim
of this procedure is to reduce the partial volume effect due to the low resolution of images.
Research on image statistics suggests that image patches can be well-represented as a sparse
linear combination of elements from an appropriately chosen over-complete dictionary. This
method seeks a sparse coefficient for each patch of the low-resolution input and then uses
the coefficient to generate the high-resolution output. Results from the proposed method
outperforms the conventional methods of image super-resolution. Lastly, an image segmen-
tation method adopted from Zhang et al. (2001) was proposed to differentiate individual
object from background. This method clusters pixel via Hidden Markov Random Field
(HMRF) with Weighted Expectation Maximization (WEM) algorithm where each group of
pixels (void, water, solid etc.) is modelled as a distinct Gaussian and the spatial connectivity
is imposed via a stochastic Markov network. Conventional methods such as Otsu’s method
(Otsu, 1979), K-means (MacQueen et al., 1967), or histogram analysis can be utilized as prior
for the optimal label configuration of an image. Such configuration maximizes the maximum
a posterior (MAP) estimation or equivalently minimizes the free energy. In the end, our
proposed workflow increases the accuracy and robustness of the image reconstruction, and
it leads to much improved binary segmentation of XRCT images.
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2.2 Image Denoising

X-Ray images naturally contain noise due to the statistical nature from the generation
of photons. Dealing with the noise in the images is the one of the first steps in any image
processing workflow. A good denoising algorithm should be able to clean up the local
intensity variations while preserving the image sharpness in the areas of importance, e.g.,
near phase edges or grain-to-grain contacts, perhaps without a prior knowledge of what a
noise free image looks like. The fundamental idea behind all noise reduction algorithms is
to reduce the statistical noise through an averaging process. Most widely used technique for
image denoising use a low-pass filter to decrease the disparity between nearby pixels.

2.2.1 Gaussian Filter

Gaussian filter is one of the widely used linear low pass filter which averages over small
window of pixels I(x+ t) by weighting the intensity values of the pixels according to discrete
Gaussian kernel Gρ(t) with variance ρ as shown in below. Since Gaussian filter is circularly
symmetric it can be treated as two independent one dimensional calculation which reduces
the computational complexity from O(n2) to O(n).

IGF (x) = Gρ(t) ∗ I(x+ t) (2.1)

Gρ =
1

C
exp (−∥x− µx∥2

2ρ2
) (2.2)

where C is normalization factor, µx is the average intensity value of the region of interest.

2.2.2 Median Filter

Another popular filter used in image denoising is median filter which is a nonlinear filter
by design. It works by extracting the median value from the neighborhood window of a
pixel and assigning it to the corresponding output image pixel. Since this filter does not
involve any diffusive actions, median filter is better for removing local outliers. In addition
the sharpness of image is better preserved compared to Gaussian filter. Major drawback of
both the Gaussian and median filter is, they work by considering only a small local region of
the whole image. But in a single XRCT image there are similar regions scattered throughout
the image. Therefore, one could take into account all these visually similar regions in the
averaging rather than restricting it to the neighbouring pixels, such approach yields a far
better result in terms of noise removal and preserving edge sharpness.

2.2.3 Adaptive Filter

Barner et al. (1992) proposed using an adaptive stack filter for denoising, where a se-
ries of filters (i.e., median filters and morphological operators like dilation and erosion)
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are combined. The stack sequence of filters is determined through experiments on sets of
noisy images and their original counterparts. Also, Tomasi and Manduchi (1998) proposed
a bilateral filter which accounts for both the geometric and photometric similarity of the
neighborhood pixels. The photometric similarity was taken account by assigning smaller
coefficients to pixels with high intensity difference and vice versa. Drawback of this method
is that it only compares the intensity of a single pixel for comparison making it a less robust
method.

2.2.4 Nonlinear Anisotropic Diffusion Filter

Perona and Malik (1990) formulated smoothing as a diffusive process, which is suppressed
or stopped at boundaries by selecting locally adaptive diffusion strengths.

∂

∂t
I(x, t) = ∇ · (k(x, t)∇I(x, t)) (2.3)

The diffusion strength is controlled by k(x, t), where x represents the spatial coordinates
in the image denoising context. The variable t is the process ordering parameter, which is
the discrete implementation used to enumerate iteration steps. The diffusion function k(x, t)
depends on the magnitude of the gradient of the image intensity. It is a monotonically de-
creasing function which mainly diffuses within regions and does not affect region boundaries
at locations of high gradients. One example of such diffusion function is:

k(x, t) = exp (−(∥∇I(x, t)∥
K

)2) (2.4)

This is a monotonic decrease of the diffusion coefficient with increasing gradient, the
parameter K is chosen according to the noise level and the edge strength. Gerig et al. (1992)
extended NADF to 3D space and produced better noise reduction due to the use of context
from larger neighborhood than 2D slices.

2.2.5 Non-Local Mean Filter

Non-Local Means (NLM) filter denoise images by considering the visually similar context
over the entire image, this makes it an ideal candidate for our application. A significant
improvement over both Gaussian filter and Mean filter can be seen by identifying neighbor-
hoods across an entire image that are of similar context and averaging based on the degree of
similarity between these windows, regardless of their proximity to the source. This implies
that each single pixel can be expressed as a linear combination of all other pixels. The idea
is similar to the bilateral filtering proposed by Tomasi and Manduchi (1998), which accounts
both the geometric closeness of the pixels and the photometric similarity between pixels.
But NLM filter considers an image patch surrounding the pixel of interest instead of a single
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pixel, which makes the method more robust to large noise. The Non-Local Mean Filter can
be represented as in the following:

INLM(x) =
1

C(x)

∫
I

w(x, y) ∗ I(y)dy (2.5)

w(x, y) = exp (−Gρ(t) ∗ ∥I(x+ t)− I(y + t)∥
2h2

) (2.6)

∥I(x+ t)− I(y+ t)∥ measures the Euclidean distance or similarity between source image
window I(x+ t) with all other windows across the image I, namely I(y+ t). It is logical that
contextually similar patches are considered closer to each other and therefore assigned higher
weight w(x, y). As image features are often presented in terms of local patches, instead of a
single pixel value or an entire image, it is more meaningful to calculate the distance between
image patches. The resulting similarity ∥I(x+t)−I(y+t)∥ is further convoluted with a filter,
i.e., Gaussian filter or Unit filter if one decides to assign higher weights at the center. For
example, less importance is given to pixels away from the center of the window via discrete
Gaussian kernel Gρ(t) and scale the Euclidean distance by a value of noise variance h. Once
the weights are collected, perform a weighted average over all window centers I(y + t) and
assign the result to the source pixel INLM(x), i.e., the pixel in the center of the source
window. A constant C(x) assures that the sum of all weights w(x, y) is normalized. In this
way, averaging is no longer based on proximity or distance from the source pixel, but it is
rather a function of the context in which the pixel appears. In practice, searching an entire
image to find out all patches with high degree of similarity is computationally expensive,
and a trade-off is often made by limiting the size of search window such that the number of
similar patches is enough for denoising but still affordable.

2.2.6 Numerical Demonstration

A comparison between Non-Local Means filter with Gaussian filter and Mean filter is
presented here, because literature on edge detection almost exclusively uses these two filters
as a preprocessing step. To provide a roughly equal basis for comparison, input parameters
for Gaussian filter and Non-Local Means filter were adjusted so as to provide a visually
similar degree of denoising to Mean filter, whose local window I(x + t) was fixed to 5 × 5
pixels. This led to a Gaussian filter with standard deviation ρ of 0.75 pixel lengths applied
over a discrete 7 × 7 Gaussian kernel. For Non-Local Mean filter, a source window size of
7×7 with a comparison search restricted to a neighborhood of 31×31 pixels centered at the
source pixel was fixed, while noise variance was adjusted until a degree of smoothing visually
similar to Gaussian filter and Mean filter was obtained, in practice the noise variance is
estimated from existing library.

The comparison of noise-removal techniques for a slice of X-ray tomography image of
granular material is done by taking the difference between restored images using Gaussian,
Median and NLM filters and the original image as the human eye is not sensitive to discern
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the quality of the raw output, Figure 2.1. Top left image shows the raw image slice from re-
constructed X-ray image, all other images show the denoised images using different denoising
filters and the subtracted noise patterns for respective method in which light color indicates
the greatest difference. Grain boundaries can be visually identified from the removed noise
by Gaussian filter (Figure 2.1(e)) and Median filter(Figure 2.1(f)), which indicates that these
conventional filters remove too much of high frequency details which is crucial to identify the
grain-grain and grain-void boundaries. This test case demonstrates that Non-Local Means
filter can better preserve the edge sharpness while cleaning up the local intensity variations
as shown in Figure 2.1(g).

Figure 2.1: (a) Original noised image, (b) Denoised image with Gaussian filter, (c) Denoised
image with Median filter, (d) Denoised image with Non-Local Mean filter, (e) Noise removed
by Gaussian filter, (f) Noise removed by Median filter, (g) Noise removed by Non-Local Mean
filter

Based on the visual indicator shown in Figure 2.1, NLM filter performs extremely well on
reducing image noise, particularly for discrete media where it is able to reduce noise within
phases while preserving sharpness at both grain-void boundaries and grain-to-grain contacts.
Due to the nature of the NLM filter, it is best applied to textured or periodic images which
provide enough redundancy to recover original images. This is the case of XRCT images on
granular material: for every pixel, we can find enough samples with similar configurations.
However, the NLM filter is more computationally expensive method but one could choose
the comparison range for windows I(y+ t) to speed up the computation as discussed before.
Being able to preserve boundaries sharpness is of crucial importance because numerical
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studies of mechanical behavior are contingent upon the accuracy of the fabric and grain
reconstruction, as both over-smoothing grain-void boundary or deleting small grains would
result in a change in the morphological of the grain.

2.3 Image Super-Resolution

The second step in image enhancement is super-resolution. The purpose of this super-
resolution step is to increase the native resolution of the images in order to up-scale or
improve the details of grain images. Super-resolution techniques were initially developed
to overcome the limitations of low-cost hardware such as image sensors, as an image can
only be analyzed effectively if its details are visible. Since then, high-resolution images have
become available and extremely popular in the field of digital image processing, ranging from
satellite imaging to medical imaging. Image super-resolution is viewed as an inverse problem
in which the original high-resolution image is recovered using reasonable assumptions or prior
knowledge that establishes a link between the high-resolution image and its low-resolution
counterpart. This problem is difficult because it is ill-posed, which means that there are not
enough low-resolution images, unknown blurring operations, and limited prior knowledge or
constraints.

2.3.1 Conventional Approaches

Typical approaches to reconstruction of a high-resolution image are through interpolation
from the sub-pixels of several low-resolution images, which can be understood as a generic
smoothness prior over the high-resolution image space. Nearest neighbor, bi-linear, bi-cubic
interpolation methods are few of the most traditional super-resolution methods. These meth-
ods all fail to keep the sharpness at the edges of the output image and leave a visible ringing
artifact. Carrato et al. (1996) tried to solve this problem with the idea of edge-sensitive
interpolation filter, but it tends to overly emphasize edges in non-homogeneous regions and
overly smooth out soft textures. An interpolation method is considered as a “global” pro-
cedure because it is also influenced by other intervals, we therefore shall increase the order
of polynomial to accommodate an increasing set of data points. From a numerical analysis
point of view, classical polynomial interpolation method, e.g., Lagrange interpolation tends
to vary rapidly in some part of region of interest and fails to produce smoothly varying func-
tion. To solve this problem, cubic spline (Hou & Andrews, 1978) uses piece-wise polynomial
to connect knot points to the second order. Compared with linear and cubic interpolation,
this method works well for super resolution task as it preserves high-frequency details in
images. But it is still known to produce ringing and jagged artifacts. Sun et al. (2008)
solved this problem by using gradient field as the image prior for super-resolution, which
describes the shape and sharpness of the gradient profile as a distribution and this statistic
is mostly stable and uniform regardless of the resolution of the image. However, it tends to
produce watercolor-like artifact in the resulting high-resolution images. Chang et al. (2004)



CHAPTER 2. XRCT IMAGE PROCESSING FOR SAND FABRIC
RECONSTRUCTION 12

proposed one of the first learning-based methods for image super-resolution, which was in-
spired by a manifold learning method, Locally Linear Embedding (LLE). LLE-based image
super-resolution assumes that image patches in the low-resolution images and corresponding
patches in high-resolution images form a similar manifold geometry in two distinct spaces,
therefore, high-resolution counterparts can be reconstructed from the low-resolution inputs
with the learned parameters. One drawback of this method is it always considers a fixed
number of neighbors for learning, making it highly susceptible to blurring due to over/under
fitting.

2.3.2 Image Super-Resolution via Sparse Representation

With the popularity of machine learning algorithms, a learning-based method, which
uses training data to learn low-to-high-resolution matches, has been highly successful. In
this work, the super-resolution method proposed by Yang et al. (2010) was implemented,
which utilizes the sparse signal representation to recover high-resolution images from low-
resolution counterparts. The idea is inspired from manifold learning that a sparse repre-
sentation of signal can be correctly captured from its down sampled counterparts However,
instead of working directly with the image patch pairs sampled from the high-resolution
images, compact over-complete dictionaries are learned for both high and low-resolution im-
ages in order to capture the co-occurrence prior and to improve the speed of the algorithm.
This approach is motivated by recent results in sparse signal representation, which sug-
gests that the linear relationships among high-resolution signals can be accurately recovered
from their low-dimensional projections. Besides, image statistics suggest that image patches
can be well-represented as a sparse linear combination of elements from an appropriately
chosen over-complete dictionary. Inspired by the above observations, we can seek a sparse
representation for each patch of low-resolution input, and then use the coefficients of this rep-
resentation to generate the high-resolution output. Specifically, two coupled over-complete
dictionaries, Dh for high-resolution patches, and Dl for low-resolution patches are concate-
nated and jointly learned in a probabilistic model. As a result, the sparse representation
of a low-resolution patch in terms of Dl can be directly used to recover the corresponding
high-resolution patch from Dh.

Compared with an example-based learning strategy that applies to generic images where
the low-resolution to high-resolution prediction is learned via a Markov random field through
belief propagation (Sun et al., 2003), learning over-complete compact dictionaries requires
smaller training patch database and the choice of a feature is no longer critical (Wright
et al., 2008). Also, the computation is much more efficient and scalable as it is mainly based
on linear programming or convex optimization. Due to the fact that low-resolution image
and its high-resolution counterpart should be consistent with each other, the observed low-
resolution image Y is considered a blurred and down-sampled version of the high-resolution
image X:

Y = SHX (2.7)



CHAPTER 2. XRCT IMAGE PROCESSING FOR SAND FABRIC
RECONSTRUCTION 13

WhereH represents a blurring filter and S the down-sampling operator. This is extremely
ill-posed problem, and a unique solution is obtained by regularizing the problem via sparsity
prior. That is, the high-resolution image patch x can be represented as a sparse linear
combination in a dictionary Dh which trained from high-resolution patches sampled from
training image:

x ≈ Dhα, α ∈ RK , ∥α∥0 ≪ K (2.8)

The sparse representation α is recovered by representing patches y of the input image Y ,
with respect to a low-resolution dictionary Dl trained together with Dh. A straightforward
way to obtain two such dictionaries is to sample image patch pairs directly, which preserves
the correspondence between the high-resolution and low-resolution patch items. However,
such a strategy would result in large dictionaries and expensive computation. A more ef-
fective way is to learn a compact dictionary pair by ensuring both consistency and sparsity
requirements via linear programming and convex optimization:

D = argmin
D,Z
∥X −DZ∥22 + λ∥Z∥1

s.t. ∥Di∥22 ≤ 1, i = 1, 2, . . . , K
(2.9)

Where the l1 norm ∥Z∥1 is used to enforce sparsity, and the l2 norm constraints on
the columns of D remove the scaling ambiguity. This is one of the most researched topics
in optimization and classical machine learning, one common interpretation of constrained
linear square problem is formulating it into a MAP problem, and different regularization
terms correspond to different priors. i.e., Laplacian prior for l1 norm and Gaussian prior
for l2 norm. Laplacian prior is better suited to remove spurious oscillations over Gaussian
prior which is mathematically simpler and exists in a enclosed form solution (Rudin et al.,
1992). Discussion of domain specific usage of image prior was presented by Pickup et al.
(2003) and Kim and Kwon (2010). The above equation is not convex in both D and Z at
the same time but it is convex in one of them with the other fixed. Solving constrained
least square problem separately for Dl and Dh does not produce the same coefficient for
high-resolution patch and low-resolution patch. Instead, combining the learning objectives
and forcing the high-resolution and low-resolution representations to share the same sparse
coefficients. Therefore, the optimization performs in an alternative manner over Z and D:

(1) Initialize D with a Gaussian random matrix, with each column unit normalized.

(2) Fix D, update Z by
Z = argmin

Z
∥X −DZ∥22 + α∥Z∥1 (2.10)

This is a LASSO regression formulation and can be solved efficiently through feature-sign
search algorithm (Lee et al., 2007).

(3) Fix Z, update D by
D = argmin

D
∥X −DZ∥22

s.t. ∥Di∥22 ≤ 1, i = 1, 2, . . . , K
(2.11)
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(4) This is a Quadratically Constrained Quadratic Programming (QCQP) that is ready to
be solved in many optimization packages.

(5) Iterate between (2) and (3) until converge.

2.3.3 Mathematical Background of Optimization

The second step is a LASSO regularization problem, which helps to maintain the sparsity
of solution compared with other problems regularized by a different norm, i.e., ridge regres-
sion. The problem of finding the sparsest representation is regularized by the zero-norm by
definition, which is in general an NP-hard problem. The use of l1-norm instead of l0-norm
was justified by Donoho (2006) by showing both the norms produce unique and identical
solution, if the desired coefficients are sparse enough. The LASSO regularization problem
can be effectively solved with the feature-sign search algorithm, which aims to solve the
following equivalent optimization problem:

min
x
∥y − Ax∥+ γ∥x∥1 (2.12)

If we know the signs (positive, zero or negative) of the xi at the optimal value, we can
replace each of ∥xi∥1 term with either xi (if xi > 0), xi (if xi < 0), or 0 (if xi = 0). This
reduces to a standard, unconstrained quadratic optimization problem, which can be solved
analytically and efficiently. The core idea of the feature-sign search algorithm therefore
attempts to search or guess iteratively the signs of the coefficients xi. For each training
patch X[:, i], we can apply this algorithm to solve its sparse code Z[:, i] separately, from
where Z is obtained as each column of Z is a solution of a l1 regularized least squares
problem. Here a python slice notation is used.

After Z is solved from the second step, the third step involves in solving of another
optimization problem over D, which is in the form of:

D = argmin
D
∥X −DZ∥22

s.t. ∥Di∥22 ≤ 1, i = 1, 2, . . . , n
(2.13)

Or equivalently considering the Lagrangian:

L(D,λ) = trace((X −DZ)T (X −DZ)) +
n∑

i=1

λi(∥Di∥22 − 1) (2.14)

Where each λj ≥ 0 is a dual variable. Minimizing over D analytically, we obtain the
Lagrange dual:

D(λ) = min
D
L(D,λ) = trace(XT −XZT (ZZT + Λ)−1(XZT )T − Λ) (2.15)

Where Λ = diag(λ). Our objective is to solve the Lagrange dual problem with some
linear programming solvers like Newton, Conjugate Gradient. To do that, we convert the
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constrained least squares problem into unconstrained least squares problem, such that those
well-implemented solvers could be used. Three ingredients of those solvers are: objective
function, gradient and optionally, Hessian.

(1) Objective function:

D(λ) = min
D
L(D,λ) = trace(XT −XZT (ZZT + Λ)−1(XZT )T − Λ) (2.16)

(2) Gradient:
∂D(λ)

∂λi
= ∥XZT (ZZT + Λ)−1ei∥2 − 1 (2.17)

Where ei ∈ Rn is the i-th unit vector.

(3) Hessian:

∂2D(λ)

∂λi∂λj
= −2((ZZT + Λ)−1(XZT )TXZT (ZZT + Λ)−1)ij((ZZ

T + λ)−1)ij (2.18)

(4) Since then, the Lagrange dual problem can be optimized using conventional solvers, i.e.,
Newton’s method or Conjugate Gradient. The optimum dictionary D is obtained via:

DT = (ZZT + λ)−1(XZT )T (2.19)

2.3.4 Numerical Demonstration

XRCT image of granular material is an excellent research candidate because it has highly
repetitive, regular patterns, hence it only requires a small batch of training images. The
super-resolution results obtained by sparse signal representation of XRCT images of granu-
lar material are demonstrated using a patch size as 5× 5 pixels for both low-resolution and
high-resolution images. The two dictionaries for high-resolution and low-resolution image
patches are trained from 10000 patch pairs randomly sampled from an XRCT dataset; the
low-resolution images were generated via bi-cubic interpolation using high-resolution coun-
terparts. For high-resolution images, the image patches were flattened into a (25, 1) vector;
for low-resolution images, feature extractor filters, i.e., gradient and Laplacian were first
applied in both horizontal and vertical direction to extract information at high-frequency
textured regions. These four features were concatenated with original patch and produced
a feature vector of size (100, 1). When determining the dictionary size, we found that 512
is sufficient for our application but intuitively a larger dictionary possess more expressive
power yielding more accurate approximation even though it costs more in computational
power. Therefore, the input training data is X ∈ R125×10000. The dictionary size is initial-
ized as D ∈ R10000×512 to sparsely encode image patches with 512 atoms while this number
might be smaller in the end because columns with zero norm would be abandoned. The
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choice of regularization parameter α depends upon the level of noise in the input image, the
noisier the data, the larger the value of α should be, for this experiment, setting α = 0.2
generally yields satisfactory results. The results were evaluated both via visual inspection
and qualitative Root Mean Square Error (RMSE), which compares the differences between
ground truth high-resolution images and the recovered images. With N is the number of
pixels in images I1 and I2.

RMSE =

√∑N
i=1(I1,i − I2,i)2

N
(2.20)

Figure 2.2: Performance of super-resolution with sparse representation (a) high-resolution
ground truth; (b) low-resolution counterpart derived from (a); (c) recovered high-resolution
image with sparse representation.

As shown in Figure 2.2, the sparse representation method has exceptional performance
over the more traditional methods as there are visually no differences between the ground
truth and the recovered image. The descriptor RMSE is used to quantify the enhance-
ment, compared with conventional methods, namely nearest neighbor, bi-linear, bi-cubic,
which has RMSE score 5.80, 4.81 and 5.10. The super-resolution technique based on sparse
representation only has 2.98 RMSE.

2.4 Image Binarization

The next major step in this process is to segment the enhanced images by labeling each
pixel whether it belongs to the grain phase or to the void phase. This is not a difficult job for
clean and coarse granular material, as it is possible to highlight different components in the
object being imaged and produce high-contrast piece-wise constant images, which greatly
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facilitate image segmentation. However, ideal imaging conditions are not always obtainable
in practice. The XRCT quality is degraded considerably by electronic noise, lighting condi-
tions, and partial-volume effect, all of which cause the intensity histogram of the different
components to overlap. And this is especially common for XRCT on naturally deposited
granular material where the object is often ”polluted” by with finer impurities. In this case,
the spatial intensity inhomogeneities are often of sufficient magnitude to cause distributions
of signal intensities associated with grain and void classes to overlap significantly. In ad-
dition, operating conditions, experiment setup and status of X-ray equipment frequently
affect the observed intensities, causing significant inter-scan intensity inhomogeneities which
necessitate manual adjustment on a per-scan basis.

2.4.1 Conventional Methods

Even the most naive and straightforward binarization technique works reasonably well
for high-contrast piece-wise constant images, where a global threshold value is manually
selected such that pixels with high intensity levels are classified as grains and void otherwise.
If this method were to be applied for a more challenging task, i.e., naturally deposited
granular material, it might not produce a unique and satisfactory outcome as this manner
of selecting threshold is heavily influenced by selector bias. It may not be optimum, without
any prior knowledge, to select a hard decision boundary from the intensity histogram where
distributions of different clusters overlap. Hence the output from the binarization process is
highly likely to be different for different runs, making the process questionable.

To overcome this issue and to make the process more robust and automatic, statistical
based methods like k-mean clustering and Otsu’s method are widely used (MacQueen et al.,
1967; Otsu, 1979). In those methods, the threshold value was calculated by maximizing
the variance among clusters while minimizing the variance within each cluster. Take Otsu’s
method as an example, it is widely used in preliminary image processing because it is robust
and simple. This method segments gray images with two object classes and later it was
extended to process more than two classes, which bears the same spirit as the k-mean cluster
algorithm. The fundamental idea of Otsu’s method is to search for the best threshold value
t such that:

argmin
t

= σ2
ω(t) = ω0(t)σ

2
0(t) + ω1(t)σ

2
1(t) (2.21)

ω0(t) =
t−1∑
i=0

p(i) (2.22)

ω1(t) =
L−1∑
i=t

p(i) (2.23)

p(i) =
ni

N
(2.24)
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Where σ2
ω(t) is the inter-class variance of the two clusters, σ2

0(t) and σ
2
1(t) are the intra-

class variance of the two clusters with t being the global threshold value to hard binarizing
image into two clusters. ω0(t) and ω1(t) represents the probability of class occurrence and
p(i) is the probability of i-th intensity level with N being the total number of pixels in the
image.

In all, this type of method labels the pixels according to their probability values, which
are determined based on the intensity distribution of the image. Therefore, with a suitable
assumption about the distribution and given only the intensity for each pixel, statistical
approaches can go one step beyond hard threshold approaches and formulate an estimation
problem with some criterion. Maximum a posterior (MAP) and maximum likelihood (ML)
principles are two of such examples. For example, the formulation of density function of the
pixel intensity is often chosen to be mixture Gaussian model (MGM) (Wells et al., 1996;
Guillemaud & Brady, 1997) because this model connects MAP and ML in an elegant way
and the formulation is mathematically simple. In segmenting XRCT images of granular
material which contains two phases, the actual shape of histogram is also very similar to the
Gaussian as shown in Figure 2.3. This is the result of large number theorem and central limit
theorem: the number of pixels in an image is usually large enough such that the probability
density function of pixel intensity can be captured as Gaussian.

Figure 2.3: Intensity histogram of typical XRCT images resembles Mixture Gaussian.
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2.4.2 Hidden Markov Random Field (HMRF)

However, because all of the models presented above are intensity-based, they all have
an inherent limitation: spatial information is ignored because each pixel is independently
sampled from a distribution. Due to this limitation, purely statistical models can only be
used on well-defined images with low noise levels, and their performance is degraded by
artifacts such as the partial volume effect and bias field distortion. A model that depicts
the relationship between sequences via probabilities, the Markov random field (MRF) is
particularly well-suited to addressing this issue. Given that our objective is to infer the
pixel class via a field of observation, and that the true labels cannot be observed directly,
the hidden Markov random field (HMRF) is used to exploit spatial information in such a
way that the image is encoded using the contextual constraints of neighboring pixels, as
illustrated in Figure 2.4. Such constraints could be as simple as requiring that each pixel
have the same class labels as its neighbors, as the clustered output is piecewise constant
by nature. This is accomplished by prioritizing mutual influences between pixels in the
supplement mixture Gaussian model.

For a given image y = (y1, y2, . . . , yN) with yi representing the observed intensity level
of i − th pixel, our goal is to deduce a connection between underlying label configura-
tion and observed image intensity field. That is to infer the corresponding set of labels
x = (x1, x2, . . . , xN) where xi ∈ L,and for binary segmentation problem L = {0, 1}. HMRF
is inherently a probabilistic model. Since each cluster in the actual histogram distribution
resembles Gaussian distribution, we still use MGM to map the generative relationship be-
tween intensity level of a pixel given its cluster label. In fact, using MGM alone essentially
embraces the idea of MLE principle and this is the basis of the aforementioned statistical
approaches, but the decision boundary between grain and void is softer compared to global
threshold approaches like Otsu’s method. If we were to accommodate the spatial informa-
tion as prior, we can use the MAP criterion, assuming that pixels are more likely to belong
to the same cluster as their neighbors. Hence, the optimum configuration of labels can be
formulated and solved as a discrete optimization problem:

x∗ = argmax
x
{P (y|x,Θ)P (x)} = argmax

x
{P (x, y|Θ)} (2.25)

Where Θ = {θl|l ∈ L} is the parameter space, P (x) is the prior distribution of labels
which implicitly encoded through HMRF, P (y|x,Θ) is the conditional probability of an
intensity level if we knew its class.

2.4.3 Expectation-Maximization (EM) Algorithm

Additionally, we must determine the parameter space to complete the HMRF model. As
a result, the model parameters are determined using the EM algorithm. The EM algorithm
is widely used in statistics as an iterative method for parameter identification in statistical
models, particularly when the model is dependent on unobserved latent variables. It has



CHAPTER 2. XRCT IMAGE PROCESSING FOR SAND FABRIC
RECONSTRUCTION 20

Figure 2.4: Demonstration of HMRF, pixel labels are inferred through a field of observation,
which is the intensity level of XRCT images.

been demonstrated to be more suitable for this type of problem than gradient descent-
based approaches, as arbitrary and discrete partitions provide no gradient information in a
clustering problem. This algorithm iterates alternately between two steps. The Expectation
step (E-step) generates an optimization formula for the free energy, which is a function of
expected complete log likelihood, using parameters pre-calculated in the previous step or
initialized, and the Maximization step (M-step) computes parameters that maximize the
free energy in the E-step. The following summarizes the mechanism of EM:

(1) Start: Initialize parameter set Θ0.

(2) The E-step: Compute posterior probability P (xi = l|yi,Θt) for each observed pixel yi
with respect to parameters of l-th cluster, which is the first and second moment of inertial
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µl and Σl in the MGM model. Mathematically, E-step seeks a distribution q such that:

qt+1 = argmax
q
F (qt,Θt) = P (x|y,Θt) (2.26)

Where F (qt,Θt) is the free energy at t-th iteration, it is a function of the expected
complete log likelihood and the entropy of distribution q. F (qt,Θt) is the lower bound
of log likelihood logP (yi) for each pixel, and the bound is obtainable when q is the
posterior of label xi with respect to the intensity level yi. Sketch of proof:

logP (yi) = log
L∑
l=1

P (yi, xi = l|Θ) = log
L∑
l=1

q(xi|yi,Θ)P (yi, xi|Θ)

q(xi|yi,Θ)

= log
∑
q

P (yi, xi|Θ)

q(xi|yi,Θ)
≥

∑
q

log
P (yi, xi|Θ)

q(xi|yi,Θ)

=
L∑
l=1

q(xi|yi,Θ) logP (yi, xi|Θ)−
L∑
l=1

q(xi|yi,Θ) log q(xi|yi,Θ) = F (q,Θ)

(2.27)

(3) The M-step: Maximize free energy F (q(t+1),Θt):

Θt+1 = argmax
Θ

F (qt+1,Θt) = argmax
Θ

L∑
l=1

q(xi|yi,Θ) logP (yi, xi|Θ) (2.28)

(4) Repeat the E-step and the M-step until convergence.

One significant conclusion is that maximization of free energy in the E-step requires
posterior probability over latent variable.

2.4.4 Weighted Mixture Gaussian Model

We can also consider that pixels in the different clusters might be weighted differently,
e.g., certain clusters are more important than others. Let w > 0 a weight indicating the
relative importance of the observation intensity of a pixel yi. Intuitively, a larger value of w
implies a stronger influence towards yi. As for the Gaussian distribution, the multiplicity w
can be interpreted as observing yi w times, and the likelihood function becomes:

P̂ (x|Θ, w) = N (x;µ,
1

w
Σ) (2.29)

From which the MGM with L components become:

P̃ (x; Θ, w) =
L∑
l=1

πlN (x;µ,
1

wl

Σl) (2.30)
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Where Θ = {π1, . . . , πL, µ1, . . . , µL,Σ1, . . . ,ΣL} are the mixture parameters, π1, . . . , πL
are the prior probability satisfying πl ≥ 0 and

∑L
l=1 πl = 1; {µl,Σl} are the parameters of

the l-th class. It is straightforward to show that the weighted MGM yields following EM
algorithm:

(1) The E-step computes the posterior probability of pixel yi from cluster l with parameter
{µl,Σl} and weight wi.

qt+1
il =

πt
l P̂ (yi;µl,Σl, wi)

P̃ (yi; Θ, wi)
(2.31)

where P̂ and P̃ are defined before

(2) the M-step updates parameters space by maximizing free energy:

Θt+1 = argmax
Θ

N∑
i=1

L∑
l=1

qt+1
il log πlN (yi;µl,

Σl

wi

)

= argmax
Θ

N∑
i=1

L∑
l=1

qt+1
il (log πl − log |Σl|

1
2 − wi

2
(yi − µi)

TΣ−1
l (yi − µi))

(2.32)

By canceling out the derivatives with respect to the model parameters, we obtained the
following update formula for the mixture proportions, means and covariance matrices:

πt+1
l =

1

N

N∑
i=1

qt+1
il (2.33)

µt+1
l =

∑N
i=1wiq

t+1
il yi∑N

i=1wiq
t+1
il

(2.34)

Σt+1
l =

∑N
i=1wiq

t+1
il (yi − ut+1

i )(yi − ut+1
i )T∑N

i=1 q
t+1
il

(2.35)

2.4.5 Posterior Free Energy

The image classification problem involves assigning to each pixel, characterized by an
intensity value yi, a class label taking a value from the set L. The problem of classification
is the problem of recovering x∗ from an observed image y. Here x∗ is the true but unknown
labeling configuration and x̂ is an estimate of x∗, both of which are interpreted as particular
realizations of a configuration field. According to the MAP criterion:

x̂ = argmax
x∈X
{P (y|x)P (x)} (2.36)
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In MGM, the pixel intensity yi follows a Gaussian distribution with parameters {µl,Σl},
given the class label xi = l.

P (yi|xi) =
1√

2πd|Σl|
exp (−(yi − µi)

TΣ−1
l (yi − µi)

2
) (2.37)

P (y|x) =
N∏
i=1

P (yi|xi) =
N∏
i=1

1√
2πd

exp (−(yi − µi)
TΣ−1

l (yi − µi)

2
− log |Σl|

2
)

=
1

Z ′ exp (−U(y|x))

(2.38)

With the likelihood energy:

U(y|x) =
N∑
i=1

U(yi|xi) =
N∑
i=1

(yi − µi)
TΣ−1

l (yi − µi)

2
+

log |Σl|
2

(2.39)

And Z ′ = (2π)Nd/2 is the normalization constant and d is the dimension of random
variable. In our problem, d=1 as we only study the intensity levels of image pixels which
is a scalar. When the joint probability density of the random variables is strictly posi-
tive, every Markov random field can be presented by a Gibbs distribution as the conse-
quence of Hammersley-Clifford theorem. Therefore, the context-dependent spatial infor-
mation can be modeled as a prior distribution in the form P (x) = 1

Z
exp (−U(x)), where

Z =
∑

exp (−U(x)) andU(x) is the prior energy function which has the form:

U(x) =
∑
c∈C

Vc(x) (2.40)

Where Vc(x) is the clique potential and C is the set of all possible cliques. In the image
domain, we assume that one pixel has at most 4 neighbors for a 2D image and at most 6
neighbors for a 3D image. Then the clique energy is defined on pairs of neighboring pixels:

Vc(xi, xj) =
1

2
(1− Ixi,xj

) (2.41)

Where Ixi,xj
= δij, when xi = xj, Ixi,xj

= 1 and 0 otherwise. Specifically, x0 is obtained
with fundamental image binary segmentation methods such as Otsu’s method, K-means or
histogram analysis, which becomes the initial guess of HMRF algorithm. It is easy to show
that recovering the underlying labelling configuration x∗ is equivalent to minimize total free
energy.



CHAPTER 2. XRCT IMAGE PROCESSING FOR SAND FABRIC
RECONSTRUCTION 24

2.4.6 Numerical Demonstration

Various methods, including Otsu’s method, K-means method, and HMRF algorithm,
have been explored to binarize typical XRCT images on granular material. The first exper-
iment shows the binarization results on high-resolution, low histogram contract dataset as
shown in Figure 2.5. The resulting binarization images and corresponding watershed labels
using the aforementioned three methods are shown in Figure 2.6. There are visually no
differences between Otsu’s method and the K-means method, and both methods produce a
similar number of labeled grains after watershed algorithm. Both methods suffer the isolated
island effect: a single pixel inside the grain phase was mis-classified as the void pixel, hence
substantially changes the Euclidean distance mapping in watershed process. As a result,
one larger grain can be incorrectly divided into several smaller ones. This is shown in blue
square in (d) and (e) of Figure 2.6. Another issue with these two methods is that: they did
not utilize spatial information and could be overly sensitive to local intensity variance and
produced fragmented grains, one instance is shown in red square. Both issues were alleviated
when the HMRF algorithm is used because the spatial configuration was taken as a prior,
which made the binarization processes less sensitive to local intensity noises. Consequently,
the HMRF produced less fragmented grains. The convergence rate was studied in Figure 2.7,
the initial clustering configuration was generated from Otsu’s method and K-means method,
respectively, and they displayed similar posterior free energy at the beginning and converged
to the same optimum value after 10 iterations.

Figure 2.5: Left: High-resolution XRCT images on granular material. Right: Image his-
togram shows that two clusters have close peaks.

The second experiment shows the binarization results on low-resolution XRCT images as
shown in Figure 2.8, Otsu’s method and HMRF algorithm are used for comparison. In this
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Figure 2.6: Binarized image using (a) Otsu’s method, (b) K-means method, (c) HMRF-
EM method. Watershed labelled image from (a) Otsu’s method, 289 grains, (b) K-means
method, 284 grains, (c) HMRF-EM method, 229 grains.

case, there are visually little differences between those two methods and the number of labeled
grains generated are similar. The HMRF algorithm seems to have a very small amount of
morphological dilation effects on the binarized images, this is because the spatial constraints
tend to classify pixels into the same cluster as its neighbors. This effect became pronounced in
low-resolution scans because of the partial volume effects between grain-void boundaries, but
less salient for better resolution data. Overall, the HMRF algorithm produced fewer grains
because it aggregates several grains into unrealistically large grain, while Otsu’s method and
K-means method failed to capture the true configuration either. As shown in the red square
of Figure 2.8, Otsu’s method produced an isolated pixel inside a grain and the watershed
algorithm divided a large grain into several ones afterward. If the labeled images (d) and
(e) in Figure 2.8 were compared with the ground truth (b), both are wrong. In the context
of image binarization based on the grey level intensity and spatial constraints, the local
region marked in the red square should be considered as a whole because the corresponding
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Figure 2.7: Total posterior energy decreases with increasing iteration.

probability map will vote for the grain phase, which overweighs the influence of intensity
variance. Sometimes, the HMRF algorithm can make some remedies to fix this problem
by assigning void pixels a higher relevance w, and a comparison is made between binarized
images using different value of w is shown in Figure 2.9, but the improvement is limited.
Intuitively, smaller w implies void pixel is considered less important than grain pixel, this can
be interpreted as each void pixel is evaluated w times due to the formulation of weighted EM
algorithm. In the demonstration, w took values 0.5, 1.0, 2.5, and 5.0, as w increases, more
and more pixels are classified as void, this parallelizes the morphological erosion operation
but based on a statistic model. When w became too large, the HMRF algorithm could
not correctly label pixels as shown in the red squares of Figure 2.9(d). This is because
we assumed intensity distribution obeys MGM in the HMRF algorithm and labelled pixel
according to the MAP criterion. When w is large, the covariance Σ

w
of the void phase tends

to spread across a wider region and displays a fat tail, this results in the very bright pixel
having higher probability to be void rather than grain. As shown in the Figure 2.5, the
XRCT image contains few bright spots, and the intensity histogram has a third peak due
to those cluster of pixels with high intensity. Hence the fundamental assumption of MGM,
HMRF method may not be able to fully capture the probability distribution of intensity
histogram, especially when the low-resolution, noisy images are taken as input.



CHAPTER 2. XRCT IMAGE PROCESSING FOR SAND FABRIC
RECONSTRUCTION 27

Figure 2.8: Binarized image using (a) Otsu’s method, (b) Low-resolution XRCT image, (c)
HMRF-EM method. Watershed labelled image from (d) Otsu’s method, 217 grains, (e)
HMRF-EM method, 210 grains, void importance w = 2.5.

2.5 Morphology Reconstruction Using the LS

Algorithm

The final step in this workflow is to extract information about grain morphology and to
characterize grain surfaces using the LS function. Clearly, the output is highly correlated with
the XRCT image quality. As proposed by Osher and Sethian (1988), the concept of using
a LS to represent the shape of an object has garnered considerable attention in the field of
image segmentation because it is capable of accurately capturing the complex morphology
of natural granular material. The advantage of LS algorithms is that they can track the
motion of complex topology changes on a fixed Eulerian grid, which is useful for dealing
with topological changes as the curve evolves. The fundamental idea behind LS-based image
segmentation is to implicitly represent an object’s boundaries in a higher-dimensional space
via grid-based interpolation. Although not explicitly stated, the signed distance function
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Figure 2.9: Binarized images using HMRF with different void relevance (a) w = 0.5; (b)
w = 1.0; (c) w = 2.5; (d) w = 5.0.

is used by the majority of LS-based algorithms to generate nonzero (positive or negative)
LS values with physical significance: the signed distance between the point of interest and
the nearest boundary. Additionally, it stabilizes and facilitates LS evolution convergence.
Figure 2.10 illustrates how to represent the grain shape using a LS algorithm. However,
conventional LS models do not require compatibility between the signed distance function
and the LS function, and the LS function must be re-initialized periodically throughout the
evolution to ensure stable results, making the entire process computationally expensive. Li
et al. (2010) address this issue in their distance regularized LS algorithm. This algorithm
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incorporates an internal energy term into the LS variational formulation, penalizing the LS
function for deviating from a signed distance function; this is referred to as DRLSE. One
straightforward internal energy term for enforcing the signed distance property is as follows:

R(ϕ) = 1

2

∫
Ω

(∥∇ϕ− 1∥)2dΩ (2.42)

Which characterizes the deviation of ϕ from the signed distance function (∥∇ϕ∥ = 1).
The energy functional R(ϕ) is therefore regularized the entire domain to maintain signed
distance property. The LS method aims to implicitly encode the closed surface of object
as the zero LS, and the value of LS function ϕ is assumed to take negative values inside
the region delimited by the enclosed surface, and positive values outside. Different sign
convention is found in other literature such as Lai and Chen (2019).

Figure 2.10: Grain shape is implicitly represented by LS function (modified from Kawamoto
(2018)).

2.5.1 LS Curve Evolution

The objective of image segmentation is about finding the closed surface for the object in
interest, which is nothing more than locating the zero LS:

Γ = {(x, y) ∈ Ω|ϕ(x, y) = 0} (2.43)
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Where ϕ is the LS function; (x, y) is the spatial coordinate (pixel position on the image);
Ω is the domain of interest and Γ is the closed surface (grain-void boundary). When applying
the LS method to identify the particle boundary, the LS function ϕ is evolved by minimizing
an appropriately formulated energy functional with an internal distance regularization term
and an external energy (stimulus of input images) term that drives the motion of the zero
LS towards to the desired locations. The general DRLSE (Distance Regularized Level Set
Evolution) formulation can be used in various applications with different definitions of exter-
nal energy. For image segmentation applications, a variety of image information, including
region-based or edge-based image formation, can be used to define the external energy. In
terms of the internal energy term, an edge indicator function g is defined, which usually
takes smaller values at object boundaries.

g =
1

(1 + ∥∇Gρ ∗ I∥2)
(2.44)

Where Gρ is a Gaussian kernel with a standard deviation σ. In this work, the following
functional formulation used by Lai and Chen (2019) is adopted, which is slightly simplified
from the original DRLSE in the distance regularization term R(ϕ) (Li et al., 2010):

F(ϕ) = µR(ϕ) + λL(ϕ) + νA(ϕ) (2.45)

R(ϕ) = 1

2

∫
Ω

(∥∇ϕ∥ − 1)2dΩ (2.46)

L(ϕ) =
∫
Ω

g(I)δ(ϕ)∥∇ϕ∥dΩ (2.47)

A(ϕ) =
∫
Ω

g(I)H(−ϕ)dΩ (2.48)

Where λ > 0 and µ, ν ∈ R are the coefficients of the energy functionals L(ϕ) and A(ϕ),
δ(ϕ) and H(ϕ) are Dirac delta function and the Heaviside function and are defined below,
respectively.

δϵ(x) =

{
1
2ϵ
(1 + cos πx

ϵ
) |x| ≤ ϵ

0 |x| > ϵ
(2.49)

Hϵ(x) =


1
2
(1 + x

ϵ
+ 1

π
sin πx

ϵ
|x| ≤ ϵ

1 x > ϵ

0 x < −ϵ
(2.50)

The LS regularization term R(ϕ) is referred to as a distance regularization term for its
role of maintaining the signed distance property of LS function in the entire domain. With
the Dirac delta function δ, the energy L(ϕ) computes the line integral of the edge indicator g
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along the zero-level contour of ϕ. The energy L(ϕ) is minimized when the zero-level contour
of ϕ is located at the object boundaries, this idea is first introduced by Caselles et al. (1997)
in their proposed geodesic active contour. The energy functional A(ϕ) computes a weighted
area of the region has negative LS value (grain phase). If the initial contour is placed outside
the object, the coefficient ν in weighted area term should be positive, so that the zero-level
contour can shrink in the LS evolution. If the initial contour is placed inside the object, the
coefficient ν should take negative value to expand the contour.

2.5.2 Removal of Anomalies from Reconstruction

A standard method to minimize an energy functional F(ϕ) is to find the steady state
solution of the gradient flow equation, which leads to the associated Euler-Lagrange equation
or Gateaux derivative of ϕ (Aubert et al., 2006). This is an evolution of a time-dependent
function ϕ(x, t) in the steepest descent direction of the Gateaux derivative:

∂ϕ

∂t
= −∂F

∂ϕ
= −(µ∂R

∂ϕ
+ λ

∂L
∂ϕ

+ ν
∂A
∂ϕ

) (2.51)

∂R
∂ϕ

= ∇2ϕ−∇ · ∇ϕ
∥∇ϕ∥

(2.52)

∂L
∂ϕ

= δϕ(∇g(I) · ∇ϕ
∥∇ϕ∥

+ g(I)∇ · ∇ϕ
∥∇ϕ∥

) (2.53)

∂A
∂ϕ

= g(I)δ(ϕ) (2.54)

The DRLSE can be implemented with conventional finite different scheme. Due to the
addition of the distance regularizing term, all spatial derivatives can be discretized using the
more accurate and efficient central difference scheme (Li et al., 2010). The zero LS contour
eventually approaches the grain boundary by minimizing the energy functional.

2.5.3 Numerical Demonstration

The DRLSE algorithm allows the use of more general functions as the initial LS functions.
This is because the distance regularized internal energy functional R(ϕ) could be considered
as a diffusion term which adaptively increases or decreases ∇ϕ and forces it to be close to
one and therefore helps to maintain the signed distance property. Such diffusion is called a
forward-and-backward (FAB) diffusion. This property comes in handy as it allows the initial
guess of zero LS to be any reasonable function. For example, in Figure 2.11(b) and (c), the LS
functions were initialized as binary step function (indicated as yellow squares), which takes
constant negative values inside the yellow squares and positive values outside. In Figure
2.11(b), both grains were covered by one large initial LS function, while they are separately
covered by different LS functions in (c). In both (b) and (c), the red lines showed how DRLSE
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algorithm evolved as the result of minimizing the functional energy where the internal energy
term restricts the LS function deviating from signed distance function, and external energy
term provides specific image knowledge about where the grain boundaries are. Every step
of this process substantially improved the results since functional term A(ϕ), which shrinks
or expands the LS function to minimize the enclosed weighted area, was a strong external
force to drive the motion of contour. For image with weak object boundaries, this effect may
cause boundary leak. Therefore, this term was removed in refinement steps, as indicated by
blue lines.

Figure 2.11: Evolution of LS algorithm. (a) Input image contains two grains, (b) Zero LS was
initialized to cover both grains, (c) Zero LS was initialized for each grain. Yellow squares
indicate initial guess of zero LS function, red contour lines indicate evolution of DRLSE
algorithm and blue lines indicate the refinement steps.

Being able to accommodate any binary step function is computationally attractive, be-
cause it can take image segmentation results from a preliminary image binarization step.
As the initial guess is likely to be already very close to the optimum result, it would take
very few iterations to converge. Such initialization is desirable in some practical applications
for its computational efficiency and simplicity. However, it does not perform well in our
application because one XRCT image on granular material contains many grains. They sit
close to each other, and the grain-grain or grain-void interfaces suffered severe partial volume
effect. The DRLSE algorithm displays excellent capacity to consider topological changes,
but it is often confused to correctly find boundaries in areas with multiple grains and it
failed to disconnect two grains right next to each other. An example in shown in Figure
2.12. The DRLSE works well on images containing a single object or several well-separated
objects. Therefore, before applying the DRLSE algorithm, the images are first binarized,
passed through watershed algorithm to identify each individual grain, and separated grains
into bounding boxes.
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Figure 2.12: The DRLSE algorithm could not accurately converge to grain boundaries. (a)
Binarized images used as binary step function to initialize LS function, (b) The evolution of
zero LS contour lines in DRLSE algorithm.

If the binarization and watershed procedure fail to separate closely contacted grains,
the DRLSE algorithm is not likely to separate them either. As a result, the attached clay
adhesion and very fine grains are sometimes reconstructed as a part of the larger grains, hence
they look like small bumps attached to the reconstructed avatars. This leads to abnormal
grain shapes and inaccurate assembly fabric in the numerical modeling at the next stage. To
remove those adhesion from the final reconstruction, the new functional term was introduced
to run few more iterations after the DRLSE algorithm to penalize large surface curvature.

T (ϕ) =
∫
Ω

k∥∇ϕ∥dΩ (2.55)

k = ∇ · ∇ϕ
∥∇ϕ∥

(2.56)

This is inspired by the well-known mean curvature flow (Huisken, 1984) which originally
proposed to describe behaviors of grain boundaries in annealing pure metal. Several recon-
structed grains before and after introducing the curvature penalty term are illustrated in
Figure 2.13, which substantially removes the small bumps but also produces a smoothed out
grain surfaces. Therefore, a trade-off should be made between removing abnormal shapes
and preserving surface details, and this is often made on a per-scan basis.
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Figure 2.13: Comparison on the effect of introducing curvature penalty term.

2.6 Conclusion

We present a workflow for image preprocessing that includes image denoising, single image
super resolution, and image segmentation. As a first step, the presented and analyzed NLM
filter improved the quality of XRCT images of granular material by increasing the signal-
to-noise ratio without impairing visible structures in the images. This highlights the NLM
filter’s utility in our application. Additionally, by using the root mean square error (RMSE)
as an objective criterion to parameterize several denoised filters, the results indicated that
the NLM filter outperformed more traditional local filters such as the Gaussian and Median
filters in the XRCT denoising context. The primary disadvantage of the NLM filter is its
computational cost, which is why we recommend using a GPU to process high-resolution
images or large batches of images.

The following step is to propose an image super-resolution technique that is based on
sparse signal representation and is capable of recovering high-resolution images from low-
resolution input images. Mapping is accomplished by utilizing an overly-complete dictionary.
We found that dictionaries of size 512 are sufficient to capture morphological components for
XRCT images of granular material with repeated patterns in our numerical tests. The sparse
representation also conveys robustness to noise, as the convex optimization formulation for
learning dictionaries can be thought of as a MAP problem with the Laplacian prior as the
sparsity requirement. Super-resolution images are advantageous for the subsequent stage
of binarization because even advanced image binarization techniques did not work well on
blurred low-resolution XRCT images. We require a super-resolution technique because our
dataset was generated from a series of X-ray scans of a triaxial compression test, with only
the beginning and ending scans being high-resolution. All other scans were taken while the
experiment was temporarily paused, and thus were low-resolution to minimize experimental
time.

Although the HMRF algorithm is not novel, this is the first attempt at application of
a statistical model to binarize particle morphologies from XRCT images that incorporates
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spatial information. Though this is the most critical step in identifying grains, there has
been little advancement in the workflow’s use of image segmentation in recent years. The
HMRF algorithm strikes a balance between straightforward thresholding and more expensive
neural networks. Even though the HMRF algorithm performed significantly better than
other statistical models for high-resolution images in our application, it struggled with low-
quality images. This is because the blurred images exhibit partial volume effect, particularly
in the void pixels between two tightly packed grains. The HMRF algorithm is extremely
robust, ensuring that the final segmentation remains stable even when the initial estimates
are slightly different, and the intensity variability is high. This property makes the HMRF
algorithm less sensitive to local intensity inhomogeneity and may result in incorrect results
for poorly defined images. This issue can be resolved by weighting the void and grain phases
differently, but this will only improve the results marginally because the assumption of MGM
in pixel intensity distributions is inherently flawed. Indeed, because the EM algorithm is a
local minimization method, it may become trapped in a local minimum and thus fail to find
the appropriate thresholds when the intensity distribution is not Gaussian.

Finally, the grain boundaries from the segmented images are represented using the LS
method. To simplify the numerical implementation, Distance Regularized LS Evolution
(DRLSE) is used instead of the conventional signed distance function, which eliminates
the need for regular LS function re-initialization. The DRLSE formulation is capable of
maintaining the signed distance function’s regularity intrinsically, which ensures accurate
computation and stable LS evolution. By including a functional term to control how far
the LS function deviates from the signed distance function, the algorithm becomes more
robust and adaptive: the backward-and-forward diffusion property ensures that the zero
LS remains at the boundaries. This is critical for grain fabric preservation and facilitates
parameter tuning. The DRLSE algorithm is entirely based on edges and thus takes a very
local approach to image segmentation. As such, prior to running the DRLSE algorithm, a
pre-processing workflow is required to denoise, binarize, and label images. As illustrated in
Figure 2.12, it was unable to segment multiple objects concurrently. This is also evidence
that the DRLSE is flexible and efficient enough to generate signed distance function with
a large number of reasonable initializations. Another penalty term is introduced into the
evolution of the LS function, similar to the mean curvature flow, to address the issue of clay
adhesion and much finer grains on the surface of the reconstructed avatars. However, as
it tends to smooth out the whole grain surface, some morphological details are lost in the
process.
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Chapter 3

Parallel Implementation of LS-DEM
with Hybrid MPI+OpenMP

3.1 Introduction

Grain morphology plays essential roles in determining the macroscopic properties of gran-
ular assemblies. Recent developments in the characterization of granular systems from X-ray
computed tomographic (XRCT) images provide an excellent tool to digitalize and preserve
soil fabric and grain morphologies, which enables the study of inter-grain interaction through
numerical reconstruction of three-dimensional complex-shaped avatars from XRCT images.
The grain-level morphological information can be integrated into a numerical method such
as DEM to understand the link between granular material’s macroscopic properties and its
engineering behavior. Therefore, having a method that can model arbitrary grain shape is
of paramount importance. However, large scale modeling requires significant computational
cost and a DEM simulation on a single CPU machine might take several weeks to months to
complete, making it infeasible for most applications. To alleviate the computational cost of
DEM, grain shapes are often simplified and non-physical parameters such as rolling resistance
are introduced in contact models. Existing DEM approaches account for grain morphology
mostly by clustering or clumping spheres (Garcia et al., 2009; Tamadondar et al., 2019; Wu
et al., 2021), using a simplex or polygon as a base geometry (Zhao et al., 2006; Zhao & Zhao,
2021) or generating realistic grains based on the concept of Fourier descriptors or spherical
harmonic function (Garboczi, 2002; Taylor et al., 2006; Mollon & Zhao, 2012; Zhou et al.,
2015). The first category is less appealing due to the lack of continuity in the curvatures and
tangents. Other two are associated with high computational expenses with narrow-phase
contact detection and force calculations. The idea of using LS to encode object shape, as
proposed by Osher and Sethian (1988) has drawn substantial attention in the realm of image
segmentation, as it is capable to fully capture the complex morphology of natural granular
material with high-fidelity. The strength of LS-based algorithm is that they can track the
motion of complex topology change on a fixed Eulerian grid. which is handy when dealing
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with topological change as the curve evolves. The fundamental idea of LS based image seg-
mentation is to implicitly represent boundaries of objects through grid-based interpolation
from a space which is one dimension higher.

The concept of LS based morphological representation and DEM simulation are perfectly
compatible with each other because of inter-grain interactions are straightforward in the in
the LS framework, as shown by Vlahinić et al. (2013). The signed distance function is
frequently used as the grid value in LS algorithms, with a positive grid value indicating
a place outside the boundary and a negative grid value indicating a position inside the
boundary. The extent to which a node penetrates a slave grain is interpolated from the
associated LS function table in this sense. The direction of normal contact can be thought
of as the gradient of the LS function at that node. In fact, grain morphology studies for large
scale DEM simulation have received little attention even though the industrial importance
is well known, the major reason is that large scale industrial discrete element simulations
can often only afford to abstract grain shapes. In the modeling of arbitrarily complex grain
shape, the problem size has impeded the general application of three-dimensional DEM for
practical usage. To overcome these technical obstacles, it is desirable to optimize the code
to perform the large-scale computational work using modern supercomputers. LS Discrete
Element Method (LS-DEM) was introduced by Kawamoto (2018) in his PhD dissertation.
Through high-fidelity LS reconstruction, Kawamoto (2018) investigated the kinematic and
mechanical behavior of a system of discrete sand grains. In this section, we parallelized the
three-dimensional LS-DEM algorithm for simulating complex-shaped granular grains.

Specifically, we parallelized a LS-DEM code with MPI using a variant of the binning al-
gorithm and the spatial domain decomposition strategy to model arbitrarily complex-shaped
grains with history-dependent contact model. Although our code is tailored to parallel the
existing LS-DEM code, most parallel algorithms and implementation details can be migrated
to applications in other disciplines. Many performance-critical implementation details are
managed optimally to achieve high performance and scalability, such as locating a grain
from their host bins in O(1) complexity and vice versa, swapping ghost bins with an ef-
ficient message-passing algorithm, adapting a dynamic domain re-decomposition scheme,
optimizing domain granularity for a problem given computing resources, collectively pack-
ing and transmitting migrated grains across adjacent MPI processors; implementing parallel
algorithm for non-rigid type boundary, and reducing redundant contact resolution between
grain pairs. The rest of this chapter is organized as follows, the concept of discrete ele-
ment method (DEM) and the binning algorithm is first introduced; the contact model and
numerical integration scheme used in LS-DEM (Kawamoto et al., 2016; Kawamoto, 2018)
are described for completeness; then the MPI considerations and the recent implementation
details are discussed. Finally, performance analyses, including speedup, efficiency, scalabil-
ity, and granularity for different problem size (number of grains), of the modified code are
presented.
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3.2 Parallel Implementation of DEM

3.2.1 Contact Detection Complexity and Binning Algorithm

In DEM, each discrete element is considered as a separate body that interacts with
neighboring elements. Therefore, conventional discrete element problem involves an enor-
mous amount of contact detection, and an efficient solution of large-scale discrete element
problems relies upon a fast and efficient contact detection algorithm should be employed for
significant scale problem. In terms of the types of neighbor search algorithm, there are three
typical neighbor search algorithms with various time complexities: O(n2), coming from a
n-by-n complete mapping of an assembly of grains; O(n log n), multilevel grids rooted from
a tree-based algorithm (Jagadish et al., 2005; Muja & Lowe, 2009); O(n), the binning algo-
rithm (Munjiza & Andrews, 1998; Williams et al., 2004) or the link cell algorithm (Grest
et al., 1989). Yan and Regueiro (2018a) believed that the algorithms with three different
complexities O(n2), O(n log n), and O(n) only affect the performance of neighbor search and
have no influences on the contact resolution if non-trivial shaped grains are studied, and
the overall performance is highly limited for complex-shaped grains. Among these three
neighbor search algorithms, many recent parallelism studies in DEM were based on the last
kind; those algorithms share the same spirit but differ in terms of shape presentation, con-
tact model, memory management, and performance optimization. The most straightforward
and commonly used approach is the binning algorithm or the link-cell algorithm, which are
essentially the same but slightly different in that geo-mechanics application only considers
contact force. Three milestones in developing this binning algorithm are:

• Grest et al. (1989) introduced the layered link cell (LLC) approach for vectorizing
molecular dynamics. This algorithm uses a Verlet table to maintain a neighbor list of
all grains within a given cut-off distance of one another, periodically updates the table
to take advantage of previous grain positions, employs a link cell algorithm to ensure
that the CPU time per step is strictly proportional to the number of grains, and takes
advantage of Newton’s third law to resolve contact with only half of the adjoining cells.

• Munjiza and Andrews (1998) described a no binary search (NBS) algorithm for en-
coding element location using a linked list that works equally well for dense and loose
packing, with CPU time remaining constant and RAM requirements growing insignif-
icantly as packing density decreases. The NBS contact detection technique is based
on the assumption that each discrete element is approximated by an identical circular
discs and that the computational domain is bounded by a box.

• Williams et al. (2004) proposed the CGRID algorithm, a generalized binning tech-
nique that extends the NBS approach to handle assemblies of any shape or size. Their
contact detection approach partitions a D-dimensional space recursively into bins con-
taining items that are currently defined in D-1 dimensional space. To accommodate
grains of varying sizes, this algorithm chooses the bin size irrespective of the grain
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sizes and allows for the extension of large grains across multiple bins. While this ap-
proach is efficient and resilient when implemented sequentially, it may not be suited
for parallelization.

3.2.2 Domain Decomposition Strategy

The idea of the binning algorithms is to place each grain into a bin using a hash on the
grain’s coordinates. Once the grains are sorted into bins, one can reason about the spatial
closeness based solely on the bins’ fixed relationships. The bins are created through a do-
main decomposition strategy: the computational domain is first divided into sub-domains.
Each MPI processor carries out calculations on its respective portions of the data domain.
Then every sub-domain is further partitioned into many bins to hold the objects of interest,
grains in the case considered herein. The size of bin is larger than the largest diameter of
an assembly of grains such that any pair of grains that are separated by more than one bins
are not considered to be in contact. An illustration of domain decomposition strategy can
be found in Figure 3.1 which also denotes the notions of bin, block, and border layer. The
main advantage of using the domain decomposition strategy is high scalability even for a
large number of processors, and its usability for both shared and distributed architecture
machines Gopalakrishnan and Tafti (2013). Notably, the domain decomposition strategy is
not limited to discrete element modeling, Zohdi and Wriggers (1999) developed a similar
technique for reducing the computational complexity of boundary value problems associated
with structural analysis of bodies with arbitrary external geometry and heterogeneous micro-
structure. They partition and decouple the heterogeneous body into more computationally
tractable, non-overlapping subdomains and the subdomain boundary conditions is approx-
imated. There has been considerable interest in developing parallel DEM codes in recent
years (Henty, 2000; Baugh Jr & Konduri, 2001; Washington & Meegoda, 2003; Maknickas
et al., 2006; Walther & Sbalzarini, 2009; Chorley & Walker, 2010; Kačianauskas et al., 2010;
Gopalakrishnan & Tafti, 2013; Amritkar et al., 2014), a comprehensive review is given in
Yan and Regueiro (2018b) and Yan and Regueiro (2019).

In general, most parallel implementations of DEM only deal with spheres rather than
complex-shaped grains except Yan and Regueiro (2018b). Although it is acceptable to sacri-
fice grain size and shape in the trade-off larger problem size in the prototype-scale simulations
for engineering studies, overly simplified grains are insufficient to develop generalizations
about fundamental micromechanics without capturing grain-level details as pointed out by
Peters et al. (2009). Usually, modeling arbitrarily shaped particles demands several orders of
magnitude more computational effort than a spherical DEM. For example, the CPU demand
for simulating 122 million spheres is equivalent to simulating 488k poly-ellipsoids when using
the same inter-grain contact model Yan and Regueiro (2018b). This is also a major compu-
tational bottleneck in LS-DEM. The geometric basis of a grain is embedded in a LS table
and discretized into hundreds of nodes as seeded on the surface. Each node on the surface of
the particle is checked for contact in the force resolution step, which results in several order
higher computational cost than for spherical grains. Another complexity arises when con-
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Figure 3.1: Illustration of domain decomposition strategy, it contains eight sub-domains,
blue dots are boundary bins that require communication between processors.

sidering history-dependent tangential behavior for granular materials. Modeling arbitrarily
complex grains and a more sophisticated inter-grain contact model is not difficult in a se-
quential code. However, it becomes a lot more cumbersome when the code is parallelized, as
tracking the loading-unloading-reloading path and contact histories is not straightforward.
Consequently, the domain decomposition parallel algorithm has to be modified for different
inter-grain contact models, grain shape complexity, boundary conditions, and computational
granularity.

3.3 Introduction to DEM and parallel LS-DEM

implementation

A completed LS-DEM code is made up of several critical components, including grain
geometry representation, inter-grain contact models, contact detection and force resolution,
time integration scheme, damping mechanism, boundary conditions, and modeling of various
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loading conditions (Yan & Regueiro, 2018b). For the sake of completeness, these components
of the code are briefly presented herein, and additional details are found in Kawamoto (2018),
Yan and Regueiro (2018b) and Bandeira and Zohdi (2019).

3.3.1 Contact Detection and Resolution Algorithm

The LS reconstructed avatars are represented with hundreds of discretized nodes, and
the volume, mass and moments of inertia are computed by counting the number of voxels
inside avatars. In terms of computational cost, the signed distance function can be calculated
efficiently using a marching method (Sethian, 1996). This is a one-time cost in constructing
a rigid body model. For efficiency, the object is stored with the center of mass at the origin
and the axes aligned with the principal axes of inertia resulting in a diagonal inertia tensor
to simplify many calculations. The interferences between two implicit surfaces are found by
checking the sign of nodes in the signed-distance function of the other. This is not sufficient
to detect all collisions, as edge-face collisions are missed when both edge vertices are outside
the implicit surface. Since the errors are proportional to the edge length, but they can be
ignored in a well resolved mesh with sufficient node density.

The particle overlap model is the most commonly used model which determines the
contact force from the separation distance between particles and material properties, the
assumption underlain this model is that particles are assumed to be spheres (Zohdi, 2017).
Typically, the contact detection and resolution algorithm phases are the primary computa-
tional bottlenecks, especially when simulating complex-shaped grains with hundreds of nodes
per grain. If nonlinear history-dependent mechanical models are used, this stage becomes
even more computationally demanding. The contact identification and resolution algorithm
phases in most DEM codes programs are divided into two sub-phases: nearest neighbor
search (or spatial resolution) and contact resolution. A neighbor search phase identifies or
estimates objects that are close to the target object using an easy-to-model approximate
geometry, such as a bounding box or a bounding sphere. The LS-DEM code adjusts to the
following:

∥ci − cj∥ > ri + rj (3.1)

Where ci is the position of the mass center of grain i and ri is the equivalent radius of grain
i. Following that, the contact resolution phase employs a geometric representation of each
body. At the resolution phase, the LS reconstructed avatars comprise hundreds of discretized
nodes, each of which must be checked to the surface of a neighboring avatar. This stage is
performed sequentially and has a minimal vectorization potential due to the explicit nature
of DEM modeling. This is the cost of a three-dimensional DEM code capable of simulating
grains of any shape. In this aspect, resolving the contact between two arbitrarily shaped
grains is significantly more computationally expensive than resolving the contact between
two grains having basic geometrical representations, such as spheres. Due to the necessity
for numerical precision and resilience, it frequently increases the floating-point operations
by many orders of magnitude. We used the binning algorithm to limit the scope of the
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neighbor search; the binning algorithm’s fundamental idea is to improve spatial locality,
which means that a discrete grain does not need to check with all other grains but only
those in its immediate vicinity. However, the total computing benefit of neighbor search may
be negligible for complex-shaped grains, as neighbor search accounts for a small fraction of
floating-point operations. As a result, the most computationally intensive portion of the
LS-DEM is the force resolution phase, rather than the neighbor detection phase which is the
major bottleneck for conventional DEM simulating disks or spheres. We later show that the
idea of binning algorithm is well compatible with domain decomposition since many parallel
implementations consider bin as a base unit.

3.3.2 Search Complexity of the Binning Algorithm

The binning method assumes that grain interactions occur only when two grains come
into contact. The node-to-surface contact is solved explicitly and is not vectorized. The
computational cost of an n-by-n naive search algorithm is well-known to be O(n2) for a
generalized N-body problem (Gray & Moore, 2000). Supposed the non-contact pairs of ob-
jects are excluded, the computational complexity is reduced from O(n2) to O(n) for the
binning algorithm or to O(n log n) for a tree algorithm. In this particular problem, the idea
of binning is to place each grain into a bin of prescribed size hashed on the grain’s coordi-
nates. The cutoff distance for DEM is chosen to be at least the largest equivalent diameter
of grains so that any two grains which are at least one bin distance away will not interact.
Once the grains are sorted into bins, one can evaluate the spatial proximity based solely on
the fixed relationships of the bins. As shown in Figure 3.2, the grain filled in yellow and
marked in orange line represent the one of interest, and blue grains represent those that
require check for detection. As can be seen, the computational effort for neighbor detection
is substantially decreased through binning especially for spherical particles (Zohdi, 2004a;
Zohdi, 2010; Zohdi, 2012). Due to the 3D shape of grains, i.e., grains cannot be clustered
arbitrarily dense, we can assume the average number of grains in each bin is b, then the com-
putational complexity is reduced to O(n) with a small constant b. However, it can be shown
that the O(n) neighbor search algorithm might be inferior to O(n2) for computing a very
small number of grains for two reasons. 1) Both shared-memory and distributed-memory
encounter synchronization and communication overheads, which are inevitable and always
retards the performance, primarily when the performance is governed by communication
bandwidth and latency. 2) The overall performance improvement resulting from a parallel
algorithm might be highly limited for complex-shaped grains, because the algorithm only
affects the performance of the neighbor estimate rather than the contact resolution. The
contact resolution step takes up a large fraction of floating-point operations in the compu-
tation. For these reasons, it is acceptable and advisable to use the serial approach when the
number of grains is relatively small. Of course, serial implementation becomes extremely
inefficient as the number of grains increases.
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Figure 3.2: Illustration of neighbor search in binning algorithm and Computational efforts
reduced by half due to symmetry

3.3.3 Inter-Grain Normal Contact Forces

The LS based shape representation and contact algorithms unique to LS-DEM were
developed by Kawamoto et al. (2016) and are followed herein. Contact in LS-DEM is handled
through iterating node-to-surface contact algorithm, whereby nodes are seeded onto the
surface of each grain and grain shape is implicitly embedded in its LS grid value table.

The discretized nodes that characterize the grains participate in the actual interaction
computations. This representation is similar to a triangulated surface mesh except that LS-
DEM does not store connectivity information between nodes and therefore does not consider
edge-surface collision. The density of nodes on a given grain is a matter of choice and is
entirely up to the designer. The number of nodes seeded onto a grain has no effect on the
underlying geometry but does have an effect on the computational complexity associated
with force resolution. With grain refining, extremely high-fidelity reconstruction frequently
requires unaffordable computation time. Lim et al. (2014) demonstrate that seeding with a
maximum node-to-node spacing less than d/10, where d is the grain diameter, is sufficient
to capture grain morphology and a further increase in nodal densities has a minor impact
on behavior.

Contact is determined by comparing each node of a master grain to a slave grain for
penetration, and the computational cost of contact resolution is proportional to the number
of nodes seeded onto the master grain. By embedding the grain in a three-dimensional
Cartesian grid with a value indicating the signed distance to the nearest grain surface, the
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grain surface is implicitly defined by a set of nodes with zero LS value. This framework is
quite convenient as it is amenable to calculating the forces between grains with the commonly
used penalty-based method. As shown in Figure 3.3, the two quantities of most interests
are the LS value ϕ(p) and its gradient ∇ϕ(p) for any point p in the Cartesian grid as they
are exactly the amount of penetration and contact normal direction. They can be computed
through interpolation from grid values near p, any order of interpolation can be used, and
linear interpolation was used here for simplicity and speed.

where dj,ik denotes the scalar penetration of the k-th node on grain i to the geometry of
grain j; ϕj is the LS function of grain j; pj

k is the position of k-th node on grain i considered
in grain j’s coordinate; n̂j,i

k is the unit normal direction of penetration dj,ik . Note that one
property of LS accommodated with signed distance function is that the gradient of a point
of LS is unit at that point. However, due to the LS function’s discrete nature, the magnitude
of ∇ϕj(pj

k) is very close but not equal to unity and therefore it is normalized. If at least one
node pj

k of master grain i is penetrating a slave grain j, then the two grains are considered
to be in contact and inter-grain forces are computed. This process is detailed in Algorithm
1:

The proposed code adopts the linear elastic contact model. Thus, the normal contact
force contributed from the node pi

k on grain i is:

Fi
n,k =

{
−kndj,ik n̂j,i

k dj,ik < 0

0 else
(3.2)

Where Kn is the normal contact stiffness. By action and reaction, the contribution of
contact normal force Fj

n,k from the node pi
k on grain j is:

Fj
n,k = −F

i
n,k (3.3)

The moment Mi
n,k contributed by the normal contact force Fi

n,k at the node pi
k on grain

i is:

Mi
n,k = (pi

k − ci)× Fi
n,k (3.4)

Where ci is the centroid of grain i. Similarly, the moment Mj
n,k contributed by the

normal contact force Fj
n,k at the node pi

k on grain j is:

Mj
n,k = (pi

k − cj)× Fj
n,k (3.5)

It is critical to keep in mind that the contact forces between two grains vary slightly
depending on which grain is selected as the master grain. This is because the k-th node on
master grain i might penetrate the slave grain j, while there does not exit a corresponding
node on slave grain j penetrating master grain i due to the discrete nature of LS geometry
representation. This does not influence the serial implementation as the force resolution
phase is always iterated from a small index to a large index. Nevertheless, the index order
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Figure 3.3: (a) Illustration of two contact grains, where dj,ik denotes the scalar penetration
of the k-th node on grain i to the geometry of grain j, n̂j,i

k is the unit normal of penetration
dj,ik . (b) Contact forces between two grains are different.



CHAPTER 3. PARALLEL IMPLEMENTATION OF LS-DEM WITH HYBRID
MPI+OPENMP 46

Algorithm 1 findPenetrationDirection
INPUT: grain, point P
OUTPUT: flag, penetration depth d, contact normal in principal frame ñ
/* extract LS values nearby P */
/* Px, Py, Pz are coordinates of P */
x0 = floor(Px), y0 = floor(Py), z0 = floor(Pz)
x1 = ceil(Px), y1 = ceil(Py), z1 = ceil(Pz)
/* function getGridValue looks up the LS table to extract value */
P000 = getGridValue(x0, y0, z0)
P001 = getGridValue(x0, y0, z1)
P010 = getGridValue(x0, y1, z0)
P011 = getGridValue(x0, y1, z1)
P101 = getGridValue(x1, y0, z1)
P100 = getGridValue(x1, y0, z0)
P110 = getGridValue(x1, y1, z0)
P111 = getGridValue(x1, y1, z1)
/* find penetration d via linear interpolation */
Px = P100 − P000

Py = P010 − P000

Pz = P001 − P000

Pxy = −Px − P010 + P110

Pxz = −Px − P001 + P101

Pyz = −Py − P001 + P011

Pxyz = Pxy − P001 − P101 − P011 + P111

∆x = Px − x0
∆y = Py − y0
∆z = Pz − z0
d = P000+Px·∆x+Py·∆y+Pz ·∆z+Pxy·∆x·∆y+Pxz ·∆x·∆z+Pyz ·∆y·∆z+Pxyz ·∆x·∆y·∆z
if d < 0 then

flag = True

/* take derivative respect to d obtain contact normal ñ */
ñ = Px + Pxy ·∆y + Pxz ·∆z + Pyz ·∆y ·∆z + Pxyz ·∆y ·∆z
return d, ñ

will change after adding or deleting migrated grains from bins, thus we always consider
the grain with the smaller index as the master grain in force resolution in the parallel
implementation.

To maximize efficiency, the grain is stored with the center of mass at the origin and
the axes aligned with the inertia primary axes, resulting in a diagonal inertia tensor that
simplifies many calculations. As a result of the rigid body assumption, grain’s LS function is
never altered. When contact is computed, the nodes pi

k of grain i are temporarily relocated
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into the reference configuration of grain j’s LS function. The contact forces and moments
are then determined (in the reference configuration of grain j) and translated back to the
global frame.

3.3.4 Inter-Grain Tangential Contact Forces

The normal contact force is directly dependent on the extent to which a seeded node on
the master grain overlaps with the geometry of the slave grain. Due to the fact that penetra-
tion can be calculated directly in the LS formulation, the normal contact force is not history
dependent. In comparison, the contact tangential force can be either history-dependent or
independent of history. A straightforward illustration of a history-independent tangential
contact model is one in which the tangential force is always proportional to its normal equiv-
alents. The original LS-DEM code (Kawamoto et al., 2016) considers a history-dependent
Coulomb friction model, which requires that contact histories accompany migrating grains.
This is because the history-dependent approach calculates tangential displacement incre-
ments rather than accumulated tangential displacement until two objects are separated. It
is vital to determine if a code uses a history-dependent contact model or not, as transferring
shear history data is a necessary but tedious procedure due to the large and varied number
of nodes seeded on each grain. In the case of a history-dependent contact model, grains
must be considered individually for cross-block migration. Typically, a history-dependent
tangential model is required to put the simulation on a par with physical experiments, since
highly simplified inter-grain contact models are incapable of accurately capturing the phys-
ical properties of frictional granular material because they do not account for shear history
and do not simulate non-linearity. While the Coulomb friction model is the simplest, more
sophisticated models incorporate the rate of shearing, and incorporating such models may
result in improved results.

To compute the frictional forces, LS-DEM uses a Coulomb friction model similar to those
in Cundall and Strack (1979). For a given node pi

k, frictional forces and the related moments
only exist if Fi

n,k ̸= 0. The relative velocity vk of node pi
k to grain j is:

vk = vi + ωi × (pi
k − ci)− vi − ωj × (pi

k − cj) (3.6)

Where vi, vj, ωi, ωj are translational and angular velocities of grain i and grain j. The
incremental shear displacement ∆sk is then:

∆sk = [vk − (vk · n̂j,i
k )n̂j,i

k ] ·∆t (3.7)

The shear force Fi
s,k on grain i contributed by node pi

k is updated as such:

Fi
s,k = ZFi

s,k − ks∆sk (3.8)

Where Z is the rotation operation that rotates the normal vector n̂j,i
k at the previous

timestep to the normal vector at the current timestep and ks is the shear contact stiffness.
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This step is necessary because the relative orientation of the two grains would change between
timesteps. In the code presented herein, we use Rodrigues’s rotation formula (Murray et al.,
1994):

vrot = cos θ + (1− cos θ)(k · v)k+ sin θk× v (3.9)

Where θ is the angle between the interested vector in two timesteps, and k is cross
product between normal vector at the current and previous timestep. The Coulomb friction
law dictates Fi

s,k be capped at a fraction of the normal force Fi
n,k:

Fi
s,k =

Fi
s,k

∥Fi
s,k∥

min (∥Fi
s,k∥, µ∥Fi

s,n∥) (3.10)

Where µ is the inter-grain friction coefficient. By action and reaction:

Fj
s,k = −F

i
s,k (3.11)

The moment Mi
s,k contributed by node pi

k’s shear force on grain i is:

Mi
s,k = (mi

k − ci)× Fi
s,k (3.12)

Similarly, the Mj
s,k contributed by node pi

k’s shear force on grain j is:

Mj
s,k = (mi

k − cj)× Fj
s,k (3.13)

In the end, the total contact force on grain i is found by summing all nodal contact forces:

Fi
rot =

N∑
k=1

(Fi
n,k + Fi

s,k) (3.14)

Where N is the number of nodes on grain i. By action and reaction:

Fj
rot = −Fi

rot (3.15)

The total contact moment on each grain is found by summing all nodal contact moments:

Mi
rot =

N∑
k=1

(Mi
n,k +Mi

s,k)

Mj
rot =

N∑
k=1

(Mj
n,k +Mj

s,k)

(3.16)

To conclude, the inter-grain interaction is shown in Algorithm 2 below.
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Algorithm 2 findInterGrainForceMoment
INPUT:grain A, grain B
OUTPUT: grainForce F, grainMoment M
for int i = 0; i < num nodes; i = i+ 1 do

uAB = uA − uB, where uA is the mass center of grain A
if |uAB| < rA, rA = maxk∈N{|uk

A|}, where uk
A is the vector from k-th node of grain A

to mass center then
/* rotate ui

A to the principal frame of grain B’s LS grid */
ũi
A = RTui

A + cB, where R is the operator rotate vector from principal frame to
global frame

/* check if ũi
A penetrates into grain B */

flag, di, ñi = findPenetration(ũi
A, grain B)

if flag then
/* rotate contact normal ñi to global frame */
ni = Rñi

/* Compute spring force at normal direction */
f in = kn · di · ni

F = F+ f in, M = M+ ui
A × f in

/* Compute relative velocity of two grains at ui
A */

vi
AB = vA − vB + ωi

Au
i
A − ωi

Bu
i
B

/* Compute friction increment in tangential direction */
f t+∆t,i
t = Zf t,it −vi

AB ·kt ·∆t, where Z is operator rotate past shear force direction
to current direction.

/* Check Coulomb’s friction criterion is satisfied */
f i = min{|f it|, µ|f in|}
f it := f i · f it/|f it|
F = F+ f it, M = M+ ui

A × f it
return F, M

3.3.5 Discrete Equations of Motion

The scheme described here was implemented by Kawamoto et al. (2016), who adopted
the work by Lim and Andrade (2014) to update the center of mass and nodes of each grain.
This scheme solves Newton’s and Euler’s governing equations of motion. At the end of each
timestep, the locations, forces, and velocities of the grains are known, allowing the grain
motion to be explicitly updated via Newton’s law’s governing translational equation:

mai + Cvi = Fi (3.17)

Where i = 1, 2, 3 in three dimensions, m is the mass of the grain, C = ξm is the damping
that proportionally scales the linear velocity vi, with ξ being the global damping parameter.
The linear acceleration is given by ai and is related to the resultant force Fi. To integrate
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the translational components of motion, the centered finite-difference integration scheme is
used.

v
n+ 1

2
i =

1

1 + ξ∆t
2

[(1− ξ∆t

2
)v

n− 1
2

i +
∆t

m
Fi] (3.18)

xn+1
i = xni +∆tv

n+ 1
2

i (3.19)

This scheme is second-order explicit which is conditionally stable, and we admit that there
is a family trapezoidal integration schemes in various forms. Based on the variable metric,
the scheme becomes implicit, unconditionally stable and a coupled system of equations,
which are solved using an adaptive iterative scheme. (Zohdi, 2003; Zohdi, 2004b; Zohdi,
2007; Zohdi, 2013). For complex-shaped object, the rotational components of motion should
also be integrated, the time derivatives of the angular accelerations in the principal frame
are given by Euler’s equations of motion.

ω̇ = (M − ω × (Iω)− ξIω)/I (3.20)

Where ω̇ is the angular acceleration, ω is the angular velocity, I is the (diagonal) moment
of inertial tensor in the principal body-fixed frame, and M is the torque vector in the
principal body-fixed frame. The Euler equations are nonlinear due to the presence of angular
velocities products on both side after numerically discretizing above formulas. Therefore, to
appropriately integrate the rotational components of motion, a predictor-corrector procedure
is recommended:

(1) Estimate the angular velocities at the current timestep by assuming constant angular
acceleration for an additional half step.

ω
′n
i = ω

n− 1
2

i +
1

2
∆ωn−1

i (3.21)

where ∆ωn−1
i = αn−1

i ∆t

(2) Calculate angular velocity predictor by using the estimates as mentioned earlier.

∆ω
′n
1 = ∆t[Mn

1 + ω
′n
2 ω

′n
3 (I2 − I3)− ξI1ω

′n
1 ]/I1

∆ω
′n
2 = ∆t[Mn

2 + ω
′n
3 ω

′n
1 (I3 − I1)− ξI2ω

′n
2 ]/I2

∆ω
′n
3 = ∆t[Mn

3 + ω
′n
1 ω

′n
2 (I1 − I2)− ξI3ω

′n
3 ]/I3

(3.22)

(3) Predict angular velocities at the current timestep.

ωn
i = ω

n− 1
2

i +
1

2
∆ω

′n
i (3.23)
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(4) Calculate angular velocity correctors.

∆ωn
1 = ∆t[Mn

1 + ωn
2ω

n
3 (I2 − I3)− ξI1ωn

1 ]/I1

∆ωn
2 = ∆t[Mn

2 + ωn
3ω

n
1 (I3 − I1)− ξI2ωn

2 ]/I2

∆ωn
3 = ∆t[Mn

3 + ωn
1ω

n
2 (I1 − I2)− ξI3ωn

3 ]/I3

(3.24)

(5) Update angular velocities by using the correctors.

ω
n+ 1

2
i = ω

n− 1
2

i +
1

2
∆ωn

i (3.25)

For small time steps used to resolve the inter-grain contacts and for quasi-static conditions
in which the angular velocities are small, the number of iterations is typically small. Usually,
between three and five iterations are required to achieve machine precision tolerance. Orien-
tations for each grain are updated using Evans’ singularity free quaternion approach (Evans
& Murad, 1977). For Euler’s equations of motion and the integration of the quaternions, the
torques are specified in the body or principal frame, while the contact detection and force
calculations are performed in a space or global frame. Therefore, the rotation matrix from
space to body frame is given by:

R =

−q21 + q22 − q23 + q24 −2(q1q2 − q3q4) 2(q2q3 + q1q4)
−2(q1q2 + q3q4) q21 − q22 − q23 + q24 −2(q1q3 − q2q4)
2(q2q3 − q1q4) −2(q1q3 + q2q4) −q21 − q22 + q23 + q24

 (3.26)

Where the q’s are the quaternions of Evans and Murad (1977).

q1 = sin
θ

2
sin

ψ − ϕ
2

q2 = sin
θ

2
cos

ψ − ϕ
2

q3 = cos
θ

2
sin

ψ + ϕ

2

q4 = cos
θ

2
cos

ψ + ϕ

2

(3.27)

And θ,ψ,ϕ are Euler’s angles representing successive rotations about the z, x′ and z′

axes. It turns out the time derivatives of the orientation parameters (q1, q2, q3, q4) can be
expressed in terms of quaternions themselves and the angular velocities.

q̇1 =
1

2
(−q3ωx − q4ωy + q2ωz)

q̇2 =
1

2
(q4ωx − q3ωy − q1ωz)

q̇3 =
1

2
(q1ωx + q2ωy + q4ωz)

q̇4 =
1

2
(−q2ωx + q1ωy − q3ωz)

(3.28)
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4∑
i=1

q2i = 1 (3.29)

Above equations can be solved explicitly for the quaternion values at the new time step
in terms of the old values and the angular velocities at the midpoint of the timestep using
time centered finite difference scheme.

3.4 Hybrid MPI+OpenMP Design Considerations

Message Passing Interface (MPI) is the industry-standard Application Programming In-
terface (API) for message passing across distributed-memory machines and often incorpo-
rates with the idea of domain decomposition. Open Multi-Processing (OpenMP) is a stan-
dard API for parallel programming on shared-memory architectures that parallelizes serial
code by adding directives to instruct the compiler how to distribute workload at the data
level. A hybrid HMP+OpenMP model is considered in this section to fully leverage the
potential of mutliprocessing clusters. This combination of models makes use of data distri-
bution and explicit message passing between cluster nodes, as well as shared memory and
multithreading within nodes.

3.4.1 Data Abstraction and Motivation for the Use of Data
Structure

Three levels of abstraction are used in the binning algorithm: blocks, bins, and grains.
To begin, the computation domain is partitioned into blocks, each of which is ”owned” by
a computing processor. The block is then separated into equal-sized bins with a length
equal to or greater than the diameter of the largest grain in the assembly. The number of
processors is chosen to minimize the total area of communication between the computational
sub-domains. The bin length can be expressed mathematically as R + ∆R, where R is the
largest diameter of the grain in assembly and ∆R, is determined empirically to strike a
balance between the size of bins and the maximum number of grains that can reside in a
bin, as increasing the bin size has the same effect as decreasing the total number of bins
required to partition the domain. As a primitive task unit, each bin contains grains and
communicates with 26 neighbors to detect and resolve contact and force. Finally, grains are
assigned to a given bin based on the coordinates of their mass center in relation to the bin
and block sizes.

In the realm of clustered system, it is prudent to define a fixed number of grains in a
bin, as conveying all data at once is far more efficient than sending a fraction several times
due mainly to data arrival latency. As a result, the bin size should be fixed to minimize
border/ghost layer communication overheads. The simplest method is to calculate the size
of the bin in advance and estimate the maximum number of grains that can fit within.
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This technique grows linearly for large numbers of grains of roughly the same size and
simple shape, but is less efficient for assembling arbitrary shaped avatars with more dispersed
gradation. As a result, a binning algorithm that explicitly models all bins and allocates each
grain to its proper bin is memory intensive and prone to memory management problems.
Furthermore, from a practical standpoint, the number of bins may exceed the number of
grains if the majority of bins are empty, resulting in resource waste. A more elegant solution
is to use a linked-list abstraction to map grain-bin associations, so that grains are sequentially
indexed by a unique number and only the exact number of total grains is maintained. This
technique efficiently implements the belonging relationship between bins and grains, the
neighbor list for each grain, and the ghost bins using four lists in O(1) operations. The MPI
implementation section discusses this algorithm in greater detail.

3.4.2 Border/Ghost Layers Communications

In a binning algorithm, each grain is uniquely labelled using a hash on their coordinates
and based on the bin-size. A carefully chosen cutoff distance guarantees that every grain
could only interact with grains in 26 neighbor bins, as even the largest grain cannot extent
across more than two bins. However, a boundary grain may extend across into neighbor
sub-domains, and this requires each sub-domain to maintain a copy of remote grains to cor-
rectly account for the interactions of boundary grains. This creates a halo region which is an
extended layer of bins outside the boundary bins and records all updates from neighboring
sub-domains. The process of exchanging border information is termed border/halo commu-
nication. The purpose of border/halo communication is to update boundary information
for sub-domains because each processor only understands its own space and the associated
grains. Therefore, before proceeding to a new timestep, boundary grains in the border/halo
area must be updated with the latest translational velocity, angular velocity, rotation in
the global frame, and center mass location. The new code packs information beforehand
and minimizes communication overheads effectively. The amount of data required to update
remote data from halo regions is constant and small; hence it can be packed to send collec-
tively. Note that grains’ shear history in border/halo layers does not need to be transmitted
because those grains are computed on their host processors.

3.4.3 Across-Block Migration

Across-block migration refers to a circumstance when a grain enters or leaves its host
block. If a grain migrates across the block border, one sub-domain needs to delete it while
another needs to add this grain. In contrast to the border/ghost communication where data
can be packed and communicated together, the across-block migration shall be considered
individually for different grain because the size of the message being transferred is different.
A näıve algorithm analogous to border/ghost migration is to construct a spatially outward
extension from each processor’s border (Yan & Regueiro, 2018b). The size of the extended
layers is independent of the size of virtual bins, and it is determined by the velocities of the
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grains and the time step used in the current time increment. Each processor should check
its extended layers to see if any of its grains move into the computational domain. If yes,
the corresponding processor should send such grains to the interested processor and delete
them from its own space. However, this is not the best solution for across-block migration
because a grain can essentially move to any other processor. Besides, the grain velocity is
difficult to estimate for some dynamic problems.

In general, a three-dimensional DEM simulation falls into two main categories: static
or quasi-static problems and dynamic problems. The velocity range of the first category
could be reasonably estimated, for the second category, it is more difficult to determine the
position that a grain could reach. The idea of extension layer also faces technical difficulties
in its implementation. In the binning algorithm, blocks that mapped on sub-domains might
have different spatial locations and hence create many edge cases. Moreover, if a history-
dependent tangential contact model is chosen, the shear history ought to be sent as well. It is
less efficient to send and receive complex information of varying length from specific senders
to specific receivers using point-to-point communication APIs (primitive send and receive
functions) in MPI implementation. Moreover, this is very likely to cause communication
deadlocks. Although such an issue can be addressed using BoostMPI, which runs on top of
MPI implementation, or using one side communication features of MPI3. The proposed code
adapts highly tuned collective functions, MPI Alltoall() and. MPI Alltoallv() which makes
the code more readable because all processors call the collective functions; consequently, the
same code is applicable for all processors.

3.4.4 Dynamic Workload Distribution

The workload distribution is almost uniform among processors in simulating semi-static
load problems such as the triaxial compression test even though grains may consist of various
numbers of nodes on their reconstructed surface because the grain assembly is arranged in a
relatively uniform and compact manners. Therefore, although the specific number of grains
residing in a bin varies, the total amount of working load in a sub-task is similar, and
the approximate cost can be evaluated in advance. Typically, static domain decomposition
works well for homogeneous condensed matter, but it is not as good for inhomogeneous grain
distributions due to performance-limiting work imbalances. For highly dynamic modeling
of debris flow or earthquake simulations, characterized by large grain displacement between
integral steps, grains can move and enter arbitrary sub-domains frequently, causing the
number of grains residing inside a fixed-size bin to fluctuate as well.

The proposed parallel scheme aims to be applicable for wide ranges of simulations and
adopts an adaptive re-binning scheme for highly dynamic problems. This scheme decomposes
the latest computational domain and redistributes resources to best balance the current
geometrical configuration. The subroutine can be either called at each timestep or after
specific numbers of timesteps depending on the problems. The re-binning step has the
same time complexity as the standard step. It does not affect the performance because
dynamic adjusting and re-assigning grains at the beginning of a timestep essentially calls
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the same subroutine as across-block migration, it also skips border/halo communication.
The fundamental idea behind adaptive re-binning is to treat the boundary sub-domains
as infinitely large temporarily. Any grain about to leave the computational domain will
still behold in the boundary sub-domains. After a certain amount of timesteps, the whole
computation grids will be regenerated, referred to the maximum and minimum coordinates
of the entire bunch of grains in each direction. An alternative of adaptive dynamic binning
is the quad-tree algorithm (a recursive coordinate bisection algorithm), which divides the
domain into flexible bin size, counts the number of grains within a bin, and emphasizes
the load balance of each bin. While the dynamic decomposition approach can improve load
balancing of MPI instrumented simulations, it is limited by its focus on balancing the number
of grains rather than the actual workload among processors (Yan & Regueiro, 2019). This
can shift computational effort to individual processors, which leads to additional undesirable
work imbalance.

3.4.5 Modeling Flexible Membrane in DEM

Both fixed and moveable rigid boundaries are readily modeled for parallel implementation
because the geometries of such boundaries are simple and can be modeled as a single en-
tity. However, a deformable boundary is required to initiate and develop strain localization,
irregular boundaries like a flexible membrane in a triaxial simulation are challenging to par-
allelize. In a conventional triaxial test, a cylindrical specimen is enclosed by a flexible latex
rubber membrane that can stretch or contract in response to local deformation. To replicate
the latex rubber in DEM, packed spheres were arranged in a hexagonal pattern and deform
with relation to their surrounding spheres, as illustrated in Figure 3.4. Contact bonds were
allocated to the membrane spheres to keep them connected while allowing relative motions
between spheres to be unrestricted. The contact bond strength between membrane spheres
was set to a value that was sufficiently weak to allow for complete development of the shear
band and volumetric change while remaining sufficiently strong to enclose the specimen.
Unlike the temporary springs used in the soft-contact model of inter-grain interaction, mem-
brane spheres are permanently connected via normal and tangential springs. The normal
spring secures the spheres in place as the membrane stretches or contracts, while the tangen-
tial spring maintains the hexagonal pattern of the spheres. The stiffness of these springs is
much smaller than the grain-membrane contact stiffness, allowing the membrane to deform
freely mimicking the latex rubber.

Numerically, an external force is applied to each sphere in accordance with the confining
pressure specified. In essence, the magnitude of the applied force on the membrane spheres
is equal to the product of the confining pressure and the triangular region’s area. Moreover,
the applied force is perpendicular to the region and pointed inward to the specimen. For a
triangular mesh element T , we can calculate the outward normal n and the directional area
S. Thus, according to the divergence theorem of Gauss, the volume of the specimen can be
calculated:
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Figure 3.4: (a) Illustration of flexible membrane, ∼ 15, 000 balls. (b) Confining pressure
normal to faces. (c) Hexagonal patterns of bonded spheres. (d) Membrane-grain interaction.
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Due to the simple geometry of the membrane elements, interactions between grains and
the membrane are straightforward and as follows: an avatar node determines whether the
distance between the node and the sphere center is less than the radius of the sphere and
determines the amount of penetration as well as the normal direction. However, this pro-
cedure has two limitations. To begin, the grain of interest should iterate on all membrane
spheres and perform a bounded circle check to identify nearby spheres, before refining the
force resolution phase on discretized nodes. While sphere-grain interaction is considered to
be notably less computationally intensive than inter-grain interaction, this process is still
O(n3) and requires a significant amount of computing power. Second, the flexible membrane
is designed to conform to the geometric configuration of the specimen and strike a balance
between confining pressure and resistance forces, which is proportional to penetration depth
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and is dependent on contact stiffness. However, once the membrane sphere enters the grain
completely, all distances between discretized nodes and the sphere center exceed the radius
of the sphere, and the sphere is no longer considered to be interacting with grains. Conse-
quently, the spheres will continue to move inward and rapidly distort the entire membrane.
This issue can be resolved by introducing a set of sophisticated criteria that classify the
position of the membrane sphere relative position of the grains. However, this is far from
an efficient or elegant measure. As a solution, we implemented grain-membrane interaction
similarly to inter-grain interaction by temporarily moving spheres in the principal frame of
the grain of interest and reading penetration from its LS grid. This modification increases
efficiency in two ways. Only one lookup of the LS table is required to complete a pair of
grain-membrane interactions. This process can be applied in a variety of different scenarios
without modifying the code or establishing arbitrary rules because decoding LS values from
a fixed underlying grid is reliable and accurate.

Directly partitioning and parallelizing a flexible membrane according to the hash of co-
ordinate is challenging for the following reasons: 1) assignment of a membrane sphere to one
sub-domain hashed on its spatial coordinate is complicated as boundary deforms locally, and
it is tedious to track and update spheres that are about to migrate across sub-domains. In
addition, the hexagonal connectivity of a sphere should also be maintained before and after
the migration; 2) it is possible that a membrane sphere and its contacting soil grains belong
to different sub-domains. As a result, to correctly capture this relationship, the implemen-
tation must memorize the coordinate of a membrane sphere and its spatial relationship with
contacting grains; and 3) although the information exchange between membrane spheres
and contacting grains involves border communication and cross-domain migration and has
a great similarity to the information exchange between grains, this kind of message passing
occurs much more frequently and retards the computation.

3.4.6 Memory Management

Our initial implementation of parallel code duplicated one copy of all grains for each
processor, which turns out to be an acceptable design when the problem size is modest. The
critical factor in this design is to optimize simulation speed, as each processor can handle
all updates to grain velocities and rotations without reloading the morphology data, and it
is simple to implement. Because reading data from main memory is approximately hundred
times slower than reading data from cache in modern systems, preserving data locality is
critical for performance. However, this notion is ultimately infeasible for a variety of reasons.
To simulate large problems, the increased number of processors similarly increases the size
of the overall data file, producing four distinct issues: 1) the combined effect puts a strain
on the memory, leaving little space for calculation; 2) in a clustered computing system,
multiple processors share a finite amount of memory, and we may be unable to allocate
sufficient memory to each processor, resulting in underutilization of the computing resources
available; and 3) during the initialization phase, the code must read all data files many
times, which turns out to be a significant expense, and 4) this approach defies the goal of
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parallelism because another common reason to parallelize serial code, aside from speeding
up execution, is to partition the data between processors when it is too large to fit on a
single processor. Clearly, retaining a copy of data regardless of its size violates this design
concept. With these constraints in mind, the solution is to read morphological files only
once and assign grains to one of the processors based on their coordinates. When a grain is
about to migrate to another computational sub-domain, the new host processor consults the
database and regenerates the avatars using the most recent velocity, rotation, and friction
information. Rather than releasing the memory associated with a grain that migrates to
another sub-domain, we mark it as unused and retain it in memory in case it migrated
back later, reducing the number of times we looked up the database. This procedure was
not invoked frequently during the simulation of quasi-static type problems, resulting in a
negligible amount of additional overhead.

3.4.7 Limitations of the Proposed Parallel Implementation

Our implementation regards the whole computational domain as a big box and cuts
it into identical cuboid sub-domains. Therefore, the underlying connectivity pattern for
message passing is determined. As a result, the implementation details such as linked list-like
data structure, halo communication, and grain migration are heavily reliant on this specific
yet sophisticated sub-domains configuration. Fortunately, our implementation is tuned to
utilize an arbitrary number of processors that are available and to suggest the best domain
granularity. However, a major drawback is that it cannot properly handle problems where
the distribution of grains across the domain is inhomogeneous, in another word, domain
sparsity. For instance, while dealing with a cone-shaped container, we must still create the
computational domain as a box large enough to encompass the cone. As a result, some
sub-domains are left empty, resulting in resource waste.

The second drawback of this implementation is that it cannot use as many processors
as possible because the cutoff size of a bin must be larger than the maximum equivalent
diameter of a grain assembly. In addition, the cutoff size is chosen so that the average
number of grains assigned to one processor is larger than a prescribed value. Although this
implementation can guarantee that a processor is saturated by at least a certain amount
of workload, they are also reasons why some of the cores being used are halted at times.
Furthermore, the domain decomposition strategy induces work imbalance among processors
due to different amounts of additional interactions with ghost bins in border layer. The
center sub-domain is totally encircled by others and is influenced by ghost bins from all
six faces, whereas a corner sub-domain has just three ghost bins. Consider a cubic sub-
domain consists of n3 bins, and the number of bins involved in force resolution is (n + 2)3

for a center sub-domain, but only n3 + 3n2 + 3n + 1 = (n + 1)3 for a corner sub-domain,
with n = Domain Size/(Bin Size× Processors). The work ratio (n+ 2)3/(n+ 1)3 decreases
as the number of processors increases and increases as the number of bins per sub-domain
increases. Finally, the implementation is not universally applicable and ought to be modified
for different contact models, boundary conditions, and sorting algorithms, although the code
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can handle many types of problems. As previously stated, parallel implementation treats
various boundary conditions quite differently, and the implementation primarily relies on the
current linked-list-like data structure to index and sort grain and to map the relationship
between grains, bins, and blocks. Hence, both the halo layer communication and the grain
movement are intrinsically linked to the specific sorting algorithm.

3.4.8 Programming Environment

The principles of Object-Oriented Programming (OOP) were followed in the design and
programming of the code. Specifically, various classes are designed to model the practical
concepts and objects that exist in a DEM simulation system: grains, bins, and exchange
information packages. The Standard Template Library (STL) is heavily used, such as vector
and set, to ensure code robustness and performance. The Eigen library is used to facil-
itate matrix-matrix or matrix-vector multiplication and transfer mathematical operations
naturally. In developing MPI functions of three-dimensional LS-DEM, both border/ghost
communication and across-block migration are accomplished using highly tuned API func-
tions.

3.5 Parallel Implementation Details

3.5.1 Parallel Implementation of the Membrane

We explored two methods for parallelizing membrane type boundaries. Here we address
their benefits and drawbacks. Parallelizing a flexible membrane is more complex than paral-
lelizing a rigid boundary that does not deform locally. The two approaches to membrane sim-
ulation in a parallel environment are based on the concept of addressing local grain-membrane
interaction in distinct computational subdomains specific to the corresponding host proces-
sors. We note that, the concept of directly decomposing flexible membranes into different
processors was quickly abandoned due to the inefficiency of tracking grain-membrane inter-
actions, updating spheres, and maintaining hexagonal connectivity across processors. For
example, a single large grain may interact concurrently with multiple membrane spheres, but
each sphere may belong to a different processor; additionally, the hexagonal pattern should
be preserved whenever a sphere migrates to an adjacent processor.

Our first parallel implementation (Figure 3.5) utilized an additional processor to exclu-
sively handle grain-membrane interactions. Before the contact detection and force resolution
phases, all normal processors communicate most recent positions of the grains to the mem-
brane processor, so that the grains in the membrane processor are up to date. In membrane
processors, grain-membrane interactions are resolved concurrently with inter-grain interac-
tions, and grain forces and moments are communicated back to normal processors. The most
advantageous aspect of this strategy is that the time spent on computing grain-membrane
interaction is separated from the inter-grain interaction, thereby reducing the serial portion
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of code. However, the implementation is slightly more complicated and doubles memory
consumption due to the additional copies of grains required by membrane processors. Alter-
natively, our second strategy (Figure 3.6) does not employ an additional membrane processor
but rather operates grain-membrane interaction immediately following force resolution; each
processor is equipped with its own membrane, and only those spheres interacting with grains
are activated. At each time step, processors broadcast and gather the forces of activated
spheres from different sub-domains prior to advancing a time step. This strategy appears to
be more elegant and simpler to implement; it also results inn a more qualified parallel code
because all processors execute the same task. However, interaction between grains and mem-
branes becomes a necessary component of all processors. We prioritized speed when choosing
between the two strategies and discovered that the performance of the two versions is depen-
dent on the number of grains being modeled; when the problem size is small, the membrane
processor can complete grain-membrane interactions faster than normal processors and vice
versa if the problem size becomes larger.

We benchmarked our parallelized code with up to 700, 000 grains and investigated both
strong and weak scalability for the domain decomposition strategy designed specifically for
our application. Our code can simulate problems of comparable size and consumes less
than 5% of the computing resources required by the embarrassingly parallel code. The
various performance-critical subtleties are optimized so that communication overheads are
kept to well below 1% of total computing wall time in favorable configurations, that is,
each processor is saturated with sufficient, balanced work. Due to the low communication
overhead, the weak scalability is nearly perfect, i.e., same computing time for twice larger
problems using twice more resources. By contrast, the strong scalability rapidly degrades
as more processors are used. This is because the sub-domain located in the center of entire
computational space requires more ghost bins from neighboring sub-domains to complete halo
layer exchange, force resolution, and grain migration than its edge and corner counterparts.
In other words, if the bin size is significant in comparison to the total domain size, the
domain decomposition strategy is inherently load imbalanced. If we instead compute and
consider the true workload of each sub-domain, the measured performance gain matches the
expected value reasonably well. Again, this issue is unique to our application of simulating
a densely packed grain system in a quasi-static setting, where the bin size has to be larger
than the largest grain diameter in an assembly and not insignificant in comparison to the
overall specimen configuration.

3.5.2 Minimizing Memory Consumption and Preventing
Memory Leaks

The C++ class to present a grain used in LS-DEM consists of a large LS table which
implicitly represents a grain, hundreds of nodes seeding on the reconstructed surface along
with shear histories on each. Most of these data remain unchanged and only small amounts
of data have to be communicated among sub-domains. As a result, it is wiser not to store a
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Figure 3.5: Flowchart of parallel strategy using extra membrane processor to specifically
handle membrane-grain interactions.

whole grain object in the bins, and only index them instead. The new code minimizes the
amount of memory consumption in different ways.

One of the crucial facts is that the number of grains can be smaller than the number
of bins, which is somewhat counter-intuitive since bins are conceptually more extensive
abstraction than grains. For a mini grain assembly in our test, 74 grains were distributed
across a 100× 100× 100 computational domain. The largest diameter of the assembly is 20,
hence the cutoff distance is chosen as 20; this creates 125 bins partitions. Therefore, instead
of building 125 bins and assigning grains hashed on their mass centers, it is more efficient
to maintain an array of 74 grains and keep track of their bin indices. Although contact
detection, resolution algorithm, and time step integral working directly on the grain array,
the bin structure is still required to assist message packing in MPI communication.

The rigid body assumption significantly reduces the number of messages to exchange. Un-
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Figure 3.6: Flowchart of parallel strategy that membrane-grain interactions are handled in
the same way by all processors.
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der this assumption, the information required to update grain status for the next timestep
only consists of the positions of mass center, rotations with respect to the global frame, plus
the translational and angular velocities. Those are quantities needed to update boundary
grains in the outmost bins of a sub-domain via border/halo communication. Since both LS
table and discretized nodes’ positions relative to the center are unchanged during simula-
tion, we have another implementation option to update grains: regenerating the grain from
its morphological file with updated quantities. That is: after border/ghost communication,
a new grain can be generated from corresponding morphological file with the freshly com-
puted location, quaternion, and velocities. This alternative requires less memory for a very
large problem but needs to access disk memory more frequently. Compared to the border
communication, across-block migration is much more complicated attributed to the usage of
the history-dependent tangential contact model, where the shear history should be brought
together with the migrating grains because moving to other processors does not imply grains
have separated from their contacting neighbors.

To avoid memory leakage, containers in Standard Template Library (STL) such as vector
and set are heavily relied on. The smart pointer feature is used as much as possible whenever
it applies. While raw pointers cannot be completely avoided due to MPI’s incompatibility
with smart pointers, they are produced and discarded with special care. Every processor
keeps a copy of the full grain list to map bins and grains, which is a memory-efficient
strategy. Besides, the copy constructor and assignment operator are overwritten to avoid
memory issues. Eigen and STL also inherently implement deep copy and provide memory
protection.

3.5.3 Code Simplification and Edge Case Avoidance

One of the essential rules of MPI implementation is that as many processors as feasible
accomplish the same task. To simplify implementation and avoid edge cases, each block/sub-
domain is wrapped in a layer of padding bins (the number of bins along each dimension is
increased by two, so that all bins within the sub-domain are regarded spatially similar,
that is, each has a full set of 26 nearby bins. At the domain decomposition level, our
code treats each processor identically by adding additional computational domains in such
a way that each processor is associated with sub-domains of equal size. Furthermore, the
number of processors used is determined to ensure that the communication area between
MPI ranks is kept to a minimum. Then the code may dynamically select the optimal domain
granularity based on both domain topology and resource availability. Moreover, the code
establishes a limit value to ensure that each processor works on a minimum number of grains
to conceal communication overhead; this value is established based on the prototype test
results and is dependent on the average number of nodes used to discretize avatars. The code
also takes advantage of MPI built-in functions like MPI Dims create(), MPI Cart create()
and MPI Cart shift() to arrange processors into a grid, which allows MPI to automatically
handle edge cases when communicating with neighbors, for example, when each processor
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is instructed to send data to their left neighbor whereas there is no left neighbor for the
left-most processor.

3.5.4 Reducing Computational Effort

To further minimize computation time, the proposed code makes use of Newton’s third
law and successfully reduces computation time by a factor of two. In the ideal scenario, where
the grain surface is continuous and integrable at any location, the interaction force between
master and slave grains is the opposite of the interaction force between slave and master
grains while maintaining the same magnitude. However, due to the discrete representation
employed in LS-DEM, the magnitudes of forces and reaction forces are not same. As a result,
the code always applies the force exerted by the grain with the lower index to the grain with
the higher value. Even though this measure can only guarantee that the resulting forces are
identical within a sub-domain and is inadequate at the boundary, where forces are always
exerted from the halo layer to the inner grains, it reduces randomness due to thread-level
parallelism and domain decomposition, which keeps the differences between tests within
an acceptable range. Newton’s third law requires that only half of the adjoining bins be
iterated. As illustrated in Figure 3.2, the code takes into account 13 neighboring bins,
including all nine bins above the target bins and four bins at the same level as the target
bins. Any 13 bins can be chosen, and the algorithm chooses these 13 bins since the additional
interactions between grains and boundary grains are reasonably straightforward to handle.
The code avoids handling edge cases as a result of padding. In a shared-memory system,
the grain-grain interaction is entirely symmetrical because the computational domain and
message exchange are not partitioned. This is not true for parallelism in distributed memory
machines, because only ‘real’ grains are taken into account and updated when a real grain
interacts with grains in the halo region. For instance, a bottom grain in the upper sub-
domain should interact with ghost grains in the lower sub-domain, but only forces exerted
by ghost grains on non-ghost grains are taken into account.

3.5.5 Position Reasoning and Linked-List Data Structure

A naive approach to binning iterates over bins to detect contacts and resolve forces. A
more elegant and efficient technique used in our algorithm uses linked lists to map relation-
ships between grains and bins and runs in time complexity O(1). This approach enables a
simple encoding and decoding of a bin ID associated with a certain grain with O(1) complex-
ity, and vice versa. The following example introduces four connected lists and is illustratetd
in Figure 3.7.

(1) The first array:

int∗ bins = new int [ num of bins ] ;
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has a length of the number of bins and is initialized as all −1. The value that is stored
in each element of bins is the first grain number in that bin. For instance, bins[23]=13
means the first grain in the 23-rd bins is #13, bins[4]=-1 means there is currently no
grain stored in the 4-th bins.

(2) The second array

int∗ b inL i s t = new int [ num of gra ins ] ;

has a length of the number of grains and is initialized as all -1. The value stored in each
element of binList is the bin ID that the grain belongs to. For instance, binList[13]=8
means grain #13 is stored in the 8-th bins.

(3) The third array

int∗ g r a i nL i s t = new int [ num of gra ins ] ;

has a length of the number of grains and is initialized as all −1. The value stored in
each entry of grainList is the next grain ID stored in the same bin as the current grain.
For instance, grainList[13]=17 means the next grain which was stored in the same bins
as grain #13 has index #17; similarly, grainList[17]=-1 means there are no more grains
stored after grain #17. As a more comprehensive example, instructions bins[23]=13;
grainList[13]=17; grainList[17]=9; and grainList[9]=-1 describe a search path if one is
interested which grains are stored in bins #23, the first grain is #13 which followed by
#17 and #9. There is no sequential order among grains, the one is added merely to
assist neighbor searching and interaction computation.

(4) The fourth array

int∗ belongToRank = new int [ num o f pa r t i c l e s ] ;

has the length of the number of grains and is initialized as all 0. The value that is stored
in each element of belongToRank is in the enumerator {0, 1, 2}, 0 means the grain is
not associated with the current rank, 1 means the grain is residing inside the associated
sub-domain, 2 means the grain is a ghost grain related to current rank. For instance,
belongToRank[2]=0 implies the 2-nd grain does not belong to the current rank.

3.6 Comparison Between Different Implementations

The original LS-DEM code developed by Kawamoto et al. (2016), it implements a hybrid
MPI+OpenMP in a naive way and achieves good speed-up using 480 cores. However, the
performance gains were obtained by naively arranging all computing resources in for-loops
to increase throughput (the number of iterations accomplished) at a time; consequently, the
computational complexity of the code is still O(n2). Here we introduce two MPI parallelisms
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Figure 3.7: Illustration of grain search using linked list data structure

that successfully reduce the computational complexity to O(n) with the binning algorithm.
The difference between these two versions is that one implementation iterates bins while the
other iterates grains for contact detection, force resolution, and grain update.

The numerical experiment was run with the GNU C compiler on Lenovo NeXtScale
nx360m5 nodes of the Savio system at UC Berkeley, which has 2 Intel Xeon Haswell proces-
sors with 12 cores per processor @2.3GHz. Each core has two 512-bit-wide vector processing
units, four hardware threads. Each core has 256KB L1 cache, and every four cores share
an 8MB L2 cache. The goal of this experiment was to measure both the strong and weak
scaling of MPI implementations and to observe the performance improvement by integrating
O(n) algorithm and using parallel techniques.

3.6.1 Original Implementation of LS-DEM

The primary code developed by Kawamoto et al. (2016) uses simple hybrid MPI+OpenMP
implementation, which does not employ binning algorithm or tree algorithm to reduce the
computation complexity. It loops over all the grains and simply parallels the code using
OpenMP directives, the load balance is improved by specifying a dynamic loop schedule.
Each processor learns the update grains through collective function MPI Allreduce(), gath-
ering information from all computing units and distributing it back. Although collective
communication and identifier MPI IN PLACE could reduce some memory motion, and bor-
der/halo communication phase could also be removed because all processors have a copy of
grains, there is still a large waste of computational efforts because this algorithm requires
O(n2) computational complexity, and all grains are participating in the global all-to-all com-
munications. Not surprisingly, the existing parallelism outperforms the proposed implemen-
tation with the binning algorithm for a small number of testing grains (74 grains) because
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it only communicates once at each timestep. However, this algorithm is memory-demanding
and begins losing efficiency as the problem size grows. Moreover, the original code does not
protect false sharing or data race. This implies two grains may simultaneously interact with
the same grain and compete to write on the third grain’s memory. Besides, grains are not
spatially sorted to enhance cache locality.

Nevertheless, the original LS-DEM code is fast enough for most of applications, it can
model a triaxial compression test on approximate 60, 000 grains within one day. This means
the code design is successful although näıve. The main limitation is that the code requires
each processor to own one copy of all of the data and hence occupies substantial amount
of memory if MPI is merely used in a brute force way to accelerate the code. Even though
LS-DEM’s contact algorithm has constant time complexity with respect to grid resolution,
a large memory footprint nonetheless may lead to increased computation time due to cache
misses and limit the number of grains that can be simulated. For example, a 40 × 40 × 40
reconstructed avatar requires 64,000 LS values to be stored.

3.6.2 Two Binning Algorithm Implementations

The flowcharts of the two parallel implementation introduced here are depicted in Figure
3.8 and Figure 3.9. They show four major flow components for both näıve binning algo-
rithm implementation and the one implemented in this work. Both implementations share
four major components, but differ from each other in terms of memory efficiency, amount of
interaction computation, border/halo communication, and across-block migrations. These
four steps are not equally weighted or even proceed by different times during the simulation.
The computational complexity is effectively reduced from O(n2) to O(n) for both imple-
mentations. Bins from each sub-domain are isolated from other processors and updated
with information available in the host sub-domain. Therefore, they do not participate in
the message passing phases. The false sharing or data race issue is also avoided in both
implementations because every grain is only associated with and managed by one processor
at a time.

3.6.3 Border/Ghost Communication Algorithm

At the beginning of a timestep, the border/halo layers communicate with neighbors. Usu-
ally, a sub-domain needs to exchange information with its neighbors through six surfaces,
twelve edges, and eight vertexes. In the new code, this step is simplified and reduced to three
sequential steps. Taking advantage of the blocked and synchronized MPI Sendrecv() func-
tion, the message passing procedure is guaranteed to happen in a right order. MPI Sendrecv()
is well-suited to send and receive a message simultaneously because it is specifically designed
to circumvent deadlocks. The border/ghost communications algorithm is depicted with a
two-dimensional illustration (Figure 3.10 and Figure 3.11), and the 3D algorithm is analo-
gous. Two steps are sufficient for a two-dimensional border/ghost communication.
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Figure 3.8: Flowchart of näıve binning algorithm where bins are basic elements in iteration.
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Figure 3.9: Flowchart of proposed binning algorithm where grains are basic elements in
iteration.
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Consider a two-dimensional computational domain divided into six sub-domains. Each
sub-domain is further divided into a 3× 3 bins matrix (grey areas in the plot). Every sub-
domain also maintains a copy of boundary bins of remote processors so that a layer of ghost
bins is used to wrap the original 3× 3 bins matrix and form a 5× 5 matrix. The proposed
algorithm demonstrates that two sequential calls of MPI Sendrecv() are enough to update
all ghost bins, and only three sequential calls are required for a three-dimensional simulation.

As the first border/halo communication step (Figure 3.10), each processor sends its right-
most non-boundary bins (marked as type-1 bins) to update the left boundary bins of its right
neighbor. Simultaneously, the current processor accepts a message from its left neighbor and
updates the left boundary bins. MPI Sendrecv() synchronizes this processor and completes
this procedure at the same time. Similarly, each processor sends its leftmost non-boundary
bins (marked as type-2 bins) to update its left neighbor’s right boundary bins. The current
processor then accepts a message from its right neighbor and updates the right boundary
bins. The edge cases where the left or right neighbors do not exist are automatically handled
because the proposed code has organized processors and constructed a Cartesian grid using
MPI Dims create(), MPI Cart create(), and MPI Cart shift().

Figure 3.10: Border/ghost communication step one, exchange left and right layers.

In the second border/ghost communication step (Figure 3.11), each processor sends its
upmost non-boundary bins (marked as type-3 bins) to update top neighbor’s bottom bound-
ary bins. Simultaneously, the current processor accepts a message from its bottom neighbor
and updates the bottom boundary bins. After these two sequential steps, the corner bins
in the ghost area are all updated. One could consider the procedure to update corner bins
a two-step motion: first, send corner bins to the left and right neighbors, and the left and
right neighbors, after receiving the corner bins, re-direct the corner bins to top and bottom.
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More complicated three-dimensional border/ghost communications are implemented using
precisely the same logic and three steps. The left and right ghost bins are updated first,
then the back and front ghost bins, finally the top and bottom ghost bins.

Figure 3.11: Border/ghost communication step two, exchange up and bottom layers.

3.6.4 Iterate Over Bins vs. Iterate Over Grains

The following stage involves computing the interactions between grain pairs. The straight-
forward implementation iterates over bins and computes inter-grain interactions for grains
that reside there, starting with interactions between grains in the same bin and progressing
to interactions between grains in nearby bins. This is a simple yet inefficient technique,
as bins may be empty. In contrast, we introduce a novel force resolution strategy which
iterates over grains and does optimum amount of work. The inter-grain relationship and
grain-bin relationship are mapped using linked-lists with time complexity O(1). Carrying an
envelope calculation, a strategy that iterates grains instead of bins could reduce the amount
of analysis by an order of magnitude. The resulting code scales linearly and computations
are directly proportional to the number of grains. In contrast, whenever a grain is queried,
the näıve implementation code requires to iterate over all bins to find the target. Therefore,
the näıve implementation is computationally more expensive and brings about redundancy.
Also, consider a situation in which one grain is about to migrate, it has not already left
the host sub-domain but obtain a new bin ID that differs from the current one. But this
operation cannot be immediately performed until all bins are checked because it is possible
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that the grain could move to unchecked bins and be recalculated. In the end, both imple-
mentations using data structure abstraction should consider extra interactions from ghost
grains since a sub-domain does not understand ambient information at the clustered system.

3.6.5 Implementation of Across-Block Migration

The motion of a grain is updated at the third step, and across-block migration may
occur at the fourth step. Both naive binning algorithm implementation and our new im-
plementation using data structure abstraction adopt a same algorithm. This is a relatively
expensive step because the contact history is also brought along with the migrated grain
if the history-dependent tangential contact model were applied. Although each migrated
grain is considered individually, necessary information such as translational velocity, angular
velocity, mass center location, and grain rotation can still be packed collectively to exploit
overlapping and reduce communication latency. To scatter and gather migrated grains to
other processors, collective operations like MPI Alltoall() and MPI Alltoallv() are heavily re-
lied upon. It is also possible to only implement fundamental MPI Send(), and MPI Receive()
functions with neighboring 26 processors if the timestep is small enough so that grains will
not move across an entire processor. However, this approach is not generalizable, and using
fundamental MPI Send() and MPI Receive() in nested loops would easily cause deadlocks.
The across-block migration approach is illustrated below. We pack and communicate the
common quantities first, and send grain specific information (shear forces, normal shear di-
rection, and contact grain ID) individually. This procedure is illustrated in Figure 3.12 and
Figure 3.13 and expanded with more detailed in following.

Packer is a container to store necessary grain information, the underlying data structure
of packer is:

vector<vector<ba s i c g r a i n p rope r t y>> packer ( num of proc ) ;

The basic grain properties have six components: grain ID, number of nodes on the grain,
position, quaternion, translational velocity, and angular velocity. When a grain leaves the
current sub-domain and enters another, the associated necessary grain information is pushed
back into the related packer[new proc id]. The contact history is contained in three contain-
ers, which is defined similarly as :

vector<vector<Eigen : : Vector3d>> packerNodeShears ( num of proc ) ;

tracks the vector of tangential forces on each node, the length of the element is changing as
the number of nodes seeded on a grain is not constant. The second quantity of a contact
history is the grain ID that a discretized node is contacting with. This is stored in

vector<vector<int>> packerNodeContact ( num of proc ) ;

The third quantity is the unit normal direction of a node in the principal body frame of the
last time step. This is stored in

vector<vector<Eigen : : Vector3d>> packerNodeNormals ( num of proc ) ;
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Figure 3.12: Illustration of data containers for basic grain information in across-block mi-
gration.

Figure 3.13: Illustration of data containers for contact history in across-block migration.

The data communication is achieved using the MPI collective functions MPI Alltoall()
and MPI Alltoallv(). MPI Alltoall() is a collective operation for the case where each pro-
cessor sends distinct data to all other processors. The j-th block sent from processor i is
received and placed in the i-th block of processor j’s buffers. MPI Alltoallv() adds flexibility
to MPI Alltoall() in that the location of data to be sent is specified by send buff displacement
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and placed in the location specified by recv buff displacement. The effect of all-to-all oper-
ation, MPI Alltoall(), is equivalent to a matrix transpose operation as illustrated below.

Figure 3.14: Illustration of the mechanism of MPI Alltoall().

3.7 Numerical Experiments

3.7.1 Numerical Experiments on a Small Dataset

A series of small numerical experiments was performed on the Savio HPC at UC Berkeley
EECS. The objective was to observe the performance improvement by integrating an O(n)
algorithm and using parallel techniques, as well as to study communication overheads suffered
by small-sized problems. The problem sizes are multipliers of 74 from duplicating existing
avatars with positions shifted to avoid overlapping. The computational domain in each
numerical test is cubic, for instance, 592 grains are constructed by 8 copies of existing 74
grains and shaped into a 200 × 200 × 200 domain. The problem setting is simple: domain
boundaries are modeled as undeformed planes; a grain is not allowed to leave the domain
and would be bounced back if it intends to do so. For simplicity and for work balance, grains
are subjected to a random force at each timestep. The bookkeeping and adaptive binning
are switched off when the performance is benchmarked.

Figure 3.15 shows the performance speed-ups by varying the number of processors. All
speed-ups were measured relative to a serial run, which is equivalent to an MPI simula-
tion with a 1 × 1 × 1 decomposition. Each processor works on its own smaller region and
maps to the closest physical memory to maximize memory bandwidth usage and avoid band-
width limitations. Consequently, a well-balanced MPI implementation has high efficiency
and keeping the communication cost low. However, there is a point beyond which more
MPI processors lead to an increased MPI traffic due to the communication overheads and
stalls or deteriorates scalability. In addition, increasing domain granularity also increases
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the area of inter-processor interfaces through which boarder layers are exchanged, and more
ghost grains are cloned to create extra workload. An evenly distributed workload and suit-
able domain granularity help to hide communication overhead, i.e., if the major tasks were
finished later than the communication, then a good linear speed-up is expected as the cost
of communication latency is amortized. In general, increasing the number of grains would
bring the scalability closer to the idealized speed up. This is because the CPU is saturated
and the portion of simulation time spent on contact detection, force resolution and grain
update are more significant compared with those used for communication. This also explains
why the overall performance of larger testing sample is better than the smaller counterparts.
However, with increasing number of processors, MPI traffic due to data migration and in-
creased synchronization times would add up and dominate. One may consider increasing
the number of processors is analogous to reducing the problem size. In this sense, a single
parameter defined as the number of grains associated with one processor is more appropriate
to optimize parallelism.

Figure 3.15: Comparison between obtained speed-up and idealized speed-up for a series of
small numerical experiments, to study strong scalability.

Figure 3.16 shows that the running time decreases as the number of processors increases.
Our code displays considerable speed-ups by evenly distributing work to more processors.
Reading from the plot, it takes 852 seconds to finish 1, 000 timesteps with a single processor,
while this number drops dramatically to 20 seconds if the parallel techniques are used. How-
ever, the running time is not a purely decreasing function of the number of processors, this
is because domain granularity also considers bin size apart from the availability of computa-
tional resource. For example, to simulate 1998 grains residing in a 300× 300× 300 domain
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with 2 processors and consider bin size 100. Then we can at best divide the computational
domain into 100× 300× 300 and 200× 300× 300, and as the result, instead of experiencing
2 times speed-ups, we could only save one third of computation time (256 seconds using 2
processors vs. 356 seconds using single processor). In our application, the bin size is chosen
being at least the largest equivalent grain diameter of specimen, this implies that the bin
size is the minimum scale to which the computational domain could be divided, and we
cannot gain parallel performance indefinitely just by using more computational resource, for
instance, we cannot parallelize 74 grains in 100 × 100 × 100 domain with bin size 100, and
we cannot do better than 8 processors to speed up 592 grains in 200 × 200 × 200 domain
(the running time using 8, 12 and 16 processors should be same).

Figure 3.16: Relationship between running-time and number of processors for a series of
small numerical experiments, to study of weak scalability.

Figure 3.15 and Figure 3.16 demonstrate the O(n) computational complexity of domain
decomposition. The general pattern is almost but not perfectly linear and there are several
reasons account for this. Binning algorithm is based on the idea that inter-grain interactions
would not occur if two grains are far enough apart, and DEM further assumes that only
contact forces exist between grain pairs. As a result, the contact detection step in the
proposed code acts merely as a filter to eliminate needless calculation and this process is
nonlinear. For instance, the number of grains in a bin and its neighbors is not proportional
to the number of grains that come into direct contact with the grain of interest. The
computation cost depends on both grain geometry and spatial distribution of assembly;
these properties vary substantially throughout the assembly. The force interaction phase is
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distributed into tiered steps, only those pairs having passed the contact detection check are
considered for force resolution, in which surface nodes are checked against the LS grid of
the slave grain and the process would only be further refined if there exists a node indeed
penetrates into slave grain’s surface. Those steps minimize the amount of calculation, but
also introduce sophisticated nonlinearity.

The running time breakdowns are displayed in Figure 3.17. All runtimes are decomposed
into four categories, showing the amount of time spent in each phase. These statistics
include: Tforce: Time spent for contact detection and force resolution; Tborder: Time spent
in the explicit MPI border/halo exchange portion; Tmigrate: Time spent in the grain moves
to another bin or the grain migrates from host processor to new processor; and Tupdate:
Time spent in parts of the code which manipulates the state of grains, meshes, and other
computations such as numerical integration, and grain-wall interactions. Note that, the
timings of each category is the maximum value over all MPI processors. Simulations of 4736
grains were chosen for analysis as this number was the amount to observe whether a processor
is saturated or dominated by communication overheads. The inter-grain interaction accounts
for more than 90% of running time implying that most of computation resources were used
for inter-grain interactions. The border/halo exchange component is the function of the
number of ghost grains, which is in turn controlled by the bin size and domain granularity.
The grain migration is influenced by the magnitude of external forces, boundary conditions
and grain densities. As can be seen, the running time for both MPI communication phases
are trivial compared with force interaction computation this is because the external forces
are too small to produce significant grain movements.

The time for synchronization has been implicitly included. Consider two portions of code
where MPI communication takes place. The border/halo exchange phase is synchronized
since all processors are synchronized at beginning of a new timestep. Synchronization for
the across-block migration is accomplished by setting barriers. It seems that work imbalance
appears during force resolution (and we will explain why later), which is supported by the
fact that the across-block migration would take similar amount of time as force resolution
after moving the MPI barrier between them. It is slightly confusing at the first glimpse
because MPI Alltoall() and MPI Alltoallv() functions are highly optimized and are capable
of handling peculiar situation, e.g, transmit zero-length message. The main reason appears
to be that the MPI collective operations are blocked, i.e. faster processors must wait until all
processors have completed previous phase to proceed the next. To relieve this issue, OpenMP
directives are integrated in the new code, because work imbalance issue could be relaxed in
the shared-memory implementation. Therefore, a hybrid type parallelism has potential to
the best of both worlds: fully utilizing available computing resources and minimizing work
imbalance via dynamic load scheme.

The running time breakdown may be deceptive because the time for force calculation is
exaggerated due to work imbalance, such that the percentage of force calculation is raised.
The widely adapted Amdahl’s law (Rodgers, 1985) does not consider work imbalance and
communication synchronization, a better metric serial fraction f proposed by Karp and Flatt
(1990) is used to probe the effect of work imbalance. The speed up measured by running
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Figure 3.17: Running time decompositions for simulation with 4763 grains.

the same program on a varying number of processors is defined as:

s =
T (1)

T (p)
(3.31)

where T (1) is elapsed time with 1 processor. The issue of efficiency is related to price/per-
formance, and is usually defined as:

e =
T (1)

pT (p)
=
s

p
(3.32)

Consider the Amdahl’s law which in the simplest form states:

T (p) = Ts +
Tp
p

(3.33)

Where Ts is the time taken by the portion that must be run serially and Tp is the time
in the parallelizable part. Then:

T (1) = Ts + Tp (3.34)

If the fraction serial is defined:
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f =
Ts
T (1)

(3.35)

Then the Amdahl’s law could be re-written as:

T (p) = T (1)f +
T (1)(1− f)

p
(3.36)

Or in terms of speed up s:

1

s
= f +

1− f
p

(3.37)

The serial fraction could be solved as:

f =

1
s
− 1

p

1− 1
p

(3.38)

The serial fraction f is useful because Amdahl’s law is incomplete. Firstly, Amdahl’s law
assumes that all processors compute for the same amount of time, which implies that the
work is perfectly load balanced. If some processors take longer than others, the speed-up
declines and results in an equivalently larger serial fraction. Second, there is a missing term
representing the overhead of synchronizing processors in Amdahl’s law, which is a monoton-
ically increasing function of number of processors. Since increasing overhead decreases the
speed-up, increasing f is a warning indicator that the granularity is too fine.

Processors Time (sec) Speed-up (s) Efficiency (e) Serial fraction (f)
1 852.359 1.000 1.000 -
2 459.581 1.855 0.927 0.078
4 234.757 3.631 0.908 0.034
8 118.234 7.209 0.901 0.016
16 59.269 14.381 0.899 0.008
32 35.175 24.232 0.757 0.010
64 20.198 42.200 0.659 0.008

Table 3.1: Serial friction for simulations on 4, 763 grains.

The effect of work imbalance and synchronization is illustrated in Table 3.1. The results
show that the computational effort was insufficient to saturate the CPU when more than
16 processors were used, thus large portion of running time was devoted to communication
overhead. The efficiency is interpreted in a similar way as it experiences a rapid drop when
more than 16 processors are used. The performance gain is most noticeable when all CPUs
have enough computational demand and are arranged in a balanced domain granularity. In
addition, the hardware configuration, particularly the cache and the memory bandwidth also
play a role in determining the overhead.
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3.7.2 Limitations (Strong Scalability) of Domain Decomposition
strategy

More numerical tests were conducted to explore the code competence in simulating large
number of grains. 42684 grains were constructed from relatively low-resolution images (13−
15µm/pixel) resulting substantially more avatars and smaller morphological files for each.
The total amount of computer memory used for this specimen is 2.5GB and the surface
of each grain is discretized into 279 nodes on average. The entire computational domain
is 600 × 600 × 600, the largest possible grain radius is 40, the bin size is 50, and grains
were subjected to random forces with mean magnitude about 10 times gravity to induce
grain movement. The computational domain was partitioned in a way to minimize the
communication area between adjacent processors. Even though the communication time
tends to increase as the number of processors increases, it still takes less than 1% in all
runs. Different sub-domains interact with different number of ghost bins depending on their
location, e.g., a sub-domain in corners has less interactions than a sub-domain on sides, and
both of them have less interactions than the one in the center. This causes work imbalance,
and the ratio is associated with the number of processors and bin size. Intuitively, more
processors and larger bin size yield more severe load imbalance. Table 3.2 lists the worst
cases for each run. There are several layers of intricacies that determine the exact amount of
work a processor undertakes. First, the total workload is not proportional to the number of
bins because contact detection and force resolution are extremely convoluted and nonlinear
processes, however, we can still assume this relationship is linear because the specimen is
large and dense. Second, not all ghost bins are visited equally frequently because we avoid
half computation redundancy by accepting that forces between a contacting pair matched
in magnitude and opposed in direction. The accurate estimation of visited times for a ghost
bin depends on both location of sub-domain and the symmetric pattern used for inter-grain
interactions. Again, we skip the computation and assume half of ghost bins are visited,
α = 1/2. Moreover, it is possible that no sub-domain is completely wrapped by neighbors
as this requires at least 27 processors to achieve that, in such case, determination of α is bit
tricky. Finally, apart from interactions from inner bins to ghost bins, there are also reversed
interactions from ghost bins to inner bins. This is because we only consider 13 out of 26
neighbors of an inner bin for force resolution, i.e., if we consider interactions between inner
bins and their upper neighbors, we then need to incorporate interactions from bottom ghost
bins for completeness. The maximum number of bins that a ghost bin could influence is
9 out of 13 (only consider half neighbors due to symmetry) if the ghost bin is below the
bottom and close to the center, and the minimum number is 1 out of 13 if the ghost bin is
at the corner. Therefore, another multiplier β = 1/13 ∼ 9/13 should apply. The estimated
workload is computed accordingly and the true code speed up is tabulated in Table 3.3.

As shown in Figure 3.18, the measured speed-up is close to the approximate mean speed-
up. Super linearity is observed such that parallel efficiency is greater than one, which is not
uncommon in benchmarking a parallel code because performance gain from augmenting total
cache size overweighs communication overhead especially when the number of processors used
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Processors Tforce Tborder Tmigrate Tupdate
Theoretical

#Bins
Actual
#Bins

Difference
#Bins

1 67083.43 0.00 0.00 82.30 1728 1728 0
2 32727.49 23.74 0.95 51.41 864 1008 144
4 17836.61 22.54 1.14 33.39 432 588 156
6 14422.88 21.09 0.94 41.72 288 504 216
8 12661.43 20.17 0.36 36.25 216 343 127
12 9261.44 16.47 1.13 37.68 144 294 150
16 6525.09 13.68 1.00 22.58 108 245 137
18 8814.76 15.02 1.21 27.10 96 252 156
24 7118.26 15.11 1.33 26.13 72 210 138
27 4896.77 18.87 1.54 20.67 64 216 152
32 4940.85 20.04 2.68 22.46 54 175 121
36 5545.15 13.70 2.35 19.05 48 180 132
48 4495.77 12.45 2.67 19.29 36 150 114
54 4185.16 16.18 1.17 17.90 32 144 112
64 3900.41 17.82 1.71 17.66 27 125 98
72 3431.75 11.82 3.34 27.36 24 120 96
96 3218.85 11.96 4.36 14.36 18 100 82
108 3486.49 11.32 2.36 13.04 16 96 80
144 3135.79 15.74 4.41 12.06 12 80 68
216 2758.50 13.19 6.29 10.02 8 64 56

Table 3.2: Runtime breakdown for simulations of 42, 684 grains in a 600×600×600 domain,
with bin size 50, simulations ran for 1, 000 steps, (time is in seconds).

is small. We should point out the domain decomposition is a natural and recognized parallel
strategy for many problems beyond the scope of DEM modeling, our application encourages
us to probe why the performance gain would cease at some point if we were further increase
computing resources, even though the communication cost remained at low levels. This will
no longer be an issue if the bin size is much smaller than the size of sub-domain and a better
linearity is expected.

3.7.3 Weak Scalability of Domain Decomposition Strategy

High performance computing has two common notions of scalability: strong scalability
and weak scalability. Strong scalability is defined as how the solution time varies with the
number of processors for a fixed total problem size. Our series of tests implies that strong
scalability does not hold for domain decomposition strategy if the bin size is significant
compared to the simulation geometry. Despite the inherent load imbalance nature and
extra workload presented by the domain decomposition, our code nevertheless creates very
small amount of communication overheads. Therefore, it would be better to study the weak
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Processors
Upper

(β = 9/13)
Upper

(β = 1/13)
Upper

(β = 5/13)
NLower NUpper NMean NTrue

1 1728 1728 1728 1.00 1.00 1.00 1.00
2 1036 947 991 1.67 1.82 1.74 2.05
4 618 522 570 2.80 3.31 3.03 3.76
6 546 413 479 3.17 4.19 3.61 4.65
8 367 289 328 4.70 5.97 5.26 5.30
12 323 231 277 5.35 7.50 6.25 7.24
16 271 187 229 6.37 9.24 7.54 10.28
18 282 186 234 6.13 9.29 7.38 7.61
24 237 152 194 7.31 11.40 8.90 9.43
27 245 152 198 7.05 11.39 8.71 13.70
32 198 124 161 8.72 13.96 10.73 13.58
36 205 124 165 8.41 13.92 10.49 12.10
48 172 102 137 10.05 16.98 12.63 14.92
54 166 97 131 10.44 17.89 13.18 16.03
64 144 84 114 12.01 20.69 15.20 17.20
72 138 79 109 12.48 21.77 15.86 19.55
96 116 65 91 14.93 26.46 19.09 20.84
108 111 62 87 15.51 27.80 19.91 19.24
144 93 51 72 18.57 33.73 23.95 21.40
216 75 40 58 23.11 42.87 30.03 24.32

Table 3.3: Estimated workload of different number of processors, and corresponding the-
oretical speed-up. NLower, NUpper, NMiddle, NTrue: lower bound, upper bound, mean, and
measured speed-up.

scalability of our code to show how the solution time varies with the number of processors
with a problem size per processor fixed. We designed and conducted a series of numerical
simulations and tabulated in Table 4.1. The largest possible grain radius in the simulations
is in the 30 ∼ 40 range, therefore, the bin size is 50 for all. All simulations ran for 1, 000
timesteps.

The sub-computation domain size was identical for all test series, and the number of
processors was chosen to ensure the entire domain is decomposed into identical pieces. As
illustrated in Figure 3.19, the serial code does not incur extra ghost bin interaction and
therefore takes less time to finish, simulations run with 8 processors are slightly faster than
others for similar reasons. Again, we are only able to count the number of extra ghost bins
that are potentially involved but less sure about how intensely these bins are visited. For
all other domain granularity using greater or equal to 27 processors, the computing times
are close and displays a slightly increasing trend with processors due to communication
overheads. This suggests that weak scalability still holds even though the strong scalability
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Figure 3.18: Corrected speed up relationship considering actual workload on processors,
study of strong scalability.

does not.

3.8 Conclusions

A parallel code for 3D LS-DEM to model arbitrary-shaped granular materials has been
designed and implemented in C++ building on existing LS-DEM framework developed by
Kawamoto et al. (2016). It introduces the concepts of binning algorithm and effectively
reduces the computational complexity from O(n2) to O(n). The newly implemented code
maps relationship between bins and grains with linked-list like data structure and considers
MPI communication in two major parts: border/halo exchange and across-block migra-
tion. The time complexity of execution time, communication time and parallel overhead
of proposed code are analyzed with regard to the amount of computational resources and
the problem size. The result shows that the proposed parallel code has an excellent weak
scalability numerically and has the potential for simulating large scale DEM problems with
complex-shaped grains.
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Grains Domain size Processors
Theoretical

#Bins
Actual
#Bins

Simulation
Times(s)

Serie #1 sub-domain size: 200× 200× 200
12494 400× 400× 400 8 64 125 2501.74
99952 800× 800× 800 64 64 216. 2755.65
337338 1200× 1200× 1200 216 64 216 2984.45
799616 1600× 1600× 1600 512 64 216 2991.20
Serie #2 sub-domain size: 150× 150× 150
481 150× 150× 150 1 27 27 195.95
3848 300× 300× 300 8 27 64 321.87
12987 450× 450× 450 27 27 125 360.88
30784 600× 600× 600 64 27 125 386.64
60125 750× 750× 750 125 27 125 404.79
103896 900× 900× 900 216 27 125 399.62
164983 1050× 1050× 1050 343 27 125 398.47
246272 1200× 1200× 1200 512 27 125 410.13
Serie #3 sub-domain size: 200× 200× 200
1328 200× 200× 200 1 64 64 896.66
10624 400× 400× 400 8 64 125 955.22
35856 600× 600× 600 27 64 216 1081.27
84992 800× 800× 800 64 64 216 1185.02
166000 1000× 1000× 1000 125 64 216 1139.87
286848 1200× 1200× 1200 216 64 216 1133.78
455504 1400× 1400× 1400 343 64 216 1155.67
679936 1600× 1600× 1600 512 64 216 1172.96

Table 3.4: Domain angularity parameters for studies of weak scalability

The code also has high potential to only have negligible serial fraction and low parallel
overhead for a larger, uniformly distributed assembly when executing on modern multipro-
cessing supercomputers. An important advantage of the MPI implementation is that the
code is able to run on wide variety of parallel systems, including shared-memory computers
and clustered systems. As a result, the code is highly portable. Future effort to simu-
late large-deformation problem, will require the implementation of the adaptive dynamic
mesh or quad-tree algorithm to take advantage of the computational speed offered by code
parallelization.
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Figure 3.19: Simulation times for problem of different sizes and fixed workload for processors,
study of weak scalability.
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Chapter 4

LS-DEM Modeling of Naturally
Deposited Sand in Triaxial
Compression

4.1 Introduction

The motivation for the development of a more efficient LS-DEM code was our aim to
numerically explore the mechanical behavior of dense assemblies of sand particles, such as
occur in naturally deposited sands. In this chapter, we present a parametric evaluation of
the conditions necessary for successful modeling of sand subjected to triaxial loading and we
present a LS-DEM simulation of a full-scale triaxial tests with a systematically calibrated
contact model. The grain morphology of the naturally deposited sand is reconstructed
with great fidelity from XRCT images, and a realistic confining boundary is reproduced by
modeling a flexible membrane composed of bonded spheres. The numerical triaxial test is
then conducted by mimicking a conventional laboratory test.

4.2 Metric and Visualization

4.2.1 Friction Angle and Dilatancy Angle

Considering purely frictional material, the angle of friction is one of the principal material
properties for granular assemblies. We can then resolve the stresses or, alternatively, compute
the friction angle using the Mohr-Coulomb failure criterion.

σ1 = σ3(
1 + sinϕ

1− sinϕ
) (4.1)

Hence, the peak mobilized friction angle can be calculated as:
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ϕp = sin−1(
σ1 − σ3
σ1 + σ3

)p (4.2)

Where the values of σ1 and σ3 are taken at the peak of the stress-strain curve. Similarly,
the critical friction angle can be calculated as:

ϕcr = sin−1(
σ1 − σ3
σ1 + σ3

)cr (4.3)

Dilatancy is defined as the volume change associated with the application of shear
stresses. An increase in volume, or expansion, is known as negative dilation, while a de-
crease in volume, or contraction, is known as positive dilation. The amount of dilatancy
that a granular material can experience depends on the inter-grain interlocking, which de-
pends on the fabric of the material. The dilatancy angle ψ can be estimated from the
volumetric strain versus axial strain curve of a material subjected to triaxial compression
with the following expression (Schanz & Vermeer, 1996; Salgado et al., 2000):

ψ = sin−1(
ε̇v/2ε̇a

2− ε̇v/2ε̇a
) (4.4)

In this work, we use the ”mobilized” friction angle as one of the principal parameter in
comparing the results of simulations.

4.2.2 Fabric Tensor

One of the important descriptors of granular texture is the orientational arrangement of
the constituent grains which is generally termed fabric. Several descriptions of fabric have
been suggested in the literature, each relying on the definition of a unit vector describing the
direction of a certain microstructural property such as the grain major axis, branch vectors,
contact normal. To shed light on the behavior of microstructure at locations of interest in the
macroscopic domain, Satake (1982) and Oda et al. (1985) provided a contact normal-based
tensorial formulation. They denoted E(n) as the orientational density function of these
microstructural quantities such that

∫
Ω
E(n)dΩ = 1 and E(n) = E(−n) due to the lack of

intrinsic parity. A second order approximation of E(n) gives rise to the usual second-order
fabric tensor.

G =

∫
Ω

E(n)n⊗ ndΩ (4.5)

Or, in the discrete form:

G =
1

Nc

Nc∑
k=1

nk ⊗ nk (4.6)
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Where Nc is the total number of contact points, and n describes the unit vector. Numer-
ous investigations have demonstrated that the second order fabric tensor accurately approx-
imates both the distribution of the orientation of the contact normals and the distribution
of orientation of of normal and tangential contact forces. The primary direction of contact
forces often coincides with the principal stress axis, whereas the principal direction of the
contact normal fabric changes in response to shear to align with the principal stress (and
strain rate) axis as well. This is also true for other classes of fabric tensors, such as those
that describe the orientation of elongated particles. To further capture the highly anisotropic
nature of packing during the course of shearing, the deviatoric second-order fabric tensor F
characterized by the contact normal is defined as:

F = G− trace(G)

3
I (4.7)

F′ =
15

2
F (4.8)

F is the deviatoric part of G, F′ is scaled so that the orientation distribution probability
density function E(n) of contact normal n in the global coordination system can be directly
approximated by the second-order Fourier expansion as:

E(n) =
1

4π
(1 + n · Fn) (4.9)

Another scalar anisotropy factor to quantify fabric anisotropy is defined as:

a =
15

2

√
3

2
F : F (4.10)

4.2.3 Force Chain

Continuum mechanics is based on the assumption that applied forces are uniformly trans-
mitted through a homogenized granular system. However, in reality, the interparticle force
distributions are highly heterogeneous, and the applied load is transferred via a network of
interparticle force chains. Within the granular system, this geometric disorder of particles
results in inhomogeneous but structured force distributions. Buckling of these force chains
results in deformation, and energy is dissipated by sliding at the clusters of particles be-
tween the force chains. Photoelasticity (Daniels et al., 2017; Abed Zadeh et al., 2019) and
related techniques, as well as DEM, have been the most widely used approaches for detecting
force chains. External loads are transmitted through a network of inter-grain contact forces.
This is referred to as the strong force network, and it is the primary microscopic property
that facilitates load transfer throughout the granular system. On the other hand, grains
that are not part of the strong force network float like a fluid with very small loads at the
inter-grain contacts, this phenomenon is known as a weak cluster. Tangential contact forces
between grains in strong networks are significantly smaller than normal contact forces, with
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magnitudes close to the frictional resistance between the grains. As a result, the frictional
resistance between grains in weak clusters is almost completely mobilized, and the grains
behave similarly to a viscous fluid. Therefore, deviatoric load is transmitted entirely through
normal contact forces in strong networks, with only a minor contribution from weak clusters.
The two networks exhibit fundamentally different features, with the strong network’s forces
decaying exponentially and the forces of a weak network decaying power law-like (Mondain-
Monval et al., 1998; Antony, 2000). Stress propagates along characteristic directions, which
correspond to the experimentally observed force chains in granular structures (Radjai et al.,
1996). As deformation progresses, the number of grains in the strong force network decreases
during shearing, resulting fewer grains to share the increased loads (Kuhn, 1999) and most
of sliding grains are in weak clusters (Radjai et al., 1996). Additionally, when a strong force
network buckles, it collapses, resulting in the formation of new force chains. As a result,
the spatial distributions of the strong force network are neither static nor persistent. There
is a nonproportional relationship between macroscopic friction angle of the grain assembly
and interparticle friction angle. The percentage of sliding contacts decreases as interparticle
friction increases (Thornton, 2000). As a result, interparticle friction works as a kinematic
constraint for the strong force network rather than a direct source of macroscopic shear resis-
tance. Specifically, strong force chains could not form if interparticle friction was zero, and
the grain assembly would act like a fluid. Increased contact friction improves system stability
and reduces the number of contacts needed to establish a stable condition. However, as long
as the strong force network can be created, the magnitude of interparticle friction becomes
irrelevant.

4.2.4 Macroscopic Stress and Strain

It is important to recognize that direct numerical simulations of the mechanical response
of a macroscopic structure composed of a micro-heterogeneous material are virtually im-
possible, and that aggregate or macroscopic response within a statistically representative
volume element is characterized using regularized or homogenized material models (Zohdi &
Wriggers, 2001). The average macroscopic stress in a granular assembly is defined as:

σ̄g =
1

Ωg

Ng
c∑

c=1

sym(f ⊗ xc) (4.11)

Where xc is the vector defined from the origin to the point of application of contact force
f c at the contact point c, with a total number of contact points N g

c in the grain g. This is the
discrete form of Christoffersen et al. (1981) and a more generalized average stress theorem
considering body forces can be found in Zohdi and Wriggers (2004). In three-dimensional
setting, two often referred quantities: the mean effective stress p and the deviatoric stress
q, are derived from this formula:

p =
1

3
σ̄g (4.12)
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q =

√
3

2
s̄g : s̄g (4.13)

For the strain measurement in a conventional triaxial test, as modeled herein, the axial
strain εa and volumetric strain εv can be determined based on the displacement of the loading
platen and volume change of the encasement according to the following equations:

εa = −
∫ L

L0

1

l
dl = ln

L0

L
(4.14)

εv = −
∫ V

V0

1

v
dv = ln

V0
V

(4.15)

Where L0 and V0 are the initial height and volume of the isotropically consolidated
specimen right before shearing, and L and V are the quantities of the deformed specimen
during the course of shearing.

4.3 LS Modeling Configuration

4.3.1 Numerical Apparatus

A conventional triaxial test set up consisting of a cylindrical sample encased in a flexible
membrane was modeled using LS representation. The end platens were attached to the
flexible membrane and the top platen was allowed to move vertically and rotate about the
ram-platen contact point. The use of a flexible membrane and a rotatable platen is critical
for the development of shear bands, as without them, the deformation of specimen would be
influenced locally by boundary geometry. Figure 4.1 is presented for ease of visualization.
We found that the rotation of the upper platen is a significant factor in determining the type
of shear band formed. The upper platen rotates as a result of the uneven force generated
by the complex arrangement structure and interaction of encased LS avatars. Accordingly,
the specimen deforms asymmetrically and, particularly at higher confining pressures, the
samples tend to generate a single shear band. In comparison, if the upper platen does not
rotate during shearing, the sample dilation is more uniform in the radial direction. The
samples generate an X-shaped shear band in this case, see e.g. Liang and Zhao (2019) and
Wu et al. (2021).

The triaxial test was performed in quasi-static conditions in two principal stages: isotropic
compression and deviatoric loading. After the LS avatars were reconstructed in place and
the material properties were assigned according to the contact-stiffness model, the grain as-
sembly was subjected to isotropic compression with confining pressure of σc = 100kPa over
a large number of timesteps to reach mechanical equilibrium. At the end of consolidation,
the middle portion of specimen slightly shrinks, and this is consistent with the experimental
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Figure 4.1: Numerical illustration of isotropically consolidation stage (a) before consolida-
tion; (b) after consolidation; (c) membrane deformation.

observations. Then, axial loading was applied following a strain-controlled scheme with a suf-
ficiently low loading rate to maintain the quasi-static condition. The loading was performed
in a non-gravity environment to avoid the effect of gravity-induced inhomogeneity.

4.3.2 Scaling a Modeling Representation

LS reconstructed avatars for granular materials produced from XRCT images, numer-
ically recreate the volume, the moment of inertia, and the mass center of the particles.
Therefore, a scaling factor is necessary to link numerical models to the laboratory triaxial
tests. The value of scaling factor is the XRCT image resolution and varies as per the in-
strument, typically between 3µm/pixel and 30µm/pixel. A smaller value represents a more
accurate capture of the grains shapes and fabric while also inferring a higher numerical cost
for both reconstruction and simulation. High-resolution avatars have more discretized nodes
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to represent their geometry and to participate force resolution. Indeed, increasing the num-
ber of nodes on the avatar surface increases computational effort because contact detection
and force resolution are conducted at node level, even though parallel like domain decom-
position aids in reducing search complexity and optimizing work balance. We can use either
meters or pixels as the length unit. Accordingly, other parameters are converted to their
equivalents and are listed in Table 4.1. While the virtual experiment appears to be indepen-
dent of the scaling factor, as long as the units are consistent throughout the modeling, and
the scaling factor can be eliminated from the governing equations. However, the confining
pressure must be correctly scaled because it is associated with the mechanical equilibrium of
the membrane sphere under confining pressure and grain resistance where the scaling factor
does not cancel out.

Unit in experiments Unit in numerical models

Density ρ (kg/m3) ρ̃ = ρ · k3 (kg/pixel3)
Stiffness s (N/m = kg/s2) s̃ = s (kg/s2)

Pressure P (N/m2 = kg/m · s2) P̃ = P · k (kg/m · pixel2)
Global Damping ξ (1/T ) ξ̃ = ξ (1/T )

Friction Coefficient µ (1) µ̃ = µ (1)

Length L (m) L̃ = L · k (pixel)

Table 4.1: Unit conversion with scaling factor k (µm/pixel)

4.3.3 Model Parameters

Two specimens were generated from XRCT images on two different samples taken from
the same site but with different image resolutions of 4.3µm/voxel and 9 ∼ 10µm/voxel,
respectively. The XRCT images with the lower were less clear and produced less angular
avatar shapes and eroded grain morphologies. Thus, while the high-resolution scan was able
to preserve the in-situ void ratio of the sample, the low-resolution scan failed to capture
significant amount of surface roughness, inter-grain contact and more importantly, small
grains. As a result, the void ratio of the reconstruction from the low-resolution scan was as
high as two, in that avatars were left unsupported by neighbors. Notably, very tiny avatars
are often omitted from simulation to guarantee a larger timestep, but the total volume is
negligible.

Figure 4.2 shows the two different samples that were reconstructed from the scans. We
used the smaller, high-resolution scan for the parametric studies in majority of the simu-
lations, with the sample reconstructed from the low-resolution scans used to illustrate the
importance of accurately reconstructing the original fabric of the sand. The microscopic
parameters used for LS-DEM investigation of triaxial compression test is tabulated in Table
4.2.
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Figure 4.2: Numerically assembly reconstruction from (a) low-resolution (∼ 70, 000 grains,
9 ∼ 10µm/voxel); (b) high-resolution (∼ 17, 000 grains, 4.3µm/voxel).

4.4 Numerical Modeling Considerations

4.4.1 Numerical Integration Scheme

The penalty-based DEM calculates the resultant force acting on objects and then updates
accelerations and velocities using a numerical integrator. It is a second-order accurate finite
difference scheme in time-centered form Walton and Braun (1993), which takes into account
the ‘tangent’ change in velocity.

vt+ 1
2 = vt− 1

2 + v̇t∆t (4.16)

xt+1 = xt + vt+ 1
2∆t (4.17)

Which is equivalent to Lee and Hashash (2015):

xt+1 = xt + ẋt∆+
1

2
ẍt∆t2 (4.18)

To guarantee the numerical stability, the central finite difference schemes adopt a time
step that has to be equal to or less than a critical time step ∆tcr because this scheme is
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Parameters Symbol Values Units
Global damping ξ 1.0 1/s

Platen
Platen Radius Rp 500 pixel
Platen Height Hp 800 pixel

Density ρp 2, 500 kg/m3

Normal stiffness Knp 3× 104 N/m
Shear stiffness Ksp 2.7× 104 N/m

Grain-platen friction coefficient µp 0.5
Membrane
Sphere radius rb 10 pixel

Sphere-sphere normal stiffness Knbb 50 N/m
Sphere-sphere tangential stiffness Ksbb 50 N/m
Grain-membrane normal stiffness Knb 3× 104 N/m

Grain
Density ρp 2, 500 kg/m3

Inter-grain normal stiffness Kn 3× 104 N/m
Inter-grain tangential stiffness Ks 2.7× 104 N/m

Friction Coefficient µ 0.60 ∼ 0.75

Table 4.2: Microparameters used in LS-DEM of triaxial compression test

conditionally stable. The calculation logic of time step for explicit DEM is based on Newton’s
second law. To ensure the solution produced by the model remains stable, the time step in
each calculation cycle should not exceed a critical time step that is related to the stiffnesses,
densities, geometries of modeled objects and minimum eigenperiod of the granular assembly,
and often expensive to compute. Instead, Itasca (1998) estimates the critical time step for
an assembly of grains using an equivalent single degree of freedom system and concludes
that the critical time step is governed by the minimum grain mass mmin and the maximum
spring stiffness Kn in an assembly.

∆tcr ≪
√
mmin

Kn

(4.19)

Penzien (1993) and O’Sullivan and Bray (2004) further performed a series of extensive
numerical experiments on the appropriate selection of ∆t and demonstrate that a much
smaller ∆t should be used than ∆tcr to ensure the stability for two reasons: 1) insufficient
small-time step induces significant oscillations in the numerical solution; and 2) unreasonably
excessive energy will quickly accumulate with simulation time because of the numerical error
associated with the oscillations. For those reasons, a factor of safety of 0.1 ∼ 0.2 is often
used. In many granular material simulations, ∆tcr may be very small because the particles
are assumed to be rigid. Therefore, very high contact stiffness Kn is required to prevent
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particle penetration. This also leads to a large number of iterations for simulation, which is
fatal in terms of demand on computational resources.

To simulate the triaxial test, the grain assemblies were vertically compressed using a
constant downward displacement of the top platen while maintaining a constant confining
pressure on the flexible membrane. To achieve quasi-static shearing, the shear rate must
be slow enough that the kinetic energy generated by the shear is negligible. As LS-DEM is
more computationally intensive than conventional penalty-based methods, we can complete
only about 20, 000 iterations per day for a full-scale reconstructed specimen containing on
the order of 106 grains.

In this case, we wanted our simulation to finish in a reasonable amount of time, which
means numerically compressing the specimen to a sufficiently large deformation to observe
a fully developed shear band. As a result, the critical time step ∆tcr and the maximum
number of iterations were related via the loading rate: the amount by which the upper
platen is lowered in one step. The velocities of the loading platens are described in units
of m/s and m/step in the literature, but seldom reported in relation to the time step for
describing the loading strain rate in the compression tests. For example, the recommended
loading rate for compression test in the PFC user manual is 0.02 m/s (Itasca, 2004) so
that inertial effects, such as platen loads in excess of their quasi-static equilibrium values
are avoided. In other studies, a variety of different loading rates, ranging from 0.0016 to 0.3
m/s, were used when modeling virtual quasi-static tests on granular material (Hazzard et al.,
2002; Potyondy & Cundall, 2004; Cho et al., 2007; Fakhimi & Villegas, 2007; Park & Song,
2009). These correspond to very high loading rates in the physical world. Intuitively, if the
upper platen moves much faster than the grains in direct contact with the platen, responses
in the upper portion of the specimen are not adequately transmitted downward, triggering
dynamic effects. Our simulation was conducted in a quasi-static conditions and there are
two widely used and comparable criteria for choosing a strain rate for simulation. Zhao and
Zhao (2019) recommend that a loading rate less than 1% axial strain per second should be
sufficiently small to numerically reproduce a quasi-static environment. Alternatively, the
inertial number Iinertia, as MiDi (2004) and Da Cruz et al. (2005) defined below is used to
provide quantitative insights into the selection of loading rate:

Iinertia = ε̇
d√
σc/ρ

< 10−3 (4.20)

Where d is the average equivalent grain diameter in assembly, ρ is the density of grain
(2, 650 kg/m3), and σc is the confining pressure (100kPa), ε̇ is the loading strain rate. The
physical meaning of inertia number is the ratio of time scale of grain rearrangement to the
time scale of packing shear. MiDi (2004) and Da Cruz et al. (2005) suggested that: although
a real triaxial compression test requires Iinertia to be as small as 10−9, 10−3 is the threshold at
which further decreasing Iinertia has no effect on the measured macro-properties (Potyondy
& Cundall, 2004), and Hazzard et al. (2002) demonstrate that loading velocity has little
effect on the mechanical behavior of the sample being modeled as long as the velocity is low
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enough to avoid the generation of transient waves.
Also, the formulation of Iinertia,

d√
σc/ρ

is independent of the scaling factor k after con-

sidering the conversion relationship tabulated in previous section, while the strain loading
rate ε̇ is dependent on the timestep ∆t which is associated with the scaling factor k. Using
a larger k results in a larger timestep and hence smaller Iinertia. As a result, using a scaling
factor k larger than the actual magnitude reduces computational effort and was adopted
by Thornton (2000) and Ng (2006). In our work, we explored the possibility of scaling up
the grain mass for a larger time step to bring the virtual triaxial simulation as close as
possible to that used in the laboratory. To achieve this, we increased the scaling factor to
the point where 20% axial strain can be achieved about 40, 000 iterations and the loading
strain rate satisfies both practical and quantitative criteria to guarantee a quasi-static con-
dition. It is worth noting that Lee et al. (2012) used a slightly more complicated scheme
to increase loading rate while maintaining quasi-static conditions; they discretely moved the
top platen at a much higher loading rate and allowed the grains to re-equilibrate due to
the top platen’s excessive penetration into nearby grains. Alternatively, re-formulating the
penalty-based method to an impulse form is another effective way to increase the critical time
step (Mirtich & Canny, 1995). In contrast to the penalty-based method, the impulse-based
method does not require the use of arbitrarily large stiffness and damping parameters as it
solves for velocities directly using Newton’s second law’s impulse-momentum form. This en-
ables an impulse-based method to use a time step several orders larger than a penalty-based
DEM, resulting in comparable computational efficiency. We implemented and evaluated the
impulse-based LS-DEM code in other studies discussed in Chapter 5. The primary limitation
of the impulse-based method remains its inability to model a system of irregular, noncon-
vex, non-uniform objects, particularly in a highly confined quasi-static environment in which
objects of very different shapes and sizes interact at numerous contact points and have low
velocities. This makes collisions within a contact group extremely difficult to solve using a
velocity-based algorithm.

As previously stated, the scaling factor k can be increased to allow for a larger time
step in order to prolong the time can be modeled. This measure, however, has an effect on
the maximum confining pressure applied to the membrane, as it results in excessive overlap
between the membrane and the specimen. Similar issues were also reported by De Bono et
al. (2012). Thus, increasing the scaling factor requires increasing both the grain-membrane
and inter-grain stiffness, or decreasing the magnitude of confining pressure. We conducted
a series of simulations to analyze the influence of confining pressure while maintaining a
constant confining pressure to contact stiffness ratio. This allowed us to explore how the
scaling factor affects the simulation results, as setting the scaling factor to its true value
is computationally very intensive. The true scaling factor is in the order of 10−5 and the
contact stiffness is in the order of 105, in order to maintain equilibrium against a 100kPa
confining pressure. When the scaling factor is increased from 10−5 to 10−2, either the contact
stiffness should be increased proportionately, or the confining pressure should be decreased
to retain the force balance of membrane spheres. In the simulations illustrated in Figure 4.3,
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Figure 4.3: The effect of reducing confining pressure due to change of scaling factor.

the confining pressure σc of 1, 10, and 100kPa corresponds to using 100, 10, and 1 times
larger timestep, respectively. There are no obvious differences in deviatoric stress, peak
mobilized friction angle, or dilatancy between the three sets of parameters, although there
are some minor fluctuations as the specimen approaches the critical state. However, this is
of less interest for our current study, and it is believed that this is partly attributable to
inaccuracy in volume integration due to the severe membrane distortion at axial strains in
excess of 10%. All tests conformed with the inertia number requirement (< 10−3) to retain
the quasi-static condition.
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4.4.2 Flexible Membrane Modeling

For the sake of simplicity, the flexible membrane in our simulated triaxial tests is fric-
tionless, and the degrees of freedom for each membrane sphere are reduced from six to three,
obviating the need to compute moment and rotation. This assumption contributes to the
model membrane’s stability, as numerically integrating Euler’s rotation equation is a source
of instability. Another problem occurs when the membrane stretches, because a few grains
contained within can escape and become uncontrollable. Although this has no effect on the
simulation results, it invalidates the subroutine used for dynamic domain re-decomposition.
Specifically, the purpose of domain re-decomposition is to re-generate bins, blocks and sub-
domains based on the current grain distribution to best balance workload across processors.
When a grain escapes from the flexible membrane and flies far away from the main body,
the re-decomposition strategy will incorrectly consider a much larger domain as the current
configuration and distribute grains accordingly, resulting in the majority of processors being
idle and one processor performing all work. To address this issue, we used a double-layer
membrane with a slightly larger sphere radius in the outer layer. This resulted in membrane
spheres being displaced slightly to cover gaps in the first layer, preventing grain from escap-
ing. The confining pressure was then applied to both layers with 80% of the pressure on the
inner layer and 20% on the second layer to obtain the desired magnitude.

The computational cost of the membrane is determined by the radius ratio of the grain
to the membrane sphere. Larger elements are more computationally affordable and more
numerically stable, making it better able to withstand massive deformations when spheres are
pushed into an incorrect geometry. However, if the ratio decreases by using larger membrane
spheres, the potential for leakage of small soil grains through the membrane increases. Due
to volumetric dilation caused by large deformation, the pore size (spacing between membrane
spheres) can also increase. As a result, an appropriate radius ratio should be chosen to strike
a balance between computational time and grain leakage. Kawamoto et al. (2018) determined
the membrane sphere size as one third of the average size in the specimen and Kim et al.
(2020) selected the value to be as twice the radius of the smallest grain. The effect of
membrane sphere radius was investigated for an assembly with an average equivalent radius
of 18, the size of sphere is 6, 8 and 10 for the first layer of flexible membrane and 1.1 times
larger for the second layer, no grain leakage was detected for all tests. The simulation results
in Figure 4.4 for rb = 8 and rb = 10 matched, whereas the simulation with rb = 6 suffered
numerical instability at high shear strain and manifested itself by uncontrolled volumetric
contraction. The stability analysis of membrane element is analogous to the grain assemblage
stability in that both can be thought as a mass-damped system

mẍ+ ξẋ+ kx = 0 (4.21)

The contact model between membrane spheres can then be calibrated to match the be-
havior of the particle-based membrane to that of a real membrane at the selected radius ratio.
The effect of membrane stiffness Km on the macroscopic behavior of a granular assembly
was investigated using a series of parameter studies ranging from 50N/m to 1, 000N/m, as
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Figure 4.4: The effect of membrane sphere’s radius.

shown in Figure 4.5. The results show that the membrane stiffness does not have significant
influence on peak mobilized friction angle, or initial dilatancy in a triaxial simulation. While
a stiffer membrane provided a stronger support for the specimen, as indicated by a slightly
larger elastic modulus and less volumetric contraction. By making the boundary flexible,
the physical integrity of specimen is maintained while its tolerance for large deformations is
increased. In addition, the system gains additional degrees of freedom to deform and more
possibilities for shear band development.

4.4.3 Numerical Stability of Angular Velocity Integration

A LS avatar integrates angular velocity and rotation using Euler’s rotation equation,
which is not necessary for conventional DEM simulations of spheres or discs.
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Figure 4.5: The effect of membrane stiffness Km.

α1 = [M1 + ω2ω3(I2 − I3)− ξI1ω1]/I1

α2 = [M2 + ω3ω1(I3 − I1)− ξI2ω2]/I2

α3 = [M3 + ω1ω2(I1 − I2)− ξI3ω1]/I3

(4.22)

Where αi is the angular acceleration, ωi is the angular velocity, Ii is the (diagonal)
moment of inertial tensor in the principal body-fixed frame, and Mi is the torque vector in
the principal body-fixed frame.

Euler’s equations are nonlinear and implicit due to the presence of angular velocities
on both sides. As a result, a predictor-corrector algorithm is proposed for appropriately
integrating the rotational components of motion; this method resembles a fixed-point method
and is stable and convergent when the timestep is sufficiently small. Since LS-DEM employs
a time step smaller than the critical time step, this value also ensures the predictor-corrector
algorithm’s numerical stability. Additionally, global damping is used to dissipate excessive
energy, and to further reduce the possibility of accumulated numerical errors. However,
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simulations can still occasionally explode, and it is hypothesized that this is due to some
grains erroneously attract forces and moments that are too large and cause the predictor-
corrector scheme explodes within a single iteration.

The principal reason for such event in our simulations is that in constructing the avatars
from images of grain assemblies, grains can be accidentally reconstructed inside or cross
penetrating other grains. We addressed this issue by limiting the coordination number of
a grain, which is correlated with the packing density of a granular assembly. The simplest
definition of the coordination number is the mean number of contacts per particles:

Z =
∑
i∈N

N i
c

N
(4.23)

Where N i
c is the total number of contacts of the i-th grain and N the total number of

grains in the assembly. The scalar coordination number is strongly related to the internal
fabric structure of the granular material and is highly correlated with the mechanical sta-
bility (Nouguier-Lehon et al., 2003; Mitchell & Soga, 2005). In addition, the coordination
number is sensitive to grain shape, which has a significant impact on deformation of a gran-
ular assembly (large drop in mean coordination number corresponding to larger dilatancy).
Irregularly shaped grains result in greater coordination number. The experimental data in-
dicates that a grain coordination in naturally deposited sands is between 8 and 16, and our
parametric study shown in Figure 4.6 demonstrates that as long as the threshold value is
within a reasonable range, no significant differences in the simulation results are observed.
Furthermore, increasing the threshold value to 64 did not incur numerical instability. This
confirms that numerical instability is primarily due to the severe overlap between avatars and
hence scaling extremely large forces and moments down is a rational solution. Interestingly,
reducing the coordination number to four seems to have very little impact on the simulation
results. This is because the external loading consists primarily of confining pressure from
the encased flexible membrane and compression forces from the downward moving platen;
this leads to only a small portion of the assembly being directly subjected to those forces.

4.5 Parametric Study and Model Calibration

The objective of parameter study was to determine the suitable micro-parameters for
DEM simulations. The influence of membrane properties and scaling factor were already
discussed. The other model parameters were determined by trial and error until the sim-
ulation produced an initial stiffness and peak friction angle that were comparable to those
obtained from a triaxial compression test on a naturally deposited sand specimen. All ex-
periments were conducted on an assembly of 4, 852 avatars constructed from high-resolution
(4.3µm/voxel), excellent-quality images such that original soil fabric was well-preserved and
was found to behave consistently with real laboratory results. The number of avatars is
sufficient for study of macroscopic behavior and the computational cost is affordable for
parameter studies.
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Figure 4.6: The effect of restricting coordination number for numerical stability concerns.

4.5.1 LS Avatar Node Density

Grain avatars are characterized and represented by the discretized nodes seeded on the
surface and the node density is closely associated with the computational cost in inter-grain
force resolution. This representation is similar to a triangulated surface mesh except that LS-
DEM does not store connectivity information between nodes and therefore does not consider
edge-surface collision. The density of nodes on a grain is entirely up to the designer. It
has no effect on the representing geometry but does have an effect on the computational
complexity associated with force resolution.

We studied the consequences of decreasing the node density of the avatar while main-
taining a balance between precise grain morphology and simulation time. To do this, we
considered only the N -th nodes and skipped the rest during the force resolution step when
iterating over discretized nodes on the master avatar’s surface and marked down the speed-
ups. To produce similar magnitudes among different runs, we multiply the resulting forces,
moments, and coordination number by N . The results in Figure 4.7 indicate that the degree
of reconstruction fidelity significantly affects the entire computation time, since decreasing
node density results in linear performance benefits. The initial stiffness and maximal mobi-
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Figure 4.7: The effect of avatar node density.

lized friction angle are reasonably consistent across simulations with N ≤ 3. Despite the fact
that the amount of dilatancy is reduced even for scenario N = 2, all simulations achieved
the same critical condition. This data indicates that we can decrease the resolution of the
avatar for faster code execution but we do undertake the risk of missing contacts if too many
nodes are skipped. While we believe that reducing node density on reconstructed avatars is
a viable acceleration strategy, we are still in need of clean, high-resolution XRCT images for
high-fidelity grain morphology reconstruction, as the two are fundamentally different aspects.
We explored herein the implications of node density with the underlying premise that grain
geometry is correctly represented and that small grains are retained to accurately duplicate
the void ratio of the overall assemblage. By comparison, if the underlying dataset (XRCT
pictures) is significantly contaminated, we are incapable of reproducing naturally deposited
soil fabric in-situ, let alone modeling mechanical and kinetic behaviors on the numerical
equivalents.
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4.5.2 Confining Pressure

The magnitude of confining pressure in our virtual numerical modeling depends on the
membrane-grain contact stiffness as too large confining pressure will push membrane spheres
completely enter into grains, leading to heavily distorted membrane and uncontrolled be-
havior afterwards. Thus, the ability to withstand high confining pressure indicates that
the assembly is well-packed, as membrane penetration effect will result when the packing
is loose and when the membrane element is small. The range of confining pressure can be
estimated from the force equilibrium relationship of membrane spheres and the maximum
value is found around 500kPa with the membrane-grain stiffness is fixed to be 30, 000N/m.
Which is enough for our purpose of study to investigate soil behavior under non-crushing
stress environment where the stress-strain curve did not show the brittle-ductile transition.
The results (Figure 4.8) show that the friction response increase with increasing confining
pressure, strain softening takes place with all confining pressures and the addition of confine-
ment decreases the post-peak load-bearing capacity of sample, thus making the post-peak
curve steeper. When the confining pressure σc is greater than 200kPa, the initial stiffness,
peak mobilized friction angle and volumetric dilation seem to be identical, while a larger con-
fining pressure drives membrane element enter into the specimen and halts the simulation.
It is important to note that in this case the membrane configuration controls the maximum
confining pressure in the simulation. Alternative membrane construction could be used to
model tests with higher confining pressures.

4.5.3 Normal and Shear Stiffness Ratio

Two linear springs are inserted at contact between grains, one for the normal stiffness
specified by the contact Kn and another for the shear stiffness specified by Ks. Normal force
is proportional to normal stiffness and the overlap of two grains; shear force is proportional
to shear stiffness and the relative rotation of two grains. The effect of altering the ratio of
normal to shear stiffness Ks/Kn was calibrated using a series of simulations. The friction
coefficient has been set to 0.75, while Ks/Kn has been set to 0.2, 0.4, 0.6, and 0.8. Figure
4.9 illustrates the effect of the normal to shear stiffness ratio on the mobilized friction angle
ϕ and volumetric strain εv vs axial strain εa with a confining pressure of 100kPa. Elastic
stiffness increases as the normal to shear stiffness ratio increases. Additionally, the peak
strength increased somewhat, resulting in a minor rise in the angle of internal friction. On
the other hand, the volumetric strain at initial dilatancy is nearly identical for all ratios,
however it increases more pronouncedly with the ratio Ks/Kn as the specimens were sheared
to approach the critical state. A high ratio of Ks/Kn represents high ability of tangential
deformation resistance for grains in contact, and the resemble effect is to increase the lateral
deformation for the same axial deformation, generating more stable force network in the
axial direction, which makes the sample stiffer. Ks is frequently smaller than Kn in DEM
modeling to encourage numerical stability and prevent producing fictitiously large moments
that could blow out the simulation.
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Figure 4.8: The effect of confining pressure, simulations with σc = 200kPa and σc = 500kPa
ended earlier due to membrane distortion.

4.5.4 Grain Shape

The initial positions of high-resolution reconstructed avatars were employed to gener-
ate a spherical counterpart with equivalent radius to ensure the same initial void ratio as
the LS reconstructed avatars (Figure 4.10). There may be some exaggerated or even un-
reasonable intersections for some spheres in the initial packing. Therefore, the packing is
further subjected to more DEM cycles in the absence of gravitational force to reach a state of
mechanical equilibrium. Throughout the course of stabilization process, spheres’ velocities
are periodically reset to zero to avoid excessively large velocity due to possible significant
penetration and collisions. As summarized by Mitchell and Soga (2005), even though the
void ratios of an assemblage of uniform spheres are in the range of 0.35 to 0.91 depends
on different packing patterns, the net void ratio may not be much different from the real
granular assembly. Because, on the one hand, smaller grains can occupy pore spaces between
larger grains, and on the other hand, irregular grain shapes produce a tendency toward lower
densities and higher porosities. The void ratio of an assembly of reconstructed avatars is
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Figure 4.9: The effects of ratio of normal and shear stiffness Ks/Kn.

slightly larger than the true value as tiny grains were not captured during image processing
and also eliminated from simulation to ensure numerical stability.

The parameters of modeling idealized spherical particles were not calibrated and the
rolling friction and bonding were not considered to compensate the influence of grain shape
and surface roughness in current work, this is thought to be the primary reason that spher-
ical particles did not exhibit the peak mobilized friction. The influence of internal friction
coefficient is illustrated in Figure 4.11 to show that, regardless the parameter settings, spher-
ical assemblies were not able to display dilatancy and peak mobilized friction angle which
due mainly to particle interlocking and surface roughness, even though the void ratio is
kept the same as the assembly of avatars. When the internal friction coefficient µ decreases
and eventually becomes zero, specimen deformation tends to be a more localized process, as
interactions can only be transferred via direct normal contact, and no friction means that
spheres have a higher degree of rotation and can find the optimal location to accommodate
themselves without influencing others to a greater extent.
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Figure 4.10: Left: An assembly of spherical particles. Right: An assembly of LS recon-
structed avatars. Both specimens have identical void ratio.

4.5.5 Initial Void Ratio

The initial void ratio of a specimen is critical to the stability of the simulation because
it can be unrealistically high or low and outside the normal range. For example, a nu-
merical specimen that is reconstructed from low-resolution or polluted images has difficulty
preserving small grains and capturing sharp contact edges; as a result, the numerical void
ratio is unfaithfully large, individual grain is isolated and unlikely to be supported by its
neighbors in order to resist confining pressure, causing the membrane to shrink significantly.
To solve this issue, the assembly has to settle before performing a virtual compression test,
but an erroneous choice of settlement force can result in an inhomogeneous and excessively
dense specimen, which means grains may interpenetrate. In such case, very large forces are
generated at the initial time step as the grains attempt to adjust their positions to avoid
overlapping but are unable to do so without interfering others.

This issue not unique to LS-DEM; in conventional DEM, which represents grain with
simpler geometries, stabilizing the specimen prior to simulation is a standard step to avoid
numerical instability (Itasca, 2004). But our issue is unique in that we want to preserve as
much of the soil fabric as possible and to reconstruct avatars with the same initial positions
and rotations as they were in-situ. This is one of the most significant challenges, and there
is still a sizable research gap to close. To achieve the desired void ratio when using grain
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Figure 4.11: The effect of internal friction coefficient of spherical grains.

reconstruction from low resolution scans, we used a numerical pluviation scheme to control
the drop height: the loose specimen is divided into several segments along its length, and a
segment is activated at a time, subjected to a vertical force, and pluviated from the prescribed
height. We encased the sample in a cylinder during pluviation to prevent excessive lateral
movement and to avoid disturbing the original fabric. Following that, the packing is further
subjected to more DEM cycles without any external forces to reach a state of mechanical
equilibrium, this procedure ceases when the internal stress of packing is stabilized at a value
that is considerably smaller than the target confining pressure (σc = 100kPa in current
work). However, all of the above-mentioned numerical treatments alter the original fabric.
As grains bounced against one another and migrated in random directions during dynamic
pluviation to the desired void ratio, their initially ordered arrangement became random,
defeating our goal of preserving as much of the original soil fabric as possible. In contrast,
these steps are not required when the grains and fabric are constructed using high resolution
XRCT images.

The influence of the initial void ratio and particle shape is illustrated in Figure 4.12. The
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fabric reconstructed from the high-resolution images could achieve almost the same void
ratio as the real sample, although fair number of tiny avatars was omitted from numerical
specimen for the sake of numerical ease, the total volume occupied by them was quite
small. In contrast, the initial void ratio was significantly less than its true value for the
numerical specimen reconstructed from the low-resolution scan and different void ratio can
be manufactured via a numerical settlement or pluviation procedure. In addition to the
high-resolution specimen and its spherical counterpart mentioned in previous discussion, we
constructed another specimen containing ∼ 17, 000 avatars using medium-resolution images
(9 ∼ 10µm/voxel). The results show that the relatively dense specimens for both high- and
medium-resolution LS avatars show strain hardening, a peak at around εa = 2.0 ∼ 3.5%,
and gradual softening. Spherical grains and low resolution avatars, on the other hand,
exhibit purely strain hardening and volume contraction until they achieve critical states. In
comparison to perfectly spherical grains, irregularly shaped avatars have larger mobilized and
peak friction angles and are less likely to rotate than spherical grains. The peak mobilized
friction angle increases from ϕp = 35◦ (spheres) up to ϕp = 49◦ (high resolution, high
density avatars). In turn, the residual internal friction angle coincides for all simulations.
The critical condition is always attained at a considerable axial strain around εa = 15%,
where the vertical normal stress remains constant with the specimen deforming at constant
volume. This implies that grain shape is not significant in determining the global critical
internal friction angle, as would be expected.

4.6 Virtual Triaxial Compression Test

The model reconstructed from the high resolution images (4.3µm/voxel) contains ∼
20, 000 avatars with ∼ 750 nodes on average for a fully captured grain geometry. The
model reconstructed from slightly lower resolution specimen (9 ∼ 10µm/voxel) scans re-
sulted in ∼ 70, 000 substantially less angular avatars with 250 discretized nodes per grain.
We then performed numerical triaxial tests assuming a range of material friction coefficient
from µ = 0.60 to µ = 0.75, which spans the range of typical values for quartz rich sand with
the upper value corresponding to results obtained from the miniature triaxial tests on the
undisturbed samples.

The low-resolution specimen was allowed to settle via a pluviation-like process under
artificial gravity to re-establish contact between grains before isotropic consolidation. The
void ratio was monitored throughout this process as accompanied by several other indicators
such as average coordination number and macroscopic stress. Following settlement, a number
of iterations were used to alleviate internal stress between grains and to correct excessive
inter-grain overlap due to settlement. This step was continued until the internal stress was
sufficiently smaller than the confining pressure, 100kpa considered herein. Not surprisingly,
those preparation steps did not preserve the in-situ orientation, contact and structure of
grains in the original sample. By contrast, the high-resolution specimen did not require either
of those steps. Even though the grains were not yet in contact with neighbors, as indicated
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Figure 4.12: The effect of void ratio, considering both the effect of grain shape and the effect
of reconstruction fidelity.

by the coordination number at the onset of simulation, due to the fact that avatars were
reconstructed one at a time and left only small gaps between them, they were quickly brought
together after the application of confining pressure and to a large extent recovered the soil
fabric. The high-resolution specimen had initial void ratio e = 0.60, which is very close
to the experimental data of 0.61. To make the simulations comparable, the low-resolution
specimen was also constructed with same initial void ratio e = 0.59.

The models were then compressed following a strain-controlled scheme with a sufficiently
low loading rate to maintain the quasi-static condition by keeping the inertia number Iinertia
below 10−3 (note that the same loading rate as in the physical experiment is not possible
because it would be computational intractable). We monitored several indicator to examine
quasi-static condition, making sure that the total kinetic energy of avatars was smaller than
10−3 throughout the simulation, and the pressures on both platens was equal to the major
principal stress of specimen.
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4.6.1 Macroscopic Frictional Behavior

The friction coefficient between grains is a physical characteristic that is difficult to
quantify and is strongly dependent on the mineralogy and chemical composition of the grains.
Peak stress and mobilized friction angle rise as the inter-grain friction coefficient rises which
agrees with other studies like Cui and O’Sullivan (2005), Abriak and Caron (2006) and
Hazzar et al. (2020). For high-resolution sample, increasing friction coefficient from µ = 0.6
to µ = 0.75 result in a significant increase in peak deviatoric stress (549kPa to 652kPa) but
a gentle increase in peak mobilized friction angle (46.2◦ to 49.0◦). Our experimental results
reveal that the critical state angles for naturally deposited sand and reconstituted sand are
38◦ and 32◦, respectively, which corresponds to friction coefficient 0.62 and 0.78. In micro
scale, the mineralogy parameters of quartz, the major constitution of sands is reported as
35◦ by Mitchell and Soga (2005) and is slightly smaller than the computational value we
calibrated. In addition, Mitchell and Soga (2005) collected experimental data and suggested
that the macroscopic friction angle is nearly independent of interparticle friction angle.

The evolution of the mobilized friction angle and volumetric strain is depicted in Figure
4.13 for low- and high-resolution numerical specimens. The models exhibit markedly different
macroscopic behavior, despite having the same initial void ratio and being tested under
identical conditions. The low-resolution model exhibits principally strain hardening and
reaches a stress plateau. It almost perfectly matches the experimental data on reconstituted
sand and supports the hypothesis that pre-processing steps for low-resolution reconstruction
significantly altered the original soil fabric. By contrast, the high-resolution model exhibits
significant strain softening upon reaching a peak mobilized friction angle, the peak mobilized
friction angle agrees well with experimental data (ϕp = 51.2◦) on naturally deposited sand.
Most importantly, this results demonstrate the importance of the depositional fabric. The
reconstituted, pluviated model show strain hardening behavior reaching roughly identical
mobilized friction angle between 29◦ and 30◦ regardless of the particle friction angle. In
contrast, the model that reproduces the depositional fabric with high fidelity, shows a well-
defined peak, mobilized friction angle ranging from 46◦ to 49◦ over the range of particle
friction angles from 30◦ to 37◦.

4.6.2 Evolution of Mean Coordination Number

We further investigated the mechanical responses of these specimen from a microscopic
point of view, the emphasis was placed here upon the coordination number which is defined
as the number of contact on a grain and recognize that there could be multiple contacts
between a pair. Coordination number is one of the most commonly used important param-
eters for characterizing granular fabric and is found sensitive to particle shape and increases
with the increase complexity of grain shape. As displayed in Figure 4.14, the high-resolution
specimens with both value of friction coefficient have a higher initial average coordination
number, which makes rotation more difficult and results in the formation of more contacts
in response to the displace tendency. The coordination number of low-resolution specimen
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Figure 4.13: Frictional response, i.e., deviatoric stress, mobilized friction angle and volumet-
ric strain for numerically low- and high-resolution specimen in comparison with experimental
data.

continue to increase and reach a plateau, implying that newly formed and broken contacts
balance each other at high strains and reaching a critical state. In contrast, the change
in coordination number for high-resolution specimen is greater for grains due to a rougher
surface and a more angular shape than. It also significantly affects granular deformation in
that a drop in mean coordination number corresponding to larger dilatancy. In our appli-
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cation, the evolution of coordination number is highly associated with the image resolution,
and we found the mean coordination number of a high-resolution assembly is almost twice
larger than those of the low-resolution reconstruction. This is to some extent reflects the
interlocking enhanced by more angularity of high-resolution grains.

Figure 4.14: Evolution of coordination number during deviatoric loading.

4.6.3 Shear Band Evolution

Compared to conventional servo method using rigid boundary, one outstanding advantage
of the flexible membrane is the development of a shear band. The shear band is featured
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by large amount of localized shear deformation when granular material is deformed beyond
its elastic limit, and it is an indicator the instability of triaxial specimen as the initial local
inhomogeneity in the specimen give rise to concentrating deformation in its vicinity (Rudnicki
& Rice, 1975; Rice, 1976). One common measurement of the shear band is its thickness in
terms of multiples of the mean grain diameter D50, such value is found varying with grain
shape, specimen porosity and mean stress (Guo, 2012) and the range of ts is found from
10D50 (Kawamoto et al., 2018), 30 ∼ 60D50 (Mollon et al., 2020), 9 ∼ 14D50 (Amirrahmat
et al., 2019) and 10 ∼ 15D50 in our numerical results (Figure 4.16) and 8 ∼ 12D50 in our
experimental data.

The shear band inclination angle is determined by first locating grains with large rotations
or local deviatoric strains greater than two standard deviations over the average values, and
then locating the plane with normal direction and height that minimizes the total sum of
squared distances between previously identified grains and the plane. This is a least squares
problem with outliers, and an orthogonal matching pursuit (OMP) algorithm is used to
eliminate those outliers: grains that are far from the shear band but rotate significantly as
the result of conforming to the loading platen’s motion. In terms of the angle of shear band
inclination, the Roscoe’s theory predicts it (Roscoe, 1970) as:

θR = 45◦ +
ψmax

2
(4.24)

where ψmax is the maximum dilatancy angle in the zone of deformation that achieves at
peak stress. Our simulated data computes the friction angle between 52 ∼ 54◦, which is
smaller than the Roscoe’s solution (61◦). This may be due to the non-associativity between
stress and strain in granular materials.

The shear band formations of the high-resolution specimen with different internal friction
coefficient (µ = 0.60, 0.70, 0.75) are similar. The development of shear band begins with a
diffusive pattern prior to the formation of one particular shear band as displayed in Figure
4.15. Following the peak stress, one of the shear bands is activated and forms a major shear
band. Micro shear bands are detected during the hardening phase at axial shortening εa =
5%, with a typical form originates from the upper part and then slants downward through
the cylindrical specimen. As the simulation progresses into the softening phase at εa = 10%,
more micro shear bands are developed parallel or perpendicular to the direction of the final
shear band, leading to a thicker, more extending region. With the ongoing compression
(εa = 15%), the micro shear bands merge to form a zone of intensive shearing at the center
of the specimen whose orientation is preferentially aligned with the final major shear band.
Continuing through the critical state, the final major shear band is fully developed and has
a thickness of ts = 10 ∼ 15D50, as displayed in Figure 4.16.

For the low-resolution specimen, the evolution of strain localization is displayed in Figure
4.17. A single shear band is still identified but the upper platen was tilted by a large amount
to create a more pronounced strain localization. Figure 4.18 depicts the contact network
distributions and microscale normal force chains for a low-resolution specimen with an axial
shortening of between εa = 0 ∼ 30%. At the onset of compression, a more randomly
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Figure 4.15: Single shear band pattern obtained from high-resolution specimen between
0 ∼ 15% axial shortening with internal friction coefficient, (a) µ = 0.6; (b) µ = 0.7; (c)
µ = 0.75.
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Figure 4.16: Grains with rotation greater than the mean rotation by two standard deviations
(2σ) obtained from high-resolution specimen between 0 ∼ 15% axial shortening with internal
friction coefficient, (a) µ = 0.6; (b) µ = 0.7; (c) µ = 0.75.
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Figure 4.17: Single shear band pattern obtained from low-resolution specimen between 0 ∼
30% axial shortening with internal friction coefficient, (a) µ = 0.6; (b) µ = 0.7; (c) µ = 0.75.
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Figure 4.18: Force chain evolution obtained from low-resolution specimen between 0 ∼ 30%
axial shortening with internal friction coefficient, (a) µ = 0.6; (b) µ = 0.7; (c) µ = 0.75,
forces change directions when they passing through the shear band.
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oriented homogeneous distribution of contact force networks is observed following isotropic
consolidation. In the subsequent deviatoric stages, stronger contact forces concentrate near
the specimen’s center axis and align vertically to resist the applied axial stress. Numerous
strong force chains are identified that can withstand increased loading and contribute to
the enhanced macro-scale stress-strain behavior. These chains buckle and restructure in
subsequent stages as grains displace and rotate. When the specimen reaches the critical
state, the forces in the shear band and out of the shear band appear to lose coaxiality,
where force chains seem to change direction as they pass through the shear band. Several
stronger force chains remain but are congregated toward the specimen’s center, and more
lateral contacts are formed and stressed.

Interestingly, the strain localization pattern can change with different parameter settings
for the low-resolution specimen. According to published research (Amirrahmat et al., 2019;
Mollon et al., 2020; Rorato et al., 2021), shear band simulations are just as prone to vari-
ability as actual experiments, and future research should focus on the repeatability of such
simulations. The packing density, boundary conditions, and confining pressure all contribute
significantly to mechanical interlocking, relative grain translation, and the tendency to de-
velop a shear band. We further investigated different strain localization pattern, Figure
4.19 and Figure 4.20 show the shear pattern and the force chain for low-resolution specimen
with the same confining pressure, but set the membrane sphere-sphere normal stiffness and
tangential stiffness to be Knbb = Ksbb = 100N/m. For this case, randomly oriented micro
shear bands congregated into a centralized zone at central part of the specimen (εa = 10%).
As shearing progressed at εa = 20%, a more complex network of micro shear bands forms
in conjugate directions, this leads to a centralized cross-like strain localization pattern that
dominates the internal microstructure and forces grains outward in the lateral direction,
resulting the surface bulging of specimen. When the stress plateau is reached, the cross-like
pattern of localization persists and becomes more defined and stable; however, the thickness
of two shear bands varies significantly, with one being easily identifiable and thinner and the
other being more diffusive but thicker.

4.6.4 Evolution of the Soil Fabric

We use the anisotropy factor, deviatoric fabric tensor and distribution density of direc-
tionality to investigate the evolution of soil fabric when a intensive strain localization pattern
forms. In this section, we take high-resolution specimen with µ = 0.75 as an example and we
define the representing orientation as the direction of the longest axis of a grain. The grains
outside shear region for various shear stage are calculated with the shear band location at
16% axial shortening. The general pattern is that the soil fabric in both windows remains
unchanged prior to strain localization and undergoes distinct evolutions afterwards. Among
numerous descriptors used to study the evolution of fabric, anisotropy is a scalar that de-
scribes the spread of the orientation. For an isotropically distributed discrete system, the
anisotropy factor approaches zero. In our study, the anisotropy factor is found to be equal
and non-zero (a = 0.41 ∼ 0.42) both inside and outside the shear band at the onset of simu-
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Figure 4.19: Cross-like localization pattern obtained from low-resolution specimen between
0 ∼ 30% axial shortening, with Knbb = Ksbb = 100N/m.

Figure 4.20: Evolution of force chain for low-resolution specimen between 0 ∼ 30% axial
shortening, with Knbb = Ksbb = 100N/m.

lation, implying that the initial fabric is anisotropic due to the fact that the major principal
orientations of grains are more likely to align perpendicular to the direction of deviatoric
stress for a more stable state. By contrast, Wiebicke et al. (2020) reported that a rounded
sample prepared by air pluviation with grains falling vertically exhibits little anisotropy in
the initial fabric and a small initial inclination angle.
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The evolution of the anisotropy factor is monotonically increasing for both windows inside
and outside the shear band, whereas the changes in inclinations are much faster inside the
shear band whereby grains rearrange in the direction in which the shear band is forming under
large shearing. Another descriptor, the deviatoric tensor, which is the deviatoric component
of the fabric tensor, is plotted in three dimensions in Figure 4.21 and Figure 4.22. Before the
onset of strain localization, the soil fabric tensors are more spherical as also indicated from
the anisotropy factor. While the anisotropy factor is nearly identical, the tensor shapes are
slightly different. This demonstrates the need to characterize soil fabric with more than just
a scalar anisotropy. With ongoing shear within the shear band, the deviatoric tensor evolves
into a peanut shape. Outside the shear band, the deviatoric fabric exhibits a similar trend
but is much less pronounced. A spherical histogram can be used to quantify and visualize
the directionality of grain orientations. Between 0% and 16% axial shortening, Figure 4.23
and Figure 4.24 illustrate the evolution of the distribution of long axes of grains inside and
outside the specimen’s shear band. Within the shear band, the grains undergo a significantly
greater rotations as loading progresses than those outside the shear band. As is the case
with the anisotropy scalar and fabric tensor, the directionality does not change significantly
prior to the peak (εa = 5%). Following that, grains within the shear band unlock, rotate,
and align in a well-defined direction in favor to the formation of shear band. While grains
outside the shear band exhibit a similar trend, it is less pronounced and more localized in
nature, with only comparably much small and random kinematic outside the shear band.
This might be due to the fact the dilated zone is much larger than the area where shear
and grain rotation actually occurs, suggesting that grains dilate and rotate relative to one
another in a band wider than the shear region (Mollon et al., 2020). Additionally, grains
outside the shear band will act as a single entity that will displace and rotate in response to
the shear deformation, this would also slightly alter the grain’s orientation.

Figure 4.21: Surface plots of the distribution density of deviatoric fabric tensor and the
anisotropy factor of grain inside the shear band orientation.
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Figure 4.22: Surface plots of the distribution density of deviatoric fabric tensor and the
anisotropy factor of grain outside the shear band orientation.

Figure 4.23: Spherical histogram of grain inside the shear band orientation.

4.6.5 Strain-Controlled Cyclic Loading Tests

we also explored LS-DEM simulations for compression tests on granular assembly sub-
jected to a sequence of loading and unloading cycles, with strain-controlled stress relaxation
(Figure 4.25). One objective of this simulation was to replicate the stress state of the spec-
imen in the laboratory, which was stopped and imaged at various stations during loading.
According to Kawamoto et al. (2018), no significant granular rearrangement occurs, con-
firming that interrupting axial loading for imaging has a negligible effect on experimental
results. Because the amount of reversible strain is small and the loading stress is sufficiently
high (to achieve a mobilized friction angle greater than 45◦, the axial loading should be 6
times greater than the confining pressure), the mechanical behavior of the packing tends to
be elastic. When loading stresses are low, as they are during the initial stage of compression,
the assembly’s internal structural evolution is likely to be dominated by irreversible porosity
reduction caused by pore collapse and grain re-arrangement, and as a result, the assembly
is unlikely to fully restore its volume. When loading stresses become sufficiently high but
not yet close to the threshold for grain breakage, the room for residual porosity to diminish
further is significantly reduced, resulting a rather elastic response.
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Figure 4.24: Spherical histogram of grain outside the shear band orientation.

Figure 4.25: Mobilized friction angle of two numerical specimens under strain-controlled
loading and unloading cycles.

4.6.6 Computational Effort

As previously demonstrate, the computational cost is primarily determined by the number
of discretized nodes used to represent grain shape, and the increasingly accurate capture of
grain shape comes with substantially less grain being reconstructed from a fixed-size window
of XRCT scans. Fortunately, our parallelized code is sufficiently efficient in that it can solve
problems of comparable size in a comparable amount of time as the originally proposed
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code by Kawamoto et al. (2016), while consuming less than 5% of computing resources. In
current study, our code simulated an assembly of ∼ 70, 000 low-resolution grains with 250
nodes per grain in the same amount of time as a high-resolution assembly of ∼ 20, 000 grains
with 750 nodes per grain. This demonstrates that the actual factor controlling the execution
speed off code is proportional to the number of nodes on the grain’s surface. Thus, we found
simulating an even higher resolution assembly containing only 1, 600 grains with more than
2, 500 discretized nodes on each is numerically an almost intractable task.

4.7 Conclusion

LS-DEM simulations of naturally deposited uncemented sands subjected triaxial com-
pression have been presented in this study. A linear elastic model with Coulomb friction
yield criterion was calibrated, verified, and used to simulate the frictional response of an as-
sembly of LS avatars, which are one-to-one direct mappings from XRCT scans and capable
of preserving as much as possible grain morphology and surface roughness. A significant
conclusion reached in this study is that the primary source of frictional resistance is mechan-
ical interlocking between irregularly shaped grains; thus, even the simplest contact model
is capable of reproducing both micro- and macromechanical responses consistent with ex-
perimental data, provided that the microstructure of the grain is captured with sufficient
fidelity using high quality scans. Flexible membrane simulations with a rotatable loading
platen were found to better predict not only stress-strain and volumetric response, but also
the onset and growth of strain localization, allowing them to accurately match experimen-
tally observed relationships between deviatoric stress and mobilized friction angle with axial
shortening for uncemented sample.

LS-DEM quantifies the kinematic behavior of real-world grain shapes and enables the
study of intricate strain localizations down to the thickness and delineation level, which
were previously rarely studied in conventional DEM modeling trivial geometries. Monitoring
grain rotations during virtual tests aids in identifying high-shearing zones and provides
insight into the failure mode of granular media, e.g., barreling failure or shear banding.
Low- and high-resolution specimens with the same initial void ratio and confining stress
exhibit distinct strain localization patterns, with complex hourglass-like patterns for the
low-resolution reconstruction and a well-defined congregated shear localization for the high-
resolution reconstruction. In comparison to macroscopic frictional responses, grain-scale
responses in shear band simulations are subject to considerable uncertainty.

The coordination number, anisotropy factor, directionality, and a second-order deviatoric
fabric tensor are used to analyze the evolution of the soil fabric. The high-resolution specimen
has a higher initial coordination number and is therefore more difficult to rotate, it also results
in increased frictional resistance and significant volumetric dilation. Contacts form and break
dynamically in low-resolution specimens and balance each other at high shear after reaching
the critical state. Following the onset of strain localization, the soil fabric inside and outside
the shear band evolves in distinct ways, with anisotropy increasing and orientations aligning
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with the major shear band direction inside the shear band. Both evolutions are predicted by
micromechanical analysis of grain kinematics. The micro analysis revealed that the major
kinematic changes, particularly grain rotations, occur within the shear band, while much
smaller and random kinematic changes occur outside the shear band.

While these findings are significant and necessary for a complete micromechanical descrip-
tion, they must be interpreted cautiously. To begin, contact properties are still determined
in a heuristic manner, and they vary according to the type of sand. This necessitates the
replication and extension of experimental studies under varying initial conditions in order to
validate and complement these findings. Second, the predictive power of LS-DEM should be
investigated under a variety of loading conditions, as the triaxial compression test has been
almost exclusively used to study grain microstructure in current study. As a trial, our study
has been extended to cyclic loading with strain relaxation, with expected results, this piques
interest in more sophisticated loading conditions. Finally, and perhaps most importantly,
the quality of the images used to generate the LS correspondences is critical to the success
of the simulation on both the micro- and macro-mechanical response of granular assembly.
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Chapter 5

Impulse-Based LS-DEM for Dynamic
Problems

5.1 Introduction

Typical DEM codes in general use in research and in the industry use penalty-based
approach to resolve forces between the discrete bodies, which are then converted to forces,
accelerations, and finally displacements. This model has varying complexity to generate a
contact interaction force based on separation distance between particles in contact (Zohdi,
2017). However, they are computationally demanding, if not prohibitively expensive, for
large-scale DEM simulations with complex-shaped grains or particles. While recent research
efforts have been made in hardware to accelerate these DEM codes using high-performance
computing clusters or graphics processing units (GPUs) (Owen & Feng, 2001; Zheng et al.,
2012; Yan & Regueiro, 2018b; Yan & Regueiro, 2018a) such resources are not generally or
broadly accessible.

Alternatively, an impulse-based technique based on Newton’s impact law is significantly
more computationally efficient since it directly computes the velocity increment of the mod-
eled objects. It was originally designed for the computer graphics industry (Mirtich & Canny,
1995; Chang & Colgate, 1997; Bender, 2007) and prioritizes code speed, stability, and phys-
ical plausibility over simulation fidelity. Recent work (Tang et al., 2014; Lee & Hashash,
2015; Asai et al., 2021; Li et al., 2021) demonstrates that, in addition to much improved
code speed and numerical stability, the impulse-based technique also produces results with
comparable accuracy to the corresponding penalty-based DEM simulations. This makes
the impulse-based approach intriguing since it is capable of addressing very large dynamic
problems.

Herein we summarize the framework of impulse-based rigid body dynamics, which is
fundamentally a process of kinetic energy conversion to elastic energy. Rather than providing
a broad introduction to the subject, we focus on the numerical aspects of the impulse-based
approaches and the possibility of parallelizing impulse-based LS-DEM using the domain
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decomposition approach. We show that in comparison to parallel implementation for penalty-
based LS-DEM, impulse-based DEM saves considerable effort in data communication but
requires additional handling of multibody assemblies in direct contact. We then introduce
a modified Energy Tracking Method (ETM, Tang et al., 2014) in order to resolve collisions
within the domain with a wide variety of grain shapes and sizes and to add deformable
structures into rigid body dynamics. Finally, we illustrate the performance and applicability
of the impulse-based LS-DEM for rock fall and rock avalanche simulations.

5.2 Formulation of Impulse-Based Rigid Body

Dynamics

A negative relative velocity between two objects at the time of a collision suggests that
they are about to penetrate. To avoid penetration between rigid bodies, the negative relative
velocity is increased till it reaches zero by applying a sequence of impulses in the normal
direction of contact. The compression phase converts kinetic energy to elastic energy, which
is then stored at the contact points. Following that, previously held elastic energy is released
to restore relative normal velocity, ejecting two bodies from one another and concluding the
collision process. As it is almost impossible to predict the microstructure of materials during
collisions in practice, we adopt Stronge’s hypothesis (Stronge, 2018): the amount of energy
absorbed and released may vary according to the restitution coefficient. For example, for
a perfectly elastic collision with no energy loss. Stronge’s hypothesis states that energy is
dissipated as follows:

Wrelease = ϵ2Wabsorbed (5.1)

Where Wrelease and Wabsorbed denote the energy released and absorbed during release and
compression phases, respectively. ϵ(0 ≤ ϵ ≤ 1) denotes the coefficient of restitution that
determines the elasticity of the contact. Without loss of generality, we formalize a single
collision process by considering a body bA collides with another bB due to the i-th impulse
Pi, which effectively changes their linear velocities (VA and VB) and angular velocities (ωA

and ωB), as shown in Figure 5.1 via:

Pi
A =MA∆VA (5.2)

Pi
B =MB∆VB (5.3)

riA ×Pi
A = IA∆ωA (5.4)

riB ×Pi
B = IB∆ωB (5.5)
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Figure 5.1: Collision between bodies bA and bB: VA and VB are linear velocities of the
center of mass, ωA and ωB are angular velocities, riA and riB are the vectors from the center
of mass of bodies to the contact point where the i-th impulse Pi applied, ui

A and ui
B are the

velocities at the contact points, and ni is the contact normal.

Pi
A = −Pi

B (5.6)

Where MA and MB are the masses, IA and IB are the inertial tensors, riA and riB are the
relative positions from the center of gravity of bA or bB to the contact point at which the
i-th impulse was applied. The velocities ui

A and ui
B of contact points on bA and bB in global

frame are:

ui
A = VA + ωA × riA (5.7)

Therefore, the velocity changes at a point of contact between body bA and body bB due
to the i-th impulse respectively is given below. Here, we suppose that the collision occurs
and resolves quickly enough that the contact point i remains stationary.

∆ui
A = ∆VA +∆ωA × riA =

1

MA

Pi
A + I−1

A riA ×Pi
A × riA =

(
1

MA

− r̃iAI
−1
A r̃iA

)
Pi

A (5.8)

∆ui
B = ∆VB +∆ωB × riB =

1

MB

Pi
B + I−1

B riB ×Pi
B × riB =

(
1

MB

− r̃iBI
−1
B r̃iB

)
Pi

B (5.9)
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The second equality converts cross product between vectors into equivalent matrix-vector
multiplication. In the vector space R3, the cross produce (×) is an operator taking two
vectors to a third vector:

a× b =

aybz − azbyazbx − axbz
axby − aybx

 = ãb (5.10)

Where ã is a 3× 3 skew-symmetric matrix. In the collision formula above:

r̃ =

 0 −rz ry
rz 0 −rx
−ry rx 0

 (5.11)

Above formulas imply that if we know the change of relative velocity at the contact
points, the resulted impulse can be computed via:

∆
(
ui
A − ui

B

)
= ∆ui

A −∆ui
B =

[(
1

MA

+
1

MB

)
I−

(
r̃iAI

−1
A r̃iA + r̃iBI

−1
B r̃iB

)]
Pi

A (5.12)

K =

(
1

MA

+
1

MB

)
I−

(
r̃iAI

−1
A r̃iA + r̃iBI

−1
B r̃iB

)
(5.13)

Where Pi
A is the i-th impulse exerted on the body bA, and K is termed as the collision

matrix and it is non-singular, symmetric, positive definite and defined in global frame for a
given collision (Mirtich, 1996). Collision contact occurs within a very short time interval for
a rigid body, implying that displacement and change in the contact area are insignificant.
This indicates that the collision matrix K remains constant throughout the collision, and
that once the change in relative velocity is known, the collision matrix is used to compute
the impulses:

Pi = K−1∆ui (5.14)

Where Pi = Pi
A = −Pi

B is the i-th impulse, ui = ui
A − ui

B is the relative velocities
at the contact points where the i-th impulse is applied, and ∆ui is the change of relative
velocities. This formula remains true if the friction forces are ignored or if the friction forces
are constant. As a result, if there is no slip between the bodies, only the normal component
of the change in relative velocity ∆ui

n is non-zero, because it is the relative normal velocity
at the contact locations that drives the bodies to collide. Thus, the preceding formula is
reduced to:

ni ·KPi = ni ·∆ui = ∆ui
n (5.15)

∣∣Pi
n

∣∣ = ni ·Pini (5.16)
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Pi
t = Pi −Pi

n (5.17)

If sliding occurs, apart from ensuring that relative normal velocity changes are consistent
with the prescribed value, the impulse must be recalculated to meet Coulomb’s friction
requirement, which limits the magnitude of tangential impulse:∣∣Pi

t

∣∣ = µ
∣∣Pi

n

∣∣ (5.18)

Pi =
∣∣Pi

n

∣∣ni + µ
∣∣Pi

n

∣∣ ti (5.19)

∣∣Pi
n

∣∣ = ∆ui
n

ni · (Kni + µti)
(5.20)

Where ni, ti are the contact normal and tangential direction at the i-th collision, and
Pi

n and Pi
t are the normal and tangential components of applied impulse. This concludes

the compression phase where the corresponding impulse is generated based on the change of
relative velocity and the kinetic energy is stored in the form of elastic energy at the contact.

The next step is to dissipate the elastic energy and invert the sign of the relative normal
velocity to separate the bodies. This is the inverse of the compression phase: a predefined
amount of elastic energy is dissipated to increase the relative normal velocity via a series
of impulses. Mirtich (1996) proved that if the relative contact velocity ui proceeds from ui

0

to ui
f during a collision and over some arbitrary path, the total work done by the collision

impulse Pi is independent of the path taken and is given below, which enables the change
in relative velocities to be calculated from the released elastic energy.

∆W i =
1

2

(
ui
f + ui

0

)T
K−1

(
ui
f − ui

0

)
=

1

2

(
ui
f + ui

0

)T
Pi (5.21)

Given that rigid body motion is better defined in terms of its principal or local frame, it is
more convenient to address collisions in the local coordinate system via the rotation matrix
R, which defines the transformation from body to global coordinates. In implementation,
rotations are handled numerically via a singularity-free quaternion technique.

∆W i =
1

2

(
ui
f + ui

0

)T
Pi =

1

2

(
Rũi

f +Rũi
0

)T
RP̃i =

1

2

(
ũi
f + ũi

0

)T
P̃i (5.22)

Where ũ0, ũf and P̃i denote initial relative velocity, final relative velocity, and applied
impulse, all with respect to the body frame. During a collision, the work done by the impulse
can be decomposed into the work done by the impulse in the normal direction ∆W i

n and the
work done by the impulse in the tangential direction ∆W i

t .

∆W i = ∆W i
n +∆W i

t (5.23)
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∆W i
n =

1

2

(
2ũin +∆ũin

)
P̃ i
n (5.24)

∆W i
t =

1

2

(
2ũit +∆ũit

)
P̃ i
t (5.25)

Where ũin, ũ
i
t and P̃

i
n, P̃

i
t are the normal and tangential component of relative velocities

and impulses at contact points defined in the body frame. It is more usual to depict a plane
perpendicular to the contact normal using two orthonormal vectors, which is also compatible
with the rotation operation transferring three orthonormal vectors into another three. We
decided not to differentiate two tangential directions here since we were only concerned with
the normal components: tangential velocities would remain unchanged because they did
not break the impenetrability requirements between rigid entities. Due to the fact that work
performed in different directions is independent, the change in relative normal velocity has no
effect on the amount of work performed in the normal direction by the impulse, which later
inverts the relative normal velocity by releasing the energy absorbed during the compression
phase.

The change of relative velocity ∆ui and corresponding work done ∆W i by the impulse
implies that there should be a way to compute ∆ui (∆W i) if the collision work ∆W i (∆ui)
is known. Indeed, changing simply the relative normal velocity results in the generation of
tangential impulses and thus the associated work. However, because the work performed in
normal directions is decoupled, the change in relative normal velocity ∆ui

n can be retrieved
provided that we get access the normal impulse P̃ i

n and the absorbed/released work caused
by P̃ i

n. Additionally, the tangential restitution coefficient is set to zero, which requires
calibration but is plausible in many impulse-based simulators. As a result, the collision work
∆W i and ∆W i

n are used interchangeably, and we focus on the conversion of kinetic to elastic
energy in the contact normal direction. For instance, during the compression phase, the
relative normal velocity decreases and eventually converts to the elastic energy:

∆W i
n =

1

2

(
2ũin +∆ũin

)
P̃ i
n (5.26)

Where P̃ i
n is the normal component of applied impulse. In the separation phase, the

absorbed elastic energy reduces and changes the sign of the relative normal velocity via an
impulse along the contact normal:

KPi = ∆ui (5.27)

ni ·K
(
P̃ i
nn

i
)
= ni∆ui = ∆ũin (5.28)

P̃ i
n =

∆ũin
ni · (Kni)

(5.29)
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∆ũin = −ũin +
√

(ũin)
2 + 2∆W i

nn
i · (Kni) (5.30)

5.3 Impulse-Based LS-DEM

5.3.1 Contact Model

Just like in the penalty-based method, contact in impulse-based LS-DEM is handled
through node-to-surface contact algorithm and the contact normal direction is also interpo-
lated from the underlying signed distance function grid of a grain. The difference is that
contact force calculation is skipped in the impulse-based formulation; however, it could be
retrieved from the applied impulse with high-precision. Original LS-DEM (Kawamoto et al.,
2016) code considers a history-dependent Coulomb friction model that requires grains to be
associated with their contact histories. The inter-grain tangential contact is significantly
easier to manage in an impulse-based DEM because it does not track friction evolution
and updates velocities directly. During the force resolution phase, the impulse-based DEM
iterates through the surface nodes between colliding bodies, identifying all contact points
with negative relative velocities, and calculating repulsive impulses to satisfy impenetrability
constraints.

The friction type of contact is examined to ensure that the magnitude of the tangential
component of the collision impulse follows Coulomb’s friction law. Due to the fact that
LS-DEM aims to simulate arbitrarily complex grain shapes, it is unavoidable that multiple
contact points collide when two reconstructed avatars are on a collision course. To handle
many collisions and various contacts, the simultaneous impulse methods (SMM, Barzel &
Barr, 1988; Baraff, 1989) ensemble all collisions into a system of linear equations, enforce
non-penetration restrictions in rigid body dynamics simulations as a linear complementary
problem (LCP) and evaluate outcomes in a single step, SMM fails to capture the propagation
of contact forces during a collision. The Sequential Impulse Method (SQM) introduced by
Guendelman et al. (2003) resolves each collision within a single time interval and treats the
contacts as if they occurred sequentially. This method inverts the relative velocity directly
using Newton’s law and prioritizes contact points based on the depth of inter-penetration;
it is iterative and continues until all contact points have positive relative velocities. The
primary disadvantage of SQM is that edge-surface or surface-surface contacts do not end up
with similar repulsive velocities and the obtained results dependent on the sequence in which
collisions are addressed. To solve these two issues, Tang et al. (2014) and Li et al. (2021)
address this issue by gradually changing relative normal velocity and elastic energy in such
a way that all contact points with similar normal directions can adjust velocities to similar
magnitudes. The compression phase involves incrementally increasing the relative normal
velocities at contact points until all relative normal velocities are non-negative. During the
separation phase, the absorbed energy is gradually released until no energy remains at the
contact points, again in an iterative fashion.
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5.3.2 Discrete Equations of Rigid Body Motion in
Impulse-Based LS-DEM

Original implementation of LS-DEM (Kawamoto et al., 2016)) solves Newton’s and Eu-
ler’s governing equations of motion for translational and rotational components of motion,
respectively. For the translational component of motion, the positions, forces, and velocities
are known at the ends of each timestep so that grain motion can be explicitly updated via
the governing translational equation given by Newton’s law with a centered finite-difference
integration scheme. For the rotational components of motion, the time derivatives of the
angular accelerations in the principal frame are given by Euler’s equations of motion, which
is nonlinear and implicit, hence prone to numerical instability.

Again, it is much simpler to change the velocities of two rigid bodies with impulse-based
method. For example, if the contact master body bA experiences a collision contact with
bB under the corresponding impulse Pi, in accordance with Newton’s law, the changes in
velocity for each rigid body are given by:

∆ẋA,B =M−1
A,BP

i
A,B (5.31)

∆θ̇A,B = I−1
A,B

(
riA,B ×Pi

A,B

)
(5.32)

The velocities and positions for the rigid bodies are subsequently updated via symplectic
Euler scheme:

ẋA,B = ẋA,B +∆ẋA,B (5.33)

θ̇A,B = θ̇A,B +∆θ̇A,B (5.34)

xA,B = xA,B + ẋA,B∆t (5.35)

θA,B = θA,B + θ̇A,B∆t (5.36)

5.3.3 Collision Resolution Algorithm

The ETM algorithm is demonstrated with three vertically stacked sphere as shown in
Figure 5.2. It treats concurrent collisions as a series of single point collisions and included an
additional iteration within a compression and separation phase to make the results insensitive
to the order of the impulses. When dealing with numerous contact collisions, ETM gradually
delivers impulses to adjust the relative normal velocities of several collisions, yielding low
angular velocity errors. Later, Li et al. (2021) adjusted the time step within the sub-cycle loop
adaptively to obtain more stable and energy-conservative rigid body dynamic simulations.
In impulse-based DEM, if any pair of rigid bodies is connected to a group of LS avatars
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via a chain of contacting avatars, collisions at all contact points are resolved simultaneously,
as the impulse can propagate within the group. The algorithm begins by iterating through
contact points created by collisions and prioritizing those with a negative relative normal
velocity. During the compression phase, the priority queue is sorted by minimum relative
normal velocity; after the algorithm enters the separation phase, it is sorted by elastic energy.
To expedite the process, a group of adjacent contact points is glued together and treated
as a single contact. Kinetic and elastic energy are converted to one another during the
compression and separation phases. A complete procedure is presented in Algorithm 3.

Algorithm 3 Collision Resolution Algorithm

Input: A list of contacts within a contact island including contact IDs of colliding bodies A
and B; branch vectors from centers to contact point r; contact normal direction ñ; relative
velocity ũ; elastic energy W and body mass M .

1: Define parameter α to control velocity increment in sub-iteration, Coulomb’s friction
coefficient µ, similarity β and Stronge’s coefficient ϵ.

2: for all contact points do
3: Compute inertial matrix in global frame I = RI0R

T , cross-product matrix of colliding
bodies r̃, relative normal velocity un, collision matrix K = ( 1

MA
+ 1

MB
)I − (r̃AI

−1
A r̃A +

r̃BI
−1
B r̃B), wrap computed quantities as Λc.

4: Prepare a priority queue for all contact points with negative relative normal velocity,
sorted by the minimum value. ΛminV := {Λc, key = un}.

5: while ΛminV is not empty do
6: /* Compression Phase */
7: while ΛminV is not empty do
8: Generate a list ΓV containing Λc with minimum relative normal velocity umin

n and

those with similar magnitude, |u′
n−umin

n |
|umin

n | ≤ β.

9: Obtain increment of relative normal velocity: ∆uminV
n = umin

n

α·|ΓV | .

10: for all contact points in ΓV do
11: P̃ = ∆uminV

n K−1ñ, P̃n = ñ(P̃ · ñ) and P̃t = P̃ − P̃n.
12: if |P̃t| ≥ µ|P̃n| then
13: |P̃n| = ∆uminV

n

ñ·[K(ñ+µt̃)]

14: P̃ = |P̃n|ñ+ µ|P̃n|t̃
15: Calculate change in velocity, ∆ũ =M−1P̃ , ∆ω̃ = I−1(r × P̃ ).
16: Restore elastic energy, ∆W = 1

2
(2un +∆uminV

n )|P̃n|.
17: Compute updated relative normal velocities and reset ΛminV .

18: /* Restitution Phase */
19: for all contact points in the contact island do
20: Multiply restored elastic energy by Stronge’s coefficient to imitate energy dissi-

pation. W ← ϵW .
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21: /* Separation Phase */
22: Build a priority queue for all contact points with non-negative elastic energy, sorted

by the maximum value. ΛmaxW := {Λc, key = W}.
23: while ΛmaxW is not empty do
24: Generate a list ΓW containing Λc with maximum restored elastic energy Wmax

and those with similar magnitude, |W ′−Wmax|
|Wmax| ≤ β.

25: Obtain change of relative normal velocity at point with largest elastic energy.
∆umaxW

n = −umaxW
n +

√
(umaxW

n )2 + ñ · (Kñ)
26: for all contact points in ΓW do
27: P̃ = ∆uminV

n K−1ñ, P̃n = ñ(P̃ · ñ) and P̃t = P̃ − P̃n.
28: if |P̃t| ≥ µ|P̃n| then
29: |P̃n| = ∆umaxW

n

ñ·[K(ñ+µt̃)]

30: P̃ = |P̃n|ñ+ µ|P̃n|t̃
31: Calculate change in velocity, ∆ũ =M−1P̃ , ∆ω̃ = I−1(r × P̃ ).
32: Release elastic energy, ∆W = −1

2
(2un +∆umaxW

n )|P̃n|.
33: Compute updated restored elastic energy and reset ΛmaxW .

34: /* some velocities can be negative after above two iterations */
35: Identify all contact points with negative relative normal velocity and update priority

queue ΛminV , ΛminV := {Λc, key = un}.

The kinetic energy gradually decreases to zero as a result of application of a series of
impulses in the compression phase, and the relative velocity reverts to its initial sign during
the energy release phase. Following Stronge’s hypothesis (setting the coefficient of restitution
to 0.5), the restored elastic energy abruptly decreases at the end of the compression phase and
gradually decreases to zero during the energy release phase. Although the relative velocity or
elastic energy converge arbitrarily close to zero, they do not achieve it numerically. Rather
than that, a threshold value is chosen to truncate small values and to make the algorithm
more efficient. The threshold value should be less than the timestep, as otherwise velocity
changes may not be reflected, accumulating errors.

5.3.4 Time Stepping Algorithm

Explicit time integration is ideally suited to dynamic contact/impact problems, as a small
time step allows for the handling of contact/impact discontinuities. They are frequently used
to simulate discrete systems because the explicit methods are robust and simple to imple-
ment; they allow element-by-element evaluation and they do not require a global stiffness
matrix for a discrete system, making them appropriate for initial value problem like DEM.
In a traditional penalty-based DEM, the governing equations determine the resultant force
acting on objects and then update accelerations and velocities via a numerical integrator.
In comparison, the impulse-based dynamic simulation modifies velocity directly using a dif-
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Figure 5.2: Energy conservative property of impulse-based collusion resolution, kinetic en-
ergy (blue) and elastic energy (red) converts to each other compression and separation phases.
The coefficient of restitution is 0.5.

ferent numerical scheme, obviating the requirement for force computations. This results in
the symplectic Euler scheme of first order.

vt+1 = ẋt +∆ẋt = vt +∆vt (5.37)

xt+1 = xt + vt+1∆t (5.38)

ωt+1 = θ̇t +∆θ̇t = ωt +∆ωt (5.39)

θt+1 = θt + ωt+1∆t (5.40)

Above formulations are different from the time integration methods used in penalty-based
DEM, an example of second order finite difference scheme in the time-centered form (Walton
& Braun, 1993) is displayed below.
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vt+ 1
2 = vt− 1

2 + v̇t∆t (5.41)

xt+1 = xt + vt+ 1
2∆t (5.42)

Which is equivalent to the formulation of Lee and Hashash (2015):

xt+1 = xt + ẋt∆t+
1

2
ẍt∆t2 (5.43)

For motion update, the penalty-based DEM is second order accurate, but the impulse-
based dynamic simulation updates the motion via a linear change in velocities. In other
words, the symplectic Euler scheme analyzes velocity changes in the ‘secant’ direction,
whereas the time-centered Euler scheme considers velocity changes in the ‘tangent’ direction.
Regarding the numerical stability, both schemes are conditionally stable and require a crit-
ical time step such that there is limited oscillation in the solution and any numerical error
does not build up whereby the computed solution stays close to the truth (Lee & Hashash,
2015). Apart from that, being a Hamiltonian mechanics, the rigid body dynamic simulation
also requires the numerical method does not produce spurious energy gain in the modeled
system for a sufficiently long simulation time.

The symplectic Euler integration is also conditionally stable in a sense that the numerical
results are bounded only if a small ∆t is used that is less than ∆tcr. However, because the
contact stiffness is omitted from the impulse-based dynamic formulation, the critical time
step is determined by the Courant-Friedrichs-Lewy (CFL) condition, which is substantially
larger than the penalty-based DEM formulation. The CFL condition prevents obvious pen-
etration errors between objects, which implies that the timestep is limited by the physics
of the problem, where an excessively large time step size results in objects passing through
one another, but not by numerical stability issues. Additionally, it possesses the virtue of
numerical stability over a long simulation period due to the fact that the total energy of a
modeled system is nearly conserved even at large ∆t. Indeed, an impulse-based technique
may use a time step several orders greater than penalty-based DEM simulations, maintain-
ing comparable computational fidelity. Additionally, the symplectic integrator is superior to
other numerical integrators in that it is designed to preserve phase space regions even for
very large timesteps (Haier et al., 2006). This feature is especially advantageous for modeling
naturally deposited granular material with a large grain size distribution, for which standard
DEM is prohibitively expensive. While mass scaling is widely employed in DEM (Thornton,
2000), it is not advisable if a dynamic analysis requires high frequency response.

Energy conservation is ensured by the combined usage of the symplectic scheme and
iterative collision resolution algorithm. This trait, however, is less desirable when modeling a
granular system with a broad variety of shapes and sizes. Consider a small grain sandwiched
between two considerably larger grains, both of which are attempting to crush the small
grain at opposing contact locations (Figure 5.3 left). The small grain may elastically bounce
back and forth in a protracted succession of near-simultaneous encounters. This procedure
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is unstable in the long run and brings the simulation to a halt. Indeed, even a very small
numerical inaccuracy is likely to accumulate and result in the simulation becoming unstable.
To address this issue, global damping is introduced, and the velocity change caused by global
damping is updated in the following manner:

Figure 5.3: Left: A small grain is sandwiched by two larger grains. Right: A small grain is
resting on rigid plane while colliding against a large grain. The collision resolution algorithm
for these cases might take extremely large number of iterations.

ẋ = ẋ(1− ξ∆t) (5.44)

θ̇ = θ̇(1− ξ∆t) (5.45)

0 ≤ ξ∆t ≤ 1 (5.46)

Where ξ is the global damping ratio. While this approach helps accelerate convergence in
the case of multiple collisions in a complicated system, it may still fail when a stiff boundary
is involved. Rather being squashed by larger grains, for example, a small grain may rest on a
rigid plane in one direction while colliding with a larger grain in the opposite direction (Figure
5.3 right). The rationale for applying damping to dynamic collisions between grains is that
collisions will eventually resolve after a sufficient number of repetitions, and damping is a
last choice for expediting this process. Interacting with a rigid boundary, on the other hand,
is fundamentally different, as the rigid boundary’s velocity cannot be dampened, resulting
in a numerically stiff problem as discussed next.
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5.4 Numerical Challenges with Impulse-Based

LS-DEM

5.4.1 Contact with Rigid Boundaries

The conventional approach for impulse-based DEM is to integrate the equations for rigid
body evolution forward in time and then resolve collisions to update velocities. This re-
quires the ETM algorithm to modify the velocity discontinuously and to treat all types of
interactions in the same manner to reap the algorithmic benefits. That is, regardless of the
magnitude of relative velocity and friction status, both inter-grain and wall-grain interac-
tions are considered equivalent. We will demonstrate how resting contact on rigid wall causes
the ETM algorithm to enter an infinite loop when dealing with a system of complex shaped
objects. We define the following terms: resting contact refers to the state of objects being
stationary, whereas dynamic collision refers to the state of grains experiencing a change in
force due to interference. A simplified explanation is that because the velocity of a rigid wall
remains unchanged, it violates the fundamentality of the ETM algorithm, which separates
two objects by sequentially applying repulsive impulses to both. Collisions require impulses
to modify the velocity, whereas contacts are more closely associated with forces and accel-
erations. As a result, a special treatment is required to distinguish impulse-based collision
treatment and needs a penalty-springs approach for at rest contact.

We used a time sequence similar to Guendelman et al. (2003) to distinguish the two types
of contacts with the magnitude of the relative velocity suggested by Moore and Wilhelms
(1988) and Mirtich and Canny (1995). The critical concept behind this procedure is to detect
static contacts that violate impenetrability constraints and correct velocity immediately
after the ETM algorithm is used to update the velocity. To avoid an infinite loop during
the collision resolution, only dynamic collisions are considered. The general application of
velocity correction is dependent on two critical factors: a low relative velocity and rigid
boundary interaction. If one of these two criteria is not met, a wall-grain contact is still
classified as a normal collision and treated using a collision resolution algorithm. After the
ETM algorithm is completed, the object is advanced in the next time step using the newly
solved velocities. The interference between rigid walls and grain is then checked, and the
grain velocity is corrected, as we want the objects to be moved to positions where there are
no rigid wall interactions. To ensure this, we use old velocities to predict the positions of
rigid bodies and use corrected velocities to progress through time steps. For instance, in the
collision phase, if an object’s current position and velocity are x and v, we test for interference
with rigid walls using the predicted position x

′
= x + v ·∆t, and then apply correction to

the current velocity such that the resulting velocity v∗ does not interfere with rigid walls.
Finally, we advance the object’s position xt+1 = xt+v∗ ·∆t. The algorithm’s overall structure
is as shown in Figure 5.4: it moves all rigid bodies to their predicted locations first, and then
it identifies and resolves all grains that penetrate rigid boundaries. This idea is visualized
in Figure 5.5, i.e. we consider all discretized nodes within the interpenetrating edges for a
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grain and move the one with deepest penetration till it is no longer in contact with the rigid
wall, angular velocity is also corrected by integrating the repulsive forces due to temporary
grain-wall overlaps. After velocity correction, new contacts with negative relative velocities
are identified and included in contact islands; we then re-evolve the position using the new
post-collision velocity and locate grains penetrating with rigid walls once again. We repeat
the process until all contacts are either non-interpenetrating or separating. By design, this
time sequence also ensures impenetrability between a grain and the rigid wall; if the velocity
correction step occurs before collision resolution, the objects would otherwise pass through
the rigid wall. We notice that, Wriggers and Laursen (2006) and Zohdi (2014) implemented a
similar adaptive time-stepping algorithm with convergence criterion to resolve the interaction
between the network fabric and the rigid body.

5.4.2 Modeling Deformable Structures

In comparison to rigid bodies, dynamic simulation excludes a wide variety of methods
for modeling deformable structures, as the motion of a deformable structure is frequently
unpredictable from a mathematical formula, it is not considered in a dynamic simulation. As
a result, impulse-based methods are frequently ignored or avoided in dynamic simulations of
deformable structures, and are instead used exclusively for rigid bodies. The assertion that
impulse-based methods can be applied only to rigid body models (Mirtich, 1996) is intuitive:
impulses are instantaneous changes in momentum, whereas deformation is a gradual process
that occurs over time. However, many applications of DEM, such as numerical modeling
of experimental triaxial tests or studies of the interaction between retention barriers and
boulders in debris flow simulation, require the modeling of a flexible membrane. The central
idea is to represent structures using a group of rigid balls: while each ball changes velocity
in a sequence of instantaneous impulses, the configuration of the balls in the group changes
in a seemingly gradual manner over time. This is identical to the way we modeled flexible
membrane in numerical triaxial compression and we claim that this design does not contradict
to the rigid body assumption of impulse-based formulation because individual balls are still
rigid. This method is different from the soft-contact model used for penalty-based DEM
in that the springs used in contact detection and force resolution in penalty-based DEMs
are inserted temporarily between detached colliding objects, whereas the springs used in the
flexible membrane are permanent, and the distinct balls represent an entire entity. With a
similar idea, (Zohdi, 2014) computationally simulated a network of coated yarn using coupled
fiber-segments, which include damage and plastification of the yarn.

To demonstrate the of flexible membrane model, a representative example of several
complex shaped grains falling into a flexible net is considered. The flexible nature of the net
is modeled as a blanket of linked balls organized in hexagonal patterns with a stiffness of
K = 0.1 for the internal springs between balls. The grains are subjected to vertical body
force and the time step is t = 2×10−4; the simulation takes approximately 16, 000 iterations
to reach an equilibrium state equivalent to 3.2 physical seconds. Figure 5.6 depicts the
simulation results after 0 iteration, 4, 000 iterations, 8, 000 iterations, and 12, 000 iterations.
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Figure 5.4: Flowchart of proposed time stepping integration, post-collision velocities were
corrected by checking grain-boundary contact, membrane sphere’s velocity was corrected
after it advanced to the next time step to ensure impenetrability.
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Figure 5.5: Demonstration of proposed time sequence, gray grain obtains post-collision ve-
locity, temporarily translates to the position marked in yellow, subject to repulsive forces
and correct velocities to satisfy impenetrability constraints.

It demonstrates a square flexible membrane or a net with four clamped edges. All balls along
the clamped edges are given an initial velocity of zero, and forces are zeroed out, effectively
immobilizing them. External downward forces are applied to grains at regular time intervals
via impulses and the grains begin to fall and contact the initially flat membrane. When
the membrane comes into contact, it begins to sag and then exhibits a wave-like pattern as
a result of internal velocity propagation triggered by the initial fall via a chain of springs.
After 12, 000 iterations, the induced waves have mostly subsided, and the grains have settled
to form a depression in the membrane. This simulation took only two minutes to complete,
which is compelling because it eliminated the need to select regular time intervals. The
selection of an appropriate time interval in the case of granular systems is complicated
by the fact that interacting entities can differ in size and momentum by many orders of
magnitude. Because the size and mass of the membrane ball are much smaller than grains
in this example, it would govern the time step in the conventional penalty-based DEM for
the sake of numerical stability, necessitating significantly more iterations to complete the
simulation.

Another numerical example is illustrated in Figure 5.7, where an assembly of grains
is initially seated on an inclined plane and then subjected to gravity force. Inter-grain
collisions are first resolved using the ETM algorithm, and then grain position is temporarily
updated using our new time stepping scheme with the post-collision velocities. When grains
collide with a rigid plane as the result of gravity and interference, post-collision velocities
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Figure 5.6: modeling of complex shaped grains falling into a flexible net.

are corrected to enforce impenetrability constraints. Then, additional pairs of grains that
may collide at new velocities are identified and resolved with the ETM algorithm. When
the assembly descends and rolls into the protection net, the membrane spheres interact
with the grains, registering and resolving their collisions using the ETM algorithm. The
membrane spheres update their positions after evolving velocities to avoid colliding with
other spheres and grains. Following that, the velocity of the sphere is altered to account
for spring and pressure forces acting on the membrane’s surface. The sphere velocity must
be corrected immediately following position advancement via post-collision velocity, and
the order is critical, as the grain may otherwise pass through the membrane. A network
of membrane spheres propagates a velocity wave and causes the entire entity to appear
deformable in the presence of sequential collisions. Interestingly, some small grains pass
through the protection net due to the stretched spheres creating gaps among them. It is worth
noting that the domain re-decomposition strategy improves the efficiency of parallelized code
by ensuring that the entire computational domain only encompasses the assembly’s geometric
configuration and distributes workload evenly across all processors. The mass difference is
greater than 400 in this simulation and it does not cause the algorithm to stall, due to the
fact that this is a dynamic problem which results in fewer resting contacts.
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Figure 5.7: Demonstration of proposed time stepping scheme to handle rigid boundary-grain
interaction and modeling of flexible membrane in impulse-based LS-DEM.

5.4.3 Use of Weighted Relative Velocity

To our knowledge, the impulse-based approach is generally used to model similar-sized
objects or decompose large objects into uniform elements (Asai et al., 2021), implying that
the collision matrix between attached objects is of the same order of magnitude. This does
not hold for our application, as we attempted to simulate a granular system of naturally
deposited sand with a wide range of grain shape and size, resulting in a colliding pair having
significantly different masses. Indeed, this may introduce numerical oscillation, causing small
grains to be bounced back and forth unnecessarily due to their greater sensitivity to applied
impulses. To address this issue, we modified the original ETM algorithm by considering
weighted relative normal velocity, defined as: ũ = m1m2

m1+m2
u, where m1 and m2 are the masses

of the colliding pairs. In comparison to smaller grains. In this way, the contact points
between larger grains are resolved earlier. This approach is superior to simply relying on
relative velocity to determine the sequence of contacts, because larger grains respond more
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gently to impulses, whereas tiny grains tend to oscillate violently even with insignificant
amounts of impulses. This change enables larger grains to achieve desired post-collision
velocities more quickly, and when smaller grains take control of the algorithm, the update
has a negligible effect on larger grains.

5.4.4 Poorly Reconstructed Avatars

There are several issues with low-resolution grain reconstruction that may contribute
to the ETM algorithm’s inability to converge demonstrated in Figure 5.8. Although we
do not require grain avatars to be convex, avatars constructed from low-resolution images
with excessive impurities and blurred inter-grain boundaries do not accurately capture grain
morphology, i.e., two avatars are merged and form fictitious geometry like the one shown
below. When another grain is trapped by this strange-shaped avatar and is subjected to
opposing impulses, it results in a numerical instability. Another instance occurs when a
small avatar is moved or generated within a larger one, thereby subjecting all discretized
nodes to impulses. Both scenarios introduce convergence issues for the ETM algorithm
because one object is subjected to impulses from opposite directions exerted by a single
object; this is analogous to one object being squeezed by two rigid boundaries concurrently.
As previously stated, this makes it difficult for a collision resolution algorithm to converge.
Numerous numerical issues also arise during high-resolution reconstruction of particles from
XRCT, primarily as a result of the preservation and capture of even the tiniest grains in
high-resolution images. As a result, the mass difference between the largest and smallest
grains can be as large as 1, 000, resulting in a numerically intractable system. Of course,
this issue can be avoided by artificially creating avatars that do not suffer from the above
mentioned artifacts.

Figure 5.8: Two scenarios resulting numerical instability. Left : One avatar entrapped by
another with peculiar geometry; Right : Small avatars completely wrapped inside another.
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5.5 Parallel Implementation of Impulse-Based

LS-DEM

The impulse-based LS-DEM continues to employ a domain decomposition strategy to
improve performance. As with the penalty-based LS-DEM, the binning algorithm is imple-
mented through a series of linked lists that map relationships between grains and bins with
a search complexity of O(1). There are two types of data communication to consider: border
communication and grain migration. The first type is treated identically to the penalty-based
LS-DEM, and an efficient algorithm consisting of three sequential calls to the optimally tuned
MPI routine MPI Sendrecv is sufficient to update exchange halo layers and automatically
handle edge cases. Grain migration across sub-domains is a complicated step in the penalty-
based LS-DEM because the contact history of a migrating grain is also brought along if the
history-dependent tangential contact model is used. However, it is much easier to handle in
an impulse-based method because it does not track the evolution of friction forces, allowing
all quantities to be packed and communicated collectively, thereby lowering communication
overheads.

The domain decomposition strategy divides a large computation task into smaller tasks
and assumes that each sub-domain has access to all necessary resources to run indepen-
dently. This is consistent with the penalty-based method, in which all grain motions are
a result of contact forces and have no relationship to distant grains. Because the collision
reaction is associated with a change in the microstructure at the contact point, the change
in acceleration must occur over a positive time interval. Indeed, the forces take some time to
propagate throughout the body due to the body’s elastic nature. Collision contact, however,
occurs within a very short time interval for a rigid body, which means that displacement and
change in the contact area are negligible or remain unchanged. Thus, in a penalty-based
DEM simulation, a body is influenced solely by its immediate contact neighbors, and it is
sufficient to consider a layer of halo region for data communication across computational
sub-domains. While inter-grain interactions can be reconciled element by element using a
penalty-based approach, a contact island, as illustrated in Figure 5.9, in which any pair of
grains is connected via a chain of immediately contacting grains, must be solved concur-
rently to satisfy the impenetrability constraints in the impulse-based formulation. Thus, one
of the difficulties in parallelizing impulse-based LS-DEM is that a contact island can span an
arbitrary number of sub-domains, resulting in grains within a sub-domain becoming indistin-
guishable from those in other sub-domains. Additionally, the penalty-based method obtains
boundary interactions from the halo layer and updates the grain’s motion independently of
other processors, whereas the impulse-based method requires one processor to gather and
resolve all collisions in a contact island.

The force resolution step of impulse-based method continues to use an O(n) binning
algorithm. This step identifies and registers all contact points that violate impenetrability
constraints, including contact IDs, branch vectors, and the normal direction of a collision
between two avatars. Following that, the master MPI processor (rank 0) collects these
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Figure 5.9: Illustration of contact islands (indicated in different colors) where a group of
bodies are associated via a contacting chain which could span over several sub-domains. For
example, two red bodies in a same group can influence each other possibly via several ways.

contacts and summarizes a list of contact IDs, determining the number of contact islands
and grains contained within. The concept of obtaining contact islands was inspired by the
fact that colliding bodies make contact with one another, and that the system of all colliding
pairs forms an undirected graph. As a result, the problem of determining contact islands
becomes a graph partition problem of determining all connected components. Additionally,
we can consider the graph as a sparse, symmetric square matrix whose dimension equals the
number of grains and whose entries are non-zero only when the corresponding pair of grains
collides. When the problem is rephrased as permuting such a matrix into a band matrix
with a small bandwidth, the Cuthill-Mckee algorithm (Cuthill & McKee, 1969) is used,
which is based on the graph’s Breath First Search (BFS) algorithm. Algorithm 4 contains
the Cuthill-Mckee algorithm optimized for our application. Following the identification of
contact islands, collisions between rigid bodies are resolved within each contact island, which
may span multiple sub-domains. To minimize data communication, a processor gathers
a contact island that already contains the majority of collisions. Due to the small and
specific size of the data being communicated, it can be packed and transferred efficiently
and collectively. After collision resolution is complete, the change in velocity of each grain
is computed and distributed back to the grain’s original process, which updates the grain’s
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velocity and advances a timestep. The preceding procedure formalizes the parallel strategy
used in Algorithm 5 for impulse-based LS-DEM.

Algorithm 4 CutHill-Mckee Algorithm

Input: A list LID with length of Ngrains including IDs of contact neighbors for all grains in
assembly.
Output: the number of contact islands in an assembly Nislands, a list Λislands of size Nislands

such that Λislands[i] denotes IDs of elements in the i-th contact island.

1: From LID generate a list Ldegree denoting the degree of an element, and a list Lchecked

denoting if an element is looked up already.
2: Set the number of contact islands Nislands = 0, the total number of checked elements
Nchecked = 0; and prepare a priority queue Λd for elements in the assembly, sorted by the
minimum degree.

3: while Nchecked < Ngrains do
4: Iterate Ldegree to find an element i with minimum degree among all unchecked ele-

ments.
5: Sort all elements in LID[i] into Λd if they are not already, and set Lchecked[i] = true.
6: while Λd is not empty do
7: Pop out the first element j from Λd.
8: if j is not already in Λislands[Nislands] then
9: Insert j into Λislands[Nislands], and set Lchecked[j] = true.
10: Sort all elements in LID[j] into Λd if not already.

11: Nchecked ← Nchecked + |Λislands[Nislands]|
12: Nislands ← Nislands + 1

The flowchart of parallelized impulse-based LS-DEM is shown in Figure 5.10. There
are several implementation details worth attention. As the basic element of impulse-based
method is an island of collisions, which could spread over multiple processors, each processor
still needs to generate a simplified avatar containing mass, moment of inertia for those that
do not belong to the sub-domain, and keeps track of all grains’ position, rotation, velocity,
and angular velocity. In addition, both post-collision velocity that is attained from solving
a contact island and the corrected velocity after interacting with rigid boundaries must be
broadcast to all processors before updating grain’s motion. Moreover, since each processor
interacts with its neighbors via halo layers, the grain-halo contacts are duplicated when
contacts in an island that spreads multiple processors are gathered to one processor, hence
half of interactions with halo layers need to be removed.
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Figure 5.10: Flowchart of parallelized impulse-based method.
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Algorithm 5 Algorithm to Parallel Contact Islands

Input: MPI rank imaintains a list Λi
C of contact details ΦC including contact IDs of colliding

bodies A and B; branch vectors from centers to contact point r; contact normal direction ñ;
relative velocity ũ; elastic energyW and body massM , such that Λi

C := {ΦC : ΦC ∈ rank i}.
1: /* Start Graph Partition to Detect Contact Islands */
2: if rank id ̸= 0 then
3: Generate a list Λi

ID contains IDs of contacting neighbors for each grain belongs to the
rank.

4: MPI Send Λi
ID to rank 0.

5: else
6: for rank id = 1 : Nranks do
7: MPI Recv Λi

ID from rank rank id .

8: /* Prepare For the CutHill-McKee Algorithm */
9: Build a list LID with length of Ngrains to register contact IDs for all grains in assembly.
10: Prepare a list Λislands of size Nislands such that Λislands[i] denotes IDs of elements in

the i-th contact island.
11: [Nislands, Λislands] = CutHill-McKee(LID).
12: for island id = 1 : Nislands do
13: determine the host rank that contains most collisions of the i-th contact island,

and register the host ranks in list Lhost with length of Nislands.

14: /* Broadcast Contact Islands Information */
15: MPI Bcast Λisland and Lhost.
16: /* All-To-All Communicate Contact Detail ΦC */
17: MPI Alltoall number of contact details that each rank should receive from others.
18: MPI Alltoallv specific contact details that each rank should receive from others.
19: /* Collision-Resolution Phase */
20: for island id = 1 : Nislands do
21: if Lhost[island id] == rank id then
22: Resolve collisions via Collision-Resolution Algorithm.

23: /* Broadcast and Update Velocities */
24: MPI Allgatherv linear and angular velocities from other ranks.

5.6 Numerical Tests

5.6.1 Performance Speedups with Impulse-Based LS-DEM

The speed-up of impulse-based LS-DEM was investigated by modeling the flow of 1600
arbitrarily complex shaped grains under artificial gravity from a smooth container, as shown
in Figure 5.11. The grains employed in the assembly have wide range of grain shapes and
sizes, making the time-step of conventional penalty-based approach very small. Table 5.1
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shows model parameters for the penalty-based and the impulse-based LS-DEM. The values
for inter-grains friction coefficient µ, normal contact stiffness Kn, and shear contact stiffness
Ks were adopted from Kawamoto et al. (2016). The coefficient of normal restitution accord-
ing to Stronge’s hypothesis is taken Rn = 0.65, which was obtained by Li et al. (2021) by
conducting experiments. The coefficient of tangential restitution Rt needs also to be cali-
brated, but many impulse-based simulators show good physical plausibility with a default
value of zero (Lee & Hashash, 2015). Global damping is ξg = 0.5 for both approaches.
Different time steps for impulse-based LS-DEM (∆ti) were chosen to study the speed up as
well as the simulation fidelity over the reference penalty-based simulation. The time step
of penalty-based LS-DEM was computed by assuming a factor of safety 0.1 and the value
2.5× 10−4 is selected for the ease of comparison.

∆t = 0.1×
√

Kn

Mmin

≈ 2.98× 10−4 (5.47)

Common Parameters
Specific gravity of solids Gs 2.65

Inter-grain friction coefficient µ 0.55
Global damping coefficient ξg 0.5

Penalty-based LS-DEM Impulse-based LS-DEM
Normal contact stiffness Kn 3× 104 Coefficient of normal restitution Rn 0.65

Tangential contact stiffness Ks 2.7× 104

Table 5.1: List of model parameters and values used for the simulations.

In the simulations, the outer walls of the container were removed and the sand was
allowed to flow out. The geometries of the resulting mounds, approaching the angle of
repose, were compared at the end of 8s time interval. In each timestep, the post-collision
velocities were corrected for rigid boundary contact until the computed velocities did not
violate either inter-grain or grain-wall impenetrability. In this example, we repeated this
procedure several times within a single timestep, and we found 10 iterations were enough
to stabilize the velocity of grains. The code speed-up was measured in terms of central
processing unit (CPU) time. Five simulations using impulse-based LS-DEM were conducted,
with the time step used varying from ∆ti = 1∆t = 2.5× 10−4 to ∆ti = 16∆t = 4.0× 10−3.
Figure 5.12 shows the mound geometry for each simulation and Table 5.2 tabulates the
speed up times for the different time steps in the impulse-based DEM simulations. The
simulation fidelity can be checked in terms of final height and spread of mound. Although
all simulations produced similar shaped mounds, discrepancies in positions and rotations
of individual grain can be large. Calibrating impulse-based method to achieve reasonable
agreement to reference penalty-based simulation is not easy as it requires the identification
of actual or ad hoc internal variables and constitutive relations. In addition, there are too
many degrees of freedom even for a single grain and to make the one-to-one comparison is
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Figure 5.11: Initial configuration of 1600 very high-resolution grains in 800 × 800 × 800
domain for impulse-based method with large timesteps.

not feasible. Instead, we aimed to explore to what extend that both methods agree with
each other in a qualitative sense. At the same time we found that the simulation results
even using a very large time steps, showed no obvious penetration errors between particles
and the geometric fidelity was maintained across all simulations.

∆t (sec) CPU Time (mins) Time Step Diff Speed-up
Penalty-based 2.5× 10−4 ∼ 4, 000

Impulse-based

2.5× 10−4 265 1∆t 15.1
5.0× 10−4 132 2∆t 29.4
1.0× 10−3 72 4∆t 55.6
2.0× 10−3 42 8∆t 95.2
4.0× 10−3 42 16∆t 95.2

Table 5.2: Comparison of CPU time and speed up of impulse-based methods.
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Figure 5.12: Specimen height and spread after 8s settlement under gravity with varying
timesteps.

In this simulation, the particles were reconstructed from a very high-resolution dataset
(3.4µm/pixel) and each grain was represented by 2, 561 discretized nodes on the average
and storing 1, 600 grains required 3.36 GB of memory. We rarely used very high-resolution
avatars for large scale simulation with penalty-based method although we have efficiently
parallelized code, because actual workload corresponds to the total number of nodes rather
than the number of grains. In contrast, there are fewer restrictions to model high-resolution
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avatars with impulse-based method. Even though impulse-based method still interpolates
normal direction from the LS grids, the impulse-based LS-DEM does not compute, update,
and track complicated history-dependent friction. This simplified force resolution and helped
to keep LS grids in cache and enabled continuous, fast access. Besides, the amount of time
required for sub-iterations to resolve multiple collisions is less demanding because doing
arithmetic operations is hundred times faster than moving data around in modern machines.

Significant speed up shown in Figure 5.13 is achieved in impulse-based method with larger
time steps, which is not likely for conventional penalty-based DEM. As grains settled down,
the number of contact islands decreased and the number of contacts in an island increased.
We observed that even though as many as 300 contact islands still remained at the end of
simulation, the largest number of contacts in an island was more than 2, 000, this implies
most of grains were grouped into several clusters and time used to resolve collisions raised.
We also found that both the number of contact islands and contacts increase with timestep
as larger timestep changes configuration more rapidly and adds more collisions. The ratio
of mass differences between the largest and the smallest grains in this example was around
30, and we found this is a ratio that our algorithm could run under different timesteps,
accelerations and boundary conditions.

Figure 5.13: Simulation time breakdown for various timesteps.

Figure 5.14 shows why computing time for simulations using timestep 2.0 × 10−3 and
4.0× 10−3 does not change substantially. Although none of simulation results violated CFL
condition and incurred obvious penetration errors, larger timestep identified more contacts
and required substantially more time to solve ETM algorithm. As shown in Figure 5.14, the
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resolution time for contact islands with various number of collisions is nonlinear. This implies
that, although not violating the physics of the problem whereby large timestep results in
grains passing through each other, the timestep should also be chosen to avoid spending too
much time in collision resolution.

Figure 5.14: Computing time for islands having different number of collisions, all measured
for 5 timesteps and 10 sub-iterations for rigid boundary correction.

5.6.2 Efficiency Analysis of Parallel Impulse-Based LS-DEM

To benchmark the performance of parallelized impulse-based LS-DEM, a series of nu-
merical experiments were performed on the Savio system of UC Berkeley. The objective was
to measure the performance improvement by integrating an O(n) algorithm and using par-
allel techniques. We used XRCT data to reconstruct the observed sand fabric with 155, 016
avatars as shown in Figure 5.15. The reconstructed avatars were tightly packed which is
not the favored type of problem for an paralleled impulse-based code for two reasons. First,
the system of granular particles has wide range of masses, shapes, and sizes; second, almost
every grain is connected in a single cluster and all inter-grain interactions are static contacts.
These issues make the problem numerically too stiff to be modeled as an impulse dynamic
problem. To tackle such limitations, we removed the avatar with mass two standard devia-
tion away from the mean to make the mass ratio between the grains at most 30 and with 299
discretized nodes per grain on average, the model required 12.6GB memory for morphological
files. The demonstrated problem is simple: domain boundaries are modeled as undeformed
planes; grains are restricted from leaving the domain and would be bounced back if it intends
to do so. For simplicity, grains are subjected to random accelerations in each time step to
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secure load balance. The bookkeeping and adaptive binning subroutines are switched off
when the performance is benchmarked. With given computing resources, the code could
adaptively determine the number of processors that are actually utilized such that the total
border/ghost area or the amount of communication across processors is minimized.

Figure 5.15: 155, 016 low-resolution grains in 1, 200 × 1, 200 × 1, 200 domain to benchmark
parallel impulse-based LS-DEM.

Figure 5.16 lists the simulation time breakdown for parallelized impulse-based LS-DEM.
While the serial portion of code consumed less time with more processors involved, commu-
nication overheads nevertheless began to govern and computing time for collision resolution
phase soon ceased to decrease. All speed-ups were measured relative to a serial run, which
is equivalent to an MPI simulation with a 1× 1× 1 decomposition. The performance gains
by using 8, 27, 64 and 216 processors are 5.5, 7.0, 7.3 and 5.0, respectively. As is evident,
a parallel code cannot achieve high efficiency unless communication overheads are kept to
a level, beyond which more MPI processors lead to an increased amount of MPI traffic and
stall or even deteriorate scalability. In this case, the impulse-based method could not be per-
fectly parallelized as we achieved with the penalty-based method, but there is still a sweet



CHAPTER 5. IMPULSE-BASED LS-DEM FOR DYNAMIC PROBLEMS 157

Figure 5.16: Simulation time breakdown for parallel impulse-based LS-DEM, modeled with
155, 016 grains, with 1, 8, 27, 64, 216 processors, respectively.

spot, eight processors in this specific case, where the communication is still modest, while
increasing the number of processors to beyond 64 no longer brings additional benefit as the
MPI communication starts overwhelming the other operations.

5.6.3 Numerical Modeling of Rock Avalanche

Even though Impulse-based DEM is capable to take much larger time step and eliminate
substantial amount of demand to compute forces, the fundamental issue of a discontinuum-
based method to model an assembly with wide range of object sizes still remains. This
is the issue we already addressed when discussing the problem of modeling fixed, or rigid
boundaries. In that context, modeling topography presents an analogous problem.

Within the LS framework, any arbitrarily shaped surface, such as a real topography
with ridges and valleys, can be captured provided its associated elevation data. The LS
algorithm was first used to locate the zero-valued contour, from which the fast-marching
method (Sethian, 1999) is used to construct the underlying signed distance grid by solving
a boundary value problem of Eikonal equation:

|▽ϕ (x)| = 1

f (x)
for x ∈ Ω (5.48)

ϕ (x) = 0 for x ∈ ∂Ω (5.49)

Such a problem describes the evolution of a surface as a function of LS ϕ with speed f(x)
in the normal direction at a point x on the propagating surface. Alternatively, ϕ(x) can be
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thought of as the shortest time required to reach x starting from the zero contour, of course,
ϕ (x) = 0 for x on the zero LS contour ∂Ω. The algorithm is similar to Dijkstra’s algorithm
and uses the fact that information only flows outward from the area that is already labelled
with a value. In this example, a digitized topography (see, Figure 5.17) and its LS repre-
sentation are constructed as a large LS-DEM object to exploit algorithmic advantages and
we treat grain-topography interaction identically to grain-grain interaction. The digitalized
topography occupies the entire computational domain and consumes as much as 10GB com-
puter memory. To avoid large memory demand, we only save a narrow band of grid adjacent
to the zero LS contours, which is sufficient to interpolate the amount of penetration between
objects and keep the memory requirement low.

Figure 5.17: (a) Entire digitalized topography. (b) A zoomed in region marked in yellow.
(c) A zoomed in region concatenated by a flat plane.

We show three simulated landslides in which a granular deposit assembly was perturbed
by gravity and allowed to slide as gravity overcame the internal friction of the deposit. The
digitalized topography is inclined at 25◦, and the coefficient of internal friction between the
particle and the topography is 0.2. Larger particles were visualized in red, while smaller
particles were displayed in orange. In all cases, the particle mass, rock avalanche, moves
fluid-like down the stream channel. In the first example (Figure 5.18), the avalanche ran
out on a flat plane and formed fan-shaped deposit as is typical of rock avalanche deposits.
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In the second example shown in Figure 5.19, the deposit ran out onto a surface sloping at
only 3◦, again similar to many natural settings, and was deflected downslope. In the third
example (Figure 5.20 and Figure 5.21), we simulated different geometries of flexible barriers,
such as are often used for rock fall protection. In both cases, the avalanche was initially
contained until it overflowed the barriers. Our interest in these simulations was to explore
the potential of the impulse-based DEM to realistically handle field-size problems rather than
solve a particular problem. The first two simulations ran on a single CPU and completed
20, 000 steps in 2 hours, while the third simulation completed the same number of steps in
5 hours due to the more complicated membrane-grain interaction. Overall, the results are
very promising, as rock avalanches have been typically modeled as equivalent viscous fluid
(such as, Setiasabda, 2020; Ho et al., 2021), rather than assemblages of particles, in order
to make the simulation tractable.

Figure 5.18: Rock avalanche runs into a flat plane.

5.7 Conclusion

We have showed that impulse-based method is compelling in large part that it alleviates
the need to choose regular time intervals and saves substantial amount of force computation
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Figure 5.19: Rock avalanche runs into a tilted plane.

for complex shaped objects. The combined effects speed-up the simulation by at least factor
of 10 with reasonable levels of fidelity. We modified ETM algorithm making it more suitable
for dealing with a system of wide shapes and sizes, instead of removing the minimum smallest
relative velocity from priority queue each time, we prioritize the weighted relative velocity
which considers the masses of colliding bodies for better convergence. This measure is
effective because it first considers larger objects as later updates of small objects only trivially
influences the larger ones. Compared to SMM and SQM, ETM algorithm is advantageous
that it is less sensitive to the order of impulses and tends to be more energy conservative. By
applying impulses gradually to the contact points, the impulses can influence multiple contact
points at the same time and enable propagation of impulse effects and improve the overall
ability of the method to capture propagation of forces during dynamics simulations. We
further incorporated impulse-based method into LS framework, the geometric representation
of irregular grains with signed distance functions defined on grids. We also used a novel time
integration scheme that separates the treatment of inter-grain collision and wall-grain resting
contact. This improves the robustness of collision resolution algorithm, therefore avoiding
unreal numerical oscillation and energy dissipation. Also, the demonstration of protection
nets modeling provides convincing evidence that impulse-based methods can be used to
simulate the dynamics of deformable structures.
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Figure 5.20: Rock avalanche impacts a single protection net.

Figure 5.21: Rock avalanche impacts a double-layer protection net.

The major limitation of impulse-based method still lies in modeling a system of irregular,
nonconvex, non-uniform objects especially in a highly confined quasi-static setting, whereby
objects with very different shapes and sizes interact with each other at many contact points
and have small velocities. However, our modified ETM algorithm and time integration
scheme is capable to simulate a range of very different objects with each of them being
modeled as an entity and draw least amount of artificial interference for dynamic problem as
we presented. We are interested in enhancing our current simulator to make it more robust
analysis tool to probe contact forces and impulses for wider range of problems. Finally,
We examined the parallel potential of impulse-based method using domain decomposition
strategy, which showed that the current code was sped-up with few processors, but using
more processors will stall or even deteriorate scalability due to severe workload imbalance and
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unaffordable communication overheads. This aspect of problem deserves further evaluation
of different strategies and data abstraction in future work.



163

Chapter 6

Conclusions and Future Work

The primary objective of the research presented herein was to use the results of detailed X-
Ray Computed Tomography (XRCT) characterization of the fabric of a naturally deposited
sand in order to build a high fidelity micromechanical DEM model and then explore the
effect of soil fabric on the macroscopic, mechanical behavior of the sand. Samples of fine
sand obtained from a shoal in the San Francisco Bay scanned and tested in miniature triaxial
tests by Garcia et al. (2022) provided the data used for the model development.

The processing of the XRCT data on the fine sand used in this study presented a signif-
icant challenge because of the intimate packing of the grains and the presence of different
minerals, including fine clay adhesions. Thus, in order to obtain high fidelity representation
of the sand fabric we explored different techniques to improve the grain segmentation process.
As a first step we used non-local means filter to denoise the images. This method preserves
edge sharpness and significantly reduces noise. Then a learning-based image super-resolution
method was utilized to enhance the resolution of the images based on sparse signal repre-
sentation. We found that this method outperforms other methods of image super-resolution
in our application. Finally, we performed the image segmentation using HMRF with WEM
algorithm in which each group of pixels (void, water, solid etc.) is modelled as a distinct
Gaussian and the spatial connectivity is imposed via a stochastic Markov network. We found
that this approach increased the accuracy and robustness of the image reconstruction and
much improved binary segmentation of XRCT images compared to to conventional methods
such as Otsu’s method or K-means. As a final step, the avatars for use in DEM were recon-
structed from segmented images using a DRLSE algorithm. This approach produced best
fidelity, digital reconstruction of the sand fabric.

The principal challenge in being able to perform numerical experiments using microme-
chanical model of the sand was having an efficient DEM code. To this end a new parallel
LS-DEM code was developed based on an existing framework. The new code uses the bin-
ning algorithm to reduce the computational complexity from O(n2) to O(n). The code maps
relationship between bins and grains with linked-list like data structure and considers MPI
communication in two major parts: border/halo exchange and across-block migration. The
resulted numerical experiments show that the code has an excellent weak scalability numer-
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ically and has the potential for simulating large scale DEM problems with complex-shaped
grains. An important advantage of the MPI implementation is that the code is able to run
on wide variety of parallel systems, including shared-memory computers and clustered sys-
tems, which makes the code highly portable. Additionally, a quick, efficient code enables
systematic parameter exploration and full-scale simulation in other applications.

The new LS-DEM code was then used to replicate the triaxial compression tests per-
formed on undisturbed sand samples and to demonstrate the feasibility of modeling complex
natural fabric of sands. Both micro- and macromechanical behaviors of natural materials
were well-captured and validated with experimental data, which includes the initial stiffness,
peak mobilized friction angle, force chain formation, shear band pattern and fabric evolution.
A The results of the numerical modeling show that the primary source of peak strength of
sand is the mechanical interlocking between irregularly shaped grains; thus, even the sim-
plest contact model is capable of reproducing both micro- and macro-mechanical responses
consistent with experimental data, provided that the microstructure of the grain is captured
with sufficient fidelity using high quality scans. Flexible membrane simulations with a ro-
tatable loading platen were found to better predict not only stress-strain and volumetric
response, but also the onset and growth of strain localization, allowing them to accurately
match experimentally observed relationships between deviatoric stress and mobilized friction
angle with axial shortening for uncemented sample.

Finally, we have investigated the viability of modeling dynamic problems with newly
formulated impulse-based LS-DEM. The new formulation has both numerical attractions
and challenges. While it is stable, fast and energy conservative, it may be numerically stiff
when the assembly has a substantial mass difference or badly reconstructed particles as a
result of poor image resolution. We demonstrated the feasibility of modeling deformable
structures in the rigid body framework and proposed several enhancements to improve the
convergence of collision resolution, including a hybrid time integration scheme to separately
handle at rest contact and dynamic collision. We then demonstrated that LS-DEM is a
generalizable framework which can accommodate any arbitrarily shaped topography and
take algorithmic advantages for particle-topography interaction resolution. Specifically, the
new formulation allows efficient modeling of granular flows such as rock avalanches with
realistic geometry representation without having to assume equivalent fluid behavior as has
been done in the past.

The new, parallel implementation of LS-DEM has potential for further enhancements for
other applications. The most immediate may to add the capability for modeling particle
fracture and disintegration in shear which frequently occurs in granular materials. Model-
ing heat generation in high velocity simulation of frictional materials is another potential
enhancement for exploring phenomena such as rock avalanches. The parallel implementa-
tion of the impulse-based LS-DEM deserves additional exploration because the presence of
contact islands fundamentally undermines the concept of domain decomposition and hence
necessitates a new approach to domain partitioning and communication between processors.
Probably the most significant future enhancement would be to integrate liquid phase into
the LS-DEM framework and examine the phase front using LS curve evolution techniques.
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Thus, the effect of capillary pressure drawing irregularly shaped particles together can be
studied at the micro level. Modeling the third phase may be difficult since it requires the
underlying mesh to keep track of the deformation of liquid and air phase. As both LS based
front propagation and multi-phase flow are often evolved on Cartesian grids, this fact leads
to the continual update of mesh surrounding the solid phase. The problem might be re-
solved with the immersed boundary method, which incorporates the solid-fluid interaction
as an additional force component in the Navier-Stokes equation and imposes slip and velocity
compatibility as boundary conditions.

Finally, the methodologies developed in this thesis are not tied to granular materials
in one particular stress path but also open a door to simulate other families of materials,
which can fracture, deform, or flow under more complex loading conditions. The parallel LS-
DEM is promising in that it can capture object morphology at highest level and is backward
compatible, allowing researchers to choose the appropriate geometry precision, model scale,
and dynamic type for the problem at hand.
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Parallel dem software for simulation of granular media. Informatica, 17 (2), 207–224.

MiDi, G. (2004). On dense granular flows. The European Physical Journal E, 14, 341–365.
Mirtich, B., & Canny, J. (1995). Impulse-based simulation of rigid bodies. Proceedings of the

1995 symposium on Interactive 3D graphics, 181–ff.
Mirtich, B. V. (1996). Impulse-based dynamic simulation of rigid body systems. University of

California, Berkeley.
Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior (Vol. 3). John Wiley &

Sons New York.
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