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Abstract of the Dissertation

On the Infinitary Combinatorics of Small Cardinals

and the Cardinality of the Continuum

by

Thomas Daniells Gilton

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2019

Professor Itay Neeman, Chair

This work is divided into two parts which are concerned, respectively, with the combinatorics

of the cardinals ℵ1 and ℵ2.

The first part of the thesis contains the result due to the author and his advisor, Itay

Neeman, that the Abraham-Rubin-Shelah Open Coloring Axiom is consistent with a large

continuum; this answers a long-standing open question in forcing. Most of Part 1 appears in

our submitted manuscript [35]. After surveying the relevant background in the first chapter,

we proceed in the second chapter to define the notion of a Partition Product. This is a

type of iteration built out of smaller ones in specific ways, roughly with memory conditions

on the names and with isomorphism and coherence conditions on the various “memories.”

We will prove a number of useful facts about partition products in Chapter 2. In Chapter

3, we show how to construct so-called Preassignments of Colors in the context of partition

products; this forms the technical heart of Part 1. And finally, in Chapter 4, we show how

to construct partition products in L; in particular, we construct the partition product which

yields the model witnessing our theorem.

Part 2 of the thesis addresses questions about a variety of combinatorial principles on ℵ2.

In each chapter in Part 2, we will be concerned with showing that some amount of Stationary

Reflection holds at ω2, more specifically showing that various amounts of stationary reflection
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are compatible with other principles of wide interest. In Chapter 5, we provide an overview of

these combinatorial principles and some of their history; we also spend some time collecting

standard facts about Mitchell-type forcings which we will use in the subsequent chapters.

Chapter 5 concludes with a proof that various Mitchell-type posets and their quotients are

proper, a result which we assume is known, but which we have not encountered ourselves

elsewhere.

Chapters 6 and 7 address questions arising from the recent paper The Eightfold Way by

Cummings, Friedman, Magidor, Rinot, and Sinapova (see [24]). In Chapter 6, we answer

an open question asked at the end of that paper by showing that it is consistent, from

a Mahlo cardinal, that the Tree Property (TP(ω2)) and Approachability (APω1) both fail

at ω2, while stationary reflection (SR(ω2)) holds at ω2. The authors of [24] obtained the

consistency of this same configuration from a weakly compact cardinal; our result proves the

consistency of this configuration from optimal assumptions. We remark here that we present

the original proof discovered by the author of this thesis. Later, the author, working with

John Krueger, provided a more streamlined proof of this same result; this proof will appear

in the forthcoming paper [32]. Chapter 6 also includes an unrelated Easton-style lemma for

preserving stationary subsets of countable cofinality; this result is due to the author and

Omer Ben-Neria.

In Chapter 7, we show that for any Boolean combination, Φ, of TP(ω2) and APω1 , Φ is

consistent with a strong form of simultaneous stationary reflection on ω2, namely that every

stationary S ⊆ ω2 ∩ cof(ω) reflects almost everywhere. This strengthens some of the results

from [24].

In Chapter 8, we return to the model from [34], making good on a promise from the

postscript therein. In [34], the author and John Krueger originally sought to show that

stationary reflection on ω2 is consistent with a large continuum, and we built an involved

mixed-support iteration to achieve such a model. However, we later learned from I. Nee-

man that such a model can be constructed by simply adding Cohen reals over the original

Harrington-Shelah model ([39]). In Chapter 8 we will show that after a modification of our
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original preparatory iteration, we may obtain a model in which SR(ω2) and APω1 both hold,

in which 2ω > ω2, and in which there are neither special Aronszajn trees on ω2 nor weak

Kurepa trees on ω1. This is a configuration which cannot be obtained simply by adding

Cohen reals over the original Harrington-Shelah model nor by the methods of disjoint sta-

tionary sequences from [32]. We hope that this demonstrates the usefulness of such a mixed

support iteration.

In the final chapter, we provide a list of open questions which we would like to address

in future work.

iv



The dissertation of Thomas Daniells Gilton is approved.

Artem Chernikov

Andrew Scott Marks

Donald A. Martin

Itay Neeman, Committee Chair

University of California, Los Angeles

2019

v



to my parents, Michael and Kathleen, for their unconditional love;

to my beloved wife, Marian, for her indefatigable support;

and to my daughter Zoe:

weißt du eigentlich, wie lieb ich dich hab?

vi



Table of Contents

I The Abraham-Rubin-Shelah Open Coloring Axiom and 2ℵ0 >

ℵ2 1

1 Introduction to Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The Basic Theory of Partition Products . . . . . . . . . . . . . . . . . . . . 9

2.1 Partition Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Definition and Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Rearranging Partition Products . . . . . . . . . . . . . . . . . . . . . 17

2.1.3 Further Remarks on Matching . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Combining Partition Products . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Shadow Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Enriched Partition Products . . . . . . . . . . . . . . . . . . . . . . . 28

3 Constructing Preassignments of Colors . . . . . . . . . . . . . . . . . . . . . 34

3.1 κ-Suitable Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 What suffices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 How to get there . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Putting it together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Constructing Partition Products in L . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Local ω2’s and Witnesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Building Partition Products and the Final Argument . . . . . . . . . . . . . 72

vii



II Stationary Reflection and Other Combinatorial Principles

on ℵ2 79

5 Introduction to Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Definitions and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 A Quick Survey of Mitchell-Type Posets . . . . . . . . . . . . . . . . . . . . 89

5.3 Properness of Mitchell-Type Posets . . . . . . . . . . . . . . . . . . . . . . . 91

6 ¬TP(ω2) + ¬APω1 + SR(ω2) from Optimal Assumptions . . . . . . . . . . . . 94

6.1 The Preparatory Forcing and ¬APω1 . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Iterated Club Adding and the Failure of Approachability . . . . . . . . . . . 98

6.3 An Easton-style Lemma for Preserving Stationary Sets . . . . . . . . . . . . 103

7 The Eightfold Way and Simultaneous Stationary Reflection . . . . . . . . 106

7.1 TP(ω2) + APω1 + SR(ω2)∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 TP(ω2) + ¬APω1 + SR(ω2)∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3 ¬TP(ω2) + ¬APω1 + SR(ω2)∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 Combinatorics after forcing with a Suitable Mixed Support Iteration . . 123

8.1 Suitable Mixed Support Iterations . . . . . . . . . . . . . . . . . . . . . . . . 123

8.1.1 Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.1.2 Distributivity and Cardinal Preservation . . . . . . . . . . . . . . . . 128

8.2 Verifying SR(ω2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.3 Properties of Trees in the Final Model . . . . . . . . . . . . . . . . . . . . . 138

9 Some Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

viii



Acknowledgments

It is fitting to begin by thanking my long-suffering advisor, Itay Neeman. With the

patience of Job, he has instructed me over my years at UCLA. I thank you, Itay, for being so

generous with your time; for sharing your perspicacious insights into so many mathematical

topics; for encouraging me to never be afraid to tackle hard problems; for your humor; and

for being so understanding of how dramatically my life changed after my wife and I had

Zoe. Finally, thank you for your kindness and for your wise advice about so many matters.

I hope that if I have students one day, I may emulate you in my interactions with them.

I also thank my committee members, Donald A. Martin, Andrew Scott Marks, and Artem

Chernikov for the ways they have supported and encouraged me. Thank you all for being

willing to talk about mathematics and for sharing your knowledge.

I have been supported by the NSF grants DMS-1363364 and DMS-1764029, and I would

like to thank the NSF for their generous financial support.

I wouldn’t have accomplished this task without the support and guidance of so many.

John Krueger deserves special mention in this regard. It is John who, during my Freshman

year at the University of North Texas, decided to invite me to begin reading and learning

advanced mathematics with him. Little did I know that this would be my introduction to

the beautiful world of Set Theory. I thank you, John, for introducing me to Set Theory;

for patiently teaching me so much about the topic; for being such a perspicuous thinker

and lecturer; for encouraging me to attack problems with unyielding determination; for

supervising my Master’s thesis; and for being not only a mentor but also a friend.

The University of North Texas was a place of much mathematical and personal growth

but also great fun for me. It is therefore appropriate for me to thank my friends Kostas

“Ogre” Beros, Michael Cotton, Ojas “OF” Davé, Jared Holshouser, Tony Jacobs, Tamara
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Part I

The Abraham-Rubin-Shelah Open

Coloring Axiom and 2ℵ0 > ℵ2
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CHAPTER 1

Introduction to Part 1

The infinite has been a topic of perennial interest to mathematicians. One of the most

fascinating and foundational discoveries in this regard is Georg Cantor’s proof ([16]) that

the set of real numbers, R, has a strictly greater infinite size, or cardinality, than the set of

natural numbers, N. Cantor’s proof was a watershed in our understanding of the infinite, as

the ideas of his proof can be used to show that infinite sets come in a bewildering variety of

sizes, known as cardinal numbers. In the form of an equation, Cantor’s Theorem says that

2ℵ0 > ℵ0. This, then, prompts the following natural question: just how much bigger is 2ℵ0

than ℵ0? The so-called Continuum Hypothesis (CH) is the assertion that 2ℵ0 is as small as

it can conceivably be, or in the form of an equation, that 2ℵ0 = ℵ1 is true.

After Cantor’s work, however, the eminent mathematicians Kurt Gödel and Paul Cohen

discovered that it is not possible either to prove the CH or to prove its negation using ZFC,

the standard axiom system for mathematics. In more detail, Gödel showed ([38]) how to

build a model of ZFC, the so-called Constructible Universe, in which the CH holds. On the

other hand, Cohen showed ([17]), in work that earned him the Fields Medal, how to use

his technique of Forcing to construct models of ZFC in which the CH is false. One may

summarize the state of play by saying that ZFC does not decide the value of 2ℵ0 . In light

of these results, mathematicians in the field of Set Theory have found the following to be a

fruitful question:

Question: Are there natural axioms which are consistent with ZFC and decide the value of

2ℵ0?

This question has spawned an enormous line of research in set theory into the range of
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possible values of 2ℵ0 consistent with various combinatorial principles of infinite cardinals.

In one direction, researchers have focused on showing that various combinatorial princi-

ples are consistent with the CH. Much of the research in this vein has appropriated Shelah’s

theory of Dee-completeness, a framework for building iterations which do not add any new

reals, and hence preserve the CH; see chapters 5 and 8 of [67]. A number of interesting

applications of this theory have been found, though we only mention a few. For instance,

Abraham and Todorčević ([6]) and Todorčević ([77]) have shown that the P-Ideal Dichotomy,

first introduced in [76], is consistent with the CH ; Abraham has shown (see [2]) that various

coloring properties of Hajnal-Máté graphs are consistent with the CH; and Eisworth and

others have shown that many varied and interesting topological principles are consistent

with the CH (see [29], [28]). See also [61], and [7], and see [8] for a very different approach

which involves adding some, but only a few, reals.

In another direction, researchers have sought to show that various combinatorial princi-

ples are consistent with or imply the failure of the CH. One line of attack for these problems

is to show that some such principle is a consequence of the Proper Forcing Axiom (PFA),

since PFA implies that 2ℵ0 = ℵ2 (see [42]). For a classic treatment of the subject, see [13];

see also the introduction to [9] and the literature cited therein.

However, of particular interest to us, are principles (most of which are consequences of

PFA) consistent with a Large Continuum, by which we mean any value of the continuum at

least as big as ℵ3. For examples of some notable results in this line of research, we mention

the theorems of Abraham, Rubin, and Shelah that Baumgartner’s Axiom ([14]), as well as

the Semi-Open Coloring Axiom are consistent with arbitrarily large values of 2ℵ0 (see [4]).

Abraham and Shelah have studied isomorphism types of Aronszajn trees on ω1, showing that

an arbitrarily large continuum is consistent with the assertion that all Aronszajn trees on ω1

are isomorphic on a club (see [5]). For a connection to measure theory, Judah, Shelah, and

Woodin have shown (see [44]) that the Borel Conjecture (that every strong measure zero

set is countable) is consistent with arbitrarily large values of the continuum, improving on

an earlier result of Laver ([54]). More recently, Asperó and Mota have shown (see [9], [10])
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that many different consequences of PFA are consistent with arbitrarily large values of 2ℵ0

using their method of symmetric side conditions; the method of side conditions goes back

to work of Todorčević (see [74]), as does the extension to put symmetry-type conditions on

the models (see [75]).

We will focus our attention on so-called Coloring Axioms, which should be viewed as gen-

eralizations of Ramsey’s Theorem ([64]) to pairs of countable ordinals, i.e., to colorings on

ω1. Given the remarkable success of Ramsey’s Theorem in many diverse areas of mathemat-

ics, set theorists have found it natural to ask whether there are analogous results which hold

for ω1. The most straightforward generalization of Ramsey’s Theorem is the assertion that

any coloring of pairs of countable ordinals has an uncountable homogeneous set. However,

as Sierpiński has shown (see [70]), this naive generalization is provably false, at least in ZFC

(see [41] for a discussion of partition theorems in the context of the Axiom of Determinacy).

The failure of Ramsey’s theorem to generalize straightforwardly to ω1 has spawned a huge

line of research into partition theorems for uncountable sets, though we only mention a few

results here. One of the first results in this area is the theorem due to Dushnik and Miller

([27]) that ω1 → (ω1, ω)2. Erdös and Rado (see [30]) later improved this to ω1 → (ω1, ω+1)2,

and they also showed that i+
n → (ℵ1)n+1

ℵ0
holds for all n < ω. Todorčević has shown that

ω1 → (ω1, α)2 is consistent for all α < ω1 (see [73]).

We are most concerned with obtaining consistent generalizations of Ramsey’s Theorem to

ω1 by placing various topological restrictions on the colorings, resulting in so-called Coloring

Axioms. The first such axiom to appear in the literature is due to Abraham, Rubin, and

Shelah in their above-mentioned 1985 paper (see [4]); the definition is as follows, where we

will use the notation [A]2 to denote all two-element subsets of the set A.

Definition 1.0.1. A function χ : [ω1]2 −→ {0, 1} is said to be an open coloring if it is

continuous with respect to some second countable, Hausdorff topology on ω1. A ⊆ ω1 is said

to be χ-homogeneous if χ is constant on [A]2.

The Abraham-Rubin-Shelah Open Coloring Axiom, abbreviated OCAARS, states that for
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any open coloring χ on ω1, there exists a partition ω1 =
⋃
n<ω An such that each An is

χ-homogeneous.

Abraham and Shelah ([11]) first studied a restricted version of this axiom during the

course of their investigation into the relationship between Martin’s Axiom and Baumgartner’s

Axiom ([14]). This restricted version is concerned just with monotonic subfunctions of

injective, real-valued functions. The full version made its debut in [4], where the authors

studied it alongside a number of other axioms about ℵ1-sized sets of reals. In particular,

they showed that OCAARS is consistent with ZFC.

A little later, Todorčević isolated the following axiom ([76]):

Definition 1.0.2. The Todorčević Open Coloring Axiom, abbreviated OCAT , states the

following: let A be a set of reals, and suppose that [A]2 = K0∪K1, where K0 is open in [A]2.

Then either there is an uncountable A0 ⊆ A such that [A0]2 ⊆ K0, or there is a partition

A =
⋃
n<ω An such that [An]2 ⊆ K1 for each n < ω.

If we restrict our attention to sets of reals A with size ℵ1, we denote this axiom by

OCAT (ℵ1).1

Both of these axioms are consequences of PFA, though their conjunction can be shown

to be consistent with a direct iterated forcing argument. Further, they each imply that

the CH is false. Indeed, OCAARS implies that any injective function f : A −→ R, where

|A| = ℵ1, is a union of countably-many monotonic subfunctions; in particular, any such

f has an ℵ1-sized montonic subfunction. However, under the CH, there exists a function

f : R −→ R which is not continuous on any uncountable set, and hence not monotonic

on any uncountable set (see C62 of [71]). To make matters worse, under the CH, there is

an injective, partial f ⊆ R × R with no uncountable monotonic subfunction (see [26]), and

therefore even continuous colorings can fail to have large homogeneous subsets if the CH

1Note that OCAT (ℵ1) is a stronger axiom than SOCA from [4]. SOCA states that for a set of reals A
of size ℵ1 and partition [A]2 = K0 ∪K1, where K0 is open, there exists either an uncountable subset of A
which is K0-homogeneous or an uncountable subset of A which is K1 homogeneous.

5



holds. With regards to OCAT , this axiom implies that the bounding number b is ℵ2 (see

[76]). Thus each of these axioms has some effect on the size of the continuum.

It is therefore of interest whether or not these axioms, individually or jointly, actually

decide the value of the continuum. In the case of OCAT , I. Farah has shown in an unpublished

note that OCAT (ℵ1) is consistent with an arbitrarily large value of the continuum, though it

is not known whether the full OCAT is consistent with larger values of the continuum than

ℵ2. On the other hand, Moore has shown ([60]) that OCAT + OCAARS, which is consistent,

does decide that the continuum is exactly ℵ2.

However, the question of whether OCAARS is powerful enough to decide the value of the

continuum on its own, first asked in [4], has remained open. There are a number of difficulties

in obtaining a model of OCAARS with a “large continuum,” i.e., with 2ℵ0 > ℵ2. Chief among

these difficulties is to construct so-called preassignments of colors, which may very roughly

be viewed as a way of diagonalizing out of obstructions to the desired forcings having the

countable chain condition. More specifically, a preassignment of colors is a function which

decides, in the ground model, whether the forcing will place a countable ordinal α inside

some 0-homogeneous or some 1-homogeneous set, with respect to a fixed coloring. The

authors of [11] first discovered the technique of preassigning colors and used this technique

to prove the consistency of the restricted version of OCAARS mentioned above. The key to

the consistency of OCAARS is to construct preassignments in such a way that the posets

which add the requisite homogeneous sets, as guided by the preassignments, are c.c.c.

However, the known constructions of such “good” preassignments only work under the

CH. Since forcing iterations whose strict initial segments satisfy the CH can only lead to a

model where the continuum is at most ℵ2, this creates considerable difficulties for obtaining

models of OCAARS in which the continuum is, say, ℵ3. In particular, the known techniques for

obtaining models with a large continuum are likely to be ineffective in tackling this problem.

In this Part I of this thesis, we prove the following theorem, which is due to the author

and his advisor, Itay Neeman.
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Theorem 1.0.3. (Gilton, Neeman) If ZFC is consistent, then so is ZFC+OCAARS+2ℵ0 = ℵ3.

The key to our solution is to construct names for preassignments with a substantial

amount of symmetry. Roughly, suppose that P is a “nice” iteration of ℵ1-sized, c.c.c. posets,

where the length of P is less than ω2; note that P preserves the CH. We are able, for example,

to construct a single P-name ḟ for a preassignment so that ḟ can be interpreted by a host of

different V -generics for P and still give rise to a c.c.c. product of posets. For instance, if χ̇ is

a name for a continuous coloring in Cohen forcing for adding a single real, we can construct

a single Cohen name ḟ for a preassignment so that if 〈cξ : ξ < ω3〉 are pairwise mutually

generic Cohen reals, then the product∏
ξ<ω3

Q(χ̇[cξ], ḟ [cξ])

is c.c.c. Here Q(χ′, f ′) denotes the poset to decompose ω1 into countably-many χ′-homogeneous

sets, as guided by f ′ (see Chapter 3 for the more precise definition). Building such a “symmet-

ric” or “uniform” name ḟ takes us well beyond the techniques of [4]. Moreover, constructing

such “symmetric” names proves to be necessary, at least if we can only construct preassign-

ments over models satisfying the CH, an assumption which seems to be at least practically

necessary. This is since, assuming the GCH, there are only ℵ2-many possible names (up to

isomorphism) for preassignments of colors named by c.c.c. posets of size ℵ1, and hence in

the course of an iteration of length at least ω3, the same name for a preassignment must

show up unboundedly often (of course, with different interpretations).

We then combine such shorter iterations, which function as a type of alphabet, into much

longer ones which we call Partition Products. A partition product can be viewed as a type of

iteration with memory conditions on each coordinate; recall that memory iterations, roughly,

provide restrictions on which regular suborders the names at each stage of the iteration can

be drawn from. However, we put much more stringent restrictions on these memories. We

demand that each “memory” is isomorphic to one of the “alphabet” or “canonical” partition

products, and we demand also that the memories, when they overlap, do so in very particular

ways. These conditions are meant to capture the behavior of intersections of various hulls
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in L (see Chapter 4), and we use these restrictions in order both to carry out counting

arguments (see Lemma 3.2.10) and for the inductive construction of preassignments (see

Lemma 3.3.4).

Finally, we force with a large partition product to construct a model of OCAARS wherein

2ℵ0 = ℵ3. The general theme of our theorem, then, is the following: short iterations are nec-

essary to preserve the CH and thereby construct effective preassignments; longer iterations,

built out of these smaller ones in specific ways, can be used to obtain models with a large

continuum.

The above method is general enough that it can be adapted to strengthen Theorem 1.0.3

to obtain the forcing axiom FA(ℵ2,Knaster(ℵ1)); this forcing axiom asserts that for any

Knaster poset P of size ≤ ℵ1 and any sequence 〈Di : i < ω2〉 of ℵ2-many dense subsets of P,

there is a filter for P which meets each of the Di. Thus we may obtain the following theorem:

Theorem 1.0.4. If ZFC is consistent, then so is

ZFC + OCAARS + 2ℵ0 = ℵ3 + FA(ℵ2,Knaster(ℵ1)).
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CHAPTER 2

The Basic Theory of Partition Products

In this chapter we define and explicate the notion of a partition product. In the first section,

we present the definition itself and prove some fairly straightforward facts about it. In

the second section, we define and put to good use the notion of a shadow base, which is a

mechanism for keeping track of additional structure that comes with a partition product.

Roughly speaking, the class of partition products is a class of finite support iterations

which are built in very specific ways, but which is rich enough to be closed under the following

operations:

• products;

• products of iterations taken over a common initial segment;

• more general “partitioned products” of segments of the iterations taken over common

earlier segments.

Each poset in this class may also be viewed as a type of memory iteration. We recall that

memory iterations were invented by Shelah in [68]; for some further uses of memory iterations,

see [69] (additional results on the null ideal) and [57] (results on cardinal characteristics).

The very rough idea of iterating with memory is that when constructing an iteration 〈Pα, Q̇α :

α ≤ β〉, we demand that the Pα-name Q̇α is a Pα � B-name, for some B ⊆ α so that Pα � B

is a regular suborder of Pα. Thus Q̇α is not allowed to refer to all of the information added

by Pα but only the information added by a certain regular suborder of Pα.

Our class of partition products may be viewed as memory iterations, where we place

stringent requirements on how the memories behave. Indeed, we place isomorphism and
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coherence conditions on the memories; the former refers to the fact that the regular suborder

from which a name is drawn must be isomorphic to one of a small class of “canonical” or

“alphabet” partition products, and the latter refers to the fact that, when two memories

overlap, they are required to do so according to a very specific recipe. This “recipe” is

meant to capture the behavior of the intersections of hulls of various levels of L and ensures

that these overlaps are definable. These features will in turn be used in order to carry out

various counting arguments (in order to see that there are not too many “sufficiently simple”

partition products) and in the construction of preassignments (which involves an induction

on the order types of the overlaps of various memories).

2.1 Partition Products

2.1.1 Definition and Basic Facts

Our first goal in this section is to define the notion of a partition product. After the definition,

we will provide comments which clarify the motivation described at the beginning of the

chapter.

We begin by fixing some unbounded set C ⊆ ω2; this set will be specified in Section 5

(we don’t need any further properties of it now). We define by recursion the notion of a

partition product based upon a sequence P � κ = 〈Pδ : δ ∈ C ∩ κ〉 of posets and a sequence

Q̇ � κ = 〈Q̇δ : δ ∈ C ∩ κ〉 of names, where κ ∈ C ∪ {ω2}. Every such object will be a poset

R consisting of various finite partial functions on some set X of ordinals. This set X will be

definable from R and will be called the domain of R. The definition is by recursion on κ,

and we make the following recursive assumptions about the objects P � κ and Q̇ � κ :

(i) for each δ ∈ C∩κ, Pδ (the so-called canonical δ-partition product) is a partition product

based upon P � δ and Q̇ � δ, and Q̇δ is a Pδ-name for a poset. The domain of Pδ is an

ordinal, which we call ρδ, and ρδ ≤ δ+.

The definition of partition products below is such that for each δ ≤ κ, every partition
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product R, with domain X, say, based upon P � δ and Q̇ � δ comes equipped with two

additional functions baseR and indexR defined on X. These functions for R satisfy (among

other properties to be specified later) the following:

(ii) for each ξ ∈ X, indexR(ξ) ∈ C ∩ δ, and baseR(ξ) is a pair

baseR(ξ) = (bR(ξ), πR
ξ ),

where bR(ξ) ⊆ X ∩ ξ and πR
ξ is a bijection from ρindexR(ξ) onto bR(ξ).

For each δ ∈ C ∩ κ, we abbreviate indexPδ by indexδ, and we abbreviate basePδ(ξ) by

baseδ(ξ) = (bδ(ξ), π
δ
ξ), for each ξ < ρδ. While (ii) above holds for all partition products, the

next recursive assumption specifically concerns the canonical partition products Pδ:

(iii) for each ξ < ρδ, bδ(ξ) has ordertype ρindexδ(ξ), and πδξ : ρindexδ(ξ) −→ bδ(ξ) is the order

isomorphism.

Let us now pause for some clarificatory comments. The base function gives two pieces of

data. The first is a set of ordinals which may be viewed as the “memory,” i.e., the coordinates

of a regular suborder from which the relevant name is drawn. The second relates to the index

function, where the index function tells us which canonical partition product the “memory”

is isomorphic to. The second piece of data from the base is the specific isomorphism from (i)

the canonical partition product chosen by the value of the index function to (ii) the “memory”

given by the base. We will later need these isomorphisms to be somewhat flexible: rather

than simply requiring that the isomorphism is given by an order-preserving map from the

canonical partition product to the base, we want to be able to rearrange the coordinates of

the base (for instance, when “products” appear in the course of the iteration). The next

part of the definition addresses this.

Given a partition product R with domain X based upon P � δ and Q̇ � δ, for some

δ ∈ C ∩ (κ + 1), we say that a bijection σ : X −→ X∗ is an acceptable rearrangement of R

if for all ζ, ξ ∈ X, if ζ ∈ bR(ξ), then σ(ζ) < σ(ξ). The definition of partition products below

is such that the following holds:
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(iv) let δ ∈ C ∩κ, let R be a partition product with domain X based upon P � δ and Q̇ � δ,

and suppose that σ : X −→ X∗ is an acceptable rearrangement of R. Then σ lifts

uniquely to an isomorphism (also denoted σ) from R to a partition product R∗ on X∗

based upon P � δ and Q̇ � δ. We also have that any R-name τ̇ lifts to a name in R∗,

which we denote by σ(τ̇), such that if G is generic for R and if G∗ is the isomorphic

generic induced by σ, then τ̇ [G] = σ(τ̇)[G∗].

We call the partition product R∗ in (iv) the σ-rearrangement of R and denote it by σ[R]; we

also refer to the R∗-name σ(τ̇) as the σ-rearrangement of τ̇ . Our definition of R∗ and the

lifted embedding, which we give later, are such that the next item holds:

(v) let δ, X, R, and σ be as in (iv). Then for each ξ ∈ X, baseσ[R](σ(ξ)) = (σ[bR(ξ)], σ◦πR
ξ )

and indexσ[R](σ(ξ)) = indexR(ξ).

In light of the requirement from (i) that ρδ ≤ δ+, for each δ ∈ C ∩κ, let us fix surjections

ϕδ,µ : δ −→ µ for each µ < ρδ. We refer to this sequence of surjections as ~ϕ, and we fix this

notation until specified in Section 5. The next part of the definition specifies the coherence

conditions we wish to impose on the memory overlaps.

Suppose that δ̄ ≤ δ are both in C ∩ κ, µ̄ < ρδ̄, and µ < ρδ. We say that a subset A of µ

matches 〈δ, µ〉 to 〈δ̄, µ̄〉 if the following three conditions are satisfied:

(a) A is of the form ϕδ,µ[δ̄];

(b) A is a countably closed subset of µ, i.e., closed under limit points less than µ of cofinality

ω;

(c) if µ > δ̄, then δ ∈ A, A ∩ δ = δ̄, and, letting j denote the transitive collapse of A, we

have that

j ◦ ϕδ,µ � δ̄ = ϕδ̄,µ̄.

We will now define what it means for two functions base and index on a set X to support

a partition product, and after doing so, we will finally define a partition product.
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Definition 2.1.1. Let X be a set of ordinals, and let base and index be two functions with

domain X. We say that base and index are functions which support a partition product on

X based upon P � κ and Q̇ � κ if the following conditions are satisfied:

1. for each ξ ∈ X, index(ξ) ∈ C ∩ κ and base(ξ) is a pair (b(ξ), πξ), where b(ξ) ⊆ X ∩ ξ

and πξ : ρindex(ξ) −→ b(ξ) is an acceptable rearrangement of Pindex(ξ);

2. let ξ ∈ X, and set δ := index(ξ). Then for all ζ ∈ b(ξ), setting ζ0 := π−1
ξ (ζ), we have

base(ζ) = (πξ[bδ(ζ0)], πξ ◦ πδζ0) and index(ζ) = indexδ(ζ0);

3. let ξ1, ξ2 ∈ X. Suppose that index(ξ1) ≤ index(ξ2) and that there is some ζ ∈ b(ξ1) ∩

b(ξ2). Set µ1 := π−1
ξ1

(ζ) and µ2 := π−1
ξ2

(ζ). Then πξ1 [µ1] ⊆ πξ2 [µ2], and π−1
ξ2

[πξ1 [µ1]]

matches 〈index(ξ2), µ2〉 to 〈index(ξ1), µ1〉.

Definition 2.1.2. We say that R is a partition product with domain X, based upon P � κ

and Q̇ � κ, with base and index functions baseR and indexR if

1. baseR and indexR support a partition product on X based upon P � κ and Q̇ � κ as in

Definition 2.1.1;

2. R consists of all finite partial functions p with dom(p) ⊆ X so that for all ξ ∈ dom(p),

p(ξ) is a canonical πR
ξ [PindexR(ξ)]-name for an element of U̇ξ := πR

ξ (Q̇indexR(ξ)), i.e., the

πR
ξ -rearrangement of the PindexR(ξ)-name Q̇indexR(ξ), as in (iv).

R is ordered as follows: q ≤R p iff dom(p) ⊆ dom(q), and for all ξ ∈ dom(p),

q � bR(ξ) πR
ξ [PindexR(ξ)]

q(ξ) ≤U̇ξ p(ξ).

The definition of a partition product refers not only to the sequences P � κ and Q̇ � κ,

but additionally to the ordinal κ, and to the sequence of functions indexδ, baseδ, and ϕδ,µ for

δ ∈ C∩κ and µ < ρδ. We suppress this dependence in the notation, viewing these additional

objects as implicit in Q̇ � κ.

13



We have one final bit of notation before making a number of additional remarks about

the definition: given a partition product R with domain X, say, and given X0 ⊆ X, we

define R � X0 to be the set {p ∈ R : dom(p) ⊆ X0}, with the restriction of ≤R, which may

or may not itself be a partition product.

Remark 2.1.3. Note that the definition of the ordering ≤R in Definition 2.1.2 presupposes

that for each q ∈ R and ξ ∈ dom(q), q � bR(ξ) is a condition in πR
ξ [PindexR(ξ)]. This holds as

follows: fix q ∈ R, ξ ∈ dom(q), and set δ := indexR(ξ). Let S abbreviate the poset πR
ξ [Pδ]. As

δ < κ, we know by recursion that S consists of all finite partial functions u on bR(ξ) such that

for each ζ ∈ dom(u), u(ζ) is a canonical πS
ζ [PindexS(ζ)]-name for an element of πS

ζ (Q̇indexS(ζ)).

Now fixing ζ ∈ bR(ξ) ∩ dom(q), by (2) of Definition 2.1.1 and item (v), baseR(ζ) = baseS(ζ)

and indexR(ζ) = indexS(ζ), and therefore, q(ζ) is indeed a canonical πS
ζ [PindexS(ζ)]-name for

a condition in πS
ζ (Q̇indexS(ζ)). Thus q � bR(ξ) is a condition in S.

Note also that by similar reasoning, every condition in πR
ξ [PindexR(ξ)] is a condition in R,

and in fact, R � bR(ξ) equals πR
ξ [PindexR(ξ)].

Remark 2.1.4. A partition product based upon P � κ and Q̇ � κ should be viewed (roughly)

as an iteration into which we can fit many copies of the shorter posets Pδ and Pδ ∗ Q̇δ, for

δ ∈ C ∩ κ. In this way, the canonical partition products function as a kind of “alphabet”

with which we build other partition products. In most of our intended applications, each

name Q̇δ will either be Cohen forcing for adding a single real or will be a Pδ-name for a poset

to decompose ω1 into countably-many homogeneous sets with respect to some open coloring

χ̇.

Remark 2.1.5. A partition product is a somewhat flexible object in that we have a limited,

but non-trivial, ability to rearrange coordinates. The reason we need these rearrangements

to be acceptable, as defined above, is that if R is a partition product and ζ ∈ bR(ξ), then what

happens at coordinate ξ depends on what happens at the earlier coordinate ζ, and therefore

the image of ζ under a rearrangement must remain below the image of ξ. The ability to

rearrange coordinates will be useful later on when we need to check (roughly) that there
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are not too many isomorphism types of sufficiently simple partition products (see Lemma

3.2.10).

Remark 2.1.6. We will prove Theorem 1.0.3 by forcing over L with a partition product

Pω2 with domain ω3. When we construct these objects in L, the set C in the definition will

consist, roughly, of all uncountable κ < ω2 which look locally like ω2, and the sequence ~ϕ

will consist of canonical surjections in L. More specifically, we will show how to construct

the sequences P = 〈Pδ : δ ∈ C ∪ {ω2}〉 and Q̇ = 〈Q̇δ : δ ∈ C〉 in such a way that for each

κ ∈ C ∪ {ω2}, every partition product based upon P � κ and Q̇ � κ is c.c.c. In particular,

our final partition product Pω2 will be c.c.c., which is the result that we need.

Every partition product is a dense subset of an iteration, as the next lemma shows.

Lemma 2.1.7. Let R be a partition product with domain X. Then R is a dense subset of a

finite support iteration on X.

Proof. Let R∗ be the finite support iteration based upon the sequence of names 〈U̇ξ : ξ ∈ X〉,

where the names are defined as in Definition 2.1.2 (2). Then R is a dense subset of R∗; the

proof is straightforward, using the fact that for each ξ ∈ X, U̇ξ is an R � bR(ξ)-name for a

poset.

Remark 2.1.8. In studying partition products, we choose to work with this dense subset,

rather than the iteration itself, to avoid various technicalities, especially with regards to

restricting conditions.

We now want to understand further circumstances wherein we may restrict a partition

product with domain X to various subsets of X and still obtain a partition product. This

motivates the following key definition.

Definition 2.1.9. Let R be a partition product, say with domain X, and let B ⊆ X. We

say that B is base-closed with respect to R if for all ξ ∈ B, bR(ξ) ⊆ B.
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If the partition product R is clear from context, we will often drop the phrase “with

respect to R” in the above definition and simply say that B ⊆ X is base-closed. We will also

drop the “R” from expressions such as indexR, bR(ξ), and πR
ξ if the context is clear.

Lemma 2.1.10. Let R be a partition product with domain X, and let ξ ∈ X. Then b(ξ) is

base-closed. Also, for each ζ ∈ b(ξ), index(ζ) < index(ξ).

Proof. Set δ := index(ξ), let ζ ∈ b(ξ), and set ζ0 := π−1
ξ (ζ). Then since πξ is an acceptable

rearrangement of Pδ, condition (2) in Definition 2.1.1 and item (v) imply that b(ζ) = bπξ[Pδ](ζ)

and also that bπξ[Pδ](ζ) equals πξ[bδ(ζ0)] ⊆ b(ξ). Thus b(ζ) ⊆ b(ξ).

To see that index(ζ) < δ, we recall that index(ζ) = indexπξ[Pδ](ζ) which in turn equals

indexδ(ζ0). Since Pδ is a partition product based upon P � δ and Q̇ � δ, we must have

indexδ(ζ0) ∈ C ∩ δ, and therefore index(ζ) = indexδ(ζ0) is below δ.

The following lemma tells us that we may restrict the functions in a partition product to

a base-closed subset and obtain a partition product which is also a regular suborder of the

original.

Lemma 2.1.11. Suppose that R is a partition product with domain X and that B ⊆ X is

base-closed. Then base � B and index � B support a partition product on B, and this partition

product is exactly R � B. Moreover, if there is a β ∈ C such that {index(ξ) : ξ ∈ B} ⊆ β,

then R � B is a partition product based upon P � β and Q̇ � β. Finally, R � B is a complete

subposet of R.

Proof. It is straightforward to check that base � B and index � B support a partition

product on B, using the fact that B is base-closed and also to check that R � B is the

partition product supported by these functions. It is also straightforward to see that R � B

is based upon P � β and Q̇ � β if index(ξ) < β, for all ξ ∈ B.

We now verify that the inclusion is a complete embedding of R � B into R. The only

non-trivial property which we must check is the following: if p ∈ R, q ∈ R � B, and

q ≤R�B p � B, then q and p are compatible in R. To see this, fix such p and q. We claim that
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r := q ∪ p � (X\ dom(q)) is a condition in R which is below p and q. As it is clear that r is a

condition, by (2) of Definition 2.1.2, we check that it is below both p and q. Fix ξ ∈ dom(r),

and suppose that r � ξ is below both p � ξ and q � ξ. If ξ is not in dom(q) ∩ dom(p), then

it is clear that r � (ξ + 1) is a condition below both p � (ξ + 1) and q � (ξ + 1). So suppose

that ξ ∈ dom(q) ∩ dom(p), and in particular, that ξ ∈ B. Since q extends p � B in R � B

and since the base and index functions for R � B are the restrictions of those for R, we have

that q � b(ξ) forces in πξ[Pindex(ξ)] that q(ξ) ≤U̇ξ p(ξ), where U̇ξ = πξ(Q̇index(ξ)). Since r � ξ

extends q � ξ and since b(ξ) ⊆ ξ, we know that r � b(ξ) extends q � b(ξ) in πξ[Pindex(ξ)].

Therefore r � b(ξ) also forces that q(ξ) is below p(ξ) in U̇ξ. Since r(ξ) = q(ξ), this finishes

the proof.

If R, X, and B are as in the previous lemma, and if G is generic for R, we use G � B to

denote {p � B : p ∈ G}, which is generic for R � B.

2.1.2 Rearranging Partition Products

Our next main goal is to prove the Rearrangement Lemma, which, as the name suggests,

allows us to use an acceptable rearrangement to shift around the coordinates of a partition

product and still obtain a partition product. More specifically, if we have an acceptable

rearrangement of a partition product R, then we can “compose” it with the base and index

functions from R, as stated in the next definition.

Definition 2.1.12. Suppose that σ : X −→ X∗ is an acceptable rearrangement of R, a

partition product with domain X. We define the functions σ[baseR] and σ[indexR] on X∗ as

follows: fix ξ ∈ X. Then set σ[indexR](σ(ξ)) = indexR(ξ), and set σ[baseR](σ(ξ)) to be the

pair

(b∗(σ(ξ)), π∗σ(ξ)),

where b∗(σ(ξ)) = σ[bR(ξ)], and where π∗σ(ξ) = σ ◦ πR
ξ .

The following item, known as the Rearrangement Lemma, shows that the objects as in
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Definition 2.1.12 support a partition product isomorphic to the original one. The Rear-

rangement Lemma yields condition (iv) stated before Definition 2.1.1 above. It is proved for

partition products based upon P � κ and Q̇ � κ by induction on κ, assuming it is already

known for δ < κ.

Lemma 2.1.13. (Rearrangement Lemma) Suppose that R is a partition product with domain

X and that σ : X −→ X∗ is an acceptable rearrangement of R. Then σ[baseR] and σ[indexR]

support a partition product on X∗. Moreover, letting σ[R] be this partition product, we have

that there is a unique lift of σ to an isomorphism from R to σ[R].

Proof. It is straightforward to check that the functions σ[baseR] and σ[indexR] satisfy all

three conditions of Definition 2.1.1, since σ is an acceptable rearrangement. Thus we show

that σ lifts to an isomorphism, also denoted σ, from R onto σ[R]. Let p ∈ R. Then we set

σ(p) to be the function with domain σ[dom(p)] such that for each ξ ∈ dom(p), σ(p)(σ(ξ))

equals the σ � bR(ξ)-rearrangement of the name p(ξ), as in (iv). This is well-defined by

an inductive application of the Rearrangement Lemma to the acceptable rearrangement

σ � bR(ξ) of the partition product R � bR(ξ), which is based upon the sequence up to

indexR(ξ) < κ. It is straightforward to see that σ(p) is a condition in σ[R] and that this

defines an isomorphism.

Remark 2.1.14. Given R and σ as in Lemma 2.1.13 and setting R∗ := σ[R], if G is generic

for R, then we use σ(G) to denote the generic {σ(p) : p ∈ G} for R∗. Furthermore, given an

R-name τ̇ , we recursively define σ(τ̇) to be the σ[R]-name {〈σ(p), σ(ẋ)〉 : 〈p, ẋ〉 ∈ τ̇}. It is

straightforward to check that τ̇ [G] = σ(τ̇)[σ(G)] for any generic G for R. This name σ(τ̇) is

the σ-rearrangement of τ̇ as in (iv) above.

Remark 2.1.15. Suppose that M and M∗ are transitive, satisfy a sufficiently large fragment

of ZFC−Powerset, and that σ : M −→M∗ is an elementary embedding. Also, suppose that

R ∈ M is a partition product, say with domain X, and that R is based upon P � κ and

Q̇ � κ. It is straightforward to check that π := σ � X provides an acceptable rearrangement

of R. There is now a potential conflict between the π-rearrangements of conditions in R and
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the images of these conditions under the embedding σ. However, these are the same if σ

doesn’t move any members of the “alphabet” P � κ and Q̇ � κ . The next lemma summarizes

what we need about this situation and will be used crucially in the final proof of Theorem

1.0.3, which occurs in Chapter 4. For the next lemma, we will continue to use π to denote

rearrangements, and we will keep σ as the elementary map.

Lemma 2.1.16. Let σ : M −→ M∗, R, X, κ, and π be as in Remark 2.1.15. Further

suppose that for each δ ∈ C ∩ κ, σ is the identity on every element of Pδ ∗ Q̇δ ∪
{
Pδ, Q̇δ

}
.

Then for each p ∈ R, π(p) = σ(p).

Furthermore, setting R∗ := σ(R), σ[X] is a base-closed subset of R∗, and R∗ � σ[X] equals

π[R], the π-rearrangement of R.

Additionally, suppose that G is V -generic for R, G∗ is V -generic for R∗, and σ extends

to a sufficiently elementary embedding σ∗ : M [G] −→ M∗[G∗]. Suppose also that τ̇ is an

R-name (not necessarily in M) and π(τ̇) is the π-rearrangement of τ̇ . Then π(τ̇) is an

R∗-name, and τ̇ [G] = π(τ̇)[G∗]. Finally, if Q̇ is an R-name in M of M-cardinality < crit(σ)

and names a poset contained in crit(σ), then σ(Q̇) = π(Q̇).

Proof. We only prove the second and third parts. For the second part, fix some ξ ∈ X.

Then bR(ξ) is in bijection, via a bijection in M , with some ρα, for α < κ. However, ρα is

below crit(σ), since σ is the identity on Pα. Therefore,

bR∗(σ(ξ)) = σ(bR(ξ)) = σ[bR(ξ)],

where the first equality holds by the elementarity of σ and the second since crit(σ) > |bR(ξ)|.

This implies that σ[X] is base-closed, and therefore R∗ � σ[X] is a partition product by

Lemma 2.1.11. By the first part of the current lemma, we see that every condition in

R∗ � σ[X] is in the image of σ. However, π(p) = σ(p) for each condition p ∈ R, and

consequently R∗ � σ[X] equals π[R], the π-rearrangement of R.

For the third part, let G and G∗ be as in the statement of the lemma. Also let π(G)

denote the π-rearrangement of the filter G, as defined in Remark 2.1.14. By same remark, we
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have that τ̇ [G] = π(τ̇)[π(G)]. We also see that π(τ̇) is an R∗-name, since it is a π[R]-name

and since, by the second part of the lemma, π[R] = R∗ � σ[X] and σ[X] is base-closed.

Furthermore, σ[G] is a subset of G∗, by the elementarity of σ∗. However, by the first part of

the current lemma, σ[G] = {σ(p) : p ∈ G} = {π(p) : p ∈ G} = π(G), and therefore

τ̇ [G] = π(τ̇)[π(G)] = π(τ̇)[G∗].

Finally, if Q̇ ∈M and satisfies the assumptions in the statement of the lemma, then σ(Q̇) =

σ[Q̇], and σ[Q̇] = π(Q̇). This completes the proof of the lemma.

Before we give applications of the Rearrangement Lemma, we record our definition of an

embedding.

Definition 2.1.17. Suppose that R and R∗ are partition products with respective domains X

and X∗. We say that an injection σ : X −→ X∗ embeds R into R∗ if σ : X −→ ran(σ) is an

acceptable rearrangement of R, and if σ[baseR] = baseR∗ � ran(σ) and σ[indexR] = indexR∗ �

ran(σ).

It is straightforward to check that if σ is an embedding as in Definition 2.1.17, and if G∗

is generic over R∗, then the filter σ−1(G∗) := {p ∈ R : σ(p) ∈ G∗} is generic over R. We also

remark that, in the context of the above definition, σ[R] = R∗ � ran(σ).

Lemma 2.1.18. Suppose that R is a partition product with domain X and B ⊆ X is base-

closed. Then R is isomorphic to a partition product R∗ with a domain X∗ such that B is an

initial segment of X∗ and R∗ � B = R � B.

Proof. We define a map σ with domain X which will lift to give us R∗. Let ξ ∈ X. If ξ ∈ B,

then set σ(ξ) = ξ. On the other hand, if ξ ∈ X\B, say that ξ is the γth element of X\B,

then we define σ(ξ) = sup(X) + 1 + γ.

We show that σ is an acceptable rearrangement of R, and then we may set R∗ := σ[R] by

Lemma 2.1.13. So suppose that ζ, ξ ∈ X and ζ ∈ b(ξ); we check that σ(ζ) < σ(ξ). There are

two cases. On the one hand, if ξ ∈ B, then b(ξ) ⊆ B, since B is base-closed, and therefore
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ζ ∈ B. Then σ(ζ) = ζ < ξ = σ(ξ). On the other hand, if ξ /∈ B, then either ζ ∈ B or not.

If ζ ∈ B, then σ(ζ) = ζ < sup(X) + 1 ≤ σ(ξ), and if ζ /∈ B, then σ(ζ) < σ(ξ) since σ is

order-preserving on X\B.

It will be helpful later on to know that we can apply Lemma 2.1.18 ω-many times, as in

the following corollary.

Corollary 2.1.19. Suppose that R is a partition product with domain X and that for each

n < ω, πn is an acceptable rearrangement of R. Suppose that 〈Bn : n ∈ ω〉 is a ⊆-increasing

sequence of base-closed subsets of X where B0 = ∅ and where X =
⋃
nBn. Then there

is a partition product R∗ which has domain an ordinal ρ∗ and an acceptable rearrangement

σ : X −→ ρ∗ of R which lifts to an isomorphism of R onto R∗ and which also satisfies that

for each n < ω, σ[Bn] is an ordinal and πn ◦ σ−1 is order-preserving on σ[Bn+1\Bn].

Proof. We aim to recursively construct a sequence 〈Rn : n < ω〉 of partition products, where

Rn has domain Xn, and a sequence 〈σn : n < ω〉 of bijections, where σn : X −→ Xn, so that

1. σn is an acceptable rearrangement of R;

2. σn[Bn] is an ordinal, and in particular, an initial segment of Xn;

3. for each k < m < ω, σk[Bk] = σm[Bk];

4. for each n < ω, πn ◦ σ−1
n+1 is order-preserving on σn+1[Bn+1\Bn].

Suppose that we can do this. Then we define a map σ on X, by taking σ(ξ) to be

the eventual value of the sequence 〈σn(ξ) : n < ω〉; we see that this sequence is eventually

constant by (3) and the assumption that
⋃
nBn = X. By (2) and (3), σ[Bn] is an ordinal,

for each n < ω, and therefore the range of σ is an ordinal, which we call ρ∗. Furthermore,

πn ◦ σ−1 is order-preserving on σ[Bn+1\Bn] by (4), and since σ and σn+1 agree on Bn+1.

Finally, by (1) we see that σ is an acceptable rearrangement of R, and we thus take R∗ to

be the partition product isomorphic to R via σ, by Lemma 2.1.13.
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We now show how to create the above objects. Suppose that 〈Rm : m < n〉 and 〈σm : m <

n〉 have been constructed. If n = 0, we take R0 = R and σ0 to be the identity; since B0 = ∅,

this completes the base case. So suppose n > 0. Apply Lemma 2.1.18 to the partition

product Rn−1 and the base-closed subset σn−1[Bn] of Xn−1 to create a partition product Rn

on a set Xn which is isomorphic to Rn−1 via the acceptable rearrangement τn : Xn−1 −→ Xn

and which satisfies that σn−1[Bn] is an initial segment of Xn. Since σn−1[Bn−1] is an ordinal,

by (2) applied to n − 1, and since σn−1[Bn] is an initial segment of Xn, we see that τn is

the identity on σn−1[Bn−1]. Also, by composing τn with a further function and relabelling

if necessary, we may assume that πn−1 ◦ τ−1
n just shifts the ordinals in σn−1[Bn\Bn−1] in an

order-preserving way and that τn ◦ σn−1[Bn] is an ordinal. We now take σn to be τn ◦ σn−1,

and we see that σn and Rn satisfy the recursive hypotheses.

Lemma 2.1.20. Suppose that β ∈ C ∩ κ and that R is a partition product with domain X

based upon P � (β + 1) and Q̇ � (β + 1). Then, letting B := {ξ ∈ X : index(ξ) < β} and

I := {ξ ∈ X : index(ξ) = β}, B is base-closed, and R is isomorphic to

(R � B) ∗
∏
ξ∈I

Q̇β

[
π−1
ξ

(
ĠB � b(ξ)

)]
,

where ĠB is the canonical R � B-name for the generic filter.

Proof. To see that B is base-closed, fix ξ ∈ B. Then for all ζ ∈ b(ξ), index(ζ) < index(ξ) < β

by Lemma 2.1.10, and so ζ ∈ B. Thus by Lemma 2.1.18, we may assume that B is an initial

segment of X, and hence I is a tail segment of X. Now let GB be generic for R � B, and

for each ξ ∈ I, let GB,ξ denote π−1
ξ (GB � b(ξ)), which is generic for Pβ. The sequence

of posets 〈Q̇β[GB,ξ] : ξ ∈ I〉 is in V [GB], and consequently the finite support iteration of

〈Q̇β[GB,ξ] : ξ ∈ I〉 in V [GB] is isomorphic to the (finite support) product
∏

ξ∈I Q̇β[GB,ξ].

Therefore, in V , R is isomorphic to the poset in the statement of the lemma.

Remark 2.1.21. The previous lemma shows that a partition product does indeed have

product-like behavior, and it is part of the justification for our term “partition product.”
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2.1.3 Further Remarks on Matching

In this subsection we state and prove a few consequences of the matching conditions (a)-(c)

above. These results will, in combination with the ability to rearrange a partition product,

allow us to find isomorphism types of sufficiently simple partition products inside sufficiently

elementary, countably-closed models (see Lemma 3.2.10).

Remark 2.1.22. As mentioned earlier, we will carry out the construction of partition prod-

ucts in L. The matching conditions (a)-(c), combined with Definition 2.1.1, are roughly

meant to capture the idea that the base functions, up to some rearranging, behave like the

ordinals in a countably-closed Skolem hull of some suitable level of L.

Lemma 2.1.23. Let R be a partition product, say with domain X, based upon P � κ and

Q̇ � κ. Let ξ1, ξ2 ∈ X, set δi = index(ξi), for i = 1, 2, and suppose that δ1 ≤ δ2. Finally, let

A := π−1
ξ2

[b(ξ1) ∩ b(ξ2)]. Then A is definable in H(ω3) from ~ϕ, the ordinals δ1 and δ2, and

any cofinal Z ⊆ A.

Proof. Let Z ⊆ A be cofinal. For each α ∈ Z, we have from Definition 2.1.1 (3) and condition

(a) in the definition of matching that A∩α = ϕδ2,α[δ1]. Therefore A =
⋃
α∈Z ϕδ2,α[δ1], which

is a member of H(ω3).

Corollary 2.1.24. Let R, X, ξ1, ξ2, and A be as in Lemma 2.1.23. Assume that for all

ξ ∈ C, ρξ < ω2. Suppose that the CH holds, and let M ≺ H(ω3) be countably closed so

that M contains the objects P � κ, Q̇ � κ, ~ϕ, and δ1, δ2. Then A is a member of M and the

transitive collapse of M .

Proof. First observe that A is a subset of ρδ2 , which is a member of M . Since ρδ2 < ω2 and

M contains ω1 as a subset, ρδ2 ⊆M . In particular, sup(A) is an element of M .

Next, consider the case that sup(A) has countable cofinality. Then by the countable

closure of M , we can find a cofinal subset Z of A inside M . By Lemma 2.1.23, we then

conclude that A ∈M .
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Now suppose that sup(A) has uncountable cofinality. Recall from condition (b) of the

definition of matching that A is countably closed in sup(A). Moreover, since A∩α = ϕδ2,α[δ1]

for each α ∈ A, we know that the sequence of sets 〈ϕδ2,α[δ1] : α ∈ A〉 is ⊆-increasing. By the

elementarity of M , we may find an ω-closed, cofinal subset Z of sup(A) such that Z ∈ M

for which the sequence of sets 〈ϕδ2,α[δ1] : α ∈ Z〉 is ⊆-increasing. Combining this with the

fact that Z ∩ A is also ω-closed and cofinal in sup(A), we have that

A =
⋃

α∈A∩Z

ϕδ2,α[δ1] =
⋃
α∈Z

ϕδ2,α[δ1],

and hence A is in M , as
⋃
α∈Z ϕδ2,α[δ1] is in M by elementarity. Finally, since A is bounded

in the ordinal M ∩ ω2, A is fixed by the transitive collapse map.

2.2 Combining Partition Products

In this section, we develop the machinery necessary to combine partition products in various

ways. This will be essential for later arguments where, in the context of working with a

partition product R, we will want to create another partition product R∗ into which R

embeds in a variety of ways. Forcing with R∗ will then add plenty of generics for R, with

various amounts of agreement or mutual genericity.

The main result of this section is a so-called “grafting lemma” which gives conditions

under which, given partition products P and R, we may extend R to another partition

product R∗ in such a way that R∗ subsumes an isomorphic image of P; in this case P is,

in some sense, “grafted onto” R. One trivial way of doing this, we will show, is to take

the partition product P × R. However, the issue becomes somewhat delicate if we desire,

as later on we often will, that R and the isomorphic copy of P in R∗ have coordinates in

common, and hence share some part of their generics. Doing so requires that we keep track of

more information about the structure of a partition product, and we begin with the relevant

definition in the first subsection.
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2.2.1 Shadow Bases

Definition 2.2.1. A triple 〈x, πx, α〉 is said to be a shadow base if the following conditions

are satisfied: α ∈ C, πx has domain γx for some γx ≤ ρα, and πx : γx −→ x is an acceptable

rearrangement of Pα � γx.

Moreover, if R is a partition product, say with domain X, we say that a shadow base

〈x, πx, α〉 is an R-shadow base if x ⊆ X is base-closed and if πx embeds Pα � γx into R � x.

For example, if R is a partition product with domain X, then for any ξ ∈ X the triple

〈b(ξ), πξ, index(ξ)〉 is an R- “shadow” base; this is part of the motivation for the term. In

practice, a shadow base will be an initial segment, in a sense we will specify soon, of such a

triple.

Definition 2.2.2. Suppose that 〈x, πx, α〉 and 〈y, πy, β〉 are two shadow bases. We say that

they cohere if the following holds: suppose that α ≤ β and that there is some ζ ∈ x ∩ y.

Define µx := π−1
x (ζ) and µy := π−1

y (ζ). Then

1. πx[µx] ⊆ πy[µy]; and

2. π−1
y [πx[µx]] matches 〈β, µy〉 to 〈α, µx〉.

A collection B of shadow bases is said to cohere if any two elements of B cohere.

Note that with this definition, item (3) of Definition 2.1.1 could be rephrased as saying

that the two shadow bases 〈b(ξ1), πξ1 , index(ξ1)〉 and 〈b(ξ2), πξ2 , index(ξ2)〉 cohere.

Remark 2.2.3. It is straightforward to check that Corollary 2.1.24 holds for shadow bases

too, in the following sense. Suppose that 〈x, πx, α〉 and 〈y, πy, β〉 are two coherent shadow

bases, say with α ≤ β. Then π−1
y [x ∩ y] is a member of any M as in the statement of

Corollary 2.1.24, provided that α and β, as well as the additional parameters P � β, Q̇ � β,

and ~ϕ, are all in M .
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Definition 2.2.4. Given a shadow base 〈x, πx, α〉 and some a ⊆ x, we say that a is an

initial segment of 〈x, πx, α〉 if a is of the form πx[µ] for some µ ≤ dom(πx).

Given two shadow bases 〈x0, πx0 , α0〉 and 〈x, πx, α〉, we say that 〈x0, πx0 , α0〉 is an initial

segment of 〈x, πx, α〉 if α0 = α, x0 is an initial segment of 〈x, πx, α〉, and πx � dom(πx0) =

πx0.

Remark 2.2.5. A simple but useful observation is that if 〈x0, πx0 , α〉 and 〈y, πy, β〉 are two

coherent shadow bases, 〈x0, πx0 , α〉 is an initial segment of 〈x, πx, α〉, and (x\x0) ∩ y = ∅,

then 〈x, πx, α〉 and 〈y, πy, β〉 cohere.

Lemma 2.2.6. Suppose that 〈x, πx, α〉 and 〈y, πy, β〉 are coherent shadow bases and α ≤ β.

Then π−1
x [x∩ y] is an ordinal ≤ dom(πx), and hence x∩ y is an initial segment of 〈x, πx, α〉.

Proof. Fix ξ ∈ x ∩ y. By the definition of coherence and the fact that α ≤ β, we see that

π−1
x (ξ) + 1 ⊆ π−1

x [x ∩ y]. Thus

π−1
x [x ∩ y] =

⋃
ξ∈x∩y

(π−1
x (ξ) + 1),

and therefore π−1
x [x ∩ y] is an ordinal.

Lemma 2.2.7. Suppose that 〈x, πx, α〉 and 〈y, πy, β〉 are two coherent shadow bases, where

α ≤ β. Let ζ ∈ x ∩ y, and define µx := π−1
x (ζ) and µy := π−1

y (ζ). Then π−1
y ◦ πx is an

order preserving map from µx into µy. In particular, µx ≤ µy, and π−1
x ◦ πy is the transitive

collapse of π−1
y [πx[µx]].

Proof. By Definition 2.2.2 (1), we know that πx[µx] is a subset of πy[µy], and so π−1
y ◦ πx is

indeed a map from µx into µy. Let us abbreviate π−1
y ◦πx by j. Suppose that ζ < η < µx, and

we show j(ζ) < j(η). Set ζy = j(ζ) and ηy = j(η). Since πx(η) = πy(ηy) ∈ x ∩ y, Definition

2.2.2 (1) implies that πx[η] ⊆ πy[ηy]. Next, as ζ < η, πx(ζ) ∈ πx[η], and so πy(ζy) ∈ πy[ηy].

Finally, since πy is a bijection we conclude that ζy ∈ ηy, i.e., j(ζ) < j(η).

As a result of the previous lemma, if two coherent shadow bases have the same “index”,

then their intersection is an initial segment of both.
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Corollary 2.2.8. Suppose that 〈x, πx, α〉 and 〈y, πy, α〉 are two coherent shadow bases and

that ζ ∈ x ∩ y. Then ζ0 := π−1
x (ζ) = π−1

y (ζ), and in fact, πx � (ζ0 + 1) = πy � (ζ0 + 1).

Proof. Fix η ∈ x ∩ y. Since both shadow bases have index α, we know from Lemma 2.2.7

that π−1
x (η) = π−1

y (η). Since this holds for any η ∈ x ∩ y, the result follows.

Remark 2.2.9. In the context of Corollary 2.2.8, we note that π−1
x [x∩ y] = π−1

y [x∩ y] is an

ordinal ≤ ρα, and if x 6= y, then this ordinal is strictly less than ρα.

We conclude this subsection with a very useful lemma.

Lemma 2.2.10. Suppose that 〈x, πx, α〉, 〈y, πy, β〉, and 〈z, πz, γ〉 are shadow bases such that

α, β ≤ γ. Suppose further that x ∩ y ⊆ z, that 〈x, πx, α〉 and 〈z, πz, γ〉 cohere, and that

〈y, πy, β〉 and 〈z, πz, γ〉 cohere. Then 〈x, πx, α〉 and 〈y, πy, β〉 cohere.

Proof. By relabeling if necessary, we assume that α ≤ β. Let ζ ∈ x ∩ y, and we will show

that (1) and (2) of Definition 2.2.2 hold. Define µx := π−1
x (ζ) and µy := π−1

y (ζ). As x∩y ⊆ z,

ζ ∈ z, and therefore we may also define µz := π−1
z (ζ). Applying the coherence assumptions

in the statement of the lemma, we conclude that

π−1
z [πx[µx]] = ϕγ,µz [α] and π−1

z [πy[µy]] = ϕγ,µz [β].

Since α ≤ β, it then follows that πx[µx] ⊆ πy[µy].

We next show that π−1
y [πx[µx]] = ϕβ,µy [α]. By Lemma 2.2.7 applied to the shadow

bases 〈y, πy, β〉 and 〈z, πz, γ〉, we conclude that π−1
y ◦ πz, which we abbreviate as jz,y, is the

transitive collapse of π−1
z [πy[µy]]. Furthermore, the definition of coherence also implies that

jz,y ◦ ϕγ,µz � β = ϕβ,µy . Since α ≤ β and since π−1
z [πx[µx]] = ϕγ,µz [α], we apply jz,y to

conclude that π−1
y [πx[µx]] = ϕβ,µy [α].

Now let jy,x denote the transitive collapse of π−1
y [πx[µx]]; we check that jy,x ◦ϕβ,µy � α =

ϕα,µx . We also let jz,x be the transitive collapse of π−1
z [πx[µx]]. From Lemma 2.2.7, we know

that jy,x = π−1
x ◦ πy and jz,x = π−1

x ◦ πz. Thus jz,x = jy,x ◦ jz,y. Since jz,y ◦ ϕγ,µz � β = ϕβ,µy

and α ≤ β, we conclude that ϕα,µx = jy,x ◦ ϕβ,µy � α, completing the proof.
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2.2.2 Enriched Partition Products

In this subsection, we will consider in greater detail how shadow bases interact with partition

products. We begin with the following definition.

Definition 2.2.11. Let R be a partition product with domain X. A collection B of R-

shadow bases is said to be R-full if for all ξ ∈ X, 〈b(ξ), πξ, index(ξ)〉 ∈ B. B is said to be an

R-enrichment if B is both coherent and R-full.

An enriched partition product is a pair (R,B) where B is an enrichment of R.

The next definition is a strengthening of the notion of a base-closed subset which allows

us to restrict an enrichment.

Definition 2.2.12. Let (R,B) be an enriched partition product with domain X. A base-

closed subset B ⊆ X is said to cohere with (R,B) if for all triples 〈x, πx, α〉 in B and for

every ζ ∈ B ∩ x, if ζ = πx(ζ0), say, then πx[ζ0] ⊆ B.

Lemma 2.2.13. Suppose that (R,B) is an enriched partition product with domain X and

that B ⊆ X coheres with (R,B). Let 〈x, πx, α〉 ∈ B, and define πx∩B to be the restriction of

πx mapping onto x ∩B. Then 〈x ∩B, πx∩B, α〉 is a shadow base.

Additionally, if we define

B � B := {〈x ∩B, πx∩B, α〉 : 〈x, πx, α〉 ∈ B} ,

then (R � B,B � B) is an enriched partition product.

Proof. To see that 〈x ∩ B, πx∩B, α〉 is a shadow base, it suffices to show that π−1
x [x ∩ B]

is an ordinal. This holds since for each ξ ∈ x ∩ B, by the coherence of B with (R,B),

π−1
x (ξ) + 1 ⊆ π−1

x [x ∩B].

Now we need to verify that (R � B,B � B) is an enriched partition product. It is

straightforward to see that B � B is (R � B)-full, since B is base-closed and since the base

and index functions for R � B are exactly the restrictions of those for R. Similarly, we see
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that each shadow base in B � B is in fact an (R � B)-shadow base. Thus we need to check

that any two elements of B � B cohere. Fix 〈x, πx, α〉 and 〈y, πy, β〉 in B, and suppose that

there exists ζ ∈ (x∩B)∩(y∩B). Let µx < ρα be such that ζ = πx∩B(µx), and let µy < ρβ be

such that ζ = πy∩B(µy). Then since B coheres with (R,B), πx � (µx + 1) = πx∩B � (µx + 1),

and similarly πy � (µy + 1) = πy∩B � (µy + 1). Therefore conditions (1) and (2) of Definition

2.2.2 at ζ follow from their applications to 〈x, πx, α〉 and 〈y, πy, β〉 at ζ.

Definition 2.2.14. Suppose that P and R are partition products and σ embeds P into R. If

〈x, πx, α〉 is a P-shadow base, we define σ(〈x, πx, α〉) to be the triple

〈σ[x], σ ◦ πx, α〉.

If B is a collection of P-shadow bases, we define σ[B] := {σ(t) : t ∈ B}.

The proof of the following lemma is routine.

Lemma 2.2.15. Suppose that P and R are partition products, σ embeds P into R, and B is

a collection of P-shadow bases. Then σ[B] is a collection of R-shadow bases.

The following technical lemma will be of some use later.

Lemma 2.2.16. Suppose that R and R∗ are partition products, σ1, σ2 are embeddings of R

into R∗, and 〈x, πx, α〉 and 〈y, πy, β〉 are two coherent R-shadow bases, with α ≤ β. Let a be

an initial segment of x such that a ⊆ y, σ1 � a = σ2 � a, and σ1[x\a] is disjoint from σ2[y\a].

Then σ1(〈x, πx, α〉) and σ2(〈y, πy, β〉) are coherent R∗-shadow bases.

Proof. From Lemma 2.2.15, we see that σ1(〈x, πx, α〉) and σ2(〈y, πy, β〉) are R∗-shadow bases.

Furthermore, if ζ∗ ∈ σ1[x]∩σ2[y], then ζ∗ must be in σ1[a]∩σ2[a], since σ1[x\a]∩σ2[y\a] = ∅

and since σ1 � a = σ2 � a. As the injections σ1 and σ2 are equal on a, we then have that

σ−1
1 (ζ∗) = σ−1

2 (ζ∗) =: ζ. Thus ζ ∈ x∩y, and the coherence of the original triples at ζ implies

the coherence of their images at ζ∗.

We next define a notion of embedding for enriched partition products.
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Definition 2.2.17. Suppose that (P,B) is an enriched partition product with domain X,

(R,D) is an enriched partition product with domain Y , and σ : X −→ Y is a function. We

say that σ embeds (P,B) into (R,D) if σ embeds P into R, as in Definition 2.1.17, and if

σ[B] ⊆ D.

We may now state and prove the Grafting Lemma; enrichments play a crucial role in its

proof.

Lemma 2.2.18. (Grafting Lemma) Let (P,B) and (R,D) be enriched partition products

with respective domains X and Y . Suppose that X̂ ⊆ X coheres with (P,B) and that there

is a map σ : X̂ −→ Y which embeds (P � X̂,B � X̂) into (R,D).Then there is an enriched

partition product (R∗,D∗) with domain Y ∗ such that Y ⊆ Y ∗, R∗ � Y = R, D ⊆ D∗, and

such that there is an extension σ∗ of σ which embeds (P,B) into (R∗,D∗) and which satisfies

σ∗
[
X\X̂

]
= Y ∗\Y .

Proof. We first define the map σ∗ extending σ: if ξ ∈ X̂, then set σ∗(ξ) := σ(ξ). If

ξ ∈ X\X̂, say ξ is the γth such element, then we set σ∗(ξ) := sup(Y ) + 1 + γ. Then σ∗

is an acceptable rearrangement, since X̂ is base-closed. Let Y ∗ := Y ∪ ran(σ∗). Recalling

that σ embeds P � X̂ into R, we know that σ∗[baseP] � ran(σ) = baseR � ran(σ) and that

σ∗[indexP] � ran(σ) = indexR � ran(σ). Thus if we define base∗ := baseR ∪σ∗[baseP] and

index∗ := indexR ∪σ∗[indexP], then base∗ and index∗ are functions.

Before we check that base∗ and index∗ support a partition product on Y ∗, we need to

check that D ∪ σ∗[B] consists of a coherent collection of shadow bases. To facilitate the

discussion, we set B∗ := σ∗[B] and D∗ := D ∪ B∗. So fix 〈x, πx, α〉 ∈ B and 〈y, πy, β〉 in D,

and we check that 〈y, πy, β〉 and 〈x∗, πx∗ , α〉 cohere, where x∗ := σ∗[x] and πx∗ := σ∗ ◦ πx.

By our assumption that σ embeds (P � X̂,B � X̂) into (R,D), we know that 〈y, πy, β〉

and 〈σ[x ∩ X̂], σ ◦ πx∩X̂ , α〉 cohere. However, 〈σ[x ∩ X̂], σ ◦ πx∩X̂ , α〉 is an initial segment

of 〈x∗, πx∗ , α〉, as in Definition 2.2.4. Therefore by Remark 2.2.5, since σ∗[X\X̂] is disjoint

from y, we have that 〈y, πy, β〉 and 〈x∗, πx∗ , α〉 cohere.
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We now check that base∗ and index∗ support a partition product on Y ∗. Conditions (1)

and (2) of Definition 2.1.1 for base∗ and index∗ follow because they hold for baseR and indexR,

as well as σ∗[baseP] and σ∗[indexP] individually, and since base∗ and index∗ are functions.

Thus we need to verify condition (3). For this it suffices to check that it holds for ξ1 ∈ Y

and ξ2 ∈ Y ∗\Y . Rephrasing, we need to show that the triples 〈b∗(ξ1), π∗ξ1 , index∗(ξ1)〉 and

〈b∗(ξ2), π∗ξ2 , index∗(ξ2)〉 cohere. The first triple equals 〈bR(ξ1), πR
ξ1
, indexR(ξ1)〉 and so is in D

since D is R-full. The second triple is in B∗, since it equals 〈σ∗[bP(ξ̂2)], σ∗ ◦ πP
ξ̂2
, indexP(ξ̂2)〉,

where σ∗(ξ̂2) = ξ2. Consequently, both shadow bases are in D∗ and are therefore coherent,

by the previous paragraph. Thus condition (3) of Definition 2.1.1 is satisfied.

Thus base∗ and index∗ support a partition product on Y ∗, which we call R∗. Since the

restrictions of base∗ and index∗ to Y equal baseR and indexR, respectively, we have that

R∗ � Y = R. Additionally, σ∗ embeds P into R∗, since base∗ and index∗ restricted to

ran(σ∗) equal σ∗[baseP] and σ∗[indexP] respectively. Thus it remains to check that D∗ is an

enrichment of R∗, and for this, it only remains to check that D∗ is R∗-full. However, D is

R-full, and since B is P-full, B∗ is full with respect to R∗ � ran(σ∗). Thus D∗ is R∗-full.

Definition 2.2.19. Let (P,B), (R,D), (R∗,D∗), X̂, σ, and σ∗ be as in Lemma 2.2.18. We

will say in this case that (R∗,D∗) is the extension of (R,D) by grafting (P,B) over σ, and

we will call σ∗ the grafting embedding.

Note that as a corollary, we get that the product of two partition products is isomorphic

to a partition product; this fact could also be proven directly from the definitions.

Corollary 2.2.20. Suppose that P and R are partition products with respective domains X

and Y . Then P× R is isomorphic to a partition product R∗.

In fact, by Lemma 2.1.13 we may assume that X ∩Y = ∅, that R∗ is a partition product

on X ∪ Y , and that R∗ � X = P and R∗ � Y = R. Finally, in this case, if B and D are

enrichments of P and R respectively, then B ∪ D is an enrichment of R∗.

The following lemma gives a situation under which, after creating a single grafting em-

bedding, we may extend a number of other embeddings without further grafting; it will be
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used later in constructing preassignments (see Lemma 3.3.4).

Lemma 2.2.21. Let (P,B) and (R,D) be enriched partition products with domains X and

Y respectively. Suppose that X can be written as X = X0∪X1, where both X0 and X1 cohere

with (P,B). Let F be a finite collection of maps which embed (P � X0,B � X0) into (R,D),

and suppose that for each σ0, σ1 ∈ F ,

σ0[X0 ∩X1] = σ1[X0 ∩X1].

Finally, fix a particular σ0 ∈ F , let (R∗,D∗) be the extension of (R,D) by grafting (P,B)

over σ0, and let σ∗0 be the grafting embedding. Then for all σ ∈ F , the map

σ∗ := σ ∪ (σ∗0 � (X1\X0))

embeds (P,B) into (R∗,D∗).

Proof. Fix σ ∈ F . Before we continue, we note that σ∗ and σ∗0 agree on all of X1, since they

agree on X0 ∩X1 by assumption and on X1\X0 by definition.

We first verify that σ∗ provides an acceptable rearrangement of P. So let ζ, ξ ∈ X so that

ζ ∈ bP(ξ). If ξ ∈ X0, then ζ is too, since X0 is base-closed. Then σ∗(ζ) = σ(ζ) < σ(ξ) =

σ∗(ξ), since σ is an acceptable rearrangement of P � X0. On the other hand, if ξ ∈ X1, then

ζ ∈ X1. Since σ∗ � X1 = σ∗0 � X1, and σ∗0 � X1 is an acceptable rearrangement of P � X1, we

get that σ∗(ζ) < σ∗(ξ).

We may now see that σ∗ embeds P into R∗, as follows: let base∗ and index∗ be the

functions which support R∗. Then σ∗[indexP] and σ∗[baseP] agree with index∗ and base∗ on

ran(σ), since σ embeds P � X0 into R. Furthermore, σ∗[indexP] and σ∗[baseP] agree with

index∗ and base∗ on σ∗[X1], since they are equal, respectively, to σ∗0[indexP] and σ∗0[baseP]

restricted to σ∗0[X1]. Thus σ∗[indexP] and σ∗[baseP] are equal to the restriction of index∗ and

base∗ to ran(σ∗), and consequently, σ∗ embeds P into R∗.

We finish the proof of the lemma by showing that σ∗[B] ⊆ D∗. To see this, fix some

〈x, πx, α〉 ∈ B. We first claim that either x ⊆ X0 or x ⊆ X1. If this is false, then there
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exist α ∈ x\X0 and β ∈ x\X1. Since X0 ∪X1 = X, we then have α ∈ X1 and β ∈ X0. We

suppose, by relabeling if necessary, that α0 := π−1
x (α) < π−1

x (β) =: β0. By the coherence of

X0 with (P,B), we conclude that πx[β0] ⊆ X0. However, α = πx(α0) ∈ πx[β0], and therefore

α ∈ X0, a contradiction.

We now show that the shadow base 〈x∗, πx∗ , α〉 is in D∗, where x∗ := σ∗[x] and πx∗ =

σ∗ ◦ πx. On the one hand, if x ⊆ X0, then the shadow base 〈x, πx, α〉 is in B � X0, and

therefore 〈σ[x], σ ◦ πx, α〉 is a member of D ⊆ D∗. Since σ = σ∗ � X0, 〈x∗, πx∗ , α〉 =

〈σ[x], σ ◦ πx, α〉, completing this subcase. On the other hand, if x ⊆ X1, then we see that

〈x∗, πx∗ , α〉 = 〈σ∗0[x], σ∗0 ◦ πx, α〉, since σ∗ � X1 = σ∗0 � X1. It is therefore a member of D∗,

which finishes the proof.
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CHAPTER 3

Constructing Preassignments of Colors

In this chapter we show how to construct the particular names for preassignments of colors

that we need. Throughout this chapter, we make the following assumptions.

Assumption 3.0.1. The CH holds. κ < ω2 is in C, and for each ξ ∈ C ∩ κ, ρξ is below

ω2. Additionally, the κ-canonical partition product Pκ is defined, and in particular, Pκ is a

partition product based upon P � κ and Q̇ � κ. We also assume that the Pκ-names Ṡκ and

χ̇κ are defined and satisfy that Ṡκ names a countable basis for a second countable, Hausdorff

topology on ω1 and χ̇κ names a coloring open with respect to the topology generated by Ṡκ.

And finally, we assume that any partition product based upon P � κ and Q̇ � κ is c.c.c.

Remark 3.0.2. Our goal is to show, under Assumption 3.0.1, how to construct a Pκ-name

Q̇κ for a poset which decomposes ω1 into countably-many χ̇κ-homogeneous sets, in such a

way that any partition product based upon P � (κ+ 1) and Q̇ � (κ+ 1) is c.c.c. In Chapter

4 we will use this as part of an inductive construction of a sequence P which provides the

right building blocks for our main theorem.

3.1 κ-Suitable Collections

We now consider how various copies of Pκ fit into a partition product R, where R is based

upon P � κ and Q̇ � κ. Even though we have yet to construct the name Q̇κ, we would still

like to isolate the relevant behavior of copies of Pκ inside such an R which these copies would
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have if R were of the form

R = R∗ � {ξ ∈ dom(R∗) : index(ξ) < κ} ,

for some partition product R∗ based upon P � (κ + 1) and Q̇ � (κ + 1). This leads to the

following definition.

Definition 3.1.1. Let R be a partition product with domain X based upon P � κ and Q̇ � κ.

Let {〈Bι, ψι〉 : ι ∈ I} be a set of pairs, where each Bι ⊆ X is base-closed and where ψι :

ρκ −→ Bι is a bijection which embeds Pκ into R. We say that the collection {〈Bι, ψι〉 : ι ∈ I}

is κ-suitable with respect to R if

{〈Bι, ψι, κ〉 : ι ∈ I} ∪ {〈b(ξ), πξ, index(ξ)〉 : ξ ∈ X}

is a coherent set of R-shadow bases.

Moreover, if (R,B) is an enriched partition product, we say that {〈Bι, ψι〉 : ι ∈ I} is κ-

suitable with respect to (R,B) if {〈Bι, ψι, κ〉 : ι ∈ I} ⊆ B and if α ≤ κ for all 〈x, πx, α〉 ∈ B.

As the next lemma shows, κ-suitable collections give us subsets which cohere with the

original partition product, since the indices of the triples in the enrichment do not exceed κ.

Lemma 3.1.2. Suppose that {〈Bι, ψι〉 : ι ∈ I} is κ-suitable with respect to an enriched par-

tition product (R,B). Then for any I0 ⊆ I,
⋃
ι∈I0 Bι coheres with (R,B).

Proof. Let 〈x, πx, α〉 ∈ B, and suppose that there exists ζ ∈ (
⋃
ι∈I0 Bι) ∩ x. Fix some ι ∈ I0

such that ζ ∈ Bι ∩ x. Then 〈Bι, ψι, κ〉 is in B. Furthermore, α ≤ κ, by definition of κ-

suitability with respect to (R,B). Since B is coherent, by definition of an enrichment, and

since α ≤ κ, we have by Definition 2.2.2 that

πx[π
−1
x (ζ)] ⊆ ψι[ψ

−1
ι (ζ)].

Since ran(ψι) = Bι, this finishes the proof.

We will often be interested in the following strengthening of the notion of an embedding,

one which preserves the κ-suitable structure.
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Definition 3.1.3. Let R and R∗ be two partition products, and let S = {〈Bι, ψι〉 : ι ∈ I}

and S∗ =
{
〈B∗η , ψ∗η〉 : η ∈ I∗

}
be κ-suitable collections with respect to R and R∗ respectively.

An embedding σ of R into R∗ is said to be (S,S∗)-suitable if for each ι ∈ I, there is some

η ∈ I∗ such that σ � Bι isomorphs R � Bι onto R∗ � B∗η and ψ∗η = σ ◦ ψι. A collection F of

embeddings is said to be (S,S∗)-suitable if each σ ∈ F is (S,S∗)-suitable.

If σ is (S,S∗)-suitable, we let hσ denote the injection from I into I∗ such that σ maps

Bι onto B∗hσ(ι) for each ι ∈ I.

The following technical lemmas will be used later in this chapter.

Lemma 3.1.4. Suppose that {〈Bι, ψι〉 : ι ∈ I} is κ-suitable with respect to an enriched par-

tition product (R,B) and that the elements of {Bι : ι ∈ I} are pairwise disjoint. Then for

any 〈x, πx, α〉 ∈ B, x ∩ (
⋃
ι∈I Bι) = x ∩Bι0 for a unique ι0 ∈ I.

Proof. Suppose otherwise, and fix 〈x, πx, α〉 ∈ B as well as distinct ι0, ι1 ∈ I such that

x ∩ Bι0 6= ∅ and x ∩ Bι1 6= ∅. Let ζ ∈ x ∩ Bι0 and η ∈ x ∩ Bι1 . Then ζ 6= η, since

Bι0∩Bι1 = ∅. Define ζ0 := π−1
x (ζ) and η0 := π−1

x (η). Since ζ0 6= η0, we suppose, by relabeling

if necessary, that ζ0 < η0. By definition of an enrichment, we know that 〈Bι1 , ψι1 , κ〉 and

〈x, πx, α〉 cohere, and since α ≤ κ and η ∈ Bι1 ∩ x, we conclude that πx[η0] ⊆ Bι1 . However,

ζ0 < η0, and so ζ = πx(ζ0) ∈ πx[η0], which implies that ζ ∈ Bι1 . This contradicts the fact

that Bι0 ∩Bι1 = ∅.

The next lemma gives a sufficient condition for creating an enrichment; it will be used

in the construction of preassignments (see Lemma 3.3.4).

Lemma 3.1.5. Suppose that S = {〈Bι, ψι〉 : ι ∈ I} is κ-suitable with respect to an enriched

partition product (R,B) and that the elements of {Bι : ι ∈ I} are pairwise disjoint. Suppose

further that R∗ is a partition product with domain X∗ and that S∗ =
{
〈B∗η , ψ∗η〉 : η ∈ I∗

}
is κ-suitable with respect to R∗. Finally, set X̂ :=

⋃
ι∈I Bι, and suppose that there exists a

finite collection F of (S,S∗)-suitable embeddings of R � X̂ into R∗ such that for any distinct
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ι0, ι1 ∈ I and any (not necessarily distinct) π0, π1 ∈ F ,

B∗hπ0 (ι0) ∩B∗hπ1 (ι1) = ∅,

where for each π ∈ F , hπ is the associated injection. Then

B∗ :=
{
〈b∗(ξ), π∗ξ , index∗(ξ)〉 : ξ ∈ X∗

}
∪
⋃
π∈F

π
[
B � X̂

]
∪
{
〈B∗η , ψ∗η, κ〉 : η ∈ I∗

}
is an enrichment of R∗ and S∗ is κ-suitable with respect to (R∗,B∗).

Proof. We will first show that
⋃
π∈F π

[
B � X̂

]
is a coherent collection of R∗-shadow bases.

Since each π ∈ F is an embedding of R � X̂ into R∗, Lemma 2.2.15 implies that this is a set

of R∗-shadow bases. Thus we check coherence.

Fix π0, π1 ∈ F and 〈x, πx, α〉, 〈y, πy, β〉 ∈ B � X̂, and assume, by relabeling if necessary,

that α ≤ β. We show that 〈x∗, πx∗ , α〉 and 〈y∗, πy∗ , β〉 cohere, where x∗ := π0[x] and

πx∗ := π0 ◦ πx, and where y∗ := π1[y], πy∗ := π1 ◦ πy. By Lemma 3.1.4, and since x and y are

subsets of X̂, we may fix ι0, ι1 ∈ I such that x = x ∩ X̂ = x ∩Bι0 and y = y ∩ X̂ = y ∩Bι1 .

There are two cases.

First suppose that ι0 6= ι1. Then we must have that x∗ ∩ y∗ = ∅. To see this, observe

that

x∗ = π0[x] = π0[x ∩Bι0 ] ⊆ B∗hπ0 (ι0),

and

y∗ = π1[y] = π1[y ∩Bι1 ] ⊆ B∗hπ1 (ι1).

Therefore x∗ ∩ y∗ = ∅, as B∗hπ0 (ι0) ∩B∗hπ1 (ι1) = ∅, by assumption. We thus trivially have the

coherence of 〈x∗, πx∗ , α〉 and 〈y∗, πy∗ , β〉 in this case.

On the other hand, suppose that ι := ι0 = ι1. Define a ⊆ x to be the largest initial

segment (see Definition 2.2.4) of 〈x, πx, α〉 on which π0 and π1 agree, and set a∗ := π0[a] =

π1[a]. In order to see that 〈x∗, πx∗ , α〉 and 〈y∗, πy∗ , β〉 cohere, it suffices, in light of Lemma

2.2.16, to show that π0[x\a] is disjoint from π1[y\a]. Towards this end, fix some ζ∗ ∈ x∗∩y∗,

and suppose for a contradiction that ζ∗ /∈ a∗. Define µx := π−1
x∗ (ζ∗), and observe that µx
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is greater than the ordinal π−1
x [a], since ζ∗ /∈ a∗. Using the abbreviation ηi := hπi(ι), for

i ∈ {0, 1}, we see that ζ∗ ∈ B∗η0
∩B∗η1

, as x∗ = π0[x∩Bι] ⊆ B∗η0
, and as y∗ = π1[y∩Bι] ⊆ B∗η1

.

Set ζ0 := (ψ∗η0
)−1(ζ∗). Since the R∗-shadow bases 〈B∗η0

, ψ∗η0
, κ〉 and 〈B∗η1

, ψ∗η1
, κ〉 cohere,

Corollary 2.2.8 implies that ψ∗η0
� (ζ0 + 1) = ψ∗η1

� (ζ0 + 1).

Now we observe that

πx∗(µx) = π0(πx(µx)) = ζ∗ = ψ∗η0
(ζ0) = π0(ψι(ζ0)),

and therefore πx(µx) = ψι(ζ0). Let us call this ordinal ζ. Since ζ ∈ Bι ∩ x, the coherence of

〈x, πx, α〉 with 〈Bι, ψι, κ〉 and the fact that α ≤ κ imply that

πx[µx + 1] ⊆ ψι[ζ0 + 1].

As noted above, ψ∗η0
� (ζ0 + 1) = ψ∗η1

� (ζ0 + 1), and therefore by the commutativity assumed

in the statement of the lemma, π0 and π1 agree on ψι[ζ0 + 1]. In particular, they agree on

πx[µx+1]. Thus πx[µx+1] is an initial segment of 〈x, πx, α〉 on which π0 and π1 agree. Since

ζ = πx(µx) /∈ a, this contradicts the maximality of a.

At this point, we have shown that
⋃
π∈F π

[
B � X̂

]
is a coherent collection of R∗-shadow

bases. We introduce the abbreviation

B∗0 :=
{
〈b∗(ξ), π∗ξ , index∗(ξ)〉 : ξ ∈ X∗

}
∪
{
〈B∗η , ψ∗η, κ〉 : η ∈ I∗

}
.

We know that B∗0 is a coherent set of R∗-shadow bases, by the definition of κ-suitability.

Therefore, to finish showing that B∗ is an enrichment of R∗, we now check that if 〈y, πy, β〉 ∈

B∗0, π ∈ F , and 〈x, πx, α〉 ∈ B � X̂, then 〈y, πy, β〉 and 〈x∗, πx∗ , α〉 cohere, where x∗ := π[x]

and πx∗ = π ◦ πx. By Lemma 3.1.4, let ι ∈ I be such that x = x ∩ X̂ = x ∩ Bι. Then x∗ =

π[x] = π[x ∩ Bι] ⊆ B∗hπ(ι). Now 〈x, πx, α〉 and 〈Bι, ψι, κ〉 cohere, and moreover, π isomorphs

R � Bι onto R∗ � B∗hπ(ι) and satisfies that ψ∗hπ(ι) = π ◦ ψι. It is straightforward to see from

this that 〈x∗, πx∗ , α〉 and 〈B∗hπ(ι), ψ
∗
hπ(ι), κ〉 cohere. However, 〈y, πy, β〉 and 〈B∗hπ(ι), ψ

∗
hπ(ι), κ〉

also cohere, by definition of κ-suitability. Since α, β ≤ κ, Lemma 2.2.10 therefore implies

that 〈y, πy, β〉 and 〈x∗, πx∗ , α〉 cohere, which is what we wanted to show.
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3.2 What suffices

Given a (possibly partial) 2-coloring χ on ω1 and a function f from ω1 into {0, 1}, we

use Q(χ, f) to denote the poset to decompose ω1 into countably-many χ-homogeneous sets

which respect the function f . More precisely, a condition is a finite partial function q with

dom(q) ⊆ ω such that for each n ∈ dom(q), q(n) is a finite subset of ω1 on which f is constant,

say with value i, and q(n) is χ-homogeneous with color i, meaning that if x, y ∈ q(n) and

〈x, y〉 ∈ dom(χ), then χ(x, y) = i. The ordering is q1 ≤ q0 iff dom(q0) ⊆ dom(q1), and for

each n ∈ dom(q0), q0(n) ⊆ q1(n).

Remark 3.2.1. Forcing with Q(χ, f) adds reals over V . Say that G is generic for Q(χ, f),

giving the partition ω1 =
⋃
nAn into χ-homogeneous sets. Then by an easy density argument,

the map which sends m < ω to the unique n s.t. m ∈ An is a new real.

Following [4], we refer to any such f as a preassignment of colors. Our main goal in this

chapter is to come up with a Pκ-name ḟ for a particularly nice preassignment of colors for

χ̇κ, in the following sense:

Proposition 3.2.2. There is a Pκ-name ḟ for a preassignment of colors so that for any

partition product R based upon P � κ and Q̇ � κ, any generic G for R, and any finite

collection {〈Bι, ψι〉 : ι ∈ I} which is κ-suitable with respect to R, the poset∏
ι∈I

Q
(
χ̇κ
[
ψ−1
ι (G � Bι)

]
, ḟ
[
ψ−1
ι (G � Bι)

])
is c.c.c. in V [G].

Remark 3.2.3. Observe that in the previous proposition, the same name ḟ is interpreted

in a variety of ways, namely, by various generics for Pκ added by forcing with R. Moreover,

ḟ is strong enough that the product of the induced homogeneous set posets is c.c.c. This is

what we mean by referring to the name as “symmetric.”
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Before continuing with the main thread, let us see, in the following corollary, that the

condition in the previous proposition suffices.

Corollary 3.2.4. Let ḟκ be a name witnessing Proposition 3.2.2, and set Q̇κ to be the Pκ-

name Q(χ̇κ, ḟκ). Then any partition product based upon P � (κ + 1) and Q̇ � (κ + 1) is

c.c.c.

Proof of Corollary 3.2.4. Let R be a partition product based upon P � (κ + 1) and Q̇ �

(κ + 1), and let X be the domain of R. Set X̂ := {ξ ∈ X : index(ξ) < κ}, and let I :=

{ξ ∈ X : index(ξ) = κ}. By Lemma 2.1.20, R is isomorphic to

(R � X̂) ∗
∏
ξ∈I

Q̇κ

[
π−1
ξ

(
Ġ � b(ξ)

)]
,

and R � X̂ is a partition product based upon P � κ and Q̇ � κ. By Assumption 3.0.1,

R � X̂ is c.c.c. It is also straightforward to check that {〈b(ξ), πξ〉 : ξ ∈ I} is κ-suitable, by

the definition of R as a partition product based upon P � (κ + 1) and Q̇ � (κ + 1). Finally,

from Proposition 3.2.2, we know each finitely-supported subproduct of

∏
ξ∈I

Q̇κ

[
π−1
ξ (G � b(ξ))

]
is c.c.c. in V [G � X̂], and hence the entire product is c.c.c. Since R � X̂ is c.c.c. in V , this

finishes the proof.

We will prove Proposition 3.2.2 by working backwards through a series of reductions; the

final proof of Proposition 3.2.2 occurs in Section 3.4. We first want to see what happens if

a finite product
∏

l<mQ(χl, fl) is not c.c.c., where each χl is an open coloring on ω1 with

respect to some second countable, Hausdorff topology τl on ω1 and fl : ω1 −→ {0, 1} is an

arbitrary preassignment. In light of this discussion, we are able to simplify the sufficient

conditions for proving Proposition 3.2.2 by reducing the scope of our investigation to so-

called finitely generated partition products (see Definition 3.2.6). With this simplification in

place, we continue in the third subsection to isolate a property of the name ḟ , which we call
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the partition product preassignment property. This will complete the final reduction, isolating

exactly what we need to show in order to ensure that the desired posets are c.c.c. And finally,

we show how to construct names with the partition product preassignment property.

Now consider a sequence 〈τl : l < m〉 of second countable, Hausdorff topologies on ω1

with respective open colorings 〈χl : l < m〉 and preassignments 〈fl : l < m〉. Let us define

τ :=
⊎
τl, a topology on X :=

⊎
l<m ω1, as well as f :=

⊎
fl and χ :=

⊎
χl. So, for example,

if x ∈ X, then f(x) = fl(x), where l is unique s.t. x is in the lth copy of ω1, and if x, y ∈ X

then χ(x, y) is defined iff x and y are distinct and belong to the same copy of ω1, say the

lth, and in this case, χ(x, y) = χl(x, y). With this notation, we may view a condition in the

product
∏

l<mQ(χl, fl) as a condition in Q(χ, f). Note that χ is partial, and this is the only

reason we allowed partial colorings in the definition of Q(χ, f).

Now suppose that
∏

l<mQ(χl, fl) has an uncountable antichain. Then we claim that

there exists an n < ω, an uncountable subset A of Xn and a closed (in Xn) set F ⊇ A so

that

1. the function 〈x(0), . . . , x(n − 1)〉 7→ 〈f(x(0)), . . . , f(x(n − 1))〉 is constant on A, say

with value d ∈ 2n. Abusing notion we also denote this function by f ;

2. no two tuples in A have any elements in common;

3. for every distinct x, y ∈ F , there exists some i < n so that χ(x(i), y(i)) is defined and

χ(x(i), y(i)) 6= d(i).

To see that this is true, take an antichain of size ℵ1 in the product
∏

l<mQ(χl, fl), and first

thin it to assume that for each l, k all conditions contribute the same number of elements

to the kth homogeneous set for χl. Now viewing the elements in the antichain as sequences

arranging the members according to the coloring and homogeneous set they contribute to,

call the resulting set A. Let n be the length of each sequence in A. We further thin A to

secure (1). Next, thin A to become a ∆-system, and note that by taking n to be minimal,

we secure (2). Now observe that, for each x ∈ A, if i < j < n and x(i) and x(j) are part of
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the same homogeneous set for the same coloring χl, say with color c, then as χl is an open

coloring, there exists a pair of open sets Ui,j × Vi,j in τi × τj such that

〈x(i), x(j)〉 ∈ Ui,j × Vi,j ⊆ χ−1
l ({c}).

With this x still fixed, by intersecting at most finitely-many open sets around each x(i), we

may remove the dependence on coordinates j 6= i, and thereby obtain for each i, an open

set Ui around x(i) witnessing the values of χ. In particular, for any i < j < n such that x(i)

and x(j) are in the same homogeneous set for the same coloring, say χl, we have

〈x(i), x(j)〉 ∈ Ui × Uj ⊆ χ−1
l ({c}),

where c = χl(x(i), x(j)). By using basic open sets, of which there are only countably-many,

we may thin A to assume that the sequence of open sets 〈Ui : i < n〉 is the same for all

x ∈ A. As a result of fixing these open sets, and since A is an antichain, we see that (3)

holds for the elements of A. Since χ is an open coloring, (3) also hold for F , the closure of

A in Xn.

Remark 3.2.5. The conditions in the previous paragraph are equivalent to the existence of

n < ω, d ∈ 2n, and a closed set F ⊆ Xn so that (i) for any distinct x, y ∈ F , χ(x(i), y(i))

is defined for all i < n, and for some i < n, χ(x(i), y(i)) 6= d(i); and (ii) for every countable

z ⊆ F , there exists x ∈ F\z so that f ◦ x = d. Indeed, it is immediate that (1)-(3) give (i)

and (ii), and for the other direction, iterate (ii) to obtain the uncountable set A.

Any F as in Remark 3.2.5 is a closed subset of a second countable space, and so F is coded

by a real. Thus if R is a partition product as in the statement of Proposition 3.2.2, then

any R-name Ḟ for such a closed set will only involve conditions intersecting countably-many

support coordinates, since R, by Assumption 3.0.1, is c.c.c. This motivates the following

definition and subsequent remark.

Definition 3.2.6. A partition product R with domain X, say, based upon P � κ and Q̇ � κ

is said to be finitely generated if there is a finite, κ-suitable collection {〈Bι, ψι〉 : ι ∈ I}, and
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a countable Z ⊆ X, such that

X = Z ∪
⋃
ξ∈Z

b(ξ) ∪
⋃
ι∈I

Bι.

In this case, we will refer to Z as the auxiliary part.

Note that in the above definition, if there is some ξ ∈ Z ∩Bι, then b(ξ) ⊆ Bι, since Bι is

base-closed. Thus it poses no loss of generality to assume that Z is disjoint from
⋃
ιBι, and

we will do so.

Remark 3.2.7. As shown by the arguments preceding Definition 3.2.6, Proposition 3.2.2

follows from its restriction to finitely generated partition products R.

We further remark that Definition 3.2.6 refers implicitly to the following objects: indexδ,

baseδ, and ϕδ,µ for δ < κ, as well as Pκ, indexκ, baseκ, and ϕκ,µ, which are needed in order

to define a suitable collection.

It is also straightforward to see that grafting a finitely generated partition product over

another such results in a partition product which is still finitely generated, as stated in the

following lemma.

Lemma 3.2.8. Let (P,B), (R,D), and σ be as in Lemma 2.2.18. Suppose that both (P,B)

and (R,D) are finitely generated and that (R∗,D∗) is the extension of (R,D) by grafting

(P,B) over σ. Then (R∗,D∗) is also finitely generated.

One of the main advantages of looking at finitely generated partition products is that

there are not too many of them, as made precise by the following two items. We remark here

that the subsequent two lemmas are some of the key places where we use the involved defini-

tion of a partition product: this definition allows us to see that any appropriate model con-

tains the isomorphism types of the overlaps of any two “memories” from a finitely-generated

partition product. We may therefore reconstruct an isomorphic copy of this partition product

in the model.
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Lemma 3.2.9. Let M ≺ H(ω3) be countably closed with P � (κ+ 1), Q̇ � κ ∈M . Then if R

is a finitely generated partition product based upon P � κ and Q̇ � κ, then R is isomorphic to

a partition product which has domain an ordinal ρ below M ∩ ω2.

Proof. Fix such an M , and let R be a finitely generated partition product based upon P � κ

and Q̇ � κ, say with domain X. Let {〈Bm, ψm〉 : m < n} be the κ-suitable collection and Z

the auxiliary part, where we assume that Z is disjoint from the union of the Bm. Let us

enumerate Z as 〈ξk : k < ω〉 and set δk := index(ξk) for each k < ω. Furthermore, we let πk

be the rearrangement of Pδk associated to base(ξk).

We intend to apply Corollary 2.1.19, and so we define a sequence 〈τm : m < ω〉 of

rearrangements of R and base-closed subsets 〈Dm : m < ω〉 of X. For each m < n, set τm to

be the rearrangement which first shifts the ordinals in X\Bm past sup(Bm) and then acts as

ψ−1
m on Bm. For each m ≥ n, say m = n+ k, we set τm to be the rearrangement which first

shifts the ordinals in X\(b(ξk)∪ {ξk}) past ξk and then acts as π−1
k on b(ξk) and sends ξk to

ρδk . We set D0 := ∅, Dm+1 :=
⋃
k≤mBk for m < n, and Dn+1+k := Dn ∪

⋃
l≤k(b(ξl) ∪ {ξl})

for k < ω.

By Corollary 2.1.19, let σ be a rearrangement of R so that ran(σ) is an ordinal ρ and so

that for each m < ω, σ[Dm] is an ordinal and τm ◦ σ−1 is order-preserving on σ[Dm+1\Dm].

We then see that ρ equals
∑

m<ω ot(σ[Dm+1\Dm]). However, if m < n, then ot(σ[Dm+1\Dm])

is no larger than ρκ, and if m ≥ n, then ot(σ[Dm+1\Dm]) is no larger than ρδk + 1, where

m = n+ k. Therefore

ρ =
∑
m<ω

ot(σ[Dm+1\Dm]) ≤ ρκ · n+
∑
k<ω

(ρδk + 1).

By the elementarity and countable closure of M , the ordinal on the right hand side is an

element of M ∩ ω2. Since M ∩ ω2 is an ordinal, ρ is also a member of M ∩ ω2.

Lemma 3.2.10. Let M ≺ H(ω3) be countably closed containing P � (κ + 1), Q̇ � κ and ~ϕ

as members. Then, if R is a finitely generated partition product based upon P � κ and Q̇ � κ,
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then R is isomorphic to a partition product which belongs to M , as well as the transitive

collapse of M .

Proof. Let M be fixed as in the statement of the lemma, and let R be finitely generated.

Let {〈Bk, ψk〉 : k < n} be the κ-suitable collection and Z the auxiliary part associated to R.

By Lemma 3.2.9, we may assume that R is a partition product on some ordinal ρ and that

ρ ∈ M ∩ ω2. Since M ∩ ω2 is an ordinal, ρ ⊆ M . Then Z ⊆ M , and so by the countable

closure of M , Z is a member of M . Hence by the elementarity and countable closure of M ,

setting δξ := index(ξ) for each ξ ∈ Z, the sequence 〈δξ : ξ ∈ Z〉 is in M .

Now fix k < n and ξ ∈ Z, and note that by Remark 2.2.3, since δξ and κ are in M ,

ψ−1
k [Bk ∩ b(ξ)] is in M . Next consider the relation in µ, ν which holds iff πξ(µ) = ψk(ν), and

observe that by Lemma 2.2.7, this holds iff ν is the µth element of ψ−1
k [Bk∩b(ξ)]. Therefore,

this relation is a member of M . By the countable closure of M , the relation in ξ, k, µ, ν

which holds iff πξ(µ) = ψk(ν) is in M too. Similarly, the relation (in ξ, ζ, µ, ν) which holds

iff πξ(µ) = πζ(ν) and the relation (in k, l, µ, ν) which holds iff ψk(µ) = ψl(ν) are also in M .

We now apply the elementarity of M to find a finitely generated partition product R∗ with

domain ρ which has the following properties, where base∗ and index∗ denote the functions

supporting R∗:

1. R∗ has κ-suitable collection {〈B∗k, ψ∗k〉 : k < n} and auxiliary part Z; moreover, for each

ξ ∈ Z, index∗(ξ) = δξ;

2. for each µ, ν < ρ and each ξ, ζ ∈ Z, πξ(µ) = πζ(ν) iff π∗ξ (µ) = π∗ζ (ν), and similarly

with one of the ψk (resp. ψ∗k) replacing one or both of the πi (resp. π∗i ).

It is also straightforward to see that R∗ is a member of the transitive collapse of M , as it is

an iteration of length below M ∩ ω2 of posets of size ≤ ℵ1, and hence is not moved by the

transitive collapse map.

We now define a bijection σ : ρ −→ ρ which will be the rearrangement witnessing that

R and R∗ are isomorphic. Set σ(α) = β iff α = β are both in Z; or for some ξ ∈ Z,
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α = πξ(µ) and β = π∗ξ (µ); or for some k < n, α = ψk(µ) and β = ψ∗k(µ). By (2), we see that

σ is well-defined, i.e., there is no conflict when some of these conditions overlap. It is also

straightforward to see that σ is an acceptable rearrangement of R and in fact, σ[base] = base∗

and σ[index] = index∗, so that σ is an isomorphism from R onto R∗.

Recall that we are assuming the CH holds (Assumption 3.0.1). Thus for the rest of

Chapter 3, we fix a structure M satisfying the conclusion of Lemma 3.2.10 such that |M | =

ℵ1. We write M =
⋃
γ<ω1

Mγ, for a continuous, increasing sequence of elementary, countable

submodels Mγ, such that the relevant parameters are in M0.

Remark 3.2.11. The crucial use of the CH is to fix the model M . We will use the decom-

position M =
⋃
γ<ω1

Mγ to partition a tail of ω1 into the slices [Mγ ∩ω1,Mγ+1∩ω1). We will

show that it suffices to define the preassignment one slice at a time, with the values of the

preassignment on one slice independent of the others. As Lemma 3.2.13 below shows, the

preassignment restricted to the slice [Mγ ∩ω1,Mγ+1∩ω1) only needs to anticipate “partition

product names” which are members of Mγ. This idea that the preassignment need only work

in the above slices goes back to Lemma 3.2 of [4]. Furthermore, the proof of our Lemma

3.2.12 is more or less the same as Lemma 3.2 of [4]; we are simply working in slightly greater

generality in order to analyze products of posets rather than just a single poset.

We recall that Ṡκ names a countable basis for a second countable, Hausdorff topology on

ω1.

Lemma 3.2.12. Suppose that ḟ is a Pκ-name for a function from ω1 into {0, 1} which sat-

isfies the following: for any finitely generated partition product R, with κ-suitable collection

{〈Bι, ψι〉 : ι ∈ I} and auxiliary part Z, say, all of which are in M ; for every γ sufficiently

large so that R, the κ-suitable collection, and Z are in Mγ; for any R-name Ḟ in Mγ for a

set of n-tuples in X :=
⊎
ι∈I ω1, which is closed in

(⊎
ι Ṡκ[ψ

−1
ι (Ġ � Bι)]

)n
; for any generic

G for R; and for any x with

x ∈ Ḟ [G] ∩ (Mγ+1[G]\Mγ[G])n,
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there exist pairwise distinct tuples y, y′ in Ḟ [G] ∩Mγ[G] so that for every i < n and ι ∈ I,

if x(i) is in the ι-th copy of ω1, then so are y(i) and y′(i), and

χ̇κ[ψ
−1
ι (G � Bι)](y(i), y′(i)) = ḟ [ψ−1

ι (G � Bι)](x(i)).

Then ḟ satisfies Proposition 3.2.2.

Proof. Let ḟ be as in the statement of the lemma, and suppose that ḟ failed to satisfy

Proposition 3.2.2. By Remarks 3.2.5 and 3.2.7 there exist a finitely generated partition

product R, a condition p ∈ R, an integer n < ω, a sequence d ∈ 2n, and an R-name for a

closed set Ḟ of n-tuples such that p forces that these objects satisfy Remark 3.2.5. We may

assume that R ∈ M by Lemma 3.2.10. Since M is countably closed and contains R, and

since R is c.c.c. (by Assumption 3.0.1), we know that the name Ḟ belongs to M too. Thus

we may find some γ < ω1 such that Ḟ and all other relevant objects are in Mγ.

Now let G be a generic for R containing the condition p. Let S :=
⊎
ι Ṡκ[ψ

−1
ι (G � Bι)],

let f :=
⊎
ι ḟ [ψ−1

ι (G � Bι)], and let χ :=
⊎
ι χ̇κ[ψ

−1
ι (G � Bι)]. By (ii) of Remark 3.2.5,

we may find some x ∈ F ∩ (X\Mγ[G])n, where F := Ḟ [G]. We now want to consider

how the models 〈Mβ : γ ≤ β < ω1〉 separate the elements of x, and then we will apply

the assumptions of the lemma to each β ∈ [γ, ω1) such that Mβ+1[G]\Mβ[G] contains an

element of x. Indeed, consider the finite set a of β ∈ [γ, ω1) such that x contains at least

one element in Mβ+1[G]\Mβ[G], and let 〈γk : k < l〉 be the increasing enumeration of a.

Further, let xk, for each k < l, be the subsequence of x consisting of all the elements of x

inside Mγk+1[G]\Mγk [G].

We now work downwards from l to define a sequence of formulas 〈ϕk : k ≤ l〉. We will

maintain as recursion hypotheses that if 0 < k < l, then (i) ϕk+1(x0, . . . , xk) is satisfied, and

that (ii) the parameters of ϕk+1 are in Mγ0 [G]. Let ϕl(u0, . . . , ul−1) state that u0
a . . . aul−1 ∈

F ; then (i) and (ii) are satisfied. Now suppose that 0 < k < l and that ϕk+1 is defined.

Let Fk be the closure of the set of all tuples u such that ϕk+1(x0, . . . , xk−1, u) is satisfied.

By (ii) and the fact that x0
a . . . axk−1 ∈Mγk [G], we see that Fk is in Mγk [G]. Furthermore,

xk ∈ Fk. Therefore, by the assumptions of the lemma, we may find pairwise distinct tuples
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vk,L, vk,R in Mγk [G] ∩ Fk such that for every i < n and ι ∈ I, if xk(i) is in the ι-th copy of

ω1, then so are vk,L(i) and vk,R(i), and

χ̇κ[ψ
−1
ι (G � Bι)](vk,L(i), vk,R(i)) = ḟ [ψ−1

ι (G � Bι)](xk(i)).

For each such i, fix a pair of disjoint, basic open sets Ui, Vi from Ṡκ[ψ
−1
ι (G � Bι)] witness-

ing this coloring statement. By definition of Fk, we may find two further tuples uk,L, uk,R

such that for each Z ∈ {L,R}, ϕk+1(x0, . . . , xk−1, uk,Z) is satisfied, and such that the pair

〈uk,L(i), uk,R(i)〉 is in Ui × Vi. Now define ϕk(u0, . . . , uk−1) to be the following formula:

∃wk,L, wk,R

 ∧
Z∈{L,R}

ϕk+1(u0, . . . , uk−1, wk,Z) ∧
∧
i

(
〈wk,L(i), wk,R(i)〉 ∈ Ui × Vi

) .

Then (i) is satisfied, and since the only additional parameters are the basic open sets Ui and

Vi, (ii) is also satisfied.

This completes the construction of the sequence 〈ϕk : k ≤ l〉. Now using the fact that the

sentence ϕ0 is true and has only parameters in Mγ0 , we may work our way upwards through

the sequence ϕ0, ϕ1, . . . , ϕl in order to find two tuples xL, xR of the same length as x such

that xL, xR ∈ F , and such that for each i < n, 〈xL(i), xR(i)〉 ∈ Ui × Vi. In particular, for

each i < n,

χ̇κ[ψ
−1
ι (G � Bι)](xL(i), xR(i)) = ḟ [ψ−1

ι (G � Bι)](x(i)),

where ι is such that x(i) is in the ι-th copy of ω1. However, recalling Remark 3.2.5 and the

assumptions about the condition p, this contradicts the fact that f ◦ x = d, and that there

is some i < n so that χ(xL(i), xR(i)) 6= d(i).

The following lemma gives a nice streamlining of the previous one and applies to any

collection U̇ of n-tuples in ω1, not just collections Ḟ which are closed in the appropriate

topology. The greater generality here is only apparent, as we can always take closures and

obtain, because the colorings are open, the same result from its application to closed sets of

tuples. However, it is technically convenient. Also, as a matter of notation, for each γ < ω1,

we fix an enumeration 〈νγ,n : n < ω〉 of the slice [Mγ ∩ ω1,Mγ+1 ∩ ω1).
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Lemma 3.2.13. Suppose that ḟ is a Pκ-name for a function from ω1 into {0, 1} satisfying

the following: for any finitely generated partition product R, say with κ-suitable collection

{〈Bι, ψι〉 : ι ∈ I} and auxiliary part Z, all of which are in M ; for any γ sufficiently large

such that Mγ contains R, {〈Bι, ψι〉 : ι ∈ I}, and Z; for any l < ω; for any R-name U̇ in

Mγ for a set of l-tuples in ω1; and for any generic G for R, if 〈νγ,0, . . . , νγ,l−1〉 ∈ U̇ [G], then

there exist pairwise distinct l-tuples ~µ, ~µ′ in Mγ[G]∩ U̇ [G] so that for all k < l and all ι ∈ I,

χ̇κ[ψ
−1
ι (G � Bι)](µk, µ

′
k) = ḟ [ψ−1

ι (G � Bι)](νγ,k).

Then ḟ satisfies Lemma 3.2.12.

Proof. We want to first observe that Lemma 3.2.12 follows from its restriction to sequences

z which are bijections from some n < ω onto
⊎
ι {νγ,l : l < m}, for some m < ω. Towards

this end, fix Ḟ , G, and a tuple x ∈ Ḟ [G] as in the statement of Lemma 3.2.12. First, if x is

not such a surjection, we may add additional coordinates to x to form a sequence x′ which

is a surjection onto
⊎
ι {νγ,l : l < m}, for some m < ω. Then we define the name Ḟ ′ as the

product of Ḟ with the requisite, finite number of copies of ω1, so that x′ is a member of Ḟ ′[G].

Second, if x′ contains repetitions, then we make the necessary shifts in x′ to eliminate the

repetitions and call the resulting sequence x′′. We then consider the name Ḟ ′′ of all tuples

from Ḟ ′ which have the same corresponding shifts in their tuples as x′′. Ḟ ′′ still names a

closed set and is still an element of Mγ. Thus x′′ ∈ Ḟ ′′[G], and x′′ is a bijection from some

integer onto
⊎
ι {νγ,l : l < m}, for some m < ω. By applying the restricted version of Lemma

3.2.12 to x′′ and Ḟ ′′, we see that the desired result holds for x and Ḟ .

To verify Lemma 3.2.12, fix Ḟ , a generic G, and a sequence x ∈ Ḟ [G] as in the statement

thereof, where we assume that x is a bijection from some n onto
⊎
ι {νγ,l : l < m}, for some

m < ω. Define U̇ to be the R-name for the set of all tuples ~ξ = 〈ξ0, . . . , ξm−1〉 in ω1 such

that ~ξ concatenated with itself |I|-many times is an element of Ḟ , noting that U̇ is still a

member of Mγ. Since x is a bijection as described above, 〈νγ,0, . . . , νγ,m−1〉 ∈ U̇ [G]. Now

apply the assumptions in the statement of the current lemma to find two pairwise distinct
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m-tuples ~µ, ~µ′ in Mγ[G] ∩ U̇ [G] so that for all l < m and ι ∈ I,

χ̇κ[ψ
−1
ι (G � Bι)](µl, µ

′
l) = ḟ [ψ−1

ι (G � Bι)](νγ,l).

Let y be the |I|-fold concatenation of ~µ with itself, and let y′ be defined similarly with respect

to ~µ′. Then as ~µ, ~µ′ ∈ U̇ [G], we have y, y′ are in Ḟ [G]. And since ~µ, ~µ′ satisfy the appropriate

coloring requirements, we have that y and y′ satisfy the conclusion of Lemma 3.2.12.

Lemma 3.2.13 gives a sufficient condition for Proposition 3.2.2, and it thus implies that

any partition product based upon P � (κ + 1) and Q̇ � (κ + 1) is c.c.c. In the next section,

we consider how to obtain a Pκ-name ḟ as in Lemma 3.2.13.

3.3 How to get there

In this section, which forms the technical heart of Part 1, we show how to obtain a

Pκ-name ḟ as in Lemma 3.2.13. In light of Remark 3.2.11 and Lemma 3.2.13, it suffices to

define the name ḟ separately for each of its restrictions to the slices [Mγ∩ω1,Mγ+1∩ω1), and

so let γ < ω1 be fixed for the remainder of this section. To simplify notation, we drop the

γ-subscript from the enumeration 〈νγ,n : n < ω〉 of [Mγ ∩ ω1,Mγ+1 ∩ ω1), preferring instead

to simply write 〈νn : n < ω〉. We note that the values of ḟ on the countable ordinal M0 ∩ω1

are irrelevant, by Remark 3.2.5.

In order to define the name ḟ , we recursively specify the Pκ-name equal to ḟ(νk), which

we call ȧk. Each ȧk will be a canonical name, which we view as a function from a maximal

antichain in Pκ into {0, 1}. We refer to these more specifically as canonical color names.

By a partial canonical color name we mean a function from an antichain in Pκ, possibly not

maximal, into {0, 1}. When viewing such functions as names ȧ, we say that ȧ[G], where G is

generic for Pκ, is defined and equal to i if there is some p ∈ G which belongs to the domain

of the function ȧ and gets mapped to i. The upcoming definition isolates exactly what we
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need.

Definition 3.3.1. Suppose that ȧ0, . . . , ȧl−1 are partial canonical color names. We say that

they have the partition product preassignment property at γ if for every finitely generated

partition product R with κ-suitable collection {〈Bι, ψι〉 : ι ∈ I}, say, all of which are in Mγ;

for every R-name U̇ ∈ Mγ for a collection of l-tuples in ω1; and for every generic G for

R, the following holds: if 〈ν0, . . . , νl−1〉 ∈ U̇ [G], then there exist two pairwise distinct tuples

~µ, ~µ′ ∈ U̇ [G] ∩Mγ[G] so that for every ι ∈ I and k < l, if ȧk[ψ
−1
ι (G � Bι)] is defined, then

χ̇κ[ψ
−1
ι (G � Bι)](µk, µ

′
k) = ȧk[ψ

−1
ι (G � Bι)].

Remark 3.3.2. In the context of Definition 3.3.1, we say that two sequences ~µ and ~µ′ of

length l match ȧ0, . . . , ȧl−1 at ι with respect to G, or match at Bι with respect to G if for

every k < l such that ȧk[ψ
−1
ι (G � Bι)] is defined,

χ̇κ[ψ
−1
ι (G � Bι)](µk, µ

′
k) = ȧk[ψ

−1
ι (G � Bι)].

We say that two sequences ~µ and ~µ′ match ȧ0, . . . , ȧl−1 on I with respect to G if for every

ι ∈ I, ~µ and ~µ′ match ȧ0, . . . , ȧl−1 at ι with respect to G. If the filter G is clear from context,

we drop the phrase “with respect to G.” Furthermore, we will often want to avoid talking

about the index set I explicitly, and so we will also say that ~µ, ~µ′ match ȧ0, . . . , ȧl−1 on

S := {〈Bι, ψι〉 : ι ∈ I}, if for each 〈B,ψ〉 ∈ S, we have that ~µ, ~µ′ match ȧ0, . . . , ȧl−1 at B.

To prove Lemma 3.2.13, and in turn Proposition 3.2.2, we recursively construct the

sequence 〈ȧk : k < ω〉 in such a way that for each l < ω, ȧ0, . . . , ȧl−1 have the partition

product preassignment property at γ. More precisely, we show that if ȧ0, . . . , ȧl−1 are total

canonical color names with the partition product preassignment property at γ, then there is

a total name ȧl so that ȧ0, . . . , ȧl have the partition product preassignment property at γ.

For this in turn it is enough to prove that if ȧ0, . . . , ȧl−1 are total canonical color names,

ȧl is a partial canonical color name, ȧ0, . . . , ȧl have the partition product preassignment

property at γ, and p ∈ Pκ is incompatible with all conditions in the domain of ȧl, then

there exist p∗ ≤Pκ p and c ∈ {0, 1} so that ȧ0, . . . , ȧl ∪ {p∗ 7→ c} have the partition product
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preassignment property at γ. By a transfinite iteration of this process we can construct

a sequence of names ȧξl with increasing domains, continuing until we reach a name whose

domain is a maximal antichain. This final name is then total.

To prove the “one condition” extension above, we assume that it fails with c = 0 and

prove that it then holds with c = 1. Our assumption is the following:

Assumption 3.3.3. ȧ0, . . . , ȧl−1 are total canonical color names, ȧl is partial, ȧ0, . . . , ȧl have

the partition product preassignment property at γ, p ∈ Pκ is incompatible with all conditions

in dom(ȧl), but for every p∗ ≤Pκ p, ȧ0, . . . , ȧl ∪ {p∗ 7→ 0} do not have the partition product

preassignment property at γ.

Our goal is to show that ȧ0, . . . , ȧl∪{p 7→ 1} do have the partition product preassignment

property at γ. The following lemma is the key technical result which allows us to prove that

p 7→ 1 works in this sense and thereby continue the construction of the name ȧl. We note

that the lemma is stated in terms of enriched partition products; the enrichments are used to

propagate the induction hypothesis needed for its proof. After the statement of the lemma,

and before its proof, we provide some expository comments which we believe will be helpful.

Lemma 3.3.4. Let (R,B) be an enriched partition product with domain X which is finitely

generated by a κ-suitable collection S = {〈Bι, ψι〉 : ι ∈ I} and auxiliary part Z, all of which

belong to Mγ. Let p̄ be a condition in R, and let ~ν := 〈ν0, . . . , νl〉. Finally, let S̄ ⊆ S be

non-empty. Then there exist the following objects:

(a) an enriched partition product (R∗,B∗) with domain X∗, finitely generated by a κ-

suitable collection S∗ and an auxiliary part Z∗, all of which are in Mγ;

(b) a condition p∗ ∈ R∗;

(c) an R∗-name U̇∗ in Mγ for a collection of l + 1-tuples in ω1;

(d) a non-empty, finite collection F in Mγ of embeddings from (R,B) into (R∗,B∗);

satisfying that for each π ∈ F :
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1. p∗ ≤R∗ π(p̄);

and also satisfying that p∗ forces the following statements in R∗:

(2) ~ν ∈ U̇∗;

(3) for any pairwise distinct tuples ~µ, ~µ′ in U̇∗ ∩Mγ[Ġ
∗], if ~µ, ~µ′ match ȧ0, . . . , ȧl on S∗,

then there is some π ∈ F such that ~µ, ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} on π[S̄].

Let us pause to make a few motivational remarks which we believe will help explain

the technicalities and paint a big picture of the proof. In rough but possibly helpful

language, the partition product preassignment property asserts the following: in any

finitely-generated partition product R with κ-suitable collection {〈Bι, ψι〉 : ι ∈ I}, we

have that if νl is in some subset of ω1 which is a member of Mγ, then we can reflect the

ordinal νl inside this Mγ-set to two ordinals µ and µ′ so that µ and µ′ get the correct

color (namely 1) on every “branch” Bι. What we have to work with is the fact that

for every p∗ ≤Pκ p, p
∗ 7→ 0 fails to satisfy this property. This means that for each such

extension p∗, we have a “0-counter-example partition product” P(p∗). This is some

finitely-generated partition product so that no matter how we reflect νl, we fail to get

0 on at least one branch.

To show that p 7→ 1 satisfies the desired property, we need to ensure that it is impossible

to find a finitely-generated partition product and a condition therein forcing its failure.

The way to do this is to take our starting partition product R and graft onto R various

0-counter-example partition products. This will result in some larger partition product

R∗ into which R embeds in multiple ways. We want to ensure that we can get the

correct color along at least one such embedding.

In more detail, the proof will be an induction first on the (finite) number of branches

and secondly on the agreement between the “branches” Bι (we recall from our discus-

sion of shadow bases that any two such branches (up to rearrangement) agree on an

initial segment of ρκ and are disjoint past that. So there is a well-defined “agreement”

53



on which to induct). The base case is when they are all pairwise disjoint. In this case,

we will expand R by straightforwardly grafting counter-example partition products.

However, when the branches have agreement, this becomes more challenging. To get

into a prior case for which we can apply induction, we will first remove a “maximal” (in

the well-defined agreement sense) branch. After applying induction to this collection

with one fewer branch, we will need to restore many copies of the lost branch. But we

must do so in such a way that the restored copies have a lower agreement than that of

our original collection. The challenge of the proof is to show that this sketch can be

carried out.

We recommend that the reader read the proof multiple times, each time working in

slightly more generality. First we recommend that the reader consider the case where

we simply have an Add(ω, 1)-name χ̇ for a continuous coloring on ω1, where we are

preassigning to only one ordinal below one condition, and where the “auxiliary parts”

are all empty. Under this assumption, the base case (as described in the previous

paragraph) is the only one to be considered, and may of the details in the following proof

concerning grafting don’t apply. Second, we recommend that the reader consider the

case where we have an Add(ω, 1)×Add(ω, 1)-name χ̇ for a coloring (also preassigning

to only a single ordinal below a condition). In this case, a partition product involving

the square of Add(ω, 1) could give us a pair of generics r1×r2 and r∗1×r∗2 for the square

so that r1 = r∗1. Thus in this case, it is possible to have some amount of “agreement”

between the generics added to the square in the full partition product. However, the

agreement is on at most one coordinate, and so it simplifies the proof quite a bit.

Finally, we recommend that the reader read the proof in full generality.

Proof. For the remainder of the proof, fix the objects (R,B), X, S, Z, p̄, and S̄ as in the

statement of the lemma. We also set J :=
{
ι ∈ I : 〈Bι, ψι〉 ∈ S̄

}
. Before we continue, let us

introduce the following terminology: suppose that p′ ≤Pκ p, c ∈ {0, 1}, and p̃ ∈ Pκ. We say

that p̃ is decisive about the sequence of names ȧ0, . . . , ȧl∪{p′ 7→ c} if for each k < l, p̃ extends

a unique element of dom(ȧk), and if p̃ either extends a unique element of dom(ȧl) ∪ {p′} or
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is incompatible with all conditions therein. Note that any p̃ may be extended to a decisive

condition, as dom(ȧk) is a maximal antichain in Pκ, for each k < l.

For each ι ∈ I we set pι to be the condition ψ−1
ι (p̄ � Bι) in Pκ. By extending p̄ if necessary,

we may assume that for each ι ∈ I, pι is decisive about ȧ0, . . . , ȧl ∪ {p 7→ 1}. Let us also

define

Jp := {ι ∈ J : pι ≤Pκ p} ,

noting that for each ι ∈ J\Jp, pι is incompatible with p in Pκ, since pι is decisive.

We will prove by induction that there exist objects as in (a)-(d) satisfying (1)-(3). The

induction concerns properties of S̄, which we will refer to as the matching core of S, in

light of the requirement in (3) that the desired matching occurs on the image of S̄ un-

der some π ∈ F . By the definition of κ-suitability and Remark 2.2.9, for each distinct

ι0, ι1 ∈ I, ψ−1
ι0

[Bι0 ∩ Bι1 ] = ψ−1
ι1

[Bι0 ∩ Bι1 ] is an ordinal < ρκ. We will denote this ordinal

by ht(Bι0 , Bι1); it is helpful to note that ht(Bι0 , Bι1) = max {α < ρκ : ψι0 [α] = ψι1 [α]} =

sup {ξ + 1 : ψι0(ξ) = ψι1(ξ)}. The induction will be first on the ordinal

ht
(
S̄
)

:= max {ht(Bι0 , Bι1) : ι0, ι1 ∈ J ∧ ι0 6= ι1}

and second on the finite size of S̄.

Case 1: ht
(
S̄
)

= 0 (note that this includes as a subcase |J | = 1). For each ι ∈ Jp,

pι extends p in Pκ, and so, by Assumption 3.3.3, ȧ0, . . . , ȧl ∪ {pι 7→ 0} do not have the

partition product preassignment property at γ. For each ι ∈ Jp, we fix the following objects

as witnesses to this:

(1)ι a partition product R∗ι , say with domain X∗ι , which is finitely generated by the κ-

suitable collection S∗ι =
{
〈B∗ι,η, ψ∗ι,η〉 : η ∈ I∗(ι)

}
and auxiliary part Z∗ι , all of which are

in Mγ;

(2)ι a condition p∗ι in R∗ι ;

(3)ι an R∗ι -name U̇∗ι in Mγ for a set of l + 1-tuples in ω1;
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such that p∗ι forces in R∗ι that

(4)ι ~ν ∈ U̇∗ι , and for any pairwise distinct tuples ~µ, ~µ′ in U̇∗ι ∩Mγ[Ġ
∗
ι ], ~µ and ~µ′ do not

match ȧ0, . . . , ȧl ∪ {pι 7→ 0} on I∗(ι).

For each η ∈ I∗(ι), let pι,η denote the Pκ-condition (ψ∗ι,η)
−1
(
p∗ι � B

∗
ι,η

)
, and note that by

extending the condition p∗ι , we may assume that each pι,η is decisive about ȧ0, . . . , ȧl ∪

{pι 7→ 0}. It is straightforward to check that since each such pι,η is decisive and since, by

Assumption 3.3.3, ȧ0, . . . , ȧl do have the partition product preassignment property at γ, we

must have that

J∗(ι) := {η ∈ I∗(ι) : pι,η ≤Pκ pι} 6= ∅,

as otherwise we contradict (4)ι.

Let us introduce some further notation which will facilitate the exposition. For ι ∈ J\Jp,

define R∗ι to be some isomorphic copy of Pκ with domain X∗ι , say with isomorphism ψ∗ι,ι; we

will denote X∗ι additionally by B∗ι,ι in order to streamline the notation in later arguments.

For ι ∈ J\Jp, we set S∗ι :=
{
〈B∗ι,ι, ψ∗ι,ι〉

}
with index set I∗(ι) = {ι} which we also denote by

J∗(ι). Next, we define p∗ι to be the image of pι under the isomorphism ψ∗ι,ι from Pκ onto R∗ι ,

and we set U̇∗ι to be the R∗ι -name for all l+ 1-tuples in ω1. We remark here for later use that

for each ι ∈ J and η ∈ J∗(ι),

(ψ∗ι,η)
−1
(
p∗ι � B

∗
ι,η

)
≤Pκ (ψι)

−1(p̄ � Bι).

Our next step is to amalgamate all of the above into one much larger partition product.

Without loss of generality, by shifting if necessary, we may assume that the domains X∗ι ,

for ι ∈ J , are pairwise disjoint. Then, by Corollary 2.2.20, the poset R∗(0) :=
∏

ι∈J R∗ι is

a partition product with domain
⋃
ι∈J X

∗
ι . It is also a member of Mγ. Additionally, R∗(0)

is finitely generated by the κ-suitable collection S∗ :=
⋃
ι∈J S∗ι and auxiliary part

⋃
ι∈Jp Z

∗
ι .

Let us abbreviate
⋃
ι∈J Bι by X0 and

⋃
ι∈J X

∗
ι by X∗0 . We also let p∗(0) be the condition in

R∗(0) whose restriction to X∗ι equals p∗ι , and we let U̇∗ be the R∗(0)-name for the intersection

of all the U̇∗ι , for ι ∈ J .
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Now consider the product of indices

Ĵ :=
∏
ι∈J

J∗(ι);

Ĵ is non-empty, finite, and an element of Mγ, since J and each J∗(ι) are. Let 〈hk : k < n〉

enumerate Ĵ . Each hk selects, for every ι ∈ J , an image of the Pκ-“branch” Bι inside R∗ι .

For each k < n, we define the map πk : X0 −→ X∗0 corresponding to hk by taking πk � Bι

to be equal to ψ∗ι,hk(ι) ◦ ψ−1
ι , for each ι ∈ J . This is well-defined since, by our assumption

that ht
(
S̄
)

= 0, we know that the sets Bι, for ι ∈ J , are pairwise disjoint. We also see that

each πk embeds R � X0 into R∗(0), since it isomorphs R � Bι onto R∗(0) � B∗ι,hk(ι), for each

ι ∈ J . In fact, each πk is (S̄,S∗)-suitable by construction, and hk is the associated injection

hπk (see Definition 3.1.3). Finally, we want to see that p∗(0) extends πk(p̄ � X0) for each

k < n; but this follows by definition of πk and our above observation that for each ι ∈ J and

η ∈ J∗(ι),

(ψ∗ι,η)
−1
(
p∗ι � B

∗
ι,η

)
≤Pκ (ψι)

−1(p̄ � Bι).

Using Lemma 3.1.5, fix an enrichment B∗0 of R∗(0) such that B∗0 contains the image of

B � X0 under each πk and such that
{
〈B∗ι,η, ψ∗ι,η〉 : ι ∈ J ∧ η ∈ J∗(ι)

}
is κ-suitable with

respect to (R∗(0),B∗0). Note that the assumptions of Lemma 3.1.5 are satisfied because the

sets X∗ι , for ι ∈ J , are pairwise disjoint and {πk : k < n} is a collection of (S̄,S∗)-suitable

maps. blergg

Before continuing with the main argument, we want to consider an “illustrative case” in

which we make the simplifying assumption that the domain of R is just X0. The key ideas

of the matching argument are present in this illustrative case, and after working through

the details, we will show how to extend the argument to work in the more general setting

wherein the domain of R has elements beyond X0.

Proceeding, then, under the assumption that the domain of R0 is exactly X0, we specify

the objects from (a)-(d) satisfying (1)-(3). Namely, the finitely generated partition product

(R∗(0),B∗0), generated by S∗ and
⋃
ι∈Jp Z

∗
ι ; the condition p∗(0); the R∗(0)-name U̇∗; and the

collection {πk : k < n} of embeddings are the requisite objects. From the fact that p̄ = p̄ � X0
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we have that p∗(0) is below πk(p̄) for each k < n. Since p∗ι forces that ~ν ∈ U̇∗ι for each ι ∈ J ,

we see that p∗(0) forces that ~ν ∈ U̇∗. Thus (3) remains to be checked.

Towards this end, fix a generic G∗ for R∗(0) containing p∗(0), and for each ι ∈ J , set

G∗ι := G∗ � R∗ι . Also set U∗ := U̇∗[G∗]. Let us also fix two pairwise distinct tuples ~µ and ~µ′

in U∗ ∩Mγ[G
∗] which match ȧ0, . . . , ȧl on S∗. Our goal is to find some k < n such that ~µ

and ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} on πk[S̄]. We will first show the following claim.

Claim 3.3.5. For each ι ∈ Jp, there is some η ∈ J∗(ι) such that

χ̇κ
[(
ψ∗ι,η)

−1(G∗ι � B
∗
ι,η

)]
(µl, µ

′
l) = 1.

Proof of Claim 3.3.5. Recall that for each ι ∈ Jp, by (4)ι above, we know that the condition

p∗ι forces in R∗ι that for any two pairwise distinct tuples ~ξ, ~ξ′ in U̇∗ι ∩Mγ[Ġ
∗
ι ],

~ξ and ~ξ′ do

not match ȧ0, . . . , ȧl ∪ {pι 7→ 0} on I∗(ι). Fix some ι ∈ Jp, and let U∗ι := U̇∗ι [G∗ι ]. Now

observe that ~µ and ~µ′ are in U∗ι ∩Mγ[G
∗
ι ]: first, U∗ ⊆ U∗ι ; second, all of the posets under

consideration are c.c.c. by Assumption 3.0.1, and therefore Mγ[G
∗] has the same ordinals as

Mγ[G
∗
ι ]. Since ~µ, ~µ′ ∈ U∗ι ∩Mγ[G

∗
ι ], ~µ, ~µ

′ fail to match ȧ0, . . . , ȧl∪{pι 7→ 0} at some η ∈ I∗(ι).

That is to say, one of the following holds:

(a) there is some k ≤ l such that

χ̇κ
[(
ψ∗ι,η)

−1(G∗ι � B
∗
ι,η

)]
(µk, µ

′
k) = 1− ȧk

[(
ψ∗ι,η)

−1(G∗ι � B
∗
ι,η

)]
(and in case k = l, ȧk

[(
ψ∗ι,η)

−1(G∗ι � B
∗
ι,η

)]
is defined);

(b) or ({pι 7→ 0})
[(
ψ∗ι,η)

−1(G∗ι � B
∗
ι,η

)]
is defined and

χ̇κ
[(
ψ∗ι,η)

−1(G∗ι � B
∗
ι,η

)]
(µl, µ

′
l) = 1− ({pι 7→ 0})

[(
ψ∗ι,η)

−1(G∗ι � B
∗
ι,η

)]
.

However, we assumed that ~µ and ~µ′ match ȧ0, . . . , ȧl on S∗. Therefore (a) is false and (b)

holds. This implies in particular that ψ∗ι,η(pι) ∈ G∗ι � B∗ι,η and that

({pι 7→ 0})
[(
ψ∗ι,η)

−1(G∗ι � B
∗
ι,η

)]
= 0.
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Thus

χ̇κ
[(
ψ∗ι,η)

−1(G∗ι � B
∗
ι,η

)]
(µl, µ

′
l) = 1− (ȧl ∪ {pι 7→ 0})

[(
ψ∗ι,η)

−1(G∗ι � B
∗
ι,η

)]
= 1.

Since p∗ι ∈ G∗ι , p
∗
ι and ψ∗ι,η(pι) are compatible, and therefore p∗ι , being decisive, extends

ψ∗ι,η(pι). Thus η ∈ J∗(ι).

This completes the proof of the above claim. As a result, we fix some function h on Jp

such that for each ι ∈ Jp, h(ι) ∈ J∗(ι) provides a witness to the claim for ι. Let k < n such

that h = hk � Jp. We now check that ~µ, ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} on πk[S̄].

Observe that since ~µ and ~µ′ match ȧ0, . . . , ȧl on S∗, we only need to check that for each

ι ∈ J , if p ∈ (ψ∗ι,hk(ι))
−1
(
G∗ � B∗ι,hk(ι)

)
, then

χ̇κ

[(
ψ∗ι,hk(ι)

)−1 (
G∗ι � B

∗
ι,hk(ι)

)]
(µl, µ

′
l) = 1.

But this is clear: for ι ∈ Jp, the conclusion of the implication holds, by the last claim and

the choice of hk. For ι 6∈ Jp the hypothesis of the implication fails, since (ψ∗ι,hk(ι))
−1(p∗(0))

extends pι which, for ι 6∈ Jp, is incompatible with p.

We have now completed our discussion of the illustrative case when the domain of R

consists entirely of X0. We next work in full generality to finish with this case; we will

proceed by grafting multiple copies of the part of R outside X0 onto R∗(0). In more detail,

recall that the maps πk each embed (R � X0,B � X0) into (R∗(0),B∗0). Thus we may apply

Lemma 2.2.18 in Mγ, once for each k < n, to construct a sequence of enriched partition

products 〈(R∗(k+ 1),B∗k+1) : k < n〉 such that for each k < n, letting X∗k denote the domain

of R∗(k), X∗k ⊆ X∗k+1, R∗(k + 1) � X∗k = R∗(k), B∗k ⊆ B∗k+1, and such that πk extends to

an embedding, which we call π∗k, of (R,B) into (R∗(k + 1),B∗k+1). We remark that by the

grafting construction, for each k < n,

π∗k[X\X0] = X∗k+1\X∗k .

Let us now use R∗ to denote R∗(n), X∗ to denote the domain of R∗, and B∗ to denote B∗n.

Also, observe that π∗k embeds (R,B) into (R∗,B∗), since it embeds (R,B) into (R∗(k+1),Bk+1)
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and since Bk+1 ⊆ B∗ and R∗(k+1) = R∗ � X∗k+1. We claim that (R∗,B∗) witnesses the lemma

in this case.

We first address item (a). Since (R∗(0),B∗0) and (R,B) are both finitely generated and

since (R∗,B∗) was constructed from them by finitely-many applications of the Grafting

Lemma, (R∗,B∗) is itself finitely generated by Lemma 3.2.8. Moreover, as all of the parti-

tion products under consideration are in Mγ, the suitable collection and auxiliary part for

(R∗,B∗) are also in Mγ.

For (b), we define a sequence of conditions in R∗ by recursion, beginning with p∗(0).

Suppose that we have constructed the condition p∗(k) in R∗(k) such that if k > 0, then

p∗(k) � R∗(k − 1) = p∗(k − 1) and p∗(k) extends π∗k−1(p̄). To construct p∗(k + 1), note that

p∗(k) extends πk(p̄ � X0), since p∗(0) does, as observed before the illustrative case, and since

p∗(k) � R∗(0) = p∗(0). Moreover,

π∗k[X\X0] ∩ dom(p∗(k)) = ∅,

as dom(p∗(k)) ⊆ X∗k , and as π∗k[X\X0] ∩X∗k = ∅. Thus we see that

p∗(k + 1) := p∗(k) ∪ π∗k (p̄ � (X\X0))

is a condition in R∗(k + 1) which extends π∗k(p̄). This completes the construction of the

sequence of conditions, and so we now let p∗ be the condition p∗(n) in R∗.

We take the same R∗(0)-name U̇∗ for (c). To address (d), we let F = {π∗k : k < n}, each

of which, as noted above, is an embedding of (R,B) into (R∗,B∗) and a member of Mγ.

This now defines the objects from (a)-(d), and so we check that conditions (1)-(3) hold.

By the construction of p∗ above, p∗ extends π∗k(p̄) for each k < n, so (1) is satisfied. Moreover,

we already know that p∗ R∗ ~ν ∈ U̇∗, since p∗(0) R∗(0) ~ν ∈ U̇∗ and since R∗ � X∗0 = R∗(0).

And finally, the proof of condition (3) is the same as in the illustrative case, using the fact

that each π∗k extends πk. This completes the proof of the lemma in the case that ht(S̄) = 0.

Case 2: ht
(
S̄
)
> 0 (in particular, S̄ has at least 2 elements). We abbreviate ht

(
S̄
)

by

δ in what follows. Fix ι0, ι1 ∈ J which satisfy δ = ht(Bι0 , Bι1), and set Ĵ := J\ {ι0}.
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The proof in this case will proceed in rough outline as follows; we will first remove the

tail of the branch Bι0 above δ, resulting in a partition product R̂ with one few element in

its matching core. We apply induction to embed R̂ into a partition product R∗. We then

restore many copies of the branch Bι0 to R∗, resulting in R∗∗; we also restore many copies of

the auxiliary part of R, letting R∗∗∗ be the resulting partition product. Finally, we will see

that the restored copies of Bι0 in R∗∗∗ form a suitable collection with smaller height than

S̄, and this allows us to apply induction one last time to create our final partition product

R∗∗∗∗. We then show that we may embed R into R∗∗∗∗ in many ways, so that the conclusion

of the current lemma is satisfied.

By Lemma 3.1.2, X̂0 :=
⋃
ι∈Ĵ Bι coheres with (R,B). Let R̂ be the partition product

R � X̂0, and set B̂ := B � X̂0, which, by Lemma 2.2.13, is an enrichment of R̂. Furthermore,

R̂ is finitely generated with an empty auxiliary part and with Ŝ :=
{
〈Bι, ψι〉 : ι ∈ Ĵ

}
as

κ-suitable with respect to (R̂, B̂). We also let p̂ be the condition p̄ � X̂0 ∈ R̂. Finally, we let

R̄ := R �
⋃
ι∈J Bι, and B̄ = B �

⋃
ι∈J Bι, so that (R̄, B̄) is also an enriched partition product.

Since |Ŝ| < |S̄| and ht(Ŝ) ≤ ht(S̄), we may apply the induction hypothesis to (R̂, B̂), the

condition p̂, the R̂-name for all l + 1-tuples in ω1, and with Ŝ as the matching core. This

produces the following objects:

(a)∗ an enriched partition product (R∗,B∗) with domain X∗, say, finitely generated by a

κ-suitable collection S∗ and an auxiliary part Z∗, all of which are in Mγ;

(b)∗ a condition p∗ ∈ R∗;

(c)∗ an R∗-name Ẇ ∗ in Mγ for a collection of l + 1-tuples in ω1;

(d)∗ a nonempty, finite collection F in Mγ of embeddings of (R̂, B̂) into (R∗,B∗);

satisfying that for each π ∈ F :

(1)∗ p∗ extends π(p̂) in R∗;

and also satisfying that p∗ forces the following statements in R∗ :
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(2)∗ ~ν ∈ Ẇ ∗;

(3)∗ for any pairwise distinct l+1-tuples ~µ and ~µ′ in Ẇ ∗∩Mγ[Ġ
∗], if ~µ and ~µ′ match ȧ0, . . . , ȧl

on S∗, then there is some π ∈ F such that ~µ and ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} on

π[Ŝ].

Our next step is to restore many copies of the segment ψι0 [ρκ\δ] of the lost branch Bι0

in such a way that the restored copies form a κ-suitable collection with smaller height than

δ; this will allow another application of the induction hypothesis. Towards this end, define

R := {π ◦ ψι1 [δ] : π ∈ F} ,

and, recalling that F is finite, let x0, . . . , xd−1 enumerate R. We choose, for each k < d, a

map πk ∈ F so that πk ◦ ψι1 [δ] = xk.

We now work in Mγ to graft one copy of ψι0 [ρκ\δ] onto (R∗,B∗) over πk, for each k < n.

Indeed, since πk embeds (R̂, B̂) into (R∗,B∗), we may successively apply the Grafting Lemma

to find an enriched partition product (R∗∗,B∗∗) on a domain X∗∗ so that R∗∗ � X∗ = R∗,

B∗ ⊆ B∗∗, and so that for each k < d, πk extends to an embedding π∗k of (R̄, B̄) into

(R∗∗,B∗∗). Since (R∗∗,B∗∗) is finitely generated, by Lemma 3.2.8, we may let S∗∗ denote the

finite, κ-suitable collection for (R∗∗,B∗∗).

Let us make a number of observations about the above situation. First, we want to see

that for each π ∈ F , we may extend π to embed (R̄, B̄) into (R∗∗,B∗∗). Thus fix π ∈ F , and

let k < d such that π ◦ψι1 [δ] = xk. We want to apply Lemma 2.2.21, and for this we need to

see that π and πk agree on X0 ∩Bι0 . To verify this, we first claim that X0 ∩Bι0 = Bι1 ∩Bι0 .

Suppose that this is false, for a contradiction. Then there is some α ∈ X0∩Bι0\Bι1 . Fix ι ∈ J

s.t. α ∈ Bι ∩ Bι0 . Then ψ−1
ι0

[Bι ∩ Bι0 ] ≤ ht(S̄) = δ, and so α ∈ ψι0 [δ]. But ψι0 � δ = ψι1 � δ,

and therefore α ∈ Bι1 , a contradiction.

Thus X0 ∩Bι0 = Bι1 ∩Bι0 . But Bι1 ∩Bι0 = ψι1 [δ], and therefore

π[Bι1 ∩Bι0 ] = π ◦ ψι1 [δ] = xk = πk ◦ ψι1 [δ] = πk[Bι1 ∩Bι0 ].
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Hence π and πk agree on X0 ∩Bι0 . By Lemma 2.2.21, the map

π∗ := π ∪ π∗k � (ψι0 [ρκ\δ])

is an extension of π which embeds (R̄, B̄) into (R∗∗,B∗∗). We make the observation that

π∗[Bι0 ] = π∗k[Bι0 ], which will be useful later.

For each k < d, we use x∗k to denote the image of Bι0 under the map π∗k. Let S̄∗∗ :=

{〈x∗k, π∗k ◦ ψι0 , κ〉 : k < d}. Then S̄∗∗ ⊆ S∗∗, and in particular, S̄∗∗ is κ-suitable. For k 6= l

we have

(π∗k ◦ ψι0)[δ] = xk 6= xl = (π∗l ◦ ψι0)[δ],

and hence ht(x∗k, x
∗
l ) < δ. Therefore ht(S̄∗∗) < δ, since S̄∗∗ is finite.

We now have a collection F∗ := {π∗ : π ∈ F} of embeddings of (R̄, B̄) into (R∗∗,B∗∗)

and a finite, κ-suitable subcollection S̄∗∗ of S∗∗ such that the height of S̄∗∗ is less than δ.

But before we apply the induction hypothesis, we need to extend (R∗∗,B∗∗) to add generics

for the full R and to also define a few more objects. Towards this end, we work in Mγ to

successively apply the Grafting Lemma to each map π∗ in F∗ to graft (R,B) onto (R∗∗,B∗∗)

over π∗. This results in a partition product (R∗∗∗,B∗∗∗) in Mγ with domain X∗∗∗ so that

R∗∗∗ � X∗∗ = R∗∗, B∗∗ ⊆ B∗∗∗, and so that each map π∗ ∈ F∗ extends to an embedding π∗∗∗

of (R,B) into (R∗∗∗,B∗∗∗). By Lemma 3.2.8, (R∗∗∗,B∗∗∗) is still finitely generated, say with

κ-suitable collection S∗∗∗.

We now want to define a condition p∗∗∗ in R∗∗∗ by adding further coordinates to the

condition p∗ ∈ R∗ ⊆ R∗∗∗ from (a)∗. By the grafting construction of R∗∗, if k < l < d, then

the images of ψι0 [ρk\δ] under π∗k and π∗l are disjoint. Thus

p∗∗ := p∗ ∪
⋃
k<d

π∗k (p̄ � ψι0 [ρk\δ])

is a condition in R∗∗. Since by (1)∗, p∗ extends π(p̂) in R∗ for each π ∈ F , we conclude

that p∗∗ extends π∗k(p̄ �
⋃
ι∈J Bι) for each k < d. Furthermore, if π∗ ∈ F∗, then for some

k < d, π∗ agrees with π∗k on Bι0 , as observed above. It is straightforward to see that this

implies that p∗∗ in fact extends π∗(p̄ �
⋃
ι∈J Bι) for each π∗ ∈ F∗. And finally, by the grafting
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construction of R∗∗∗, we know that if π and σ are distinct embeddings in F , then the images

of X\
⋃
ι∈J Bι under π∗∗∗ and σ∗∗∗ are disjoint. Consequently,

p∗∗∗ := p∗∗ ∪
⋃
π∈F

π∗∗∗

(
p̄ �

(
X\

⋃
ι∈J

Bι

))

is a condition in R∗∗∗ which extends π∗∗∗(p̄) for each π ∈ F .

We are now ready to apply the induction hypothesis to the partition product (R∗∗∗,B∗∗∗),

the condition p∗∗∗ ∈ R∗∗∗, and the matching core S̄∗∗, which has height below δ. This results

in the following objects:

(a)∗∗ an enriched partition product (R∗∗∗∗,B∗∗∗∗) on a set X∗∗∗∗ which is finitely generated,

say with κ-suitable collection S∗∗∗∗ and auxiliary part Z∗∗∗∗, all of which are in Mγ;

(b)∗∗ a condition p∗∗∗∗ in R∗∗∗∗;

(c)∗∗ an R∗∗∗∗-name U̇∗∗∗∗ in Mγ for a collection of l + 1 tuples in ω1;

(d)∗∗ a nonempty, finite collection G in Mγ of embeddings of (R∗∗∗,B∗∗∗) into (R∗∗∗∗,B∗∗∗∗);

satisfying that for each σ ∈ G

(1)∗∗ p∗∗∗∗ extends σ(p∗∗∗) in R∗∗∗∗;

and such that p∗∗∗∗ forces in R∗∗∗∗ that

(2)∗∗ ~ν ∈ U̇∗∗∗∗;

(3)∗∗ for any pairwise distinct tuples ~µ, ~µ′ in Mγ[Ġ
∗∗∗∗]∩U̇∗∗∗∗ such that ~µ, ~µ′ match ȧ0, . . . , ȧl

on S∗∗∗∗, there is some σ ∈ G such that ~µ, ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} on σ[S̄∗∗].

This completes the construction of our final partition product. To finish the proof, we

will need to define a number of embeddings from our original partition product (R,B) into

(R∗∗∗∗,B∗∗∗∗) and check that the appropriate matching obtains. For σ ∈ G and π ∈ F , we

define the map τ(π, σ) to be the composition σ◦π∗∗∗, which embeds (R,B) into (R∗∗∗∗,B∗∗∗∗).
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We also observe that p∗∗∗∗ ≤ τ(π, σ)(p̄) for each such π and σ since p∗∗∗∗ extends σ(p∗∗∗) in

R∗∗∗∗, and since p∗∗∗ extends π∗∗∗(p̄) in R∗∗∗. Now define the R∗∗∗∗-name V̇ ∗ to be

U̇∗∗∗∗ ∩
⋂
σ∈G

Ẇ ∗
[
σ−1(Ġ∗∗∗∗) � X∗

]
.

We observe that this is well-defined, since for each σ ∈ G and generic G∗∗∗∗ for R∗∗∗∗,

σ−1(G∗∗∗∗) is generic for R∗∗∗, and hence its restriction to X∗ is generic for R∗. We also

see that p∗∗∗∗ forces that ~ν ∈ V̇ ∗ because p∗∗∗∗ forces ~ν ∈ U̇∗∗∗∗, p∗ is in σ−1(G∗∗∗∗) for any

generic G∗∗∗∗ containing p∗∗∗∗, and p∗ forces in R∗ that ~ν ∈ Ẇ ∗.

We finish the proof of the lemma in this case by showing that the partition product

(R∗∗∗∗,B∗∗∗∗), the condition p∗∗∗∗ ∈ R∗∗∗∗, the name V̇ ∗, and the collection

{τ(π, σ) : π ∈ F ∧ σ ∈ G}

of embeddings satisfy (1)-(3). We already know that p∗∗∗∗ extends τ(π, σ)(p̄) for each π and

σ and that p∗∗∗∗  ~ν ∈ V̇ ∗. So now we check the matching condition. Towards this end, fix

a generic H for R∗∗∗∗ and two pairwise distinct tuples ~µ, ~µ′ in V̇ ∗[H] ∩Mγ[H] which match

ȧ0, . . . , ȧl on S∗∗∗∗. We need to find some π and σ such that ~µ, ~µ′ match ȧ0, . . . , ȧl ∪{p 7→ 1}

on τ(π, σ)[S̄].

By (3)∗∗, we know that we can find some σ such that

(i) ~µ and ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} on σ[S̄∗∗].

Let t denote the triple 〈Bι0 , ψι0 , κ〉. By construction of the maps π∗, for each π ∈ F , there

is some k so that π∗∗∗(t) = π∗(t) = π∗k(t) ∈ S̄∗∗. Using (i) it follows that:

(ii) for every π ∈ F , ~µ and ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} at σ ◦ π∗∗∗(t) = τ(π, σ)(t).

Now consider the filter G∗σ := σ−1(H) � X∗, which is generic for R∗ and contains p∗. By

Assumption 3.0.1, we know that all the posets under consideration are c.c.c., and therefore

the models Mγ[H] and Mγ[G
∗
σ] have the same ordinals, namely those of Mγ. Thus ~µ, ~µ′ ∈

Mγ[G
∗
σ]. Furthermore, by definition of V̇ ∗[H], we have that ~µ, ~µ′ ∈ Ẇ ∗[G∗σ], and as a result
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~µ, ~µ′ ∈ Mγ[G
∗
σ] ∩ Ẇ ∗[G∗σ]. Thus by (3)∗, we can find some π ∈ F so that ~µ, ~µ′ match

ȧ0, . . . , ȧl ∪ {p 7→ 1} on π[Ŝ]. Because π∗∗∗ extends π, we may rephrase this to say that ~µ, ~µ′

match ȧ0, . . . , ȧl ∪ {p 7→ 1} on π∗∗∗[Ŝ]. Since σ embeds (R∗∗∗,B∗∗∗) into (R∗∗∗∗,B∗∗∗∗),

(iii) ~µ, ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} on τ(π, σ)[Ŝ].

Finally, (ii) and (iii) imply that ~µ, ~µ′ match ȧ0, . . . , ȧl∪{p 7→ 1} on τ(π, σ)[S̄], as S̄ = Ŝ ∪{t}.

This completes the proof of the lemma.

Corollary 3.3.6. Under the assumptions of Lemma 3.3.4, suppose that U̇ is an R-name in

Mγ for a set of l + 1-tuples in ω1 such that p̄ R ~ν ∈ U̇ . Then the conclusion of Lemma

3.3.4 may be strengthened to say that p∗ R∗ U̇∗ ⊆
⋂
π∈F U̇ [π−1(Ġ∗)].

Proof. Let U̇ be fixed, and let U̇∗ be as in the conclusion of Lemma 3.3.4. Define U̇∗∗ to be

the name U̇∗ ∩
⋂
π∈F U̇ [π−1(Ġ∗)], and observe that this name is still in Mγ. By condition

(1) of Lemma 3.3.4, we know that p∗ forces that p̄ is in π−1(Ġ∗), for each π ∈ F . Since

each such π−1(Ġ∗) is forced to be V -generic for R and since p̄ R ~ν ∈ U̇ , this implies that

p∗ forces that ~ν is a member of U̇∗∗. Finally, condition (3) of Lemma 3.3.4 still holds, since

U̇∗∗ is forced to be a subset of U̇∗.

Corollary 3.3.7. (Under Assumption 3.3.3) ȧ0, . . . , ȧl ∪{p 7→ 1} have the partition product

preassignment property at γ.

Proof. Suppose otherwise, for a contradiction. Then there exists a partition product R, say

with domain X, finitely generated by S = {〈Bι, ψι〉 : ι ∈ I} and an auxiliary part Z, all of

which are in Mγ; an R-name U̇ in Mγ; and a condition p̄ ∈ R (not necessarily in Mγ), such

that p̄ forces that ~ν ∈ U̇ , but also that for any pairwise distinct tuples ~µ, ~µ′ in U̇ ∩Mγ[Ġ],

there exists some ι0 ∈ I such that ~µ, ~µ′ fail to match ȧ0, . . . , ȧl∪{p 7→ 1} at ι0. Apply Lemma

3.3.4 and Corollary 3.3.6 to these objects, with S̄ := S and with the enrichment

B := {〈b(ξ), πξ, index(ξ)〉 : ξ ∈ X} ∪ S,
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to construct the objects as in the conclusions of Lemma 3.3.4 and Corollary 3.3.6. Also, fix

a generic G∗ for R∗ which contains the condition p∗.

We now apply the fact that ȧ0, . . . , ȧl have the partition product preassignment property

at γ to the objects in the conclusion of Lemma 3.3.4: since ~ν ∈ U∗ := U̇∗[G∗], we can find

two pairwise distinct tuples ~µ, ~µ′ in U∗ ∩ Mγ[G
∗] which match ȧ0, . . . , ȧl on I∗. Thus by

(3) of Lemma 3.3.4, there is some embedding π of (R,B) into (R∗,B∗) so that ~µ, ~µ′ match

ȧ0, . . . , ȧl∪{p 7→ 1} on π[S]. Now consider G := π−1(G∗), which is generic for R and contains

the condition p̄, since p∗ ≤R∗ π(p̄). Since ~µ, ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} on π[S] and π is

an embedding, ~µ, ~µ′ match ȧ0, . . . , ȧl ∪ {p 7→ 1} on S with respect to the filter G. Finally,

observe that ~µ and ~µ′ are both in U̇ [G] ∩Mγ[G]: they are in U̇ [G] by Corollary 3.3.6, since

U∗ is a subset of U̇ [G]. They are both in Mγ, hence in Mγ[G], since by Assumption 3.0.1,

R∗ is c.c.c. However, this contradicts what we assumed about p̄.

3.4 Putting it together

Let us now put together the results from the previous three sections.

Lemma 3.4.1. Suppose that ȧ0, . . . , ȧl−1 are total canonical color names which have the

partition product preassignment property at γ. Then there is a total canonical color name ȧl

so that ȧ0, . . . , ȧl have the partition product preassignment property at γ.

Proof. We recursively construct a sequence ȧξl of names, taking unions at limit stages. If ȧξl

has been constructed and dom(ȧξl ) is a maximal antichain in Pκ, we set ȧl = ȧξl . Otherwise,

we pick some condition p ∈ Pκ incompatible with all conditions therein. If there is some ex-

tension p∗ ≤Pκ p so that ȧ0, . . . , ȧl−1, ȧ
ξ
l ∪{p∗ 7→ 0} have the partition product preassignment

property at γ, we pick some such p∗ and set ȧξ+1
l := ȧξl ∪ {p∗ 7→ 0}. Otherwise, Assumption

3.3.3 is satisfied, and hence by Corollary 3.3.7, ȧ0, . . . , ȧl−1, ȧ
ξ
l ∪ {p 7→ 1} have the partition

product preassignment property at γ. In this case we set ȧξ+1
l := ȧξl ∪ {p 7→ 1}. Note that

the construction of the sequence ȧζl halts at some countable stage, since Pκ is c.c.c., by
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Assumption 3.0.1.

We now prove Proposition 3.2.2:

Proof of Proposition 3.2.2. Recall that for each γ < ω1, 〈νγ,l : l < ω〉 enumerates the slice

[Mγ ∩ ω1,Mγ+1 ∩ ω1). By Lemma 3.4.1, we may construct, for each γ < ω1, a sequence of

Pκ-names 〈ȧγ,l : l < ω〉 such that for each l < ω, ȧγ,0, . . . , ȧγ,l have the partition product

preassignment property at γ. We now define a function ḟ by taking ḟ(νγ,l) = ȧγ,l, for each

γ < ω1 and l < ω. The values of ḟ on ordinals ν < M0 ∩ ω1 are irrelevant, so we simply

set ḟ(ν) to name 0 for each such ν. Then ḟ satisfies the assumptions of Lemma 3.2.13 and

hence satisfies Proposition 3.2.2.

68



CHAPTER 4

Constructing Partition Products in L

In this chapter, we show how to construct the desired partition products in L. In particular,

we will construct the ω2-canonical partition product Pω2 , which will have domain ω3. Forcing

with Pω2 will provide the model which witnesses our theorem. We assume for this chapter

that V = L. For each ordinal κ ≤ ω2 and α ≥ κ, we let ϕκ,α denote the <L-least surjection

from κ onto α, if such exists.

Before we introduce some more definitions, let us fix a sufficiently large, finite fragment

F of ZFC − Powerset which is satisfied in H(ω3). As a matter of notation, by the Gödel

pairing function, we view each ordinal γ as coding a pair of ordinals, where (γ)k, for k ≤ 1,

denotes the kth ordinal coded by γ; this will be useful for bookkeeping later.

4.1 Local ω2’s and Witnesses

Definition 4.1.1. Let ω1 < κ ≤ ω2, and let A be a sequence of elements of Lκ so that

dom(A) ⊆ κ. We say that κ is a local ω2 with respect to A if there is some δ > κ such that

Lδ is closed under ω-sequences, contains A as an element, and such that

Lδ |= κ = ℵ2 ∧ F ∧ κ is the largest cardinal.

If κ is a local ω2 with respect to A, we will refer to any such δ as above as a witness for

κ with respect to A or simply as a witness for κ if A is clear from context.

We begin our discussion with the following straightforward lemma.
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Lemma 4.1.2. Suppose that Lδ is closed under ω-sequences, and let p ∈ Lδ. Then HullLδ(ω1∪

{p}) is also closed under ω-sequences.

The next lemma shows how a local ω2 with respect to one parameter can project to

another.

Lemma 4.1.3. Suppose that δ is a witness for κ with respect to A, and define H :=

HullLδ(ω1 ∪ {A}). Suppose further that H ∩ κ = κ̄ < κ. Then κ̄ is a local ω2 with re-

spect to A � κ̄, and ot(H ∩ δ) is a witness for κ̄ with respect to A � κ̄.

Proof. Let π : H −→ Lδ̄ be the transitive collapse, so that π(κ) = κ̄ and δ̄ = ot(H ∩ δ).

Since H is closed under ω-sequences, by Lemma 4.1.2, Lδ̄ is too. Since π is elementary, we

will be done once we verify that π(A) = A � κ̄. Indeed, by the elementarity of π, π(A) is

a sequence with domain dom(A) ∩ κ̄. Furthermore, for each i ∈ dom(A), since A(i) ∈ Lκ

and since Lδ satisfies that κ = ℵ2, we have that A(i) has size ≤ ℵ1 in Lδ. Thus for each

i ∈ dom(A) ∩ κ̄, A(i) is not moved by π, and consequently π(A) = A � κ̄.

If κ is a local ω2 with respect to A, we define the canonical sequence of witnesses for κ

with respect to A, denoted 〈δi(κ,A) : i < γ(κ,A)〉. We set δ0(κ,A) to be the least witness

for κ. Suppose that 〈δi(κ,A) : i < γ〉 is defined, for some γ. If there exists a witness δ̃ for κ

such that δ̃ > supi<γ δi(κ,A), then we set δγ(κ,A) to be the least such. Otherwise, we halt

the construction and set γ(κ,A) := γ. If we have γ < γ(κ,A), then we also define H(κ, γ,A)

to be

H(κ, γ,A) := HullLδγ (κ,A)(ω1 ∪ {A}).

Remark 4.1.4. It is straightforward to check that if κ is a local ω2 with respect to A and

γ < γ(κ,A), then because Lδγ(κ,A) is countably closed, being a witness for κ with respect to

A is absolute between Lδγ(κ,A) and V . Thus the sequence 〈δi(κ,A) : i < γ〉, and consequently

the ordinal γ, is definable in Lδγ(κ,A) as the longest sequence of witnesses for κ with respect

to A. Furthermore, in the case that κ = ω2, we see that γ(ω2,A) = ω3.
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For the rest of the section, we fix κ and A; for the sake of readability, we will often

drop explicit mention of the parameter A in notation of the from δγ(κ,A) and H(κ, γ,A),

preferring instead to write, respectively, δγ(κ) and H(κ, γ).

Suppose that κ is such that γ(κ) is a successor, say γ + 1, and further suppose that

H(κ, γ) contains κ as a subset. Then we refer to δγ(κ), the final element on the canonical

sequence of witnesses for κ with respect to A, as the stable witness for κ with respect to A.

It is stable in the sense that we cannot condense the hull further.

Lemma 4.1.5. Suppose that γ + 1 < γ(κ). Then H(κ, γ) ∩ κ ∈ κ.

Proof. Suppose otherwise. Then κ ⊆ H(κ, γ). Since γ+1 < γ(κ), we know that δ̂ := δγ+1(κ)

exists, and in particular, δγ(κ) < δ̂. Observe that H(κ, γ) is a member of Lδ̂, and therefore

we may find a surjection from ω1 onto H(κ, γ) in Lδ̂. Since κ ⊆ H(κ, γ), this contradicts

our assumption that Lδ̂ satisfies that κ is ℵ2.

If γ+1 < γ(κ), then the collapse of H(κ, γ) moves κ. The level to which H(κ, γ) collapses

is then the stable witness for the images of κ and A, as shown in the following lemma.

Lemma 4.1.6. Suppose that γ + 1 < γ(κ), and set κ̄ := H(κ, γ) ∩ κ. Let j denote the

collapse map of H(κ, γ) and τ the level to which H(κ, γ) collapses. Finally, set γ̄ := j(γ).

Then γ̄ + 1 = γ(κ̄) and τ = δγ̄(κ̄) is the stable witness for κ̄ and A � κ̄.

Proof. Let us abbreviate H(κ, γ) by H. By Remark 4.1.4, we have that 〈δi(κ) : i < γ〉 ∈

H(κ, γ); let 〈δi : i < γ̄〉 denote the image of this sequence under j. By the elementarity of

j and the absoluteness of Remark 4.1.4, 〈δi : i < γ̄〉 is exactly equal to 〈δi(κ̄) : i < γ̄〉, the

canonical sequence of witnesses for κ̄ with respect to A � κ̄.

We next verify that τ = δγ̄(κ̄). By Lemma 4.1.3, we know that τ is a witness for κ̄ with

respect to A � κ̄. Furthermore, τ is the least witness for κ̄ above supi<γ̄ δi(κ̄): suppose that

there were a witness δ̄ for κ̄ between supi<γ̄ δi(κ̄) and τ . Then Lτ satisfies that δ̄ is a witness

for κ̄. By the elementarity of j−1, setting δ := j−1(δ̄), we see that Lδγ(κ) satisfies that δ is

a witness for κ. Since Lδγ(κ) is closed under ω-sequences, δ is in fact a witness for κ (with
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respect to A). As δ is between supi<γ δi(κ) and δγ(κ), this is a contradiction. Therefore τ is

the least witness for κ̄ with respect to A � κ̄ which is above supi<γ̄ δi(κ̄). However, because

Lτ is the collapse of H, we see that HullLτ (ω1 ∪ {A � κ̄}) is all of Lτ . Therefore τ is the

stable witness for κ̄ with respect to A � κ̄.

4.2 Building Partition Products and the Final Argument

In this section, we show how to construct the set C from the definition of a partition product,

as well as the desired sequence of partition products P = 〈Pδ : δ ∈ C ∪ {ω2}〉 and names

Q̇ = 〈Q̇δ : δ ∈ C〉. The ω2-canonical partition product Pω2 will force OCAARS and 2ℵ0 = ℵ3,

which proves Theorem 1.0.3. We will also show how to adapt our construction so that our

model additionally satisfies FA(ℵ2,Knaster(ℵ1)); recall that this axiom asserts that we can

meet any ℵ2-many dense subsets of an ℵ1-sized, Knaster poset.

Suppose that we’ve defined the set C up to an ordinal κ ≤ ω2 as well as P � κ and Q̇ � κ

in such a way that the following recursive assumptions are satisfied, where A � κ denotes the

“alphabet” sequence 〈〈Pκ̄, Q̇κ̄〉 : κ̄ ∈ C ∩ κ〉:

(a) for each κ̄ ∈ C ∩ κ, κ̄ is a local ω2 with respect to A � κ̄, Pκ̄ is a partition product

based upon P � κ̄ and Q̇ � κ̄, and Q̇κ̄ is a Pκ̄-name. In particular, conditions (i)-(v)

from Chapter 2 are satisfied;

(b) every partition product based upon P � κ and Q̇ � κ is c.c.c.

Let us suppose, by relabelling if necessary, that κ is the least local ω2 with respect to

A � κ. We aim to define the partition product Pκ and, in the case that κ < ω2, to place κ

in C and define the Pκ-name Q̇κ. We assume that Pκ � γ is defined, as well as the base and

index functions baseκ � γ and indexκ � γ. We divide into two cases.

Case 1: γ + 1 = γ(κ), or γ = γ(κ) is a limit.
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If Case 1 obtains, then we halt the construction, setting ρκ = γ and Pκ = Pκ � γ. If

κ < ω2, then we need to define the name Q̇κ. Suppose that the (γ)0-th element under <L

is a pair 〈Ṡκ, χ̇κ〉 of Pκ-names, where Ṡκ names a countable basis for a second countable,

Hausdorff topology on ω1 and χ̇κ names a coloring on ω1 which is open with respect to

the topology generated by Ṡκ. Then let ḟκ be the <L-least Pκ-name satisfying Proposition

3.2.2, and set Q̇κ := Q(χ̇κ, ḟκ), so that by Corollary 3.2.4, any partition product based upon

P � (κ+ 1) and Q̇ � (κ+ 1) is c.c.c. If (γ)0 does not code such a pair, then we simply let Q̇κ

name Cohen forcing for adding a single real. It is clear in this case also, by Lemma 2.1.20,

that any partition product based upon P � (κ+ 1) and Q̇ � (κ+ 1) is c.c.c.

On the other hand, if κ = ω2, then the partition product Pω2 is defined. After complet-

ing the rest of the construction, we show that forcing with Pω2 provides the desired model

witnessing our theorem.

Case 2: γ + 1 < γ(κ).

In this case, we desire to continue the construction another step. Let κ̄ := H(κ, γ) ∩ κ,

which is below κ by Lemma 4.1.5; recall that we are suppressing explicit mention of the

parameter A � κ. We also let j be the transitive collapse map of H(κ, γ) and set γ̄ := j(γ).

We halt the construction if either Pκ � γ is not a member of H(κ, γ), or if it is a member of

H(κ, γ) and either κ̄ /∈ C or Pκ � γ is not mapped to Pκ̄ � γ̄ by j (we will later show that

this does not in fact occur).

Suppose, on the other hand, that κ̄ ∈ C and that Pκ � γ is a member of H(κ, γ) which

is mapped by j to Pκ̄ � γ̄. We shall specify the next name U̇γ as well as the values baseκ(γ)

and indexκ(γ). By Lemma 4.1.6, we have that γ̄+ 1 = γ(κ̄,A � κ̄). By recursion, this means

that γ̄ = ρκ̄, i.e., that Pκ̄ = Pκ̄ � γ̄. We now pull these objects back along j−1.

In more detail, we observe that, setting πγ := j−1, πγ � ρκ̄ provides an acceptable

rearrangement of Pκ̄, since πγ is order-preserving. In fact, the πγ-rearrangement of Pκ̄ is
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exactly equal to (Pκ � γ) � πγ[ρκ̄], by Lemma 2.1.16; this Lemma applies since for each

δ ∈ C ∩ κ̄, πγ is the identity on Pδ ∗ Q̇δ ∪
{
Pδ, Q̇δ

}
. By assumption (iv) of Chapter 2, we

see that the πγ-rearrangement of Q̇κ̄ is defined (though not necessarily an element of Lδγ(κ)),

and so we let U̇γ be the πγ-rearrangement of Q̇κ̄. We now set baseκ(γ) := (πγ[ρκ̄], πγ � ρκ̄)

and set indexκ(γ) := κ̄. In particular, we observe that

bκ(γ) = H(κ, γ) ∩ γ

is an initial segment of the ordinals of H(κ, γ).

Claim 4.2.1. baseκ � (γ + 1) and indexκ � (γ + 1) support a partition product based upon

P � κ and Q̇ � κ.

Proof of Claim 4.2.1. Condition (1) of Definition 2.1.1 follows from the comments in the

above paragraph. Condition (2) holds at γ by the elementarity of πγ and at all smaller

ordinals by recursion. So we need to check condition (3), where it suffices to verify the

matching condition for γ and some β < γ. So suppose that there is some ξ ∈ bκ(β) ∩ bκ(γ).

We define κ̄∗ to be H(κ, β)∩κ, so that κ̄∗ = indexκ(β). We also let jκ,β denote the transitive

collapse map of H(κ, β) and jκ,γ the transitive collapse map of H(κ, γ). Finally, let πβ denote

j−1
κ,β.

Now the models H(κ, β) and H(κ, γ) are both sufficiently elementary, in particular, with

respect to the sequence of surjections ~ϕ. Since κ is the largest cardinal in H(κ, γ),

H(κ, γ) ∩ ξ = ϕκ,ξ[H(κ, γ) ∩ κ] = ϕκ,ξ[κ̄],

and therefore bκ(γ) ∩ ξ = ϕκ,ξ[κ̄]. Similarly, bκ(β) ∩ ξ = ϕκ,ξ[κ̄
∗].

With this observation in mind, we now verify that (3) holds. Suppose that κ̄∗ ≤ κ̄, and let

ζ0 := π−1
β (ξ) and ζ1 := π−1

γ (ξ). If κ̄∗ = κ̄, then by the calculations in the previous paragraph,

(3) holds trivially, since the models H(κ, β) and H(κ, γ) have the same intersection with

ξ+1. Thus we proceed under the assumption that κ̄∗ < κ̄. Since the above paragraph shows

that πβ[ζ0] ⊆ πγ[ζ1], we need to check that A := π−1
γ [πβ[ζ0]] matches 〈κ̄, ζ1〉 to 〈κ̄∗, ζ0〉.
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Now πβ[ζ0] = bκ(β) ∩ ξ has the form ϕκ,ξ[κ̄
∗]. Since κ̄∗ < κ̄, we have that κ, ξ, and κ̄∗

are all in H(κ, γ). Thus so is πβ[ζ0]. Applying the elementarity of jκ,γ = π−1
γ , we see that

π−1
γ ◦ ϕκ,ξ � κ̄∗ = ϕκ̄,ζ1 � κ̄

∗, which shows that A has the form ϕκ̄,ζ1 [κ̄∗]. Therefore condition

(a) in the definition of matching holds. Additionally, if we let σ denote the transitive collapse

of A, then we see that σ ◦ π−1
γ is the transitive collapse of πβ[ζ0] = ϕκ,ξ[κ̄

∗], which is just

π−1
β = jκ,β. However, the elementarity of π−1

β implies that π−1
β ◦ ϕκ,ξ � κ̄∗ = ϕκ̄∗,ζ0 , and

therefore σ ◦ ϕκ̄,ζ1 � κ̄∗ = ϕκ̄∗,ζ0 . And finally, to see that (b) holds, we first observe that

bκ(β)∩ ξ is closed under limit points of cofinality ω below its supremum, because H(κ, β) is

closed under ω-sequences. Since bκ(β) ∩ ξ is in H(κ, γ), by applying jκ,γ, we conclude that

the collapse of H(κ, γ), denoted Lτ , satisfies that A is closed under limit points of cofinality

ω below its supremum. However, Lτ is closed under ω-sequences, and therefore A is in fact

closed under limit points of cofinality ω below its supremum. Thus (b) is satisfied. Since the

proof in the case that κ̄ < κ̄∗ is entirely similar, this completes the proof of the claim.

We have now completed the construction of the desired sequence of partition products.

Before we prove our main theorem, we need to verify that for each κ ∈ C ∪ {ω2}, we

obtain a partition product of the appropriate length, i.e., that the construction does not halt

prematurely, as described at the beginning of Case 2.

Lemma 4.2.2. For each κ ∈ C ∪ {ω2}, ρκ = γ(κ) if γ(κ) is a limit or equals γ(κ) − 1 if

γ(κ) is a successor.

Proof. Suppose that κ ∈ C ∪ {ω2} and that γ + 1 < γ(κ). We need to show that Pκ � γ

is a member of H(κ, γ), that κ̄ ∈ C, and that Pκ � γ gets mapped by j, the collapse map

of H(κ, γ), to Pκ̄ � γ̄, where κ̄ = j(κ) and γ̄ = j(γ). However, it is clear that Pκ � γ is a

member of Lδγ(κ), being definable in that model from the sequence 〈δi(κ) : i < γ〉. It is also

straightforward to verify that κ̄ is the least local ω2 with respect to the sequence A � κ̄, and

hence κ̄ ∈ C. Finally, the above construction of partition products is uniform, in the sense

that Pκ � γ is definable in Lδγ(κ) from κ, γ, and A � κ by the same definition which defines

Pκ̄ � γ̄ in Lδγ̄(κ̄) from κ̄, γ̄, and A � κ̄. Thus Pκ � γ is a member of H(κ, γ) and gets mapped
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to Pκ̄ � γ̄ by j.

We finish by proving Theorem 1.0.3.

Proof of Theorem 1.0.3. We force over L with Pω2 . By Lemma 4.2.2, Pω2 is a partition

product with domain γ(ω2), and by Remark 4.1.4, γ(ω2) = ω3 (we suppress mention of the

parameter A). Let us denote the sequence of names used to form Pω2 by 〈U̇γ : γ < ω3〉.

Since Pω2 is a partition product based upon P � ω2 and Q̇, it is c.c.c. Hence all cardinals are

preserved. Since Pω2 has size ℵ3 and is c.c.c., it forces that the continuum has size no more

than ℵ3. However, Pω2 adds ℵ3-many reals, and to see this, we first recall that by Lemma

2.1.7, Pω2 is a dense subset of the finite support iteration of the names 〈U̇γ : γ < ω3〉. Next,

each U̇γ either names Cohen forcing or one of the homogeneous set posets, and each of the

latter adds a real by Remark 3.2.1. Thus Pω2 forces that the continuum has size exactly ℵ3.

We now want to see that Pω2 forces that OCAARS holds.

Towards this end, let 〈Ṡ, χ̇〉 be a pair of Pω2-names, where Ṡ names a countable basis

for a second countable, Hausdorff topology on ω1 and χ̇ names a coloring which is open

with respect to the topology generated by Ṡ. Let γ < ω3 so that 〈Ṡ, χ̇〉 is the (γ)0-th

element under <L and so that 〈Ṡ, χ̇〉 is a Pω2 � (γ)1-name. Note that 〈Ṡ, χ̇〉 is an element of

H(ω2, γ) since, by Remark 4.1.4, γ is, and also notice that H(ω2, γ) satisfies that 〈Ṡ, χ̇〉 is a

Pω2 � γ-name. Let j denote the transitive collapse map of H(ω2, γ) and let π := j−1 denote

the anticollapse map. Set γ̄ := j(γ) and κ := j(ω2), and observe that by Lemma 4.1.6, j

collapses H(ω2, γ) onto Lδγ̄(κ).

We will be done if we can show that forcing with U̇γ adds a partition of ω1 into countably-

many χ̇-homogeneous sets, and towards this end, let G be V -generic over Pω2 . We use Gγ to

denote the generic G adds for U̇γ[G � γ] over V [G � γ]. Set Ḡ to be j [(G � γ) ∩H(ω2, γ)],

and observe that Ḡ is generic for the poset j(Pω2 � γ) = Pκ � γ̄ = Pκ over Lδγ̄(κ). Since Pκ

is c.c.c. and Lδγ̄(κ) is countably closed, Ḡ is also V -generic over Pκ. In particular, π extends

to an elementary embedding

π∗ : Lδγ̄(κ)[Ḡ] −→ Lδγ(ω2)[G],
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and since crit(π∗) > ω1, we see that Ṡ[G] = j(Ṡ)[Ḡ] and χ̇[G] = j(χ̇)[Ḡ].

By the elementarity of j, 〈j(Ṡ), j(χ̇)〉 is the (γ̄)0-th pair of Pκ names where the first

coordinate names a countable basis for a second countable, Hausdorff topology on ω1 and

the second names a coloring which is open with respect to the topology generated by that

basis. By the construction of Q̇κ, this means that Q̇κ names the poset to decompose ω1 into

countably-many j(χ̇)-homogeneous sets with respect to the preassignment ḟκ. Thus forcing

with Q̇κ[Ḡ] adds a decomposition of ω1 into countably-many j(χ̇)[Ḡ] = χ̇[G]-homogeneous

sets. We will be done if we can show that G adds a generic for Q̇κ[Ḡ].

To see this, we recall from Case 2 of the construction that U̇γ is the π � ρκ-rearrangement

of Q̇κ. Moreover, as also described in Case 2, Lemma 2.1.16 applies. Thus Q̇κ[Ḡ] = U̇γ[G].

Gγ is therefore V [G � γ]-generic for Q̇κ[Ḡ], which finishes the proof.

We wrap up by sketching a proof of Theorem 1.0.4.

Proof Sketch of Theorem 1.0.4. We first describe how to build the names on the sequence

Q̇. The only modification to the construction for the previous theorem is that if, in Case 1

above, (γ)0 names a Knaster poset of size ℵ1, then we set Q̇κ to be this Knaster poset. With

this modification to the sequence Q̇, we still maintain the recursive assumption that for each

κ ∈ C, any partition product based upon P � κ and Q̇ � κ is c.c.c.; this follows by Lemma

2.1.20, Lemma 2.1.13, and since the product of Knaster and c.c.c. posets is still c.c.c.

Now we want to see that forcing with this modified Pω2 gives the desired model. The

proof that the extension satisfies OCAARS and 2ℵ0 = ℵ3 is the same as before. To prove that

it satisfies FA(ℵ2,Knaster(ℵ1)), suppose that K̇ is forced in Pω2 to be a Knaster poset of size

ℵ1. We may assume without loss of generality that K̇ is forced to be a subset of ω1. Fix γ so

that (γ)0 codes K̇, making γ large enough so that K̇ is a (Pω2 � γ)-name and so that all the

dense sets we need to meet belong to V [G � γ]. Next, arguing as in the proof of Theorem

1.0.3, we have κ < ω2, j : H(ω2, γ) −→ Lδγ̄(κ), and an extension

π∗ : Lδγ̄(κ)[Ḡ] −→ Lδγ(ω2)[G � γ]
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of the inverse π of j. By the modified Case 1 construction we have that Q̇κ = j(K̇). By

Case 2 in the construction of Pω2 , U̇γ is the rearrangement of Q̇κ by π � ρκ. However, by

the final clause in Lemma 2.1.16, and since Q̇κ names a poset contained in ω1 < κ = crit(π),

this rearrangement is exactly π(Q̇κ) = K̇. So Gγ is generic for K̇[G � γ] over V [G � γ], and

hence Gγ is a filter in V [G] for K̇[G � γ] which meets the desired dense sets.
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Part II

Stationary Reflection and Other

Combinatorial Principles on ℵ2
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CHAPTER 5

Introduction to Part 2

In Part 2 of this thesis, we study a number of combinatorial principles at the second un-

countable cardinal, ℵ2. These results have a very different flavor than the results in Part 1,

as they are concerned with making reflection and compactness properties of large cardinals

hold at ℵ2. All of the results in Part 2 are concerned with building models with various de-

grees of Stationary Reflection. Following the authors of [24], we are particularly interested in

showing that these degrees of stationary reflection are compatible with other combinatorial

principles of wide interest. In the first section of this chapter, we will review the relevant

definitions and historical background. In the second section, we will collect, for reference, a

number of useful facts about the forcings we will use in later chapters. In the final section, we

show that Mitchell-type posets are proper (the proofs in that section are due to the author,

though we suspect that the results are known already, possibly as “folklore”).

5.1 Definitions and Background

Let us begin by defining the stationary reflection principles that we’re interested in and

surveying previous results.

Definition 5.1.1. C ⊆ α is club if C is closed and unbounded in α.

If cf(α) ≥ ω1, then the collection of club subsets of α naturally forms a cf(α)-complete

filter. Loosely speaking, sets which are positive measure with respect to this filter are the

stationary sets.

Definition 5.1.2. Suppose that cf(α) ≥ ω1. S ⊆ α is stationary if S ∩C 6= ∅, for any club
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C ⊆ α.

We are interested in which stationary sets have stationary initial segments.

Definition 5.1.3. Suppose that cf(α) ≥ ω1. A stationary S ⊆ α is said to reflect if there is

some limit β < α so that S ∩ β is stationary in β.

We remark here that ω2 is the first ordinal at which stationary reflection is a non-trivial

principle to study. Indeed, if S ⊆ ω1 is stationary, and without loss of generality consists only

of limit ordinals, then there does not exist any limit α < ω1 so that S ∩ α is “stationary,”

since any ω-sequence of successor ordinals cofinal in α is disjoint from S ∩ α. A similar

argument shows that no S ⊆ ω2 ∩ cof(ω1) can reflect.

Definition 5.1.4. Stationary Reflection at ω2, abbreviated SR(ω2), is the statement that

every stationary S ⊆ ω2 ∩ cof(ω) reflects. Almost Everywhere Stationary Reflection, abbre-

viated SR(ω2)∗, is the statement that for any stationary S ⊆ ω2 ∩ cof(ω), there exists a club

C ⊆ ω2 so that S reflects at α, for all α ∈ C ∩ cof(ω1).

A notational remark is in order: in the paper [24], the authors use “RP” to denote what

we are calling “Stationary Reflection.” We depart from this notation in order to distinguish

between stationary reflection for subsets of ω2 and the higher-order reflection principles RP

and WRP which concern reflection of stationary subsets of Pω1(ω2) (see [51]).

One feature of this line of research is the use (and in fact, necessity) of large cardinals.

Let us define the ones that we’ll use here.

Definition 5.1.5. Let κ be a regular, uncountable cardinal. κ is said to be Mahlo if

{α < κ : α is inaccessible} is stationary in κ. κ is said to be Weakly Compact if for any

f : [κ]2 −→ 2, there exists an H ∈ [κ]κ which is f -homogeneous.

It is well-known that there are a wealth of equivalences to κ being weakly compact. See,

for instance, [45] and [21]. Of particular interest to us is the following result (see Theorem

16.1 of [21]).
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Proposition 5.1.6. An inaccessible cardinal κ is weakly compact iff for every transitive set

M with |M | = κ, κ ∈ M , and <κM ⊆ M , there is an elementary embedding j : M −→ N

where N is transitive, |N | = κ, <κN ⊆ N , crit(j) = κ.

One of the first results concerning stationary reflection is due to Baumgartner (see [15])

and states that it is consistent from a weakly compact cardinal that SR(ω2) holds. One

particularly noteworthy feature of Baumgartner’s proof is the following proposition, which

we will have more to say about later.

Proposition 5.1.7. Let S ⊆ α ∩ cof(ω) be stationary, and let R be an ω1-closed forcing.

Then forcing with R preserves the stationarity of S.

Given the large cardinal assumption of Baumgartner’s result, it is natural to ask whether

any such assumption is needed. It turns out that the answer is yes. Let us take a brief

detour which will help us see why this is the case. We begin with the definition of a “square

sequence.”

Definition 5.1.8. Let κ ≥ ω1 be a cardinal. A sequence 〈Cα : α < κ+〉 is said to be a �κ

sequence if the following conditions hold:

1. for all α < κ+, Cα is club in α;

2. for all β < κ+ and all α ∈ lim(Cβ), Cβ ∩ α = Cα;

3. for all α < κ+, ot(Cα) ≤ κ.

�κ is the assertion that such a sequence exists.

A sequence 〈Cα : α < κ+〉 is said to be a �∗κ sequence if the following conditions hold:

1. for all α < κ+, Cα is a non-empty set of clubs in α, and |Cα| ≤ κ;

2. for all β < κ+, C ∈ Cβ, and α ∈ lim(C), C ∩ α ∈ Cα;

3. for all α < κ+ and C ∈ Cα, ot(C) ≤ κ.

82



�∗κ is the assertion that a �∗κ sequence exists.

A �κ sequence may be viewed as a coherent system of singularizing all ordinals in the

interval [κ, κ+). Jensen, in his landmark paper on the fine structure of L (see [43]) showed

that in L, �κ holds for all cardinals κ ≥ ω1. For modern discussions of square principles in

inner model theory, we refer the reader to [79].

It is well-known that square principles inhibit the amount of stationary reflection (for

contemporary discussions, see [23] as well as [40]). In particular (see [25]), �ω1 implies

that SR(ω2) fails. Furthermore, the failure of �ω1 entails that ω2 is Mahlo in L (see [25]).

Combining this, we see that if SR(ω2) holds, then ω2 is Mahlo in L.

However, it turns out that this is in fact an equiconsistency. Indeed, Harrington and

Shelah (see [39]) showed that it is consistent from a Mahlo cardinal that SR(ω2) holds. A

key idea of their proof is that one can iterate to destroy the stationarity of any non-reflecting

stationary S ⊆ ω2 ∩ cof(ω), after an initial Levy collapse of a Mahlo cardinal to ω2. The

technique of iterated club-adding will play a key role in the results of Part 2 of this thesis.

Thus the weakly compact cardinal used in Baumgartner’s aforementioned theorem is

more than necessary to obtain the consistency of SR(ω2). However, as Magidor pointed

out in [56], in Baumgartner’s model, we have a large amount of simultaneous stationary

reflection; recall that S, T ⊆ α reflect simultaneously if there is some β < α so that S ∩ β

and T ∩β are both stationary in β. It turns out (see [56]) that the statement that every two

stationary subsets of ω2 ∩ cof(ω) reflect implies that ω2 is weakly compact in L.

In fact, as Magidor notes, in Baumgartner’s model, there is an ω2-complete filter F on

ω2 so that every stationary S ⊆ ω2 ∩ cof(ω) reflects on a set in F . Magidor was able to

show that, from a weakly compact cardinal, one can make the filter F the club filter on ω2.

Magidor also uses an iterated club adding technique, but with a very different flavor from

that of Harrington and Shelah. In their paper [39], clubs are added to destroy the stationarity

of various aberrant sets, whereas Magidor adds clubs (roughly) inside the stationary sets to

bolster the amount of reflection.
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Let us now turn to discuss and survey another principle of interest, one which concerns

trees. We begin with some of the relevant definitions.

Definition 5.1.9. Let κ ≥ ω be regular. A κ-tree is a tree (T,<T ) on κ so that every level

of T has size < κ. A cofinal branch is a linearly ordered subset of T which meets every level.

κ is said to have the tree property if every κ-tree has a cofinal branch; this statement is

abbreviated TP(κ). A tree without a cofinal branch is said to be Aronszajn.

One particularly strong way of witnessing that a tree is Aronszajn is by the existence of

a specializing function.

Definition 5.1.10. Say that κ = λ+. A κ-tree T is special if there is a function f : T −→ λ

so that for any x, y ∈ T , if x <T y, then f(x) 6= f(y).

Note that if T is a special Aronszajn tree in a model V , then T remains special (and

hence Aronszajn) in any cardinal-preserving extension of V . A few other relevant properties

of trees are the following.

Definition 5.1.11. A κ-tree T is a Souslin tree if T has no κ-sized chains or antichains.

A κ-tree T is a κ-Kurepa tree if T has κ+-many cofinal branches. If T is a tree on κ with

width ≤ κ which has κ+-many cofinal branches, then we say that T is a weak κ- Kurepa

tree.

Our discussion begins with the classic theorem of König that ω has the tree property

([46]). In contrast to ω, however, ω1 fails to have the tree property, i.e., there is an ω1-

Aronszajn tree (the result is due, naturally enough, to Aronszajn and is described by Kurepa

in [53]).

The investigation for ω2 (and higher) is dependent on axioms beyond ZFC. For instance,

as Specker has shown (see [72]), if κ<κ holds, then there is a special κ+-Aronszajn tree. Jensen

later showed ([43]) that for any cardinal κ, �∗κ holds iff there is a special κ+-Aronszajn tree;

since κ<κ implies that a �∗κ sequence exists, we can view Jensen’s result as a generalization

of Specker’s.
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A little later, William Mitchell showed [58] that from a Mahlo cardinal, it is consistent

that no special Aronszajn trees exist on ω2, and furthermore, from a weakly compact cardinal,

that it is consistent that ω2 has the tree property. Mitchell’s proof was a watershed in forcing,

and variations of the poset which he invented (the so-called Mitchel Forcing) will be used

heavily later in this thesis. We will review Mitchell-type posets in the next section.

As can be seen from the above discussion of stationary reflection and the tree property,

models in which these principles hold fail to be L-like, as they imply the failure of various

square principles. A natural question to then ask is whether or not there are square-like

combinatorial principles which can be investigated in ZFC alone. Remarkably enough, such

principles exist, and the one most relevant to our investigations is Approachability.

Definition 5.1.12. Let κ be a regular, uncountable cardinal, and let ~a = 〈aα : α < κ〉 be a

sequence of bounded subsets of κ. We say that a limit ordinal β < κ is approachable with

respect to ~a if there exists an unbounded A ⊆ β with ot(A) = cf(β) so that

{A ∩ ξ : ξ < β} ⊆ {aξ : ξ < β} .

Given κ regular and uncountable, Shelah defined (see [65] and [66]) an ideal I[κ] on κ as

follows:

Definition 5.1.13. I[κ] consists of all S ⊆ κ so that for some club C ⊆ κ and some sequence

~a of bounded subsets of κ, every element of S ∩ C is approachable with respect to ~a.

Approachability at κ is the statement that κ ∈ I[κ], i.e., that I[κ] is the trivial ideal.

Approachability at ω2 will be denoted APω1.

Let us collect here some well-known facts about I[κ], proofs of which may be found in

[20].

1. If �∗µ holds, then µ+ ∈ I[µ+];

2. if µ is regular, then µ+ ∩ cof(< µ) ∈ I[µ+];
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3. suppose that µ < κ is regular and that κ<µ = κ. Then the restriction of I[κ] to

κ ∩ cof(µ) is generated by a single stationary set.

Remark 5.1.14. In item (3) above, it is worth noting that the maximal stationary set of

cofinality µ points is constructed as follows: let ~a = 〈aα : α < κ〉 be an enumeration of [κ]<µ,

and let S consist of all β < κ which are approachable with respect to ~a. Note that S is

well-defined, modulo the club filter.

It is also worth noting that Shelah originally invented I[κ] in order to clarify which

stationary sets remain stationary after certain forcings. Even though, as stated in Proposition

5.1.7, countably-closed forcings preserve stationary subsets of cofinality ω ordinals, it is not

in general true that µ+-closed forcings preserve stationary subsets of λ ∩ cof(µ). However,

stationary sets S ⊆ λ ∩ cof(µ) which are in I[λ] do remain stationary after forcing with

µ+-closed forcings ([65]).

The relationship between the principles TP, RP, and AP at κ++ (for κ either regular or

singular) has most extensively been studied in the recent paper [24], wherein the authors

show, from appropriate large cardinal assumptions, that all eight Boolean combinations of

the above three principles are consistent.

In Part 2, we will show how to improve their results in a number of ways. We recall that

in [24], the authors showed that the configuration ¬TP(ω2) + SR(ω2) + ¬APω1 is consistent

from a weakly compact cardinal. In their construction of such a model, they obtain SR(ω2)

more-or-less for free, as in Baumgartner’s model. However, they need to “work” to obtain

the failure of TP(ω2), and to accomplish this, they use Kunen’s forcing (see [52]) for adding a

Suslin tree. We show how to improve their result to use the optimal large cardinal hypothesis:

Theorem 5.1.15. (Gilton) It is consistent from a Mahlo cardinal that ¬TP(ω2) + SR(ω2) +

¬APω1 holds.

The configuration above is indeed optimal since, as we noted at the beginning of this

section, SR(ω2) entails that ω2 is Mahlo in L.
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In contrast to the construction from [24], we obtain the failure of TP(ω2) for free: we work

with the least Mahlo cardinal, κ, in L, noting that κ is not weakly compact. By consistency

strength considerations, we know that TP(ω2) must fail in any extension in which κ becomes

ω2. However, we do need to work to obtain SR(ω2). As in the Harrington-Shelah model

mentioned above, we iterate club-adding in order to destroy the stationarity of any non-

reflecting stationary subset of κ ∩ cof(ω). The proof of Theorem 5.1.15 occurs in Chapter

6.

We note here that Gilton and Krueger later (see [32]) simplified Gilton’s original proof

of Theorem 5.1.15. Instead of the Mitchell-style preparation forcing used in Gilton’s proof,

Gilton and Krueger use a countable-support iteration of proper forcings as a preparatory

forcing. They show that there exists an object called a Disjoint Stationary Sequence on κ

in the resulting extension; disjoint stationary sequences were originally invented by Krueger

in [50]. The existence of a disjoint stationary sequence is preserved under a wide variety of

forcings and implies that APω1 fails.

We next improve a number of the results of [24] to include SR(ω2)∗.

Theorem 5.1.16. (Gilton, Gilton and Ben-Neria) Let Φ be any Boolean combination of

APω1 and TP(ω2). Then Φ is consistent with SR(ω2)∗.

We remark that the configuration TP(ω2) + APω1 + SR(ω2)∗ is due to Gilton and Omer

Ben-Neria, and that the configuration ¬TP(ω2) +APω1 +SR(ω2)∗ already holds in Magidor’s

model [56], since the CH is satisfied therein. The idea for these constructions (except for

¬TP(ω2)+APω1 +SR(ω2)∗ which is already taken care of) is to incorporate Magidor’s iterated

club-adding from [56] into the scheme of [24]. For the case TP(ω2) +APω1 + SR(ω2)∗, this is

done by building a Mitchell-style poset with quite a bit of collapsing and by using collapse

absorption arguments. However, for the cases where APω1 fails, we need to avoid undue

collapsing, and for this we use Mitchell-type posets with “look-ahead.” This idea goes back

to Abraham’s result ([1]) that it is consistent that the Tree Property holds at both ℵ2

and ℵ3 simultaneously. The looking-ahead is done by using a Laver diamond built from a
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supercompact cardinal. Our proofs of 5.1.16 occur in Chapter 7.

Finally, we make good on a promise from [34] and show that in a variation of that model,

there are neither weak Kurepa trees on ω1 nor special Aronszajn trees on ω2; moreover we can

also make APω1 hold or fail. Originally, Gilton and Krueger sought to show that SR(ω2) is

consistent with an arbitrarily large continuum. Towards this end, they built and investigated

a mixed-support iteration which uses distributive, rather than closed forcings. However,

they later learned from Itay Neeman that simply adding Cohen reals to the model of [39]

preserves SR(ω2), and thus the result may be obtained through simpler means. Despite this,

the technology of [34] could still be of use and represents an advance in our understanding

of mixed support iterations. Furthermore, the mixed-support forcing allows us to show that

a variety of other combinatorial principles are satisfied in the extension, principles which do

not hold after simply adding Cohen reals to the Harrington-Shelah model.

Mixed-support iterations are a type of iteration that uses different supports on different

coordinates. For instance, one might alternate between adding a Cohen real and collapsing

a cardinal, using finite support for the Cohen coordinates and countably infinite support

for the collapse coordinates. Indeed, Mitchell-type posets may be seen in this light. Mixed-

support iterations have found use elsewhere too, for instance in Todorčević’s investigation of

partition properties on ω1 (see [73]); in the result of Abraham and Shelah (see [5]), mentioned

earlier, on isomorphism types of Aronszajn trees (though they actually used a mixed-support

product); and in more modern research in [48], with applications to [37], [49], and [50]. In

most of these applications, closed posets are used with the larger support, though in [48],

strategic closure of certain two-step posets is used instead. However, in iterating club adding

as in the Gilton-Krueger paper [34], such options are not available, due to the nature of the

posets used to add the clubs. Thus the iteration schema worked-out therein and in Chapter 8

of this work proves to be a generalization of this line of research into mixed-support iterations.
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5.2 A Quick Survey of Mitchell-Type Posets

In this section, we will review the definitions of various Mitchell-type posets and also collect

a number of useful facts about them. These facts will be used throughout Part 2 of this

thesis. We assume here that κ is a Mahlo cardinal, and we let A be the set of inaccessible

cardinals below κ, so that A, by definition of Mahlo, is a stationary subset of κ. We begin

with the original poset from Mitchell.

Definition 5.2.1. The poset MMitchell consists of all pairs (a, f) where a ∈ Add(ω, κ), and

where f is a countable partial function satisfying the following:

1. dom(f) ⊆ A;

2. for each α ∈ dom(f), f(α) is an Add(ω, α)-name for a condition in Add(ω1, 1).

We say (b, g) ≤ (a, f) iff b ≤ a in Add(ω, κ), dom(f) ⊆ dom(g), and for all α ∈ dom(f),

b � α Add(ω,α) g(α) ≤Add(ω1,1) f(α).

We note that in (2) above, as well as in the definition of the ordering, the symbol

Add(ω1, 1) is the poset for adding a Cohen subset of ω1, as computed in the model V [Add(ω, α)].

As mentioned in the first subsection, Abraham ([1]) improved upon Mitchell’s result to

show that the tree property may hold at both ω2 and ω3 simultaneously. A key feature of his

construction is the inclusion of various other forcings into the definition of the poset, making

the Tree Property “robust” under further forcing; see [22] and [78] for additional uses of this

idea.

Let us now review the definitions of the posets from [24], posets which use this “robust-

ness” idea.

Definition 5.2.2. The poset M0 � β is defined by recursion on β ∈ A ∪ {κ}, setting M0 :=

M0 � κ. Conditions in M0 � β are triples (a, q, r) satisfying the following:

1. a ∈ Add(ω, β);
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2. dom(q) ⊆ A ∩ β, and | dom(q)| ≤ ℵ0;

3. for all α ∈ dom(q), q(α) is an Add(ω, α)-name for a condition in Col(ω1, α)V [Add(ω,α)];

4. dom(r) ⊆ A ∩ β, and dom(r) is an Easton set of regular cardinals;

5. for all α ∈ dom(r), r(α) is an (M0 � α)-name for a condition in Add(α, 1)V [M0�α].

Conditions in M0 � β are ordered as follows: we set (a′, q′, r′) ≤ (a, q, r) iff

(a) a′ ≤ a in Add(ω, β);

(b) dom(q) ⊆ dom(q′), and for all α ∈ dom(q), a′ � α Add(ω,α) q
′(α) ≤ q(α);

(c) dom(r) ⊆ dom(r′), and for all α ∈ dom(r), (a′, q′, r′) � α M0�α r
′(α) ≤ r(α).

Now let A∗ denote all successor points of A. M1 is defined in the same way as M0, except

that in item (2), A∗ is replaced by A.

Let us now collect some of the most useful facts about the posets Mi.

Proposition 5.2.3. Let α ∈ (A∩ lim(A))∪ {κ}, and let α∗ denote the successor of α in A.

Then

1. Mi � α is α-Knaster, has size α, and forces that 2ω = α = ω2;

2. in the extension by M0 � α∗, α∗ is a cardinal, α is no longer a cardinal, and 2ω = α∗ >

ω1;

3. in the extension by M1 � α∗, α and α∗ are both cardinals, and α = ω2 < 2ω = α∗.

In analyzing posets like the Mi, it has proved to be effective to embed them into larger,

simpler posets. This idea goes back to Laver’s invention of termspace forcing; its application

to Mitchell-type posets is due to Abraham (see [1]). As we will not need to use many of

the details here, we state these result with less specificity than usual. We first record the

definition of a forcing projection:
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Definition 5.2.4. Let P and Q be posets. We say that a function π : P −→ Q is a projection

if the following conditions are satisfied:

1. π(1P) = 1Q;

2. if p1 ≤P p0, then π(p1) ≤Q π(p0);

3. for all p ∈ P, if q ≤Q π(p), then there is some p̃ ≤P p s.t. π(p̃) ≤Q q.

Proposition 5.2.5. Let M denote M0 or M1. Then M is a forcing projection of a product

Add(ω, κ)× B, where B is ω1-closed in V .

The idea is that B consists of all conditions in Mi (i ∈ 2), which are trivial on the Cohen

part, with the same ordering as Mi. Recalling Easton’s Lemma, we obtain the following

corollary:

Corollary 5.2.6. All ω-sequences in V [Mi] are members of V [Add(ω, κ)].

It will prove to be very useful later to know that quotients or “tails” of the Mitchell

forcing also look like Mitchell forcing. That is to say, we have that if α ∈ A, then in V [GMi
α ],

where GMi
α is V -generic for Mi � α, the poset Mi/G

Mi
α is isomorphic to a Mitchell-type poset.

The following proposition gives us what we need.

Proposition 5.2.7. Let α ∈ A. Then there exists an (Mi � α)-name Ṅα for a poset so

that Mi is isomorphic to a dense subset of (Mi � α) ∗ Ṅα and so that in the extension by

Mi � α, Nα is a forcing projection of a product A × B, where A is ω1-Knaster and where B

is ω1-closed.

For the details, we refer the reader to [24].

5.3 Properness of Mitchell-Type Posets

In this section we briefly review the definition of a proper poset and show that the Mitchell-

type posets surveyed in the previous section are proper.
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The idea of a proper poset was invented by Shelah. Properness is a generalization of

the properties of the countable chain condition and of countable closure, and it guarantees

that the cardinal ω1 is preserved. Moreover, this property is sufficiently robust that it is

preserved under countable support iterations (see [42]). Let’s now review the definitions.

Definition 5.3.1. Let P be a poset and M a set. A condition p ∈ P is said to be an

(M,P)-generic condition if p forces that Ġ ∩M meets every dense D ⊆ P with D ∈M .

p is said to be a completely (M,P)-generic condition if the cone of weaker conditions

than p, i.e., {s ∈ P : p ≤ s}, is an (M,P)-generic filter.

A poset P is said to be proper if for all sufficiently large, regular θ there exists a club

C in Pω1(θ) so that for every M ∈ C and p ∈ P ∩ M , there exists p∗ ≤ p which is an

(M,P)-generic condition.

A key fact about proper posets is the following:

Proposition 5.3.2. Suppose that P is proper. Then P preserves the stationarity of stationary

sets of countable cofinality points.

We also have that properness is preserved under projections. We have not seen this

lemma in the literature ourselves, but as it is straightforward, we assume that we are not

the original discoverers of it.

Lemma 5.3.3. Suppose that π : P −→ Q is a projection, and π,P,Q are in an elementary

submodel M . Then if p is an (M,P)-generic condition, π(p) is an (M,Q)-generic condition.

In particular, if P is proper, then Q is proper.

Proof. Fix a condition p and a model M as in the statement of the lemma. First we prove

a preliminary claim:

Claim: suppose D ∈M is a dense open subset of Q. Then D0 := π−1(D) is a dense open

subset of P and D0 ∈M .
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Proof. Since M is elementary, D0 ∈ M . For density, fix a condition p0 ∈ P, and let

s ≤Q π(p0) s.t. s ∈ D. Since π is a projection, fix p1 ≤P p0 s.t. π(p1) ≤Q s. Since

s ∈ D is open, π(p1) ∈ D too. Thus p1 ∈ D0 is below p0.

With the claim aside, we now argue by contradiction, in order to show that π(p) is an

(M,Q)-generic condition. Suppose, then, that there is a condition q ≤Q π(p) and a dense

open subset D of Q with D ∈M s.t.

(†) q  D ∩M ∩ ĠQ = ∅.

Since π is a projection, let p̃ ≤P p s.t. π(p̃) ≤Q q.

Fix a V -generic G over P with p̃ ∈ G, and let H be the π-induced generic for Q (i.e., the

upwards closure of π[G]). Now since p̃ ∈ G, we have π(p̃) and hence q are in H. Moreover,

p̃ is an (M,P)-generic condition, as it is below the (M,P)-generic condition p. Thus since

D0 ∈M is a dense subset of P, we know that D0∩M ∩G 6= ∅, and consequently we may fix

a condition s in this intersection. Now s ∈M ∩D0 implies that π(s) is in M ∩D. Moreover,

since s ∈ G, π(s) ∈ H. Thus

M ∩D ∩H 6= ∅

as witnessed by π(s). However, this contradicts the fact that (†) holds and q ∈ H.

Corollary 5.3.4. The posets Mi are proper, and if α < κ is inaccessible and Ḡ is V -generic

for Mi � α, then the tail Mi/Ḡ is proper in V [Ḡ].

We also collect one final lemma here which connects generic conditions to lifting embed-

dings (hence why generic conditions are often called “master conditions”).

Lemma 5.3.5. Suppose that M is an elementary submodel, P ∈M a poset, and p an (M,P)-

generic condition. Let πM : M −→ M̄ be the transitive collapse map. Then p forces that πM

lifts to an extension πM : M [G] −→ M̄ [πM [G]].
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CHAPTER 6

¬TP(ω2) + ¬APω1 + SR(ω2) from Optimal Assumptions

In this chapter, we answer Question (1) of [24], providing our original proof. In the first

section, we will review the proof from [24] that forcing with M1 (see Definition 5.2.2) provides

a model in which APω1 fails; we will slightly rephrase their argument in order to be compatible

with what we do afterwards. In the second section of this chapter, we will show how to iterate

club adding in the M1-extension, in particular showing that this forcing preserves the failure

of APω1 . In the final section, we present an Easton-style lemma for preserving stationary

sets which is due to the author and Omer Ben-Neria. It is not related to the arguments in

sections 1 and 2 of this chapter.

Let us fix a Mahlo cardinal κ which is not weakly compact for the remainder of the

chapter, and let us abbreviate M1 by M.

6.1 The Preparatory Forcing and ¬APω1

In this section we show that in the extension by M, κ /∈ I[κ]. Recall from Proposition 5.2.3

that in V [M], κ = 2ω = ω2. Thus we may fix an enumeration ~a = 〈ai : i < κ〉 of all countable

subsets of κ in V [M]; this enumeration will be fixed for the remainder of the chapter.

In order to show that the failure of approachability is preserved after forcing with our

subsequent club adding poset, we will need to phrase the argument in terms of certain useful

models which appeared in [39]. We begin our discussion with their definition:

Definition 6.1.1. A rich model is any elementary submodel N of some large enough H(θ)

with the following properties:
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1. κN := sup(N ∩ κ) is an inaccessible cardinal below κ, κN ⊆ N , and |N | = κN ;

2. N is closed under sequences of length < κN ;

3. the following parameters are in N : M, Ċ (our M-name for the club-adding iteration,

defined in the next section), and a fixed M-name for ~a.

It is routine to see that since κ is Mahlo, for any large enough regular θ, there are stationarily-

many rich models in Pκ(H(θ)). Moreover, we also see that

T ∗ := {κN : N is a rich model}

is a stationary subset of κ.

If N is a rich model, we will use N̄ to denote the transitive collapse of N and πN to

denote the transitive collapse map from N to N̄ . The following lemma will be helpful later:

Lemma 6.1.2. Suppose that N is a rich model and Ḡ is V -generic for MκN . Then N̄ [Ḡ] is

closed under < κN -sequences from V [Ḡ].

Proof. By definition of a rich model, N is closed under < κN -sequences from V , and hence so

is N̄ . Moreover, πN(M) = MκN , and hence MκN ∈ N̄ . Since MκN is κN -c.c., by Proposition

5.2.3, and since N̄ is closed under < κN -sequences from V , standard arguments show that

N̄ [Ḡ] is closed under < κN -sequences from V [Ḡ].

We remark here that if G is V -generic over M and N is rich, then Ḡ := G ∩MκN is

V -generic over MκN and that π−1
N [Ḡ] = Ḡ ⊆ G. Thus we may lift πN to an isomorphism

(also denoted πN) πN : N [G] −→ N̄ [Ḡ], noting that this is also the transitive collapse of

N [G]. We will continue to use πN to denote the original transitive collapse as well as the

lifted map without comment.

Lemma 6.1.3. If N is a rich model, then in V [MκN ], ~a � κN enumerates [κN ]ℵ0.

Proof. Fix a rich model N as well as a V -generic G for M, letting Ḡ := G ∩MκN . Observe

that by the elementarity of N [G], ~a � κN enumerates all countable subsets of κN which lie

95



in N [G]. Since ~a � κN = πN(~a) ∈ N̄ [Ḡ], we know that every ai for i < κN is a countable

subset of κN in N̄ [Ḡ], and hence in V [Ḡ].

Thus we need to see that every countable subset of κN in V [Ḡ] appears on the sequence

~a � κN . By Lemma 6.1.2, we know that N̄ [Ḡ] is closed under < κN -sequences from V [Ḡ],

and in particular, all countable subsets of κN in V [Ḡ] are elements of N̄ [Ḡ]. Since πN is the

identity on bounded subsets of κN , we then conclude that every element of ([κN ]ℵ0)V [Ḡ] is in

N [G], and hence by elementarity appears on the sequence ~a � κN .

In order to show that κ /∈ I[κ]V [M], it suffices to show that there is a stationary set of

points that all fail to be approachable w.r.t. ~a. Indeed, if ~b = 〈bi : i < κ〉 is any other

sequence of countable subsets of κ in V [M], then because ~a enumerates all countable subsets

of κ in V [M], there is a club of points ν so that {bi : i < ν} ⊆ {ai : i < ν}.

The following standard branch lemmas, which are stated in less-than-full generality, will

be crucial in showing that κ fails to be approachable.

Lemma 6.1.4. (Branch Lemmas) Suppose that T is a tree of height δ, where δ has cofinality

at least ω1.

1. (Silver) If the levels of T have size less than 2ω and P is an ω1-closed poset, then P

adds no new cofinal branches through T .

2. (Unger) If P is a forcing whose square P × P is c.c.c., then P adds no new cofinal

branches through T .

The following is essentially the same proof as in [24], rephrased in the context of rich

models; working in the context of rich models will be useful later when we show that κ still

fails to be approachable after our later club adding.

Proposition 6.1.5. No ordinal α ∈ T ∗ is approachable w.r.t. ~a in V [M].

Proof. Suppose otherwise, and fix an ordinal α ∈ T ∗ which is approachable w.r.t. ~a in V [M].

By definition of T ∗, we may fix a rich model N s.t. κN = α. In what follows, we use α∗ to
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denote the least V -inaccessible cardinal above α. Since κN is approachable w.r.t. ~a in V [M],

there is an E ⊆ κN of order-type ω1 s.t.

{E ∩ η : η < κN} ⊆ {ai : i < κN} .

By Proposition 5.2.3, in the model V [Mα∗ ], we have the following:

κN = ω2 < 2ω = α∗.

In particular, E is not in V [Mα∗ ], where κN is regular.

Next consider the tree

U := (2<κN )V [MκN
],

noting that U has width (2<κN )V [MκN
] = κN . By our assumption about E, if η < κN , then

E ∩ η equals ai for some i < κN . Since ~a � κN ∈ V [MκN ], it follows that E ∩ η is a member

of V [MκN ]. Consequently, the characteristic function of E ∩ η,

cE∩η : η −→ 2,

is an element of the tree U . Since E is cofinal in κN , we conclude that the characteristic

function of E is a cofinal branch through U , which exists in the model V [M]. We will show

that this is impossible.

As remarked earlier, E /∈ V [Mα∗ ], and therefore E is added by forcing with the poset Nα∗

(see Proposition 5.2.7). However, in the model V [Mα∗ ], Nα∗ is a projection of A× B, where

the first is ω1-Knaster and where the second is ω1-closed. Since U has width κN < (2ω)V [Mα∗ ],

we know from Lemma 6.1.4(1) that forcing with B does not add any new cofinal branches

to U . Further forcing with A also fails to add cofinal branches through U , and since Nα∗ is

a forcing projection of A × B, we have that U does not have any new cofinal branches in

V [M]. However, E ∈ V [M], and so the characteristic function of E is a new, cofinal branch

through U in V [M], a contradiction.

Corollary 6.1.6. T ∗ /∈ I[κ]V [M].
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Proof. This follows by the previous proposition and the fact that M preserves the stationarity

of T ∗, as M is κ-c.c.

6.2 Iterated Club Adding and the Failure of Approachability

In this section, we will construct the final model. We first define, in the extension by M, an

iteration of club adding with the intention of destroying the stationarity of any nonreflecting

stationary subset S of κ∩cof(ω). This is similar to the arguments from [39]. In the definition

that follows, we make use of a tacit bookkeeping function to select names.

In V [M], let

C = 〈Cα, Ṙα : α < κ+〉

denote the iteration with < κ-support, defined recursively as follows. Suppose that α < κ+

and that Cα is defined. Let Ṡα denote the next name for a non-reflecting stationary subset

of κ∩ cof(ω), and let Ṙα denote the Cα-name for the poset of all closed, bounded subsets of

κ in1 V [M] which are disjoint from Ṡα, ordered by end-extension. We set Cα+1 := Cα ∗ Ṙα,

and we set C := Cκ+ .

Lemma 6.2.1. C is κ+-c.c. in V [M].

Proof. For each α < κ+, Ṙα is forced to have size (κ<κ)V [M] = κ; hence Ṙα is trivially

forced to be κ+-c.c. Moreover, as the iteration C takes direct limits on the (stationary) set

κ+∩cof(κ), we then have by standard arguments (for instance, see [12]) that C is κ+-c.c.

We have two main tasks to complete in order to obtain the desired model:

(A) C is κ-distributive;

(B) κ /∈ I[κ]V [M∗Ċ].

1We’ll show later that C is κ-distributive, and hence in hindsight, this requirement is unnecessary. How-
ever, it makes it easier to see immediately that C is κ+-c.c. if we specifically require this.
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(A) entails that C preserves ω1 and κ, and therefore standard bookkeeping arguments

and the fact that C is κ+-c.c. imply that we indeed obtain a model of RP(κ). (B) entails

that we haven’t added any new clubs witnessing that κ is approachable. We will begin with

(A), once we state the following simple, though necessary, lemma:

Lemma 6.2.2. Let α < κ+, and let N be a rich model with α ∈ N . Then in V [MκN ], πN(Cα)

is an iteration with < κN support adding clubs through the complements of 〈πN(Ṡβ) : β ∈

N ∩ α〉.

Proof. Let Ḡ be V -generic for MκN . Since N̄ [Ḡ] is closed under < κN -sequences from V [Ḡ]

(by Lemma 6.1.2), the result follows by a straightforward absoluteness argument (see [32]

for further details).

We will prove that C is κ-distributive by means of an induction on the following, where

α ≤ κ+ :

(IH)α: for all ξ < α, Cξ is κ-distributive, and if N is rich and α ∈ N , then for all

β ∈ N ∩ α, πN(Cβ) forces over V [MκN ] that πN(Ṡβ) is a nonstationary subset of κN .

What the induction hypothesis (IH)α says beyond Lemma 6.2.2 is that from the per-

spective of V [MκN ], πN(Cα) is an iteration with < κN support adding clubs through the

complements of nonstationary sets. Note that (IH)0 is trivial, and that if α is a limit and

(IH)β holds for all β < α, then (IH)α holds. Thus we’ll only need to show that (IH)α

implies that (IH)α+1.

We therefore will assume that (IH)α holds for the rest of the section, turning our attention

to drawing out the implications of (IH)α. Part of our analysis here will also be used to show

that (B) holds.

Lemma 6.2.3. Let N be a rich model with α ∈ N . Then πN(Cα) contains a κN -closed,

dense subset in V [MκN ].
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Proof. Fix β ∈ N ∩α, so that by our inductive assumption, πN(Cβ)  πN(Ṡβ) is nonstation-

ary. Let ĊπN (β) be a πN(Cβ)-name for a club subset of κN disjoint from πN(Ṡβ), and let Ḋβ

name the set of conditions c in πN(Ṙβ) such that max(c) ∈ ĊπN (β). Then it is straightforward

to check that Ḋβ is forced to be a κN -closed, dense subset of Ṙβ. Since this holds for all

β ∈ N ∩ α, the result follows.

Proposition 6.2.4. For any rich N with α ∈ N and any p ∈ Cα ∩N [G], there is q ≤Cα p

which is an (N [G],Cα)-completely generic condition.

Proof. Fix a V -generic G for M, and let Ḡ denote the restriction of G to MκN . From Lemma

6.2.3, we know that in V [Ḡ], πN(Cα) contains a κN -closed, dense subset. Furthermore, by

definition of a rich model, we also know that |N̄ [Ḡ]| = κN , and therefore in V [Ḡ], we may

construct an (N̄ [Ḡ], πN(Cα))-generic filter K. Now define

K̃ := π−1
N [K],

so that K̃ ∈ V [G]. We claim that K̃ has a lower bound q (a “flat condition”), which will

be our desired condition. In what follows, as a matter of notation, if s ∈ K, we will denote

π−1
N (s) by s̃. Indeed, for each ξ ∈ N ∩ α, set

q(ξ) :=
⋃
{s̃(ξ) : s ∈ K ∧ ξ ∈ dom(s̃)} ∪ {κN} .

If, by induction, q � ξ is a condition in Cξ below s̃ � ξ for each s̃ ∈ K̃, then we see that q � ξ

forces that q(ξ) ∈ Ṙξ. Indeed, κN has cofinality ω1 in V [G], and since Cξ is κ-distributive

(by induction), Cξ preserves the cofinality of κN . Thus we see that q(ξ) is forced by Cξ to

be disjoint from Ṡξ.

We now verify that q is an (N [G],Cα)-completely generic condition: let D ∈ N [G] be a

dense subset of Cα. Then πN(D) is dense in πN(Cα) and a member of N̄ [Ḡ], and so there is

a condition s ∈ πN(D) ∩K. Then s̃ ∈ D ∩ K̃, and so q ≤ s̃, as required.

Remark 6.2.5. The proof of Proposition 6.2.4 also shows that if K is any (N̄ [Ḡ], πN(Cα))-

generic filter in V [G], then π−1
N [K] has a lower bound in Cα, and any such lower bound is

an (N [G],Cα)-completely generic condition.

100



Corollary 6.2.6. Cα is κ-distributive in V [M].

Proof. Let ḟ be a Cα-name for a function from ω1 into the ordinals, and fix a condition

p ∈ Cα. Let N be a rich model so that α, as well as M-names for ḟ and p, are in N .

By Proposition 6.2.4, we can find an (N [G],Cα)-completely generic condition q ≤ p. Since

ḟ ∈ N [G], the elementarity of N [G] implies that for each ν < ω1, the dense set Dν of

all conditions in Cα which decide the value of ḟ(ν) is also a member of N [G]. Since q is

completely generic, for each ν < ω1, there is some condition pν with q ≤ pν s.t. pν ∈ Dν .

Hence q ∈ Dν too. Since this holds for all ν < ω1, we have that q completely determines

ḟ .

In particular, we now know that Cα preserves ω1 and κ. It remains to see that (IH)α

implies (IH)α+1; this is where we use the careful definition of M.

Proposition 6.2.7. Let N be a rich model with α ∈ N . Then πN(Cα) forces over V [MκN ]

that πN(Ṡα) is nonstationary.

Proof. Let Ḡ be V -generic for MκN , and let H be V [Ḡ]-generic over πN(Cα). We need to

show that πN(Ṡα)[H] is a nonstationary subset of κN in V [Ḡ ∗ H]. By (IH)α, we know

that πN(Cα) contains a κN -closed, dense subset, and moreover πN(Cα) has size κN . Since

every condition in πN(Cα) has κN -many pairwise incompatible extensions, we conclude by

standard forcing facts that πN(Cα) has a dense subset which is isomorphic to Add(κN , 1).

We will abuse notation and use H to also denote the isomorphic generic for Add(κN , 1) under

this isomorphism.

Let I be V [Ḡ ∗ H]-generic over M/(Ḡ ∗ H), and let G := Ḡ ∗ H ∗ I, so that G is a V -

generic filter over M. Lift πN : N −→ N̄ to an extension πN : N [G] −→ N̄ [Ḡ], and observe by

Remark 6.2.5 that π−1
N [H] has a lower bound q in Cα, which is also an (N [G],Cα)-completely

generic condition. Finally, we let J be V [G]-generic over Cα containing q.

Now by definition of Ṡα, in V [G∗J ] we have that Sα := Ṡα[J ] is a nonreflecting stationary

subset of κ. Since κN has cofinality ω1 in V [G] and Cα is κ-distributive, κN still has cofinality
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ω1 in V [G ∗ J ]. Hence, S ∩ κN is a nonstationary subset of κN in the model V [G ∗ J ]. Again

by the distributivity of Cα, Sα ∩ κN is in V [G] and is nonstationary there.

To finish, we will argue that Sα ∩ κN is an element of V [Ḡ ∗H] and is nonstationary in

that model.

Since q ∈ J is a lower bound for π−1
N [H], we may lift π−1

N to an isomorphism π−1
N :

N̄ [Ḡ ∗H] −→ N [G ∗ J ]. By the elementarity of πN , we see that πN(Ṡα)[H] = Sα ∩ κN . In

particular, Sα ∩ κN is a member of V [Ḡ ∗ H]. By Corollary 5.3.4 we know that the poset

M/(Ḡ ∗H), being isomorphic to a dense subset of Add(ω, κ∗N) ∗ Ṅκ∗N
, is proper in the model

V [Ḡ ∗ H] and hence preserves the stationarity of stationary sets of cofinality ω ordinals.

Since Sα ∩ κN consists of points of cofinality ω and is nonstationary in V [G], we conclude

that Sα ∩ κN is nonstationary in V [Ḡ ∗H], which is what we intended to show.

This completes the proof that SR(ω2) holds in V [M ∗ Ċ]. We now finish by showing that

the failure of approachability is preserved by the forcing C.

Proposition 6.2.8. T ∗ /∈ I[κ]V [M∗Ċ].

Proof. We begin by noting that since C is κ-distributive over V [M], the sequence ~a in V [M]

which enumerates [κ]ℵ0 is still an enumeration of all countable subsets of κ in V [M∗ Ċ]. The

κ-distributivity of C further implies that no α ∈ T ∗ is approachable with respect to ~a in

V [M ∗ Ċ], since this holds in V [M].

In order to finish showing that T ∗ is not in the approachability ideal, we need to verify

that T ∗ remains stationary after forcing with C.

To see this, let G be V -generic over M, let Ḟ be a C-name in V [M] for a club subset of κ,

and let p ∈ C be a condition. Since C is κ+-c.c., we may fix some α so that Ḟ is a Cα-name

for a club subset of κ. Next, fix a rich model N so that M-names for Cα, Ḟ , and p are in N .

By Proposition 6.2.4, we may build an (N [G],Cα)-completely generic condition q ≤ p. By

standard arguments, we see that

q  κN ∈ Ḟ ,
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and since κN ∈ T ∗, this finishes the proof.

We may now wrap up the proof of the theorem.

Theorem 6.2.9. It is consistent from a Mahlo cardinal that ¬TP(ω2) + ¬APω1 + SR(ω2)

holds.

Proof. We force with M ∗ Ċ (recall that M = M1 from the previous chapter). We know

that in the extension by this forcing, ω1 is preserved, κ = ω2, and all cardinals above κ are

preserved. APω1 fails after forcing with M, and by Proposition 6.2.8, C preserves the failure

of APω1 . Standard bookkeeping arguments show that C forces SR(ω2). And finally, since κ

is not weakly compact, in the extension by M ∗ Ċ, we must have the failure of TP(ω2).

6.3 An Easton-style Lemma for Preserving Stationary Sets

In this section, we present an Easton-style lemma for preserving stationary subsets of count-

able cofinality; this result is due to the author and Omer Ben-Neria. Recall that Easton’s

Lemma says that if P is a κ-c.c. poset (where κ is a regular, uncountable cardinal) and Q

is a κ-closed poset, then P remains κ-c.c. after forcing with Q, and Q is κ-distributive after

forcing with P.

In [78], Unger presents the following extraordinarily useful (for instance, see [62]) branch

lemma about trees which has a similar flavor to Easton’s Lemma.

Theorem 6.3.1. (Unger) Suppose that κ and λ are regular cardinals so that 2κ ≥ λ. Let P

be κ+-c.c. and R be κ+-closed. Let Ṫ be a P-name for a λ-tree. Then in the extension by P,

R cannot add a branch through T .

The point of the theorem is that R is no longer κ+-closed after forcing with P (at least if

P is a non-trivial poset), so the standard branch lemmas don’t apply to R in the P-extension.

We present a lemma with a similar flavor, but which is related to preserving stationarity,

rather than not adding branches.
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Theorem 6.3.2. (Gilton, Ben-Neria) Suppose that in V , P is c.c.c. and Q is ω1-closed.

Let κ be a regular, uncountable cardinal, and let Ṡ be a P-name for a stationary subset of

κ ∩ cof(ω). Then P×Q forces that Ṡ is stationary.

Proof. We begin with the following useful claim.

Claim Let α̇ be a P×Q-name for an ordinal, and let q ∈ Q be a condition. Then there

exist an extension r ≤Q q and a P-name for an ordinal α̇P so that

(0, r) P×Q α̇P = α̇.

Proof. First let H be a V -generic filter for Q so that q ∈ H. By Easton’s Lemma,

we know that P is still c.c.c. in V [H]. Therefore there exists a maximal antichain

A = {pn : n < ω} of conditions in P so that for each n < ω there is an ordinal βn so

that

pn 
V [H]
P β̌N = α̇.

Now as Q is ω1-closed, we may find an extension r of q with r ∈ H so that for each

n < ω,

(†) r V
(
pn 

V [Ḣ] β̌n = α̇
)
.

Now let α̇P be the P-name
{

(β̌n, pn) : n < ω
}

. We will show that

(0, r) P×Q α̇P = α̇.

Towards this end, let G×H ′ be V -generic for P×Q with r ∈ H ′. Since {pn : n < ω}

is a maximal antichain in P, there exists some n < ω so that pn ∈ G. By (†) above, we

have that α̇[G×H ′] = βn. However, we also have that α̇P[G] = βn. Thus

α̇[G×H ′] = βn = α̇P[G],

which completes the proof.

We may now continue with our proof of the theorem. Suppose for a contradiction that

there exists a P × Q-name Ċ for a club subset of κ and a condition (p, q) ∈ P × Q so that
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(p, q) forces Ċ ∩ Ṡ = ∅. Now fix a large enough regular cardinal θ so that H(θ) contains

all of the parameters of interest. We may also fix an extension p∗ of p and an elementary

submodel M of H(θ) so that p∗ forces that sup(M ∩ κ) ∈ Ṡ. (Indeed, let 〈Mi : i < κ〉 be a

continuous, ∈-increasing sequence of elementary submodels of H(θ) so that M0 contains all

parameters of interest and so that each Mi has size < κ. Let G be V -generic over P with

p ∈ G, and consider the club {sup(Mi ∩ κ) : i < κ}. Since S := Ṡ[G] is stationary in κ, we

may find some i so that sup(Mi ∩ κ) ∈ S; in particular, sup(Mi ∩ κ) has countable cofinality

in both V [G] and V . Let p∗ ≤ p so that p∗  sup(Mi ∩ κ) ∈ Ṡ.)

Set δM := sup(M ∩κ). Also fix a sequence 〈δn : n < ω〉 of elements of M which is cofinal

in δM . For each n < ω, we let τ̇n denote the (P × Q)-name for min(Ċ\δn). By repeatedly

applying the elementarity of M and the previous claim, we now construct a decreasing

sequence 〈qn : n < ω〉 of extensions of q as well as a sequence of P-names 〈τ̇ ∗n : n < ω〉 so

that qn, τ̇
∗
n ∈M , and (p∗, qn) P×Q τ̇

∗
n = τ̇n. Let q∗ be a lower bound for the qn. We observe

here that since τ̇ ∗n ∈ M is a P-name for an ordinal and P is c.c.c., M contains the set of

all possible P-interpretations of this name as an element. Consequently, the sup of all such

possible interpretations is an ordinal in M below κ. Consequently, p∗ P τ̇
∗
n < δM .

Now fix a V -generic filter G × H for P × Q which contains (p∗, q∗). We will show that

δM ∈ S ∩ C, a contradiction. By the choice of p∗, we know that δM ∈ S. Furthermore, we

also have that τn := τ̇n[G × H] = τ̇ ∗n[G] is below δM for all n, and therefore supn τn ≤ δM .

By choice of the cofinal sequence 〈δn : n < ω〉, we conclude that supn τn = δM . However,

each τn is an element of C and so δM is also an element of C, by closure. Thus δM ∈ S ∩C,

a contradiction.
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CHAPTER 7

The Eightfold Way and Simultaneous Stationary

Reflection

In this chapter, we will show, from large cardinal hypotheses, that if Φ is any Boolean

combination of the principles TP(ω2) and APω1 , then Φ is consistent with SR(ω2)∗. Note

that for each such configuration, at least a weakly compact is needed, since SR(ω2)∗ has the

consistency strength of a weakly compact, as discussed in Chapter 5.

We first remark that the configuration ¬TP(ω2)+APω1 +SR(ω2)∗ is satisfied in Magidor’s

original model [56], since the CH holds in that model; recall that the CH implies ω2 ∈ I[ω2]

and that the tree property fails.

For the other three possibilities for the Boolean combination Φ, we will work to incor-

porate Magidor’s iterated club adding into the framework of [24]. We recall that a key

to Magidor’s result is what we might loosely call an “absorption-preservation” argument.

After forcing with P, the Levy collapse of a weakly compact κ to become ω2, Magidor it-

erates club adding to ensure that the desired reflection obtains. To see that the iterated

club adding poset R is κ-distributive, Magidor takes (roughly) a weakly compact embed-

ding j : M −→ N , noting that by standard absorption arguments, j(P) is isomorphic to

P ∗ Ṙ ∗ j(P)tail, where the tail is ω1-closed. Thus the tail preserves the stationarity of the

sets dealt with in the course of forcing with R. Consequently, one can build a “flat” master

condition for the embedding, thereby lifting the embedding; the elementarity of this lifted

embedding then gives the needed result.

The most straightforward of the remaining configurations for Φ is TP(ω2) + APω1 +
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SR(ω2)∗, which is due to Gilton and Ben-Neria. To obtain this configuration, we force with

a version M of the Mitchell poset from [24] which involves slightly more aggressive cardinal

collapsing; we then iterate club adding in the extension by M. If we take a weakly compact

embedding j : M −→ N as in the above paragraph, then at “stage” κ, j(M) adds a generic

for Col(ω1, κ
+), and this collapse acts to absorb the club adding poset; the quotient of

j(M) by this initial segment is proper and so preserves the stationarity of stationary sets of

cofinality ω ordinals. This will allow us to see that R is κ-distributive. The tree property

is preserved by branch lemmas. We will provide more details about the club adding in this

section than in the subsequent two sections.

However, the configurations involving ¬APω1 are less straightforward. Part of the chal-

lenge here is that we need to be more patient with our collapsing, in order to ensure the

failure of APω1 . A practical corollary of this is that we weren’t able to find a natural way

of incorporating collapses into a Mitchell-style poset forcing ¬APω1 in such a way that on

the j-side, for some weakly compact embedding j : M −→ N , we obtain the appropriate

generics for the iterated club adding.

In order to circumvent this challenge, we use a significantly larger large cardinal assump-

tion, namely that of a supercompact. We then, following Abraham’s Tree Property paper

([1]), incorporate a “look-ahead” into the Mitchell-type poset by means of a Laver function,

constructed from the supercompactness of the cardinal which is to become ω2. This look-

ahead allows us to argue that we can always construct an embedding j so that j(M) (where

M is the Mitchell-type poset) adds the desired generics for the iterated club adding with a

tail forcing that is sufficiently “well-behaved.”

Let us begin with the first configuration mentioned above.

7.1 TP(ω2) + APω1
+ SR(ω2)

∗

Let κ be a weakly compact cardinal. We recall that the trace of a stationary set S is the set

of α < sup(S) at which S reflects; this is denoted by tr(S). Further recalling that A denotes
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the (stationary) set of inaccessible cardinals below κ, we define the relevant Mitchell-type

poset M as follows:

Definition 7.1.1. Let M be the poset where conditions are pairs (a, f) satisfying the follow-

ing:

1. a ∈ Add(ω, κ);

2. f is a partial function with dom(f) ⊆ A and | dom(f)| ≤ ℵ0;

3. for each α ∈ dom(f), f(α) is an Add(ω, α)-name for a condition in Col(ω1, α
+);

The ordering is as in Definition 5.2.2.

It is straightforward to see that the relevant results from Section 5.2 hold for M, such as

Proposition 5.2.3(1,2), Proposition 5.2.5, and Proposition 5.2.7.

In the extension by M, we define a < κ-support iteration R = 〈Rβ, Ċβ : β < κ+〉 of posets

as follows: suppose that β < κ+ and that Rβ is defined. Let Ṡβ be the next Rβ-name for a

stationary subset of κ∩cof(ω), and set Ċβ to be the Rβ-name for the poset to add an ω1-club

subset of tr(Ṡβ) by initial segments which come from V [M], ordered by end-extension.

We note first that each Rβ, for β ≤ κ+, is trivially ω1-closed, since the trace of a stationary

set doesn’t contain any points of cofinality ω. We also may see that R is κ+-c.c. Indeed, we

recall that in the extension by M, we have κ<κ = κ. Thus for each β < κ+, Ċβ is forced

to have size κ, and so Ċβ is forced to trivially satisfy the κ+-c.c. Since inverse limits are

taken at each stage in κ+ ∩ cof(κ), standard arguments (see [12]) imply that R is κ+-c.c.

From this it follows that we may catch our tail and ensure that every stationary subset S of

κ ∩ cof(ω) is dealt with at some stage below κ+; similarly, every κ-tree T in the extension

by M ∗ Ṙ appears in the extension by M ∗ Ṙβ, for some β < κ+. Finally, to show that R is

κ-distributive, it suffices to show that Rβ is κ-distributive for each β < κ+, and to see that

TP(ω2) is satisfied in the extension by M ∗ Ṙ, it suffices to verify that TP(ω2) holds in each

proper initial segment of the form M ∗ Ṙβ, for some β < κ+.
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We will now prove by induction on β < κ+ that in the extension by M, Rβ is κ-

distributive. We will use the fact that Rβ is κ-distributive in the proof that it preserves

the tree property, but instead of repeating roughly the same argument twice, we combine

these two facts into one proof, the first half of which will show distributivity, and the second

half of which will use this to show the preservation of TP(ω2).

Thus fix a condition (p, ṙ) ∈M ∗ Ṙβ as well as an M ∗ Ṙβ-name ḟ ∗ for a function from ω1

into the ordinals. Also fix an M ∗ Ṙβ-name Ṫ for a κ-tree. In V , let M∗ be an elementary

substructure of some large enough H(θ), where θ is regular, so that <κM∗ ⊆M∗, |M∗| = κ,

and so that M∗ contains ḟ ∗, M ∗ Ṙβ, and Ṫ . Let M be the transitive collapse of M∗, noting

that the collapse map preserves β, M∗ Ṙβ, and Ṫ ; let ḟ be the image of ḟ ∗ under the collapse

map.

By the weak compactness of κ, since M is transitive, has size κ, and is closed under

< κ-sequences, we may fix an elementary embedding j : M −→ N , where crit(j) = κ.

We now fix a V -generic G ∗Hβ for M ∗ Ṙβ containing the condition (p, ṙ). We will find

an extension (p′, ṙ′) of (p, ṙ) so that p′ forces that ṙ′ determines the values of ḟ and which

also forces that Ṫ has a cofinal branch.

Consider j(M) on the N -side, and let κ∗ denote the least N -inaccessible above κ. We

know that this poset is isomorphic to a dense subset (with all terms computed in N) of

j(M) ∼= M ∗ (Add(ω, κ∗)× Col(ω1, κ
+)) ∗ Ṅκ∗ ,

where Ṅκ∗ is proper (and so preserves stationary subsets of cofinality ω ordinals). We next

factor the collapse poset: Ṙβ is a member of N of size κ which is forced to be ω1-closed

and have (2κ)N = (κ+)N -many dense subsets. Thus N sees that after forcing with M,

Col(ω1, κ
+) factors as Rβ ∗ Q̇, where Q̇ is forced to be ω1-closed. Now extend G ∗ Hβ to a

V -generic G∗ := G ∗ (A × (Hβ ∗ I)) ∗ J for j(M), where I is V [G ∗Hβ]-generic for Q, A is

V [G ∗Hβ ∗ I]-generic for Add(ω, κ∗) and J is V [G ∗ (A× (Hβ ∗ I))]-generic for Nκ∗ .

Since j[G] = G ⊆ G∗, we may lift j to an extension j : M [G] −→ N [G∗]. Since j � β

and Hβ are both members of N [G∗], we may define the function r∗ in N [G∗] as follows:
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dom(r∗) := j[β], and for each α < β,

r∗(j(α)) :=
⋃
{c(α) : c ∈ Hβ ∧ α ∈ dom(c)} ∪ {κ} .

We claim that r∗ ∈ j(Rβ); observe that if this is the case, then we easily have that r∗ extends

each condition in j[Hβ].

We prove by induction on α < β that r∗ � j(α) is in j(Rα). Since conditions in j(Rβ)

have < j(κ) support and | dom(r∗)| ≤ κ < j(κ), it suffices to show the successor case. So

assume r∗ � j(α) ∈ j(Rα). We need to show that r∗ � j(α) j(Rα) r
∗(j(α)) ∈ j(Ċα); it suffices

here to show that r∗ � j(α)  κ ∈ tr(j(Ṡα)).

Force with the poset j(Rα) below r∗ � j(α) over V [G∗] to obtain a generic filter H∗j(α).

Since r∗ � j(α) is a lower bound for j[Hα], where Hα := Hβ ∩Rα, we may lift j further to an

elementary embedding j : M [G ∗ Hα] −→ N [G∗ ∗ H∗j(α)]. By the elementarity of j and the

fact that crit(j) = κ, we see that j(Sα) ∩ κ = Sα. Thus to see that κ ∈ tr(j(Sα)), we need

to verify that Sα is stationary in N [G∗ ∗H∗j(α)].

To begin, Sα is stationary in N [G ∗Hα]; since the tail of Rβ past stage α followed by Q̇

is ω1-closed, Sα remains stationary in N [G ∗Hβ ∗ I]. Sα certainly remains stationary after

adding the Cohen reals A. Next, since Nκ∗ is proper, Sα is still stationary in N [G∗]. Finally,

by induction Rα is κ-distributive, and so j(Rα) is j(κ)-distributive. Hence j(Rα) preserves

the stationarity of Sα. Thus Sα is stationary in N [G∗ ∗H∗j(α)] as we intended to show.

This completes the construction of the condition r∗. We now consider the earlier embed-

ding j : M [G] −→ N [G∗]. Since ḟ is a name for a function with domain ω1, the same is true

of j(ḟ). Moreover, every value of ḟ is decided by some condition in Hβ, and so every value

of j(ḟ) is decided by some condition in j[Hβ]. Thus r∗ decides all of the values of j(ḟ) since

it bounds the filter j[Hβ]. By the elementarity of j we may find in M [G] an extension r′ of

r (recall that (p, ṙ) was our starting condition) in Rβ which also decides all of the values of

ḟ . Letting p′ ≤ p in G force this, we have that (p′, ṙ′) is a condition extending (p, ṙ) which

forces that ḟ is in the M-extension. This completes the proof that Rβ is κ-distributive.

Now let us see that Ṫ is forced to have a cofinal branch in the extension by M ∗Rβ. Let
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j : M [G ∗Hβ] −→ N [G∗ ∗H∗j(β)] be as before, where r∗ ∈ H∗j(β). Since T has width < κ and

since j is an elementary embedding with crit(j) = κ, we see that j(T ) � κ = T , and therefore

T has a cofinal branch B in N [G∗ ∗H∗j(β)]. We will show that B is a member of M [G ∗Hβ].

First, we know that B lives in N [G∗] since j(Rβ) is j(κ)-distributive (recall that we’ve shown

that Rβ is κ-distributive). Now consider the forcing which takes us from N [G∗Hβ] to N [G∗].

This forcing is (Add(ω, κ∗)×Q) ∗ Ṅκ∗ , where Q is ω1-closed. By Proposition 5.2.7, we know

that Ṅκ∗ is forced to be a projection of a product A× B, where B is ω1-closed and where A

is isomorphic to Add(ω, j(κ)).

Now in the model N [G], we know that 2ω = ω2 = κ. Since Rβ is κ-distributive, this still

holds in N [G ∗ Hβ]. Because T is a κ-tree, the Branch Lemmas (see Lemma 6.1.4) imply

that the product Add(ω, κ∗) × Q cannot add a cofinal branch through T . Furthermore, in

the model N [G ∗ (A× (Hβ ∗ I))] we have that 2ω = κ∗ > ω1 and T is a tree whose height has

cofinality ω1 and all of whose levels have size at most ω1. Thus Lemma 6.1.4 again implies

that forcing with A × B, and hence forcing with Nκ∗ , will not add a cofinal branch to T .

Therefore B is a member of N [G∗Hβ], and hence of M [G∗Hβ], since these two models have

the same subsets of κ.

This completes the proof that M ∗ Ṙ forces SR(ω2)∗+TP(ω2). We finish by showing that

it forces that APω1 holds. For this we will need a slight variation of the argument of Section

3.5 of [24] in order to see that APω1 holds after forcing with M. Once we verify this, we may

conclude that R preserves APω1 since R preserves all cardinals in the M-extension.

Now in the M-extension, we have that 2ω = κ. By Remark 5.1.14, we know that there

exists a maximal stationary set, S, of cofinality ω1-points in I[κ]M, and moreover, S is

defined, modulo clubs, as all β < κ which are approachable with respect to the sequence

~a = 〈aα : α < κ〉, where ~a enumerates all countable subsets of κ in V [M]. Next, every

element of ~a appears in the smaller model V [Add(ω, κ)] ⊆ V [M]. Since Add(ω, κ) is c.c.c.,

for almost all α ∈ A (recall that A is the set of V -inaccessibles below κ), we have that ~a � α

enumerates all countable subsets of α in V [Add(ω, α)]; this model has the same countable

sequences as V [M � α]. Thus we may redefine S modulo clubs to consists of all α ∈ A so
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that there exists a cofinal e ⊆ α of order type ω1 with e ∩ η ∈ V [M � α] for all η < α.

Now in the definition of M, we have that for each α ∈ A, the forcing adds a V [M � α]-

generic filter over Col(ω1, α
+) (where this poset is computed in V [M � α]). However, forcing

with Col(ω1, α
+) certainly adds a generic for Col(ω1, α). From this generic, we may define a

cofinal ω1-sequence e in α all of whose initial segments live in V [M � α]. As remarked in the

previous paragraph, for almost all β ∈ A, ~a � β enumerates [β]ℵ0 ∩ V [M � β]. Thus if α ∈ A

is one of these β, then e provides a witness that α ∈ S. Thus S contains almost all points

in A, i.e., modulo clubs, S = A.

To finish, we need to see that A consists of almost all points of cofinality ω1 in V [M].

However, this is straightforward: if Ċ is an M-name for a club subset of κ, then since M is

κ-c.c., there exists a club D ⊆ κ in V so that M Ď ⊆ Ċ. Now A is stationary in κ, since κ

is Mahlo, and so D ∩ A 6= ∅. Thus M forces that Ċ ∩ A 6= ∅.

We now sum up what we have in the following theorem.

Theorem 7.1.2. (Ben-Neria, Gilton) It is consistent from a weakly compact cardinal that

TP(ω2) + APω1 + SR(ω2)∗ holds.

Proof. We force with the poset M ∗ Ṙ. We have seen that ω1 and all cardinals λ ≥ κ are

preserved by this forcing, and that κ becomes ω2 in the extension. M forces that APω1 holds,

and since R preserves all cardinals, APω1 holds in the final model. We also saw that TP(ω2)

holds in the extension by M∗Ṙβ, for each β, and it therefore holds in the final model, since R

is κ+-c.c. Finally, by carrying out an appropriate bookkeeping in the definition of R and using

the fact that R is κ+-c.c., we may see that every stationary subset of κ∩cof(ω) = ω2∩cof(ω)

in the final model reflects to almost every point of cofinality ω1.

7.2 TP(ω2) + ¬APω1
+ SR(ω2)

∗

We now show how to obtain a model of SR(ω2)∗ +TP(ω2) in which APω1 fails. As remarked

at the beginning of this chapter, we will need to be more patient in the collapsing that we
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use for our Mitchell-type posets. In order to make this precise, we will greatly increase the

large cardinal assumption that we use. Let’s recall the relevant definitions (see [21]).

Definition 7.2.1. A cardinal κ is said to be λ-supercompact iff there is a definable j : V −→

M so that crit(j) = κ, j(κ) > λ, and λM ⊆M . κ is supercompact iff it is λ-supercompact

for all λ.

A key feature of supercompact cardinals is the following result, due to Laver (see [55]).

Theorem 7.2.2. (Laver) Suppose that κ is supercompact. Then there exists a function

d : κ −→ Vκ so that for all λ ≥ κ and all x ∈ H(λ+), there is a supercompactness measure

U on Pκ(λ) so that jU(d)(κ) = x.

The function d in the above theorem can be thought of as a very strong Diamond-

like sequence; indeed, the proof of the existence of such a function is similar to that of

the various proofs of Diamond principles, as the function is constructed by providing local

minimal counterexamples. The function d is often referred to as a Laver Diamond. Let us

fix such a function d for the remainder of the chapter.

We now proceed to use d to construct Mitchell-type posets, following Abraham, which

are similar to M1 from the paragraph after Definition 5.2.2. We recall that A denotes the

set of inaccessible cardinals below κ, and A∗ denotes A\ lim(A).

Definition 7.2.3. We define the poset M � β by recursion on β ∈ A, setting M := M � κ.

Conditions in M � β consist of triples (a, f, g) where

1. a ∈ Add(ω, β);

2. f is a partial function with dom(f) ⊆ A∗ ∩ β so that | dom(f)| ≤ ℵ0;

3. for each α ∈ dom(f), f(α) is an Add(ω, α)-name for a condition in Col(ω1, α);

4. g is a partial function with dom(g) ⊆ A ∩ β so that | dom(g)| ≤ ℵ0;

5. for all α ∈ dom(g), d(α) is an (M � α)-name for an ω1-closed poset and g(α) is an

(M � α)-name for an element of d(α).
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We say that (a′, f ′, g′) ≤ (a, f, g) iff a ⊆ a′; dom(f) ⊆ dom(f ′) and dom(g) ⊆ dom(g′); for

all α ∈ dom(f), a′ � α Add(ω,α) f
′(α) ≤Col(ω1,α) f(α); and for all α ∈ dom(g), (a′, f ′, g′) �

α M�α g
′(α) ≤d(α) g(α).

It is straightforward to see that the relevant results from Section 5.2 hold for M, in

particular, Proposition 5.2.3(1,3), Proposition 5.2.5, and Proposition 5.2.7.

In the extension by M, we now define, as in the previous section, R to be the < κ-support

iterated club adding to witness SR(ω2)∗. Following the last section, we will show that for

each β < κ+, Rβ is κ-distributive and preserves the tree property. From the κ+-c.c. of R,

we then may conclude that R is κ-distributive and preserves the tree property. Suppose, by

induction, that for all α < β, Rα is κ-distributive after forcing with M.

We now fix M∗ Ṙβ-names Ṫ and ḟ , where Ṫ names a κ-tree and ḟ names a function from

ω1 into the ordinals. Also fix a condition (p, ṙ) in M ∗ Ṙβ. We will find an extension of (p, ṙ)

which forces that Ṫ has a cofinal branch and which forces that ḟ is in the extension by M.

By properties of d, we may choose a supercompactness embedding j : V −→ M so that

j(d)(κ) = Ṙβ, noting that Ṙβ = j(d)(κ) is a j(M) � κ = M-name for an ω1-closed poset. We

then see that, letting κ∗ denote the next inaccessible above κ in M , j(M) is isomorphic to a

dense subset of

j(M) � κ∗ ∗ Ṅκ∗
∼= M ∗ (Ṙβ × Add(ω, κ∗)) ∗ Ṅκ∗ .

Note that since κ is an inaccessible limit of inaccessibles (i.e., in A\A∗), the forcing j(M)

does not collapse κ until after the additional reals from Add(ω, κ∗) are added.

Now let us fix a V -generic G∗Hβ for M∗ Ṙβ containing the starting condition (p, ṙ). Let

A be generic for Add(ω, κ∗) over V [G ∗ Hβ], setting I := G ∗ (Hβ × A). Finally, let J be

V [I]-generic over the tail j(M)/I ∼= Nκ∗ . Set G∗ := I ∗ J .

Since j[G] = G ⊆ G∗, we may lift j to an elementary map j : V [G] −→ M [G∗]. j � β

and Hβ are members of M [G∗], and hence we may construct, as in the previous section, the

“flat” function r∗ in M [G∗] which we will show is the minimal lower bound for j[Hβ].

We need to show that r∗ ∈ j(Rβ); we will pass over the details that are very similar to
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those of the previous section. It suffices to show that if r∗ � j(α) ∈ j(Rα) (and hence a lower

bound for j[Hα]), then r∗ � j(α) forces that κ ∈ tr(j(Ṡα)).

Let us lift j : V [G∗ ∗Hα] −→ M [G∗ ∗H∗j(α)], where H∗j(α) is V [G∗]-generic for j(Rα) and

contains r∗ � j(α). We then see that Sα = j(Sα) ∩ κ, so it suffices to see that Sα remains

stationary in M [G∗ ∗H∗j(α)].

However, this follows as before: the tail of the iterated club adding followed by Add(ω, κ∗)

certainly preserves the stationarity of Sα; and the poset Nκ∗ is proper in V [I], so Sα remains

stationary in M [G∗]. Finally, j(Rα) is j(κ)-distributive, and so Sα is stationary in M [G∗ ∗

H∗j(α)].

This completes the construction of r∗. Since r∗ decides all of the values of j(ḟ), by the

elementarity of j we may find an extension of (p, ṙ) which forces that ḟ is in the M-extension.

This completes the proof that Rβ is κ-distributive.

As in the previous section, we also see that M ∗ Ṙβ forces that the κ-tree Ṫ has a cofinal

branch. Indeed, if we let j : V [G ∗Hβ] −→ M [G∗ ∗H∗j(β)] be constructed as in the previous

few paragraphs, we know that since j(T ) � κ = T , T has a cofinal branch in M [G∗ ∗H∗j(β)].

Call this cofinal branch B. However, the forcing Add(ω, κ∗) ∗ Ṅκ∗ ∗ j(Ṙβ), which takes us

from M [G ∗Hβ] to M [G∗ ∗H∗j(β)] cannot add this branch, and therefore B is a member of

M [G ∗Hβ], and hence of V [G ∗Hβ].

This completes the proofs that TP(ω2) and SR(ω2)∗ both hold in the extension by M∗ Ṙ.

We now need to show that APω1 fails in this extension.

Suppose for a contradiction that κ ∈ I[κ] is true in some extension by M ∗ Ṙ, and let

(p, ṙ) be a condition forcing this. Let us temporarily step into some generic extension by

this poset, V [G ∗H], where G ∗H contains (p, ṙ). Since κℵ0 = κ in this model, we may fix

an enumeration ~a = 〈ai : i < κ〉 of all countable subsets of κ, and because κ ∈ I[κ], we have

that there is a club C ⊆ κ so that every α ∈ C is approachable w.r.t. ~a. Let Ċ be a name

for this club, and let us also assume, by extending if necessary, that (p, ṙ) forces that the

above holds.
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Next, construct an embedding j : V [G ∗ H] −→ M [G∗ ∗ H∗] as before, where G ∗ H is

V -generic over M ∗ Ṙ. Note that j(C) ∩ κ = C and that j(~a) � κ = ~a. Consequently, κ is a

limit point of j(C) and hence a member of j(C), and by definition of j(C), we have that κ

is approachable w.r.t. ~a in M [G∗ ∗H∗]. Let e ⊆ κ be a club of ordertype ω1 witnessing this.

We now mimic the proof from [24] that M1 forces that APω1 fails. Let U denote the tree

(2<κ)V [G], noting that U has width κ. Note that the characteristic function χe of e gives a

branch through U which is not a member of V [G∗H] (since κ = ω2 in that model); we show

that this is impossible. Indeed, e lives in M [G∗] by the j(κ)-distributivity of j(R). But in

the model M [I], we have that 2ω > κ, and hence Nκ∗ cannot add a branch through U , being

a projection of a product of an ω1-closed forcing and Cohen forcing. Finally, Add(ω, κ∗)

cannot add this branch, and therefore χe (and hence e) lives in V [G ∗H]. This contradicts

that κ = ω2 in that model.

This completes the proof that APω1 fails in the extension by M ∗ Ṙ. Let us summarize in

the following theorem.

Theorem 7.2.4. (Gilton) It is consistent from large cardinals that TP(ω2)+¬APω1 +SR(ω2)∗

holds.

7.3 ¬TP(ω2) + ¬APω1
+ SR(ω2)

∗

In this section we will prove the consistency of the last of our Boolean combinations from

the assumption that κ is a supercompact cardinal. More specifically, we will show that it

is consistent that SR(ω2)∗ holds, that APω1 fails, and that there exists a Suslin tree on ω2.

Recall that a λ-tree T is Suslin iff T has no antichains of size λ (all of our trees have non-

trivial splitting, and hence this implies that T has no chains of size λ). Note that this is

equivalent to saying that the poset (T,<T ) is λ-c.c.

In rough outline, we will force with the Mitchell-type poset M from the last section, and

in the M-extension, we will force with P ∗ Ṙ, where P is Kunen’s forcing (see [52]) for adding

a κ-Suslin tree and where Ṙ, in the P-extension, is the Magidor-style iterated club adding.
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We will need to show that if T is the generic tree added by forcing with P, then T remains

Suslin after forcing with R and that R is κ-distributive.

The proofs of these two facts will go hand-in-hand in an induction on the length of R.

With regards to showing that R preserves that T is Suslin, an appeal to Easton’s Lemma

won’t work, since R is only κ-distributive, not κ-closed. So we need a different argument to

show that R does not add any κ-sized antichains to T ; this argument will involve lifting an

elementary embedding j : V −→M and mimicking the proof that P forces that Ṫ is Suslin.

And with regards to showing that R is κ-distributive, we also need to lift some such j, and

this will involve (among other things) building a master condition for j(P) on the M -side.

To achieve this, we need to know that T has a cofinal branch in an appropriate extension

of the M -side, and this will be achieved by forcing to add such a branch (i.e., forcing with

(T,<T )). However, we will need to know that the stationary sets which are dealt with in the

course of the iteration R remain stationary on the M -side, and this requires knowing that

(T,<T ) is κ-c.c. (i.e., T is Suslin) after the initial segments of R.

Having completed an overview of the argument, let us now fix an arbitrary V -generic G

for M. We begin by reviewing some standard facts about the forcing P.

Definition 7.3.1. In V [G], let P consist of all trees t ⊆ <κ2 of successor height α + 1, for

some α < κ, which satisfy the following:

1. t is a normal tree, and all levels of t have size < κ;

2. t is homogeneous.

The ordering is end-extension.

We recall that t is homogeneous if for any s ∈ t, the subtree of t above s equals t. In

precise notation, t is homogeneous iff for all s ∈ t, ts = t, where ts = {u : s_u ∈ t}. Note

that this is equivalent to saying that for any two sequences s, u, we have that s_u ∈ t iff

s and u are both in t; we will use this characterization of homogeneity frequently in what

follows. Throughout this section, we will use Ṫ to denote the P-name for the generic tree.
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We recall the following standard fact about this forcing:

Lemma 7.3.2. Suppose that γ < κ is a limit, t is a normal, homogeneous γ-tree with all

levels of size < κ, and b ⊆ t is a cofinal branch. Then there exists a condition t′ ∈ P so that

t ⊆ t′.

Proof. We define t′ to add all tail segments of the branch b above every node of t. More

precisely, we define

t′ := t ∪ {s_(b\α) : s ∈ t ∧ α < γ} ,

where for each α < γ, b\α denotes the unique u so that (b � α)_u = b, i.e., the tail segment

of b above α. It is straightforward to check that t′ is a condition in P which extends t.

The condition t′ constructed in the proof of the above lemma will be known as the minimal

extension of t by b. A corollary of the above lemma is the following.

Corollary 7.3.3. P is ω1-closed.

Standard arguments also show that the following is true:

Proposition 7.3.4. P is κ-distributive and forces that Ṫ is a homogeneous Suslin tree on κ.

A crucial tool in analyzing P, and in proving the above proposition in particular, is to

work with P followed by forcing with the generic tree (see [52]). The following summarizes

what we need to know about this flavor of argument.

Lemma 7.3.5. Let Q̇ be the P-name for the forcing (Ṫ , <Ṫ ). Then P ∗ Q̇ has a κ-closed,

dense subset. Hence, since κ<κ = κ in V [G], P ∗ Q̇ is forcing equivalent to Add(κ, 1).

We’ve now surveyed the properties of P that we will need. Next, in the extension by

M ∗ Ṗ, let R = 〈Rβ, Ċβ : β < κ+〉 be the Magidor iteration of club adding, where we use, as

conditions in each iterand, closed and bounded subsets of κ which come from the extension

by M ∗ Ṗ (equivalently, from the extension by M). We claim that forcing with M ∗ Ṗ ∗ Ṙ

gives the desired model.
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First, a few simple remarks about cardinal preservation. ω1 is easily seen to be preserved.

Furthermore, since κ<κ = κ in the extension by M, and since P is κ-distributive in the M-

extension, the equation κ<κ = κ still holds after forcing with P. Consequently, we may see

that R is still κ+-c.c. Thus all cardinals µ ≥ κ+ are preserved. Furthermore, once we know

that κ is preserved, the κ+-c.c. of R implies that we may catch our tail and achieve a model

in which SR(ω2)∗ holds.

Let T denote the generic Suslin tree on κ added by forcing with P. We will show by

induction on β < κ+ that Rβ is κ-distributive in V [G ∗ T ] and preserves that T is Suslin.

Let us suppose as an induction hypothesis that the result holds for all α < β, and we will

show that it holds at β.

Towards this end, fix an Rβ-name Ȧ for a maximal antichain in T as well as a name ḟ

for a function from ω1 into the ordinals. Finally, fix a condition p ∈ Rβ; we will find an

extension of p which forces that ḟ lives in V [G ∗ T ] and which forces that Ȧ is bounded in

T .

We first want to observe that in V [G], K := P ∗ (Q̇× Ṙβ) is ω1-closed on a dense subset.

We know that P ∗ Q̇ is ω1-closed (in fact, κ-closed) on a dense subset. Furthermore, Q is

ω1-distributive after forcing with P, and therefore Rβ, which is ω1-closed after forcing with

P, remains ω1-closed after forcing with P ∗ Q̇. Thus K ∼= P ∗ Q̇ ∗ Ṙβ is ω1-closed on a dense

subset. We will unrepentantly abuse notation and use K to also denote this dense subset.

By the definition of d, we may select a supercompactness embedding j : V −→ M so

that j(d)(κ) = K̇, and we see that on the M -side, j(M) is isomorphic to a dense subset of

j(M) ∼= M ∗ (K̇× Add(ω, κ∗)) ∗ Ṅκ∗ ,

where κ∗ is the least M -inaccessible above κ (see Propositions 5.2.3 and 5.2.7). We will use

j(M)tail to denote the M ∗ K̇-name for Add(ω, κ∗) ∗ Ṅκ∗ .

Now let us fix a V [G ∗ T ]-generic filter B ×Hβ over Q × Rβ, where p ∈ Hβ (p was our

starting condition). B here denotes the generic branch through T . We let I := T ∗ (B×Hβ),

the V [G]-generic for K. Next, let J be generic for j(M)tail over V [G ∗ I], and let G∗ denote
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G∗I∗J . Since j[G] = G ⊆ G∗, we may lift j to an elementary embedding j : V [G] −→M [G∗].

We first claim that there is a condition t∗ ∈ j(P) so that T ⊆ t∗. Indeed, T is a normal,

homogeneous κ-tree in M [G∗] all of whose levels have size < j(κ). Since B is a cofinal branch

through T in M [G∗], we may find, by Lemma 7.3.2, a condition in j(P) which extends T .

Set t∗ ∈ j(P) to be the minimal extension of T by B.

Let T ∗ be V [G∗]-generic over j(P) so that t∗ ∈ T ∗. Since T = j[T ] and T is an initial

segment of t∗, we may extend j to an elementary embedding j : V [G ∗ T ] −→M [G∗ ∗ T ∗].

We now claim that there is a condition r∗ ∈ j(Rβ) which is a lower bound for j[Hβ].

Since j[Hβ] is a member of M [G∗], we may define r∗ as in the previous two sections to be

the κ-flat function which we will show is the minimal lower bound for j[Hβ]. This is obvious

once we show that r∗ is a condition in j(Rβ). For this in turn, it suffices to see that if α < β,

then Sα is stationary in M [G∗ ∗ T ∗]. So fix some such α < β. By our inductive assumption,

T is still Suslin after forcing with Rα, and hence Q is still κ-c.c. in the extension by P ∗ Ṙα.

Thus Sα is stationary in V [G ∗ T ∗ (B ×Hα)] (here Hα := Hβ ∩Rα). The tail of the forcing

Rβ from α onwards is still ω1-closed after forcing with Q, since Q is ω1-distributive. Thus

Sα is stationary in V [G∗ I]. Finally, the tail forcing j(M)tail is proper in V [G∗ I], and hence

it preserves the stationarity of Sα (recall that Sα consists of points of countable cofinality).

Thus Sα is stationary in V [G∗]. Finally, j(P) is ω1-closed, and so we now see that Sα is

stationary in V [G∗ ∗ T ∗] and hence in M [G∗ ∗ T ∗].

This completes the proof that r∗ is a condition in j(Rβ). Since r∗ decides all of the

values of j(ḟ), the elementarity of j implies that some extension of p (our original condition)

decides all of the values of ḟ . Thus Rβ is κ-distributive.

Recall that we had an Ṙβ-name Ȧ for an antichain in T . We will finish our proof by

showing that some extension of r∗ forces j(Ȧ) to be bounded in T ∗. As r∗ is a lower bound

for j[Hβ], we may now lift j to an elementary embedding j : V [G∗T ∗Hβ] −→M [G∗∗T ∗∗H∗],

where H∗ is V [G∗ ∗ T ∗]-generic over j(Rβ) containing r∗.

Let A be the interpretation of Ȧ, and observe that by the elementarity of j, j(A) � κ = A;
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in particular, A is a member of M [G∗ ∗ T ∗ ∗ H∗]. Recall that t∗ is the minimal extension

of T by the branch B. We will show that every node of t∗ at level κ extends some element

of A. This shows that A is in fact a maximal antichain in the generic tree T ∗, and hence

j(A) = A, since j(A) ⊇ A is also a maximal antichain in T ∗.

We recall that t∗ is defined as follows:

t∗ := t ∪ {s_(B\γ) : s ∈ T ∧ γ < κ} .

By definition of t∗, to show that every element of t∗ on level κ extends some element of A,

it suffices to show that the following holds:

(∗) for each s ∈ T and γ < κ, there is some η > γ so that s_(B � [γ, η)) ∈ A.

Note that (∗) is a statement over V [G∗T ∗ (B×Hβ)], and it suffices to verify that it holds in

that model. However, (∗) follows from a density argument and the genericity of the branch

B, as we now show. We will temporarily work over the model V [G ∗ T ]. We argue that for

each s ∈ T and γ < κ, the following set Ds,γ is dense in the product Q× Rβ, where

Ds,γ :=
{

(u, r) ∈ Q× Rβ : (∃η > γ) (u, r)  s_(Ḃ � [γ, η)) extends a node in Ȧ
}
.

So fix some condition (u, r) in Q×Rβ as well as a node s ∈ T and an ordinal γ < κ. Extend

u if necessary so that lh(u) ≥ γ, noting that u Q Ḃ � γ = u � γ. Set ū := u � [γ, lh(u))

(it is possible that this is the empty sequence). Since u ∈ Q, u is an element of T . By

the homogeneity of T , ū ∈ T . As s ∈ T , we have by another use of homogeneity that

s_ū ∈ T . Recalling that Ȧ is forced by Rβ to be a maximal antichain in T , we may extend

r to a condition r∗ in Rβ and find a (possibly trivial) extension s_ū_ū∗ of s_ū in T so that

r∗  s_ū_ū∗ extends an element of Ȧ. Now set u∗ := u_ū∗, and let η be the length of u∗.

We observe that u∗  Ḃ � [γ, η) = ū_ū∗. From this it now follows that (u∗, r∗) forces that

s_(Ḃ � [γ, η)) extends an element of Ȧ, which completes the proof that Ds,γ is dense. This

in turn shows that (∗) holds in V [G ∗ T ∗ (B ×Hβ)].

We have now shown that (∗) holds, from which it follows that every node in t∗ on level

κ extends an element of A. Thus A is maximal in any extension of t∗, and consequently, A
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is maximal in T ∗. Since j(A) ⊇ A is also maximal, j(A) = A. Thus j(A) is bounded in T ∗,

and so by the elementarity of j, A is bounded in T , completing the proof that T is Suslin

after forcing with Rβ.

This completes our inductive proof that for all β < κ+, Rβ is κ-distributive and preserves

the fact that T is Suslin. From the κ+-c.c. of the full iteration R, it follows that R is

κ-distributive and preserves that T is Suslin. Thus we have shown that in the extension by

M∗Ṗ∗Ṙ, SR(ω2)∗ holds and TP(ω2) fails. The argument that APω1 fails is almost exactly the

same as in Section 7.2, replacing the ω1-closure of “R” in that context with the ω1-closure

of P ∗ Ṙ in this context.

Let us summarize what we have in the following theorem.

Theorem 7.3.6. (Gilton) It is consistent from large cardinals that ¬APω1 + SR(ω2)∗ and

that there exists a Suslin tree on ω2; in particular, TP(ω2) fails.
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CHAPTER 8

Combinatorics after forcing with a Suitable Mixed

Support Iteration

In this chapter, we further study the mixed-support iteration from [34]. The main goal is to

show that, after a slight modification to the preparation iteration therein, the final model

satisfies that there exist neither weak Kurepa trees on ω1 nor special Aronszajn trees on ω2

(see Propositions 8.3.1 and 8.3.2). We will also show that we may get APω1 to hold or fail

in the final model. In the case where APω1 fails, we will show that a Disjoint Stationary

Sequence (see [32]) exists, but in the case where APω1 holds, we need to use a more involved

argument.

In the first few sections, we will review the main arguments from [34] and record some of

the results here. We will skip the proofs of the more straightforward results (the interested

reader should consult [34] for all of the details), though we will provide, often sketchy, proofs

of the more interesting propositions from that paper.

In the second section, we review the proof that SR(ω2) holds in the final model, even

after the modification to the preparation iteration. And in the last section, we prove that

there are no special Aronszajn trees on ω2, that there are no weak Kurepa trees on ω1, and

we indicate how to make APω1 hold or fail.

8.1 Suitable Mixed Support Iterations

In this section we introduce and develop the basic properties of the type of mixed support

iteration we’re interested in. We will also isolate some properties of the posets which allow
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us to verify distributivity, and hence cardinal preservation. We will use these results in the

next two sections. Throughout this chapter, we will use “odd” to denote the class of odd

ordinals and “even” to denote the class of even ordinals.

8.1.1 Basic Facts

Broadly speaking, the iteration will alternate between adding Cohen reals and adding clubs

disjoint from non-reflecting subsets of ω2∩cof(ω). The support of a condition in our iteration

will be finite on the Cohen part and size < ω2 on the club adding part. Here is the precise

definition:

Definition 8.1.1. Let α ≤ ω3. Let 〈Pβ : β ≤ α〉 be a sequence of forcing posets and

〈Ṡγ : γ ∈ α∩ odd〉 be a sequence so that for all odd γ < α, Ṡγ is a nice Pγ-name for a subset

of ω2 ∩ cof(ω). Assume that for all β ≤ α, every member of Pβ is a function whose domain

is a subset of β, and define

Pcβ := {p ∈ Pβ : dom(p) ⊆ even} .

We say that the sequence of forcing posets is a suitable mixed support forcing iteration of

length α based on the sequence of names if the following conditions are satisfied:

1. P0 = {∅} is the trivial forcing;

2. if γ < α is even, then p ∈ Pγ+1 iff p is a function whose domain is a subset of γ + 1

so that p � γ ∈ Pγ and, if γ ∈ dom(p), then p(γ) ∈ Add(ω);

3. if γ < α is odd, then p ∈ Pγ+1 iff p is a function whose domain is a subset of γ + 1 so

that p � γ ∈ Pγ and, if γ ∈ dom(p), then p(γ) is a nice Pcγ-name for a nonempty closed

and bounded subset of ω2 so that

p � γ Pγ p(γ) ∩ Ṡγ = ∅;

4. if δ ≤ α is a limit ordinal, then p ∈ Pδ iff p is a function whose domain is a subset of

δ so that | dom(p) ∩ even | < ω, | dom(p) ∩ odd | < ω2, and for all β < δ, p � β ∈ Pβ.
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The ordering is as follows: for all β ≤ α, q ≤Pβ p iff dom(p) ⊆ dom(q), and for all

γ ∈ dom(p), if γ is even, then p(γ) ⊆ q(γ), and if γ is odd, then

q � (γ ∩ even) Pcγ q(γ) is an end-extension of p(γ).

Observe that this definition makes sense without assuming that the forcing preserves

cardinals, if we interpret ω2 as the ω2 of the ground model. However, the only such iterations

we will in fact study will preserve all cardinals.

Notation: We will often abbreviate Pβ and ≤Pβ by, respectively, the more readable β

and ≤β, where β ≤ α.

We required in Definition 8.1.1(3) that p(γ) is a nice Pcγ-name, rather than a Pγ-name,

in order to prove the following absoluteness result.

Lemma 8.1.2. Let M be a transitive model of ZFC−Powerset so that ω2 ∈M and ω1M ⊆M .

Suppose that 〈Pβ : β ≤ α〉 is a sequence of forcing posets in M and 〈Ṡγ : γ ∈ α ∩ odd〉 is a

sequence in M so that for each odd γ < α, Ṡγ is a nice Pγ-name for a subset of ω2 ∩ cof(ω).

Then 〈Pβ : β ≤ α〉 is a suitable mixed support iteration based on the sequence of names

〈Ṡγ : γ ∈ α ∩ odd〉 iff M satisfies that it is.

The proof proceeds by verifying that all of the properties in Definition 8.1.1 are absolute

between V and M , using the closure of M to see that M contains all of the relevant names.

Let us now fix a particular suitable mixed support forcing iteration 〈Pβ : β ≤ α〉 based

on 〈Ṡγ : γ ∈ α ∩ odd〉. As stated in the next lemma, the “Cohen part” is isomorphic to

adding some number of Cohen reals.

Lemma 8.1.3. Let β ≤ α. Then Pcβ is a regular suborder of Pβ, and Pcβ is isomorphic to

Add(ω, ot(β ∩ even)).

Let us now introduce some more notation.

Definition 8.1.4. Let β ≤ α. For p, q ∈ Pβ, we write q ≤∗β p to mean that q ≤β p and that

q � even = p � even. For p, q ∈ Pcβ, we write q ≤cβ p to mean that q ≤β p. We will abbreviate

(Pβ,≤∗β) and (Pcβ,≤cβ) by, respectively, P∗β and Pcβ.

125



For the next definition, we observe that if p ∈ Pβ and a ∈ Pcβ, then a and p are compatible

in Pβ iff a and p � even are compatible in Pcβ.

Definition 8.1.5. Let β ≤ α. If a ∈ Pcβ and p ∈ Pβ, and if a and p are compatible in Pβ,

we write p + a to denote the function s so that dom(s) := dom(a) ∪ dom(p), for all even

γ ∈ dom(s), s(γ) := a(γ) ∪ p(γ), and for all odd γ ∈ dom(s), s(γ) := p(γ).

It is straightforward to check that under the assumptions of the above definition, p + a

extends both p and a and is, moreover, the greatest lower bound of them both.

The following comment helps clarify the definition of the ordering in Definition 8.1.1.

Lemma 8.1.6. Let β ≤ α, q ∈ Pβ, ẋ a Pcβ-name, and ϕ(x) a ∆0-formula. Then

q β ϕ(ẋ) iff (q � even) Pcβ ϕ(ẋ).

.

In particular, the property

q � (γ ∩ even) Pcγ q(γ) is an end-extension of p(γ)

of the ordering is equivalent to

q � γ γ q(γ) is an end-extension of p(γ).

The following proposition provides a type of interpolant condition between the Cohen

and direct extension (i.e., ≤∗) parts.

Proposition 8.1.7. Let β ≤ α. Suppose that q ≤β p. Let b := q � even. Then there exists

q′ ∈ Pβ so that

q ≤β q′ ≤∗β p

and

q ≤β q′ + b ≤β q.
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Crucial to our analysis of Pα is to view Pα as embedded in a type of product.

Definition 8.1.8. Let β ≤ α. We define Pcβ ⊗ P∗β as the forcing poset which consists of all

pairs (a, p) where a ∈ Pcβ and p ∈ Pβ so that a and p are compatible in Pβ, with the ordering

(a1, p1) ≤ (a0, p0) iff a1 ≤cβ a0 and p1 ≤∗β p0.

We observe that if p ∈ Pβ, then (p � even, p) ∈ Pcβ ⊗ P∗β. The next result shows that

Pcβ ⊗ P∗β is essentially a product forcing.

Lemma 8.1.9. Let β ≤ α, and fix (a, p) ∈ Pcβ ⊗ P∗β so that a ≤cβ p � even. Then (Pcβ ⊗

P∗β)/(a, p) is equal to the product forcing

(Pcβ/a)× (P∗β/p).

Since there exist densely-many conditions (a, p) in Pcβ ⊗ P∗β so that a ≤cβ p, the previous

lemma implies the following.

Lemma 8.1.10. Let β ≤ α. Suppose that H is a V -generic filter on Pcβ ⊗ P∗β. Then there

is a condition (a, p) ∈ H so that a ≤cβ p � even. Moreover, if (a, p) is any such condition

in H, then letting K := H ∩ ((Pcβ ⊗ P∗β)/(a, p)), we have that K is a V -generic filter on

(Pcβ/a)× (P∗β/p) and V [H] = V [K].

As usual in these types of analyses, there exist forcing projections from the product to

the original poset.

Definition 8.1.11. Let β ≤ α. Define the function τβ : Pcβ ⊗P∗β −→ Pβ by τβ(a, p) := p+ a.

The definition of τβ makes sense by Definition 8.1.5. It is straightforward to see that τβ

is a surjective projection mapping.

We conclude this subsection with a few remarks about cardinal preservation.

Lemma 8.1.12. Assume that 2ω1 = ω2. Then

1. for all β ≤ α with |β| ≤ ω2, |Pβ| ≤ ω2;
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2. if α = ω3, then Pα =
⋃
{Pβ : β < ω3} has size ω3 and is ω3-c.c.;

3. if α = ω3, then for all a ∈ Pcα, P∗α/a =
⋃{

P∗β/a : β < ω3

}
has size ω3 and is ω3-c.c.

8.1.2 Distributivity and Cardinal Preservation

The most challenging part of the consistency results is to verify that the suitable mixed

support iteration of interest preserves ω1 and ω2. As we show below, it suffices to prove that

the “term forcing” part P∗β is ω2-distributive for all β < ω3.

Let us briefly recall some of the details of the original Harrington-Shelah argument. We

start with a model of GCH in which κ is a Mahlo cardinal. Let G be V -generic for the

collapse Col(ω1, < κ). In V [G], define a forcing iteration 〈Pα, Q̇β : α ≤ ω3, β < ω3〉 so

that for all α < ω3, Q̇α is a Pα-name for a forcing which destroys the stationarity of a

nonreflecting stationary subset of ω2 ∩ cof(ω). Standard bookkeeping arguments show that

all such stationary sets can be handled. To prove that the forcing is ω
V [G]
2 = κ-distributive,

it suffices to verify this for all Pα with α < ω3. So fix an appropriate elementary substructure

M which contains Pα, and let π denote the transitive collapse. It suffices to show that every

condition in M ∩ Pα can be extended to a completely (M,Pα)-generic condition.

The fact that Pα is an iteration of posets adding clubs disjoint from nonreflecting subsets

of ω2 ∩ cof(ω) implies that π(Pα) is an iteration of adding clubs disjoint from nonstationary

subsets of the ordinal M ∩ κ. Hence, π(Pα) contains an (M ∩ κ)-closed, dense subset, from

which it follows that the tail of the collapse adds a V [G � (M ∩ κ)]-generic filter on π(Pα).

The image of this filter under π−1 then has a lower bound in Pα and provides the desired

completely generic condition.

In the case of our mixed support iteration, the situation is a bit more complicated. Our

preparation will be a Mitchell-style poset M; note that this is different from the countable

support preparation iteration used in [34]. In the extension by M, we define a suitable mixed

support iteration which adds Cohen reals and clubs disjoint from nonreflecting stationary

subsets of ω2 ∩ cof(ω).
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Next let M be a model as above, where M contains the suitable mixed support iteration

Pα for some α < ω3. The natural thing to try would be to argue that in V [G � (M ∩ κ)],

where G is V -generic over M , we have that π(Pα) is a suitable mixed support forcing iteration

adding clubs disjoint from nonstationary sets. However, we are only able to show that the

product π(Pcα ⊗ P∗α) forces that the collapse of a nonreflecting set is nonstationary, rather

than the smaller poset π(Pα). Nevertheless, some technical arguments will show that this

suffices to prove that P∗α is ω2-distributive, and hence that Pα preserves cardinals.

Let us now work through the relevant details from [34]. Recall that we have a fixed

suitable mixed support iteration 〈Pβ : β ≤ α〉 based on 〈Ṡγ : γ ∈ α ∩ odd〉.

Proposition 8.1.13. Let β ≤ α. If P∗β is ω2-distributive, then Pβ preserves ω1 and ω2.

Proof. Suppose that this were false, and fix a condition p ∈ Pβ which forces that either ωV1

or ωV2 is no longer a cardinal. Set a := p � even. Let H be a V -generic filter on Pcβ ⊗ P∗β
which contains the condition (a, p), and set G := τβ[H]. Then G is a generic filter on Pβ,

and p = p+ a = τβ(a, p) is in G. Thus either ωV1 or ωV2 is no longer a cardinal in V [H].

By Lemma 8.1.10, we know that V [H] = V [K], where K = K1×K2 is a generic filter over

(Pcβ/a)×(P∗β/p). Since P∗β is ω2-distributive, by assumption, we have that ωV1 and ωV2 are still

cardinals in V [K2]. Moreover, Pcβ is still isomorphic to Cohen forcing in V [K2] and hence,

being c.c.c., preserves all cardinals. Thus ωV1 and ωV2 are still cardinals in V [K2][K1] = V [H],

a contradiction.

The following proposition follows from Lemma 8.1.12.

Proposition 8.1.14. Assume that 2ω1 = ω2. Suppose that α = ω3 and that for all β < α,

P∗β is ω2-distributive. Then so is P∗ω3
.

The following proposition will be crucial in later arguments. It is to be expected, based

upon an analogy with Abraham’s analysis of Mitchell-type forcings and our product Pcβ⊗P∗β.
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Proposition 8.1.15. Let β ≤ α, and assume that P∗β is ω2-distributive. Let ẋ be a Pβ-name

for a set of ordinals of size less than ω2. Then for all p ∈ Pβ, there exists q ≤∗β p and a nice

Pcβ-name ḃ for a set of ordinals of size ω1 so that q forces in Pβ that ẋ = ḃ.

For A ⊆ ω2, we let CU(A) denote the forcing which consists of closed, bounded subsets

of A, ordered by end-extension. If A is unbounded, it is easy to check that CU(A) adds a

club subset of ω2 which is contained in A. One of the many consequences of 8.1.15 is that

Pα adds the desired filters for the club adding forcings, as stated in the next proposition.

Proposition 8.1.16. Let γ < α be odd, and suppose that P∗γ is ω2-distributive. Then Pγ+1

is forcing equivalent to Pγ ∗ CU(ω2\Ṡγ).

We now turn our attention to studying conditions under which P∗α is ω2-distributive.

Lemma 8.1.17. Let γ < α be odd. Assume that Ċ is a (Pcγ ⊗ P∗γ)-name for a club subset

of ω2 which is disjoint from Ṡγ. Let p ∈ Pγ, and let ζ̇ be a Pγ-name for an ordinal. If

(p � even, p) forces in Pcγ ⊗ P∗γ that ζ̇ ∈ Ċ, then p forces in Pγ that ζ̇ is not in Ṡγ.

Proof. Suppose for a contradiction that there is q ≤γ p which forces in Pγ that ζ̇ ∈ Ṡγ.

Let b := q � even. By Proposition 8.1.7, we may fix q′ ∈ Pγ so that q ≤γ q′ ≤∗γ p and

q ≤γ q′ + b ≤γ q.

Let H be V -generic over Pcγ ⊗ P∗γ which contains (b, q′), and set G := τγ[H], which is

V -generic over Pγ. Finally, set ζ := ζ̇[G], Sγ := Ṡγ[G], and C := Ċ[H], so that C ∩ Sγ = ∅.

Since q′ ≤∗γ p and b ≤cγ p � even, it follows that (b, q′) ≤ (p � even, p), and so (p � even, p) ∈

H. Thus ζ ∈ C, and since C ∩ Sγ = ∅, ζ /∈ Sγ. On the other hand, τγ(b, q
′) = q′ + b ∈ G

and q′ + b ≤γ q, so q ∈ G. By choice of q, ζ ∈ Sγ, a contradiction.

We need now to define a separative version of the term-forcing part.

Definition 8.1.18. Let β ≤ α. Define the relation ≤∗,sβ on Pβ by letting q ≤∗,sβ p if for all

r ≤∗β q, we have that r and p are compatible in P∗β. We will abbreviate (Pβ,≤∗,sβ ) as P∗,sβ .
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Note that q ≤∗β p implies that q ≤∗,sβ p. It is straightforward to verify that P∗,sβ is

separative and that the identity function is a dense embedding of P∗β into P∗,sβ .

The next lemma provides some details about this separative ordering.

Lemma 8.1.19. Let β ≤ α. Assume that q ≤∗,sβ p. Then

1. p � even = q � even;

2. dom(p) ⊆ dom(q);

3. for all γ ∈ dom(p), p � (γ ∩ even) forces in Pcγ that one of p(γ) and q(γ) is an end-

extension of the other.

The following proposition provides the key sufficient condition for distributivity; we will

provide a sketch of the proof.

Proposition 8.1.20. Assume that for all odd γ < α, Pcγ⊗P∗γ forces that Ṡγ is a nonstationary

subset of ω2. Then both P∗α and P∗,sα contain an ω2-closed, dense subset.

Proof. For each odd γ < α. let Ċγ be a (Pcγ ⊗ P∗γ)-name for a club subset of ω2 which is

disjoint from Ṡγ. For each β ≤ α, define Dβ as the set of conditions p ∈ Pβ so that for all

odd γ ∈ dom(p), (p � (γ ∩ even), p � γ) forces in Pcγ ⊗P∗γ that max(p(γ)) ∈ Ċγ. Note that for

all ξ ≤ β ≤ α, Dξ ⊆ Dβ and that if p ∈ Dβ, then p � ξ ∈ Dξ.

We will prove by induction on β ≤ α that Dβ is an ω2-closed dense subset of both P∗β
and P∗,sβ . Let β ≤ α be fixed, and assume that this holds for all ξ < β, noting that as a

result, P∗ξ is ω2-distributive, being forcing equivalent to an ω2-closed poset.

We first verify closure. It suffice to show that any ≤∗,sβ -descending sequence of conditions

in Dβ of limit length δ < ω2 has a lower bound in Dβ. Thus fix such a sequence 〈pi : i < δ〉.

Let a := p0 � even so that for all i < δ, by Lemma 8.1.19(1), a = pi � even.

Define the function q as follows: set q � even = a. Let

dom(q) ∩ odd :=
⋃
{dom(pi) ∩ odd : i < δ} .
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Now let γ be an odd ordinal in dom(q). By Lemma 8.1.19(3), a � γ forces in Pcγ that

{pi(γ) : i < δ} is a family of closed, bounded subsets of ω2 which are pairwise compatible

under end-extension. Thus a � γ forces that the union of this set is bounded in ω2 and closed

below its supremum. We set q(γ) to be a nice Pcγ-name for a nonempty, closed and bounded

subset of ω2 which is equal to
⋃
{pi(γ) : i < δ} ∪ {sup({max(pi(γ)) : i < δ})} if a � γ is in

the generic filter.

We now prove by induction on ξ ≤ β that q � ξ ∈ Dξ and q � ξ ≤∗ξ pi � ξ for all i < δ.

The only nontrivial case to consider is when ξ = γ + 1 for an odd ordinal γ.

So fix such a γ. Then q � γ ≤∗γ pi � γ for all i < δ. Thus by definition of Dβ, each pi

with γ ∈ dom(pi) satisfies that (pi � (γ ∩ even), pi � γ) = (a � γ, pi � γ) forces in Pcγ ⊗ P∗γ
that max(pi(γ)) ∈ Ċγ. Thus (q � (γ ∩ even), q � γ) = (a � γ, q � γ) forces in Pcγ ⊗ P∗γ that

max(pi(γ)) ∈ Ċγ for each i < δ. As a result, and since Ċγ names a club, we have that

(q � (γ ∩ even), q � γ) = (a � γ, q � γ) forces in Pcγ ⊗ P∗γ that max(q(γ)) ∈ Ċγ. By Lemma

8.1.17, we then see that q � γ forces that q(γ) is disjoint from Ṡγ. The inductive hypothesis

then shows that q � (γ + 1) ∈ Dγ+1 and q � (γ + 1) ≤∗γ+1 pi � (γ + 1) for all i < δ.

The proof of density is similar, and the full details may be found in [34].

The next lemma describes how we will use the preparation forcing (recall that our new

preparation is itself a mixed-support iteration) in proofs of the main consistency results.

Lemma 8.1.21. Assume that 2ω1 = ω2. Suppose that P∗,sα contains an ω2-closed dense

subset. Let G × H be a generic filter on Add(ω, ω2) × Add(ω2). Then in V [G × H], for

any condition (a, p) ∈ Pcα ⊗ P∗α such that a ≤cα p � even, there exists a V -generic filter K on

Pcα ⊗ P∗α which contains (a, p), and moreover, V [G × H] is a generic extension of V [K] by

Cohen forcing.

The proof of the above lemma is straightforward, and the key idea is the following: if D is

the ω2-closed, dense subset of P∗,sα from Proposition 8.1.20, then because P∗,sα is a separative

of size ω2 so that every extension has ω2-many incompatible extensions, it is equivalent to

Add(ω2, 1).
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We have one final lemma to mention in this section.

Lemma 8.1.22. Assume that for all β < α, Pβ preserves ω1. Suppose that 〈pi : i < δ〉 is a

≤∗α-descending sequence of conditions, where δ ∈ ω2 ∩ cof(ω1). Then there is a condition q

so that q ≤∗α pi for all i < δ.

The main idea for the proof of Lemma 8.1.22 is that we may find lowers bound for the

club-parts, as the stationary sets which the clubs are supposed to be disjoint from consist

entirely of cofinality ω ordinals.

8.2 Verifying SR(ω2)

In this section, we define the preparation forcing and the suitable mixed support iteration

in the extension by the preparation. Let M be the poset M0 from Definition 5.2.2.

Remark 8.2.1. We recall that for each inaccessible α < κ, letting α∗ denote the least

inaccessible above α, M � α∗ is isomorphic to

M � α ∗ (Add(ω, α∗)× Col(ω1, α)× Add(α, 1)).

Let G be V -generic over M, and in V [G] we define a sequence of posets 〈Pβ : β ≤ κ+〉.

The sequence will be a suitable mixed support forcing iteration based upon a sequence of

names 〈Ṡγ : γ ∈ κ+∩odd〉, each of which is forced in the appropriate Pγ to be a nonreflecting

subset of κ ∩ cof(ω). Definition 8.1.1 provides a recursive description of the iteration once

we specify all of the names.

In order to verify that Pκ+ preserves all cardinals, we will assume two recursion hypotheses

in V [G]. Fix a β < κ+, and suppose that we’ve defined 〈Pδ : δ ≤ β〉 and 〈Ṡγ : γ ∈ β ∩ odd〉.

Recursion Hypothesis I: For all ξ ≤ β, the poset P∗ξ is ω2-distributive (and therefore

Pξ preserves ω1 and ω2, by Proposition 8.1.13).

If we have the first recursion hypothesis for all β < κ+, then Pκ+ preserves all cardinals:

Pκ+ is κ+-c.c. by Lemma 8.1.12, and P∗κ+ is κ-distributive by Proposition 8.1.14 and hence
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preserves ω1 and ω2 by Proposition 8.1.13. Furthermore, by κ+-c.c., any nice Pκ+-name Ṡ

for a nonreflecting subset of κ ∩ cof(ω) is a nice Pβ-name, for some β < κ+. Since each

such initial segment has size κ and 2κ = κ+ in V [G], standard bookkeeping arguments show

that we can arrange that any such name Ṡ is dealt with in the course of the iteration, i.e.,

that Ṡ appears as Ṡγ for some odd γ < κ+. And finally, since Pγ+1 is forcing equivalent to

Pγ ∗ CU(κ\Ṡγ) by Proposition 8.1.16, we have that Pκ+ forces that Ṡ is nonstationary.

Maintaining the first recursion hypothesis requires that we work with a second recursion

hypothesis and also introduce some more terminology.

Definition 8.2.2. A set N in the ground model V is said to be suitable if N ≺ H(θ), for

some large enough, regular θ; |N | < κ; κN := N ∩ κ is an inaccessible cardinal; |N | = κN ;

<κNN ⊆ N ; and if M ∈ N .

If β < κ+, then we say that N is β-suitable if N is suitable, and if N contains M-names

for 〈Pξ : ξ ≤ β〉 and 〈Ṡγ : γ ∈ β ∩ odd〉.

The second recursion hypothesis is the following:

Recursion Hypothesis II: Suppose that N is β-suitable, and let π be the transitive

collapse of N [G]. Then for all γ ∈ N ∩ β, in the model V [G � κN ], π(Pcγ ⊗ P∗γ) forces

that π(Ṡγ) is a nonstationary subset of κN .

To see that these recursion hypotheses hold for all β < κ+, it suffices (see [34]) to prove

the second recursion hypothesis only in the successor case β + 1 when β is odd, and then

prove the first recursion hypothesis in an independent way. Both proofs will use the following

lemma.

Remark 8.2.3. We remark here that the analogous version of this lemma in [34] (Lemma

3.7 there) does not carry through in its entirety to our setting. The reason is that we have

added extra collapsing in our preparation (in order to ensure that APω1 holds), and these

collapsing posets will fail to be ω1-closed after adding Cohen reals.
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Lemma 8.2.4. Suppose that both recursion hypotheses hold for all γ < β and the second

holds for β. Let N be β-suitable and (a, p) ∈ N a condition in Pcβ ⊗ P∗β. Let π be the

transitive collapsing map of N [G]. Then in V [G] there exists a V [G � κN ]-generic filter K

on π(Pcβ ⊗ P∗β) which contains π(a, p).

Furthermore, letting J := π(τβ)[K], K+ := π−1[K], and J+ := π−1[J ], we have that K+

is an (N [G],Pcβ ⊗P∗β)-generic filter containing (a, p), J+ is an (N [G],Pβ)-generic filter, and

J+ = τβ[K+]. Moreover, there exists s ∈ Pβ so that for all (b, q) ∈ K+, s ≤∗β q.

Proof. We assume, by extending if necessary, that a ≤β p � even. Let π(〈Pξ : ξ ≤ β〉) =

〈Pπξ : ξ ≤ π(β)〉 and π(〈Ṡγ ∈ β ∩ odd〉) = 〈Ṡπγ : γ ∈ π(β) ∩ odd〉. We note here that by

Lemma 8.1.2, 〈Pπξ : ξ ≤ π(β)〉 is a suitable mixed support forcing iteration based upon the

sequence of names 〈Ṡπγ : γ ∈ π(β) ∩ odd〉.

The second recursion hypothesis entails that in V [G � κN ], for all γ ∈ π(β) ∩ odd,

(Pπγ)c ⊗ (Pπγ)∗ forces that Ṡπγ is nonstationary in κN , and therefore by Proposition 8.1.20,

π(P∗,sβ ) contains a κN -closed, dense subset.

The preparation iteration M adds a V [G � κN ]-generic filter L over the poset Add(ω, κN)×

Add(κN , 1). By Lemma 8.1.21, in the model V [G � κN ][L], we have a V [G � κN ]-generic

filter K on π(Pcβ ⊗ P∗β) which contains π(a, p), and V [G � κN ][L] is a generic extension of

V [G � κN ][K] by Cohen (or trivial) forcing.

We recall that τβ : Pcβ ⊗ P∗β −→ Pβ is a surjective projection mapping. By absoluteness

and the fact that π is an isomorphism, in V [G � κN ], π(τβ) is a surjective projection mapping

from π(Pcβ⊗P∗β) onto π(Pβ). Let J , K+, and J+ be defined as in the statement of the lemma.

It is straightforward to check that K+ and J+ are filters on N [G]∩ (Pcβ⊗P∗β) and N [G]∩Pβ

respectively, and that J+ = τβ[K+]. It is also straightforward, using the isomorphism π, to

check that K+ is in fact an N [G]-generic filter over Pcβ ⊗ P∗β, and similarly for J+.

By Lemma 8.1.10, we may write V [G � κN ][K] = V [G � κN ][K1×K2], where K1×K2 :=

K ∩ (π(Pcβ ⊗ P∗β)/π(a, p)) is a V [G � κN ]-generic filter on (π(Pβ)c/π(a)) × (π(Pβ)∗/π(p)).

By Proposition 8.1.20, π(Pβ)∗ contains a κN -closed dense subset. By standard arguments
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it follows that there exists in V [G � κN ][K] a π(≤∗β)-descending sequence 〈qi : i < κN〉

below π(p) which is dense in K2. Let ri := π−1(qi) for all i < κN . Then 〈ri : i < κN〉 is a

≤∗β-descending sequence of conditions in N [G] ∩ P∗β, below p, which is dense in π−1[K2].

κN has cofinality ω1 in V [G], and since both recursion hypothesis hold for all γ < β, we

know that Pγ preserves ω1, for all γ < β. By Lemma 8.1.22, we may find a condition s ∈ Pβ

so that s ≤∗β ri for all i < κN , and hence s ≤∗β r for all r ∈ π−1[K2]. It is easy to see that s

satisfies the conclusion of the present lemma.

Proposition 8.2.5. Suppose that β < ω3 is odd, and assume both recursion hypotheses for

all γ ≤ β. Let N be (β+ 1)-suitable and π the transitive collapse map of N [G]. Then for all

odd γ ∈ N ∩ (β+1), in the model V [G � κN ], π(Pcγ⊗P∗γ) forces that π(Ṡγ) is a nonstationary

subset of κN .

Proof. Since N is (β + 1)-suitable, β ∈ N , and so, by the recursion hypotheses, we have the

conclusion of the lemma for all odd γ ∈ N ∩ β. So it suffices to verify that in V [G � κN ],

π(Pcβ ⊗ P∗β) forces that π(Ṡβ) is a nonstationary subset of κN .

Fix a condition (a0, p0) ∈ π(Pcβ ⊗ P∗β), and we find an extension which forces that π(Ṡβ)

is nonstationary in κN . Assume, by extending if necessary, that a0 ≤ p0 � even in π(Pβ)c.

By Lemma 8.1.9, we know that π(Pcβ ⊗ P∗β) is equal to the product forcing (π(Pβ)c/a0) ×

(π(Pβ)∗/p0).

Let K, J,K+, J+, and s be as in Lemma 8.2.4, where (a0, p0) ∈ K. We use J+ to partially

interpret the name Ṡβ by letting S be the set of α < κN so that for some u ∈ J+, u β α̌ ∈ Ṡβ.

We claim that S = π(Ṡβ)[J ].

To see this, fix α < κN . In V [G], let D be the dense open set of conditions in Pβ which

decide whether or not α is a member of Ṡβ. By the elementarity of N [G], D ∈ N [G]. Since

J+ is N [G]-generic, we may fix w ∈ J+∩D. Let w′ := π(w), which is in π(D). Since π is an

isomorphism and by absoluteness, w′ decides in π(Pβ) whether or not π(α) = α is in π(Ṡβ)

the same way as w decides whether α is in Ṡβ. From this it is easy to see that S = π(Ṡβ)[J ].

By the choice of Ṡβ, we have that Pβ forces over V [G] that Ṡβ does not reflect to any
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ordinal in κ of cofinality ω1. Now cfV [G](κN) = ω1, and Pβ preserves this by the recursion

hypotheses. Hence Pβ forces that there is a club ċ in κN of ordertype ω1 disjoint from Ṡβ∩κN .

By the first recursion hypothesis for β, P∗β is ω2-distributive in V [G], and therefore we may

find t ≤∗β s and a Pcβ-name ċ0 so that t β ċ = ċ0. By the maximality principle for names,

we may assume that ċ0 is a Pcβ-name for a club of ordertype ω1. As Pcβ is c.c.c., we may find

a club subset d of κN in V [G] so that Pcβ forces that d ⊆ ċ0. Then t β d ∩ Ṡβ = ∅. From

this, it is straightforward to see that d ∩ S = ∅.

We now know that S is a nonstationary subset of κN in the model V [G]; we will show

that this is true in the intermediate model in which S appears. Let us use K1 ×K2 ×K3 to

denote the V [G � κN ]-generic filter added by G over Add(ω, κ∗N)× Col(ω1, κ)×Add(κN , 1),

noting that V [G � κN ][K1×K2×K3] equals V [G � κ∗N ], where κ∗N is the least V -inaccessible

cardinal above κN (recall Remark 8.2.1). Finally, let K0
1 be the generic that K1 adds to

π(Pβ)c, and let K1
1 be such that (up to an abuse of notation) K0

1 ×K1
1 = K1.

We have that S is a member of V [G � κN ][K0
1 × K3]. Since M/(G � κ∗N) is proper in

V [G � κ∗N ] by Corollary 5.3.4, we know that S is nonstationary in V [G � κ∗N ] = V [G �

κN ][K1 ×K2 ×K3]. Cohen forcing is proper, so S is still nonstationary in V [G � κN ][K0
1 ×

K2 ×K3]. Now let us use Q to abbreviate Col(ω1, κ) as computed in V [G � κN ]; this is the

same collapse as computed in the extension by AddV [G�κN ](κN , 1) as the latter poset is ω1-

closed. By Theorem 6.3.2 (the Easton-style lemma for stationary set preservation) applied

in the model V [G � κN ][K3] with respect to a π(Pβ)c-name for π(Ṡβ) and with respect to the

forcing Q, we know that forcing with Q over V [G � κN ][K0
1 ×K3] preserves stationary sets

of cofinality ω ordinals. Thus S is nonstationary in V [G � κN ][K0
1 ×K3].

To finish the proof, let (a, p) ≤ (a0, p0) in K0
1 ×K3 which forces in π(Pcβ⊗P∗β) that π(Ṡβ)

is nonstationary in κN .

We now verify that the first recursion hypothesis holds for β, which will finish the proof

that Pκ+ preserves cardinals.

Proposition 8.2.6. Let β < κ+, and assume the first and second recursion hypotheses hold
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for all γ < β and that the second holds for β. Then P∗β is ω2-distributive.

Proof. Let p ∈ Pβ be a condition which forces in P∗β that 〈α̇i : i < ω1〉 is a sequence of

ordinals. We will find s ≤∗β p which decides, in the poset P∗β, the value of α̇i for all i < ω1.

Let N be β-suitable so that N [G] contains p and 〈α̇i : i < ω1〉, and let π be the transitive

collapse of N [G]. Let K, J,K+, J+, and s be as in Lemma 8.2.4, where π(p � even, p) ∈ K.

Then (p � even, p) ∈ K+.

Let i < ω1, and we will show that s decides the value of α̇i. Indeed, letting D be the set

of (b, q) ∈ Pcβ ⊗ P∗β below (p � even, p) so that q decides the value of α̇i in P∗β, we have that

D ∈ N [G] and that D is dense below (p � even, p). Thus there exists (b, q) ∈ D ∩K+. By

Lemma 8.2.4, s ≤∗β q, and since q decides the value of α̇i, so does s.

8.3 Properties of Trees in the Final Model

We now aim to show that there exist neither weak Kurepa trees on ω1 nor special Aronszajn

trees on κ = ω2 in the extension by M ∗ Ṗκ+ . We begin with the first.

Proposition 8.3.1. There are no weak Kurepa trees on ω1 in M ∗ Ṗκ+.

Proof. Since M ∗ Ṗκ+ is κ+-c.c., it suffices to show that for each β < κ+, there are no weak

Kurepa trees on ω1 in the extension by M ∗ Ṗβ. So fix a β < κ+.

Suppose for a contradiction that there is an (M∗Ṗβ)-name Ṫ which is forced (without loss

of generality) by the empty condition to be a weak Kurepa tree on ω1. Before continuing

with the main body of the argument, we want to reduce to the case where we have an

M ∗ Add(ω, ω1)-name U̇ for a weak Kurepa tree on ω1.

Towards this end, let us momentarily step into an arbitrary M-generic extension V [G′]

of V . In V [G′], we have that Ṫ (abusing notation, this is the Pβ-name in V [G′] forced to be

equal to Ṫ ) names an object of size ω1. By Proposition 8.1.15, we can find q ≤∗β ∅ and a

nice Pcβ-name Ṫc of size ω1 so that q Pβ Ṫ = Ṫc.
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Now let X ⊆ β ∩ even be of size ω1 so that Ṫc is an Add(ω,X)-name. Let A be V [G′]-

generic over Pcβ ∼= Add(ω, ot(β ∩ even)), and write A as AX × Aβ\X , where AX is generic

for Add(ω,X) and Aβ\X is generic for Add(ω, β\X). Then we have that T is a member

of V [G′ ∗ AX ]. By Lemma 6.1.4 we know that forcing with Add(ω, β\X) over V [G′ ∗ AX ]

does not add any branches through T . Furthermore, as verified in the previous section, P∗β
is ω2-distributive in V [G′], and since Pcβ is c.c.c., P∗β remains ω2-distributive after forcing

with Pcβ. Thus forcing with P∗β over V [G′ ∗ A] does not add any branches through T . In

particular, if we force with P∗β over V [G′ ∗A] below the condition q, letting H be the generic

we obtain as a result, then we have that Ṫ [A ×H] = Ṫc[AX ] is a weak Kurepa tree on ω1.

Consequently, all of the branches of T live in V [G′ ∗AX ]. Note that since |X| = ℵ1, we have

that T lives in a generic extension of V [G′] by Add(ω, ω1) and is a weak Kurepa tree there.

Now let us return back to V . We observe that the arguments of the previous few para-

graphs demonstrate that if there exists an (M∗ Ṗβ)-name for a weak Kurepa tree on ω1, then

there exists an M ∗Add(ω, ω1)-name for such a tree. Since we are assuming that there is an

(M ∗ Ṗβ)-name for a weak Kurepa tree on ω1, we may therefore fix an M ∗Add(ω, ω1)-name

U̇ for a weak Kurepa tree on ω1.

We now proceed to derive a contradiction from this assumption. Let N be any suitable

model with U̇ ∈ N . Let G be V -generic over M, and let R be a V [G]-generic filter over

Add(ω, ω1). Let π denote the transitive collapse π : N [G] −→ N̄ [G � κN ], and let j

denote the inverse of π. Since R is V [G]-generic over Add(ω, ω1), R is also V [G � κN ]-

generic over Add(ω, ω1), and in V [G � κN ][R], we have that R = j[R]. Thus we may lift

j : N̄ [G � κN ][R] −→ N [G][R]. Let U := U̇ [G ∗ R], and observe that since U is (coded

by) a subset of ω1 < κN = crit(π), we have that π(U) = U . From this we conclude that

U ∈ N̄ [G � κN ][R].

We will next argue that forcing with the tail forcing M/(G � κN) over the model V [G �

κN ][R] does not add any branches through U . But first a comment: note here that the

Cohen generic reals added by R are not the same as those added by G at “stage” κN over

V [G � κN ]. We need to use these “top” Cohen generic reals over the intermediate model
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V [G � κN ] to realize the name U̇ .

Returning to the main thread, we have that in V [G � κN ], the tail forcing M/(G � κN) is

a forcing projection of a product A × B, where A is isomorphic to Add(ω, κ), and where B

is ω1-closed. Moreover, in the model V [G � κN ], we have that Add(ω, ω1) is c.c.c., U̇ is an

Add(ω, ω1)-name for a tree of width ≤ ω1, and that 2ω = κN > ω1. Thus by Theorem 6.3.1,

we have that forcing with B over the model V [G � κN ][R] does not add any cofinal branches

through U . Finally, subsequent forcing with A does not add cofinal branches through U , and

since A×B projects onto M/(G � κN), we conclude that U does not have any new branches

in V [G ∗R].

Now we may obtain our contradiction. Recall that U is a weak Kurepa tree on ω1 in the

model V [G ∗R]. By definition, U then has at least κ-many branches in the model V [G ∗R].

By the results of the previous paragraph, all of these branches live in V [G � κN ][R]. However,

in the model V [G � κN ][R], we have that κ is inaccessible, and since U has size ω1, there

are at most (2ω1)V [G�κN ][R] < κ-many branches through U in V [G � κN ][R], contradicting the

fact that U has κ-many branches in that model.

Proposition 8.3.2. There does not exist a special Aronszajn tree on κ = ω2 in the extension

by M ∗ Ṗκ+.

Proof. Since M ∗ Ṗκ+ is κ+-c.c., it suffices to show that for each β < κ+, there does not exist

a special Aronszajn tree on ω2 in the M ∗ Ṗβ-extension. Fix some β < κ+.

Suppose for a contradiction that there exists an M ∗ Ṗβ-name (Ṫ , ḟ) forced (without loss

of generality) by the empty condition to be a special Aronszajn tree on κ with specializing

function ḟ : Ṫ −→ ω1. Recalling that the set of β-suitable models is stationary, we may fix

a β-suitable model N so that (Ṫ , ḟ) ∈ N . Let G be a V -generic filter over M, and let π

denote the transitive collapse π : N [G] −→ N̄ [G � κN ] of N [G]. Finally, let j := π−1.

The proof will proceed by lifting j in a particular way and then showing that the tail

forcing to complete the generic on the N̄ side to the generic on the j-side cannot add branches

through some initial segment of Ṫ , a contradiction.
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Let K1 ×K2 ×K3 be the V [G � κN ]-generic added by G over Add(ω, κ∗N)×Col(ω1, κ)×

Add(κN , 1), where κ∗N is the least V -inaccessible above κN . By Proposition 8.1.20, we know

that the V [G � κN ]-generic K3 over Add(κN , 1) gives a filter which is V [G � κN ]-generic over

the poset π(P∗β/∅), and in an abuse of notation, we will use K3 to denote this V [G � κN ]-

generic filter over π(P∗β/∅). We also have by Lemma 8.2.4 that the filter j[K3] has a lower

bound in P∗β/∅; let q be some such lower bound.

Now we wish to force with (Pcβ⊗P∗β)/∅ over V [G]; recall that by Lemma 8.1.9, (Pcβ⊗P∗β)/∅

is equal to Pcβ × (P∗β/∅). Moreover, since the Cohen part of q is empty, we have that

(∅, q) ∈ Pcβ× (P∗β/∅). Thus we may force with Pcβ× (P∗β/∅) below (∅, q) to obtain a generic

Aβ ×Hβ for the product.

Next, observe that Āβ := π[Aβ] is V [G � κN ][K3]-generic over π(Pcβ). Thus Āβ ×K3 is

V [G � κN ]-generic over π(Pcβ)× π(P∗β/∅). Since j[Āβ] ⊆ Aβ and since j[K3] ⊆ Hβ (because

q ∈ Hβ is a lower bound for j[K3]), we may lift j : N̄ [G � κN ] −→ N [G] to an isomorphism

j : N̄ [G � κN ∗ (Āβ ×K3)] −→ N [G ∗ (Aβ ×Hβ)].

Let us next set T and f to be the interpretations of Ṫ and ḟ , respectively, by the generic

Iβ := τβ[Aβ ×Hβ] and let T ∗ and f ∗ be the interpretations of π(Ṫ ) and π(ḟ) by the generic

π(τβ)[Āβ × K3]. We have by the elementarity of j that j(T ∗, f ∗) = (T, f). Furthermore,

since T is an Aronszajn tree on κ in V [G ∗ Iβ] with specializing function f and since ω1

and κ are still cardinals in V [G ∗ (Aβ × Hβ)], we have that T is still an Aronszajn tree

on κ with specializing function f in the model V [G ∗ (Aβ × Hβ)]. By the elementarity of

N [G ∗ (Aβ ×Hβ)] and the fact that j is an isomorphism, we have that N̄ [G � κN ][Āβ ×K3]

satisfies that T ∗ is an Aronszajn tree on κN with specializing function f ∗. This clearly still

holds in V [G � κN ][Āβ ×K3].

Since T ∗ is a special Aronszajn tree in V [G � κN ][Āβ×K3], it in particular does not have

any cofinal branches. However, the elementarity of j and the fact that crit(j) = κN imply

that T ∗ = T � κN . Thus T ∗ does have a cofinal branch in the model V [G ∗ (Aβ × Hβ)].

We will show that this is impossible by analyzing the forcing which takes us from V [G �

κN ∗ (Āβ ×K3)] to V [G ∗ (Aβ ×Hβ)].
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We first analyze the forcing which takes us from V [G � κN ∗ (Āβ ×K3)] to V [G ∗ Āβ]. To

begin, the forcing from V [G � κN ] to V [G] is M/(G � κN), and this forcing is isomorphic to

a dense subset of

(Add(ω, κ∗N)× Col(ω1, κ)× Add(κN , 1)) ∗ Ṅκ∗N
,

where κ∗N is the least V -inaccessible above κN . As we know, Ṅκ∗N
satisfies that it is, in the

extension by M � κ∗N , a forcing projection of a product A× B, where A is Cohen forcing for

adding κ-many reals and where B is ω1-closed.

As observed earlier, in the model V [G � κN ][Āβ ×K3], T ∗ is a special Aronszajn tree on

κN . Now in the model V [G � κN ][Āβ ×K3], we have that 2ω = κN = ω2 > ω1 and that T ∗

has width ω1. Since K2 is generic for a forcing which is ω1-closed in V [G � κN ][K3], Theorem

6.3.1 implies that T ∗ has no cofinal branches in V [G � κN ][Āβ ×K2 ×K3]. Adding further

Cohen reals doesn’t change this fact, so T ∗ still has no cofinal branches in

V [G � κN ][Āβ ×K1 ×K2 ×K3] = V [G � κ∗N ][Āβ].

Now let us analyze the forcing A × B in V [G � κ∗N ][Āβ]. From the perspective of the

model V [G � κ∗N ], we have a π(Pcβ)-name Ṫ ∗c for a tree of width ≤ ω1 on the ordinal κN ,

that κN has cofinality ω1, and that Ṫ ∗c has no cofinal branches. Additionally, 2ω = κ∗N > ω1.

Since B is ω1-closed in V [G � κ∗N ], we may again appeal to Theorem 6.3.1 to see that forcing

with B over V [G � κ∗N ][Āβ] does not add any cofinal branches through Ṫ ∗c [Āβ] = T ∗. And

finally, forcing with A also fails to add cofinal branches through T ∗. Since forcing with A×B

projects to forcing with Nκ∗N
, we conclude that in V [G ∗ Āβ], there are no cofinal branches

through T ∗.

Our final task is to consider the forcing to get from V [G∗ Āβ] to V [G∗ (Aβ×Hβ)]. Since

we forced with Pcβ × (P∗β/∅) to get from V [G] to V [G ∗ (Aβ ×Hβ)], we have that the forcing

to get from V [G ∗ Āβ] to V [G ∗ (Aβ ×Hβ)] is isomorphic to Add(ω, ξ) for some ξ followed

by π(P∗β/∅) (recall that Pcβ is isomorphic to Add(ω, ot(β ∩ even))). As we have seen, forcing

with Add(ω, β) does not add branches through T ∗, and thus T ∗ has no cofinal branches in

V [G ∗ Aβ]. What is more, by the arguments of the previous section, we know that π(P∗β/∅)

142



is ω2-distributive in the model V [G], and since Pcβ is c.c.c., P∗β remains ω2-distributive in the

model V [G ∗ Aβ]. Consequently, forcing with P∗β over V [G ∗ Aβ] does not add any branches

through T ∗, and therefore T ∗ does not have any cofinal branches in V [G ∗ (Aβ × Hβ)].

However, this contradicts the fact that T ∗ = T � κN and that T is a κ > κN -tree, which

imply that T ∗ does have a cofinal branch in V [G ∗ (Aβ ×Hβ)].

Theorem 8.3.3. It is consistent from a Mahlo cardinal that SR(ω2) + APω1 + 2ω = ω3 hold

and that there are neither weak Kurepa trees on ω1 nor special Aronszajn trees on ω2.

Proof. We force with R := M ∗ Ṗκ+ . In the extension by R, we have that ω1 is still a

cardinal, κ is ω2, and all cardinals above κ are preserved. As shown in [24], APω1 holds in

the M-extension (recall that M is the poset M0 from that paper), and since Pκ+ preserves all

cardinals, APω1 still holds in the R-extension. As verified in Section 8.2, SR(ω2) + 2ω = ω3

holds after forcing with R, and as verified in Propositions 8.3.1 and 8.3.2, there are neither

weak Kurepa trees on ω1 nor special Aronszajn trees on ω2.

Remark 8.3.4. We can also obtain the above configuration, but with ¬APω1 instead of

APω1 . The idea is to use the forcing M1 from [24]. It is straightforward to see that, based

upon the arguments of [32] and the fact that the tails of the Mitchell-type posets are proper,

there exists a disjoint stationary sequence after forcing with M1. This implies the failure

of APω1 , and hence the nonexistence of special Aronszajn trees. Subsequent forcing with

the suitable mixed support iteration will still preserve cardinals and will also preserve that

there exists a disjoint stationary sequence, and hence that APω1 fails. Finally, the argument

for the non-existence of weak Kurepa trees on ω1 is simpler than the one given here, as the

preparatory forcing involves less collapsing.
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CHAPTER 9

Some Open Questions

In this final chapter we record a number of questions which we think are of interest.

The main result of the thesis is that OCAARS is consistent with 2ℵ0 = ℵ3. The methods

used in the proof seem difficult to lift in a staightforward manner to obtain larger values of the

continuum. Obtaining a value of ℵ4 seems to require expansions of our current techniques,

but any ℵn for n ≥ 4 should be obtainable once ℵ4 is. We expect that such methods would

be able to obtain 2ℵ0 = ℵα, where α ∈ [3, ω2), since then any two hulls like those used in

Chapter 4 would agree on the length of the ℵ-sequence.

Question 9.0.1. How can we build a model of OCAARS in which 2ℵ0 has the value ℵ4? Or

ℵn for any n ≥ 4? Or ℵω+1? What about various ℵα, where α < ω2?

Of course, the most general version of the above question is the following. A test case for

our methods would be obtaining 2ℵ0 ≥ ℵω2 , since then, in contrast to the previous question,

the sequence of alephs in two hulls as in Chapter 4 could be of different lengths.

Question 9.0.2. Is OCAARS consistent with an arbitrarily large value of the continuum?

And how can this be forced over an arbitrary ground model satisfying GCH, rather than L in

particular?

The methods used to obtain the Gilton-Neeman model might be useful in a number

of other cases, specifically when we want to obtain a model where 2ℵ0 is large, but where

the key constructions to ensure that the forcings are well-behaved take place over models

satisfying the CH. One of the main open questions in this area is whether or not the P-Ideal

Dichotomy, abbreviated PID (see [77]), is consistent with a large continuum.
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Question 9.0.3. Is PID consistent with 2ℵ0 > ℵ2?

A restricted version of this problem would still be of interest:

Question 9.0.4. Let PID(ℵ1) denote the restriction of PID to ideals of countable sets on ω1.

Is PID(ℵ1) consistent with a large continuum?

A question which is very closely related to the previous one concerns ideals on ω1 which

are ω1-generated. Recall that an ideal I of countable subsets of ω1 is ω1-generated if there

is a sequence of countable sets 〈Xα : α < ω1〉 which generates I (i.e., the elements of I

are exactly the subsets of the unions of finitely-many of the Xα). There are two interesting

ideal dichotomies related to such an ideal (see [3]). The first is the following: either ω1 has

an uncountable subset which is inside I or ω1 can be decomposed into countably-many sets

each of which is orthogonal to I. The other ideal dichotomy, which “flips” the dichotomy

as in the statement of PID, is the following: either ω1 has an uncountable subset which is

orthogonal to I, or ω1 can be decomposed into countably-many sets which are inside I.

Question 9.0.5. Let I be an ω1-generated ideal on ω1, and let Φ be either of the ideal

dichotomies related to I in the previous paragraph. Is Φ consistent with 2ℵ0 > ℵ2?

Of course, we’d be remiss if we didn’t mention the following question:

Question 9.0.6. Is OCAT consistent with 2ℵ0 > ℵ2?

We are further interested in seeing if many of the results from [4] can be extended to ℵ2.

Very likely, obtaining some such axiom at ℵ2 requires obtaining the original version on ℵ1

with a large continuum, and thus these questions are related to the ones discussed in this

thesis. We frame this question as follows:

Question 9.0.7. Can SOCA be generalized to ℵ2? What about OCAARS or OCAT?

The second half of the thesis concerned itself with many combinatorial properties of ℵ2.

There are a host of questions related to this which are of interest to us. With regards to the
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Eightfold Way paper, we’d first like to know how to obtain the configurations in Sections

7.2 and 7.3 from optimal assumptions (which almost assuredly is not a supercompact).

Question 9.0.8. How can the configurations in Sections 7.2 and 7.3 be forced from a weakly

compact cardinal?

Another question in this vein is whether or not we can specialize trees in the context of

forcing SR(ω2)∗. Recall that the Special Aronszajn Tree Property on ω2, denoted SATP(ω2),

asserts that there exist Aronszajn trees on ω2 and that all such are special. A question

of interest to us is the following (the author and Omer Ben-Neria believe that we have a

positive answer to the question, but we might be wrong):

Question 9.0.9. Are SR(ω2)∗ and SATP(ω2) consistent?

Next, we’d like to know just how badly the approachability property can fail in such

constructions. Let Θ denote the statement that I[ω2] contains no stationary subset of ω2 ∩

cof(ω1); recall that Mitchell ([59]) has shown that Θ is consistent from a greatly Mahlo

cardinal (see [33] for an updated account of this argument). We would like to know the

following:

Question 9.0.10. Let Φ be any Boolean combination of SR(ω2) and TP(ω2). Is Θ + Φ

consistent?

James Cummings has recently shown ([19]) that the tree property on ω2 is consistent with

the existence of a Kurepa tree on ω1 with arbitrarily-many branches. It would be interesting

to see whether this can be carried out in light of the full Eightfold Way.

Question 9.0.11. Are all Boolean combinations of the principles from [24] consistent with

a Kurepa tree on ω1 with arbitrarily-many branches? What about with the non-existence of

Kurepa or weak Kurepa trees on ω1?

As asked at the end of the Eightfold Way paper, in Question 3, we would like to know if

their argument can be carried out on many different cardinals:
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Question 9.0.12. Can the Eightfold Way be carried out on two successive cardinals, say ℵ2

and ℵ3? How about on all ℵn, for n ≥ 2?

The Eightfold Way becomes more challenging at the double successor of a singular car-

dinal and requires larger large cardinals than at the double successor of a regular cardinal.

We also echo Question 2 of their paper:

Question 9.0.13. What is the large cardinal strength of each of the eight paths of the Eight-

fold Way on κ++, where κ is a singular cardinal of cofinality ω? Can Gitik’s results from

[36] be extended to the other combinatorial principles studied in [24]? What about singular

cardinals of uncountable cofinality?

We’ve shown in this thesis that the Eightfold Way can be carried out with quite a bit

of stationary reflection on ω2. What about higher-order stationary reflection principles in

Pω1(ω2)? The first of these is WRP, which was introduced in [31]. And what about the

principle RP (see [51] for a definition, noting that this is not the same “RP” as used in [24]),

which strengthens WRP?

Question 9.0.14. Can the four paths of the Eightfold Way in which SR(ω2) holds be extended

to cover higher-order stationary reflection in Pω1(ω2)?

We also have seen in work related to this thesis that disjoint stationary sequences on ω2

can be very useful for creating models in which APω1 fails. Recently, Sean Cox (see [18])

has shown that ¬APω1 does not imply that there exists a disjoint stationary sequence on ω2,

by showing that PFA does not imply that a disjoint stationary sequence on ω2 exists (recall

that PFA does imply that APω1 fails, see [47]). We would like to know the following:

Question 9.0.15. What is the exact large cardinal strength of ¬APω1 and the non-existence

of a disjoint stationary sequence on ω2?

The relationship between stationary reflection and square principles has been investigated

very thoroughly in [40]. We restate Question 2 of their paper here, as it concerns the tension

between reflection and incompactness:

147



Question 9.0.16. Is the conjunction of �(ω2, ω) and Refl(ℵ0, S
ω2
ω ) consistent?

We also think that the following question, raised by Raghavan ([63]) is of much interest,

as it relates many of the objects which we have been studying.

Question 9.0.17. Is PID + MAω1+there exists an ω2 Aronszajn tree consistent?

148



References

[1] U. Abraham. Aronszajn trees on ℵ2 and ℵ3. Annals of Pure and Applied Logic, 24:213–
230, 1983.

[2] U. Abraham. Proper forcing. In M. Foreman and A. Kanamori, editors, Handbook of
Set Theory, chapter 5, pages 334–394. Springer Netherlands, 2010.

[3] U. Abraham. Lecture notes on the P-ideal dichotomy. Lectures prepared for the Hejnice
Winter School in the Czech Republich, February, 2009.

[4] U. Abraham, M. Rubin, and S. Shelah. On the consistency of some partition theorems
for continuous colorings, and the structure of ℵ1-dense real order types. Annals of Pure
and Applied Logic, 29:123–206, 1985.

[5] U. Abraham and S. Shelah. Isomorphism types of Aronszajn trees. Israel Journal of
Mathematics, 50(1-2):75–113, 1985.
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