
UCLA
UCLA Electronic Theses and Dissertations

Title
Feature Representation in Mining and Language Processing

Permalink
https://escholarship.org/uc/item/9g54h388

Author
Vu, Thuy

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9g54h388
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Feature Representation in Mining and Language Processing

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Thuy Vu

2017

c© Copyright by

Thuy Vu

2017

Abstract of the Dissertation

Feature Representation in Mining and Language Processing

by

Thuy Vu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2017

Professor Douglas S. Parker, Chair

Feature representation has been one of the most important factors for the success of

machine learning algorithms. Since 2006, deep learning has been widely considered for various

problems in different disciplines and, most of the time, has reset state-of-the-art results —

thanks to its excellent ability to learn highly abstract representations of data. I focus on

extracting additional structural features in network analysis and natural language processing

(NLP) — via learning novel vector-based representations, usually known as embeddings.

For network analysis, I propose to learn representations for nodes, node embeddings,

for social network applications. The embeddings are computed using attributes and links

of nodes in the network. Experimental studies on community detection and mining tasks

suggest that node embeddings can further reveal deeper structure of the network.

For NLP, I address the learning of representations at three levels: words, word relations,

and linguistic expressions. First, I propose to extend the standard word embedding training

process into two phases, treating context as second order in nature. This strategy can effec-

tively compute embeddings for polysemous concepts of words, adding an extra conceptual

layer for standard word embeddings. Second, I introduce the representations of “semantic

binders” for words. These representations are learned using categorial grammar and are

shown to effectively handle disambiguation, especially when meaning of a word largely de-

pends on a specific context. Finally, I present a three-layer framework to learn representation

for linguistic expressions — for solving the semantic compositionality problem, using recur-

ii

rent neural networks driven by categorial-based combinatory rules. This strategy specifically

addresses the limitations of recurrent neural network approaches in deciding how — and

when — to include individual information in the compositional embedding. The framework

is flexible and can be integrated with the proposed representations. I study the efficiency

of the proposed representations in different NLP applications: word analogies, subject-verb-

object agreement, paraphrasing, and sentiment analysis.

iii

The dissertation of Thuy Vu is approved.

Eleazar Eskin

Edward L. Keenan

Wei Wang

Douglas S. Parker, Committee Chair

University of California, Los Angeles

2017

iv

to my family

v

Table of Contents

1 Introduction . 1

1.1 Introduction . 1

1.2 Problems and Contributions . 2

1.2.1 Embeddings in a Network . 3

1.2.2 Conceptual K-Embeddings for Words 3

1.2.3 Embeddings in Semantic Compositionality 4

2 Background . 6

2.1 Representation in Linguistics . 6

2.1.1 Language . 7

2.1.2 Grammar . 8

2.1.3 Meaning Acquisition . 8

2.1.4 Bare Grammar . 9

2.2 Feature Representation in Machine Learning 10

2.2.1 Learning Embeddings . 11

2.2.2 Deep Neural Networks . 12

3 Node Embeddings in Network Analysis . 17

3.1 Introduction . 18

3.2 Background . 20

3.2.1 Representation Learning . 20

3.2.2 Social Network Analysis and Mining 20

3.3 Distributed Representation in Networks . 21

3.4 Embedding-based Community Detection (EBCD) 22

vi

3.4.1 Node Clustering Algorithms . 23

3.4.2 Community Detection with Weighted Network 23

3.4.3 (α; β) LInk Re-Adjustment in Networks (LIRA) 24

3.4.4 Embedding-based Community Detection 25

3.5 Mining in Social Networks . 25

3.5.1 Community Homogeneity . 25

3.5.2 Community Distance . 27

3.5.3 Community Connectors Identification 27

3.6 Experiments . 27

3.6.1 Dataset Construction . 27

3.6.2 Citation-based Author Embeddings in DBLP 29

3.6.3 Community Detection Results . 30

3.6.4 Mining in Community Data Results 31

3.7 Conclusion . 33

4 Word K-Embeddings . 41

4.1 Introduction . 41

4.2 Related Work . 43

4.3 Learning Word K-Embeddings . 44

4.3.1 Concept Annotation using Context Embeddings 45

4.3.2 Training Word K-Embeddings . 45

4.3.3 Word K-Embedding Training Workflow 47

4.4 Experiments . 49

4.4.1 Settings . 49

4.4.2 Results . 49

vii

4.4.3 Word Expressivity Analysis . 51

4.5 Conclusion . 52

5 Semantic Binder in Compositionality . 56

5.1 Introduction . 56

5.2 Background . 58

5.2.1 Principle of Compositionality . 58

5.2.2 Combinatory Categorial Grammar 59

5.2.3 Related Works in Compositionality 60

5.3 The Proposed Semantic Binder – SEBI . 60

5.3.1 Binder Embeddings for Compositionality 61

5.3.2 Word Sense Estimation (WSE) . 63

5.3.3 Semantic Binder Training . 64

5.4 Experiments . 67

5.4.1 Training Dataset . 67

5.4.2 Subject-Verb-Object Agreement . 68

5.4.3 Sentence Paraphrasing . 71

5.5 Conclusions and Future Work . 71

6 Constituent-based Compositionality . 73

6.1 Introduction . 73

6.2 Background . 75

6.2.1 Memory Mechanism using Recurrent Neural Network 76

6.2.2 Attention Mechanism . 76

6.3 Constituent-based Recurrent Neural Networks 77

6.3.1 Combinatory Layered Recurrent Unit 78

viii

6.3.2 Layered Constituent-based Propagation 80

6.3.3 Semantic Constituent Clustering . 83

6.4 Constituent-based Representation — CORE 86

6.4.1 In-context Representation for Words 86

6.4.2 Semantic Cohesion in Constituents 87

6.5 Experiments . 87

6.5.1 Training Dataset . 88

6.5.2 Baseline . 89

6.5.3 Concept-oriented RtNN with K-Embeddings 90

6.5.4 RtNN Augmented by Semantic Binder 91

6.5.5 RtNN with Propagation driven by Combinatory Rules 92

6.5.6 Three-Layer Constituent-based RtNN 94

6.6 Conclusion . 94

7 Conclusion . 96

7.1 Thesis Summary . 96

7.2 Beyond Deep Learning . 97

7.3 Conclusion . 98

References . 99

ix

List of Figures

2.1 A sample of an auto-encoder network . 13

2.2 A sample of convolution neural network . 14

2.3 A sample of recurrent neural network . 15

2.4 A sample of recursive neural network . 16

3.1 Citation Analysis in DBLP . 33

4.1 Training Word K-Embeddings . 48

4.2 Word K-Embeddings and Top-K of CBOW accuracy comparison 51

5.1 An example of CCG parse showing a derivation NP · (S\NP)/NP · NP/N ·

N/N · N · (S\NP)\(S\NP) ⇒ S . 59

5.2 Input for training representation for words and phrases 62

5.3 An example showing how words are composed 66

5.4 A CCG parse for S-V-O disambiguation tasks 69

6.1 The two types of recurrent units. 79

6.2 An example of propagation by combinatory rules 81

6.3 ToSC (a) and SoTC (b) examples for the CCG-tree in in Figure 6.2 84

6.4 An example of combinatory rules described using a binary tree. 85

x

List of Tables

3.1 Statistical Results in Computer Science . 35

3.2 Most Similar Researcher Query . 36

3.3 Community Detection Result . 37

3.4 Community Detection Result . 38

3.5 Homogeneity Analysis: In-Community (IC) and Out-Of-Community (OOC),

sorted by IC ascendingly . 39

3.6 Connectors in the Data Mining Community 40

4.1 Total embeddings and vocabulary size for different K for Wikipedia dataset.

Words with frequency lower than 5 are filtered during pre-processing. 46

4.2 Embedding count per conceptual group for K = 10 47

4.3 K-embeddings performance . 50

4.4 Performance of K = 10 in five iterations . 51

4.5 Word Expressivity Analysis: baseline vs. iteration #1 53

4.6 Word Expressivity Analysis: baseline vs. iteration #3 54

4.7 Word Expressivity Analysis: baseline vs. iteration #5 55

5.1 SVO Agreement Evaluation . 70

5.2 MSPD Paraphrasing Detection Evaluation 72

6.1 Comparison between word vector usages . 88

6.2 Baselines and Reported State-of-the-art Results 90

6.3 Baselines and Our Proposed In-context Representation of Words in RtNN . . 91

6.4 Baselines and Our Proposed Augmentation of Semantic Cohesion in Con-

stituents in RtNN . 92

xi

6.5 Baselines and Our Proposed Constituent-based RtNN 93

6.6 Comparisons . 94

xii

Acknowledgments

Thank you to Professor D. Stott Parker, my advisor and mentor since my day-0 at UCLA.

I am fortunate to be under his unique supervision. In every discussion, he patiently helped

me explore all sorts of questions and possible perspectives of a research. There has been

hundreds of these discussions over the past 67 months. One after another, I have become an

independent researcher — and a better teacher, helping 581 students in 14 quarters teaching

at UCLA. Stott is indeed my academic father.

I am indebted to my doctoral committee. I thank Professor Wei Wang for her insightful

comments in my dissertation. I learned a lot about data mining in Wei’s Big Data Analytics

class. Thank you to Professor Edward L. Keenan for the generous guidance. Ed allowed me

to sit in his Mathematical Structures in Language class, recommended relevant readings, and

especially gave excellent feedbacks about my research. I have learned to enjoy and appreciate

linguistics even more. I thank Professor Eleazar Eskin for the advice on my research and

career development. I truly appreciated his introducing me to Bioinformatics, the topic I

have been and will be reading more upon graduation.

Besides doing research, half of my UCLA time was for teaching. I thank Professor Paul

Eggert for allowing me to assist him in most quarters. I learn from and admire Paul for his

technical expertise and teaching principles. I also thank the CS department staff, especially

Steve Arbuckle, for the helps on varied matters.

I would like to thank my friends and my colleagues at I2R (Singapore), Zynx Health,

IoES (UCLA), IPAM (UCLA), and the CS department (UCLA) for their friendship and

collaboration. I thank Nguyen Do (BMAP) especially for his enormous support on providing

the computing facility.

Finally, I thank my life partner, Tram Tong, for the immense support and strongholds.

I thank my parents and siblings, for their unconditional trust, support, and prayer. This

dissertation is practically impossible without them.

xiii

Vita

2001–2005 Bachelor of Science in Computer Science, University of Science, Viet-

nam National University at Ho Chi Minh City (VNU-HCM), Viet-

nam

2005–2006 Research Assistant, University of Science, VNU-HCM, Vietnam

2006–2011 Research Engineer, Institute for Infocomm Research, Agency for Sci-

ence, Technology and Research (A*STAR), Singapore

2011–2017 Teaching Assistant, Computer Science Department, UCLA

Summer 2012/13 Data Science Intern, Zynx Health Incorporated

2014–2015 Research Assistant, Institute of the Environment and Sustainability,

UCLA

Summer 2016 Academic Mentor, Institute for Pure and Applied Mathematics,

UCLA

xiv

Publications

Thuy Vu and D. Stott Parker. 2017. Mining Community Structure with Node Embeddings.

Book Chapter in From Social Data Mining and Analysis to Prediction and Community

Detection.

Thuy Vu and D. Stott Parker. 2017. Extracting Urban Microclimates from Electricity Bills.

In AAAI 2017, Special Track on Computational Sustainability, San Francisco.

Thuy Vu and D. Stott Parker. 2016. K-Embeddings: Learning Conceptual Embeddings for

Words using Context. In NAACL 2016, San Diego.

Thuy Vu and D. Stott Parker. 2015. Node Embeddings in Social Network Analysis. In

ASONAM 2015, Paris.

Thuy Vu and Victor Perez. 2013. Interest Mining from User Tweets In CIKM 2013 Poster,

San Francisco.

xv

CHAPTER 1

Introduction

1.1 Introduction

It has been more than half a century since John McCarthy coined the term artificial intelli-

gence (AI), defining it as “the science and engineering of making intelligent machines” [MMR55].

Impressive progress has been made in AI, but many challenges remain, and we have yet to

satisfy this definition with current manmade intelligence [Tur50]. Machine learning (ML),

a field closely related to AI, studies models that teach machines to learn experience from

data for decision- and prediction-making. ML differentiates itself from AI on the objective

of learning to solve problems as taught. Despite the differences, both AI and ML generally

share one motivation — to make/teach machines to be intelligent.

Modeling intelligence is hard and, to some extent, equivalent to modeling every thing

in the universe — as well as their interaction, communication, and composition. There-

fore, knowledge representation — which includes representation of entities, their relations,

and the mechanisms for reasoning, planning, and learning — is pivotal to AI and ML re-

search [PMG97, RN03].

It is suggested that the performance of an algorithm generally depends on the abstraction

level of the representation of the objects it handles — computability-wise. For example, it is

usually straightforward for us, as human beings, to compare a “rose” and a “daisy”. However,

how to teach a machine to do this is not intuitively obvious. In practice, much attention

in AI and ML has gone into engineering varied methods to unveil different abstractive and

discriminative aspects of the data. In the computer science literature, representation learning,

or also known as feature learning, studies algorithms that generate representations from raw

1

data to be used in machine learning tasks.

The recent significant surge of interest in deep learning in the AI/ML literature is largely

due to its ability to capture more abstract and discriminative aspects in learning repre-

sentations. Deep learning (DL) includes a set of different learning architectures that learn

representations for different kinds of data, from speech and signal data, to image and video,

and to natural language.

In this thesis, I am motivated to study the adoption of deep learning and its possible

extensions in two important problems: network analysis in data mining (DM), and language

representation in natural language processing (NLP). Since 2009, DL has been widely and

increasingly considered for almost all problems in DM and NLP. However, it appears that

current proposed work in the literature tends to solve problems computationally, although it

arguably overlooks certain factors that could contradict claimed insights and novel proposed

solutions.

1.2 Problems and Contributions

I summarize the addressed problems and the thesis contributions in this section. I propose

to extend applications of deep learning in two typical data-centric areas: data mining (DM)

and natural language processing (NLP).

First, I study how the distributional hypothesis in learning representations can be ben-

eficial for DM tasks, especially on social network studies. In particular, I propose to learn

representations for nodes in networks using a strategy similar to the training of word embed-

dings. The impact of the methods is studied for community detection and network mining.

Second, I investigate different deep learning architectures, and apply these in the explo-

ration of representations for more linguistic problems in NLP. Particularly, I address the

learning of representations at three levels: words and conceptual words, word relations, and

linguistic expressions.

2

1.2.1 Embeddings in a Network

We develop node embeddings, a distributed representation of nodes, for large-scale social

network applications. We compute embeddings for nodes based on their attributes and links.

We show that node embeddings can effectively reflect community structure in networks and

thus, can be useful for a wide range of community related applications. We consider node

embeddings in two different community related mining tasks: network mining and commu-

nity detection.

First, we propose a generic integration of node embeddings for network processing in

community detection algorithms. Our strategy aims to re-adjust input networks by adding

and trimming links, using embedding-based node distances. We empirically show that the

strategy can remove up to 32.16% of the links from the DBLP (computer science literature)

citation network, yet improve performance for different algorithms by different evaluation

metrics for community detections.

Second, we show that these embeddings can support many community-based mining tasks

in social networks — including analyses of community homogeneity, distance, and detection

of community connectors researchers (inter-community outliers, actors who connect commu-

nities) — thanks to the convenient yet efficient computation provided by node embeddings

for structural comparisons. Our experimental results include many interesting insights about

DBLP. For example, prior to 2013 the best way for research in Natural Language & Speech

to gain “best-paper” recognition was to emphasize aspects related to Machine Learning &

Pattern Recognition.

This chapter is based on the papers [VP15, VP16b]. Details are presented in Chapter 3.

1.2.2 Conceptual K-Embeddings for Words

We describe a technique for adding contextual distinctions to word embeddings by extending

the usual embedding process — into two phases. The first phase resembles existing methods,

but also constructs K classifications of concepts. The second phase uses these classifica-

tions in developing refined K embeddings for words (also known as: word K-embeddings).

3

The technique is iterative, scalable, and can be combined with other methods (including

Word2Vec) in achieving still more expressive representations.

Experimental results show consistently large coverage gains on a Semantic-Syntactic

Word Relationship test set for different K settings. For example, an overall gain of 20%

is recorded at K = 5. In addition, we demonstrate that an iterative process can further tune

the embeddings and gain an extra 1% (K = 10 in 3 iterations) on the same benchmark. The

examples also show that polysemous concepts are meaningfully embedded in our K different

conceptual embeddings for words.

This chapter is based on the paper [VP16a]. Details are presented in Chapter 4.

1.2.3 Embeddings in Semantic Compositionality

We address the compositionality problem from a linguistic standpoint. Specifically, we focus

on two sub-problems: 1) modeling the functional interactions between words and phrases as

they are combined for larger linguistic expressions, and 2) representing linguistic expressions

using their constituent representations.

First, we propose a categorial-based semantic binder, namely SEBI, for short phrase

compositionality in natural language. SEBI focuses on learning the representation of func-

tional interactions between words and phrases as they are combined/composed for meaning

representation. We observe that the Categorial Grammar formalism is highly effective for

semantic computation on word sequences (e.g. phrases or sentences) and can be applied in

the same vector space as regular word embeddings. Experimental results demonstrate that

our strategy is highly competitive on multiple semantic compositionality tasks, even when

applied in a straightforward way through single-dimensional vector calculations. This gives

a way to extend current single-word and short-phrase embedding methods to represent com-

positional semantics, with many possible benefits for natural language processing. Details

are presented in Chapter 5.

Second, we address the compositionality of linguistic expressions of arbitrary length. In

general, we propose to represent an expression as a composite of embeddings via a three-level

4

compositionality framework, relying on advances in recurrent neural networks and in linguis-

tic formalisms. We argue that representation using a composite of component embeddings,

if properly structured, can offer a solid added layer of information and produce a better rep-

resentation. In particular, our strategy addresses the limitation of recurrent neural network

approaches by suggesting, driven by categorial-based combinatory rules, how — and when —

to include component information in the compositional embedding. In addition, we also show

that our framework is flexible and can be incorporated into the proposed representations.

Experimental results support our hypothesis — adding a gain in information corresponding

to compositionality. Details are presented in Chapter 6.

5

CHAPTER 2

Background

How information should be described or represented is arguably the fundamental focus of

many disciplinaries. It is important because expressive representation of information is cru-

cial for information understanding, handling, and processing. In this chapter I explore the

literature in linguistics and computer science on representations, and then explain how the

following technical chapters benefit from this study.

First, I present in Section 2.1 the background of representation in linguistics. Specifically,

I study syntactic and semantic representations, and how meanings of language expressions

are derived from these representations. In addition, I explain how the idea of bare gram-

mar [KS03] is beneficial for research on semantic representations.

Second, I study information representation, also known as feature learning, in machine

learning in Section 2.2. I briefly cover different computational techniques in learning repre-

sentations using neural networks.

Finally, I conclude the chapter with suggestions on how problems in data mining and

natural language processing can leverage on research in linguistics. In this dissertation, I will

refer to features, representations, and embeddings as conceptually interchangeable.

2.1 Representation in Linguistics

Language is a unique communication vehicle that distinguishes humans from other species.

It is considered a basis for measuring intelligence due to the large range of expressions that

can be described in language. The scientific study of language is called linguistics.

6

Research in linguistics varies fundamentally due to the complexity of human language.

From a practical standpoint, two basic questions are: 1) whether an expression is correctly

formed with respect to a certain language (syntactically); and 2) whether the content of

the expression is correctly formed with respect to a logic (semantically). Both focus on the

problem of representing knowledge.

2.1.1 Language

Formally, a language is defined by a set of all valid strings. In most cases, this set is unlimited

and defined over a limited alphabet Σ. Formally, if Σ is the alphabet, a language L over Σ

consists of all valid strings s, s ∈ L and L ⊆ Σ∗.

In human language, the alphabet is usually described a bit differently, with a lexicon —

a set of words and their intrinsic structural variants. The scientific study of words and their

lexical structure in linguistics is called morphology. Morphology considers multiple types

of variations including affix (prefix and suffix) forms, inflection, morphological structure,

compounds, reduplication, and ablaut (irregular verbs or plural nouns are forms of ablaut).

For simplicity, we may assume these are all subsumed by a complete lexicon.

Given a linguistic expression, there are three levels of analyses:

• lexical analysis – to study words and their morphology

• syntactic analysis – to study the linguistic combinations of words in a constituent

structure, considering necessary syntactic dependencies

• semantic analysis – to study how meaning of an expression is derived, considering

previous derivations.

Semantic analysis is usually considered the ultimate goal in standard natural language

processing, before speech and pragmatic analysis. The entire analytical process is usually

described with a grammar.

7

2.1.2 Grammar

The size of a language L is infinite, and thus, L can only be described formally by a set of

structural rules — grammar. In linguistics, grammar is fundamental to knowledge represen-

tation, and is considered the mental representation of linguistic knowledge. It is generally

suggested that the choice of grammatical model affects the interpretability of the represen-

tation. There are different models/frameworks of grammar, such as:

• Relational Grammar

• Arc Pair Grammar

• Categorial Grammar

• Lexical Functional Grammar

• Head-Driven Phrase Structure Grammar

• Government Binding Theory/Minimalism.

As mentioned, different formalisms describe different linguistic aspects, with different

competence toward interpretability. Yet, grammatical representation is often the sole input

for semantic analysis. Therefore, it is important to emphasize the structural representation,

defined by the grammar model, in semantic analysis.

2.1.3 Meaning Acquisition

Studies of interpreted meaning for linguistic expressions is called semantics. It is, however,

nontrivial to quantify or even qualify the meaning of an expression linguistically, and/or

mathematically, due to many factual aspects:

• individuals having different background knowledge could have different interpretations

of the same linguistic expression;

• a linguistic expression can have different parses, and thus can be interpreted differently.

8

Morever, meaning of a word can be very different in different context settings, which

makes the interpretation even less straightfoward. For example, the word “computer” in the

following situations carries different meanings:

(a) this is a computer.

(b) this is an abstract computer.

(c) this is a new computer.

(d) this is a toy computer.

(e) this is a computer program.

Beside grammatical representation, interpretation of meaning can also consider other fac-

tors, including lexical representation, syntactic relations between words and phrases, scope,

anaphora, and so on. While it is linguistically plausible to explore deep linguistic factors, I

limit the focus in this dissertation to only on the first two of these factors; they are considered

invariant in the literature of bare grammar [KS03].

2.1.4 Bare Grammar

In their monograph on linguistic invariants, Keenan et. al. discuss structural commonali-

ties between different languages under a minimal generative framework called bare gram-

mar [KS03], independent of other grammatical models.

The idea of bare grammar is based on the following observations.

• all grammatical models define a class of, usually infinite, expressions;

• complex expressions and their constituents of simplex (or atomic) expressions are dis-

tinguished.

In other words, all grammatical models admit two commonalities: 1) relations always have

structural constituents ; and 2) expressions of a language always have grammatical categories.

Formally, a bare grammar GB is a 4-tuple (V,Cat, Lex,Rule), where:

9

• V is a list of items in the vocabulary;

• Cat is a list of all possible categories that a word w ∈ V can be assigned to;

• Lex is a lexicon of the grammar, Lex ⊆ V × Cat;

• Rule is a set of transition functions f : (V ∗ × Cat)+ −→ V ∗ × Cat.

Furthermore, V ∗ × Cat is the set of all possible expressions of the grammar GB. A

language LGB is said to be generated by GB is the closure of Lex under Rule.

It has been showed in [KS03] that bare grammars obtain multiple properties:

1. Effability – bare grammar is capable of defining the same set of expressions that could

be defined by other grammars;

2. Structural Similarity – bare grammar estimates the sameness of structure assuming a

series of structure-preserving substitutions is known;

3. Invariants – bare grammar also has invariant properties, including invariant semantics.

The bare grammar formalism sheds light on how semantic information should be cap-

tured. Specifically, it suggests a proper way to represent linguistic expressions for computa-

tional tasks, including phrasal similarity, paraphrasing, and so on. In addition, the notion

of Cat is in line with the idea of distinguishing both syntactical and semantical aspects of

the representations. Analyses are studied to suggest multiple major linguistic invariants that

can be achieved using the model.

2.2 Feature Representation in Machine Learning

In machine learning, intelligence is generally measured by the degree to which a system,

or a model, can perform a task as well as a (presumably intelligent) human. Generally,

the input of machine learning algorithms is data that was created or generated by humans,

and the output is a model. The learning algorithms, however, are not able to comprehend

10

raw data directly, but instead rely on the input being converted into certain latent readable

representations in order to build a model. This step of creating the latent representation is

called feature learning.

Apparently, feature learning is the most important first step, with large subsequent im-

pact on the performance of the model. The representation is expected not only to carry

descriptive information needed to reconstruct the raw data (as much as possible), but also

to make it convenient for the algorithms to process.

Feature learning strategies have been studied a lot in the literature, ranging from manual

or empirical selection to automatic extraction of features. In general, there are two standard

strategies to learn features or representations of data. One is to extract different features

separately and develop models or multiple models based on the features. A hybrid or ensemble

strategy can be considered as a next consolidating step when there are multiple models to

combine individual models in making decisions. The other is to assume the distributional

properties of all the related features, and iteratively embed all information into a single

vector space.

2.2.1 Learning Embeddings

Typically, features are stacked in a real-value vector, called an embedding. The number of

values in the vector is also the dimension of the embedding. Formally, an embedding is a

mathematical representation of a structure, or information contained within.

Good embeddings usually exhibit high reconstructability. In other words, a good em-

bedding realizes a structure in some vector space in a way that guarantees some structural

preservation. Embedding learning algorithms are evaluated by their ability to learn highly

abstract yet computationally convenient representations. A general feature learning algo-

rithm is a map from an entity X into Rd, f : X → Rd. In general, an embedding is described

in terms of the following aspects:

11

1. Smoothness refers to the fidelity of a representation, such that:

x1, x2 ∈ X : x1 ≈ x2 ⇒ f(x1) ≈ f(x2)

In this formulation, the spatial similarity relation is preserved by f .

2. Compositionality refers to the explanatory ability of an embedding, mainly concern-

ing how an artifact’s attributes are embedded in the representation. In addition, it also

denotes the ability to combine embeddings.

3. Memory aims to preserve the trajectory of an embedding in the space Rd. Recurrent

neural networks are capable of representing this property.

4. Simplicity refers to the ability of embeddings to implement compositionality in a

straightforward compositional way. In practice, linear combinations of embeddings are

popular.

2.2.2 Deep Neural Networks

Kernel methods describe data in a top-down process using kernel functions. One advantage

of this strategy is that users can decide the expressiveness of the kernel functions to build

the covariance matrix, or Gram matrix. This is problematic, however, when the number of

training examples grows large. In general, the training time is between O(n2) and O(n3),

where n is the size of the training set.

Neural networks, on the other hand, have made significant progress, mainly thanks to

distributed learning from large training data. At a high level, neural network models aim to

simulate the brain function of mechanisms described in neuroscience studies. Generally, a

neural network consists of a set of neurons and activation mechanisms. A typical neuron has

inputs, outputs, and an activation function. The inputs and outputs are real-valued vectors

in some d-dimensional vector space. Formally, let x ∈ Rd be the input and y be the output

of a neuron. y is computed as follows:

y = f(w>x + b)

12

where f(·) is an activation function. Some popular activation functions (also known as

sigmoid functions) are:

• logistic function fσ(x) = 1
1+e−x

, where fσ(x) ∈ [0, 1]

• tanh function ftanh(x) = 1−e−2x

1+e−2x , where ftanh(x) ∈ [−1, 1]

A network of neurons defines a neural network. Let M be the set of input neurons, where

m = |M |. Each neuron mi possesses a unique set of coefficients {wi, bi}. The parameter

vectors of a neural network are W = {wi : i ∈ [1,m]},W ∈ Rm×d and b ∈ Rm.

A neural network is trained though maximization of an objective function. The result of

a training process is the network parameter W . In practice, five different architectures are

studied for different kinds of tasks.

2.2.2.1 Auto-encoder

A standard auto-encoder network is a 3-layer feedforward, non-recurrent neural network,

having two functions — encoder fθ and decoder gθ.

x1

x2

x3

x4

y1

y2

y3

y4
encode

fθ

decode

gθ

Hidden

Layer

Input

Layer

Output

Layer

Figure 2.1: A sample of an auto-encoder network

fθ(x) = sf (Wfx + bf) = h (2.1)

gθ(h) = sg(Wgh + bg) = x′ (2.2)

13

where x,x′ ∈ Rd and h ∈ Rp; fθ : Rd −→ Rp and gθ : Rp −→ Rd; θ = {Wf , bf ,Wg, bg} is the

network parameters. The hidden layer h is the feature representation or code. The training

objective is to minimize the sum of reconstruction errors — the difference between x and x′,

L(x,x′)

argminθ
∑
x∈X

L(x, gθ(fθ(x))). (2.3)

An auto-encoder is used to find an efficient coding for the input when reducing its dimen-

sion. In other words, the size of p is much less than d in practice: p� d. Besides, there are

other variants of auto-encoder, including the denoising auto-encoder (to neutralize corrupted

inputs), sparse auto-encoder, and variational auto-encoder. In NLP, auto-encoders are used

in order to extract features and train representations for words.

2.2.2.2 Convolutional Neural Network

A convolutional neural network (CNN) is a standard neural network extended across space

using shared weights. It is a multilayer neural network, and is formed by stacking layers of

different types, usually in a pipeline setting.

x1

x2

x3

x4

y1

y2

Input

Layer

Convolution

Layer

Sigmoid

Layer

Pooling

Layer

Figure 2.2: A sample of convolution neural network

A CNN is useful for connecting different tasks together through representation sharing.

In the NLP litearature, a CNN is used to model systems that share representations across

different tasks. Collobert et al. [CWB11] develop a unified framework for different tasks in

NLP, including part-of-speech tagging, chunking, and named entity recognition.

14

2.2.2.3 Recurrent Neural Network

A recurrent neural network (RtNN) is a regular neural network with loops — where the

output at time t− 1 will be the input at time t.

h1 h2 h3 h4 h5

y1

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

Figure 2.3: A sample of recurrent neural network

Recurrent neural networks are capable of maintaining an internal state when processing

input sequences of arbitrary length. Therefore, the RtNN is useful for NLP tasks that require

deep modeling of languages. The standard RtNN has a problem of a vanishing gradient if the

input sequence is too long. Long-short term memory (LSTM) and the Gated Recurrent Unit

(GRU) are the most popular models that use gates to control the problem. In Chapter 6, we

propose a generic improvement for both of these models.

2.2.2.4 Recursive Neural Network

The Recursive neural network (RsNN) is also popular in natural language processing since it

can efficiently learn structure through traversing the network in topological order. In general,

weights are shared among neurons in the network in a recursive manner.

The RsNN is capable of processing a network-structured input. It is usually considered

as a generalization of RtNN using the observation that sequential structure of RtNN is a

special network structure. We think, however, this is only true to the extent of the structure

propagation. In particular, although a sequence can be seen as a special case of a tree

structure, the network architecture in RtNN is not a special case of those in RsNN. In

our studies, directly specializing computations of RsNN for RtNN does not prove to be

15

O

y

A1

h12

x1 x2

x3

A2

h4567

x4

A3

h567

x5
x6

x7

Figure 2.4: A sample of recursive neural network

effective; while imposing tree-structure on top of RtNN models consistently improves learning

performance.

16

CHAPTER 3

Node Embeddings in Network Analysis

We develop node embeddings, a distributed representation of nodes, for large-scale social

network applications. We compute embeddings for nodes based on their attributes and links.

We show that node embeddings can effectively reflect community structure in networks

and thus, be useful for a wide range of community related applications. We consider node

embeddings in two different community related mining tasks.

First, we propose a generic integration of node embeddings for network processing in

community detection algorithms. Our strategy aims to re-adjust input networks by adding

and trimming links, using embedding-based node distances. We empirically show that the

strategy can remove up to 32.16% of the links from the DBLP (computer science literature)

citation network, yet improve performance for different algorithms by different evaluation

metrics for community detection.

Second, we show that these embeddings can support many community-based mining tasks

in social networks — including analyses of community homogeneity, distance, and detection

of community connectors (inter-community outliers, actors who connect communities) —

thanks to the convenient yet efficient computation provided by node embeddings for struc-

tural comparisons. Our experimental results include many interesting insights about DBLP.

For example, prior to 2013 the best way for research in Natural Language & Speech to gain

“best-paper” recognition was to emphasize aspects related to Machine Learning & Pattern

Recognition.

17

3.1 Introduction

Mining of network data has gained great importance in recent years due to the significant

developments in online social networking services and the wide applicability in different

academic disciplines [FG, Geh09]. After decades of development on better mining algo-

rithms [Han05], scalability has become the decisive factor in recent data science efforts.

For example, network approximation has been explored as one solution for computational

infeasibility in large network analysis problems, including detecting communities using be-

tweenness centrality in networks of several thousands of nodes (or more) [RK14] and influence

propagation in large social networks [GBL10].

Recently, the community in artificial intelligence (AI) and machine learning (ML) has

made great progress in training representations using large artificial neural networks in a

reasonable amount of time [HOT06]. This has enabled many applications and also spawned

new research in machine learning areas involving deep learning using neural networks. Dis-

tributed representation learning using recurrent neural networks is one successful beneficiary

of this research. Techniques in distributed representation learning have almost instantly set

many new state-of-the-art records. More impressively, recent advances have shortened neu-

ral network training times for large data to reasonable levels. One recent example is the

reduction of learning time for word representations training on 6 billion words to one day

with roughly 300 cores [MCC13a], a decrease from 2500 cores in 2011 [CWB11] (more than

a factor of 8) without significant compromise in performance.

Adoption of recurrent neural networks for distributed representation learning began early

and is still gaining attention in many fields in computer science, including computer vision,

speech recognition, and natural language processing (NLP). In NLP, deep learning has been

adopted rapidly and in diverse ways to find better distributed representation for words, also

known as word embeddings. Word embeddings have been successfully integrated in many

NLP problems, in areas such as part-of-speech tagging and machine translation [CWB11],

dependency parsing [LG14a] [CZZ15], and even sentiment analysis [SPW13] with impressive

results. Deep representation learning is also studied in speech recognition [HCC14] and image

18

processing [LSL14].

To the best of our understanding, few attempts have been made to apply neural net-

works for distributed representation learning in social network analysis and mining. Pre-

viously, we have presented applications of node embeddings in community-based network

analysis [VP15]. In this paper, we extend our previous work in analyzing applications of

node embeddings to the community detection problems. Our contribution is three-fold:

1. We introduce a simple yet generic method to learn embeddings for nodes in a network.

Specifically, we adapt Skip-gram context handling algorithm for words in natural lan-

guage processing to learn embeddings for nodes based on both their connectivity in

the network and their own attributes.

2. We propose to use the learned embeddings to re-examine links in social networks. In

particular, we employ embedding-based similarity metrics between nodes to re-adjust

networks – adding new potential links and discarding distance-based irrelevant links.

We experimentally show that newly re-adjusted networks can be beneficial in standard

link-based community detection algorithms. We hypothesize that many algorithms on

networks can do a better job when nodes are better spaced and links are more relevant.

3. We also show how node embeddings can be easily considered for mining tasks that

require computing of similarity in networks, including community homogeneity, dis-

tance, and identification of community connectors (nodes with the important property

of connecting communities). By treating research disciplines as communities, many in-

teresting findings about the computer science literature have emerged from this work.

In addition, we construct ground truth for community detection in the computer sci-

ence literature, DBLP, including best paper annotation in different conferences over the

years for our experimental evaluations. We position our research with respect to distributed

representation learning and community-based mining in social networks in Section 3.2. We

then present our proposed node embeddings training in Section 3.3. We show how link

re-adjustment and community-based mining are beneficial from the learned embeddings in

19

social networks in Section 3.4 and 3.5 respectively. Our empirical studies are presented in

Section 3.6, followed by conclusions in Section 3.7.

3.2 Background

3.2.1 Representation Learning

This paper is related to recent studies in learning distributed representations, especially

in natural language processing (NLP). Distributed representations of concepts, known as

embeddings, are usually encoded by high dimensional real-valued vectors. In general, the

embeddings are learned through optimization of an objective function automatically on large

volumes of unannotated data.

In NLP, neural-based language models represent language by embeddings of words in

a high dimensional vector space. The learned word embeddings are then introduced for

certain tasks that require word-based comparisons. Mikolov et. al. proposed continuous bag-

of-words (CBOW) and Skip-gram, the current state of the art models [MCC13a]. Both

are implemented and available from the word2vec project page: code.google.com/p/

word2vec/. The main difference between these two models is in whether the objective is

to learn representations to predict words (CBOW) or contexts (Skip-gram).

Our node embedding learning model is adapted from word2vec. We consider the Skip-

gram for its sensitivity in dealing with low connection nodes, which is crucial when dealing

with large social networks. Our work is also related to other research in learning neural-based

language models [CWB11], neural word embeddings [LG14a, LG14b], word embeddings for

speech recognition [BH14], and feature embeddings for dependency parsing [CZZ15].

3.2.2 Social Network Analysis and Mining

In recent years, the development of online social services has brought significant attention

and rapid advances to studies in social network analysis and mining. Among different social

network applications, community detection remains important because structural informa-

20

code.google.com/p/word2vec/
code.google.com/p/word2vec/

tion is fundamental for large scale network analysis and mining. Community detection in

networks has been extensively studied in the literature. Algorithms for this problem can be

classified in three approaches with respect to the resources they rely on.

The first and most popular approach is to maximize distinctions in density among commu-

nities using network connectivity. For example, the algorithm proposed in [NG04] maximizes

modularity score for a community setting of the network using edge-betweenness centrality.

Even though this is a reliable method for best performance — aiming to maximize the eval-

uation metrics directly — it does not scale for networks with thousands of nodes due to high

computation cost in repeated recomputation of edge betweenness after each iteration.

The second approach considers node-based features to determine communities. One exem-

plary work for this approach is [THP08], which developed the SNAP algorithm for grouping

nodes using their attributes and relations in node connections. Node relations are among the

identifying features for nodes, but are not relevant for the density measures considered in

the previous approach. It is, however, worth noting that this approach performs best with

sparse networks, where the network’s degree distribution is largely uniform and the density

is flat. It may not be effective for a regular social network when degree distributions follow

a power law [CSN09].

The third approach is a hybrid of the previous two. Existing works on this approach

include [RFP12, SYH09, YJC09, ZCY09]. In this paper, we suggest a strategy to bridge

methods from the aforementioned two approaches. Thus, our proposed method should be

classified in this category. Indeed, our node embeddings are basically learned from node

descriptions, including attributes and relations with neighbors. And algorithms in the first

approach can perform density-based community detection with similarity scores derived from

the learned embeddings.

3.3 Distributed Representation in Networks

We present our proposed adaptation of the Skip-gram model for node embeddings train-

ing in this section. In general, we consider node attributes and links as context in a tuple

21

(node, context) that we use to describe nodes of a network.

Formally, let G(V,E,A) be a network with set of nodes V and set of edges E. Edges

in E can be of arbitrary annotated type in a heterogeneous information network [SH12].

In addition, every node vi ∈ V is associated with descriptive attributes αi ∈ A, αi =

{a1; a2; · · · a|αi|}. Let D be the training input describing V , denoted as {(vi, ci)}|V |i=1, such

that ci = (αi, {vj : (vi, vj) ∈ E}). The objective is as follows:

max
xv ,xc

 ∑
(v,c)∈D

log σ(xc · xv) +
∑

(v,c)∈D′
log σ(−xc · xv)

where σ(x) = 1/(1 + e−x) and xv ∈ Rd is embedding of node v. D′ is generated from D

through a negative sampling process. Specifically, (vi, ci) ∈ D′ means there exist indices x

and y such that (vi, cx|x 6= i) ∈ D, (vy, ci|y 6= i) ∈ D, and (vi, ci) /∈ D.

The training process maximizes the objective via a stochastic-gradient process. The out-

put of the training includes embedding xvi for each vi and embedding xcj for each context

cj. These embeddings for vi and cj should be proximally close if (vi, cj) ∈ D. As a result, two

nodes sharing the same context should also be in close proximity to each other. The proximity

between nodes can be estimated using Euclidean distance between their embeddings.

3.4 Embedding-based Community Detection (EBCD)

Two factors that define community are the connectivity density and the topical similarity of

the vertices in the community. In the literature, many algorithms focus on the former through

maximizing the community density by grouping vertices to maximize some graphical metrics,

usually modularity. However, this might not yield satisfactory results in some applications

when vertex similarity is more important. In addition, density-based algorithms usually suffer

from computational infeasibility as the network size increases [RK14].

The immediate utility of node embeddings is the vector-based comparison of nodes in the

network. This comparison has been proven effective in the NLP literature as we introduced

earlier. Moreover, training of the embeddings can scale well and can be performed in an online

setting. This benefits in handling online data in a social network. Finally, a wide range of

22

descriptive features can be embedded in the same vector space, which makes comparisons

feasible for networks of different types.

We consider three different ways to incorporate this similarity in community detection

algorithms.

3.4.1 Node Clustering Algorithms

We consider nodes to be located independently in a d-dimensional space and assume no

connections between nodes. We basically remove all edges and apply a vector quantization-

based clustering algorithm to group vertices into K different groups depending on their

proximity. Many clustering algorithms can fit this setting. For example, K-means and its

variations including K-medians and K-medoids can be a good fit, depending on the nature

of data. We consider K-means our base clustering algorithm in this paper. The basic idea of

this algorithm is to partition a set of n observed data entities into K different clusters using

proximity scores.

Even though the algorithm itself has some merit and the embeddings are proven repre-

sentations, it is unsual for this method to yield impressive results. The biggest problem is

its lack of consideration for network connectivity.

3.4.2 Community Detection with Weighted Network

We consider incorporating the distances between nodes directly into the network — as net-

work weights. The literature shows that most community detection algorithms can handle

weighted networks [FL09]. If an algorithm does not, however, it is still possible to consider

weights by converting the network into unweighted multigraph format [New04]. This con-

version allows multiple edges between two nodes.

Since the distance between embeddings means dissimilarity (t ≥ 0), it is usually necessary

to convert it into a similarity (s ≥ 0) network before passing it into certain algorithms. There

are many ways to convert between two metrics. Some standard conversion methods include:

23

• s = 1− t, this conversion is only applicable when t ∈ [0; 1]

• s = t−1, similarly, this conversion is straightforward and requires t > 0

• s = (1 + t)−1, this conversion is similar to s = t−1 without conditioning on t

• s = e
−β·t
std(t) , this is known as the heat kernel and can be simplified as follows:

• s = e−t
2

Adding weights into the network does encourage the algorithms to group closer nodes

into the same community. However, this modification might not result in big differences

in outcome since the algorithm itself still considers dense connection its main objective

function. In other words, if the connectivity structure of the network remains unchanged,

little difference in outcome can be expected.

3.4.3 (α; β) LInk Re-Adjustment in Networks (LIRA)

This strategy aims at resolving both of the above-mentioned weaknesses through combina-

tion. The direct clustering strategy has its own merits in combining nodes through their

similarities. However, simply embedding distances in the network shows little effect when

the network is sparse. Therefore, we propose to use grouping results from node clustering

algorithms to re-adjust connectivity in the network. Specifically, we consider two operations

on network edges:

• disjoin two nodes, removing the in-between edge, if they belong to two distant groups

given by a clustering algorithm. The threshold α% means that nodes belonging to the

top α% most-distant communities should be disjoined. Distance between communities

is computed using the method in section 3.5.2.

• join two nodes if they belong to clusters that are immediately adjacent to each other.

Each node is joined with the top β% such nodes.

24

3.4.4 Embedding-based Community Detection

Algorithm 1 presents our proposed integration of the network pre-processed by LIRA with a

standard community detection algorithm, namely Embedding-based Community Detection

(EBCD). This integration is generic and makes it easy for users to consider their favorite

algorithms for clustering (as in line 2) and community detection (as in line 5).

Although LIRA networks are used in EBCD in this paper, we believe EBCD is also suited

for other kinds of network analysis applications.

3.5 Mining in Social Networks

We present three applications of node embeddings in this section. First, we analyze homo-

geneity of communities in a network to study their concentration. Second, we propose to

compute distance between communities. Last, we identify connectors of communities in a

network. All computations for these applications rely on node embeddings to derive node

similarities.

3.5.1 Community Homogeneity

Homogeneity for a community represents the degree of closeness of its members. Indeed,

distances between members in a community reflects not only their topological structure but

also their attributed dissimilarity. We define the homogeneity h(·) of a community c by the

variance of all mutual distances:

h(c) =

 |Ec|∑
i=1

pi · (di − µc)2
1/2

Here µc =
∑|Ec|

i=1 pi · di is the mean of all distances in the community.

25

Algorithm 1 Embedding-based Community Detection

1: procedure EBCD(G(V,E), eV , α, β)

2: K ← clustering(eV) . e.g. K-means

3: (D, J)← LIRA(G,K, α, β)

4: G′ ← G(V,E −D + J)

5: C ← ComDet(G′) . a generic community detection algorithm

6: return C . community assignments

7: end procedure

8:

9: procedure LIRA(G(V,E), K, α, β)

10: D ← ∅

11: for all e ∈ E do

12: (vf , vg)← e . get both ends of e

13: cvf ← K(vf) . get cluster of vf

14: cvg ← K(vg) . get cluster of vg

15: if cvf or vg ∈ the α% most distant to cvg or vf then

16: D ← D + e . include e into D

17: else if cvf or vg ∈ the β% most related to cvg or vf then

18: J ← J + e . include e into J

19: end if

20: end for

21: return (D, J)

22: end procedure

26

3.5.2 Community Distance

There are many ways to define distance between two groups of entities. Distances in this

paper consider all possible connections between two communities. Specifically, our distance

between communities is the average total distance of all members. Formally, the distance

d(·, ·) between two communities Ci and Cj is defined as:

d(Ci; Cj) =

∑
(u;v)∈Ci×Cj d(u; v)

|(u; v) ∈ Ci ×Cj|

where u and v belong to community Ci and Cj respectively.

3.5.3 Community Connectors Identification

Finally, we define a connector of a community Ci to community Cj as a node v ∈ Ci that

is closest (having smallest average distance) to all nodes in Cj. This is a type of outlier that

sits between communities. In other words, the set of connectors is:

c(Ci,Cj) = {v ∈ Ci : d({v}; Cj) = mink∈Cid({k},Cj)}

Unlike influencers or leaders, community connectors are a type of inter-community outlier,

and thus, not necessarily well-known. They usually play significant roles in a social network,

especially in increasing communication among communities.

3.6 Experiments

We present our experimental studies for our node embeddings in this section.

3.6.1 Dataset Construction

We consider the DBLP citation network compiled by aminer.org in our experiments. We

downloaded the version released in September 2013 (arnetminer.org/lab-datasets/

citation/DBLP_citation_Sep_2013.rar). This dataset consists of 2,244,018 papers

27

aminer.org
arnetminer.org/lab-datasets/citation/DBLP_citation_Sep_2013.rar
arnetminer.org/lab-datasets/citation/DBLP_citation_Sep_2013.rar

and 2,083,983 citation relationships for 299,565 papers (about 7 citations each). Each paper

has title, authors, publishing venue, abstract, and citations.

We classify all papers and authors into fields in computer science. We consider 24 research

fields compiled by Microsoft Academic Search (academic.research.microsoft.com).

In each field, a list of related conferences, or publishing venues, is provided. We have a total

of 2,695 different publishing venues in computer science classified into 24 different research

fields.

It is not straightforward to align these research fields to aminer.org’s 8,881 publishing

venues. We assign research fields for each of these venues using text classification on titles,

and use these to build our community dataset. Specifically, we follow two steps:

1. We leverage clean alignments (exact matching) between two lists for training data for

title classifiers. Altogether 798,293 papers in 2,123 different publishing venues have a

cleanly-assigned field (∼81.8%). We use this as training set for string classification of

titles — training 24 Naive Bayes classifiers for 24 fields using the Natural Language

Toolkit (nltk.org). These classifiers share the same feature set of the 4,572 most

frequent words, compiled by unifying the top 1,000 most frequent words in each field

(with English stopwords removed). This vector size is large and representative for our

classification tasks. Finally, each classifier is trained with the positive samples against

the a random set of negative samples having a size of 5 times the number of positive

samples to sharpen its discrimination against false classifications.

2. We assign fields to a venue by identifying the most popular field assigned to its papers

though plurality voting. In addition, fields for 1,431,652 unclassified papers are assigned

via their venues. Similarly, voting is also used to assign authors to fields as members.

An author can be a member of a single field, while still being an author in multiple

fields. There are 1,260,485 authors assigned memberships in 24 research fields in our

dataset.

In addition, we also tag best papers in this dataset. We use the list of best paper awards

28

academic.research.microsoft.com
aminer.org
nltk.org

since 1996 consolidated by Jeff Huang (jeffhuang.com/best_paper_awards.html).

Table 3.1 displays the statistics for our annotated community dataset. This dataset is useful

for data mining studies on Computer Science research.

3.6.2 Citation-based Author Embeddings in DBLP

We study the citation networks of authors in different fields in DBLP. For each paper, we ex-

tract two lists of authors: the paper authors (citers) and the authors of citing papers (citees).

All possible connections between two author lists are extracted and passed to the represen-

tation learning in order to learn citation-based author embeddings. Embeddings for each

author are the outcome of the learning process. More importantly, the proximity between

authors denotes the similarity of their citing behavior. Presumably researchers working in a

close community should exhibit high similarity (low distance) in citing behavior.

Each citation-based author embedding is a vector of 200 real numbers. We also filter out

authors having a total of fewer than 500 citations in all their papers.

One immediate result of the learned embeddings is the ability to query most similar

embeddings using Euclidean distance. In particular, our embeddings reflect citations from

researchers to researchers, so most similar should mean high overlap in citing behavior.

This shows high efficiency of the embeddings since the size is limited to 200 instead of

the total number of researchers in the naive strategy. In addition, the embeddings can also

capture other different aspects of citation activities. This provides us a tool for similarity

queries. We denote e(.) the embedding representation of an actor. Table 3.2 shows a query

example of the five researchers most similar to Christos Faloutsos, who has reportedly made

5,239 citations to 5,060 different researchers as of 2013. Christos Faloutsos is also one of

the leading scientists in the “Data Mining” field. The first half of Table 3.2 shows that his

citations largely overlap with many other leading researchers in “Databases”. This is not

a surprise since these two fields are historically related. In the second half of Table 3.2, we

display Christos Faloutsos’s top five most similar researchers after subtracting the embedding

of Philip S. Yu, another famous researcher in “Data Mining”. Interestingly, this reveals that

29

jeffhuang.com/best_paper_awards.html

Christos Faloutsos shares significant interests with researchers in Computer Vision, especially

in content-based retrieval.

In the following subsections, we continue to present experimental results using the re-

sulting embeddings for other mining tasks.

3.6.3 Community Detection Results

In this section, we present the evaluation of our proposed strategy for community detec-

tion, EBCD. We consider K-means for clustering and five different algorithms for com-

munity detection: Fast Greedy [New03], Walk Trap [PL05], Leading Eigenvector [New06],

InfoMap [RB08], and Multi-level [BGL08].

Our evaluation metrics include:

• Variation Inf. – variation of information; lower is better.

• Normalized MI – normalized mutual information; higher is better.

• Split-Join – node-based edit distance between two settings; lower is better.

• Adjusted Rand – Rand considers grouping chance; higher is better.

• Modularity – division strength of a network into modules; higher is better.

Table 3.3 and Table 3.4 present our results. We consider standard outputs of these com-

munity detection algorithms on original unweighted networks as baselines, presented in the

first column Baseline in Table 3.3. The next column, Weighted, show the results on networks

with edges weighted by the embedding distance of two end nodes. Underlined results denote

better scores between Baseline and Weighted. As seen, results on weighted networks are

mostly better than the baseline’s, winning 21/25 comparisons.

The following two columns present the results of EBCD in two different parameter settings

of (α, β) for LIRA. The second setting (α = 0.7 and β = 0.2) is harsher than the first one

(α = 0.2 and β = 0.2) since a large amount of edges are filtered out. Specifically, of the

30

724,301 links in the original network, 257,559 (∼35.56%) and 109,854 (∼15.17%) links are

filtered out with α = 0.7 and α = 0.2 respectively. After that, another 24,986 (∼3.4%) and

27,650 (∼3.8%) links are introduced with α = 0.2 for these two settings.

As seen, results of EBCD outperform Baseline and Weighted in 16/25 comparisons, which

implies that applying LIRA on networks as preprocessing for community detections can not

only simplify the network structure thus resulting in faster computation, but also improve

the overall performance when many distance-based irrelevant links are filtered out. Among

five algorithms are considered, Walk Trap, Leading Eigenvector, and InfoMap usually yield

best performance, which is in accordance with previous benchmarks [FL09, OLC11]. Finally,

none of EBCD results could produce better performance in modularity comparisons. In other

word, high modularity is only recorded when algorithms consider the full network, in either

the original or our weighted networks. There are multiple reasons for this outcome; however,

we think this is reasonable considering the modularity score of 0.381 of the ground truth,

shown in Table 3.4.

In Table 3.4, we compare community detection results of InfoMap with K-means, by

ignoring all link information (as presented in Section 3.4.1), and the ground truth. The

results support our hypothesis that even though we cannot discard all links in networks for

community detections, we can apply adjustments on links for better results. In addition,

the results in Table 3.3 and Table 3.4 indicate that simply maximizing network modularity

might not be the best objective function for real social networks.

3.6.4 Mining in Community Data Results

Table 3.5 shows the homogeneity score for inbound citations to a research community (IC),

and outbound citations to communities outside (OOC). The IC can be interpreted as the

inner diversity in a community. We record comparable high homogeneity OOC scores for

most communities. This shows that mutual communication among the fields is highly diverse.

The result also indicates that Machine Learning & Pattern Recognition community is very

selective in citing papers from outside. At the other extreme, it is interesting that, though

31

sitting at different extremes in IC score ranking, Scientific Computing and Hardware &

Architecture are the top two fields in citing outsiders. This might be explained by their

research results being usually inspired and applied outside the community. The IC scores

also yield many interesting insights. For example, the Data Mining community has many

different and independent problems, and thus community communication is less converged;

while its sister field Natural Language & Speech community (N.L.S.) is very connected and

focused on languages.

Second, we analyze the distance between communities in order to understand inter-field

communication, and the OOC homogeneity score. For each community, we visualize its top

three citing buddies (see Figure 3.1a). The visualization indeed provides many insights.

For example, we can see that N.L.S. people frequently communicate with Bio-Informatics

colleagues, while favorite buddies of Human-Computer Interface are in Computer Graphics

and N.L.S. Each community provides insights of this kind.

In addition, we compare regular citations and impactful citations. By ‘impactful’ we mean

pivotal works selected as best papers in conferences. In N.L.S., to our surprise, the impactful

citations were to Machine Learning, World Wide Web, and Programming Languages. This

could suggest ‘impactful’ research trends to follow. Another interesting impactful citation

is from Hardware & Architecture to Security & Privacy, suggesting increasing interest in

security. Also, Vision research might consider greater focus on Human-Computer Interaction

for real-life impact.

Finally, we present some examples for community connectors in Table 3.6, for the Data

Mining community. These authors could be considered outliers to the extent that they work

between the two communities, or that their work is related to multiple research fields. For

example, David A. Cieslak is a central researcher in Data Mining but has interests in a

number of other fields, with researchers in different disciplines. Another example is Jianhui

Chen. He is an active researcher in Data Mining with 30 publications (6 from KDD). At

the same time, he is also working on dimensionality reduction and structural regulariza-

tion, with papers in CVPR 2007, ICML 2009, and NIPS 2011. These works are commonly

32

(a) Regular citation in 24 fields in DBLP (b) Best-paper citation in 24 fields in DBLP

Figure 3.1: Citation Analysis in DBLP

cited by the Computer Vision community. Interestingly, Shunkai Fu is connector for both

Human-Computer Interaction and Machine Learning & Pattern Recognition. Shunkai Fu is

also a founder of many mobile startups. In fact, these community connectors share similar

motivations with impactful works above — trying to connect different research disciplines.

3.7 Conclusion

This paper reports on our development of node embeddings, an adaptation of representation

learning, for use with nodes in social networks. Representation learning methods have been

the source of impressive results in a variety of fields, but not social network analysis to our

knowledge. We set out to investigate the successfulness of this approach here.

Essentially node embeddings represent a network in a d-dimensional vector space, in

which each node is located independently. Links in networks are re-adjusted via our pro-

posed EBCD using proximal measures between clusters of link’s nodes. Gains recorded in

community detection tasks on the resulting network indicate that our strategy can effectively

re-adjust links using node embeddings in large network for more informative analysis and

mining performance.

33

In addition, this paper also reports on large-scale experiments with a dataset covering

the computer science literature. We implemented node embeddings for the DBLP citation

network prior to September 2013, a network with over 2 million papers and over 2 million

citations on about 300,000 papers, using 200-dimensional vectors in the representation of

each node. The experimental results proved that node embedding is definitely useful, not

only in social network analysis but also in general network analysis and mining.

34

Table 3.1: Statistical Results in Computer Science

Computer Science Field #Member #Author #Paper

Algorithms & Theory 134,219 984,720 433,250

Artificial Intelligence 42,623 272,911 100,167

Bioinformatics & Computational Biology 32,896 126,921 43,481

Computer Education 9,177 40,551 15,160

Computer Vision 21,539 153,613 68,446

Data Mining 4,294 37,101 12,909

Databases 25,610 162,345 59,139

Distributed & Parallel Computing 22,338 161,578 53,603

Graphics 11,809 64,061 21,493

Hardware & Architecture 34,752 188,350 61,125

Human-Computer Interaction 209,087 748,969 262,602

Information Retrieval 14,713 81,586 26,056

Machine Learning & Recognition 19,675 117,681 40,575

Multimedia 19,638 110,776 35,842

Natural Language & Speech 26,989 149,874 53,617

Networks & Communications 257,752 1,220,809 431,104

Operating Systems 1,261 9,906 3,121

Programming Languages 14,655 93,974 48,572

Real-Time & Embedded Systems 279,306 946,254 328,979

Scientific Computing 4,922 18,189 7,066

Security & Privacy 16,560 82,131 31,265

Simulation 3,635 14,348 4,995

Software Engineering 38,863 173,551 63,863

World Wide Web 14,172 68,034 23,515

Total 1,260,485 6,028,233 2,229,945

35

Table 3.2: Most Similar Researcher Query

Top “e(Christos Faloutsos)” Field Distance

1 Hanan Samet Algorithms 0.958

2 Caetano Traina Jr. Databases 0.954

3 Thomas Seidl Databases 0.953

4 Hans-Peter Kriegel Databases 0.952

5 Christian Böhm Databases 0.952

“e(Christos Faloutsos)\e(Philip S. Yu)”

1 Hans-Peter Kriegel Databases 0.353

2 Edwin R. Hancock Vision 0.334

3 David A. Forsyth Vision 0.327

4 Thomas S. Huang Vision 0.326

5 Alberto Del Bimbo Networks 0.323

36

Table 3.3: Community Detection Result

Algorithm Metric Baseline Weighted (0.2; 0.2) (0.7; 0.2)

Fast Greedy, 2003
O((E + V)× V)

[New03]

Variation Inf. 2.611 2.696 2.552 2.598

Normalized MI 0.190 0.239 0.256 0.267

Split-Join 5,018 5,394 4,788 5,061

Adjusted Rand 0.086 0.098 0.123 0.133

Modularity 0.287 0.366 0.312 0.345

Walk Trap, 2005
O(E × V 2)

[PL05]

Variation Inf. 3.049 3.162 3.207 3.045

Normalized MI 0.402 0.409 0.407 0.415

Split-Join 5,337 5,466 5,398 5,393

Adjusted Rand 0.210 0.211 0.204 0.211

Modularity 0.297 0.268 0.250 0.249

Leading Eigenvector, 2006
O((E + V)× V)

[New06]

Variation Inf. 2.934 2.721 2.765 2.740

Normalized MI 0.214 0.240 0.202 0.317

Split-Join 5,813 5,575 5,073 4,908

Adjusted Rand 0.082 0.094 0.073 0.115

Modularity 0.320 0.329 0.302 0.306

InfoMap, 2008
O(E)

[RB08]

Variation Inf. 2.633 2.575 2.513 2.405

Normalized MI 0.380 0.385 0.401 0.403

Split-Join 4,831 4,744 4,618 4,598

Adjusted Rand 0.196 0.202 0.205 0.207

Modularity 0.419 0.428 0.393 0.396

Multi-level, 2008
O(V × log V)

[BGL08]

Variation Inf. 2.704 2.675 2.669 2.671

Normalized MI 0.316 0.348 0.333 0.333

Split-Join 5,101 5,014 5,010 5,009

Adjusted Rand 0.168 0.182 0.193 0.188

Modularity 0.419 0.423 0.399 0.403

37

Table 3.4: Community Detection Result

Metric Baseline Weighted K-means EBCD(0.7; 0.2) Truth

VI 2.633 2.575 4.844 2.405 0.000

NMI 0.380 0.385 0.081 0.403 1.000

Split-Join 4,831 4,744 8,225 4,598 0.000

Adjusted Rand 0.196 0.202 0.019 0.207 1.000

Modularity 0.419 0.428 0.146 0.396 0.381

38

Table 3.5: Homogeneity Analysis: In-Community (IC) and Out-Of-Community (OOC),

sorted by IC ascendingly

Computer Science Field IC OOC

Scientific Computing 0.168 0.678

Machine Learning & Pattern Recognition 0.216 0.401

Natural Language & Speech 0.229 0.406

Bioinformatics & Computational Biology 0.234 0.472

Graphics 0.264 0.403

Artificial Intelligence 0.281 0.420

Computer Education 0.281 0.448

Multimedia 0.284 0.448

Computer Vision 0.294 0.423

Security & Privacy 0.308 0.435

World Wide Web 0.343 0.431

Human-Computer Interaction 0.363 0.482

Real-Time & Embedded Systems 0.377 0.501

Information Retrieval 0.393 0.455

Programming Languages 0.433 0.513

Software Engineering 0.434 0.501

Algorithms & Theory 0.443 0.492

Networks & Communications 0.450 0.502

Databases 0.456 0.549

Simulation 0.459 0.513

Distributed & Parallel Computing 0.466 0.540

Data Mining 0.468 0.540

Operating Systems 0.519 0.536

Hardware & Architecture 0.579 0.610

39

Table 3.6: Connectors in the Data Mining Community

From Data Mining Author Score

Algorithms & Theory David A. Cieslak 0.363

Artificial Intelligence D. Sculley 0.244

Bioinformatics & Computational Biology Muneaki Ohshima 0.318

Computer Education Guilong Liu 0.295

Computer Vision Jianhui Chen 0.258

Databases Xingzhi Sun 0.528

Distributed & Parallel Computing David A. Cieslak 0.496

Graphics Jianhui Chen 0.274

Hardware & Architecture Yanbo J. Wang 0.532

Human-Computer Interaction Shunkai Fu 0.345

Information Retrieval Ronen Feldman 0.363

Machine Learning & Pattern Recognition Shunkai Fu 0.245

Multimedia David A. Cieslak 0.289

Natural Language & Speech Ata Kaban 0.259

Networks & Communications David A. Cieslak 0.363

Operating Systems Yanbo J. Wang 0.629

Programming Languages Yanbo J. Wang 0.486

Real-Time & Embedded Systems David A. Cieslak 0.387

Scientific Computing David A. Cieslak 0.321

Security & Privacy David A. Cieslak 0.301

Simulation David A. Cieslak 0.444

Software Engineering David A. Cieslak 0.362

World Wide Web Makoto Haraguchi 0.355

40

CHAPTER 4

Word K-Embeddings

We describe a technique for adding contextual distinctions to word embeddings by extending

the usual embedding process — into two phases. The first phase resembles existing methods,

but also constructs K classifications of concepts. The second phase uses these classifications

in developing refined K embeddings for words, which are referred to as word K-embeddings.

The technique is iterative, scalable, and can be combined with other methods (including

Word2Vec) in achieving still more expressive representations.

Experimental results show consistently large performance gains on a Semantic-Syntactic

Word Relationship test set for different K settings. For example, an overall gain of 20% is

recorded at K = 5. In addition, we demonstrate that an iterative process can further tune

the embeddings and gain an extra 1% (K = 10 in 3 iterations) on the same benchmark. The

examples also show that polysemous concepts are meaningfully embedded in our K different

conceptual embeddings for words.

4.1 Introduction

Neural-based word embeddings are vectorial representations of words in high dimensional real

valued space. Successes with these representations have resulted in their being considered for

an increasing range of natural language processing (NLP) tasks. Recent advances in word

embeddings have shown great effects that are pushing forward state-of-the-art results in

NLP [KCC08, TRB10, CWB11, YZD13, MCC13a, MSC13, MYZ13]. For example, [KCC08]

was an early attempt to consider word embeddings in dependency parsing. The consideration

achieves accuracy gains of 1.14% for English and 1% for Czech on the Penn Treebank and

41

the Prague Dependency Treebank dataset. Chunking and named-entity recognition (NER)

have also been beneficial and have achieved new state-of-the-art results, simply by considering

word embeddings as additional unsupervised features [TRB10]. Not only a free (and efficient)

framework for performance gains, word embeddings have also become a go-to technique for

boosting training time thanks to recent advances in deep learning in NLP [CWB11, MCC13a,

MSC13, MYZ13]. Embedding learning models for words are also being adapted for tasks in

other research fields [RMR15, VP15]. The Continuous bag of words (CBOW) and Skip-

gram [MCC13a] are currently considered as state-of-the-art in learning algorithms for word

embeddings.

The ability of words to assume different roles (syntax) or meanings (semantics) presents

a basic challenge to the notion of word embedding [EP08, RM10a, HSM12, TDB14, NSP14,

CXH15]. External resources and features are introduced to address this challenge. In general,

individuals with no linguistic background can generally resolve these differences without

difficulty. For example, they can distinguish “bank” as referring to a riverside or a financial

establishment without semantic or syntactic analysis.

Distinctions of role and meaning often follow from context. The idea of exploiting context

in linguistics was introduced with a distributional hypothesis: “linguistic items with similar

distributions have similar meanings” [Har54]. Firth soon afterwards emphasized this in a

famous quote: “a word is characterized by the company it keeps” [Fir57].

We propose to exploit only context information to distinguish different concepts behind

words in this chapter. The contribution of this chapter is to note that a two-phase word

embedding training can be helpful in adding contextual information to existing embedding

methods:

• we limit context to mean the surrounding words of a given word.

• we use learned context embeddings to efficiently cluster word contexts into K classifi-

cations of concepts, independent of the word embeddings.

• this approach can complement existing sophisticated, linguistically-based features, and

42

can be used with word embeddings to achieve gains in performance by considering

contextual distinctions for words.

• two-phase word embedding may have other applications as well, conceivably permitting

some ‘non-linear’ refinements of linear embeddings.

In the next section, we discuss related work. We then present our learning strategy for

word K-embeddings, outlining how the value of K affects its power in increasing syntactic

and semantic distinctions in Section 4.3. Following this, a large-scale experiment serves to

validate the idea — from several different perspectives. Finally, we offer conclusions about

how adding contextual distinctions to word embeddings (with our second phase of embed-

ding) can gain power in distinguishing between different aspects of words.

4.2 Related Work

Recently a dynamic community evaluation has focused on the potential of word embeddings

for NLP [AK14], with many interests converging in the topic. Currently, researchers are work-

ing toward finding ways to enrich learned embeddings both syntactically and semantically;

recent efforts include [YZD13].

The strategy of using compound features is traditional in NLP, and its efficiency has

been proven in many NLP tasks; for example, it outperforms embeddings with simple Brown

cluster features in [TRB10]. [YZD13] suggest that compound features should be considered,

and specifically show that compound-style features in clustered embedding can improve

Chunking and NER performance.

Similarly, [QCN14] proposed a method for incorporating word proximity and ambiguity

awareness into word embeddings. Word proximity features are computed using distances

derived from the CBOW model on words annotated with POS tags. Their results show im-

provement on CBOW and Skip-gram models with altered word and proximity considerations

in both semantic and syntactic benchmarks.

A more significant approach to improve word embeddings, and directly related to our

43

work, is to consider multiple representations for a single word to address polysemy. Multiple

efforts have been reported in the literature. First, [EP08] is an early attempt to discriminate

different meanings of a word using syntax information in context. In [RM10a], the authors

proposed “prototype” vectors that represent different semantic clusters for a word. The word

clusters are computed through context words clustering using the von Mises-Fisher (vMF)

distribution. In addition, [HSM12] adopted a similar strategy to cluster context words,

and considered idf-weighting of important context words. Recently, [TDB14] introduced an

EM-based training method for multi-word embeddings.

Our technique is distinct from these works in literature. Specifically, we investigate an-

other direction — the extension of the word embedding process into a second phase — which

allows context information to be consolidated with the embeddings. Rather than annotating

words with features, our technique treats context as second-order in nature, suggesting an

additional representation step. We annotate words with their most common contextual role,

learned by performing clustering algorithms (e.g. K-means) on the contextual word embed-

dings. Our method relies on the learned contextual vector representations. We have proven

this method empirically to be efficient in many applications.

In addition, this two-phase technique is not difficult to implement with Word2Vec-like

frameworks, is scalable, and can be combined with existing state-of-the-art strategies like

the compound-feature methods here.

4.3 Learning Word K-Embeddings

As presented, the use of multiple semantic representations for a word in resolving polysemy

has a significant literature [EP08, RM10a, HSM12, TDB14, NSP14, CXH15]. Strategies often

focus on discrimination using syntactic and semantic information.

Our strategy for word K-embeddings is different and can be described in two, possibly

iterative, phases:

1. Annotating words with concepts (defined by their contextual clusters)

44

2. Training embeddings using the resulting annotated text.

4.3.1 Concept Annotation using Context Embeddings

We propose to annotate words with concepts given by learned context embeddings, which

are an under-utilized output of word embedding training [MCC13a, LG14a]. Our strategy is

based on the assumption that the context of a word is useful for discriminating its conceptual

alternatives in polysemy. In general, our concept annotation for words is performed in two

steps — clustering of context embeddings followed by annotation.

Specifically, we first employ a clustering algorithm to cluster the context embeddings.

K-means is our algorithm of choice. The clustering algorithm will assign each context word

to a distinct cluster. This result is then used to re-assign words in the training data to their

contextual cluster.

Second, we annotate words in the training data with their most common contextual

cluster (of their context words). We define context words to mean the surrounding words of

a given word. Formally, a word is annotated with a concept given by the following function:

max
c∈C

∑
(wi,ci)∈W

f(ci, c)

Here W is the set of context words of the current word, and f(ci, cj) is a boolean function

whose output is 1 if the input parameters are equal:

f(ci, cj) =

1, if ci = cj

0, otherwise.

The cluster-annotated dataset is then passed into the next training phase.

4.3.2 Training Word K-Embeddings

The second phase is similar to existing word embedding training systems. The number of

clusters K defines the maximum number of different representations for words. Table 4.1

45

presents the statistics for different selections of K using the dataset mentioned in the Sec-

tion 4.4.

K total embeddings vocabulary size ratio

1 1,965,139 1,965,139 1.00

5 2,807,016 1,443,061 1.95

10 2,740,351 1,474,704 1.86

15 3,229,945 1,374,055 2.35

20 3,236,882 1,410,521 2.29

25 3,382,722 1,383,162 2.45

30 3,404,150 1,418,027 2.40

Table 4.1: Total embeddings and vocabulary size for different K for Wikipedia dataset.

Words with frequency lower than 5 are filtered during pre-processing.

Each value K in Table 4.1 is shown with the total number of embeddings and vocabulary

size. Words in the vocabulary can have up to K different embeddings for different annotated

concepts. As K increases, the size of the vocabulary decreases — yet remains largely stable

for different values of K greater than 1. This is explained by the instances of words being

spread among different concepts, resulting in a lower word count per concept. In our setting,

concept-annotated words with fewer than 5 occurrences are discarded during training of word

embeddings.

It is interesting to note that the total number of embeddings is broadly stable and less

affected by K. For example, as we allow up to 10 different concepts for a word (K = 10),

the total number of embeddings grows only slightly compared to the result for K = 1.

The average number of embeddings for a word is 1.86 for K = 10. In other words, concept

annotations do converge as we increase K.

In addition, Table 4.2 shows the distribution of embeddings across different conceptual

groups. It is interesting to see that group#5 covers 94.38% of the 1,474,704 vocabulary

words. This suggests the group is mostly equivalent to the regular word embeddings. Our

46

experiments presented in the following section also confirm that performance of standard

word embeddings in this group is comparable to that of regular embeddings.

concept group id total embeddings %

0 568,510 20.75

1 183,041 6.68

2 76,212 2.78

3 56,832 2.07

4 24,435 0.89

5 1,391,828 50.79

6 61,223 2.23

7 25,742 0.94

8 75,080 2.74

9 62,215 2.27

10 215,233 7.85

Total 2,740,351 100

Table 4.2: Embedding count per conceptual group for K = 10

4.3.3 Word K-Embedding Training Workflow

Figure 4.1 presents our proposed workflow to train context-based conceptual wordK-embeddings.

Our system allows each word to have at most K different embeddings, where each is a rep-

resentation for a certain concept.

The input to the workflow is a large-scale text dataset. Initially, we compute context

embeddings for words as presented previously. We can derive context embeddings directly

from the training of almost any context-based word embeddings, where word embeddings

are computed via their context words.

Subsequently, we cluster context embeddings into groups which reflect varied concepts

47

Text Context Embeddings

Context-based Concepts

Concept Annotated Text

Word K-Embeddings

clustering algorithm

concept annotation

word embeddings training

co
ntext embeddings training

co
n
te

x
t

em
b

ed
d

in
gs

tr
ai

ni
ng

Figure 4.1: Training Word K-Embeddings

in some semantic vector space. Each context embedding is assigned to a cluster denoting its

conceptual role as a context word. Any clustering algorithm for vectors can be applied for

this task.

Embeddings of annotated context words are used to compute concepts of words in a

sentence. Our hypothesis is that the concept of a word is defined by the concept of its

surrounding words. We annotate concepts for all words in the training data.

Finally, the concept-annotated training data is passed into any standard algorithm for

training word embeddings for the conceptual word K-embeddings.

48

4.4 Experiments

4.4.1 Settings

Our training data for word embeddings is Wikipedia for English, downloaded on November,

2014. It consists of 4,591,457 articles, with a total of 2,015,823,886 words. The dataset is

pre-processed with sentence and word tokenization. We convert text to lower-case prior to

training. We consider |W|= 5 for the size of the context window W presented in Section 4.3.1.

We used the Semantic-Syntactic Word Relationship test set [MCC13a] for our experi-

mental studies. This dataset consists of 8,869 semantic and 10,675 syntactic queries. Each

query is a tuple of four words (A,B,C,D) for the question “A is to B as C to what?”. These

queries can be either semantic or syntactic. D, to be predicted from the learned embeddings,

is defined as the closest word to the vector (A−B + C). We used Word2Vec for training

and scikit-learn for clustering tasks.

We evaluate the accuracy of the prediction of D in these queries. A query is considered

hit if there exists at least one correct match and all the words are in the same concept group.

This is based on the assumption that if “A is to B as C is to D”, either (A,B) and (C,D)

OR (A,C) and (B,D) have to be in the same concept group.

4.4.2 Results

The embeddings learned in phases 1 and 2 can be compared, using different values for K in

the K-means clustering. Word relationship performance results are shown in Table 4.3.

Our proposed technique in phase 2 achieves consistently high performance. For example,

whenK = 5, our absolute performance is 89% and 81% in semantic and syntactic relationship

evaluations, gaining 24% and 16% from the standard CBOW model (phase 1). When K = 25,

the performance yields the best combined result. As shown in Table 4.1, the total number

of embeddings and vocabulary size differ by a small multiplicative factor as K increases.

In another comparison, Figure 4.2 plots our K-Embeddings results versus the results

of a relaxed evaluation for CBOW, which considers the top K embeddings instead of the

49

Analogy Type Total CBOW K = 5 K = 10 K = 15 K = 20 K = 25 K = 30

capital-country 506 85.18 100.00 100.00 100.00 100.00 100.00 100.00

capital-world 4,524 78.89 96.60 97.24 99.12 99.18 99.29 99.27

currency 866 20.01 36.72 31.18 40.65 41.22 42.84 44.80

city-in-state 2,467 44.75 90.76 89.26 95.42 97.16 97.28 97.61

family 506 85.38 96.25 99.01 97.23 98.42 97.83 99.21

semantic eval. 8,869 64.67 89.30 88.83 92.32 92.96 93.18 93.53

adj.-to-adverb 992 19.76 51.41 59.98 65.73 68.95 70.06 61.90

opposite 812 26.72 42.12 48.52 62.81 62.19 68.84 56.03

comparative 1,332 87.99 97.30 97.82 99.25 99.17 99.02 99.25

superlative 1,122 52.65 71.93 74.15 81.02 78.88 78.70 75.22

pres.participle 1,056 64.96 87.31 91.57 93.47 92.52 96.78 94.03

nationality 1,599 90.87 93.62 94.81 93.87 94.68 95.37 94.93

past-tense 1,560 65.51 66.28 94.42 94.49 95.45 96.41 93.72

plural 1,332 77.40 93.92 95.42 97.90 96.55 95.80 96.92

plural-verbs 870 66.78 83.33 94.60 94.71 95.63 95.75 93.22

syntactic eval. 10,675 65.17 81.72 85.94 88.83 88.93 90.08 87.21

combined eval. 19,544 64.94 85.16 87.25 90.42 90.76 91.49 90.08

Table 4.3: K-embeddings performance

best. Even though our evaluation is restricted to one-best for each of the K embeddings,

the overall (combined) performance for different K settings is still consistently better than

the top K embeddings of CBOW. Moreover, for a specific K setting, the total number of

different embeddings considered in K-Embeddings is always less than that of the top K. For

example, in our peak result (K = 25), the total number of embeddings considered in the

evaluation set is only about 76.17% of the total embeddings with the top 25 of CBOW.

In addition, we also compare the performances of K-embeddings in multiple iterations

under the same K setting in Table 4.4. It shows that the K-embeddings are improved after

a certain number of iterations. In particular, for K = 10, we can achieve best performance

50

K

accuracy

1 5 10 15 20 25 30 35 40 45 50
60

70

80

90

100

Top-K of CBOW

K-Embeddings

Figure 4.2: Word K-Embeddings and Top-K of CBOW accuracy comparison

after 3 to 4 iterations, gaining roughly 1%.

Type iter 1 iter 2 iter 3 iter 4 iter 5

Semantic 88.8 89.6 90.3 90.0 89.0

Syntactic 85.9 84.8 86.7 86.7 85.8

Combined 87.3 87.0 88.3 88.2 87.3

Table 4.4: Performance of K = 10 in five iterations

Finally, it is also worth noting that the performance does not always increase linearly

with the number of embeddings or vocabulary size. This suggests that as we achieve better

performance in K-embeddings, we should also gain more compact conceptual embeddings.

4.4.3 Word Expressivity Analysis

Expressivity of word groups for “mercury” and “fan” are studied in Table 4.5, Table 4.6,

and Table 4.7.

The first two rows shows most related words of “mercury” and “fan” without concepts

annotation (baseline). The following rows present our K-embeddings result. This table illus-

trates the differences that arise in multiple representations of a word, and shows semantic

distinctions among these representations.

For example, different representations for the word “mercury” indeed represent a spec-

51

trum of aspects for the word, ranging from related-cosmos, related chemical element, auto-

mobile, or even to music. The same can be seen for “fan” — where we find concepts related

to fan as a follower/supporter, fan as in machinery, or Fan as a common Chinese surname.

Indeed, we can find many different conceptual readings of these words. These not only reflect

different polysemous meanings, but also their conceptual aspects in the real world. Observe

that most related words are grouped into distinct concept groups, and thus yield high seman-

tic distinctions. The result firmly suggests that context embeddings, like word embeddings,

can capture efficiently high linguistic regularities.

4.5 Conclusion

In this chapter, we have presented a technique for adding contextual distinctions to word

embeddings with a second phase of embedding training. This contextual information gains

power in distinguishing among different aspects of words. Experimental results with embed-

ding of the English variant of Wikipedia (over 2 billion words) shows significant improve-

ments in both semantic- and syntactic- based word embedding performance. The result also

presents a wide range of interesting concepts of words in expressivity analysis.

These results strongly support the idea of using context embeddings to exploit con-

text information for problems in NLP. As we highlighted earlier, context embeddings are

underutilized, even though word embeddings have been extensively exploited in multiple

applications.

Furthermore, the contextual approach can complement existing sophisticated, linguistically-

based features, and can be combined with other learning methods for embedding. These

results are encouraging; they suggest that useful extensions of current methods are possible

with two-phase embeddings.

52

Word Most Similar Words

0

Chinese Taiwanese, Singaporean, Japanese, Taiwan, Han, Cantonese, Huang, Chen

mercury cadmium, barium, centaur, jupiter, venus, lanthanum, fluoride, nickel

drought droughts, flooding, floods, famine, flood, wildfires, desiccation, inundation

Disneyland Disneysea, Fantasyland, Epcot, Tomorrowland, Imagineers, Frontierland

fan fans, fanbase, fan-base, supporter, fandom, supporters, followings, gamers, ultras

1

Chinese1 Japanese1, Thai1, sumac1, rhubarb1, viola1, affinis1, indica1, European1, aspera1

Chinese3 Japanese3, Bangkok3, China3, Language3, Chinese1, Oriental3

Chinese4 Taiwanese4, Japanese4, Vietnamese4, Singaporean4, Chung4, Chan4, Chinese-born9

Chinese5 Taiwanese5, Japanese5, Qing5, Han5, Manchu5, Thai5, Burmese5, Mongolian5

Chinese8 Han8, Ming8, Yan8, Lin8, Qing8, Tang8, Yuan8, Jin8, Fa8, Chen8

1

mercury1 vanadium1, iron1, sulfur1, polonium1, thallium1, antimony1, lithium1, iodine1

mercury2 sodium2, magnesium2, molten2, hydrogen2, lamp2, ammonia2, helium2, dust2

mercury3 tribune3, dragon3, curlew3, keith3, stanley3, charlie3, bonnet3, wreck3, barrett3

mercury5 ammonia5, magnesium5, sulfur5, arsenic5, selenium5, dust5, radioactivity5, iodine5

mercury9 Neptune9, Titan9, Jupiter9, meteor9, cadmium9, Sun9, echo9

1

drought0 winter0, flood0, earthquake0, spring0, snowfall0, moist0, floods0, drought9, rain0

drought1 frost1, rainfall1, watering1, pasture1, dry1, dryland1, infestations1, harvesting1

drought2 crisis2, recession2, vaporization2, deforestation2, flooding2, tides2, hunger2

drought5 famine5, flooding5, floods5, droughts9, rainfall5, deforestation5, rain5, epidemics5

drought9 famine9, floods9, flooding9, drought2, floods5, famines9, famine5

1

disneyland0 epcot0, epcot9, dreamworld0, adventureland0, safari0, carousel0, shangri-la0

disneyland2 nightclub2, disneyland9, rides2, paris2, intamin2, bowie2, hyatt2, epcot0

disneyland3 waterpark3, westin3, moana3, casino3, frazier3, holiday3, carpark3, themed3

disneyland5 disney5, hotels5, hotel5, amusement5, studios5, epcot0, restaurant5, mall5

disneyland9 epcot9, disneysea9, tomorrowland9, efteling9, legoland9, fantasyland9, monorail9

1

fan1 inlet1, crinoids1, sect1, wedge1, beach1, cuban1, ball1, valley1, mound1, flatfish1

fan3 supporter3, spell3, left3, resident3, rufc3, graduate3, musician3, fan9, f.c.9, credited3

fan4 supporter4, likes4, legend4, bust4, member4, disciple4, parody4, descendent4, statue4

fan5 fandom5, fanbase5, gamer5, buzz5, gamers5, indie5

fan8 Xiang8, Yong8, Xin8, Yang8, Cui8, Guo8, Wang8, Xue8, Lin8, Zhang8

Table 4.5: Word Expressivity Analysis: baseline vs. iteration #1

53

Word Most Similar Words

0

Chinese Taiwanese, Singaporean, Japanese, Taiwan, Han, Cantonese, Huang, Chen

mercury cadmium, barium, centaur, jupiter, venus, lanthanum, fluoride, nickel

drought droughts, flooding, floods, famine, flood, wildfires, desiccation, inundation

Disneyland Disneysea, Fantasyland, Epcot, Tomorrowland, Imagineers, Frontierland

fan fans, fanbase, fan-base, supporter, fandom, supporters, followings, gamers, ultras

3

Chinese1 Taiwanese1, Japanese1, Shanghai1, Mongolian1, Manchu1, China1, Taiwan1

Chinese2 Sui2, Luo2, Xin2, Chin2, Tang2, Ming2, Mongolian2, Ju2, Han2, Ye2

Chinese6 Japanese6, Taiwanese6, Thai6, Han6, Mongolian6, Manchu6, Lao6, Qing6, Burmese6

Chinese7 kimchi7, sumac7, bicolor7, army7, currant7, pistachio7, guava7, camellia7, pickled7

Chinese8 Pinyin8, Japanese8, Hangul8, Thai8, Taiwan8, Mandarin8, Tai8

3

mercury1 polaris1, cadmium1, nimbus1, neptune1, lithium1, liquid1, triton1, mars1

mercury3 comet3, neptune3, argo3, stax3, org3, echo3, columbia3, scepter3

mercury6 arsenic6, lithium6, oxygen6, methane6, dust6, cadmium6, sulfur6, sulfate6, dioxins6

mercury7 cadmium7, nickel7, pollutants7, impurities7, ammonia7, dioxins7, sulfates7, bismuth7

mercury9 stakes9, jason9, sean9, ted9, jamie9, journal9, allenby9, bolingbroke9, jensen9

3

drought1 floods1, flooding1, snowstorm1, rainstorm1, snowstorms1, famine1

drought3 flooding3, floods3, rain3, excess3, monsoon3, epidemic3, earthquake3, economy3

drought6 flooding6, floods6, famine6, famines6, deforestation6, rains6, winter6, rain6

drought7 grandiflora7, grasshopper7, drongos7, latifolia7, floribunda7, nutrient-poor7

drought8 winter8, tides8, floods8, rain8, flooding8, cold8, disturbed8, salinity8

3

disneyland1 tomorrowland1, epcot1, disneysea1, playland1, amusement1, resort1

disneyland3 epcot3, fantasyland3, resort3, drive-in3, safari3, dreamworld3, seaworld3, zoo3

disneyland6 disney6, hotel6, hotels6, studio6, mall6, casino6, pavilion6, park6

disneyland8 u-bahn8, tram8, victoria8, jubilee8, piccadilly8, sightseeing8, limited-stop8, tour8

disneyland9 casino9, gaylord9, ski9, radisson9, concourse9, this9, wembley9, tanglewood9

3

fan2 yong2, ye2, ching2, hao2, yi2, chang2, guo2, yan2, ying2, peng2

fan4 member4, parody4, protg4, supporter4, friend4, follower4, disciple4

fan6 fanbase6, buzz6, fans3, fandom6, video6, gamer6, sports6

fan7 imprints7, gnatcatchers7, minuta7, flat7, subg7, volutes7, umbilicus7, fasciata7

fan8 impeller8, inlet8, spinner8, spring8, hot8, hose8, loyal8, heater8, ducts8

Table 4.6: Word Expressivity Analysis: baseline vs. iteration #3

54

Word Most Similar Words

0

Chinese Taiwanese, Singaporean, Japanese, Taiwan, Han, Cantonese, Huang, Chen

mercury cadmium, barium, centaur, jupiter, venus, lanthanum, fluoride, nickel

drought droughts, flooding, floods, famine, flood, wildfires, desiccation, inundation

Disneyland Disneysea, Fantasyland, Epcot, Tomorrowland, Imagineers, Frontierland

fan fans, fanbase, fan-base, supporter, fandom, supporters, followings, gamers, ultras

5

Chinese0 Taiwan0, Taiwanese0, China0, Malaysian0, Singaporean0, Japanese0

Chinese1 Min1, Han1, Jin1, Ming1, Yuan1, Tang1, Yan1, Hui1, Ying1, Mongolian1

Chinese4 Pinyin4, Japanese4, Thai4, Hangul4, Russian4, Vietnamese4, Romanization4

Chinese8 traditional8, pickled8, sliced8, persian8, bean8, kimchi8, oxalis8, bengal8, arabica8

Chinese9 Cantonese9, Thai9, Vietnamese9, Mongolian9, Yi9, Burmese9, Japanese9

5

mercury3 media3, rock3, record3, nbc3, sky3, fans3, show3, labels3, cbc3, abc3

mercury5 arsenic5, radiation5, radioactivity5, fluoride5, sulfur5, ammonia5, sodium5, methane5

mercury6 zinc6, manganese6, organs6, technologies6, minerals6, aluminium6, platinum6

mercury7 radium7, rolls-royce7, cobalt7, ammonia7, titanium7, orion7, venus7, mars7

mercury8 chlorine8, sulfur8, methane8, dioxins8, nitrogen8, phosphorus8, cadmium8, arsenic8

5

drought0 reign0, span0, streak0, recession0, layoff0, tenure0, period0, feud0

drought3 floods3, flooding3, earthquake3, rain3, recession3, famine3, flood3, shortages3

drought5 flooding5, famine5, rain5, floods5, rainfall5, deforestation5, malnutrition5, frosts5

drought8 paleoecology8, vine8, burundi8, weedy8, bonsai8, shade8, dry8

drought9 flood9, migration9, eruption9, sickness9, stream9, water9, precipitation9, soil9

5

disneyland2 waterpark2, ski2, mandalay2, rangeley2, pinehurst2, casino2, gaylord2, fairground2

disneyland4 lakeside4, brampton4, haute4, maxi4, metrorail4, vale4, hermitage4, bury4, stratford4

disneyland5 mall5, hotels5, disney5, mini5, themed5, attractions5, rides5, logo5, nightlife5

disneyland7 casino7, monorail7, sentosa7, ride7, hibiya7, sheraton7, tomorrowland7

disneyland9 carnival9, casino9, amusement9, tomorrowland9, resort9, carousel9, fantasyland9

5

fan1 zheng1, cheng1, chen1, dai1, jie1, quan1, fang1, lu1, meng1, yan1

fan3 song3, comedian3, fan9, prank3, andy3, lyricist3, songwriter3, favorite3, jockey3

fan4 spinner4, rotors4, flywheel4, impeller4, bulbous4, nozzle4, scoop4, bowl4, rotor4

fan6 friend6, protégé6, supporter6, follower6, classmate6, neighbor6, member6, promoter6

fan9 supporter9, member9, fandom9, fanbase9, hobby9, buzz9, lot9

Table 4.7: Word Expressivity Analysis: baseline vs. iteration #5

55

CHAPTER 5

Semantic Binder in Compositionality

We introduce SEBI, a portable semantic binder for short-phrase compositionality in natural

language. We argue that the categorial grammar formalism is highly effective for semantic

computation on a sequence of words — such as a phrase or sentence — and can be modeled

in the same vector space as regular word embeddings. SEBI directly models the linguistic

interactions of words and phrases when they are composed for meaning representation. The

term ‘compositionality’ focuses on functional interactions between words and phrases, as

they are combined/composed for meaning representation.

Specifically, we use high dimensional vectors, like the ones for word embeddings, to repre-

sent interactions between words and phrases. The experimental results demonstrate that our

simple strategy is highly competitive on multiple semantic compositionality tasks, even when

applied in a straightforward way through single dimensional vector calculations. This sug-

gests a way to extend current single-word and short-phrase embedding methods to represent

compositional semantics, with many possible benefits for natural language processing.

5.1 Introduction

Learning vectorial representation of words, also widely known as word embeddings, has been

extensively studied in the literature during the recent surge in deep learning research [CWB11,

KMK11, MCC13b, MYZ13, PSM14]. Concurrently, the research community has also reported

on novel applications of word embeddings, with new state-of-the-art results. For word em-

beddings, word2vec has been a tool of choice for simplicity and scalability in large-scale

training.

56

In applications, semantic compositionality in natural language has been widely studied,

and is considered important not only for regular language processing tasks, but also as a

general problem in artificial intelligence (AI): interpreting a larger structure in terms of the

semantic interpretations of its components [Man15]. Typically, compositionality refers to a

class of problems concerning the explanation of a large entity in terms of its components.

Strategies involving compositionality have been important in advanced problems in linguistic

research and in a broad spectrum of AI applications.

Specifically in NLP, compositionality concerns the computation of semantic representa-

tions for a (usually grammatically ordered) sequence of words, such as a phrase or sentence.

Learning representations of this kind is difficult because of two fundamental challenges.

First, capturing the meaning of text is hard, especially when semantic ambiguity is in-

volved. Current approaches for compositionality usually employ multidimensional arrays, or

tensors, to capture different possible contextual settings. This, however, runs into the curse

of dimensionality problem [SCA13]. For example, a rank-3 tensor needed to disambiguate

different possible meanings of a verb described given a subject and an object can easily take

up to 1GB (109 bytes) if the dimension is set to be 1000 and a byte is used to represent a

real number [KS14]. This sort of combinatorial explosion clearly will be a challenge when

systems must be scaled up to practical applications.

Second, semantic contributions of individual words in a phrase (or a sentence) are highly

varied and depend on different linguistic regularities, including syntactic structure and lin-

guistic attention. In addition, a given word meaning can have different impacts in different

grammatical settings. It has been empirically shown, for example, that linguistic attention

can be a surprising important feature in boosting traditional NLP applications, including ma-

chine translation [BCB14, LPM15], summarization [IKC16], and text classification [YYD16].

In this chapter, we address both challenges jointly, and base our methodology on lin-

guistics studies. Specifically, we extend the application of the distributional hypothesis of

Harris and Firth [Har54, Fir57] to learning of binding embeddings for phrases and semantic

disambiguation. In addition, we rely on Frege’s principle of compositionality and Montague’s

57

proposal of lambda calculus to model language and to compute meaning representation for

phrases and sentences.

The remainder of the chapter is organized as follows: after presenting linguistic back-

ground, we describe our learning framework for compositionality in detail. In particular, it

explains our study of word sense estimation as a way to handle disambiguation and composi-

tion embeddings. Experiments are discussed after that, and followed by discussion of related

work.

5.2 Background

Formal representation of meaning is arguably the most important subject in linguistics,

for either formal or natural languages. This study focuses on modeling the composition of

linguistic entities and how it can be encoded, represented, computed, and interpreted in

language.

5.2.1 Principle of Compositionality

In linguistics, Frege’s principle establishes an arithmetic foundation on semantic composi-

tionality. The principle is often considered the cornerstone of formal semantics studies. The

principle states that:

An English expression e is derived from expression e1, e2, · · · , en if and only if

the interpretation of e is explicitly given as a function of the interpretations of

e1, e2, · · · , en.

Richard Montague adopted the principle and formalized it in lambda calculus, stating

that: “the meaning of the whole is a function of the meaning of its parts and their syntactic

combination.”

The Montague formalism implies that syntax and semantics in natural languages can be

viewed homomorphically in a single mathematical framework. This, in principle, distinguishes

58

it from the generative grammar formalism, which views language as a system of generative

rules on which all linguistic phenomena are set.

5.2.2 Combinatory Categorial Grammar

Categorial grammar [Ajd35] (CG) refers to a family of lexicalized formalisms motivated

by Frege’s principle and Montague formalism for the semantic compositionality in natural

languages. In CG, words are assigned to their grammatical categories (or types) which, as a

distinguishing feature, can be combined with a functional mechanism. A standard categorial

grammar has two inference rules:

• B/A: the type of phrase x when preceded by A, Ax→ B

• A\B: the type of phrase x when followed by A, xA→ B

Recent advances in distributional models for words have encouraged studies in modeling

compositionality for language processing tasks. Combinatory Categorial Grammar [Ste00]

(CCG) is introduced with this clear purpose — suggesting a linguistically-efficient calculus

of text meaning. Figure 5.1 shows a sample CCG parse suggesting a construction path of

the sentence meaning, where the combination of all constituents yields S.

Gauss solved the linear equations quickly

NP (S\NP)/NP NP/N N/N N (S\NP)\(S\NP)

FA NP (S\NP)/NP NP/N N (S\NP)\(S\NP)

FA NP (S\NP)/NP NP (S\NP)\(S\NP)

FA NP (S\NP) (S\NP)\(S\NP)

BA NP (S\NP)

BA S

Figure 5.1: An example of CCG parse showing a derivation

NP · (S\NP)/NP · NP/N · N/N · N · (S\NP)\(S\NP) ⇒ S

The derivation in Figure 5.1 shows a sentence composition, where the combination of

all constituents yields S. CCG has been used to model multiple linguistic phenomena in

NLP applications. Currently, [CC07] is the state-of-the-art parser evaluated using CCG-

Bank [HS07, Hoc06], a translation of the Penn Treebank (PTB) into CCG that can cover

59

99.4% of the sentences in PTB. In addition, there are many other works on CCG parsers,

including [HS02, Hoc03, CC04, CC07]. For example, machine translation has adopted CCG

categories and parsers [WCL12, BOK07, HSW09]. CCG is also employed for quantifier se-

mantics acquisition modeling [PGE08], and grammar induction from strings [ZC12].

5.2.3 Related Works in Compositionality

Semantic compositionality in language has been considered an important and impactful ap-

plication in the current NLP literature [Man15]. Previous work shares the same principal

strategy in combining vectorial representations of words in certain ways. Combinations are

usually done via two algebraic operators: + as simple vector addition and ⊗ as tensor prod-

uct.

Tensor-based compositionality has been widely adopted for its power in capturing multi-

dimensional aspects of entities in linguistics [GS11, SHP11, SPW13, KS14, MKS14, FPC15].

Tensor-based compositionality strategies also hold multiple state-of-the-art performance records

in different applications, including sentiment analysis [SPW13], and text similarity [FPC15].

One limitation of tensor-based representation is its high space complexity; consequently low-

rank tensor modeling has also been studied as a solution very recently [FPC15, YDA16].

Another approach for compositionality is direct computation of the representation of

meaning. CCG is usually employed as the linguistic formalism for the problem [HB13]. Our

proposed semantic binder follows this approach.

5.3 The Proposed Semantic Binder – SEBI

We introduce SEBI — a semantic binder for compositionality in this section. SEBI is an

attempt to model linguistic compositionality under the Montague formalism using CCG.

Specifically, we formalize semantic computation for a sequence of words in two distinct

tasks: 1) computing the true representation of words with strong polysemy; and 2) suggest-

ing syntactic ways of combining them. We base this syntactic combination on combinatory

60

categorial grammar. We begin this section by presenting a generic framework for learning

semantic binder representations — binder embeddings that are used to combine word em-

beddings into sequence embeddings — for compositionality in section 5.3.1. We then describe

the two components of the binder in 5.3.2 and 5.3.3 respectively. Finally, we discuss different

structural representations for sequences and their alignment strategy.

5.3.1 Binder Embeddings for Compositionality

Compositionality in linguistics seeks to explain the compositional meaning of an expression

of multiple words. In computational terms, it concerns the semantic representation of a

sequence of words and the ability to compute, compose, and compare representations.

The word is a linguistic unit that constitutes the content of an expression. The task of

learning representations for words, or word embeddings, has been studied extensively in the

recent literature. Most methods, including word2vec, base their learning strategy on the

distributional hypothesis of Harris and Firth [Har54, Fir57], stating that “linguistic items

with similar distributions have similar meanings.” The learned word embeddings are shown

to capture a wide range of linguistic regularities when trained with a large dataset.

We extend the application of the distributional hypothesis to phrases — to learn rep-

resentationas for phrases. Specifically, we consider a word sequence as one linguistic unit

and learn its representation based on its contextual words, similar to the word embedding

training. In addition, we compute the representation for a word sequence by a function com-

bining its individual word embeddings — using semantic binders. This is motivated by the

Montague formalism presented in section 5.2. To the best of our knowledge, no work has

considered this binder-based strategy to compute embeddings for multi-word expressions us-

ing the distributional hypothesis. The main reason is probably that the number of phrases

grows exponentially in the phrase length [MSC13], a result of the curse of dimensionality in

training for N-gram language models [SCA13].

Figure 5.2 shows the distinction in training between word embeddings and multi-word

sequence embeddings. In word embedding training, shown in Figure 5.2.a, (word,context)-

61

tuples are extracted directly from the text. Similarly, we also use context words to compute

the expected phrase embedding. The tuples (phrase,context) depicted in Figure 5.2.b are the

input. Unlike word embedding training, however, we do not train an embedding for every

instance of a phrase due to the exponential growth. Instead, we build a model to compose

individual word embeddings using our proposed semantic binders.

w0 w1 w2 w3 w4 w5 w6 w7

w0 w1 w2 w3 w4 w5 w6 w7

w0 w1 w2 w3 w4 w5 w6 w7

w0 w1 w2 w3 w4 w5 w6 w7

(a) (word,context) tuples for word embedding trainings

w0 w1 w2 w3 w4 w5 w6 w7

C(w2 · · ·w5|G)

(b) (phrase,context) tuples for training compositionality

Figure 5.2: Input for training representation for words and phrases

Formally, let C be the compositionality model and s = w0w1 . . . wn be an ordered se-

quence of words (usually a phrase or sentence) in the training dataset. The representation

for a sequence of words in s, from i to j, under a parse G is denoted by C(wi · · ·wj|G).

In Figure 5.2.b, for example, C(w2 · · ·w5|G) denotes the representation of phrase w2w3w4w5

under a parse G. Estimating the representation of phrase w2w3w4w5 is not straightforward.

A naive approach would be to concatenate or average embeddings of words of the phrase.

However, doing so would overlook two important aspects in language:

• Polysemy is a major issue in language processing, and the same word can play different

semantic roles in different contextual settings. Therefore, having a fixed representation

for a word, even a polysemous word, is not adequate. We address this problem in

compositionality in the next section (Section 5.3.2).

62

• A sentence can have different parses for different emphases. Therefore, syntactic con-

tributions of the same word can also be different given different parses. Most previous

works agree on this observation and propose special treatment for certain syntactic

roles in the sentence. For example, verbs are believed to play a more important role

in marrying subject and object, and thus are given higher weight when concatenating.

However, multiple parses become a problem when we deal with regular sentences of

varied lengths. We present our strategy for this problem in Section 5.3.3

We address both issues in separate components due to the fact that the two are independent

linguistically.

5.3.2 Word Sense Estimation (WSE)

In order to generate a good compositional representation of an expression, identifying the

correct concepts or senses of individual words is crucial. The problem is usually related to

polysemy in linguistics.

Polysemy has been studied extensively in the literature. Strategies often focus on discrim-

ination using syntactic and semantic information. In neural word embeddings, a straightfor-

ward approach for polysemy is to build a multi-faceted embedding or multiple embeddings

for a word. Many different strategies have been reported [EP08, RM10b, HSM12, TDB14,

NSP14, CXH15, VP16a]. We employ our K-embedding for words, proposed in Chapter 4, due

to its simplicity in training multiple representations for words without special annotation.

The technique assumes a maximum of K different concepts for each word [VP16a].

Our proposed word sense estimation is based on the observation that the meaning of a

word should be in accordance with its context, as stated in the distributional hypothesis.

This suggests that representation of a word given a context can be computed as a mixture

of its related (with respect to the context) conceptual embeddings. Specifically, let k be a

conservative limit on the number of related concepts, k (1 ≤ k ≤ K). For example, k = 1

means we only consider the best related conceptual embedding. If k ≥ 1, we compute a

63

mixture representation by averaging all related conceptual embeddings.

Formally, let A(wi|c) be the estimated representation for word wi given context c, c =

{wi−W+j : j ∈ [0..2W], j 6= W} with context window W . The representation of word wi in

context c is computed as:

A (wi|c) =

∑k
j=1

{
A(w

(j)
i) : A(w

(j)
i)� A

(
c(j)
)
≥ T

}
k

(5.1)

where, A(w
(j)
i) and A(c(j)) are the embeddings of word wi and context c given concept j

respectively. A(w
(j)
i) is derived directly from our proposed K-embeddings in Chapter 4. In

general, A(c(j)) can be computed using different methods. Here we introduce two possible

suggestions:

• Averaging Embedding (AE) is a straightforward way to estimate representation

for a bag of words or, in this scenario, the context words c of the same concept:

A(c) =

∑
w∈cA(w)

|c|
(5.2)

• Attention-based Composition (AC) is a new effective strategy to compute context

embedding [BCB14]. The context representation is computed as a weighted sum of

context words:

A(c) =
∑
w∈c

αiwA(w) (5.3)

where αiw is the weight that denotes the relatedness between the word wi and a context

word w ∈ c computed by:

αiw =
exp(eiw)∑
v∈c exp(eiv)

(5.4)

5.3.3 Semantic Binder Training

Word embedding training computes a vectorial representation for each word. However, mod-

eling the relations between words as they are combined for compositional sequence is not

straightforward. Previous work has aimed to address the problem by using multi-dimensional

64

tensors to capture all possible mutual interactions between words. This requires a large num-

ber of parameters to train and represent these relations. In addition, representing them is

even more challenging when dealing with open text.

We instead model the word composition functionally using a lambda calculus simulation

to compute the interactions between words directly. We base our computation on the combi-

natory categorical grammar (CCG) formalism, which offers a unified model using syntactic

and semantic information for meaning representation. Generally, we share similar motiva-

tions with [HB13], believing that the compositional power of recursive neural networks should

benefit the CCG formalism in linguistics. However, our strategy is different, using three sep-

arate representation models that describe a word by (1) itself, (2) a function (functor), and

(3) an argument for a function (functee).

Specifically, categorial-based compositionality is, as described, computed via a binary

tree in which we merge consecutive words and phrases through combinatory rules. We base

our composition training on CCG parsing of a large-scale dataset.

In CCG, a composition is of form (LeftPhrase, RightPhrase, Rule). There are

multiple types of rules, including functional application and functional composition rules.

We view these rules as functions. For example, a rule Rule combining LeftPhrase and

RightPhrase from right to left is seen as a function corresponding to RightPhrase that

is applied on LeftPhrase. Thus, RightPhrase then contributes its functor embedding

and LeftPhrase contributes its functee embedding in the composition.

For example, the (phrase,context) tuples in Figure 5.2 are converted into tuples of four

components (LC,LP,RP,RC), where LP and RP are the left and right parts of the phrase

before composing; and LC and RC are context words to the left and right of the phrase

LP · RP , respectively. Figure 5.3 shows a tuple from the example in Figure 5.1. The solid

lines are functors and dotted ones are functees; and each will have a representation given a

word.

Our objective function for training is similar to that in word2vec. Given a combinatory

rule of a sentence and a tuple (LC,LP,RP,RC), assuming the application direction (arrow)

65

Gauss solved the linear equations quickly

Figure 5.3: An example showing how words are composed

are left to right (as in Figure 5.3), a functor of LP and functee of RP should be adjusted to fit

in the given context. Formally, let F (P) and D(P) be the functor and functee representation

of phrase P and P ≡ LP · RP . In addition, let A(w) be the embedding for word w. The

composition embedding of P is defined as:

C(P) = F (P) +D(P) + A(P) (5.5)

There are multiple ways to compute F (P), D(P), and A(P). In this chapter, we propose

to do this by averaging as follows, assuming rules are applied in a forward (left-to-right)

direction:

A(P) =

∑
w∈P A(w)

|P |
(5.6)

F (P) =

∑
w∈LP F (w)

|LP |
(5.7)

D(P) =

∑
w∈RP D(w)

|RP |
(5.8)

There are three sets of embeddings to train in our proposal: A, F , and D. First, the

embeddings of words A can be obtained using any standard pre-trained word embeddings,

including word2vec. Second, training for functor embedding F and functee embedding D

is straightforward — when A is fixed, thanks to the proposed formula (5.5). Specifically, we

rely on an optimization technique that is similar to one used in word2vec, but instead the

updating factor goes into F and D, split equally for each combinatory rule, as defined by

66

the CCG parse. In other words, updates for F and D are the residues when training with

(phrase,context)-tuples.

One reasonable concern is the convergence of the training. Even though convergence has

not been proven mathematically, training has consistently converged in all of our experi-

ments, including those described in Section 5.4. This can be explained intuitively by noting

that, even though the functional interaction modeling sounds empirical, it is in fact driven

by a converging grammar. Mathematical convergence derivations are presented in [Ron14].

5.4 Experiments

We analyze the proposed work in two different experimental scenarios: subject-verb-object

(SVO) agreement (constrained) and sentence paraphrasing (unconstrained).

For consistency, we perform all the benchmarks using only one trained model for compo-

sitionality without special treatment for a particular evaluation set. On the one hand, this

offers a sense of the practical performance of the reported results. On the other hand, this

helps simplify the experimental configuration to allow direct interpretation of the results.

The trained model still achieves competitive results in all comparisons.

5.4.1 Training Dataset

We trained our embedding using a snapshot of Wikipedia for English that was downloaded

in 2014. It includes about 4.6 million articles, with roughly 2-billion tokens and around 10

million unique tokens. The text was segmented at the sentence and word levels using the

NLTK toolkit. The text was also transformed into lowercase prior to training.

We annotated categorial tags for the dataset using the C&C tools and Boxer, developed

by Clark and Curran and Bos [CCB07, Bos08]. Of all the 94,611,174 sentences in the dataset,

88,413,545 (roughly 93.5%) sentences could be parsed successfully in CCG.

We also filtered out words having fewer than 50 occurrences in the text. This resulted in

67

having roughly 330,564 different unique words1. To put this in perspective, this is roughly

equivalent to the size of the English lexicon. There are 272,858 entries in the Oxford English

Dictionary (OED) project2 in 2013, though this is not the reason we set the minimum count

to be 50.

Regarding the training of embeddings, we set the dimension to be 200. We considered

a window size |W | = 5 for the context words, meaning 5 words to the left and 5 words to

the right. Optimization was performed using a negative sampling technique. The number of

negative samples was set to 10. Finally, we considered K=10 in K-embedding training for

word sense estimation.

5.4.2 Subject-Verb-Object Agreement

We first present the evaluation in two standard SVO agreement benchmarks: transitive verb

disambiguation GS11 [GS11], and sentence similarity KS14 [KS14]. We consider these con-

strained evaluations because the input is formatted in subject-verb-object (SVO) triples.

GS11 aims to evaluate disambiguation of different meanings of a verb in a given context.

For example, meet and satisfy will share the same meaning in the (student–requirement)

context, which is scored 6.77 by a human; but will not share it with visit, scored 1.46.

Similarly, KS14 focuses on evaluating the composition of SVO, when two sentences

(technically, two SVO tuples) have similar meanings. For example, meet in (commodity–

requirement) does not share the same meaning as win in the (force–battle) context, scored

1.32; but might largely share similar meaning with satisfy for (product–demand), scored 5.0.

Figure 5.4 shows a CCG parse for the standard S-V-O structure.

Table 5.1 reports the performance of our model, comparing with recent state-of-the-art

results. The evaluation metric is Spearman’s correlation, measuring similarity of rankings

between human annotators and our model. The score for a tuple is the averaged score for

all human ratings. Even though they are based on the same testing sets, the results in this

1we also performed evaluation with full text without frequency filtering; however, the performance differ-
ences were not significant.

2public.oed.com

68

public.oed.com

O1

Subject

O2

Verb Object

(a) A CCG parse tree for S-V-O

Subject Verb Object

(b) functional interactions between S-V-O tuple

Figure 5.4: A CCG parse for S-V-O disambiguation tasks

table are not necessarily comparable. This is because the training data used in different

reports are of different types, and also are pre-processed differently. As described, we assume

no advance knowledge about the SVO tasks, and train the model using the text by itself,

without performing extra normalization (e.g. stemming) or preprocessing (e.g., extracting

only related SVO tuples).

The results show that SEBI is effective in improving the composition beyond baseline

models – using only word embedding addition for single verbs (Verbs Only), or for the entire

SVO (SVO Addition using A). “Normalized” refers to the half deduction of F and D in the

computation. The result also suggests that an attention mechanism can effectively compute

context embedding.

Improvements were recorded for KS14, when we considered the effect of an additional

semantic binder C in the Addition models. However, a slight drop on GS11 was recorded

69

Model GS11 KS14

Verbs Only 0.155 0.363

SVO Addition using A 0.177 0.409

SVO Addition using C (≡ A + F + D) 0.173 0.645

Normalized SVO Addition using C 0.173 0.669

SVO Addition using C + WSEAE 0.362 0.670

Normalized SVO Addition using C + WSEAE 0.398 0.675

Normalized SVO Addition using C + WSEAM 0.449 0.689

Kartsaklis et al. [KS14] Addition 0.234 0.581

Kartsaklis et al. [KS14] Frobenius Tensor 0.412 0.332

Hashimoto et al. [HSM14] Addition 0.290 N/A

Hashimoto et al. [HSM14] Supervised 0.420 N/A

Milajevs et al. [MKS14] Addition 0.149 0.689

Milajevs et al. [MKS14] Copy Object 0.456 0.655

Milajevs et al. [MKS14] Frobenius Tensor 0.375 0.622

Fried et al. [FPC15] Addition 0.130 0.560

Fried et al. [FPC15] Full-rank Tensor (d=1M) 0.460 0.680

Human Agreement 0.750 0.660

Table 5.1: SVO Agreement Evaluation

instead (even though it is insignificant). This drop was predictable, since GS11 yielded poor

results without disambiguation power, because the context words of both inputs are the same,

Performance on GS11 was significantly elevated as WSE was introduced, making it closer

to the state of the art results, although the computation was still using a 200-dimensional

space.

In general, we can clearly see the impact of each component of our SEBI framework in

both tasks. While they appear to be similar, the targeted linguistic problems are indeed

distinct.

Finally, it is worth mentioning that, even though our results do not exceed the best

reported performance, we can achieve reasonable stability and consistency when dealing

with different tasks — using one single framework. This is indeed the fundamental difference

70

between our evaluation and previous reported results.

5.4.3 Sentence Paraphrasing

We analyzed the performance of SEBI in an unconstrained setting in this section. Unlike

the previous task in Section 5.4.2, when sentences were normalized in SVO tuples, we dealt

with regular sentences of varied structures in this experiment. Specifically, we evaluated our

compositionality in a paraphrase detection task. (A pair of compositional representations of

two sentences are considered a paraphase if their embeddings’ cosine similarity is larger than

a certain threshold.)

We use the paraphrasing identification evaluation from the Microsoft Research Paraphase

Corpus [DB05]. The sentences are first CCG parsed, and representations are computed using

the method discussed earlier. The training set and testing set consist of 4076 and 1725

sentence pairs.

Table 5.2 shows the results and our comparisons with the current state of the art of

unsupervised [U] and supervised [S] methods. The results show that our performance is within

a range that is competitive with the current state of the art for unsupervised methods. It

is again worth noting that the same trained compositionality model, including “Normalized

Addition” models, is used for evaluation of both the constrained and unconstrained tasks.

5.5 Conclusions and Future Work

In this chapter, we have proposed a semantic binder, SEBI, for compositionality in language.

In particular, we propose to model compositionality by 1) extending the distributional hy-

pothesis of words to phrases, in order to train compositional embeddings; and 2) computing

representations for phrases and sentences using the CCG formalism.

The experimental results show that our proposed SEBI approach has achieved com-

petitive performance in different tasks, ranging from constrained disambiguation and text

similarity to unconstrained sentence paraphrasing. The results support our idea of modeling

71

Model Accuracy F1

All True 0.664 0.798

Addition using A 0.700 0.798

Addition using C 0.711 0.807

Normalized Addition using C + WSEAE 0.713 0.811

Normalized Addition using C + WSEAM 0.719 0.816

[U] Fernando et al. [FS08] 0.741 0.824

[U] Islam et al. [II09] 0.726 0.813

[U] Hassan [Has11] 0.725 0.814

[U] Milajevs et al. [MKS14] 0.730 0.820

[S] Das et al. (2009) 0.761 0.827

[S] Socher et al. [SHP11] 0.768 0.836

[S] Ji et al. (2013) 0.804 0.859

[S] He et al. [HGL15] 0.786 0.853

Table 5.2: MSPD Paraphrasing Detection Evaluation

the functional interaction of words. In addition, our proposed compositionality framework is

generic and portable. Many extensions can be explored further, both in the way ambiguity

is handled and compositional representation is computed.

Finally, the differences in performance gain between subject-verb-object agreement versus

sentence paraphrasing can be explained by limitations in the way arbitrary lengths were han-

dled in our proposed compositionality model. In the next chapter, we address this limitation

by studying Gated Unit Recurrent Neural Networks for compositionality.

72

CHAPTER 6

Constituent-based Compositionality

In this chapter, we introduce a novel three-layer framework to learn compositionality rep-

resentations for sentences of arbitrary length. Specifically, we focus on three factors that

define compositionality: (1) in-context representation for words, (2) semantic cohesion in

constituents, and (3) constituent-based propagation in the recurrent neural network (RtNN)

defined by the combinatory rules of CCG. In particular, we propose our generalization of the

gated recurrent unit to handle binary-tree-structured input and apply it both to LSTM and

to GRU, the two most popular forms of RtNN, for language compositionality. We evaluate

our approach with tasks in sentiment analysis.

6.1 Introduction

Compositionality has long been a principal interest of linguistics. Like the development of

deep learning research, the problem has also received great attention from researchers for

major NLP applications, including sentiment analysis [SPW13], neural machine transla-

tion [BCB14], sentence paraphrasing [ZSG16], and so on. These tasks have been considered

hard, because they require in-depth understanding and representation of linguistic expres-

sions.

In these tasks, a compositionality model typically projects a linguistic expression of ar-

bitrary length into a fixed high dimensional representation using different neural network

architectures. Strategies for this problem, despite the variety for each particular applica-

tion, can be factored in two aspects: the mathematical structure and the construction of the

representation.

73

First, an expression can be represented in different mathematical forms, from vectors to

matrices and even high rank tensors. Theoretically, tensors of higher rank give better repre-

sentation in terms of expressiveness [FPC15, SPW13]. However, this strategy is exponentially

inefficient in space, and the performance gain of using high rank tensors is not always well

supported in practice.

Second, the computation of the representation is complicated due to the complexity of

linguistics and the constraints in representation forms. Many deep learning architectures

have been explored to produce good representation, including the recursive neural network,

convolutional neural network, and recurrent neural network. Among all, the long-short term

memory (LSTM) model, a variant of recurrent neural network, is the most popular learning

method since it is capable of blending — remembering while forgetting — information from

words. LSTM currently holds multiple state-of-the-art performance records related to com-

positionality. Recently, the Gated Recurrent Unit (GRU), a simplified variant of LSTM, has

become favored since it is more computationally efficient and manages to outperform LSTM

on multiple tasks [JZS15].

Both standard LSTM and GRU share two limitations: (1) low interpretability: different

ordering of the propagation results in very different performance, and (2) unit-wise sequen-

tial propagation: the models process an expression word by word, and thus overlook the

constituency aspect of compositionality in linguistics.

In this chapter, we address both limitations in a three-layer framework to compute com-

positionality representation. In particular, we first propose to compute an in-context rep-

resentation for words using our K-Embeddings presented in Chapter 4. To our knowledge,

this is the first attempt to address this problem for compositionality. Second, we propose

to compute the representation using the guidance of combinatory rules, which suggest how

individual words of a sentence should be read bottom up semantically, from the CCG syntax

tree. This directs the propagation to compute the representation by growing the interpretable

meaning of an expression. Finally, we incorporate the semantic binder we developed in Chap-

ter 5, thus improving cohesion of constituents.

74

In the next section, we present some background from the recent literature on compo-

sitionality. We then describe our proposed constituent-based recurrent neural networks in

detail. Specifically, we explain our modified recurrent unit and propagation based on combi-

natory rules, as well as our strategy to cluster semantic constituents. The following section

presents our overall compositionality framework. Experiments are discussed after that and

followed by our conclusion.

6.2 Background

Compositionality plays a key role in multiple language processing applications, including

tasks on sentiment analysis [SPW13], neural machine translation [BCB14], sentence para-

phrasing [ZSG16], and so on. Among all, machine translation (MT) has been considered

the pinnacle application in NLP and also in AI [SW71]. In the literature, the phrase-based

translation system (PBMT), a complex system combining multiple sophisticated linguistic

and statistic features, has defined the state of the art for more than a decade [KOM03]. This

sophistication in fact explains why compositionality is important and is hard. Practically,

it is widely understood that even reasonably sound features usually fail to result in better

translations. The feature engineering for PBMT itself is a difficult task [OGK04, CKW09].

Therefore, MT is considered an “AI-complete” problem, meaning that solving it would make

it possible to solve all other AI problems [Sha92].

Since the growing adoption of DL, a new architecture for MT — neural machine trans-

lation (NMT) — has been used to build a single large neural network to translate sentences

from a source language into a target language [CMG14, SVL14, BCB14]. In 2015, NMT

outperformed PBMT and set a new state of the art [BCB14, LSL15, LM16]. As of October

2016, Google Translate switched its online translation engine to this new architecture, and

named it Google Neural Machine Translation (GNMT) [WSC16].

This achievement depended in particular on two mechanisms related to compositionality:

a memory mechanism, modeled by a recurrent neural network to blend information, and an

attention mechanism, constructed with special consideration of the intermediate embeddings.

75

6.2.1 Memory Mechanism using Recurrent Neural Network

In linguistics, two basic types of information of a language are the words and the syntactic

structures that combine these words into expressions. Languages are usually modeled in

terms of contiguous sequences (such as n-grams) or syntactic tree structures. Therefore,

in modeling for NLP applications, recursive neural networks (RsNN) and recurrent neural

networks (RtNN) are the two most popular DL architectures because they handle well the

input described in trees and sequences respectively. In practice, however, modeling with trees

usually introduces significant complications, such as that the number of trees on n nodes

grows as O(2n). Therefore, the RtNN has become more popular since it is simpler and can

handle sequences of arbitrary length.

The RtNN is comprised of multiple similar recurrent units, in which the output of one

unit is the input of another unit. Typically, the RtNN processes inputs in a certain direction,

for example from left to right. For an RtNN to succeed, the recurrent unit has to be capable

of blending information properly, and thus RtNNs are usually sophisticated. The long-short

term memory unit (LSTM) and the gated recurrent unit (GRU) are currently the most

widely-used.

Two important components in gated RtNN modeling are the recurrent units and the

propagation of the input. We introduce our improved gated RtNN and describe both of

these components in Section 6.3.

6.2.2 Attention Mechanism

An attention mechanism was first introduced for translation tasks by Bahdanau et al. [BCB14].

The key idea, in the translation context, is to preserve the intermediate embeddings as well

as the final compositional representation to do informed target words translation. To some

extent, this is a practical attempt to try to control the sequential composition of embed-

dings since different — and uninterpretable — performance results have been reported. In

other words, this strategy helps to alleviate the memorization pressure on one single final

representation by keeping all intermediate snapshots after each word of the source sentence

76

is consumed — instead of just relying on the final output.

The attention mechanism was immediately applied to a wide range of NLP applications.

For example:

• machine translation [LPM15, EHT16, FCB16, CHV16, YHD16]

• sentence embedding [WHF16, SLC16]

• logical form conversion [DL16]

• text understanding [KSB16, WLZ16]

• relation classification [LTA15, LSL16]

• summarization [RCW15]

• word embedding [LTA15]

In this chapter, we instead propose to compute the composition of embeddings based

on the combinatory rules of CCG. In addition, we introduce improvements on the RtNN in

three different stages of the computation. These proposed changes, even though they differ

from the attention mechanism, solve the similar problem of low interpretability in RtNN.

6.3 Constituent-based Recurrent Neural Networks

Beside the gated mechanism in the recurrent units, gated recurrent neural networks have

been successful in modeling languages thanks mostly to the simple sequential propagation.

Yet, this is also one of its major limitations since varied performances are recorded when

changing even just the propagation direction. In other words, the model lacks the capability

to emphasize aspects as it propagates. Tree-LSTM is an attempt to address this limita-

tion [TSM15]. However, the efficiency of the Tree-LSTM is not consistently supported. We

hypothesize that this is because general tree structure is too complicated to control. In ad-

dition, we empirically found that the suggested handling of the tree branches in [TSM15] is

too sophisticated to train effectively.

77

We introduce instead a novel constituent-based RtNN architecture for compositionality.

Intuitively, we impose the constituent structure of the input expression on propagation in the

RtNN. this guides the RtNN to process the input This guides the RtNN to process the input

in the same way that the meaning of the expression is constructed, which is linguistically

described by the CCG formalism.

For example, the meaning of the sentence in Figure 5.1 can be read as: “linear equa-

tion”→ “the linear equation”→ “solved the linear equation”→ “solved the linear equation

quickly” → “Gauss solved the linear equation quickly”. The constituent structure, as de-

scribed by the combinatory rules of the CCG, can be represented as a binary tree. We

describe the recurrent unit and the propagation of our proposed RtNN in Section 6.3.1 and

Section 6.3.2 respectively.

In addition, we propose to cluster words of an expression into semantic constituents

(words or phrases) and perform a layered (tree-based) constituent-based propagation to

produce compositionalities at different granularities. In other words, the strategy aims to

control the depth of the constituent structures by sequentializing parts of the tree that are

beyond a limit. We introduce the strategy in Section 6.3.3.

6.3.1 Combinatory Layered Recurrent Unit

As presented, we employ combinatory rules in combinatory categorial grammar parsing to

drive the network propagation of a RtNN in semantic constituents. Each rule combines two

constituents, words or phrases, into one larger constituent linguistically and directionally.

Specifically, a combinatory rule can be one of the following types: forward application (fa),

backward application (ba), forward composition (fc), backward composition (bc), forward

crossing composition (fcc), and backward crossing composition (bcc). Therefore, the first

step is to normalize the direction of the input, consisting of two constituent representations,

into a left-unit L and right-unit R. Hence, we call the recurrent unit receiving these two

inputs the “LR unit”.

Unlike in standard sequential propagation, our LR recurrent unit could be one of the two

78

types:

• sequential unit: at least one input is a word, as in Figure 6.1.a. Standard sequential

RtNNs are a special case of our constituent-based RtNNs, in which all nodes are of

this type.

• compositional unit: merges two constituents into one, as in Figure 6.1.b. These units

create constituent layers in the propagation.

C

(ht, ct)

L

(ht−1, ct−1)

R

wt

(a) sequential recurrent unit

C

(ht, ct)

L

(ht1, ct1)

R

(ht2, ct2)

(b) combinatory recurrent unit

Figure 6.1: The two types of recurrent units.

We normalize both types of LR units into one. Specifically, we compute the initial state

for each word to standardize the input for each LR unit, assuming that the node has no

previous input. Below we present our normalization methods for LSTM and GRU; however,

a similar strategy can be considered for other types of RtNN.

• For LSTM, the initial (hw, cw) for a word w is computed as:

cw = σ(W (i)xw + b(i))� tanh(W (u)xw + b(u)) (6.1)

hw = σ(W (o)xw + b(o))� tanh(cw) (6.2)

79

• For GRU, the initial (hw) for a word w is computed as:

hw = σ(W (z)xw + b(z))� tanh(Wxw + b) (6.3)

where xw is the embedding of the word w. As a preprocessing step, all input embeddings of

words are normalized by the computations.

6.3.2 Layered Constituent-based Propagation

In this section, we introduce our proposed generalization for RtNN, and the adaptation

for LSTM and GRU, to allow propagation driven by combinatory rules. As introduced,

a combinatory rule describes one combination operation, also known as an propagation

from time t to t + 1. Each propagation takes in two sets of input vectors and compute a

compositional set through a computation graph of transition functions. For LSTM and GRU,

the input vectors are tuples of type (h, c) and (h) respectively. Figure 6.2 is an example of

propagation over the combinatory rules in Figure 5.1.

80

`0

hG `1

`2 hQ

hS `3

hT `4

hL hE

wGauss

wsolve

wthe

wlinear wequation

wquickly

L R

L R

L R

L R

L R

Figure 6.2: An example of propagation by combinatory rules

Formally, let F be the set of transition equations that compute the output for each

propagation. In standard RtNN, F usually computes the output at time t as (ht, ct) =

F (ht−1, ct−1, xt). In our setting, F is standardized as (hLR, cLR) = F [(hL, cL), (hR, cR)], where

L and R are the left and right constituents of sequence LR. Below are our adaptations of F

for LSTM and GRU.

• Transition equations for constituent-based LSTM:

fL = σ(U
(f)
L hL + b(f)) (6.4)

81

fR = σ(U
(f)
R hR + b(f)) (6.5)

iLR = σ(U
(i)
L hL + U

(i)
R hR + b(i)) (6.6)

oLR = σ(U
(o)
L hL + U

(o)
R hR + b(o)) (6.7)

uLR = tanh(U
(u)
L hL + U

(u)
R hR + b(u)) (6.8)

cLR = fL � cL + fR � cR + iLR � uLR (6.9)

hLR = oLR � tanh(cLR) (6.10)

• Transition equations for constituent-based GRU:

zLR = σ(U
(z)
L hL + U

(z)
R hR + b(z)) (6.11)

rLR = σ(U
(r)
L hL + U

(r)
R hR + b(r)) (6.12)

oLR = tanh(U
(o)
L (rLR � hL) + hR + b(o)) (6.13)

hLR = zLR � (hL + hR) + (1− zLR)� oLR (6.14)

It is interesting to note that, even though our transition equations appear to be even

simpler than the original models (having fewer parameters to estimate), they have proven

very effective empirically.

82

6.3.3 Semantic Constituent Clustering

Sequential RtNN has been proven effective for a wide range of compositionality-related ap-

plications in NLP. We believe that the simplicity of the sequential model is important for its

robustness. Our proposed CCG-based RtNN also considers simplicity as one key factor.

Dealing with regular tree structures is difficult, especially with inputs of arbitrary length.

In this section, we propose extra processing to reduce the complexity of the proposed RtNN

— by simplifying the input. Specifically, we introduce two methods to linguistically adjust the

granularity of the constituent-tree structure created by combinatory rules by sequentializing

either the sub-constituents (Tree of Sequential Constituents, ToSC) or the composition of

the sub-constituents (Sequence of Tree-based Constituents, SoTC).

Examples of ToSC and SoTC for the example in Figure 6.2 are presented in Figure 6.3.

83

`0

`1Gauss `1

`2`2`2`2

equationslinearthesolved

`2

quickly

(a) Tree of Sequential Constituents

`1

Gauss

`1

solved

`1 `1

quicklythe

`2

linear equations

`0

(b) Sequence of Tree-based Constituents

Figure 6.3: ToSC (a) and SoTC (b) examples for the CCG-tree in in Figure 6.2

Generating ToSC and SoTC for a CCG-tree is straightforward. As studied in Chapter 5,

combinatory categorial grammar offers a strong linguistic interpretation of semantic com-

position defined by a set of combinatory rules. The rules explain the connection between

syntactic and semantic representations in a constituency-based structure. Therefore, the for-

84

malism is already of type phrase structure grammar, which makes the task of generating

ToSC and SoTC easy. Our strategy is to split the tree vertically in two halves, and flatten

(sequentialize) one half for either ToSC or SoTC.

Let `d be the level having a distance of d combinatory rules from the root node. To

construct ToSC at `d, we reserve the tree up to distance d and flatten nodes of the tree from

depth d. In other word, at a node pd at level `d, words derived from pd are grouped into

one (sequential) constituent — making a tree of constituents having depth d. To construct

SoTC, we instead reserve the tree structure of the constituent and flatten all nodes up to

level `d. Figure 6.4 displays the input after converting to ToSC and SoTC at layer `3.

`0

Gauss

`1

`2

solved the linear equations quickly

(a) Simplified Visualization of Tree of Sequential Constituents at `3

`1

Gauss

`1

solved

`1 `1

quicklythe linear equations

`0

(b) Simplified Visualization of Sequence of Tree-based Constituents at `3

Figure 6.4: An example of combinatory rules described using a binary tree.

85

One of the key properties of ToSC and SoTC is fixed-depth structure for any tree, which

is especially useful in dealing with non-traditional text.

6.4 Constituent-based Representation — CORE

In this section, we introduce our proposed three-layer constituent-based compositionality

framework, namely CORE. Besides the constituent-based propagation mechanism introduced

in Section 6.3, we focus on two other factors that define compositionality:

• in-context representations for words

• semantic binding of constituents.

6.4.1 In-context Representation for Words

Polysemy is a one of the main problems in modeling language. For example, the token

“bank” can have different meanings in a financial context or scenery context. Also, there

are related issues: “Chinese”, for example, can have multiple informational interpretations

in the context of history or of dialect. Thus, the representation of a word should not be

fixed as an embedding using a pre-trained model. We have shown in Chapter 4 that we

can compute contextualized representations effectively using our K-embeddings technique.

In addition, our work in Chapter 5 also has shown the effectiveness of K-embeddings in verb

disambiguation tasks.

In our CORE framework, we propose to incorporate the result in Chapter 4 via an en-

semble strategy. Specifically, we compute the representation for word w in a given context by

a softmax classifier on the averaged embedding c of its context words. Formally, let e(w|c)

be the expected representation of word w in context c. e(w|c) is computed by combining em-

beddings of word w using a base word embedding (V (w)) and the conceptual K-embedding:

e(w|c) = V (w) + softmax(c�Wk + bk)�K(w) (6.15)

where:

86

• c is the averaged word embeddings of context words of w

• Wk ∈ Rd×k and bk ∈ Rk are classifier parameters

• K(w) ∈ Rk×d are all possible K-embeddings of w

• V (w) ∈ Rd returns the base embedding of w.

6.4.2 Semantic Cohesion in Constituents

Besides the representation of individual words, we also incorporate binder embeddings for

words in a constituent. Unlike the word-based computation presented in Chapter 5, we build

two additional compositionality representations of the input using the functor (F) and functee

(D) embeddings. The final representation is the combination of the output from Section 6.4.1

(model A) and these two additional embeddings:

P(h) = softmax(WAh+WFh+WDh+ b) (6.16)

y(h) = argmax(P(h)). (6.17)

Output of our RtNN is an embedding comprised of all necessary information from the

expression. This embedding is passed to a softmax classifier for further classification tasks.

6.5 Experiments

We study the effectiveness of our proposed modeling of structural constituents in this section.

Specifically, we consider the task of sentiment analysis of sentences extracted from movie

reviews. We evaluate our proposed compositionality model on sentiment classification task

using the Stanford Sentiment Treebank [SPW13]. This dataset has become a widely-used

benchmark for research in embedding, and thus any significant performance improvements

are viewed as important.

The dataset consists of 11,855 sentences with sentiment annotation. Each sentence is

classified into one of five different classes: very negative (– –), negative (–), neutral (0),

87

positive (+), very positive (+ +). The dataset is split into 8544/1101/2210 sentences for the

training/development/testing sets.

6.5.1 Training Dataset

Our main training data is Wikipedia for English, downloaded on November, 2014. It consists

of 4.6 million articles, with a total of 2 billion words. using the NLTK toolkit. The dataset was

pre-processed with sentence segmentation and word tokenization using NLTK toolkit. We

converted text to lower-case prior to training. The same training data was used to build our

K-embeddings and semantic binder, as described in Chapter 4 and Chapter 5. We annotated

categorial tags on the dataset using the C&C tools and Boxer, developed by Clark and

Curran and Bos [CCB07, Bos08]. Of all the 94,611,174 sentences in the dataset, 88,413,545

(roughly 93.5%) sentences could be parsed successfully in CCG.

As an attempt at fair comparison, however, we employ the pre-trained word embeddings

from Google1, trained using 100 billion words from Google News. Table 6.1 shows the baseline

performances for LSTM and GRU using word embeddings trained by our Wikipedia snapshot

and the Google News word embeddings.

Model 2-billion Wikipedia 100-billion Google News

LSTM 40.99 45.6

GRU 42.52 45.3

Table 6.1: Comparison between word vector usages

We also filtered out words having fewer than 50 occurrences in the text. This resulted in

having roughly 330,564 different unique words2. To put this in perspective, this is roughly

equivalent to the size of English lexicon. There are 272,858 entries in Oxford English Dictio-

nary (OED) project3 in 2013, though this is not the reason we set the minimum count to be

1https://code.google.com/archive/p/word2vec/
2we also performed evaluation with full text without frequency filtering; however, the performance differ-

ences were not significant.
3public.oed.com

88

https://code.google.com/archive/p/word2vec/
public.oed.com

50.

Regarding the training of embeddings, we set the size of the dimension d to be 300 (we

use d=200 for previous Chapters) to keep it compatible with Google News word embeddings.

We choose K = 10 for our word K-embeddings.

6.5.2 Baseline

We present in Table 6.2 results reported for this task in the literature. It should be noted that,

due to the performance gap created by different configuration and randomization seeds, our

LSTM baselines are at least 0.8 points behind that of [TSM15]. One possible explanation

would be that our results are based on different word embeddings (they use Glove word

embeddings trained from 840-billion words of Common Crawl data). We set our NumPy

randomization seed to be 123 in all the experiments in this paper for reproducibility.

89

Model Accuracy

NB [SPW13] 41.0

SVM [SPW13] 40.7

BiNB [SPW13] 41.9

VecAvg [SPW13] 32.7

RsNN [SPW13] 43.2

MV-RsNN [SPW13] 44.4

RsNTN [SPW13] 45.7

DCNN [KGB14] 48.5

Paragraph-Vec [LM14] 48.7

CNN-non-static [Kim14] 48.0

CNN-multichannel [Kim14] 47.4

DRNN [IC14] 49.8

LSTM [TSM15] 46.4

Bidirectional LSTM [TSM15] 49.1

2-layer LSTM [TSM15] 46.0

2-layer Bidirectional LSTM [TSM15] 48.5

Dependency Tree-LSTM [TSM15] 48.4

Stanford PCFG Tree-LSTM [TSM15] 49.7

LSTM [Our Implementation] 45.6

Bidirectional LSTM [Our Implementation] 46.5

2-layer LSTM [Our Implementation] 46.6

2-layer Bidirectional LSTM [Our Implementation] 47.7

Table 6.2: Baselines and Reported State-of-the-art Results

6.5.3 Concept-oriented RtNN with K-Embeddings

We present the results of our proposed RtNN using in-context representation of words (see

Section 6.4.1) in Table 6.3. Because words have the ability to obtain different representations

90

in our compositionality framework, our model shows consistent improvements in almost all

comparisons. In general, GRU also outperforms LSTM by significant margins.

Model LSTM GRU

Standard 45.6 45.3

Bidirectional 46.5 46.0

2-layer 46.6 44.1

2-layer Bidirectional 47.7 47.6

Standard + K-Embeddings 45.7 47.4

Bidirectional + K-Embeddings 47.4 48.3

2-layer + K-Embeddings 47.4 46.7

2-layer Bidirectional + K-Embeddings 46.7 48.1

Table 6.3: Baselines and Our Proposed In-context Representation of Words in RtNN

The result suggests yet another application of our proposed K-embeddings for composi-

tionality and proves its effectiveness. This supports the idea that K-embeddings can be used

as an extra semantic layer on top of a well-trained word embedding. The improvement is

consistent with different variants of the recurrent models.

6.5.4 RtNN Augmented by Semantic Binder

Table 6.4 reports performance measures using the trained semantic binder embeddings from

Chapter 5 as an extra supporting embedding.

91

Model LSTM GRU

Standard 45.6 45.3

Bidirectional 46.5 46.0

2-layer 46.6 44.1

2-layer Bidirectional 47.7 47.6

Standard + Semantic Binder Embeddings 46.1 46.0

Bidirectional + Semantic Binder Embeddings 46.3 46.5

2-layer + Semantic Binder Embeddings 46.8 45.9

2-layer Bidirectional + Semantic Binder Embeddings 47.4 48.0

Table 6.4: Baselines and Our Proposed Augmentation of Semantic Cohesion in Constituents

in RtNN

The results also report consistent gains on top of the baselines. However, the gains are

smaller compared to those reported in Table 6.3. This emphasizes the fact that disambigua-

tion is necessary for this problem, yet it receives inadequate attention in the community.

6.5.5 RtNN with Propagation driven by Combinatory Rules

We present the results of our constituent-based RtNN in Table 6.5. We also show the perfor-

mance of SoTC and ToSC at different settings of `, where ` = 1 implies that there is little

to no change to the original constituent structure, and ` is at its maximum when the entire

structure is totally sequentialized, meaning the input sequence is appended monotonically

left to right.

First, as a sanity check, the performance of sequentialized constituent-based RtNN should

be approximately equivalent to the standard modeling of RtNN. The result in Table 6.5 also

indicates this, showing the performance gaps (between the first and last lines) are no larger

than 0.2%. This also supports the idea that our implementations of the proposed constituent-

based RtNN are robust.

Second, the performance when using full CCG constituent structure is consistently better

92

than that of the sequentialized structures, up to almost 2%. It also reaches the performance

of a more complicated 2-layer bidirectional RtNN, which requires 4 iterations on the input

to compute the final embedding. The result also confirms again that the proper propagation

is beneficial not only in performance gains, but also in interpretability.

Third, and most interestingly, the layer-wise results at multiple ` settings reveal that

the optimal structure for our constituent-based RtNN might not necessarily be the complete

constituent structure. As we have hypothesized, the complexity of the tree structures might

hurt convergence in training. In other words, even though constituent structure can produce

much better performance than sequential structure, it should be normalized and simplified

for better training.

Model LSTM GRU

Standard 45.6 45.3

Bidirectional 46.5 46.0

2-layer 46.6 44.1

2-layer Bidirectional 47.7 47.6

Full CCG Constituent-based RtNN 47.6 46.5

SoTC ; ToSC at ` = 1 47.6 ; 47.6 46.4 ; 46.4

SoTC ; ToSC at ` = 2 46.9 ; 47.6 46.1 ; 46.0

SoTC ; ToSC at ` = 3 46.0 ; 46.7 45.7 ; 45.2

SoTC ; ToSC at ` = 4 45.9 ; 45.4 45.3 ; 44.8

SoTC ; ToSC at ` = 5 47.1 ; 45.6 44.8 ; 44.3

SoTC ; ToSC at ` = 6 45.1 ; 47.0 43.8 ; 44.0

SoTC ; ToSC at ` = 7 47.1 ; 47.1 46.4 ; 43.3

SoTC ; ToSC at ` = 8 46.0 ; 47.5 47.1 ; 45.2

SoTC ; ToSC at ` = 9 46.2 ; 45.6 47.1 ; 45.2

Sequentialized Constituent-based RtNN 45.7 45.1

Table 6.5: Baselines and Our Proposed Constituent-based RtNN

93

6.5.6 Three-Layer Constituent-based RtNN

Our previous experimental studies were trained separately as suggested by the pre-training

strategy for deep neural network architectures. In this section, we combine our best results

at each layer for the final three-layer model.

Model LSTM GRU

Standard 45.6 45.3

Bidirectional 46.5 46.0

2-layer 46.6 44.1

2-layer Bidirectional 47.7 47.6

Standard + KEM + SEBI 46.6 47.3

Bidirectional + KEM + SEBI 47.7 48.5

2-layer + KEM + SEBI 47.6 47.1

2-layer Bidirectional + KEM + SEBI 48.1 48.6

Full CCG Constituent-based RtNN + KEM + SEBI 48.6 49.1

Table 6.6: Comparisons

6.6 Conclusion

In this chapter, we continued to investigate the compositionality representation problem

for linguistic expressions. Specifically, we leveraged recent advances in recurrent neural net-

work modeling for compositionality. After studying these models, we proposed three aspects

that could be exercised for better compositionality. First, we introduced an integration of

our proposed K-embeddings to build in-context representations for words. Second, we also

introduced our binder representations to help with computation of embedding for each con-

stituent. Finally, and most importantly, we introduced our constituent-based recurrent neural

network framework to compute compositional representations. We have shown the effective-

ness of our proposed strategy on the widely-studied sentiment analysis benchmark, and

succeeded in obtaining significant performance gains. Our proposed method, yet again, is

94

simple and flexible, and can be integrated with other available systems for better perfor-

mance. Indeed, the three components we have studied in this chapter are independent, and

can be easily combined in other NLP applications for performance gains.

95

CHAPTER 7

Conclusion

7.1 Thesis Summary

This dissertation addresses several basic questions in Data Mining (DM) and Natural Lan-

guage Processing (NLP). Specifically, it presents my attempts to bridge recent advances in

Artificial Intelligence (AI) and Machine Learning (ML), with recently-developed theories in

Linguistics, in order to solve problems in DM and NLP.

For DM, I have empirically shown that representations of nodes (node embeddings) are

useful not only in mining node relations in social network analysis, but also in uncovering

novel structure in the network. In other words, node embeddings can be a beneficial source

of information in mining.

For NLP, I have proposed a unified framework for linguistic compositionality. In particu-

lar, I have shown that compositionality can benefit from being handled differently than with

traditional DNN approaches — by focusing on managing linguistic phenomena. Specifically,

our proposed three-layer compositionality model has been proven effective by addressing

polysemy, functional interactions, and constituent structure. Even more surprisingly, these

phenomena can be well-handled, not by using expensive annotated datasets, but by exploit-

ing linguistic features — and structures — using DNN techniques with redundant large scale

(unannotated) text dataset. The experimental results strongly support this approach, and

emphasize the benefits of integrating theory and practice in multidisciplinary research.

96

7.2 Beyond Deep Learning

The recent advances in machine learning suggests that deep neural networks (DNNs) are a

potential candidate for current and future challenges in large scale data science. Descriptively,

the DNN framework has proven its maturity in the popular five Vs of Big Data:

• Volume refers to the amount of available data. It has been demonstrated that DNN

frameworks can handle large influxes of data. In addition, the learned models can be

easily updated thanks to the incremental training and updating. Training can thus

be scaled up with the current parallelism capability and the recent advances in GPU

development.

• Velocity refers to the instant updating capability with new data. This goes in line with

the Volume challenge, and is highly feasible with recent developments in hardware and

algorithms. This also underscores the necessity of communication and collaboration

between researchers in both fields.

• Variety concerns the various sources and types of data and information being gener-

ated. However, this aspect has not been receiving sufficient attention in the research

community. In most studies, experiments rely on a standardized dataset to prove some

particular hypothesis. In fact, the Variety problem is closely related to compositional-

ity, one of my focuses in this dissertation. Compositionality is a grand challenge, still

very open, and a central problem of Linguistics. It is worthwhile for researchers to pay

more attention to the great potential importance of this area.

• Veracity refers to the fidelity of models. For DNN frameworks, it might raise questions

about the weak interpretability, which is a concern since in this aspect kernel methods

excel. Interestingly, this dissertation, especially works in Chapter 6, has shown that an

interpretable DNN is possible if we can employ structural information in the learning

process properly. The results also encourage more interdisciplinary research.

• Value refers to the final outcome that the findings can bring to daily life. Even though

this is generally not easily quantifiable, we can see the increasing pervasiveness of AI

97

in our daily encounters, from mobile to medical.

Deep learning has been proven effective when applied to problems in different disciplines,

while in many cases achieving state-of-the-art performance. In this thesis, I have demon-

strated its potential for working in many popular applications. Specifically, I have focused

on the mutual benefit of combining neural networks for learning innovative representations,

and advances in Linguistics, NLP, and DM.

7.3 Conclusion

Modeling intelligence is hard, and will remain hard for another decade or two. The results in

this dissertation underscore the necessity of interdisciplinary communication and integration.

Indeed, we already see trends towards interdiscipinary approaches on a daily basis, from news

to the academic literature. I believe this trend will continue in the future, and bring great

benefits.

98

References

[Ajd35] K. Ajdukiewicz. “Die syntaktische Konnexität.” Stud. Philos., 1:1–27, 1935.

[AK14] Jacob Andreas and Dan Klein. “How much do word embeddings encode about
syntax?” In Proceedings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), pp. 822–827, Baltimore, Mary-
land, June 2014. Association for Computational Linguistics.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Ma-
chine Translation by Jointly Learning to Align and Translate.” CoRR,
abs/1409.0473, 2014.

[BGL08] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. “Fast unfolding of community hierarchies in large networks.” CoRR,
abs/0803.0476, 2008.

[BH14] Samy Bengio and Georg Heigold. “Word Embeddings for Speech Recognition.”
In Proceedings of the 15th Conference of the International Speech Communication
Association, Interspeech, 2014.

[BOK07] Alexandra Birch, Miles Osborne, and Philipp Koehn. “CCG Supertags in Fac-
tored Statistical Machine Translation.” In Proceedings of the Second Workshop
on Statistical Machine Translation, StatMT ’07, pp. 9–16, Stroudsburg, PA, USA,
2007. Association for Computational Linguistics.

[Bos08] Johan Bos. “Wide-coverage Semantic Analysis with Boxer.” In Proceedings of
the 2008 Conference on Semantics in Text Processing, STEP ’08, pp. 277–286,
Stroudsburg, PA, USA, 2008. Association for Computational Linguistics.

[CC04] Stephen Clark and James R. Curran. “Parsing the WSJ Using CCG and Log-
linear Models.” In Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics, ACL ’04, Stroudsburg, PA, USA, 2004. Association
for Computational Linguistics.

[CC07] Stephen Clark and James R. Curran. “Wide-coverage Efficient Statistical Parsing
with Ccg and Log-linear Models.” Comput. Linguist., 33(4):493–552, December
2007.

[CCB07] James Curran, Stephen Clark, and Johan Bos. “Linguistically Motivated Large-
Scale NLP with C&C and Boxer.” In ACL 2007 Demo and Poster Sessions, pp.
33–36, Prague, Czech Republic, June 2007.

[CHV16] Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vymolova, Kaisheng Yao, Chris
Dyer, and Gholamreza Haffari. “Incorporating Structural Alignment Biases into
an Attentional Neural Translation Model.” CoRR, abs/1601.01085, 2016.

99

[CKW09] David Chiang, Kevin Knight, and Wei Wang. “11,001 New Features for Sta-
tistical Machine Translation.” In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American Chapter of the Associa-
tion for Computational Linguistics, pp. 218–226, Boulder, Colorado, June 2009.
Association for Computational Linguistics.

[CMG14] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. “Learning Phrase Repre-
sentations using RNN Encoder–Decoder for Statistical Machine Translation.” In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. Association
for Computational Linguistics.

[CSN09] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. “Power-Law Dis-
tributions in Empirical Data.” SIAM Rev., 51(4):661–703, November 2009.

[CWB11] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. “Natural Language Processing (Almost) from
Scratch.” J. Mach. Learn. Res., 12:2493–2537, November 2011.

[CXH15] Tao Chen, Ruifeng Xu, Yulan He, and Xuan Wang. “Improving Distributed
Representation of Word Sense via WordNet Gloss Composition and Context
Clustering.” In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pp. 15–20, Beijing, China, July
2015. Association for Computational Linguistics.

[CZZ15] Wenliang Chen, Min Zhang, and Yue Zhang. “Distributed Feature Represen-
tations for Dependency Parsing.” Audio, Speech, and Language Processing,
IEEE/ACM Transactions on, 23(3):451–460, March 2015.

[DB05] William B. Dolan and Chris Brockett. “Automatically Constructing a Corpus
of Sentential Paraphrases.” In IWP2005. Asia Federation of Natural Language
Processing, 2005.

[DL16] Li Dong and Mirella Lapata. “Language to Logical Form with Neural Attention.”
CoRR, abs/1601.01280, 2016.

[EHT16] Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. “Tree-to-
Sequence Attentional Neural Machine Translation.” CoRR, abs/1603.06075,
2016.

[EP08] Katrin Erk and Sebastian Padó. “A Structured Vector Space Model for Word
Meaning in Context.” In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP ’08, pp. 897–906, Stroudsburg, PA, USA,
2008. Association for Computational Linguistics.

100

[FCB16] Orhan Firat, KyungHyun Cho, and Yoshua Bengio. “Multi-Way, Multilin-
gual Neural Machine Translation with a Shared Attention Mechanism.” CoRR,
abs/1601.01073, 2016.

[FG] Elise Feingold and Peter Good. “ENCODE Pilot Project.” http://www.
genome.gov/26525202.

[Fir57] J. Firth. A Synopsis of Linguistic Theory 1930-1955. Studies in Linguistic Anal-
ysis, Philological. Longman, 1957.

[FL09] Santo Fortunato and Andrea Lancichinetti. “Community Detection Algorithms:
A Comparative Analysis: Invited Presentation, Extended Abstract.” In Proceed-
ings of the Fourth International ICST Conference on Performance Evaluation
Methodologies and Tools, VALUETOOLS ’09, pp. 27:1–27:2, ICST, Brussels, Bel-
gium, Belgium, 2009. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

[FPC15] Daniel Fried, Tamara Polajnar, and Stephen Clark. “Low-Rank Tensors for Verbs
in Compositional Distributional Semantics.” In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing (Volume 2: Short Pa-
pers), pp. 731–736, Beijing, China, July 2015. Association for Computational
Linguistics.

[FS08] Samuel Fernando and Mark Stevenson. “A Semantic Similarity Approach to
Paraphrase Detection.”, 2008.

[GBL10] Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan. “Approximation
Analysis of Influence Spread in Social Networks.” CoRR, abs/1008.2005, 2010.

[Geh09] P.J. Gehrke. The Ethics and Politics of Speech: Communication and Rhetoric in
the Twentieth Century. Southern Illinois University Press, 2009.

[GS11] Edward Grefenstette and Mehrnoosh Sadrzadeh. “Experimental Support for a
Categorical Compositional Distributional Model of Meaning.” In Proceedings of
the Conference on Empirical Methods in Natural Language Processing, EMNLP
’11, pp. 1394–1404, Stroudsburg, PA, USA, 2011. Association for Computational
Linguistics.

[Han05] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2005.

[Har54] Zellig Harris. “Distributional Structure.” Word, 10(23):146–162, 1954.

[Has11] Samer Hassan. Measuring Semantic Relatedness Using Salient Encyclopedic Con-
cepts. PhD thesis, Denton, TX, USA, 2011. AAI3507009.

[HB13] Karl Moritz Hermann and Phil Blunsom. “The Role of Syntax in Vector Space
Models of Compositional Semantics.” In Proceedings of ACL, August 2013.

101

http://www.genome.gov/26525202
http://www.genome.gov/26525202

[HCC14] Awni Y. Hannun, Carl Case, Jared Casper, Bryan C. Catanzaro, Greg Diamos,
Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates,
and Andrew Y. Ng. “Deep Speech: Scaling up end-to-end speech recognition.”
CoRR, abs/1412.5567, 2014.

[HGL15] Hua He, Kevin Gimpel, and Jimmy Lin. “Multi-Perspective Sentence Similarity
Modeling with Convolutional Neural Networks.” In EMNLP 2015, pp. 1576–
1586, Lisbon, Portugal, September 2015.

[Hoc03] Julia Hockenmaier. “Parsing with Generative Models of Predicate-Argument
Structure.” In Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics, pp. 359–366, Sapporo, Japan, July 2003. Association
for Computational Linguistics.

[Hoc06] Julia Hockenmaier. “Creating a CCGbank and a Wide-coverage CCG Lexicon for
German.” In Proceedings of the 21st International Conference on Computational
Linguistics and the 44th Annual Meeting of the Association for Computational
Linguistics, ACL-44, pp. 505–512, Stroudsburg, PA, USA, 2006. Association for
Computational Linguistics.

[HOT06] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. “A Fast Learning
Algorithm for Deep Belief Nets.” Neural Comput., 18(7):1527–1554, July 2006.

[HS02] Julia Hockenmaier and Mark Steedman. “Acquiring Compact Lexicalized Gram-
mars from a Cleaner Treebank.” In LREC. European Language Resources Asso-
ciation, 2002.

[HS07] Julia Hockenmaier and Mark Steedman. “CCGbank: A Corpus of CCG Deriva-
tions and Dependency Structures Extracted from the Penn Treebank.” Comput.
Linguist., 33(3):355–396, September 2007.

[HSM12] Eric H. Huang, Richard Socher, Christopher D. Manning, and Andrew Y. Ng.
“Improving Word Representations via Global Context and Multiple Word Proto-
types.” In Proceedings of the 50th Annual Meeting of the Association for Compu-
tational Linguistics: Long Papers - Volume 1, ACL ’12, pp. 873–882, Stroudsburg,
PA, USA, 2012. Association for Computational Linguistics.

[HSM14] Kazuma Hashimoto, Pontus Stenetorp, Makoto Miwa, and Yoshimasa Tsu-
ruoka. “Jointly Learning Word Representations and Composition Functions Us-
ing Predicate-Argument Structures.” In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1544–1555,
Doha, Qatar, October 2014. Association for Computational Linguistics.

[HSW09] Hany Hassan, Khalil Sima’an, and Andy Way. “A Syntactified Direct Transla-
tion Model with Linear-time Decoding.” In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Processing: Volume 3 - Volume 3,
EMNLP ’09, pp. 1182–1191, Stroudsburg, PA, USA, 2009. Association for Com-
putational Linguistics.

102

[IC14] Ozan Irsoy and Claire Cardie. “Opinion Mining with Deep Recurrent Neural
Networks.” In Proceedings of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pp. 720–728, Doha, Qatar, October 2014.
Association for Computational Linguistics.

[II09] Aminul Islam and Diana Inkpen. “Semantic Similarity of Short Texts.” Current
Issues in Linguistic Theory: Recent Advances in Natural Language Processing,
2009.

[IKC16] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. “Sum-
marizing Source Code using a Neural Attention Model.” In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 2073–2083, Berlin, Germany, August 2016. Association for
Computational Linguistics.

[JZS15] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. “An empirical explo-
ration of recurrent network architectures.” Journal of Machine Learning Re-
search, 2015.

[KCC08] Terry Koo, Xavier Carreras, and Michael Collins. “Simple Semi-supervised De-
pendency Parsing.” In Proceedings of ACL-08: HLT, pp. 595–603. Association
for Computational Linguistics, 2008.

[KGB14] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. “A Convolutional
Neural Network for Modelling Sentences.” In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 655–665, Baltimore, Maryland, June 2014. Association for Computa-
tional Linguistics.

[Kim14] Yoon Kim. “Convolutional Neural Networks for Sentence Classification.” In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1746–1751, Doha, Qatar, October 2014. Association
for Computational Linguistics.

[KMK11] Stefan Kombrink, Tomas Mikolov, Martin Karafiát, and Lukás Burget. “Re-
current Neural Network Based Language Modeling in Meeting Recognition.” In
INTERSPEECH 2011, pp. 2877–2880, 2011.

[KOM03] Philipp Koehn, Franz Josef Och, and Daniel Marcu. “Statistical Phrase-based
Translation.” In Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language
Technology - Volume 1, NAACL ’03, pp. 48–54, Stroudsburg, PA, USA, 2003.
Association for Computational Linguistics.

[KS03] E.L. Keenan and E.P. Stabler. Bare Grammar: Lectures on Linguistic Invariants.
Center for the Study of Language and Information - Lecture Notes Series. CSLI
Publications, 2003.

103

[KS14] Dimitri Kartsaklis and Mehrnoosh Sadrzadeh. “A Study of Entanglement in a
Categorical Framework of Natural Language.” In Proceedings of the 11th work-
shop on Quantum Physics and Logic, QPL 2014, Kyoto, Japan, 4-6th June 2014,
pp. 249–261, 2014.

[KSB16] Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst.
“Text Understanding with the Attention Sum Reader Network.” CoRR,
abs/1603.01547, 2016.

[LG14a] Omer Levy and Yoav Goldberg. “Dependency-Based Word Embeddings.” In
Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Volume 2: Short
Papers, pp. 302–308. The Association for Computer Linguistics, 2014.

[LG14b] Omer Levy and Yoav Goldberg. “Neural Word Embedding as Implicit Matrix
Factorization.” In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and
K.Q. Weinberger, editors, Advances in Neural Information Processing Systems
27, pp. 2177–2185. Curran Associates, Inc., 2014.

[LM14] Quoc V. Le and Tomas Mikolov. “Distributed Representations of Sentences and
Documents.” CoRR, abs/1405.4053, 2014.

[LM16] Minh-Thang Luong and Christopher D. Manning. “Achieving Open Vocabulary
Neural Machine Translation with Hybrid Word-Character Models.” In Associa-
tion for Computational Linguistics (ACL), Berlin, Germany, August 2016.

[LPM15] Thang Luong, Hieu Pham, and Christopher D. Manning. “Effective Approaches
to Attention-based Neural Machine Translation.” In EMNLP 2015, pp. 1412–
1421, Lisbon, Portugal, September 2015. Association for Computational Linguis-
tics.

[LSL14] Li-Jia Li, Hao Su, Yongwhan Lim, and Fei-Fei Li. “Object Bank: An Object-
Level Image Representation for High-Level Visual Recognition.” International
Journal of Computer Vision, 107(1):20–39, 2014.

[LSL15] Minh-Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol Vinyals, and Wojciech
Zaremba. “Addressing the Rare Word Problem in Neural Machine Translation.”
In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pp. 11–19, Beijing, China, July 2015. Associa-
tion for Computational Linguistics.

[LSL16] Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. “Neural
Relation Extraction with Selective Attention over Instances.” In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 2124–2133, Berlin, Germany, August 2016. Association
for Computational Linguistics.

104

[LTA15] Wang Ling, Yulia Tsvetkov, Silvio Amir, Ramon Fermandez, Chris Dyer, Alan W
Black, Isabel Trancoso, and Chu-Cheng Lin. “Not All Contexts Are Created
Equal: Better Word Representations with Variable Attention.” In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing,
pp. 1367–1372, Lisbon, Portugal, September 2015. Association for Computational
Linguistics.

[Man15] Christopher D. Manning. “Computational Linguistics and Deep Learning.”
Computational Linguistics, 41(4):701–707, 2015.

[MCC13a] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient Estima-
tion of Word Representations in Vector Space.” CoRR, abs/1301.3781, 2013.

[MCC13b] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient Estima-
tion of Word Representations in Vector Space.” CoRR, abs/1301.3781, 2013.

[MKS14] Dmitrijs Milajevs, Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Matthew
Purver. “Evaluating Neural Word Representations in Tensor-Based Composi-
tional Settings.” In EMNLP 2014, pp. 708–719, Doha, Qatar, October 2014.

[MMR55] J. McCarthy, M. L. Minsky, N. Rochester, and C.E. Shannon. “A
PROPOSAL FOR THE DARTMOUTH SUMMER RESEARCH
PROJECT ON ARTIFICIAL INTELLIGENCE.” http://www-
formal.stanford.edu/jmc/history/dartmouth/dartmouth.html, 1955.

[MSC13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. “Dis-
tributed Representations of Words and Phrases and their Compositionality.” In
C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems 26, pp. 3111–3119.
Curran Associates, Inc., 2013.

[MYZ13] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. “Linguistic Regularities in
Continuous Space Word Representations.” In Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT-2013). Association for Computa-
tional Linguistics, May 2013.

[New03] M.E.J. Newman. “Fast algorithm for detecting community structure in net-
works.” Physical Review E, 69, September 2003.

[New04] M. E. J. Newman. “Analysis of weighted networks.” Phys. Rev. E, 70:056131,
Nov 2004.

[New06] M. E. J. Newman. “Finding community structure in networks using
the eigenvectors of matrices.” Physical review E, 74(3), 2006. cite
arxiv:physics/0605087Comment: 22 pages, 8 figures, minor corrections in this
version.

105

[NG04] M. E. J. Newman and M. Girvan. “Finding and evaluating community structure
in networks.” Phys. Rev. E, 69(2):026113, February 2004.

[NSP14] Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and Andrew McCal-
lum. “Efficient Non-parametric Estimation of Multiple Embeddings per Word in
Vector Space.” In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1059–1069, Doha, Qatar, October
2014. Association for Computational Linguistics.

[OGK04] Franz Josef Och, Daniel Gildea, Sanjeev Khudanpur, Anoop Sarkar, Kenji Ya-
mada, Alex Fraser, Shankar Kumar, Libin Shen, David Smith, Katherine Eng,
Viren Jain, Zhen Jin, and Dragomir Radev. “A Smorgasbord of Features for
Statistical Machine Translation.” In Daniel Marcu Susan Dumais and Salim
Roukos, editors, HLT-NAACL 2004: Main Proceedings, pp. 161–168, Boston,
Massachusetts, USA, May 2 - May 7 2004. Association for Computational Lin-
guistics.

[OLC11] Günce Keziban Orman, Vincent Labatut, and Hocine Cherifi. “On Accuracy of
Community Structure Discovery Algorithms.” CoRR, abs/1112.4134, 2011.

[PGE08] Steven T. Piantadosi, N.D. Goodman, B.A. Ellis, and J.B. Tenenbaum. “A
Bayesian model of the acquisition of compositional semantics.” In Proceedings of
the 30th Annual Conference of the Cognitive Science Society, 2008.

[PL05] Pascal Pons and Matthieu Latapy. “Computing communities in large networks
using random walks (long version).” Computer and Information Sciences-ISCIS
2005, pp. 284–293, 2005. arXiv:arXiv:physics/0512106v1.

[PMG97] David Poole, Alan Mackworth, and Randy Goebel. Computational Intelligence:
A Logical Approach. Oxford University Press, Oxford, UK, 1997.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove: Global
Vectors for Word Representation.” In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543,
Doha, Qatar, October 2014. Association for Computational Linguistics.

[QCN14] Lin Qiu, Yong Cao, Zaiqing Nie, Yong Yu, and Yong Rui. “Learning Word
Representation Considering Proximity and Ambiguity.” 2014.

[RB08] Martin Rosvall and Carl T. Bergstrom. “Maps of random walks on complex
networks reveal community structure.” Proceedings of the National Academy of
Sciences, 105(4):1118–1123, 2008.

[RCW15] Alexander M. Rush, Sumit Chopra, and Jason Weston. “A Neural Attention
Model for Abstractive Sentence Summarization.” In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pp. 379–389,
Lisbon, Portugal, September 2015. Association for Computational Linguistics.

106

[RFP12] Yiye Ruan, David Fuhry, and Srinivasan Parthasarathy. “Efficient Community
Detection in Large Networks using Content and Links.” CoRR, abs/1212.0146,
2012.

[RK14] Matteo Riondato and Evgenios M. Kornaropoulos. “Fast Approximation of Be-
tweenness Centrality Through Sampling.” In Proceedings of the 7th ACM Inter-
national Conference on Web Search and Data Mining, WSDM ’14, pp. 413–422,
New York, NY, USA, 2014. ACM.

[RM10a] Joseph Reisinger and Raymond J. Mooney. “Multi-prototype Vector-space Mod-
els of Word Meaning.” In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, HLT ’10, pp. 109–117, Stroudsburg, PA, USA, 2010. Association for
Computational Linguistics.

[RM10b] Joseph Reisinger and Raymond J. Mooney. “Multi-Prototype Vector-Space Mod-
els of Word Meaning.” In HLT-NAACL, pp. 109–117. The Association for Com-
putational Linguistics, 2010.

[RMR15] Ridho Reinanda, Edgar Meij, and Maarten de Rijke. “Mining, Ranking and
Recommending Entity Aspects.” In Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR
’15, pp. 263–272, New York, NY, USA, 2015. ACM.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2 edition, 2003.

[Ron14] Xin Rong. “word2vec Parameter Learning Explained.” CoRR, abs/1411.2738,
2014.

[SCA13] Abhinav Sethy, Stanley F. Chen, Ebru Arisoy, Bhuvana Ramabhadran, Kartik
Audhkhasi, Shrikanth Narayanan, and Paul Vozila. “Joint training of interpo-
lated exponential n-gram models.” In 2013 IEEE Workshop on Automatic Speech
Recognition and Understanding, Olomouc, Czech Republic, December 8-12, 2013,
pp. 25–30, 2013.

[SH12] Yizhou Sun and Jiawei Han. Mining Heterogeneous Information Networks: Prin-
ciples and Methodologies. Morgan & Claypool Publishers, 2012.

[Sha92] Stuart C. Shapiro. Encyclopedia of Artificial Intelligence. John Wiley & Sons,
Inc., New York, NY, USA, 2nd edition, 1992.

[SHP11] Richard Socher, Eric H. Huang, Jeffrey Pennin, Christopher D Manning, and An-
drew Y. Ng. “Dynamic Pooling and Unfolding Recursive Autoencoders for Para-
phrase Detection.” In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Sys-
tems 24, pp. 801–809. Curran Associates, Inc., 2011.

107

[SLC16] Paul Hongsuck Seo, Zhe Lin, Scott Cohen, Xiaohui Shen, and Bohyung Han.
“Hierarchical Attention Networks.” CoRR, abs/1606.02393, 2016.

[SPW13] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Man-
ning, Andrew Y. Ng, and Christopher Potts. “Recursive Deep Models for Seman-
tic Compositionality Over a Sentiment Treebank.” In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, pp. 1631–
1642, Stroudsburg, PA, October 2013. Association for Computational Linguis-
tics.

[Ste00] Mark Steedman. The Syntactic Process. MIT Press, Cambridge, MA, USA, 2000.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to Sequence Learn-
ing with Neural Networks.” In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 27, pp. 3104–3112. Curran Associates, Inc., 2014.

[SW71] Claude E. Shannon and Warren Weaver. The Mathematical Theory of Commu-
nication. The University of Illinois Press, 1971.

[SYH09] Yizhou Sun, Yintao Yu, and Jiawei Han. “Ranking-based Clustering of Hetero-
geneous Information Networks with Star Network Schema.” In Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’09, pp. 797–806, New York, NY, USA, 2009. ACM.

[TDB14] Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang, Enhong Chen, and
Tie-Yan Liu. “A Probabilistic Model for Learning Multi-Prototype Word Em-
beddings.” In Proceedings of COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers, pp. 151–160, Dublin, Ireland,
August 2014. Dublin City University and Association for Computational Lin-
guistics.

[THP08] Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. “Efficient Aggre-
gation for Graph Summarization.” In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’08, pp. 567–580,
New York, NY, USA, 2008. ACM.

[TRB10] Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio. “Word Representations:
A Simple and General Method for Semi-Supervised Learning.” In Proceedings of
the 48th Annual Meeting of the Association for Computational Linguistics, pp.
384–394. Association for Computational Linguistics, 2010.

[TSM15] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. “Improved Seman-
tic Representations From Tree-Structured Long Short-Term Memory Networks.”
In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pp. 1556–1566, Beijing, China, July 2015. As-
sociation for Computational Linguistics.

108

[Tur50] A. M. Turing. “Computing Machinery and Intelligence.”, 1950. One
of the most influential papers in the history of the cognitive sciences:
http://cogsci.umn.edu/millennium/final.html.

[VP15] Thuy Vu and D. Stott Parker. “Node Embeddings in Social Network Analysis.”
In Proceedings of the 2015 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining 2015, ASONAM ’15, pp. 326–329, New
York, NY, USA, 2015. ACM.

[VP16a] Thuy Vu and D. Stott Parker. “K-Embeddings: Learning Conceptual Embed-
dings for Words using Context.” In NAACL 2016, 2016.

[VP16b] Thuy Vu and D. Stott Parker. “Mining Community Structure with Node Embed-
dings.” In From Social Data Mining and Analysis to Prediction and Community
Detection, 2016.

[WCL12] Jonathan Weese, Chris Callison-Burch, and Adam Lopez. “Using Categorial
Grammar to Label Translation Rules.” In Proceedings of the Seventh Workshop
on Statistical Machine Translation, WMT ’12, pp. 222–231, Stroudsburg, PA,
USA, 2012. Association for Computational Linguistics.

[WHF16] Yashen Wang, Heyan Huang, Chong Feng, Qiang Zhou, Jiahui Gu, and Xiong
Gao. “CSE: Conceptual Sentence Embeddings based on Attention Model.” In
Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers, 2016.

[WLZ16] Bingning Wang, Kang Liu, and Jun Zhao. “Inner Attention based Recurrent
Neural Networks for Answer Selection.” In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1288–1297, Berlin, Germany, August 2016. Association for Computational
Linguistics.

[WSC16] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean.
“Google’s Neural Machine Translation System: Bridging the Gap between Human
and Machine Translation.” CoRR, abs/1609.08144, 2016.

[YDA16] Mo Yu, Mark Dredze, Raman Arora, and Matthew R. Gormley. “Embedding
Lexical Features via Low-rank Tensors.” In Proceedings of NAACL, 2016.

[YHD16] Zichao Yang, Zhiting Hu, Yuntian Deng, Chris Dyer, and Alexander J. Smola.
“Neural Machine Translation with Recurrent Attention Modeling.” CoRR,
abs/1607.05108, 2016.

109

[YJC09] Tianbao Yang, Rong Jin, Yun Chi, and Shenghuo Zhu. “Combining Link and
Content for Community Detection: A Discriminative Approach.” In Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’09, pp. 927–936, New York, NY, USA, 2009. ACM.

[YYD16] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
“Hierarchical Attention Networks for Document Classification.” In NAACL 2016,
pp. 1480–1489, San Diego, California, June 2016. Association for Computational
Linguistics.

[YZD13] Mo Yu, Tiejun Zhao, Daxiang Dong, Hao Tian, and Dianhai Yu. “Compound
Embedding Features for Semi-supervised Learning.” In Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 563–568. Association for Com-
putational Linguistics, 2013.

[ZC12] Luke S. Zettlemoyer and Michael Collins. “Learning to Map Sentences to Log-
ical Form: Structured Classification with Probabilistic Categorial Grammars.”
CoRR, abs/1207.1420, 2012.

[ZCY09] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. “Graph Clustering Based on Struc-
tural/Attribute Similarities.” Proc. VLDB Endow., 2(1):718–729, August 2009.

[ZSG16] Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. “DAG-Structured Long Short-
Term Memory for Semantic Compositionality.” In Proceedings of the 2016 Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 917–926, San Diego, California,
June 2016. Association for Computational Linguistics.

110

	Introduction
	Introduction
	Problems and Contributions
	Embeddings in a Network
	Conceptual K-Embeddings for Words
	Embeddings in Semantic Compositionality

	Background
	Representation in Linguistics
	Language
	Grammar
	Meaning Acquisition
	Bare Grammar

	Feature Representation in Machine Learning
	Learning Embeddings
	Deep Neural Networks

	Node Embeddings in Network Analysis
	Introduction
	Background
	Representation Learning
	Social Network Analysis and Mining

	Distributed Representation in Networks
	Embedding-based Community Detection (EBCD)
	Node Clustering Algorithms
	Community Detection with Weighted Network
	(;) blueLInk blueRe-blueAdjustment in Networks (LIRA)
	Embedding-based Community Detection

	Mining in Social Networks
	Community Homogeneity
	Community Distance
	Community Connectors Identification

	Experiments
	Dataset Construction
	Citation-based Author Embeddings in DBLP
	Community Detection Results
	Mining in Community Data Results

	Conclusion

	Word K-Embeddings
	Introduction
	Related Work
	Learning Word K-Embeddings
	Concept Annotation using Context Embeddings
	Training Word K-Embeddings
	Word K-Embedding Training Workflow

	Experiments
	Settings
	Results
	Word Expressivity Analysis

	Conclusion

	Semantic Binder in Compositionality
	Introduction
	Background
	Principle of Compositionality
	Combinatory Categorial Grammar
	Related Works in Compositionality

	The Proposed Semantic Binder – SEBI
	Binder Embeddings for Compositionality
	Word Sense Estimation (WSE)
	Semantic Binder Training

	Experiments
	Training Dataset
	Subject-Verb-Object Agreement
	Sentence Paraphrasing

	Conclusions and Future Work

	Constituent-based Compositionality
	Introduction
	Background
	Memory Mechanism using Recurrent Neural Network
	Attention Mechanism

	Constituent-based Recurrent Neural Networks
	Combinatory Layered Recurrent Unit
	Layered Constituent-based Propagation
	Semantic Constituent Clustering

	Constituent-based Representation — CORE
	In-context Representation for Words
	Semantic Cohesion in Constituents

	Experiments
	Training Dataset
	Baseline
	Concept-oriented RtNN with K-Embeddings
	RtNN Augmented by Semantic Binder
	RtNN with Propagation driven by Combinatory Rules
	Three-Layer Constituent-based RtNN

	Conclusion

	Conclusion
	Thesis Summary
	Beyond Deep Learning
	Conclusion

	References

