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ABSTRACT OF THE DISSERTATION 

 

Improving Glioblastoma Multiforme (GBM) Radiotherapy Outcome  

through Personalized Biological Modeling and Optimization 

 

by 

 

Victoria YuiWen Yu 

Doctor of Philosophy in Biomedical Physics 

University of California, Los Angeles, 2017 

Professor Ke Sheng, Chair 

 

 

Purpose 

 To investigate the potential in substantially improving Glioblastoma Multiforme 

(GBM) radiotherapy outcome through personalized spatial dose distributions with 4π 

radiotherapy and temporal dose fractionation schedule optimization with patient-specific 

biological models. 

Methods 

 An ordinary differential equation (ODE) model with consideration of cancer stem 

cell (CSC) dynamics that incorporates the distinct radiosensitivity between CSC and its non-

stem counterpart, differentiated cancer cells (DCC) has been developed and shown to be 
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capable of reflecting the definitive treatment failure of GBM was developed. Seven patient-

specific models were fitted to match the known times to GBM recurrence of these patients. 

Recurrence volume of each patient was transferred to generate hypothetical subvolumes 

with higher tumor aggressiveness on the original clinical plan to receive simultaneous 

integrated boost (SIB) to study the compound effect in outcome improvement arising from 

spatial and temporal dose optimization. For each patient, the boost dose is maximized 

subject to the constraints maintaining acceptable dose to surrounding OARs and coverage to 

the original planning target volume. With the patient-specific biological models and boost 

dose, a dose fractionation schedule optimization (FSO) problem with the time interval 

between fractions and the dose to both the non-boost and boost volumes as variables was 

formulated and solved with a paired simulated annealing algorithm for boost volumes with 

a wide range of CSC concentrations.  

Results 

 Simultaneous integrated boost (SIB) dosage of up to 245 Gy within a 60 Gy PTV was 

shown to be feasible with the 4π SIB optimization formulation. Statistically significant OAR 

sparing was still achieved with 4π SIB compared with the originally delivered clinical plan 

with no boost. FSO resulted in high dose fractions in the beginning of the treatment course, 

followed by relatively constant dose fractions. Scenarios with lower CSC concentration 

within the boost volume resulted in fractionation schedules with dense once per day 

fractions in the beginning followed by a long time interval in the end with no treatment. With 

boost volume CSC concentration increased by 100 fold, maximum recurrence delay of up to 

392 days was observed for a patient with the slowest growing disease.  
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Conclusions 

 By combining the spatial dose sparing power of 4π radiotherapy and temporal dose 

fractionation optimization with a CSC dynamics biological model in a personalized manner, 

significant potential in GBM disease recurrence delay was demonstrated across a cohort with 

differing disease characteristics. Further investigation is needed to validate the proposed 

model and resultant dose fractionation schedules to fully realize and translate these 

substantial clinical benefits.  

  



 

v 

The dissertation of Victoria YuiWen Yu is approved. 

Dan Ruan 

Robert Chin 

Peng Hu 

John Lowengrub 

Ke Sheng, Committee Chair 

 

 

University of California, Los Angeles 

2017 

 

 

 

 

 

 

 

 

 



 

vi 

 

 

 

 

 

 

 

 

To Mark, Elaine, and Mom 

 

 

  



 

vii 

TABLE OF CONTENTS 
LIST OF TABLES....................................................................................................................................................... X 

LIST OF FIGURES ................................................................................................................................................. XIII 

LIST OF EQUATIONS ........................................................................................................................................... XVII 

LIST OF APPENDICES .......................................................................................................................................... XIX 

ACKNOWLEDGEMENTS .........................................................................................................................................XX 

VITA .................................................................................................................................................................... XXII 

1 INTRODUCTION ................................................................................................................................... 1 

1.1 CANCER STEM CELLS AND RADIATION DOSE FRACTIONATION SCHEDULE OPTIMIZATION (FSO) ...... 2 

1.2 4Π RADIOTHERAPY......................................................................................................................................... 4 

1.3 ADVANCING RECURRENCE DETECTION: RADIOMICS AND MACHINE LEARNING ........................................ 4 

1.4 OVERVIEW ....................................................................................................................................................... 5 

2 BIOLOGICAL MODELING AND FRACTIONATION SCHEDULE OPTIMIZATION (FSO) 

WITH CONSIDERATION OF CANCER STEM CELL DYNAMICS ................................................... 8 

2.1 INCORPORATION OF CANCER STEM CELL DYNAMICS IN RADIATION THERAPY TREATMENT RESPONSE 

MODELING AND THE IMPLICATION IN GBM TREATMENT RESISTANCE43 ......................................................... 8 

2.1.1 Introduction ................................................................................................................................................ 8 

2.1.2 Methods ...................................................................................................................................................... 10 

2.1.3 Results ......................................................................................................................................................... 14 

2.1.4 Discussion .................................................................................................................................................. 20 

2.1.5 Conclusion ................................................................................................................................................. 24 

2.2 TREATING GLIOBLASTOMA MULTIFORME (GBM) WITH SUPER HYPERFRACTIONATED RADIATION 

THERAPY: IMPLICATION OF TEMPORAL DOSE FRACTIONATION OPTIMIZATION INCLUDING CANCER STEM 

CELL DYNAMICS ...................................................................................................................................................25 

2.2.1 Introduction ............................................................................................................................................. 25 

2.2.2 Methods ...................................................................................................................................................... 27 

2.2.3 Results ......................................................................................................................................................... 36 

2.2.4 Discussion .................................................................................................................................................. 43 

2.2.5 Conclusion ................................................................................................................................................. 45 

3 4Π RADIOTHERAPY ......................................................................................................................... 46 

3.1 PROSPECTIVE CLINICAL TRIAL ON RECURRENT BRAIN GLIOMA PATIENTS ..............................................46 



 

viii 

3.1.1 Introduction ............................................................................................................................................. 46 

3.1.2 Methods ...................................................................................................................................................... 47 

3.1.3 Results ......................................................................................................................................................... 52 

3.1.4 Discussion .................................................................................................................................................. 56 

3.1.5 Conclusion ................................................................................................................................................. 58 

3.2 THE DEVELOPMENT AND VERIFICATION OF A HIGHLY ACCURATE COLLISION PREDICTION MODEL FOR 

AUTOMATED NON-COPLANAR PLAN DELIVERY62 ..............................................................................................58 

3.2.1 Introduction ............................................................................................................................................. 58 

3.2.2 Methods ...................................................................................................................................................... 60 

3.2.3 Results ......................................................................................................................................................... 68 

3.2.4 Discussion .................................................................................................................................................. 77 

3.2.5 Conclusion ................................................................................................................................................. 80 

3.3 SPINE STEREOTACTIC BODY RADIATION THERAPY (SBRT) WITH 4Π RADIOTHERAPY.........................81 

3.3.1 Introduction ............................................................................................................................................. 81 

3.3.2 Methods and Materials ........................................................................................................................ 82 

3.3.3 Results ......................................................................................................................................................... 86 

3.3.4 Discussion .................................................................................................................................................. 93 

3.3.5 Conclusion ................................................................................................................................................. 95 

4 ADVANCING GBM RECURRENCE DETECTION AND TIME PREDICTION WITH 

RADIOMICS ............................................................................................................................................ 96 

4.1 ADVANCING GBM RECURRENCE VOLUME DETECTION WITH LONGITUDINAL RADIOMICS 

CLASSIFICATION ...................................................................................................................................................96 

4.1.1 Introduction ............................................................................................................................................. 96 

4.1.2 Methods ...................................................................................................................................................... 97 

4.1.3 Results ....................................................................................................................................................... 104 

4.1.4 Discussion ................................................................................................................................................ 108 

4.1.5 Conclusion ............................................................................................................................................... 109 

4.2 PREDICTING TIME TO GLIOBLASTOMA MULTIFORME (GBM) RECURRENCE WITH MR IMAGE TEXTURE 

ANALYSIS ............................................................................................................................................................ 109 

4.2.1 Introduction ........................................................................................................................................... 109 

4.2.2 Methods .................................................................................................................................................... 109 



 

ix 

4.2.3 Results ....................................................................................................................................................... 111 

4.2.4 Discussion and Conclusion ............................................................................................................... 113 

5 PERSONALIZED 4Π RADIOTHERAPY, BIOLOGICAL MODELING, AND FRACTIONATION 

SCHEDULE OPTIMIZATION ........................................................................................................... 114 

5.1 INTRODUCTION .......................................................................................................................................... 114 

5.2 METHODS ................................................................................................................................................... 115 

5.2.1 Patient characteristics and boost volume generation ......................................................... 115 

5.2.2 4π radiotherapy plan generation ................................................................................................. 116 

5.2.3 Simultaneous integrated boost (SIB) optimization formulation .................................... 117 

5.2.4 Patient-specific biological modeling ........................................................................................... 119 

5.2.5 Dose fractionation optimization with SIB ................................................................................. 122 

5.3 RESULTS ..................................................................................................................................................... 126 

5.3.1 4π radiotherapy plan generation with fixed boost dose ..................................................... 126 

5.3.2 Simultaneous integrated boost (SIB) optimization .............................................................. 126 

5.3.3 Patient-specific biological modeling and optimization ....................................................... 129 

5.3.4 Discussion ................................................................................................................................................ 133 

5.3.5 Conclusion ............................................................................................................................................... 135 

6 APPENDIX ........................................................................................................................................ 136 

THE CHAMBOLLE-POCK ALGORITHM ....................................................................................... 136 

6.1 OPTIMIZATION PROBLEM FORMULATION ................................................................................................ 136 

6.2 THE ALGORITHM ....................................................................................................................................... 137 

6.3 LINESEARCH PROCEDURE.......................................................................................................................... 139 

7 REFERENCES ................................................................................................................................... 140 

  



 

x 

LIST OF TABLES 

Table 2-1: DLQ, SLQ, and USC model clonogenic survival fit parameters F is the fraction of 

CSCs within the tumor. (α1, β1) and (α2, β2) are the radiobiological parameters of the 

CSC and DCC compartment, respectively. Single LQ fit indicates the parameters obtained 

from a classical LQ model fit. The last three columns show the fit parameters of the USC 

model, Dq, D0, and αUSC. ........................................................................................................................... 15 

Table 2-2: AIC, BIC, and SSE comparison. The Akaike Information Criteria (AIC), Bayesian 

Information Criteria (BIC) and sum of square error (SSE) values in log10 scale for all 

three models on all clonogenic survival datasets. ....................................................................... 15 

Table 2-3: Number of fractions needed for each dose fractionation scheme for DLQ and SLQ. 

Dual-compartment result is shown in the shaded columns and the neighboring 

unshaded column represents the single-compartment simulation result. ........................ 17 

Table 2-4: Biological effective dose (BED) to surrounding normal tissue required to achieve 

tumor control for DLQ and SLQ simulations. DLQ result is shown in the shaded columns 

and the neighboring unshaded column represents the single-compartment result. The 

boxes highlight the lowest possible BED value achieved in various fractionation 

schemes for each cell line, with DLQ and SLQ represented in solid and dashed boxes, 

respectively. ................................................................................................................................................ 17 

Table 2-5: ODE simulation and optimization parameters. *exception in b.i.d schedules ...... 34 

Table 2-6: Conventional fractionation optimization results ............................................................. 36 

Table 2-7: Super hyperfractionated year-long optimization results ............................................. 38 

Table 2-8: Super hyperfractionated year-long optimization with dose escalation .................. 38 

Table 3-1: Patient and treatment plan characteristics. SIB = simultaneous integrated boost. 

EPD = Ependymoma. ............................................................................................................................... 48 

Table 3-2: Average OAR dose statistics comparison (n = 11). *p<0.05 from Wilcoxon signed-

rank test (a) Comparison of 4π and VMAT plans generated during the clinical trial (b) 

Comparison of cumulative dose of previous plan (PreRT) and trial plans. ....................... 53 

Table 3-3: Summary of patient questionnaire. ....................................................................................... 56 

Table 3-4: Gantry to couch and gantry to phantom measurement statistics. ............................ 70 

Table 3-5: Treatment-site-specific safety buffer distance estimations with different collision 

probabilities. ............................................................................................................................................... 70 



 

xi 

Table 3-6: Beam angle distribution in standard STD, extended STD, and undeliverable 

categories for treatments to the head, lung, abdomen, and prostate ................................... 74 

Table 3-7: Patient and plan information ................................................................................................... 83 

Table 3-8: Number of candidate beams for each spinal section based on collision modeling

.......................................................................................................................................................................... 85 

Table 3-9: OAR percent dose reduction from clinical plan relative to the prescription dose of 

each plan. *statistically significant reduction (p<0.05), obtained from one-sided 

Wilcoxon signed rank test ..................................................................................................................... 88 

Table 3-10: Average dose reduction OAR statistics of isocentric 4π plans with spinal section 

breakdown. *p<0.05, statistically significant difference between isocentric 4π and 

corresponding clinical plans. ............................................................................................................... 90 

Table 4-1: List of utilized GLCM textures. Texture definition obtained from references55,163-

165. ................................................................................................................................................................... 99 

Table 4-2: Data size of training and validation cohorts. Breakdown of recurrence and non-

recurrence data size and classification results. .......................................................................... 105 

Table 5-1: Patient characteristics, original clinical plan information, and size of generated 

boost volume, and whether the generated SIB volume partially or completely overlaps 

with the original PTV volume. ........................................................................................................... 116 

Table 5-2: Volume definitions ..................................................................................................................... 118 

Table 5-3: Universal parameters for biological modeling. ............................................................... 121 

Table 5-4: Optimization parameters ........................................................................................................ 125 

Table 5-5: Average OAR dose statistics for the 4π SIB with fixed boost of 110 Gy, patient-

specific optimized boost, and original clinical plan. *Statistically significant dose 

reduction compared with clinical plan, with p<0.05 from one-sided Wilcoxon signed 

rank test. .................................................................................................................................................... 126 

Table 5-6: Case-specific optimization parameters and resultant dose statistics. PreD = 

prescription dose. Margin M = isotropic expansion radius around 𝑃𝑇𝑉𝑈 that was used to 

generate volume BrnM utilized as part of the optimization constraint.  All maximum 
dose values are defined as 𝐷2%. Patients with SIB only partially overlapping with the 

original PTV are marked with *......................................................................................................... 127 

Table 5-7: Patient-specific model and optimization parameters. 𝑁𝑉 = number of viable tumor 

cells at beginning of simulation. 𝑇𝑝𝑜𝑡  = potential doubling time in days. 𝑆𝐼𝐵/𝑃𝑇𝑉𝑈 = 

percentage of boost volume out of the entire treated volume. 𝐵𝐸𝐷𝑆𝐼𝐵  = total dose 



 

xii 

applied to boost volume. r = utilized ratio constraint between boost and non-boost 

volumes. ..................................................................................................................................................... 130 

Table 5-8:  Forward simulation with equal dose fractions and dose fractionation 

optimization recurrence time results across various CSC concentrations within boost 

volume. 𝑚 = CSC concentration multiplier. TR = time to recurrence. Forward simulation 

results are labeled as “Equal”, optimization results are indicated by “Opt”. ................... 130 

  



 

xiii 

LIST OF FIGURES 

Figure 2-1: DLQ, USC and LQ model fit comparison (a) Prostate carcinoma cell line CP3 (b) 

Cervial cancer cell line HeLa. (c) Breast cancer cell line MDA-MB-231. (d) GBM cell line 

U373MG. The DLQ, USC and LQ fit results are represented by the solid, dashed and 

dotted lines, respectively. ...................................................................................................................... 16 

Figure 2-2: (a) GBM (black) and NSCLC (red) 2 Gy× 30 SLQ (dashed) and DLQ (solid) 

comparison. (b) GBM and NSCLC comparison between conventional 2 Gy×30 and 

hypofractionation 5 Gy× 10. (c) GBM CSC and DDC compartment interaction with 

fractionation schedules of 2 Gy×30 (black), 5 Gy×10 (red), and 10 Gy×3 (blue). CSC: 

dashed, DCC: solid (d) Current and previous treatment schedules for GBM. (e-f) 

sensitivity analysis of the stem cell conversion factor P for GBM and NSCLC cell lines.

.......................................................................................................................................................................... 18 

Figure 2-3: Percentage of radiation-induced DCC reprogramming to CSC with respect to 

received dose. Determination of reprogramming coefficient c with linear regression 30 

Figure 2-4: Tumor Growth ODE and radiation therapy simulation schematic .......................... 31 

Figure 2-5: Schematic of optimization variables with respect to treatment time .................... 32 

Figure 2-6: Optimization result, total duration L = 364 days, number of fractions n = 53 

(weekly equivalent). (a) 𝐷𝑈  (red circles) and 𝐷𝑉  (blue diamonds) (b) Time interval 𝑇 (c) 

Total tumor cells vs. time. Recurrence time with this plan was predicted to be 430.5 

days. ............................................................................................................................................................... 39 

Figure 2-7: Optimization result, total duration 𝐿 = 364 days, number of fractions 𝑛 = 27 (bi-

weekly equivalent). (a) 𝐷𝑈  (red circles) and 𝐷𝑉  (blue diamonds) (b) time interval 𝑇 (c) 

Total tumor cells vs. time. Recurrence time with this plan was predicted to be 423.9 

days. ............................................................................................................................................................... 40 

Figure 2-8: Optimization result, total duration 𝐿  = 360 days, number of fractions 𝑛  = 13 

(monthly equivalent). (a) 𝐷𝑈  (red circles) and 𝐷𝑉  (blue diamonds) (b) time interval 𝑇 

(c) Total tumor cells vs. time. Recurrence time with this plan was predicted to be 413.3 

days. ............................................................................................................................................................... 41 

Figure 2-9:  Dose escalation (BEDnormal = 150 Gy) optimization result, total duration L = 364 

days, number of fractions n = 53 (weekly equivalent). (a) 𝐷𝑈  (red circles) and 𝐷𝑉  (blue 

diamonds) (b) time interval 𝑇 (c) Total tumor cells vs. time. Recurrence time with this 

plan was predicted to be 452 days. ................................................................................................... 42 

Figure 3-1: (a) Beam solution space with deliverable with isocentric setup with more than 5 

cm clearance (blue hollow circles). Angles requiring extended source to target distance 

(STD) to avoid collision (black filled squares). Infeasible beams regardless of STD 



 

xiv 

extensions (red crosses). (b) Example of Selected 4π beam orientations (c) Schematic of 

treatment delivery workflow. (d) Intrafractional kV imaging results acquired with the 

TrueBeam on-board imager. ................................................................................................................ 51 

Figure 3-2: (a) 50% prescription isodose distribution. Distance from PTV to isodose edge in 

the brainstem direction: 0.29 cm (4π), 1.67 cm (VMAT) (b) DVH illustrating the sparing 

power of 4π. Global OAR sparing, particularly for the brainstem and chiasm, in addition 

to lower PTV maximum dose and increased homogeneity, can be visually observed. . 54 

Figure 3-3: 4π vs. VMAT dosimetric comparison, dose relative to prescription dose of each 

plan. (a) Maximum dose, 4π (blue), VMAT (red). (b) Mean dose. 4π (green), VMAT 

(mustard) ..................................................................................................................................................... 55 

Figure 3-4: 3D scanner verification with the MIMI phantom. (a) MIMI phantom (b) resultant 

3D scan (c) resultant 3D scan with 6 measurements in millimeters.................................... 61 

Figure 3-5: Minimum distance measurement demonstration in CAD (a) full CAD model 

within Autodesk Inventor with phantom on couch (b) example 5 cm closest distance 

measurement for treatment to the head. (c) 5 cm closest distance measurement to lung 

(d) closest distance measurement to prostate. ............................................................................. 63 

Figure 3-6: IEC convention and couch translations .............................................................................. 66 

Figure 3-7: Machine measurement setup. ................................................................................................ 66 

Figure 3-8: Distance discrepancy histograms for gantry to couch measurements. ................. 71 

Figure 3-9: Distance discrepancy histrograms for gantry to phantom measurements.......... 71 

Figure 3-10: Automated brain treatment with room-view and patient-eye view (Multimedia 

View URL: http://dx.doi.org/10.1118/1.4932631.1) ................................................................ 72 

Figure 3-11: Automated lung treatment with room view (Multimedia View URL: 

http://dx.doi.org/10.1118/1.4932631.2). ..................................................................................... 73 

Figure 3-12: Automated prostate treatment with room view (Multimedia View URL: 

http://dx.doi.org/10.1118/1.4932631.3). ..................................................................................... 73 

Figure 3-13: Exhaustive search model with healthy volunteer model on couch ...................... 74 

Figure 3-14: Treatment-site-specific beam solution space for standard and extended STD 

setups. (a) head (b) left lung (c) abdomen (d) prostate ............................................................ 75 

Figure 3-15: Gantry vs. couch angle plots for treatment to the head, lung, abdomen and 

prostate. The infeasible, standard STD beams are represented as red crosses and blue 

hollow circles, respectively. Extended STD beams are shown in black, separated into 



 

xv 

four categories:  100 < STD ≤ 110, 110 < STD ≤ 120, 120 < STD ≤ 130 and STD > 130, 

represented as squares, triangles, diamonds, and plus signs. ................................................ 76 

Figure 3-16: Gantry vs. couch angle plots for all four spinal sections. Isocentric 4π includes 

only the angles deliverable with source to target distances (STD) of 100 cm (blue hollow 

circles). Standard 4π encompasses all beam angles that do not result in collision (blue 

hollow circles + black solid squares). ............................................................................................... 86 

Figure 3-17: DVH comparing clinical, isocentric 4π, and standard 4π for treatment to T6 . 88 

Figure 3-18: OAR dose and volume reduction box plots from the original clinical plans (a) 

Maximum dose reduction. Standard 4π (blue) and Isocentric 4π (red). (b) Mean dose 

reduction. Standard 4π (green) and Isocentric 4π (yellow) (c) Percent volume reduction 

in spinal cord receiving more than 50% of prescription dose (V50%). ................................. 89 

Figure 3-19: Dose comparison of a case with 16 Gy delivered to T11 and 18 Gy simultaneous 

boost to T12. (a) Dose wash comparing dose distributions above 6 Gy between the 4 Arc 

VMAT clinical plan and isocentric 4π plan. (b) DVH of the clinical, isocentric 4π, and 

standard 4π plans ..................................................................................................................................... 91 

Figure 3-20: Beam orientation visualization from various spinal target locations (a) C1 (b) 

T11 and SIB T12 (c) L1 (d) T6 ............................................................................................................. 92 

Figure 3-21: Beam angle distribution of all isocentric 4π cases, with angles colored based on 

PTV location. ............................................................................................................................................... 92 

Figure 4-1: Image intensity normalization scheme. Two separate linear mappings from 

(𝑆1𝑖, 𝜇𝑖) to (𝐿𝐼𝑅 , 𝜇𝑠) and (𝜇𝑖, 𝑆2𝑖) to (𝜇𝑠, 𝐻𝐼𝑅). .......................................................................... 98 

Figure 4-2: Inter-patient general model training workflow ........................................................... 103 

Figure 4-3: Patient specific recurrence classification and validation workflow ..................... 104 

Figure 4-4: ROC curve of classification on the validation cohort. ................................................. 105 

Figure 4-5: Classified recurrence volume within search region over time for all patients. 

Volumes normalized relative to the volume detected at the recurrence time point. .. 106 

Figure 4-6: Classification results (top) from all six time points with corresponding T1 post-

gadolinium contrast (center) and Flair (bottom) images, labeled with days from 

recurrence. White arrows indicate the region that is consistently classified as 

recurrence for all time points ............................................................................................................ 107 

Figure 4-7: Recurrence progression of the utilized patient cohort (n = 18)............................. 110 

Figure 4-8: Mutually selected features by all except on LOO-LASSO regression. Arrow 

indicates region at which the average texture values are taken. ......................................... 112 



 

xvi 

Figure 4-9: Commonly selected features and their individual correlation with time to 

recurrence. ................................................................................................................................................ 112 

Figure 4-10: Distinct set of features selected when the slowest recurring patient is left out. 

R2 = 0.539 ................................................................................................................................................... 113 

Figure 5-1: Tumor growth ODE and radiation therapy simulation schematic with 

consideration of boost and non-boost volumes ......................................................................... 122 

Figure 5-2: Schematic of optimization variables with respect to treatment time .................. 123 

Figure 5-3: Simulated annealing algorithm schematic ...................................................................... 125 

Figure 5-4: SIB example dose wash (a) Case with partial overlap boost (patient 1) (b) Case 

with complete overlap between boost and original PTV (patient 3) ................................. 128 

Figure 5-5: DVH comparison between original clinical plan and 4π SIB plans. To better 

demonstrate the curves for both OARs and the boost volume, two separate scales in dose 

were utilized for each DVH, and the scale change transition point is indicated by the 

black dashed line. (a) Partial boost overlap (patient 1) (b) Complete boost overlap 

(patient 3) .................................................................................................................................................. 129 

Figure 5-6: Dose fractionation result and corresponding tumor growth vs. time for patient 2 

with CSC concentration multiplier m = 5. (a) The breakdown of CSC and DCC, along with 

the total viable tumor volume. (b) Resultant dose delivered to both the non-boost (blue) 

and SIB (red) regions at the corresponding time points. ........................................................ 131 

Figure 5-7: Dose fractionation result and corresponding tumor growth vs. time for patient 4 

with CSC concentration multiplier m = 50.  (a) The breakdown of CSC and DCC, along 

with the total viable tumor volume. (b) Resultant dose delivered to both the non-boost 

(blue) and SIB (red) regions at the corresponding time points. .......................................... 132 



 

xvii 

LIST OF EQUATIONS 

Equation 2-1 ......................................................................................................................................................... 10 

Equation 2-2 ......................................................................................................................................................... 11 

Equation 2-3 ......................................................................................................................................................... 12 

Equation 2-4 ......................................................................................................................................................... 13 

Equation 2-5 ......................................................................................................................................................... 14 

Equation 2-6 ......................................................................................................................................................... 28 

Equation 2-7 ......................................................................................................................................................... 29 

Equation 2-8 ......................................................................................................................................................... 29 

Equation 2-9 ......................................................................................................................................................... 31 

Equation 2-10 ...................................................................................................................................................... 33 

Equation 2-11 ...................................................................................................................................................... 34 

Equation 3-1 ......................................................................................................................................................... 64 

Equation 3-2 ......................................................................................................................................................... 87 

Equation 4-1 ......................................................................................................................................................... 99 

Equation 4-2 ....................................................................................................................................................... 101 

Equation 4-3 ....................................................................................................................................................... 101 

Equation 4-4 ....................................................................................................................................................... 102 

Equation 4-5 ....................................................................................................................................................... 102 

Equation 4-6 ....................................................................................................................................................... 110 

Equation 5-1 ....................................................................................................................................................... 117 

Equation 5-2 ....................................................................................................................................................... 119 

Equation 5-3 ....................................................................................................................................................... 120 

Equation 5-4 ....................................................................................................................................................... 121 

Equation 5-5 ....................................................................................................................................................... 123 



 

xviii 

Equation 5-6 ....................................................................................................................................................... 124 

Equation 5-7 ....................................................................................................................................................... 125 

Equation 6-1 ....................................................................................................................................................... 136 

Equation 6-2 ....................................................................................................................................................... 137 

Equation 6-3 ....................................................................................................................................................... 137 

Equation 6-4 ....................................................................................................................................................... 137 

Equation 6-5 ....................................................................................................................................................... 137 

Equation 6-6 ....................................................................................................................................................... 138 

 

  



 

xix 

LIST OF APPENDICES 

The Chambolle-Pock Algorithm 136 

 

  



 

xx 

ACKNOWLEDGEMENTS 

 I would first like to express sincere gratitude to my advisor, Dr. Ke Sheng. I truly 

could not have asked for a better advisor. This journey in research and discovery, along with 

all that I have learned and accomplished in the process, would not have been possible 

without his guidance, wisdom, inspiration, and countless encouragements through both 

good and difficult times. It has been a true honor to be trained by such a knowledgeable, 

passionate, creative, and compassionate person. I look forward to our continued 

collaboration as I continue my residency training here at UCLA. 

  I would also like to thank Dr. Dan Ruan, whom I first started my research with as a 

first year graduate student. Thank you for believing in me so much more than I did and for 

your continued help and support throughout my graduate career.  I would also like to thank 

Dr. Robert Chin, Dr. John Lowengrub, and Dr. Peng Hu for the valuable insight they have 

provided me with as my dissertation committee.   

 Big thank you also to my wonderful lab mates Dan, Angelia, Kaley, Wenbo, Qihui, 

Ryan, and Elizabeth. The intellectual stimulation, collaboration, and most importantly, 

friendship and companionship that you all have provided meant so very much to me.  Thanks 

also to Daniel, Shuiping, Ningning, for your help, friendship, and the many fun conversations 

during my graduate career as postdocs in the lab.  You all have made my time as a graduate 

student a lot more enjoyable and fun.  

 Thank you also to Zohaib, Dan, Jenny, Da, and Tess for not only being fantastic 

classmates, but also friends that are always willing to hear me out and support me through 



 

xxi 

the good and bad times. I will miss the hikes, buffets, times at the karaoke and all the other 

fun memories with you.   

 Thank you also to Dr. Michael McNitt-Gray, for being a passionate, kind, and 

supportive program director that keeps our graduate program great. Big thank you also to 

Reth, for not only providing administrative help and support that made my graduate life all 

the better, but also for always being there as a great friend to talk to.      

 Without the love, support, and guidance throughout my life from my mother Meiling, 

none of this would have been possible. Thank you for always putting me first despite 

hardships and worked so hard to make sure I am happy and successful. I will also be eternally 

grateful to you for giving me my twin sister and best friend Elaine, with whom I can share 

absolutely anything.  

 Thank you to my stepfather Chee-Wai for inspiring and encouraging me to pursue a 

career Medical Physics and also for all the support during the past ten years.  Thank you to 

my brother-in-law Malav, and my stepsisters Lillian, Linda, and Nikki for your support as 

well as your warm company during our family gatherings and trips that helped keep my life 

during graduate school diversified and enjoyable. 

 Finally, I would like to thank my boyfriend Mark for his unwavering support, love, 

and understanding for the past five years and more.  Thank you for always telling me I could 

when I thought I couldn’t. Having you by my side during this journey is truly the best thing 

that has happened to me. I love you so much!  



 

xxii 

VITA 

EDUCATION 
M.S.   University of California—Los Angeles, Biomedical Physics 2015 
B.S.   Rutgers University, Physics and Statistics, Minor in Mathematics 2012 

 
AWARDS 
Moses A. Greenfield Award 2016 
Norm Baily Award (AAPM Southern California Chapter) 2014 
UCLA Biomedical Physics Research Colloquium, Best Poster Presentation 2014 
National Science Foundation Graduate Research Fellowship 2014-2016 

 

PEER-REVIEWED PUBLICATIONS 
1. Fahimian B, Yu V, Horst K, Xing L, Hristov D, Trajectory modulated prone breast irradiation:  a LINAC-

based technique combining intensity modulated delivery with motion of the couch. Radiother 
Oncol, 109(3), 475-81. 

2. Yu V, Kishan A, Cao M, Low D, Lee P, Ruan D, Dose Impact in Radiographic Lung Injury Following 
Lung SBRT: statistical analysis and geometric interpretation. Med Phys 41 (3) 031701, 2014  

3. Dong P, Yu V, Nguyen D, DeMarco J, Woods K, Boucher S, Low D, Sheng K, Feasibility of Using 
Intermediate X-ray Energies for Highly Conformal Extracranial Radiotherapy. Med Phys 41:041709, 
2014 

4. Yu V, Fahimian B, Xing L, Hristov D, Quality control procedures for dynamic treatment delivery 
techniques involving couch motion. Med Phys 41 (8) 081712, 2014 

5. Neylon J, Sheng K, Yu V, Chen Q, Low D, Kupelian P, Santhanam A, A non-voxel-based 
convolution/superposition algorithm optimized for scalable GPU architectures. Med Phys 
41:101711, 2014 

6. Kishan A, Wang PC, Sheng K, Yu V, Ruan D, Cao M, Tenn S, Low D, Lee P, Correlation of Clinical and 
Dosimetric Parameters with Radiographic Lung Injury Following Stereotactic Body Radiotherapy. 
Tech.  Cancer Research & treatment, 1533034614551476, 2014.  

7. Nguyen D, Rwigema JC, Yu V, Kaprealian T, Kupelian P, Selch M, Lee P, Low D, Sheng K, Feasibility of 
extreme dose escalation for Glioblastoma Multiforme using 4π radiotherapy. Radiation Oncology, 
9(1), 239, 2014 

8. Yu VY, Nguyen D, Kupellian P, Kaprealian T, Selch M, Low D, Pajonk F, Sheng K, Incorporating cancer 
stem cells in radiation therapy treatment response modeling and the implication in Glioblastoma 
Multiforme treatment resistance. International Journal of Radiation Oncology * Biology * Physics 
91(4), 866-875, 2015. 

9. Nguyen D, O’Connor D, Yu VY, Ruan D, Cao M, Low DA, Sheng K, Dose domain regularization of MLC 
leaf patterns for highly complex IMRT plans. Med Phys 42 (4), 1858-1870, 2015 

10. Yu VY, Tran A, Nguyen D, Cao M, Ruan D, Low DA, Sheng K, The development and verification of a 
highly accurate collision prediction model for automated noncoplanar plan delivery. Med Phys 42 
(11), 6457-6467, 2015. 



 

xxiii 

11. Woods K, Nguyen D, Tran A, Yu VY, Cao M, Niu T, Lee P, Sheng K, Viability of Non-Coplanar VMAT for 
Liver SBRT as Compared to Coplanar VMAT and Beam Orientation Optimized 4π IMRT. Advances in 
Radiation Oncology 1(1), 67-75. 

12. Tran A, Zhang J, Woods K, Yu VY, Nguyen D, Gustafson G, Rosen L, Sheng K, Treatment planning 
comparison of IMPT, VMAT and 4π radiotherapy for prostate cases. Radiation Oncology 12(1), 10, 
2017.  

13. Tran A, Woods K, Nguyen D, Yu VY, Niu T, Cao M, Lee P, Sheng K, Predicting liver SBRT eligibility and 
plan quality for VMAT and 4π plans. Radiation Oncology 12(1), 70, 2017 

 

SELECTED CONFERENCE PRESENTATIONS 
1. Yu V, Kishan A, Lee P, Low D, Ruan D, Dose Impact in Lung Fibrosis Following Lung SBRT: Statistical 

Analysis and Geometric Interpretation, Oral presentation at AAPM Annual Meeting, Aug. 2013 

2. Yu V, Nguyen D, Kupellian P, Kaprealian T, Selch M, Low D, Pajonk F, Sheng K, Dual Compartment 
Mathematical Modeling of Glioblastoma Multiforme (GBM), AAPM Annual Meeting, Jul. 2014 

3. Yu V, Nguyen D, Pajonk F, Sheng K, A Dual Compartment Linear-Quadratic Model of Cell Survival. 
ASTRO’s Annual Meeting, Sep. 2014 

4. Yu V, Nguyen D, Pajonk F, Kaprealian T, Kupelian P, Steinberg M, Low D, Sheng K, Treating 
Glioblastoma Multiforme (GBM) as a Chronic Disease: Implication of Temporal-Spatial Dose 
Fractionation Optimization Including Stem Cell Dynamics, AAPM Annual Meeting, Jul. 2015 

5. Yu V, Nguyen D, Tran A, Ruan D, Cao M, Kaprealian T, Kupelian P, Low D, Sheng K, 4π Non-Coplanar 
Radiotherapy: From Mathematical Modeling to Clinical Implementation, AAPM Annual Meeting, Jul. 
2015 

6. Yu V, Nguyen D, Pajonk F, Kaprealian T, Kupelian P, Steinberg M, Low D, Sheng K, Treating 
Glioblastoma Multiforme as a Chronic Disease: Mathematical Dose Fractionation Schedule 
Optimization and Modeling with Stem Cell Dynamics, ASTRO’s Annual Meeting, Oct. 2015 

7. Yu V, Tran A, Nguyen D, Woods K, Kaprealian T, Chin R, Low D, Sheng K, Significant cord and 
esophagus dose reduction by 4π non-coplanar spine stereotactic body radiation therapy and 
stereotactic radiosurgery, ASTRO’s Annual Meeting, Sept. 2016 

8. Yu V, Landers A, Woods K, Nguyen D, Cao M, Chin R, Kaprealian T, Sheng K, A Prospective 4π 
Radiotherapy Clinical Trial in Recurrent Glioblastoma Multiforme (GBM) patients, AAPM Annual 
meeting, Jul. 2017 

9. Yu V, O’Connor D, Nguyen D, Gu W, Ruan D, Sheng K, Predicting Time to Glioblastoma Multiforme 
(GBM) Recurrence with MR Texture Analysis, AAPM Annual meeting, Jul. 2017 

 

INVITED TALKS 
1. Dual-compartment mathematical modeling of cell survival after radiotherapy and its implication in 

GBM treatment resistance. AAPM-SCC Norm Baily Award Meeting 1st place prize, May. 2014 

2. Research Opportunities with Digital Linear Accelerators: Quality Assurance for Advanced Digital 
Linac Implementations. AAPM Annual Meeting SAM therapy scientific symposium. Aug. 2016



 

1 

1 INTRODUCTION 

 Glioblastoma Multiforme (GBM) is the most aggressive primary brain cancer with 

nearly 100% mortality. Approximately 12,000 people are newly diagnosed with the disease 

each year in the United States alone 1-3. Despite the survival benefit of surgical resection 

followed by adjuvant chemoradiation, predominantly local recurrence within the initial high 

dose radiation field remains inevitable and the overall median survival is still only 15 

months, with a 5-year overall survival rate of less than 10%2,4-6.  In attempts to improve 

treatment outcome, numerous dose fractionation and escalation schemes were attempted 

with no significant benefit in overall survival or durable local control 7-20. Re-irradiation on 

the recurrent disease has been shown to allow for a 6-month progression-free survival for 

28-39% of patients, or up to 10-month median survival with a single fraction approach21,22. 

However, the allowable re-irradiation dosage is often greatly limited by the potential risk of 

radiation necrosis due to the re-treatment location being within or in close proximity of the 

initially irradiated tumor bed23. Highly conformal radiotherapy that maximally spares 

surrounding normal tissue and organs at risk (OAR) while maintaining or possibly escalating 
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planning target volume (PTV) coverage is necessary to ensure safe and effective radiation 

therapy on GBM recurrences. The purpose of this dissertation is to assess the potential in 

significantly delaying GBM disease recurrence by combining improvements in three key 

aspects in the management of GBM with radiation therapy, namely, the dose fractionation 

scheme, delivered spatial dose distribution, and recurrence detection. The background of 

these three aspects, along with the potential of extending patient survival when combining 

them, will be discussed.  

 

 

1.1 Cancer Stem Cells and Radiation Dose Fractionation 
Schedule Optimization (FSO) 

 Fractionation schedule optimization (FSO), the method of systematically deriving 

the most effective fractionation schedule that maximizes biological effective dose (BED) to 

the tumor while maintaining acceptable toxicity to surrounding normal tissue, has been 

actively investigated. Multiple studies have demonstrated that significant increase in tumor 

control probability can be achieved by allowing varying dose fraction sizes throughout the 

treatment course24-27. These studies utilized mathematical models relating to the classical 

radiobiology that took into consideration disease site specific accelerated tumor 

repopulation, heterogeneous spatial and temporal oxygenation, and intra-fraction repair, 

which are insufficient in describing the peculiar biological properties of GBM tumors. For 

example, despite the extreme radioresistance demonstrated in patients, GBM cell lines do 

not appear to be particularly radioresistant in vitro. Instead, a wide range of radiosensitivies 
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overlapping with that of tumors curable with radiotherapy was observed 28,29.  The 

unexpected inconsistency between its in vivo and in vitro radio-resistance suggests that 

further incorporation of factors such as tumor intrinsic subpopulation heterogeneity could 

potentially provide further insight in this discrepancy.  

 One of the most prevalent tumor intrinsic heterogeneity lies in the finding of a small 

population of cancer stem cells (CSC) within solid tumors that hierarchically govern cancer 

progression30. The subpopulation of CSCs are observed to have characteristics of self-

renewal, differentiation to non-stem progenies, and unlimited proliferative capacity31. In 

addition, experiments performed on tissue samples from multiple disease sites have 

suggested that CSCs are more radio-resistant than its non-stem counterpart—the 

differentiated cancer cells (DCC) 32-38. Modeling studies with consideration of the dynamic 

interaction between CSC and DCC had been previously performed to simulate the efficacy of 

combining radiotherapy, differentiation therapy, vascular endothelial cell targeting 39-41, and 

pre-clinical optimization of  radiation dosing schedules 42. Our recently proposed ordinary 

differential equation (ODE) model incorporating the distinct radiosensitivity between CSC 

and DCC with a dual compartment linear-quadratic (DLQ) model approach, in addition to the 

dynamic interaction between the two compartments, was shown capable of reflecting the 

definitive treatment failure of GBM43. With a biological model that adequately reflects the 

radioresistance of GBM, we aim to develop a systematic temporal dose fractionation inverse 

optimization framework in an effort to discover dosing schemes with the potential to 

significantly delay GBM recurrence.    
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1.2 4π Radiotherapy 

 4π radiotherapy is an inverse optimization platform that maximally utilizes non-

coplanar intensity modulated radiotherapy (IMRT) beams to significantly improve critical 

organ sparing 44,45. Substantial organs-at-risk (OAR) sparing with 4π had been demonstrated 

for brain, head and neck, liver, lung, prostate, and spine46-50 treatments compared with 

conventionally utilized volumetric arc therapy (VMAT) or intensity modulated radiation 

therapy (IMRT) with manually selected beams. The pattern of local disease recurrence in 

GBM further warrants the need for optimal delivery dose distributions due to the high 

likelihood of overlap between the initial irradiation and the re-irradiation locations. 

Feasibility of extreme dose escalation from the conventional 60 Gy to 100 Gy for GBM while 

maintaining normal tissue tolerance was previously demonstrated with 30 beam 4 𝜋 

radiotherapy plans46. With earlier recurrence detection or identification of more aggressive 

tumor subvolumes, re-irradiation or simultaneous dose boost can be performed on a smaller 

tumor volume, allowing for even more substantial dose escalation.  

1.3 Advancing recurrence detection: Radiomics and 
machine learning 

 Radiomics, the extraction and analysis of large amounts of advanced quantitative 

imaging features from medical imaging, has recently garnered substantial interest as the 

image quality and technology in data-mining continues to improve 51-53. Through machine 

learning techniques, extracted features have been combined with patient specific 

characteristics to create bioinformatic models for the purpose of improving the diagnostic, 

prognostic, and predictive accuracy of various diseases. Studies have shown the 
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discriminating capabilities of radiomic features for the stratification of tumor histology, 

tumor grades, and overall survival 54-56. A multitude of Radiomics studies have been 

performed specifically for GBM. These studies emphasized on MRI-derived image features 

on the discovered tumor volumes, and indicated imaging predictors for stratifying anti-

angiogenic treatment response57,58, histology and tumor extent59, and overall survival60. In 

addition, image feature analysis was shown capable of discriminating treatment induced 

necrosis from recurrent cancer61.  With patient follow-up imaging performed every 2-3 

months prior to recurrence as a disease-monitoring standard, we propose the extension of 

radiomic feature analysis onto the already available follow-up imaging could allow us to 

detect the disease earlier than conventional methods.  

1.4 Overview 

 Prior to combining the potential improvements from all three methods discussed 

above, separate investigations performed related to all three aspects in radiotherapy 

management of GBM will first be discussed. 

 Chapter 2 describes the work related to biological modeling of GBM based on cancer 

stem cell dynamics, the development and discovery of a dual compartment linear quadratic 

model that successfully reflects the definitive treatment failure of the disease, and the use of 

the constructed mathematical model for the purpose of fractionation schedule optimization. 

The first section of Chapter 2 is a version of a manuscript titled “Incorporating cancer stem 

cells in radiation therapy treatment response modeling and the implication in Glioblastoma 

Multiform treatment resistance” published in the International Journal of Radiation 

Oncology Biology Physics43. Section 2 is the extension of the model into a FSO framework, 
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and is a version of a paper titled “Treating Glioblastoma Multiforme (GBM) with super 

hyperfractionation: Implication of temporal dose fractionation optimization including 

cancer stem cell dynamics” that is currently in revision.  

 In Chapter 3, work related to 4π radiotherapy will be discussed. First is the clinical 

translation of the technique with a prospective clinical trial for patients with recurrent brain 

glioma. This study is being prepared for submission to the International Journal of Radiation 

Biology Physics. The second section includes a version of a paper titled “The development 

and verification of a highly accurate collision prediction model for automated noncoplanar 

plan delivery”, published in Medical physics62, where 4π radiotherapy was fully automated 

within the research modality of a linear accelerator through the development and use of a 

detailed and verified collision prediction computer-aided design model. The third section 

describes a retrospective study that assesses the dosimetric improvement on spine 

stereotactic body radiation therapy (SBRT) patients achievable with 4π radiotherapy. This 

section is also being prepared for submission to the International Journal of Radiation 

Biology Physics. 

 Chapter 4 details an experiment utilizing MRI image texture analysis and machine 

learning in hopes of achieving advanced tumor detection, and an additional associated 

preliminary study investigating the predictive power of GBM time to recurrence with MRI 

image texture features. 

 Chapter 5 combines personalized maximum achievable boost dose obtained from a 

novel 4π simultaneous integrated boost (SIB) optimization formulation along with a 
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modified dose fractionation optimization to the boost and non-boost volumes to determine 

the combined benefit when using all proposed methods together.   
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2 BIOLOGICAL MODELING AND 

FRACTIONATION SCHEDULE 

OPTIMIZATION (FSO) WITH 

CONSIDERATION OF CANCER 

STEM CELL DYNAMICS 

2.1 Incorporation of cancer stem cell dynamics in 
radiation therapy treatment response modeling and the 
implication in GBM treatment resistance43 

2.1.1 Introduction 

 Increasing evidence has suggested that solid tumors are hierarchically organized 

and contain a small population of cancer stem cells (CSC)30,63. The subpopulation of CSCs are 

observed to have characteristics of self-renewal, differentiation to non-stem progenies, and 

unlimited proliferative capacity31.  In in vitro and animal experiments, CSC are also observed 

to be more radioresistant than its non-stem counterpart—the differentiated cancer cells 

(DCC)32-34,64-68. Therefore, many believe that CSCs are the driving force of cancer progression 

and successful therapy must eradicate CSCs. Mathematical models have suggested that 

perhaps the dynamic equilibrium between the DCC and CSC compartments within a tumor 

is essential to the treatment outcome39,40,69,70.  A tumor growth paradox—CSCs driven out of 
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dormancy due to spontaneous DCC cell death from therapy interventions resulting in 

accelerated tumor progression—has been previously demonstrated with mathematical 

models and biological experiments71-73. 

 Classical radiobiological models do not take into account such distinct radiobiology 

among different groups of tumor cells but instead assume uniform radiosensitivity within a 

tumor.  The limitations of these models came to light as stereotactic ablative radiotherapy 

(SABR) became successful in the clinic, contrary to predictions of the Linear-Quadratic (LQ) 

model using conventionally established radiosensitivity parameters74-76. Modified LQ 

models that include dose dependent repair and cell killing terms, and synthesis of the LQ 

model with the multi-target model and a dose transition point that moderates the cell 

survival behavior towards higher fractional doses74,76-79 have been developed to address this 

discrepancy. These models showed superior data fitting of single fractional in vitro cell 

survival for a wide range of doses compared to the unmodified LQ model. However, these 

models remain controversial due to their lack of biological foundations80,81, difficulty in 

determining the additional fit-parameter values for individual patients and inability to 

provide insight to the paradoxical treatment outcomes of cancers with known high α/β 

ratios, such as non-small cell lung cancer (NSCLC) and glioblastoma multiforme (GBM) that 

respond to hypofractionation differently. Therefore these modified radiobiological models 

have been rarely used in practice despite the great interest of comparing treatment outcome 

from different regimens.  

 As the role of CSC in cancer progression has become more prevalent, we propose 

that the incorporation of its properties to radiobiological modeling might improve its 

performance in predicting radiotherapy treatment response. Therefore, in this study, we 
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performed preliminary exploration with a simplistic mathematical CSC interaction model to 

determine whether the tumor intrinsic heterogeneity and dynamic equilibrium between CSC 

and DCC can better explain radiotherapy treatment response with a dual-compartment 

linear quadratic (DLQ) model.  

2.1.2 Methods 

 Two major components come into play when modeling the distinct radiosensitivity 

and dynamic interaction between CSC and DCC. First, the determination of the 

radiosensitivity parameters of both compartments. Second, an ordinary differential equation 

(ODE) that models the CSC self-renewal, differentiation to DCC, and DCC growth and 

apoptosis.  These two components were then combined to model CSC and DCC interaction 

alongside with radiotherapy cell killing of each compartment. 

2.1.2.1 Determination of radiobiological parameters 

 A simple way to include intra-tumor radiosensitivity heterogeneity is a dual-

compartment linear quadratic model (DLQ) consisting of CSC and DCC. For a single fraction 

of treatment, the model was constructed as 

𝑆𝐹(𝐷) = 𝐹𝑒−𝛼1𝐷−𝛽1𝐷2
+ (1 − 𝐹)𝑒−𝛼2𝐷−𝛽2𝐷2

, 

Equation 2-1    

with F (0≤F≤0.2) as the fraction of CSC out of all cells, and α and β describing the 

radiobiological properties of each population. The upper bound of F was set to 0.2 due to the 

indication from publications that CSC is a minor subpopulation of a solid tumor82,83. Least 

square fitting of the model was then performed on 8 previously published clonogenic cell 
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survival datasets digitized from multiple human cancer cell lines, including U373MG (GBM), 

CP3, DU145 (prostate carcinoma)84, HeLa (cervical cancer)85, MDA-MB-231 (breast 

cancer)86, H460 (NSCLC)74, TX-4 (Osteosarcoma)75 and  Melanoma87  using MATLAB R2013a 

(MathWorks, Natick, MA). All experiments were conducted using X-rays or gamma rays with 

relative biological effectiveness of 1. To compare the fitting performance and model quality 

of the DLQ model to the classical LQ model and a modified LQ (Universal Survival Curve 

(USC)) model74, we calculated the sum of squares error (SSE), Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC) in log10 scale for all datasets corresponding 

to all three models. The USC model with three fit parameters D0, Dq and αUSC, is shown in 

Equation 2-2. 

𝑙𝑛𝑆𝐹 = {

−(𝛼𝑈𝑆𝐶𝐷 + 𝛽𝑈𝑆𝐶𝐷2), 𝐷 ≤ 𝐷𝑇

−
1

𝐷0
𝐷 +

𝐷𝑞

𝐷0
, 𝐷 > 𝐷𝑇

 

𝛽𝑈𝑆𝐶 = 
(1 − 𝛼𝑈𝑆𝐶𝐷0)

2

4𝐷0𝐷𝑞
,        𝐷𝑇 = 

2𝐷𝑞

1 − 𝛼𝐷0
 

Equation 2-2 

For the dataset of the breast cancer cell line MDA-MB-231, the CSC fraction F was measured 

to be 0.0204 in the same publication86 and fixed in curve-fitting.   

2.1.2.2 Ordinary Differential Equation (ODE) model: the interplay of CSC and DCC 
and Radiation Therapy 

 The interaction between CSC and DCC was modeled based on an ODE model 

developed by Hillen et. al69 and utilized by Bachman et al40.  The simulated tumor was 

assumed to be spatially homogenous, with equal cell density, growth and apoptosis 

throughout the tumor region. The ODE with a CSC and a DCC compartment is shown in 

Equation 2-3.  
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                          Self-Renewal 
𝑈̇(𝑡) = (2𝑃 − 1)𝑚𝑈𝐾(𝑊(𝑡))𝑈(𝑡) 

𝑉̇(𝑡) = 2(1 − 𝑃)𝑚𝑈𝐾(𝑊(𝑡))𝑉(𝑡) + 𝑚𝑉𝐾(𝑊(𝑡))𝑉(𝑡) − 𝑎𝑉𝑉(𝑡) 

                Differentiation from CSC         DCC Growth       Apoptosis 
 

𝑊(𝑡) = 𝑈(𝑡) + 𝑉(𝑡) 
𝐾(𝑊) = max{1 − 𝑊4, 0},  

Equation 2-3 

where U(t) , V(t) and W(t) are the volume fractions of the CSCs, DCCs, and total tumor with 

respect to a specified volume of interest, P represents the probability that a CSC gives rise to 

two CSCs, and 1-P is the probability that a CSC gives rise to two DCCs. The growth rates of 

CSC and DCC are mU and mV, respectively and aV is the apoptosis rate of the DCCs. The 

apoptosis rate of CSCs was set to 0 assuming that CSC had unlimited replicative potential. 

k(W) is a volume constraint that keeps the total tumor volume fraction within the range of 0 

and 1. At time t = 0, the total tumor cell number was set to be 1.3 x 107 within a volume-of-

interest of 4.2 x 109 cells. The initial starting fractions of the CSC and DCC compartments 

were then calculated based on the parameter F (fraction of CSC out of total tumor volume) 

obtained from data fitting of the DLQ model, as shown in Equation 2-1. Following Bachman 

et. al88, growth and apoptosis rates (mV, mU, aV) were set to ln(2)/Tpot day-1, where Tpot 

represents the tumor potential doubling time of the simulated cancer at question. The Tpot 

values were set to be 23, 23, 4, 7.1, 8.2, 11, 1.3, and 3.9 days following published data for cell 

lines CP3, DU14589, H46090, HeLa91, MDA-MB-23192, Melanoma93, TX-494, and U373MG95, 

respectively.  P was determined to maintain a dynamic equilibrium between CSC and DCC. In 

this study using the ODE formula, this requires the probability of CSC self-renewal to be 

slightly greater than 0.5. 0.505 was typically used in previous studies40,69 and adopted in this 

study. In addition, within a reasonable range of 0.5005-0.55, we studied the sensitivity of the 
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conversion probability P in the conventional 2 Gy x 30 and hypofractionated 10 Gy x 5 

fractionation schemes. Radiotherapy was modeled by applying the classical LQ equation 

using the corresponding radiobiological parameters to each compartment at times of 

treatment. To simplify, we assumed a spatially homogeneous yet biologically heterogeneous 

tumor receiving a spatially homogeneous dose.  

 To compare the difference between our model and the SLQ model, treatment 

response was simulated with the same procedure as described above, but only using the set 

of radiobiological parameters obtained from classical LQ fit.  All ODE simulations were 

performed in MATLAB. 

 Dose fraction sizes of 2, 3, 4, 5.1, 6.5, 7.7, 9.7, and 14.3 Gy were used and the number 

of dose fractions required to achieve tumor control probability (TCP) of 0.9 was determined. 

Treatment was administered once per day, every weekday. The corresponding biological 

effective doses (BED) to the surrounding normal tissue were also evaluated using Equation 

2-4, with n, d, and α/β representing the number of fractions, dose fraction size, and alpha 

beta ratio of the surrounding normal tissue, respectively. α/β was set to 3 for all BED 

calculations. The tumor control probability for the DLQ and SLQ models, indicated as TCPDLQ 

and TCPSLQ, were calculated based on Poisson distribution as shown in Equation 2-5, with 

NDCC+CSC and NCSC representing the average number of remaining total tumor cells and 

remaining cancer stem cells after treatment, respectively.  

𝐵𝐸𝐷 = 𝑛𝑑 × (1 +
𝑑

𝛼 𝛽⁄
) 

Equation 2-4 
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𝑇𝐶𝑃𝐷𝐿𝑄 = exp(−𝑁𝐶𝑆𝐶) 

𝑇𝐶𝑃𝑆𝐿𝑄 = exp(−𝑁𝐶𝑆𝐶+𝐷𝐶𝐶) 

Equation 2-5 

 Due to the representative treatment outcome from GBM and NSCLC, we compared 

GBM and NSCLC using parameters obtained from cell lines U373MG and H460, respectively. 

We selected NSCLC for comparison because hypofractionation in NSCLC has been 

remarkably successful96 while the same approach has been ineffective in treating GBM22. 

Using the DLQ model, we applied currently utilized or previously applied GBM treatment 

schemes including, 2 Gy×30, 1.8 Gy×33, 1 Gy×78 B.I.D7, 2 Gy×4597, 1.3 Gy×60 B.I.D, 1.5 Gy×40 

B.I.D8,97, and 5 Gy×10 B.I.D15 to study the tumor response to treatment.  

2.1.3 Results 

2.1.3.1 DLQ fit results 

 The radiobiological parameters obtained from DLQ, SLQ, and USC fitting results to 

all eight clonogenic survival datasets are shown in Table 2-1. The AIC, BIC and SSE values of 

all three models are shown in Table 2-2. The α values of CSC were smaller than that of their 

DCC counterpart for all except Tx-4, whose CSC compartment had a smaller β. As shown in 

Figure 2-1, the original LQ model resulted in over-prediction of cell death in the high dose 

range. Assessing by SSE, both DLQ and USC models more accurately described the cell 

survival behavior for the entire dose range than LQ with the exception of the melanoma cells. 

Factoring in the larger number of fitting parameters in the DLQ and USC models, the average 

AIC and BIC values of the DLQ and USC model were lower than that of the LQ as shown in 

Table 2-2. The melanoma cell was an outlier due to the extremely low α/β ratio (0.16) 
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resulted from the LQ fit.  For MDA-MB-231, F was fixed based on literature. The fit-obtained 

β value for CSCs was close to zero, agreeing with the publication86. 

 Dual compartment fit parameters Single LQ fit USC model fit parameters 
 F α1 β1 α2 β2 α β α/β Dq D0 αUSC 

CP3 0.047 0.021 0.036 0.098 0.057 0.15 0.04 3.45 3.78 1.01 0.07 

DU145 0.010 0.099 2.22E-05 0.191 0.017 0.22 0.01 17.53 2.28 2.19 0.19 

HeLa 0.052 0.010 0.071 0.197 0.203 0.54 0.06 8.89 1.50 0.84 0.52 

H460 0.010 0.010 0.042 0.010 0.079 0.16 0.05 2.95 4.21 0.76 0.01 

MDA-MB-231 0.020 0.125 2.43E-06 0.271 0.032 0.36 0.01 32.74 1.50 1.75 0.31 

Melanoma 0.166 0.038 0.059 0.013 0.061 0.01 0.06 0.16 4.39 0.89 0.01 

TX-4 0.200 0.244 0.022 0.128 0.105 0.50 0.01 38.90 1.50 1.34 0.18 

U373MG 0.016 0.010 1.77E-07 0.125 0.028 0.17 0.02 9.49 2.05 2.30 0.12 

Table 2-1: DLQ, SLQ, and USC model clonogenic survival fit parameters F is the fraction of CSCs 
within the tumor. (α1, β1) and (α2, β2) are the radiobiological parameters of the CSC and DCC 
compartment, respectively. Single LQ fit indicates the parameters obtained from a classical LQ 

model fit. The last three columns show the fit parameters of the USC model, Dq, D0, and αUSC.   

 

 

 

Akaike information 
criteria (AIC) 

Bayesian information 
criteria (BIC) 

Sum of square error 
(SSE) 

 DLQ LQ USC DLQ LQ USC DLQ LQ USC 

CP3 -50.30 -40.05 -53.25 -42.10 -35.95 -47.78 0.198 0.347 0.205 

DU145 -104.84 -98.37 -106.66 -96.63 -94.27 -101.19 0.030 0.046 0.033 

HeLa -34.51 -20.56 -18.25 -30.67 -18.64 -15.69 0.030 0.123 0.126 

H460 -13.19 4.03 -17.80 -12.71 4.26 -17.48 0.020 0.366 0.019 

MDA-MB-231 -17.38 -12.54 -13.97 -18.42 -13.17 -14.80 0.004 0.016 0.009 

Melanoma -44.22 -50.76 -44.59 -38.55 -47.92 -40.81 0.058 0.056 0.070 

TX-4 -40.17 -18.33 -31.80 -35.92 -16.20 -28.97 0.027 0.174 0.062 

U373MG -92.19 -75.91 -93.94 -85.64 -72.64 -89.57 0.011 0.031 0.013 

Average -49.60 -39.06 -47.53 -45.08 -36.82 -44.54 0.047 0.145 0.067 

Table 2-2: AIC, BIC, and SSE comparison. The Akaike Information Criteria (AIC), Bayesian 
Information Criteria (BIC) and sum of square error (SSE) values in log10 scale for all three models 
on all clonogenic survival datasets.  
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Figure 2-1: DLQ, USC and LQ model fit comparison (a) Prostate carcinoma cell line CP3 (b) Cervial 
cancer cell line HeLa. (c) Breast cancer cell line MDA-MB-231. (d) GBM cell line U373MG. The DLQ, 
USC and LQ fit results are represented by the solid, dashed and dotted lines, respectively.  

2.1.3.2 ODE simulations and therapy schedule optimization 

 The number of dose fractions and BED required to achieve total tumor control (TCP 

= 1) for each dose fraction sizes and cell lines are shown in Table 2-3 and Table 2-4. As 

evident from Table 2-3, DLQ indicated a greater dose for tumor control than the SLQ model. 

However, the greater radioresistance can still be overcome with hypofractionation except 

for GBM cell U373MG. The GBM cells were remarkably resistant to hypofractionated 

treatment, requiring prohibitively high dose to control.  In Table 2-4, the lowest possible BED 

values that achieved tumor control for each cell line were boxed. Here, the dose fraction size 

(a) (b)

(c) (d)
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that attained the lowest normal tissue BED was considered the optimal treatment 

fractionation schedule for each cell line. SLQ indicated conventional 2 Gy fractionation 

schemes to result in the least normal tissue effect while attaining tumor control for all cell 

lines except Melanoma, for which 7.7 Gy fraction was optimal due to its low α/β ratio. In 

comparison, DLQ indicated hypofractionation approaches (>7.7Gy) to be preferable for 

U373MG, CP3, HeLa, and H460.  

 2 Gy 3 Gy 4 Gy 5.1 Gy 6.5 Gy 7.7 Gy 9.7 Gy 14.3 Gy 

CP3 85 39 41 22 24 15 16 10 10 7 7 5 5 4 3 2 

DU145 71 39 48 25 36 18 28 13 22 10 19 8 15 6 10 4 

HeLa 52 15 24 9 14 6 9 5 6 4 4 3 3 2 2 1 

H460 75 35 35 20 20 13 13 9 8 6 6 5 4 3 2 2 

MDA-MB-231 60 25 40 16 30 12 24 9 19 7 16 6 13 5 9 3 

Melanoma 54 73 26 33 16 19 10 12 7 7 5 5 3 4 2 2 

TX-4 30 20 19 13 13 9 10 7 7 6 6 5 4 4 3 2 

U373MG >150 45 >100 28 >75 19 >59 14 >46 10 >39 8 >31 6 >21 3 

Table 2-3: Number of fractions needed for each dose fractionation scheme for DLQ and SLQ. Dual-
compartment result is shown in the shaded columns and the neighboring unshaded column 
represents the single-compartment simulation result. 

 2 Gy 3 Gy 4 Gy 5.1 Gy 6.5 Gy 7.7 Gy 9.7 Gy 14.3 Gy 

CP3 283 130 246 132 224 140 220 138 206 144 192 137 205 164 247 165 

DU145 237 130 288 150 336 168 386 179 453 206 522 220 616 246 825 330 

HeLa 173 50 144 54 131 56 124 69 124 82 110 82 123 82 165 82 

H460 250 117 210 120 187 121 179 124 165 124 165 137 164 123 165 165 

MDA-MB-231 200 83 240 96 280 112 330 124 391 144 439 165 534 205 742 247 

Melanoma 180 243 156 198 149 177 138 165 144 144 137 137 123 164 165 165 

TX-4 100 67 114 78 121 84 138 96 144 124 165 137 164 164 247 165 

U373MG >500 150 >600 168 >700 177 >812 193 >947 206 >1071 220 >1273 246 >1732 247 

Table 2-4: Biological effective dose (BED) to surrounding normal tissue required to achieve tumor 
control for DLQ and SLQ simulations. DLQ result is shown in the shaded columns and the 
neighboring unshaded column represents the single-compartment result. The boxes highlight the 
lowest possible BED value achieved in various fractionation schemes for each cell line, with DLQ 
and SLQ represented in solid and dashed boxes, respectively.  
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Figure 2-2: (a) GBM (black) and NSCLC (red) 2 Gy× 30 SLQ (dashed) and DLQ (solid) comparison. 
(b) GBM and NSCLC comparison between conventional 2 Gy×30 and hypofractionation 5 Gy× 10. (c) 
GBM CSC and DDC compartment interaction with fractionation schedules of 2 Gy×30 (black), 5 
Gy×10 (red), and 10 Gy×3 (blue). CSC: dashed, DCC: solid (d) Current and previous treatment 
schedules for GBM. (e-f) sensitivity analysis of the stem cell conversion factor P for GBM and NSCLC 
cell lines.   

(c) (d)

(a) (b)

(e) (f)
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Figure 2-2a demonstrates the difference between the SLQ and DLQ treatment outcome of the 

GBM and NSCLC cells. With a regularly fractionated treatment of 60 Gy, SLQ indicated similar 

outcomes between the two different cells but in DLQ, the number of remaining GBM cells 

was 2 orders-of-magnitude greater than remaining NSCLC cells. Figure 2-2b compares the 

conventional 2 Gy×30 and 5 Gy×10 SABR treatment outcome. For NSCLC, SABR resulted in 

significantly more effective tumor control than conventional fractionation schedules. In 

stark contrast, for GBM, SABR fractionating did not noticeably improve tumor control.  

 To understand the unique GBM radioresistance to hypofractionated treatment, we 

plotted the CSC and DCC compartment growth over time to explore their relationship and 

interactions (Figure 2-2c).  The interaction between the two compartments was simulated 

and compared for fractionation schedules of 2 Gy×30, 5 Gy×10, and 10 Gy×3.  From Figure 

2-2c, the dynamic equilibrium was disrupted when the DCC population became substantially 

smaller than the CSC population as a result of aggressive treatment. Consequently, rapid DCC 

regrowth occurred to restore the equilibrium. For conventionally fractionated treatments, 

the equilibrium was disrupted to a lesser degree, resulting in slower re-growth that offset 

the disadvantage of tumor cell killing compared to the hypofractionated approaches.   

 The sensitivity of the DLQ model to the conversion probability P (P = 0.5005-0.55) 

on cell lines U373MG (GBM) and H460 (NSCLC) at the 2 Gy x 30 (solid) and 10 Gy x 5 (dashed) 

fractionation schemes is shown in Figure 2-2e and Figure 2-2f. The results show that 

increasing P leads to more rapid GBM growth but minimally impact the NSCLC cells (and 

other non-GBM cells that are not shown in the figure). The sensitivity study proved that a 

small variation in P does not affect the superior treatment outcome from hypofractionation 

on NSCLC and definitive treatment failure in GBM. 
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 The results of a sample of currently used or previously tested fractionation 

schedules are shown in Figure 2-2d. 5 Gy×10 and 2 Gy×45 resulted in the worse and best 

outcome at 100 days, respectively. However, the tumor still recurred for all treatment 

schedules, consistent with clinical trial results.    

2.1.4 Discussion 

 The classical LQ model has been challenged to explain response to SABR doses. In 

addition to its deviation from in vitro cell survival data, it often employs unreasonable 

radiobiological parameters when explaining patient treatment outcome. For example, fitting 

of clinical prostate treatment response to conventionally fractionated and hypofractionated 

treatment using LQ results in either unreasonably low α or fast repopulation time98.  

  Modifications including the USC, linear-quadratic linear (LQL) and generalized LQ 

models have been made to moderate the LQ function towards the ablative dose range to 

resolve the apparent discrepancy between model prediction and measured cell survival data. 

However, these modifications are highly controversial because the modifications are 

incompatible to the underlying mechanisms of the original LQ model. These modified LQ 

models were further challenged by their failure to show superior modeling of the clinical 

data81. Fowler showed that these synthetic modifications can be avoided by assuming a much 

higher α/β value in the LQ model when fitting experimental cell survival data 99. However, 

increasing α/β values would increase the difficulty to explain the success of SABR. 

 Instead of assuming dose dependent radiobiological parameters of a uniform cell 

population, we showed that when the intact LQ model is applied to tumor cell 

subpopulations, previously published single fraction cell survival data can be accurately 



 

21 

represented throughout the entire dose range. DLQ naturally leads to a more radioresistant 

subpopulation, which we referred as cancer stem cells, whose greater radioresistance 

results in their increasing weight with high dose fractions, straightening the survival curve 

and providing a duality in the cell biological behavior. Therefore, our model explains the cell 

survival curve without violating the underlying biological mechanisms of the LQ model.  

 A mathematical model is essential to describe the dynamic equilibrium of CSC and 

DCC. To achieve this goal, we adopted an integro-differential model previously utilized to 

test the efficacy of combination radiation and differentiation therapy39,40. The original model 

set the same α for both CSC and DCC, a β value of zero for CSC and equal number of CSC and 

DCC cells (F=0.5) at the beginning of treatment. These assumptions oversimplify the 

heterogeneous radiobiology because the CSC fraction is known to vary between tumors, and 

are usually a minor population within the tumor82,83. Our model is also different from a 

previous study investigating the glioma stem cell division kinetics modulated by acute and 

fractionated radiation treatment that assumed the same α/β for both the stem and non-stem 

cells73. We improved these models by adopting individual radiobiological parameters 

obtained from the DLQ fit to cell survival data. We showed that the improved DLQ model led 

to possible insights in tumor response to various treatment fractions.  

 Among the simulated dose fraction sizes, the dual-compartment model generally 

indicated greater radioresistance to treatment as an effort to restore cell sub-population 

equilibrium. We found that SLQ indicated conventional fractionation schemes to result in the 

least normal tissue BED while attaining tumor control, while DLQ preferred 

hypofractionation approaches of 7.7 or 9.9 Gy/Fx for 4 tumor sites. The only exception is the 

melanoma cells with an extremely low α/β ratio, which unsurprisingly prefers 
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hypofractionation. This study may provide an alternative angle to understand recent success 

of SABR, in addition to significantly improved dose conformity.  

 Although clinical treatment fractionations were used as reference doses in this 

study, due to the uncertainties in estimating the radiobiological parameters and then the 

significant simplification involved in using these parameters to simulate actual tumor 

response to treatment, DLQ in its current form may be better understood as a “surprise 

implication” model instead of a treatment planning model. Bear the limitation in mind, this 

study suggests that radioresistance can be generally overcome by using hypofractionated 

treatment regimens with the exception of a GBM cell line that is resistant to both 

conventionally fractionated and hypofractionated treatment. The significance of this finding 

not only lies in the consistence with the particularly high GBM local recurrent recurrence 

rates, despite aggressive treatment97,100, it may also be used to explain the discrepancy of 

GBM cell in vitro and in vivo radiosensitivity101,102. Our model suggests that that the poor 

treatment outcome in GBM is perhaps driven by a CSC population that is much more 

radioresistant than its DCC counterpart, with α1/α2=0.08 and β1/β2=6.26×10-6   (β1 on the 

order of 10-7). This significant difference between radiosensitivities resulted in the rapid 

regrowth of the DCC compartment, fueled by its depletion without simultaneously 

eliminating the more radioresistant CSC cells, despite their small fraction at the beginning of 

treatment (F=0.016). CSC β values close to zero were also observed for DU145 and MDA-MB-

231. However, the ratios of α for both cell lines were approximately 6 fold larger than that of 

U373MG. The less dramatic difference between compartmental α values enabled 

hypofractionation approaches to overcome the regrowth of DCC. Therefore, this model 
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provides a possible explanation for previously failed hypofractionated and SABR GBM 

treatments.  

 There are several limitations in this study. DLQ increases the number of fitting 

parameters which may increase complexity in calculating tumor BED doses. However, 

different from existing modified LQ models, they can be measured based on individual 

biopsy. For example, Lagadec et al showed that not only the CSC86 fraction can be quantified 

using flow cytometry, the radiosensitivity of subpopulations can be separately measured. 

Therefore, our model parameters can be experimentally determined for an individual tumor 

or patient. DLQ can still be overly simplistic as a tumor may or may not present the CSC 

phenotype or there may be more than two types of cells. Environmental factors such as 

tumor vasculature, oxygen content in its microenvironment, and endothelial cell damage can 

greatly affect tumor response to radiotherapy but are not modeled by the proposed 

method81. Furthermore, tumors are modeled under a spatial homogeneous assumption. The 

mitotic rates of CSC and DCC and the apoptosis rate of DCC were also set to be equal, which 

may not realistically simulate tumor growth and cell death. Also, the statistical error of in 

vitro cell survival measurement data was not reported, preventing us from including it into 

data fitting. Furthermore, a shift in CSC differentiation probability and CSC cell cycle may be 

considered following fractionated radiation73. Finally, dose dependent reprogramming of 

DCC to CSC by radiation has recently been shown103. Incorporation of reprogramming may 

provide more insight in treatment outcome modeling42. However, as the first step to 

incorporate intra-tumor heterogeneity in radiobiological response modeling, a simple model 

is better to shed light on the subject at hand. 
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 As a natural extension of the study, we will utilize the new model to optimize 

treatment schedules, particularly for the tumors that conventional and hypofractionated 

treatment failed to control. 

2.1.5 Conclusion 

 A dual-compartment model for cell survival was studied on the basis of co-existing 

cancer stem cells and differentiated cancer cells. Without modifying underlying LQ cell 

survival behavior, the model was shown to be capable of describing the clonogenic cell 

survival behavior for a wide dose range. By using ODEs that simulate the dynamics of CSC 

and DCC differentiation and apoptosis, we found tumor response to conventionally and 

hypo-fractionated treatments that were consistent with clinical observations. Most 

remarkably, we demonstrated that the dynamic equilibrium between DCC and CSC 

compartments within a GBM tumor might contribute to the poor clinical outcome after 

radiotherapy despite its apparently low in vitro radioresistance.  
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2.2 Treating Glioblastoma Multiforme (GBM) with Super 
Hyperfractionated Radiation Therapy: Implication of 
Temporal Dose Fractionation Optimization Including 
Cancer Stem Cell Dynamics 

2.2.1 Introduction 

 Glioblastoma multiforme (GBM) is a devastating primary brain cancer with abysmal 

survival rates. Approximately 12,000 people are newly diagnosed with GBM each year in the 

United States alone, accounting for more than 51% of all brain gliomas, making it the most 

common type of primary brain tumor 1-3.  Even with surgical resections followed by 

radiotherapy and chemotherapy, predominantly local recurrence occurs and the overall 

median survival is still only 14 months 2,4,5. Aside from the conventionally utilized 

fractionation schemes of 1.8 Gy × 33 and 2 Gy × 30, numerous alterations in dose 

fractionation and escalation schemes were attempted in hopes to improve treatment 

outcome and reduce treatment duration. Accelerated hyper-fractionated twice a day (b.i.d) 

delivery of 1 to 1.5 Gy fractions 2 or 3 times a day7-11, accelerated dosing of multiple 2 Gy 

fractions a day12-14, hypofractionated 3 to 6 Gy15-18 dosing schemes and aggressive dose 

escalation to 110 Gy using combined regularly fractionated external beam therapy and low 

dose rate (LDR) brachytherapy100,104 were implemented with no significant benefit in overall 

survival or durable local control20. Greater incidence of brain necrosis was found in the hypo-

fractionated and aggressive dose escalation approaches. Although the toxicity was not 

increased in the hyper-fractionated and accelerated -radiotherapy methods, the benefit of 

reducing treatment time alone did not gain sufficient support for a paradigm shift.  
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 In the meantime, fractionation schedule optimization (FSO), the method of 

systematically deriving the most effective fractionation schedule that maximizes biological 

effective dose (BED) to the tumor while maintaining acceptable toxicity to surrounding 

normal tissue, has been actively investigated. With fixed time intervals of once or twice per 

weekday, Wein et al. demonstrated that up to two time increase in tumor control probability 

could be achieved by utilizing larger fractions before overnight and weekend breaks24.  A 

dynamic programming framework in the presence of tumor repopulation was established to 

determine the optimal dose delivery schedule, which suggested a gradual increase in fraction 

size throughout the treatment course can improve tumor control by up to 50% 26. Lindblom 

et al. studied the effectiveness of varying fractionation for non-small cell lung cancer based 

on the concept of heterogeneous spatial and temporal oxygenation, differing effects of 

accelerated repopulation, and intra-fraction repair. The study revealed that schedules with 

a baseline fractional dose of 2 Gy accompanied by an escalation to 3 or 4 Gy per fraction could 

improve  the tumor control probability by up to 3 fold 25. Kim et al. showed that the tumor 

equivalent uniform dose (EUD) may be increased by 17% using spatiotemporal 

optimization27. Therefore, it is interesting to test the efficacy of FSO on GBM tumors.  To test 

FSO, the unique radiobiological properties of GBM need to be considered. 

 Despite the extreme radioresistance demonstrated in patients, GBM cell lines do not 

appear to be particularly radioresistant in vitro. Instead, an extremely wide range of intrinsic 

radiosensitivities largely overlapping with the in vitro survival results of tumors curative 

with radiation was observed105-107. This discrepancy suggests that the aggressive tumor 

behavior of GBM cannot be adequately reflected with the simple classical radiobiological 

models that assume a tumor cell population with uniform radiosensitivity and 
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radiobiological characteristics. A recently proposed ordinary differential equation (ODE) 

model that took into consideration the dynamic interaction and distinct radiosensitivity 

between cancer stem cells (CSC) and its non-stem counterpart, differentiated cancer cells 

(DCC), was shown capable of describing the definitive treatment failure of GBM based on 

human GBM cell parameters40,43,69.  A mathematical model of PDGF-driven glioma with 

consideration of heterogeneous tumor subpopulations was utilized in an iterative combined 

theoretical and experimental strategy and identified two hyper-fractionated schedules 

within a five day treatment period that led to superior survival in mice42. These studies 

clearly show the potential of substantially delaying GBM recurrence without increasing 

normal tissue toxicity. Thus, the goal of this study is to develop a temporal dose fractionation 

optimization framework with consideration of CSC dynamics in an effort to discover dosing 

schemes with the potential to significantly delay GBM recurrence. A novel super 

hyperfractionated approach which was discovered through the creation of an optimization 

formulation will also be introduced.  

2.2.2 Methods 

 The methodology of this study will be introduced in four major components. First, 

the ODE model utilized to describe the dynamic interaction between the CSC and DCC 

compartments.  Second, the workflow of simulating radiation therapy along with ODE tumor 

growth. Third, the temporal dose fractionation optimization problem formulated specifically 

for the proposed tumor growth and radiation killing model followed by the utilized 

algorithm will be demonstrated. Lastly, the optimization scenarios and conditions applied, 
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including conventional time frames and a prolonged super hyperfractionated approach will 

be described. 

2.2.2.1 ODE model 

 The ODE model used to simulate the dynamic interaction and growth of CSC and DCC 

is shown in the Equation 2-6 below: 

                     Self-renewal 

𝑈̇(𝑡) = (2𝑃 − 1)𝑚𝑈𝑘(𝑊(𝑡))𝑈(𝑡)   

𝑉̇(𝑡) = 2(1 − 𝑃)𝑚𝑈𝑘(𝑊(𝑡))𝑈(𝑡) + 𝑚𝑉𝑘(𝑊(𝑡))𝑉(𝑡) − 𝑎𝑉𝑉(𝑡)    
                 Differentiation from CSC          DCC growth            DCC natural cell death 
𝑊(𝑡) = 𝑈(𝑡) + 𝑉(𝑡) 
𝑘(𝑊) = max(1 − 𝑊4, 0),   

Equation 2-6 

where U(t), V(t), and 𝑊(𝑡) represent the volume fractions of CSCs, DCCs, and total tumor 

with respect to a specified volume of interest in which the tumor can grow. The model 

assumes no asymmetric divisions, where one CSC gives rise to either two CSCs or two DCCs, 

with probabilities of P and 1-P, respectively. The growth rates of CSC and DCC are 𝑚𝑈 and 

𝑚𝑉 , and 𝑎𝑉  is the natural cell death rate of DCCs. Following previous publications40,43, all 

three parameters were set to ln(2)/Tpot day-1, where Tpot represents the tumor potential 

doubling time of malignant brain tumors95. k(W) is a monotonically decreasing volume 

constraint function that keeps the total tumor volume fraction (W) within the range of 0 and 

1 while simulating the slowdown in growth rate as new born cells compete for resources 

within the available growth volume69.   All simulations in this study were set to have the 

specified volume of interest to be 1011 cells.  The simulation was initialized with a tumor 

volume of 1.8 × 109 cells, corresponding to a postoperative mean T1 post-gadolinium 

enhancement volume of 1.8 ml from 721 patients108. As patients typically receive radiation 
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thirty days after surgery (range, 3-6 weeks)109, the ODE was utilized to simulate 30 days of 

tumor growth with no treatment intervention from the specified initial conditions prior to 

starting radiation therapy. The ODE simulation parameters are summarized in Table 2-5. 

2.2.2.2 Modeling Radiation Therapy 

 The distinct radiosensitivity of the CSC and DCC compartments specific to GBM were 

determined by performing curve fitting on clonogenic cell survival data with a dual-

compartment linear quadratic (DLQ) model43, as shown in Equation 2-7.  

𝑆𝐹(𝐷) = 𝐹 ∙ exp{−𝛼𝐶𝑆𝐶𝐷 − 𝛽𝐶𝑆𝐶𝐷2} + (1 − 𝐹) ∙ exp{−𝛼𝐷𝐶𝐶𝐷 − 𝛽𝐷𝐶𝐶𝐷2},   
Equation 2-7 

with 𝐹 as the fraction of CSC out of all tumor cells, and 𝛼𝐶𝑆𝐶 , 𝛽𝐶𝑆𝐶 , 𝛼𝐷𝐶𝐶 , and 𝛽𝐷𝐶𝐶 describing 

the radiobiological properties corresponding to the CSC and DCC compartments.  

 Furthermore, there is recent evidence suggesting that a fraction of DCC reprograms 

back into CSC after radiation exposure and the reprogramming rate is proportional to the 

dose received103,110. A new reprogramming term linear to dose was therefore incorporated 

into the model. Linear quadratic radiation therapy cell killing and reprogramming to both 

compartments are applied as follows in Equation 2-8: 

𝑈(𝑡) = 𝑈0exp{−𝛼𝐶𝑆𝐶(𝐷𝑈)𝑖 − 𝛽𝐶𝑆𝐶(𝐷𝑈)𝑖
2} +𝑐𝑉0(𝐷𝑉)𝑖 

𝑉(𝑡) = 𝑉0exp{−𝛼𝐷𝐶𝐶(𝐷𝑉)𝑖 − 𝛽𝐷𝐶𝐶(𝐷𝑉)𝑖
2} − 𝑐𝑉0(𝐷𝑉)𝑖,  

Equation 2-8 

where U0 and V0 are the compartmental cell fractions after halting the ODE at dosing time 

points, (𝑫𝑼)𝒊 and (𝑫𝑽)𝒊 are the radiation delivered to CSC and DCC on the ith fraction,  and c 

is the reprogramming coefficient. After applying the radiation therapy term shown in 

Equation 2-8, the ODE resumes 0.01 days (14.4 minutes) after the treatment time point.  
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 The dose dependent reprogramming coefficient c was determined based on linear 

regression on percentage of radiation-induced CSC from purified non-stem human breast 

cancer specimens with respect to dose103. The data and corresponding linear fit is 

demonstrated in Figure 2-3, where both patient specimen specific and averaged patient data 

are shown. The fitting was performed using the average of all three patient derived data sets, 

indicated with red circles. The resultant slope from the linear regression was utilized as the 

reprogramming coefficient in simulations. A full schematic of the tumor growth and 

radiotherapy simulation is shown Figure 2-4.  

 
Figure 2-3: Percentage of radiation-induced DCC reprogramming to CSC with respect to received 
dose. Determination of reprogramming coefficient c with linear regression 
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Figure 2-4: Tumor Growth ODE and radiation therapy simulation schematic 

2.2.2.3 Optimization formulation and algorithm  

The formulated optimization problem is shown in Equation 2-9 below: 

argmin
𝐷𝑈,𝐷𝑉,𝑇

 𝑊(𝑡𝑒𝑣𝑎𝑙|𝐷𝑈, 𝐷𝑉 , 𝑇) + 𝜇
∑ (𝐿 − 𝑡)𝑊(𝑡|𝐷𝑈, 𝐷𝑉 , 𝑇)𝐿

𝑡=0

∑ (𝐿 − 𝑡)𝐿
𝑡=0

+ 𝜆 ∑max(𝑊(𝑡|𝐷𝑈 , 𝐷𝑉 , 𝑇) − 𝑅, 0)

𝐿

𝑡=0

 

 

subject to                ∑ (𝐷𝑈)𝑖

𝑛

𝑖=1
+

(𝐷𝑈)𝑖
2

𝛼 𝛽⁄
≤ BED𝑈 ,               ∑ (𝐷𝑉)𝑖

𝑛

𝑖=1
+

(𝐷𝑉)𝑖
2

𝛼 𝛽⁄
≤ BED𝑈, 

𝐷𝑚𝑖𝑛 ≤ 𝐷𝑈 , 𝐷𝑉 ≤ 𝐷𝑚𝑎𝑥  , ∑ 𝑇𝑖

𝑛−1

𝑖=1
= 𝐿  , 𝐿𝑠 ≤ T ≤ 𝐿,

1

𝑟
≤

(𝐷𝑈)𝑖

(𝐷𝑉)𝑖
≤ 𝑟  𝑓𝑜𝑟 𝑖 =  1. . 𝑛  

Equation 2-9 

 The optimization variables of interest are 𝐷𝑈 , 𝐷𝑉 , and 𝑇.  𝐷𝑈  and 𝐷𝑉  are vectors of 

length n, with each element (𝐷𝑈)𝑖 and (𝐷𝑉)𝑖 representing the dose applied to the CSC and 

DCC compartments during the 𝑖th dose fraction. 𝑇 is a vector of length n-1, with each element 

𝑇𝑖 as the time interval between fractions 𝑖 and 𝑖+1.The total treatment duration is specified 

as L. A schematic of the optimization variables with respect to treatment time is shown in 

Figure 2-5.  
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 The objective function is formulated in three terms. The first and main objective 

term, 𝑊(𝑡𝑒𝑣𝑎𝑙|𝐷𝑈, 𝐷𝑉 , 𝑇, 𝑋), indicates the total tumor fraction U+V at the evaluation time 

point day  𝑡𝑒𝑣𝑎𝑙 given 𝐷𝑈 , 𝐷𝑉 , and T. Minimization of  total cell number at a later time point 

delays disease recurrence. To reduce tumor burden during the treatment period, the second 

objective term that introduces time-weighted penalty on the total tumor fraction at each 

time point 𝑡 , 𝑊(𝑡|𝐷𝑈 , 𝐷𝑉 , 𝑇) , with 𝑡  spanning from the beginning to end of specified 

treatment duration, was incorporated. The weighting of each evaluation time 𝑡 is based on 

the corresponding remaining treatment duration to simulate the accumulation of tumor 

burden over time. The third term applies strong penalty when the total cell fraction W 

exceeds the defined disease recurrence total cell fraction R.  𝜇  and λ are weighting 

coefficients for the second and third objective terms.  

 Optimization constraints include total normal tissue biological effective dose 

(BEDnormal) to both compartments (𝐵𝐸𝐷𝑈  and 𝐵𝐸𝐷𝑉), fractional dose limits (𝐷𝑚𝑖𝑛 and 𝐷𝑚𝑎𝑥), 

time interval limits, and ratio constraint (𝑟) between dose delivered to CSC and DCC to 

ensure plan deliverability. 𝐿𝑠 indicates the lower bound of the time intervals, which was set 

to 1 to ensure at least one full day between all fractions. 𝛼 𝛽⁄  represents the ratio between 

the linear and quadratic terms within the classic LQ model for surrounding normal brain 

tissue, which was set to 3 for all calculations.  

 
Figure 2-5: Schematic of optimization variables with respect to treatment time 
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 The optimization problem was solved using a paired simulated annealing 

algorithm111, in which a pair of elements within decided variable for change (T, 𝐷𝑈 , or 𝐷𝑉) 

were changed in each iteration to maintain problem constraints. The problem was initialized 

at equal dose and time intervals for all fractions. For each iteration, a random number 

between 0 and 1 was generated as decision to vary either the time variable T or dose 

variables 𝐷𝑈  and 𝐷𝑉 . The decision probability given to changing T, 𝐷𝑈 , 𝐷𝑉  were 0.5, 0.25, and 

0.25, respectively. A pair of elements in the decided variable were randomly selected to be 

varied, with both changes stepping in opposite directions to maintain equal total time or 

BED. To ensure that the optimized delivery times are feasible, the time intervals in T were 

maintained as integers by rounding the generated time step in each iteration. The change 

applied to the selected elements was sampled from a Gaussian distribution, with standard 

deviations specific to dose (𝜎𝐷) or time (𝜎𝑇) presented in Equation 2-10 below: 

𝜎𝐷 = 
𝑠𝐷 − 1

(𝑁𝐷 + 1)1/𝑇𝑠𝑡𝑒𝑝
            𝜎𝑇 =  1 +

𝑠𝑇 − 1

(𝑁𝑇 + 1)1/𝑇𝑠𝑡𝑒𝑝
,                                                                     

 
Equation 2-10 

where 𝑠𝐷 and 𝑠𝑇 are the step sizes at the beginning of the optimization, 𝑁𝐷 and 𝑁𝑇 are the 

number of times that a change in the dose and time were accepted. To account for the 

rounding procedure performed for time changes, 𝜎𝑇 was kept above 1 to ensure sufficient 

variation in T.  𝑇𝑠𝑡𝑒𝑝 controls the decreasing rate of 𝜎𝐷 and 𝜎𝑇 as the number of acceptances 

increase. For dose changes, ratio constraints were applied by calculating the upper and lower 

bound specific to the opposite dose compartment corresponding to the same fractions. 

Cutoffs were applied to the generated changes if the resultant new value did not satisfy 

problem constraints. The objective function was evaluated after each iteration, and the 

change was accepted unconditionally if the objective function value decreased. If objective 
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function value was not reduced, the change was accepted with conditional probabilities of 

𝑃𝐷 and 𝑃𝑇  shown in Equation 2-11.  

𝑃𝐷 = 
1

(𝑁𝐷 + 1)1/𝑇𝑝𝑟𝑜𝑏
            𝑃𝑇 = 

1

(𝑁𝑇 + 1)1/𝑇𝑝𝑟𝑜𝑏
 ,                                                                          

Equation 2-11 

where 𝑁𝐷  and 𝑁𝑇  were updated each time a dose or time change was accepted due to 

improvement in the  objective function or the passing of conditional probabilities 𝑃𝐷 and 𝑃𝑇 . 

10000 total iterations were performed and the set of variables resulting in the best result 

was taken as the final optimization result. Outcome was assessed by the recurrence time 

point, the time at which the total cell number grows to 2.8×109 cells, corresponding to 

radiographically noticeable volume increase of 1 ml in total tumor volume from the 

initialized postoperative volume. All optimization parameters are shown in Table 1. All 

calculations were performed in MATLAB 2013a (MathWorks, Natick, MA).  

ODE parameters Radiation therapy parameters 

𝑵𝑻𝒖𝒎𝒐𝒓 𝒎𝑼 𝒎𝑽 𝒂𝑽 𝑭 𝜶𝑪𝑺𝑪 𝜷𝑪𝑺𝑪 𝜶𝑫𝑪𝑪 𝜷𝑫𝑪𝑪 𝒄 

1.80E-02 0.1777 0.1777 0.1777 0.016 0.01 1.77E-07 0.125 0.028 5.196E-03 

Universal optimization parameters 

𝝁 𝝀 𝑹 𝒔𝑫 𝒔𝑻 𝑻𝒑𝒓𝒐𝒃 𝑻𝒔𝒕𝒆𝒑 𝑳𝒔 𝑫𝒎𝒂𝒙 𝑫𝒎𝒊𝒏 𝒓 

10 10000 2.8E-02 40 15 1 2 1 15 1* 2 

Table 2-5: ODE simulation and optimization parameters. *exception in b.i.d schedules 

2.2.2.4 Optimization scenarios 

2.2.2.4.1 Optimization within conventional time frame  

 Optimization was performed within the equivalent duration, number of fractions, 

and BEDnormal of a subset of currently utilized or previously applied GBM treatment 

fractionation schemes, including 2 Gy × 30, 1.8 Gy × 33, twice a day (b.i.d.) schedules of 1 Gy 

× 727, 1.5 Gy × 408, and hypo-fractionated approach of 5 Gy × 1015 to assess the potential in 
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delaying recurrence with temporal dose optimization. For b.i.d fractionation schemes, the 

time increments were set in units of half days and 𝐷𝑚𝑖𝑛 was lowered to 0.5 Gy. The objective 

function evaluation time point (𝑡𝑒𝑣𝑎𝑙) was set to 300 days. The recurrence time resulting 

from optimization was compared with the recurrence time of the original dose fractionations 

predicted by the model. 

2.2.2.4.2 Super hyperfractionated regular schedules 

 Varying dose fractionation within the conventional treatment time frames has been 

shown to modestly impact the outcome of GBM radiotherapy. The potential in further 

delaying recurrence time with a super hyperfractionated treatment approach was therefore 

tested. Specifically, the potential in improving outcome with the novel approach of treating 

GBM with a protracted schedule was explored with a total treatment course of up to one 

year. Simulated annealing optimization on dose was performed with fixed time points of 

weekly, bi-weekly, and monthly, with total BEDnormal of 100 Gy  (equivalent to that of 2 Gy × 

30, assuming α/β = 3). The objective function evaluation time point (𝑡𝑒𝑣𝑎𝑙) was set to 500 

days. The optimized recurrence results were compared with that of equal dose throughout 

all fractions for all time schedules.   

2.2.2.4.3 Super hyperfractionated temporal dose optimization 

 Full optimization with both time and dose as variables was performed with number 

of fractions equivalent to weekly, biweekly, and monthly over one year. The objective 

function evaluation time point (𝑡𝑒𝑣𝑎𝑙) was set to 500 days. The resultant recurrence times 

were also compared with corresponding regular time schedules with equal dose over time.  

To assess the synergy of dose escalation and hyperfractionation, the outcome with dose 
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escalation to BEDnormal of 150 Gy (equivalent to 2 Gy × 45, assuming α/β = 3) was also 

generated.  

2.2.3 Results  

2.2.3.1 Optimization within conventional time frame  

 The resultant recurrence time from optimizing within conventional time frames is 

shown in Table 2-6. The recurrence time point of the conventional 2 Gy × 30 delivery 

predicted by the model is 250.3 days, in close agreement with the observed average 

recurrence time of 7-9 months109,112. Variation in time and dose did not significantly improve 

the recurrence time for all attempted historically and currently administered fractionation 

schemes. The improvement in overall recurrence time is slightly greater for 1 Gy × 72, which 

has the longest treatment duration, indicating that an extension in the treatment duration 

might help improve the result.  

Equivalent 
Fractionation scheme 

Total duration 
𝐋 (days) 

𝐁𝐄𝐃𝐔,𝐕 

(Gy) 

Original 
recurrence 

(days) 

Optimized 
recurrence (days) 

2 Gy × 30 39 100 250.3 254.7 

1.8 Gy × 33 44 95.04 247.6 251.3 

1 Gy × 72 B.I.D. 49.5 96 258.2 269.1 

1.5 Gy × 40 B.I.D. 25.5 90 249.4 255.5 

5 Gy × 10 11 133.33 234.4 234.5 

Table 2-6: Conventional fractionation optimization results 

2.2.3.2 Super hyperfractionated year-long regular and variable schedules 

 Outcome from optimizing super hyperfractionated schedules equivalent to year-

long weekly, bi-weekly, and monthly treatment with fixed and variable times are shown in 

Table 2-7. Within Table 2-7, the column labeled “Constant” indicates equal dose and time 

interval throughout the year, “fixed time” results from holding constant time intervals while 
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optimizing doses, and “variable time” shows outcome with doses and time intervals all as 

optimization variables. With BEDnormal equivalent to that of the conventional 2 Gy × 30 

treatment, which had recurrence time of 250.3 days, all three super hyperfractionated year-

long regular schedules with equal dose (“Constant”) significantly delayed recurrence by 

more than 70 days. Optimization of time intervals in conjunction with doses further 

postponed recurrence by more than 2 months from the regular fixed dose schedules. The 

weekly equivalent plan with 53 fractions, as shown in Figure 2-6, achieved the largest benefit 

of 180 days compared with conventional therapy using 2Gy × 30. The time interval result 

(Figure 2-6b) indicates relatively infrequent treatments in the beginning, followed by 

aggressive once per day delivery in the middle of the treatment course, where the tumor size 

is significantly reduced. With an appreciably smaller tumor, the treatment again becomes 

infrequent, until the tumor size approaches the recurrence level, where an increase in 

treatment frequency is observed. The rate of treatment continues to increase up to the end 

of the treatment course in order to complete the treatment with the lowest possible tumor 

size while keeping total tumor size under the defined recurrence level.  In terms of dose, 𝐷𝑈  

was relatively constant throughout time, while 𝐷𝑉  was held at minimum dose of 1 Gy for 

most fractions and peaking at the fractions immediately following larger time intervals 

(Figure 2-6a). The dose and time results of the bi-weekly (n = 27) and monthly (n = 13) 

equivalent plans are shown in Figure 2-7 and Figure 2-8, respectively.  

 The trend in outcome of less aggressive fractionation in the beginning of treatment, 

preceded by dense fractions in the middle of the treatment course, followed by a decrease in 

frequency, and then a final increase in treatment aggressiveness was also observed. Dose 
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optimization alone achieved substantial benefit as well but less than variable time as 

expected, as demonstrated in the column labeled “fixed time” in Table 2-7.  

 
Equivalent 

Fractionation 
scheme 

Total 
duration 𝑳 

(days) 

𝑩𝑬𝑫𝑼,𝑽 

(Gy) 

Recurrence time (days) 

Constant Fixed time Variable time 

Weekly 1.3125 Gy × 53 364 100 372.4 401.2 430.5 

Bi-weekly 2.1553 Gy × 27 364 100 351.1 403.7 423.9 

Monthly 3.5325 Gy × 13 360 100 322.2 411.8 413.3 

Table 2-7: Super hyperfractionated year-long optimization results 

 

 
Equivalent 

Fractionation 
scheme 

Total 
duration 𝑳 

(days) 

𝑩𝑬𝑫𝑼,𝑽 
(Gy) 

Recurrence time (days) 

Constant Fixed time Variable time 

Weekly 1.7773 Gy × 53 364 150 407.6 413.6 452.0 

Bi-weekly 2.8493 Gy × 27 364 150 406.1 412.7 441.3 

Monthly 4.5716 Gy × 13 360 150 325.7 410.2 424.5 

Table 2-8: Super hyperfractionated year-long optimization with dose escalation 

 The result from escalating BEDnormal to 150 Gy is shown in Table 2-8. Maximum 

recurrence time was also observed for the weekly equivalent plan at 452 days, which 

provides a 201 days delay in recurrence compared with conventional delivery. The resultant 

plan from the weekly equivalent optimization with dose escalation is shown in Figure 2-9. In 

terms of time intervals, trends similar to the results without dose escalation was observed. 

However, oscillations between one and two Gy was shown for 𝐷𝑉 , unlike the stable one Gy 

dose fractions shown in Figure 2-6a. For the bi-weekly and monthly optimizations, dose 

escalation did not alter the general trend of the result.  



 

39 

 
Figure 2-6: Optimization result, total duration L = 364 days, number of fractions n = 53 (weekly 
equivalent). (a) 𝑫𝑼 (red circles) and 𝑫𝑽 (blue diamonds) (b) Time interval 𝑻 (c) Total tumor cells 
vs. time. Recurrence time with this plan was predicted to be 430.5 days.  
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Figure 2-7: Optimization result, total duration 𝑳 = 364 days, number of fractions 𝒏 = 27 (bi-weekly 
equivalent). (a) 𝑫𝑼 (red circles) and 𝑫𝑽 (blue diamonds) (b) time interval 𝑻 (c) Total tumor cells vs. 
time. Recurrence time with this plan was predicted to be 423.9 days.  
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Figure 2-8: Optimization result, total duration 𝑳 = 360 days, number of fractions 𝒏 = 13 (monthly 
equivalent). (a) 𝑫𝑼 (red circles) and 𝑫𝑽 (blue diamonds) (b) time interval 𝑻 (c) Total tumor cells vs. 
time. Recurrence time with this plan was predicted to be 413.3 days.  
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Figure 2-9:  Dose escalation (BEDnormal = 150 Gy) optimization result, total duration L = 364 days, 
number of fractions n = 53 (weekly equivalent). (a) 𝑫𝑼 (red circles) and 𝑫𝑽 (blue diamonds) (b) 
time interval 𝑻 (c) Total tumor cells vs. time. Recurrence time with this plan was predicted to be 
452 days.  
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2.2.4 Discussion 

 Without assuming different radiobiology than the well tested linear quadratic 

model, the previously proposed dual compartment ODE model43 was the first radiobiological 

model to our knowledge capable of reconciling  the perpetual radioresistance in patient and 

the apparent moderate radiosensitivity in vitro of human GBM, therefore providing us with 

a theoretical platform in exploring the potential in delaying GBM recurrence with differing 

dose fractionation schemes. We extend the model into an optimization formulation allowing 

for optimization of dosing temporal fractions.  

 Previously work focused on optimizing within the confinement of conventional once 

or twice per weekday treatment times, and significant improvements in outcome were 

shown24-26,113. However, the unique pattern of aggressive recurrence of GBM leads to 

considerably different dose fractionation strategies.  As shown in our study, optimization 

within the conventional time frame was ineffective in substantially delaying disease 

recurrence, which therefore inspired the idea of treating GBM with a prolonged super 

hyperfractionated approach. The protracted treatment duration, along with dose 

fractionation optimization, resulted in recurrence delay of up to 180 days. With dose 

escalation to BEDnormal of 150 Gy, which is substantially lower than the BEDnormal of combined 

external beam and brachytherapy therapy trial previously conducted100,104, the recurrence 

time point was further delayed to 452 days from the simulated postoperative time point. 

Although still not a cure, the predicted delay is not trivial in reference to one of the most 

effective chemotherapy for GBM by temozolomide114 that was shown to improve median 

survival by 3 months.  
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 Another interesting observation is that our results suggest super hyperfractionated 

treatment to be carried out in four cycles with varying strategies. The first treatment cycle 

consists of low and infrequent dose fractions, just enough to maintain the total tumor cell 

number below the recurrence level. The second cycle applies aggressive once per day 

treatments beginning with larger dose fractions that gradually decreases and stabilizes at a 

lower level. The compacted therapy quickly reduces the total number of tumor cells before 

moving into the third stage, without depleting the total allocated BEDnormal. The third cycle 

again uses fractions spaced farther apart, mainly to maintain the total number of cells. The 

final phase is characterized by another series of densely spaced treatment fractions to 

minimize the total cell numbers as much as possible before the end of radiation therapy.  

 The simulated annealing (SA) optimization algorithm generally applies only one 

variable change within each iteration111. The one variable approach required a constraint 

check after each iteration and resulted in early local minimum convergence due to the 

difficulty in finding additional answers that satisfy problem constraints.  The novel pair-wise 

opposite step size approach we have presented for this problem helped maintain the 

random-walk search within the time and dose domain that satisfies problem constraints, 

contributing to increased optimization efficiency and results far superior to that of one 

variable SA approach. This method can also be utilized on many other applications when the 

optimization constraints are not straightforward.  

 There are several limitations with the study. Although the model was able to 

successfully reproduce the aggressive regrowth of GBM after aggressive treatment, it does 

not take into consideration biological factors such as tumor vasculature, oxygen content, the 

effect of asymmetric divisions, and spatial heterogeneity. Modeling tumor 
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microenvironment may render the model more realistic but also increase the complexity of 

modeling and the uncertainty from estimating additional model parameters.  Modeling the 

intratumoral heterogeneity may improve our capability of predicting treatment response 

and optimize the treatment fractionation but this study still highly simplifies an actual 

tumor.  Rigorously designed preclinical and clinical studies are needed to test the 

mathematical model prediction.  

2.2.5 Conclusion 

 A temporal dose fractionation optimization in the context of cancer stem cell 

dynamics and heterogeneous radiosensitivity within GBM was introduced. The model 

demonstrated that substantial delay in GBM recurrence could be attained with a super 

hyperfractionated treatment approach. Further testing is needed to validate the efficacy of 

this novel treatment method. 
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3 4π RADIOTHERAPY 

3.1 Prospective clinical trial on recurrent brain glioma 
patients 

3.1.1 Introduction 

Current state-of-the-art medical digital linear accelerators are capable of delivering 

radiation therapy in complex dynamic trajectories that involves orchestrated movements of 

the gantry, couch, multileaf collimator (MLC), in conjunction with dose rate modulations. 

These new capabilities have motivated active research to explore the potential in further 

improving radiotherapy plan quality through optimization of beam orientations and 

dynamic trajectories, in which substantial dosimetric improvements have been shown115-120. 

The main dosimetric advantages arose from the maximal and optimal utilization of the non-

coplanar beam solution space that facilitates superior spatial dose distribution shaping.  

4π radiotherapy, a novel delivery technique that integrates static intensity modulated 

radiotherapy (IMRT) beam orientation and fluence map inverse optimization44, has also 

been shown capable of significantly improving critical organ sparing compared with 

volumetric modulated arc therapy (VMAT) or IMRT with manually selected beam 

orientations in dosimetric studies for the brain46, head and neck47, lung49, liver48, and 

prostate50,121.   
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The dosimetric benefit and potential increase in delivery efficiency of the 

aforementioned methods were demonstrated through retrospective dosimetric evaluations 

with in-house treatment planning software and automated technique implementations in 

Varian Developer Mode, but have not yet been translated into standard clinical workflow. 

Particularly for the complex techniques that involve dynamic couch motion during beam-on, 

clinical utilization is limited by pending commercial release and FDA approval. Clinical 

implementation for 4π radiotherapy, while potentially challenging due to its highly non-

coplanar nature that requires extensive coordination of couch and gantry movements, is not 

limited by the need for further approval due to the fact that dynamic couch movements are 

not required during beam-on.  

In this study, we demonstrate the first clinical implementation of 4π radiotherapy 

through a prospective clinical trial testing its feasibility, safety, dosimetric benefits, 

intrafractional motion, and delivery efficiency on patients with recurrent glioma, a disease 

that requires demanding dosimetric constraints due to primarily local recurrences. 

 

 

3.1.2 Methods 

3.1.2.1 Recruitment criteria and patient characteristics 

The recruitment inclusion criteria include a histologic diagnosis of primary and 

recurrent glioma, Karnofsky performance status (KPS) greater than 70, and age of more than 

18 years old. Eleven patients consented to participate in the clinical trial from December 
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2014 to January 2017 at University of California, Los Angeles. Patient and treatment 

characteristics of both the prior radiotherapy for the primary disease and the delivered plan 

during trial participation is shown in Table 3-1. 

Pt 
# 

Histology Age Sex 
Prior Dose 

(Gy) 
PTV Vol 

(cm3) 
Dosing 
Scheme 

Total Dose 
(Gy) 

Machine 
# 

Fields 
# Couch 

Kicks 

1 GBM 54 F 59.4 13.99 5 Gy x 5 25 TrueBeam 18 12 

2 GBM 64 F 60 110.14 3 Gy x 10 30 TrueBeam 19 14 

3 GBM 60 F 60 0.95 5 Gy x 5 25 Novalis Tx 15 11 

4 GBM 54 M 60 1.84 5 Gy x 5 25 Novalis Tx 13 11 

5 GBM 52 M 59.4 124.51 3 Gy x 10 30 TrueBeam 20 15 

6 GBM 48 M 60 18.17 6 Gy x 5 30 TrueBeam 15 9 

7 GBM 39 M 46 47.15 3 Gy x 10 30 TrueBeam 16 10 

8 EPD 80 F 54 2.57 5 Gy x 5 25 TrueBeam 17 10 

9 GBM 59 M 60 3.86 5 Gy x 5 25 Novalis Tx 15 11 

 Recruited but not treated with 4π Reason 

10 GBM 56 M 59.4 10.94 3 Gy x 10 30 
Both plans did not meet dose  

constraints 

11 GBM 66 M 40 + 20 SIB 141.09 3 Gy x 10 30 Comparable VMAT plan 

Table 3-1: Patient and treatment plan characteristics. SIB = simultaneous integrated boost. EPD = 
Ependymoma. 

3.1.2.2 4π radiotherapy plan generation 

An in-house 4π radiotherapy treatment planning optimization platform, as 

mentioned and implemented in previous publications44,46,47,50 , was utilized to select an 

optimal set of twenty beam angles for each plan.  The starting candidate beam pool contains 

1162 beams evenly distributed throughout the entire 4π solid angle with 6° separation 

between adjacent beams. The beam angles that are collision-free with an isocentric set up 

(source to target distance of 100 cm) was determined through exhaustive search on a 

verified computer-aided design model of the Varian TrueBeam linear accelerator with a 

volunteer on the couch62.  To perform inverse optimization of all candidate beams, dose 

contribution matrices with resolution of 2.5 x 2.5 x 2.5 mm3 corresponding to 5 × 5 mm2 

beamlets were precomputed using convolution/superposition of 6MV poly-energetic X-ray 
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kernels. The intensity modulating beamlets were defined as all beamlets covering the PTV 

within the beam eye view of each candidate beam angle. A greedy column generation 

algorithm was utilized to iteratively select beam orientations and perform fluence 

optimization with all selected beam orientations until the desired number of beam angles is 

reached45.  

To generate a clinically deliverable and FDA approved plan, the 20 beam orientations 

selected by 4π were imported into Eclipse (Varian Medical Systems, Palo Alto, CA, USA) for 

intensity modulated radiation therapy (IMRT) planning. For increased delivery efficiency, 

couch kicks within 6° were merged and neighboring beam orientations with gantry and 

couch angles both within 20° were manually averaged and combined during planning if the 

plan quality can be maintained after the reduction in delivery fields. The resultant number 

of fields and couch kicks for each patient are shown in Table 3-1. The final beam orientations 

were sorted in order of couch angle to minimize couch movements during delivery.  VMAT 

plans with 3-4 full and partial coplanar or non-coplanar arcs were also generated for each 

cases for comparison, and the plan achieving superior tradeoff between dosimetric quality 

and delivery efficiency was selected for treatment.  

3.1.2.3 Pre-treatment quality assurance 

Dosimetric quality assurance measurements were made on OCTAVIUS® 729 (PTW, 

Freiburg, Germany) for cases with PTV diameter larger than 3 cm. Field-by-field 

measurements were performed at the corresponding gantry angles with the couch angle 

maintained at the central position for all beam angles. Resultant distributions were analyzed 

in VeriSoft. For cases with PTV smaller than 3 cm, the relative dose distribution and absolute 



 

50 

point dose was verified on GafChromic film EBT3 (Ashland Advanced Materials, 

Bridgewater, NJ, USA) and PTW Pinpoint 3D TN31016 ion chamber with active volume of 

0.016 cm3 (PTW, Freiburg, Germany). Film results were analyzed with FilmQA Pro software 

(Ashland Advanced Materials, Bridgewater, NJ, USA).  γ index of 3% dose difference / 3 mm 

distance to agreement and a 95% passing rate was used as the passing criteria for all 

dosimetric analyses122.  

 In addition to performing patient-specific dosimetric QA, a dry run with patient-

specific radiosurgical mask and couch translational positions aligned to treatment position 

was performed prior to the first treatment of each case. A generalized beam map containing 

the non-colliding beam solution space, as shown in Figure 3-1(a), was utilized to guide safe 

beam navigation for each case. The navigation route and intrafractional imaging time points 

were pre-planned and instructed to the therapist to further ensure safety.    
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Figure 3-1: (a) Beam solution space with deliverable with isocentric setup with more than 5 cm 
clearance (blue hollow circles). Angles requiring extended source to target distance (STD) to avoid 
collision (black filled squares). Infeasible beams regardless of STD extensions (red crosses). (b) 
Example of Selected 4π beam orientations (c) Schematic of treatment delivery workflow. (d) 
Intrafractional kV imaging results acquired with the TrueBeam on-board imager. 

 



 

52 

3.1.2.4 Treatment delivery and patient survey 

All patients were immobilized with radiosurgical masks during treatment. CBCT was 

utilized for initial set up, and intrafractional motion was evaluated by acquiring 3-4 

orthogonal kV image pairs with ExacTrac (Brainlab, Munich, Germany) or the Varian 

TrueBeam on-board imager during each fraction. The typical treatment delivery workflow 

is demonstrated in Figure 3-1(c).   

Treatments were delivered with the Varian TrueBeam linear accelerator or the 

Novalis Tx radiosurgery system.  For treatments performed with the TrueBeam, remote 

couch rotation was utilized for increased efficiency.  

Patient comfort questionnaires were collected at the end of each daily treatment with 

scoring of 1 – 10 for treatment tolerability, dizziness, nausea, and pain to assess and record 

the comfort level and potential unforeseen issues associated with 4π delivery. 

3.1.3 Results 

Nine out of the eleven recruited patients were treated with 4π radiotherapy. One 

patient was not treated because neither VMAT nor 4π met the dosimetric criteria for safe 

treatment due to the high dose already delivered to the brainstem in the prior irradiation. 

The other patient was treated with VMAT instead of 4π due to undemanding dosimetry that 

resulted in a comparable VMAT plan with higher delivery efficiency. An example of selected 

4π beam orientations is shown in Figure 3-1(b).  

 Substantial OAR sparing was demonstrated with 4π compared with VMAT, as 

demonstrated in Table 3-2(a). Statistically significant improvements were found for the 
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mean and maximum dose to the brainstem, chiasm, right eye, lens, and left optic nerve. 

Particularly remarkable average brainstem mean dose reduction of 32.9% enabled 

treatments that would otherwise not satisfy safe dose constraints with VMAT, as 

demonstrated in example dose wash in Figure 3-2(a) below, where the dose spillage in the 

brainstem direction was markedly reduced by 4π. An example dose volume histogram (DVH) 

is shown in Figure 3-2(b) in which global OAR dose reduction is apparent, particularly for 

the brainstem and chiasm. The spread of mean and maximum dose of the generated 4π plans 

compared with VMAT relative to plan prescription dose is shown in Figure 3-3(a) and Figure 

3-3(b). No statistical significant differences were found for R50 and PTV homogeneity index 

(D5/D95) between the 4π and VMAT plans. OAR dosimetry of the cumulative dose 

distribution between the previous dose delivered to the primary GBM, with prescription 

doses shown in Table 1 (labeled as “Prior Dose”), and the 4π or VMAT plan generated during 

the clinical trial, is also demonstrated in Table 3-2(b).  

Table 3-2: Average OAR dose statistics comparison (n = 11). *p<0.05 from Wilcoxon signed-rank 
test (a) Comparison of 4π and VMAT plans generated during the clinical trial (b) Comparison of 
cumulative dose of previous plan (PreRT) and trial plans. 

(a) Average OAR Dose Statistics (Gy) 
  

Brainstem Chiasm 
Cochlea Eye Lens Optic Nerve 

  L R L R L R L R 

4π 
Mean 3.30* 2.59* 2.33 1.45 0.94* 0.58* 0.64* 0.39* 2.03* 1.70 

Max 9.52* 5.00* 3.47 1.92 1.96 1.35* 0.87* 0.51* 2.96* 2.61 

VMAT 
Mean 4.37 4.69 3.05 2.04 1.62 1.52 1.30 1.30 3.10 2.19 

Max 13.01 7.04 3.81 2.79 2.59 2.42 1.59 1.61 4.30 3.02 

 

(b) Average OAR Dose Statistics of Cumulative Plan (Gy) 

  
Brainstem Chiasm 

Cochlea Eye Lens Optic Nerve 

  L R L R L R L R 

4π + PreRT 
Mean 35.87* 31.88* 30.53 21.19 6.46* 8.78* 4.05* 5.48* 17.58* 19.70 

Max 61.44* 41.90 35.77 28.40 12.53 15.99* 5.10* 7.20* 26.58* 29.08 

VMAT + PreRT 
Mean 36.93 34.00 31.24 21.73 7.13 9.72 4.71 6.40 18.64 20.18 

Max 64.20 43.71 36.16 29.13 13.13 17.03 5.75 8.24 27.75 29.49 
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Figure 3-2: (a) 50% prescription isodose distribution. Distance from PTV to isodose edge in the 
brainstem direction: 0.29 cm (4π), 1.67 cm (VMAT) (b) DVH illustrating the sparing power of 4π. 
Global OAR sparing, particularly for the brainstem and chiasm, in addition to lower PTV maximum 
dose and increased homogeneity, can be visually observed.  

 

 All treatments were well tolerated with no incidents. The treatment time was 26 – 

50 minutes. The fastest treatments were achieved for cases delivered on the TrueBeam with 

remote couch kick and ExacTrac intrafractional imaging. Factors that decreased delivery 

efficiency include the need to rotate the couch back to central position for on-board imaging 

or treatments of which remote couch kick capabilities were not available. kV imaging have 

shown that intrafractional motion was maintained under 1 mm for all except one acquired 

kV image pair, in which intrafractional couch shifts were not required. For the maximum 
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observed shift of 1.5 mm, an intrafractional couch shift was performed to correct for the 

measured displacement. The intrafractional imaging result from one case is shown in Figure 

3-1(d).  

 
Figure 3-3: 4π vs. VMAT dosimetric comparison, dose relative to prescription dose of each plan. (a) 
Maximum dose, 4π (blue), VMAT (red). (b) Mean dose. 4π (green), VMAT (mustard) 

Patient survey outcome with the average score from 1-10 of four categories, including 

treatment duration tolerability, nausea, dizziness, and pain, is summarized in Table 3-3. The 

average treatment tolerability score was high and the nausea, dizziness, and pain scores 

were low. Six out of nine patients gave full score to treatment tolerability throughout the 
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entire treatment course. Out of the three patients that did not perceive treatment duration 

to be completely tolerable, two patients reported pain and discomfort from the radiosurgical 

mask being too tight, with pain scores decreasing over the treatment course.  One patient 

reported headache and dizziness throughout the treatment course that appeared to be 

disease symptom related rather than treatment delivery related.  

Treatment Duration Tolerability Nausea Dizziness Pain 

8.625 0 0.66 1.07 

Table 3-3: Summary of patient questionnaire. 

3.1.4 Discussion 

With advancements in linear accelerator technology and recent breakthroughs in 

robust optimization methods, the exploitation of radiotherapy dosimetric benefits from the 

noncoplanar beam solution space through optimization of static beam orientations or 

dynamic beam trajectories have been an active field of research, in which significant normal 

tissue sparing was demonstrated44,115-117,119,120,123. However, clinical translations of many of 

these complex trajectories, particular ones with couch movements during beam-on, remain 

difficult due to pending FDA approval and commercial release. The nature of 4π 

radiotherapy, in which static IMRT beams are utilized, allowed for clinical implementation 

through approved treatment planning and delivery systems and its utilization is not TPS or 

Linac-specific.   

Through this study, the clinical utility and substantial dosimetric benefit of 4π was 

demonstrated and validated. The global inverse optimization approach that mathematically 

incorporates the entire non-colliding non-coplanar beam solution space and fluence map 

optimization resulted in dosimetry that is consistently superior to that of state-of-the-art 
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VMAT plans.  The improvement in dosimetry allowed for the re-irradiation of patients who, 

having previously received high irradiation to the brainstem, experienced in-field 

recurrences that could not be treated with conventional planning methods which are unable 

to meet critical organ dose constraints. Patient motion induced by the relatively more 

extensive couch motions was also shown to be negligible through intrafractional imaging.  

Based on the collected patient surveys, the treatments were also well tolerated. Motivated 

by these validated advantages, 3 challenging spine SBRT cases had also been treated with 4π 

at UCLA, and we continue to implement the method on cases that demand superior 

dosimetry.   

The major drawback of the technique is the prolonged treatment time. However, with 

the aid of pre-established couch and gantry motion sequencing from the CAD-model 

generated beam solution space map and dry run, treatment delivery efficiency was greatly 

increased with safe remote couch movements. In addition, we have also tested the feasibility 

and efficiency of fully automated delivery through executing XML scripts in the Varian 

TrueBeam Developer Mode. The automated delivery times of the 20 beam 4π treatments to 

the brain, lung and prostate were 10, 12, and 15 minutes62. These tested deliveries included 

additional shifts required from non-isocentric beam orientations, which were proven not 

necessary in this trial. Therefore, the required time could be reduced even further if all beam 

angles were isocentric and additional couch or beam orientation merges were made.  

The feasibility of delivering 4π on commonly available Linacs with C-arm gantry 

provides potential in more widespread adoption of this method, especially for dosimetrically 

challenging cases that are unachievable with conventional planning methods. As a short-

term goal, we aim to further assess the selected beam angles at different treatment sites as 
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our database continues to grow and generate robust treatment-site-specific beam angle 

templates through machine learning methods. These beam angle templates could be shared 

across institutions to further increase the utilization of 4π. 

3.1.5 Conclusion 

  The feasibility, safety, and dosimetric benefits of 4π radiotherapy have been 

clinically demonstrated with a prospective clinical trial. Treatments were well tolerated 

despite prolonged treatment time, which can be substantially reduced with automation. 

These results pave the way for 4π implementation in many more clinically challenging cases.  

3.2 The development and verification of a highly 
accurate collision prediction model for automated non-
coplanar plan delivery62 

3.2.1 Introduction 

 Radiation therapy dosimetry can benefit from expanding the beam orientation 

solution space to include non-coplanar beams. The improvement is particularly facilitated 

by recent breakthroughs in robust optimization algorithms capable of automatically solving 

the complex non-coplanar beam orientation/trajectory, and fluence optimization problem, 

such as static intensity modulated radiation therapy (IMRT)-based approaches including 4π 

radiotherapy44, iCycle115, and rotational trajectory-based volumetric modulated arc therapy 

(VMAT) methods including TMAT116,124, Tra-VMAT117, and DCR-VMAT120.  Significant 

dosimetric advantages including improved dose conformality and normal organ sparing 

have been demonstrated for treatments to the brain46,117, head and neck47,125, liver44, lung49, 
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breast116, and prostate50,126 employing a large number of non-coplanar static beams or arcs, 

in comparison to current state-of the-art coplanar VMAT and IMRT techniques employing 

manually selected beams.  

 Clinical adoption of the plans using increasing number of optimally selected non-

coplanar beams and arcs requires the development of corresponding quality assurance 

protocols.  Compared to existing plans that employ dominantly coplanar beams, non-

coplanar beam plans increase the possibility of collision between the gantry, couch, and 

patient. Furthermore, to expand the solution space to include non-coplanar beams, non-

isocentric treatments with source-to-target distances (STD) beyond 100 cm that require 

additional couch translations between beams may be needed. A quantitative and automated 

process needs to be developed to predict and prevent collisions, and to be able to determine 

the necessary STD for each beam. 

 Collision prediction models have been previously developed for the purpose of 

evaluating collision zones for isocentric treatments and avoiding unforeseen collisions that 

result in re-planning and treatment delays. Humm described a computerized collision 

prediction method127, where a simplified 3D surface model of the machine was used and 

combined with experimental measurements of potential collision points. The patient was 

modeled as an elliptical cylinder fixed to the couch. The method was later adopted and 

modified to improve visualization128-131, incorporate patient specific external contours from 

the CT132 and develop an analytical collision model that is computationally inexpensive133. 

Hamza-Lup et al. digitized the surface of individual moveable components on external beam 

therapy machines using 3D scanners and generated an augmented reality environment for 

virtual collision detection134. While these methods provided an approximation for collision 
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prediction, they were either not individualized to each patient, or have not been end-to-end 

tested for the purpose of non-coplanar radiotherapy. Studies in which patient specific 

external contours from CT images were utilized, the patient contour not only does not 

include the entire body, but also could not be extensively verified via measurements due to 

the impracticality of placing any patient on the couch for an extended period of time. 

 In this current study, we report a method to generate an individualized collision 

model, test its accuracy via extensive measurements with a phantom and then predict safety 

buffer distances based on measurements for various treatment sites. 

3.2.2 Methods 

3.2.2.1 Model construction  

 A highly detailed 3D computer-aided design (CAD) model of a digital linac (Varian 

TrueBeam, Varian Medical Systems) provided by the manufacturer was employed.  To 

reduce the file size and improve processing time, components such as nuts and bolts that 

would not be involved in collisions were removed from the CAD model using engineering 

software Autodesk Inventor (Autodesk, San Rafael, CA). The CAD model allowed the gantry 

and couch to be moved according to the International Electrotechnique Commission (IEC) 

convention. 

 A hand held 3D scanner (Artec MH, Palo Alto, CA) was used to capture the surface 

geometry of a clothed foam anthropomorphic phantom (Zing Display, Rancho Santa 

Margarita, CA) in standing position. The phantom was selected for three reasons. First, the 

phantom material was pliant, yielding under pressure and lessening the risk of damaging the 

machine in case of an inadvertent collision. Second, the phantom could be placed in different 



 

61 

poses to facilitate testing of the collision space with various set up positions. Lastly, the full 

body phantom was relatively light for easy maneuvering.  

3.2.2.2 3D scanner specifications and accuracy verification 

 The 3D scanner projected a patterned pulsed LED laser light for distance 

measurement. The working distance of the scanner was 0.4 m -1.0 m with 214 × 148 mm2 

field of view at the closest distance and 536 × 371 mm2 at the furthest distance. The frame 

rate was 15f/s.  To scan a larger or complete 3D object in the hand held mode, the camera 

software fused image patches from multiple views after registration. Because of the high 

frame rate, there was a large overlap between adjacent patches to facilitate the registration.  

The 3D scanning resolution was 0.5 mm according to the manufacturer. 

 The accuracy of the 3D camera was tested by performing a 3D scan on a rigid high 

precision phantom (MIMI, Standard Imaging, Middleton, WI), as shown in Figure 3-4a. The 

phantom dimension was 14 × 14 × 14 cm3. The size of the scanned phantom was measured 

using the 3D scanning software Artec Studio (Artec Group, Palo Alto, CA).  

 
Figure 3-4: 3D scanner verification with the MIMI phantom. (a) MIMI phantom (b) resultant 3D 
scan (c) resultant 3D scan with 6 measurements in millimeters. 



 

62 

 The anthropomorphic phantom surface model was then placed onto the couch 

within the CAD model to explore the linac non-coplanar collision space. The same method 

was used to incorporate a human subject surface in the CAD model50. The complete CAD 

model of the TrueBeam system with the phantom on the couch within is shown in Figure 

3-5a. 
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Figure 3-5: Minimum distance measurement demonstration in CAD (a) full CAD model within 
Autodesk Inventor with phantom on couch (b) example 5 cm closest distance measurement for 
treatment to the head. (c) 5 cm closest distance measurement to lung (d) closest distance 
measurement to prostate.  
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3.2.2.3 Verification between model and physical system with phantom 
measurements 

 To explore and verify specifically the non-coplanar beam candidate pool for 

treatments to the head, lung, and prostate, representative targets of interest of all three sites 

were added to the phantom surface model. For each treatment site of interest, 100 couch and 

gantry angle combinations were uniformly sampled from the candidate pool of 1162 beams 

with 6 degrees of separation between 2 nearest neighbor beam pairs throughout the entire 

4π steradian. For each beam angle, the couch position was translated along the beam axis 

until the closest distance from the gantry to the couch or patient was 5 cm within the CAD 

model, using Equation 3-1,  

{ 
𝐿𝑎𝑡 =  ∆𝑟 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜙 + 𝐿𝑎𝑡0 
𝐿𝑛𝑔 =  ∆𝑟 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙 + 𝐿𝑛𝑔0 
𝑉𝑟𝑡 =  ∆𝑟 𝑐𝑜𝑠𝜃 + 𝑉𝑟𝑡0, 

Equation 3-1 

where ∆r indicated the displacement of target from the isocenter, θ and ϕ indicated the 

gantry and couch angles, respectively. The gantry and couch angles followed the IEC 

convention, as demonstrated in Figure 3-6. Lat0, Lng0, and Vrt0 were the couch lateral, 

longitudinal, and vertical axes positions at which the treatment site of interest was aligned 

to the machine isocenter. Demonstrations of the closest distance measurements between 

gantry to patient or couch for treatments to the head, lung, and prostate are shown in Figure 

3-5b, Figure 3-5c, and Figure 3-5d, respectively. The phantom was positioned on the linac 

couch based on the CAD model (equivalent to a treatment plan) and all 300 gantry and couch 

positions (100 positions from each treatment site) were transferred to the linac for 

measurement. The measurement setup is shown in Figure 3-7.  Since the phantom 3D surface 

model was obtained in standing position, there was a gap between the posterior phantom 
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head and feet surfaces and the couch top. To stabilize the phantom, cushions were placed 

under the phantom head and feet during measurement. An inside caliper (iGaging, San 

Clemente, CA) was used to measure the closest distances on the machine setup. The distance 

discrepancy data points between the CAD and machine measurements were separated into 

six groups based on the treatment site and measurement location (couch or phantom). The 

Shapiro-Wilk normality test with an α level of 0.05 was performed on each dataset. For the 

groups that did not satisfy the normality hypothesis, a double Gaussian fit was performed to 

find a distribution that best represented the discrepancy data points. The curve fit 

performance was verified with the Kolmogorov-Smirnov test at an α level of 0.05. The 

determined distributions were used to estimate safety margins with 0.1%, 0.01%, and 

0.001% probability of collision for all six groups based on the treatment site and whether 

the measurement was gantry-to-couch or gantry-to-patient. The collision probability 

selected above roughly represents 1 collision per day, 10 days, and 100 days, assuming 30 

treatments per day and ~30 beams per treatment. 
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Figure 3-6: IEC convention and couch translations 

 
Figure 3-7: Machine measurement setup.  
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3.2.2.4 Automated 4π delivery  

 To examine the feasibility and speed of automated treatment delivery, 4π optimized 

beam angles and the corresponding Eclipse optimized MLC sequences of 20 beam brain, 

lung, and prostate plans were converted into XML script for automatic delivery in the Varian 

TrueBeam developer mode. The number of beams requiring extended STD to avoid collision 

within the generated XML delivery brain, lung, and prostate plans were 3, 3, and 6, 

respectively. The beam angles were sorted in order of couch rotation angle to minimize total 

couch motion. A GoPro camera was attached at the phantom eye level during the 

programmed delivery to examine the patient eye view of automated delivery. The whole 

automated delivery was recorded and timed.  

3.2.2.5 Exploration of collision-free beam angle solution space with human subject 
model 

 With the developed model, exhaustive search was performed to examine the 

available beam angle solution space for treatments to the head, lung, abdomen, and prostate. 

The exhaustive search was performed with a 3D scan of a healthy volunteer placed on the 

modeled couch. The model was made into an interactive X3D format where the couch and 

gantry could be moved according to machine specific locations via MATLAB scripts. The 

collision status and the particular combination of elements (couch top, couch pedestal, 

gantry, or imagers) resulting in collision can also be obtained from the model for any linac 

orientation. For each treatment site, couch shifts were performed within the model to align 

the desired treatment target location to the isocenter. For each beam angle within the 4π 

candidate pool of 1162 beam angles, the minimum STD that was deliverable without 

collision was automatically calculated by incrementally moving the couch translational axes 
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positions from isocentric setup position via MATLAB control to extend or shorten the STD 

based on the collision status of each step until the minimum collision-free STD was found.  

Using the minimum distance information, the beam angles were sorted into six categories: 

deliverable with conventional isocentric setup (source-to-target distance (STD) = 100 cm), 

deliverable only with extended STD between 100 and 110 cm (100 < STD ≤ 110), 110 and 

120 cm (110 < STD ≤ 120), 120 and 130 cm (120 < STD ≤ 130), more than 130 cm (STD > 

130 cm), and undeliverable. The undeliverable beams resulted in either gantry-to-couch or 

gantry-to-patient collision, or required one or more couch translational axes to exceed the 

allowed mechanical range.   

3.2.3 Results 

3.2.3.1 3D scanner accuracy verification 

 The resultant scan and measurements are shown in Figure 3-4b and Figure 3-4c. 

The average of 6 measurements was 138.88 ± 0.52 mm or 0.8% relative error.   

3.2.3.2 Verification between model and physical system with phantom 
measurements 

 The mean and maximum absolute values of measurement discrepancies and the 

summary statistics of all discrepancies as either single or double Gaussian distributions for 

all groups are shown in Table 3-4. For the double Gaussian distributions, the mixture weight 

of the first listed distribution (μ1, σ1) is represented in the column labeled w1. The 

discrepancy histograms of all gantry-to-couch and gantry-to-phantom measurements are 

shown in Figure 3-8 and Figure 3-9, respectively. The discrepancy values between the gantry 

and couch were all less than 1 cm. The discrepancies between the measurement and the CAD 
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model for gantry-to-phantom distances were greater with a maximum deviation 

measurement of 2.97 cm, which resulted from a phantom to gantry distance for prostate 

treatment.  

 Estimates of treatment-site-specific and overall safety buffer distances with 0.01%, 

0.001% and 0.0001% probability of collision between the gantry to couch or phantom based 

on the fitted Gaussian distributions are also shown in Table 3-5. The maximum discrepancy 

and safety margin estimates were largest for treatments to the prostate for both gantry-to-

couch and gantry-to-phantom measurements. The larger discrepancy values of the prostate 

measurements resulted from the larger number of closest distance measurements from the 

gantry to the phantom extremities such as the legs and hands, whose positions cannot be 

exactly reproduced. The non-normality of the gantry-to-phantom distributions were most 

likely resulted from the differing setup deviation for different parts of the phantom, as the 

setup reproducibility for the phantom torso and head were better than its extremities. It is 

apparent from Figure 3-8 that the distribution of gantry-to-couch prostate measurements is 

non-normal due to outliers. The three outliers resulted from measurements close to the 

couch corners, which we concluded was due to measurement errors in determining the exact 

set of two points that resulted in the closest distance between two curved surfaces for each 

measurement.   
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Couch to Gantry 
  |Machine -CAD| Machine - CAD 
 # of meas. Mean Max normality w1 μ1 σ1 μ2 σ2 

Head 62 0.24 0.72 Yes  -0.004 0.29   

Lung 61 0.17 0.61 No 0.66 -0.11 0.05 -0.12 0.001 

Prostate 62 0.15 0.95 No 0.86 -0.08 0.01 -0.19 0.27 

All 185 0.18 0.95 No 0.59 -0.11 0.01 -0.02 0.12 

Phantom to Gantry 
  |Machine -CAD| Machine - CAD 
 # of meas. Mean Max Normality w1 μ1 σ1 μ2 σ2 

Head 38 0.88 2.95 Yes  0.68 0.94   

Lung 39 0.80 2.19 Yes  0.23 0.99   

Prostate 38 1.45 2.97 No 0.86 1.48 0.65 -0.32 2.09 

All 115 1.04 2.97 Yes  0.71 1.10   

Table 3-4: Gantry to couch and gantry to phantom measurement statistics. 

Couch to Gantry Phantom to Gantry 

Safety Buffer  Distances (cm) Safety Buffer Distances (cm) 

Collision Prob. 0.1% 0.01% 0.001% Collision  Prob. 0.1% 0.01% 0.001% 

Head 0.89 1.07 1.23 Head 2.24 2.83 3.35 

Lung 0.75 0.89 1.01 Lung 2.83 3.45 3.99 

Prostate 1.48 1.87 2.19 Prostate 3.87 4.93 5.73 

All 0.98 1.21 1.41 All 2.68 3.37 3.97 

Table 3-5: Treatment-site-specific safety buffer distance estimations with different collision 
probabilities.  
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Figure 3-8: Distance discrepancy histograms for gantry to couch measurements.  

 
Figure 3-9: Distance discrepancy histrograms for gantry to phantom measurements.  
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3.2.3.3 Automated 4π delivery  

 The automated delivery times of the 20 beam 4π treatments to the brain, lung, and 

prostate were 10, 12 and 15 minutes. The number of MLC segments generated by Eclipse for 

the delivered brain, lung, and prostate cases were 582, 205, and 265. The patient point-of-

view video along with a synchronized room-view video for the brain case, and the room-view 

videos for the lung and prostate cases are represented in Figure 3-10, Figure 3-11 and Figure 

3-12. The XML files of all three deliveries are available as supplementary material to this 

paper. All videos were sped up 8 times.   

 
Figure 3-10: Automated brain treatment with room-view and patient-eye view (Multimedia View 
URL: http://dx.doi.org/10.1118/1.4932631.1)  
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Figure 3-11: Automated lung treatment with room view (Multimedia View URL: 
http://dx.doi.org/10.1118/1.4932631.2).  

 
Figure 3-12: Automated prostate treatment with room view (Multimedia View URL: 
http://dx.doi.org/10.1118/1.4932631.3).  

 

3.2.3.4 Exploration of collision-free beam angle solution space with human subject 
model 

 The distribution of beam angles in the standard STD, extended STD, and 

undeliverable categories for each treatment site based on a healthy volunteer are shown in 

Table 3-6. The scanning time was approximately 15 minutes while the subject was in the 

standing position. The model of the healthy volunteer on the couch is shown in Figure 3-13. 

As expected, treatment to the head allowed for a larger number of total angles and standard 

STD angles compared with the lung, abdomen, and prostate cases. The total number of 

deliverable beams reduced from 963 for treatment to the head to 842 for treatment to the 

prostate. In addition, only 55% of the beams that were deliverable in the standard STD setup 
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for the head remained deliverable in the standard STD setup for the prostate treatment. The 

extended and standard STD beam solution space surfaces for treatment of the head, lung, 

abdomen, and prostate are demonstrated in Figure 3-14a-d, respectively. While these images 

show an intuitive rendering of the collision space, it is helpful to express them in Linac 

coordinates to guide beam orientation selection and navigation. The gantry vs. couch angles 

of treatments to the head, lung, abdomen, and prostate are shown in Figure 3-15a-d with the 

standard STD beams shown as blue hollow circles, extended STD beams shown in black, 

where 100 < STD ≤ 110, 110 < STD ≤ 120, 120 < STD ≤ 130, and STD > 130 categories are 

specified as squares, triangles, diamonds, and plus signs, respectively, and undeliverable 

beams shown as red crosses.  

 

All Available 
Beams 

Deliverable with standard 
STD 

Deliverable with extended 
STD 

Head 963 786 177 

Lung 955 452 503 

Abdomen 943 471 472 

Prostate 842 435 407 

Table 3-6: Beam angle distribution in standard STD, extended STD, and undeliverable categories 
for treatments to the head, lung, abdomen, and prostate 

 

 
Figure 3-13: Exhaustive search model with healthy volunteer model on couch 
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Figure 3-14: Treatment-site-specific beam solution space for standard and extended STD setups. 
(a) head (b) left lung (c) abdomen (d) prostate 

 

Standard STD

Extended STD

Target

(a) (b)

(c) (d)
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Figure 3-15: Gantry vs. couch angle plots for treatment to the head, lung, abdomen and prostate. 
The infeasible, standard STD beams are represented as red crosses and blue hollow circles, 
respectively. Extended STD beams are shown in black, separated into four categories:  100 < STD ≤ 
110, 110 < STD ≤ 120, 120 < STD ≤ 130 and STD > 130, represented as squares, triangles, diamonds, 
and plus signs.  
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3.2.4 Discussion 

 With the emergence of digital linacs, innovative and effective algorithms to 

automate the beam orientation/trajectory and fluence map optimization, there has been a 

renewed interest in non-coplanar radiotherapy. For example, for centrally located and larger 

lung tumors, late radiation toxicity still remains a major limitation in delivering effective 

tumor control dose135. For recurrent head and neck patients, delivering high dose to the 

tumor while sparing previously treated organs-at-risk is also still extremely challenging136. 

With 4π radiotherapy, we have demonstrated for both these clinical scenarios the potential 

for dose escalation and significant improvements in critical organ sparing, tumor control, 

and PTV coverage47,49. Using optimized non-coplanar trajectories in VMAT, Wild et al. 

showed that the critical organ mean and max doses can be reduced by 19% for 

nasopharyngeal patients, compared to coplanar VMAT plans125. Fahimian et al., Liang et al., 

and Popescu et al. also demonstrated significant V50% volume reduction of up to 49% for 

accelerated partial breast irradiation (APBI) with optimized couch and gantry dynamic arc 

rotation trajectories116,124,137. The significant dosimetry improvement observed in 

aforementioned studies should motivate clinical adoption of non-coplanar IMRT and 

trajectory-based VMAT for wider applications. For example, a prospective clinical trial is 

undergoing at UCLA to test the safety, efficiency, and patient tolerance for plans using 

inverse-optimized non-coplanar IMRT beams.  

 A major difference between highly non-coplanar treatments and conventional 

coplanar treatments is the need for substantial couch motion. Quality assurance procedures 

have been previously developed to evaluate the dosimetric and geometric fidelity of 

treatment techniques involving couch motion138. The positional accuracy, velocity 
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constancy, and accuracy for dynamic couch motion were evaluated by performing a series of 

tests within Varian developer mode. The tests demonstrated the programmed couch 

translation accuracy to be within 0.01 cm, with rotation accuracy of 0.3˚. The test provided 

the realistic performance accuracy boundary of an aspect of the digital linac for extensive 

couch movements.  However, the geometric modeling and QA needs for collision avoidance 

for such treatments had not been addressed.  

 To overcome these challenges, we introduced a patient specific collision prediction 

model. The model was based on a vendor provided machine CAD geometry and patient 3D 

surface created using 3D scanning technology. The accuracy of the model was measured on 

the Linac.  

 Based on our measurement, the CAD model of the gantry and couch was accurate 

within 1 cm including the uncertainties that arose from measuring the minimal distance 

between two blunt objects. Other sources of error included the slight deformation of the 

fiberglass gantry cover due to gravity and the magnification effect of couch rotational 

uncertainties at a distance from the rotational axis. A 0.3˚ couch rotational error would 

introduce a 5.2 mm translational error at 1 meter away from the rotational axis. In practice, 

some of the newer clinical systems such as the TrueBeam used in this study already contain 

robust built-in motion interlocks to prevent collisions between the gantry and couch based 

on CAD models. However, modifications to the machine surface, including accessories on the 

gantry and the addition of third party 6 DOF couch top would require new CAD models to 

predict the collision-free space.  
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 The slightly larger uncertainties in determining the gantry-to-phantom distances 

were caused by the following reasons. First, there was an intrinsic limitation in the hand-

held 3D scanning accuracy. Based on the relative measurement error of the scanner, for a 1.8 

m tall phantom, the measurement error would be 1.5 cm for extreme points. The uncertainty 

could be reduced by using room mounted 3D cameras that would be more stable, along with 

further camera calibration. Second, the flexible phantom extremities were not immobilized, 

which is typical in patient treatment. However, the use of a whole body immobilization 

device may help reduce the uncertainty compared with the phantom used in this study.  

Despite our best effort in setting up the phantom according to the CAD model, there were 

residual errors. This uncertainty particularly contributed to the prostate site where the 

flexible phantom extremities were frequently in the close proximity to the gantry. Finally, 

the phantom surface yielded under pressure, which made measurement of the minimal gap 

distances more difficult. In practice, all the uncertainties in the phantom study would still 

contribute to the patient collision modeling, but the risk of collision can be effectively 

minimized by employing buffer distances.  

 The discrepancies between model and measurement were used to calculate safety 

margin distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry 

to couch or phantom. Applying Gaussian predicted safety buffer distances to all beam 

orientations could be biased by outliers involving situations such as glancing angles and 

tends to overestimate the buffer. The error distribution could also depend on individual 

patients, immobilization device, and treatment sites. We will prospectively acquire more 

patient data to better understand the statistics in a future study. 
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 By establishing a collision model that includes a patient model, the deliverable 

beams and the extended STD needed for certain beam orientation and treatment sites could 

be determined. Therefore, the collision model is an integrated component of the automated 

planning system utilizing the entire feasible non-coplanar beam space. For pelvis treatments, 

the isocentric treatment beam solution space significantly decreases the number of useful 

beams. The ability to use extended STD beams is essential in maintaining the size of the non-

coplanar beam solution space and maximizing the dosimetric benefits. Our model provides 

a quantitative guidance for selecting these beams and choreographing the gantry and couch 

motion to achieve these positions as demonstrated in the automated plan delivery in the 

TrueBeam developer mode. Both the collision space modeling and automation are shown 

essential as the plan complexity increases.    

 It is also important to point out that in practice, we should not rely only on the 3D 

modeling to ensure treatment safety. Secondary and possibly tertiary collision prevention 

mechanisms should be in place to stop the machine when it is within a preset proximity to 

the patient. On the other hand, the 3D modeling should minimize the chance of triggering the 

secondary interlock and maintain the clinical flow.  

3.2.5 Conclusion 

 In this study, an individualized collision prediction model was developed and 

verified. With help from the model, we have demonstrated the feasibility of fully automated 

non-coplanar treatment delivery on a digital linac. This work motivates further 

developments of clinical workflows and quality assurance procedures to allow more 
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extensive use and automation of non-coplanar beam geometries for improved radiation dose 

conformality. 

3.3 Spine stereotactic body radiation therapy (SBRT) 
with 4π radiotherapy 

3.3.1 Introduction 

 More than 1.5 million new cancer cases are diagnosed in the Unites States 

annually139, resulting in approximately 600,000 deaths, up to 40% of which exhibit spinal 

metastases140,141.  Spinal tumors can cause pain, instability, and progressive myelopathy that 

results in the loss of motor, sensory, and autonomic functions, significantly affecting the 

patients’ quality of life142,143.  As cancer treatment efficacy and patient life expectancy 

continues to improve, increased occurrence in symptomatic spinal metastases has been 

observed144-146. Radiation therapy remains the cornerstone in the management of the 

disease through palliation of pain and prevention of neurological symptoms and pathological 

fractures147. Stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT), 

which utilize highly conformal and modulated treatment planning techniques with accurate 

tumor localization from image-guided radiotherapy (IGRT), has enabled the safe delivery 

and quick pain relief in 80-90% of treated cases148-150.  However, the deliverable prescription 

dose remains limited by the tolerance of the spinal cord due to the close proximity and 

encompassing geometry between spinal lesions and the spinal cord, and the associated risk 

of irreversible radiation-induced myelopathy151-154.  Many study protocols, such as the 

ongoing Radiation Therapy Oncology Group (RTOG) 0631 trial155, exclude tumors less than 

3mm from the spinal cord for this reason. This exclusion criteria prevents patients with the 
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highest risk of spinal cord compression from receiving treatment. Furthermore, in-field 

recurrence was observed at the epidural space that received lower dose to spare the spinal 

cord156. In addition, in patients with advanced malignancies, treatment on vertebrae 

adjacent to those already irradiated or re-irradiation of local recurrence is commonly 

needed. However, these treatment become even more challenging as a result of the further 

limited allowable dose to the spinal cord and are therefore frequently avoided due to the fear 

of irreversible spinal cord damage. The aforementioned challenges and evidence illustrate 

the necessity to further improve target coverage and OAR sparing in spine SBRT and SRS 

cases.  

 4π radiotherapy, an inverse optimization platform integrating beam orientation and 

fluence map optimization, has achieved substantial dosimetric improvements for brain46, 

head and neck47, liver44,48, lung49, and prostate50,121 treatments compared with volumetric 

modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) with 

manually selected beam angles. A prospective trial of the technique has also been performed 

to test its clinical feasibility, safety, and dosimetric sparing capabilities in recurrent 

Glioblastoma Multiforme patients157. The purpose of this study is to demonstrate the 

significant organ at risk (OAR) sparing achievable with 4π radiotherapy in spine SBRT and 

SRS cases. 

3.3.2 Methods and Materials 

3.3.2.1 Patient Selection 

 Twenty-three spine SBRT patients, with a total of twenty-five treatment plans and 

prescription doses ranging from 14 to 45 Gy were included in this study. All patients were 
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treated using the NovalisTx linear accelerator with VMAT or IMRT at University of California, 

Los Angeles. The patient and case specific fractionation schemes, plan information and 

parameters are shown in Table 3-7. Three plans contained simultaneous integrated boost 

(SIB) targets.  

Patient ID PTV Vol (cc) Location Gy x fx SIB Location Gy x fx 
Clinical Plan 

Delivery Method 

1 1.4 S3 20 x 1   2 Arc VMAT 

2 12.9 T6 20 x 1   4 Arc VMAT 

3 24.5 T6 6 x 5   2 Arc VMAT 

4 34.1 L5 16 x 1   4 Arc VMAT 

5 31.8 T11 16 x 1 T12 18 x 1 4 Arc VMAT 

6 5.9 L3 16 x 1   4 Arc VMAT 

7 4.6 T5 20 x 1   9 Field IMRT 

8 110.3 L1 6 x 5   2 Arc VMAT 

9 24 L2 12 x 3   4 Arc VMAT 
 45 C3 8 x 5   4 Arc VMAT 

10 25 L5 16 x 1   4 Arc VMAT 

11 37.6 T7T9 9 x 5   4 Arc VMAT 
 29.6 L1 16 x 1 L1 20 x 1 4 Arc VMAT 

12 15.6 T1 16 x 1   4 Arc VMAT 

13 7.2 C2-3 7 x 3   4 Arc VMAT 

14 20.1 T8 16 x 1   2 Arc VMAT 

15 0.3 C1 5 x 5   2 Arc VMAT 

16 14.9 C7 16 x 1   2 Arc VMAT 

17 77.3 T9-10 14 x 1 T9-10 20 x 1 2 Arc VMAT 

18 12.6 T1 14 x 1   4 Arc VMAT 

19 10.3 T3 20 x 1   9 Field IMRT 

20 33.3 T10 16 x 1   4 Arc VMAT 

21 7.9 T5 16 x 1   4 Arc VMAT 

22 14.5 C1 16 x 1   4 Arc VMAT 

23 73.9 T9 3 x 10   2 Arc VMAT 

Table 3-7: Patient and plan information 

3.3.2.2 4π Radiotherapy Plan Generation 

 An in-house 4π radiotherapy treatment planning optimization platform, as 

mentioned and implemented in previous publications44,46,47,50 , was utilized to select the 
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optimal twenty beam angles for each selected spine SBRT plan. The optimization begins with 

a candidate beam pool of 1162 beams evenly distributed throughout the entire 4π solid angle 

with 6° separation between adjacent beams. With a detailed and verified surface model of 

the Varian TrueBeam linear accelerator with a volunteer on the couch, an exhaustive search 

of all candidate beams were performed and the candidate angles that resulting in collision 

between the gantry and couch or patient were eliminated62. As the selected spine SBRT cases 

had target locations that varied greatly, all plans were separated into four spinal segment 

including, cervical (C1 – 7), top thoracic (T1 – 6), bottom thoracic (T7 – 12), lumbar and 

sacral (L1 – 5 and S1 – 5). A distinct candidate beam angle pool was obtained for each spinal 

segment specified above to account for variation in collision based on the location of the 

target. To perform inverse optimization of all non-colliding candidate beams, dose matrices 

with resolution of 2.5 x 2.5 x 2.5 mm3 corresponding to 5 × 5 mm2 beamlets were calculated 

using convolution/superposition of 6MV poly-energetic X-ray kernels. A column generation 

algorithm45 was utilized to iteratively select and optimize beam fluence until the desired 20 

beam angles were selected.  

 The extension of source to target distances allows for more non-colliding beam 

angles and may result in superior OAR sparing. However, the need to extend the source-to-

target- distances (STD) for certain beam angles can greatly increase delivery complexity. 

Therefore, plans with candidate beam pools containing only beams deliverable isocentrically 

without extra couch translations during the treatment course were also created for all cases. 

These isocentric plans optimized using the 4π planning procedure described previously will 

be referred to as “isocentric 4π” plans in this manuscript. The comparison between the 

standard 4π and isocentric 4π plans allows for an evaluation of the tradeoff between OAR 
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sparing and delivery efficiency. To ensure unbiased comparison between the original clinical 

plans, standard 4π and isocentric 4π plans, the optimal beam angles of each 4π plan were 

imported into Eclipse (Varian Medical Systems, Palo Alto, CA) for dose recalculation using 

identical dose calculation methods and optimization parameters. The Wilcoxon signed-rank 

test with α value of 0.05 was utilized to compare the standard 4π and isocentric 4π plans 

against the original clinical plans. OAR statistics were generated for both the entire patient 

cohort and for each spinal segment.  The number of candidate beams for each spinal section 

is shown in Table 3-8 and the spatial distribution of the candidate angles is displayed in 

Figure 3-16.  

Spinal Section Standard 4π Isocentric 4π 

C1-7 957 810 

T1-6 953 695 

T7-12 945 536 

L1-5 + S1-5 909 544 

Table 3-8: Number of candidate beams for each spinal section based on collision modeling 
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Figure 3-16: Gantry vs. couch angle plots for all four spinal sections. Isocentric 4π includes only the 
angles deliverable with source to target distances (STD) of 100 cm (blue hollow circles). Standard 
4π encompasses all beam angles that do not result in collision (blue hollow circles + black solid 
squares). 

3.3.3 Results 

 Substantial global OAR dosimetric sparing was demonstrated for both standard 4π 

and isocentric 4π plans. All dose reduction metrics below are reported as percent dose 

reductions from the prescription dose of each case relative to the original clinical plan, as 

demonstrated in Equation 3-2.  
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Dose Reduction (%) =
|Dose − Doseclinical|

Prescription Dose
× 100 

Equation 3-2 

 The dose reduction statistics for all OARs appearing in more than 6 plans and their 

corresponding p value obtained with Wilcoxon signed rank test are reported in Table 3-9. 

Corresponding box plots for the maximum and mean dose reductions are shown in Figure 

3-18a and Figure 3-18b. The volume of the spinal cord receiving more than 50% of the 

prescription dose (V50%) was also calculated for all plans and a box plot representing the 

percent volume reduction relative to the clinical plan is shown in Figure 3-18c. V50% of the 

spinal cord was significantly different from the original clinical plans for both standard and 

isocentric 4π with p<0.001, with average percent reduction of 79.9% and 80.1%, 

respectively, from that of the original clinical plan. Paired signed rank test between standard 

and isocentric 4π was also performed and no significant differences were found for mean, 

maximum OAR doses and V50% of the spinal cord.   Statistically significant improvements 

were also found in the PTV homogeneity index (D5/D95) and the PTV maximum dose for all 

generated 4π plans. It is evident that isocentric 4π plans achieved dosimetric performance 

equivalent to that of the standard 4π plans, indicating that the superior dosimetric quality 

could be achieved without the increased delivery complexity that is associated with beam 

angles requiring extended source to target distances in standard 4π. Examples of optimized 

4π beam patterns for each spinal section are shown in Figure 3-20.  The beam angle 

distribution of all isocentric 4π cases with each spinal section marked in different colors is 

shown in Figure 3-21. Overall, slightly more posterior beam angles were selected. In 

addition, for the T7-12 section, no anterior beam angles were selected in order to avoid 

abdominal OARs. 
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Average OAR Percent Dose Reduction from Clinical Plan (%) 
  Standard 4π Isocentric 4π 
 n Maximum Dose Mean Dose Maximum Dose Mean Dose 

  % p value % p value % p value % p value 

Cord 23 11.84* <0.001 14.17* <0.001 12.03* <0.001 14.37* <0.001 

Esophagus 13 21.17* <0.001 8.52* <0.001 19.97* <0.001 8.22* <0.001 

Bowel 6 8.15* 0.031 2.54 0.109 8.45* 0.031 2.73 0.109 

Kidney Rt 7 3.49 0.148 1.71 0.406 4.08 0.109 1.90 0.406 

Kidney Lt 6 4.46 0.063 1.54 0.281 4.62 0.063 1.78* 0.031 

Liver 7 1.89 0.422 2.97 0.109 2.41 0.422 2.92 0.055 

Cauda 6 15.32* 0.031 9.04 0.031 15.27* 0.031 8.95* 0.016 

Table 3-9: OAR percent dose reduction from clinical plan relative to the prescription dose of each 
plan. *statistically significant reduction (p<0.05), obtained from one-sided Wilcoxon signed rank 
test 

 A dose volume histogram (DVH) comparing the clinical, isocentric 4π, and standard 

4π plans for one case with the T6 segment receiving 20 Gy is demonstrated in Figure 3-17. 

The corresponding clinical plan was generated with 4 VMAT arcs. Visual demonstration of 

the spinal cord sparing capability is displayed in Figure 3-19 with the dose wash and DVH 

comparisons of an SIB case with 16 Gy to T11 and 18 Gy to T12.  

 
Figure 3-17: DVH comparing clinical, isocentric 4π, and standard 4π for treatment to T6 
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Figure 3-18: OAR dose and volume reduction box plots from the original clinical plans (a) 
Maximum dose reduction. Standard 4π (blue) and Isocentric 4π (red). (b) Mean dose reduction. 
Standard 4π (green) and Isocentric 4π (yellow) (c) Percent volume reduction in spinal cord 
receiving more than 50% of prescription dose (V50%).  
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Spinal Cord 

  Maximum Dose Mean Dose 

Spinal Section n % p-value % p-value 

C1-7 5 9.47 0.063 16.30* 0.031 

T1-6 7 11.30* 0.008 13.21* 0.008 

T7-12 6 20.70* 0.016 22.76* 0.016 

L1-5 + S1-5 5 5.21 0.125 4.01 0.063 

Esophagus 

T1-6 7 16.92* 0.008 8.22* 0.008 

T7-12 5 26.07* 0.031 7.63* 0.031 

Additional OARs in section L1-5 + S1-5 

Cauda 5 15.17 0.063 9.52* 0.031 

Bowel 5 10.14* 0.031 3.28* 0.094 

Kidney Rt 5 6.29 0.063 2.79 0.219 

Kidney Lt 5 5.54 0.063 2.14* 0.031 

Table 3-10: Average dose reduction OAR statistics of isocentric 4π plans with spinal section 
breakdown. *p<0.05, statistically significant difference between isocentric 4π and corresponding 
clinical plans. 

 

 To evaluate the variation in the sparing capability from one spinal section to 

another, dose statistics of the spinal cord, esophagus, in addition to other OARs with more 

than 5 cases in the section of interest are shown in Table 3-10. Spinal cord mean dose sparing 

remained statistically significant for sections C1-7, T1-6, and T7-12, and the maximum dose 

reduction was significant for both thoracic sections. Esophagus mean and maximum dose 

sparing were substantial for both thoracic sections.   
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Figure 3-19: Dose comparison of a case with 16 Gy delivered to T11 and 18 Gy simultaneous boost 
to T12. (a) Dose wash comparing dose distributions above 6 Gy between the 4 Arc VMAT clinical 
plan and isocentric 4π plan. (b) DVH of the clinical, isocentric 4π, and standard 4π plans 
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Figure 3-20: Beam orientation visualization from various spinal target locations (a) C1 (b) T11 and 
SIB T12 (c) L1 (d) T6   

 

Figure 3-21: Beam angle distribution of all isocentric 4π cases, with angles colored based on PTV 
location. 
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3.3.4 Discussion 

 Sparing of spinal cord and other critical organs including esophagus is the major 

challenge in SBRT and SRS to spinal lesions. Conventional radiotherapy methods 

overwhelmingly reply on coplanar beams that result in high dose spillage in this plane and 

difficulty to spare organs later or A/P to the target.  In theory, utilizing non-coplanar beams 

can shift some of the high dose spill away and then reduce dose to adjacent organs. However, 

this has not been previously demonstrated due to three challenges. First, non-coplanar 

beams for body lesions were considered impractical due to mechanical limitations of C-arm 

gantries that many angles are at risk of collision. Second, there was not an automated beam 

orientation algorithm to select collision free beams. Third, the feasibility of such non-

coplanar beam spine SBRT and SRS has not been demonstrated. We showed that these 

challenges are not insurmountable. 

 Possible collisions between the gantry, couch, and patient can be accurately 

modeled using 3D camera and existing CAD model62. The non-coplanar beams can be 

selected using a column generation algorithm, the resultant IMRT plan can be imported into 

a clinical planning system for recalculation, validation and safe delivery without modifying 

existing treatment machines or software. At UCLA, three spine patients have been treated 

using this method.  

 It is potentially rewarding to overcome these challenges. With 4π radiotherapy, 

substantial sparing with average dose reductions of 14.37% and 12.03% of the mean dose 

and maximum dose relative to the prescription dose was achieved regardless of the inclusion 

of beam angles requiring extended source to target distances. These percentages translate 
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to a 2.4 Gy and 2.8 Gy decrease in the maximum dose and mean dose for a single fraction 20 

Gy delivery. Maximum dose sparing of 35% was demonstrated for a 3 Gy × 10 case, which is 

equivalent to a maximum dose reduction of 10.5 Gy compared with the original VMAT 

clinical plan with 2 arcs. For tumors within the lower thoracic, lumbar and sacral regions, 

the sparing the Cauda Equina was also significant (average 15% reduction from the 

prescription dose for both mean and maximum doses). The esophagus is also a crucial OAR 

in stereotactic spine radiotherapy due to its proximity to the target, as demonstrated in 

Figure 3-20, as well as the risk of radiation-induced stenosis and fistula, if overdosed. As 

evident from our results, percent dose sparing of 20% and 8.2% to the maximum and mean 

dose was also achieved for the esophagus.  Such remarkable OAR sparing results indicate 

increased PTV coverage or even dose escalation could be safely implemented with 4π.  

 Based on the spinal section analysis and results of the isocentric 4π plans shown in 

Table 3-10, it is apparent that the spinal cord sparing power of 4π is particularly more 

substantial for treatment to lesions in the thoracic segment, the spinal section in which 60-

80% of vertebral lesions occur158. For the cervical section, only the spinal cord mean dose 

reduction was statistically significant. For the lumbar and sacral section, the Cauda Equina 

mean dose,  bowl maximum and mean dose, and left kidney mean dose attained p<0.05.   

 As demonstrated by the beam angle distribution shown in Figure 6, the 4π beam 

angle selection is highly patient-specific. No apparent beam angle clusters were observed for 

each studied spinal section for general recommendation of beam angles to be made based on 

the PTV location.  
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 The potential of PTV dose escalation will be quantified in a future study by 

performing plan normalization up to the maximum prescription dose level that achieve 

biological effective dose (BED) that is equivalent to the treated clinical plan.  

3.3.5 Conclusion 

 Non-coplanar 4π radiotherapy significantly improves stereotactic spine treatment 

dosimetry. The clinical feasibility is supported by that isocentric 4π is sufficient to achieve 

the dosimetric gain. The successful implementation of 4π using an FDA approved planning 

system (Eclipse) paves the way for prospective clinical trial that can aid in improving local 

tumor and pain control, and provide treatment to patients that would not otherwise be 

treated due to strict normal organ dose tolerances.  
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4 ADVANCING GBM 

RECURRENCE DETECTION AND 

TIME PREDICTION WITH 

RADIOMICS 

4.1 Advancing GBM recurrence volume detection with 
longitudinal Radiomics classification  

4.1.1 Introduction 

 Glioblastoma Multiforme is a devastating disease with nearly 100% mortality. Local 

disease recurrence after adjuvant chemoradiation is almost inevitable. Due to the aggressive 

and often short relapse from one recurrence to another, frequent MRI follow-up became 

standard of practice for these patients. Radiomics have been shown promising in predicting 

or stratifying based on treatment outcome, tumor extent, and disease histology for GBM 

patients. The goal of this study is to attempt to utilize Radiomics texture analysis techniques 

to advance detection of recurrence in order to provide earlier radiotherapy intervention. In 

addition to the ability to be aware of disease recurrence at an earlier time, advanced 

detection of the recurrence could also allow for effective treatment with a smaller irradiation 

volume due to the relatively smaller tumor size at an earlier time point. With a small PTV, 

more substantial escalation in dose could be achievable, which in turn could further improve 

disease control. With the abundance of MRI follow-up imaging data, our goal is to utilize 
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voxel-based image textures to generate an interpatient generalizable recurrence 

classification model. 

4.1.2  Methods 

4.1.2.1 Patient characteristics and data summary 

 Eighteen GBM patients treated at UCLA with a history of recurrence was selected for 

the study.  MRI follow-up images of all time points between the first available after surgery 

up to the first disease recurrence that contained T1 pre and post-contrast, T2, Flair, and ADC 

images obtained at UCLA were collected.  

4.1.2.2 Image preprocessing  

 Rigid image registration was first performed within each time point to spatially 

correlate the images from the T1 pre and post contrast, T2, and Flair images using Elastix159. 

At each time point, the image containing the best in-plane resolution was utilized as the fixed 

image in registration. As the acquired ADC images are often noisier but are directly 

associated with the Flair images, the ADC image was directly translated to the established 

image domain within each time point using the obtained rigid transformation for the Flair 

image to avoid potential registration error.   

 Unlike computed tomography, a major difficulty in MRI image processing has been 

that the acquired image intensities do not have a fixed tissue-specific numeric meaning such 

that wide image intensity variations can be observed even with the same MRI protocol, 

machine, and patient. Therefore, modality specific image intensity normalization was 

performed to ensure consistent image intensity values throughout all time points and 
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different patients. A histogram-based normalization technique was adopted for this 

study160,161.  To establish normalization on only the brain volume, and to eliminate the higher 

image intensity inconsistencies from the skull region, skull stripping was performed prior to 

image normalization with the Statistical Parametric Mapping (SPM12) toolbox. A standard 

image template was first chosen for each modality, all images were then mapped to the 

standard scale by two separate linear mappings, (𝑆1𝑖, 𝜇𝑖)  to (𝐿𝐼𝑅 , 𝜇𝑠)  and (𝜇𝑖, 𝑆2𝑖)  to 

(𝜇𝑠, 𝐻𝐼𝑅) , as demonstrated in Figure 4-1. HIR and LIR are defined as the value at the 

maximum and minimum 10% of data within the volume of interest on the standard image 

template. 𝑆1𝑖 and 𝑆2𝑖 are the same values corresponding to the input image to be normalized.   

𝜇𝑠 and 𝜇𝑖 are the mean image intensity of the standard image and the input image.  (𝑚1, 𝑚2) 

and (𝑚1
′ , 𝑚2

′ ) are the minimum and maximum values of the input and standard images.  

 
Figure 4-1: Image intensity normalization scheme. Two separate linear mappings from (𝑺𝟏𝒊, 𝝁𝒊) to 
(𝑳𝑰𝑹 , 𝝁𝒔) and (𝝁𝒊, 𝑺𝟐𝒊) to (𝝁𝒔, 𝑯𝑰𝑹).  

  The image normalization function, indicated as 𝑁(𝑥, 𝑦, 𝑧), and calculated for based 

on the input image 𝐼(𝑥, 𝑦, 𝑧), is demonstrated in Equation 4-1 below. 
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𝑁(𝑥, 𝑦, 𝑧) = { 
𝜇𝑠 + (𝐼(𝑥, 𝑦, 𝑧) − 𝜇𝑖)

𝐿𝐼𝑅 − 𝜇𝑠

𝑆1𝑖 − 𝜇𝑖
, 𝑚1

′ ≤ 𝐼(𝑥, 𝑦, 𝑧) ≤  𝜇𝑖 

𝜇𝑠 + (𝐼(𝑥, 𝑦, 𝑧) − 𝜇𝑖)
𝐻𝐼𝑅 − 𝜇𝑠

𝑆2𝑖 − 𝜇𝑖
, 𝜇𝑖 ≤ 𝐼(𝑥, 𝑦, 𝑧) ≤ 𝑚2

′  

Equation 4-1 

 All images were resampled to an isotropic voxel resolution of 0.9375 mm, the most 

common inherent in-plane resolution in the dataset. Texture calculation on the same 

resolution images ensures that the textures are generated from same size local 

neighborhood and their potential physical meaning will not be confounded by voxel size 

differences.  

4.1.2.3 Image texture generation 

 3D image textures corresponding to each voxel within the brain volume were 

extracted from gray level co-occurrence matrices (GLCM)162 with 64 binned intensities 

generated from 5 × 5 × 5 local voxel neighborhoods. Common binning ranges were 

established for each image modality with all images across all time points and patients for 

further intensity standardization. Twenty four GLCM image textures, along with the 

histogram-normalized image intensity value were extracted for each modality, totalling 125 

image texture values for each voxel.  All utilized GLCM textures are listed in Table 4-1 

below55,162-164. 

Energy Homogeneity Inverse difference moment normalized 
Contrast Autocorrelation Inverse difference normalized 
Entropy Cluster Prominence Inverse Variance 
Homogeneity Cluster Shade Maximum Probability 
Correlation Cluster Tendency Sum Average 2 
Sum Average Difference Entropy Sum Entropy 
Variance 1 Informational measure of correlation 1 Sum Variance 
Dissimilarity Informational measure of correlation 2 Variance 2 

Table 4-1: List of utilized GLCM textures. Texture definition obtained from references55,162-164.  
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4.1.2.4 Recurrence classification model generation 

4.1.2.4.1 Training contour generation and texture value standardization 

 To generate a recurrence classification model, regions with recurrence and 

corresponding control contours with no recurrence were generated for each patient. The 

recurrence volume were manually contoured on the T1 post contrast or Flair image of the 

clinically diagnosed recurrence time point with help from an expert physician. For each 

recurrence volume, two other control volumes the same size as the contoured recurrence 

volume were generated. The first control contour is a volume that is directly adjacent to the 

identified recurrence volume, which was utilized as negative volume in recurrence 

classification model training. The second control contour represents a healthy brain region 

on the direct opposite side of the brain, used for texture intensity normalization with the 

assumption that average texture value within a normal brain region would remain similar 

across all time points and patients. Both control volumes were generated by directly 

translating the recurrence contours to the area of interest to ensure the data size generated 

from all contours are on the same scale. Cavity regions were identified for all patients by 

performing thresholding on the normalized and binned T1 post contrast image, and removed 

from all training contour regions.  

 Texture values of all time points and texture values across the entire patient cohort 

were standardized with Z-score normalization prior to training and classification. All texture 

values were centered at the mean value of each texture obtained from the transferred remote 

control volume on the opposite side of the brain. The standard deviation utilized for Z-score 

normalization was that of the entire calculated brain volume specific to each time point, 

texture, and patient.  
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4.1.2.4.2 Feature selection 

 To avoid model over-fitting and reduction in model generality due to high data 

dimensionality, feature selection was be performed prior to training. Minimal redundancy 

maximal relevance criterion (mRMR), a method that evaluates features based on their 

relevance with the class labels and penalizes the feature redundancy165, was utilized. The 

mRMR feature scoring criterion is shown in Equation 4-2 below, 

𝑚𝑅𝑀𝑅(𝑋𝑘) = 𝐼(𝑋𝑘; 𝑌) −
1

𝑆
∑ 𝐼(𝑋𝑘; 𝑋𝑗)

𝑋𝑗∈𝑆

,  

Equation 4-2 

where 𝑌 represents the classification labels, 𝑋 is the set of features, 𝑋𝑘 is the feature to be 

evaluated, 𝑆 is the set of already selected features, and the function in the form of 𝐼(𝐴; 𝐵) 

indicates the mutual information between parameters 𝐴  and 𝐵 , defined in Equation 4-3 

below.   

𝐼(𝐴; 𝐵) = ∑ ∑ 𝑝(𝑎, 𝑏) log (
𝑝(𝑎, 𝑏)

𝑝(𝑎)𝑝(𝑏)
) ,

𝑎∈𝐴𝑏∈𝐵

  

Equation 4-3 

with 𝑝(𝑎), 𝑝(𝑏), and 𝑝(𝑎, 𝑏) representing the probability density functions of a, b, and their 

mutual information. The technique was implemented with an open source MATLAB code 

library for feature selection166. The top thirty features were utilized in model training.  

4.1.2.4.3 Classification model training and validation 

 With the selected features, classification model training was be performed on a 

randomly selected training cohort of ten patients with support vector machine (SVM) 167, 

formulated as the primal-dual optimization problem shown in Equation 4-4.  
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Primal Dual  

min
𝑤,𝑏,𝜉

           
1

2
‖𝑤‖ + 𝐶 ∑𝜉𝑖

𝑚

𝑖=1

     

 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      𝑦𝑖(𝑤

𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖  
                     𝜉𝑖 ≥ 0, 𝑖 = 1,… ,𝑚 

min
𝛼

        
1

2
𝛼𝑇𝑄𝛼 − ∑𝛼𝑖

𝑚

𝑖=1

     

 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝑦𝑇𝛼 = 0                             

                            0 ≤ 𝛼𝑖 ≤ 𝐶,    𝑖 = 1, … ,𝑚,  

Equation 4-4 

where 𝑥𝑖 ∈ 𝑅𝑛  are vectors representing the 𝑛  selected features corresponding to all 𝑚 

voxels within training, and 𝑦 ∈ 𝑅𝑚 is an indicator vector defining the recurrence status of 

each voxel such that 𝑦𝑖 ∈ {−1, 1}. The features are mapped into a higher dimensional space 

by the kernel function 𝜙 for improved classification performance. 𝜉𝑖 are slack variables in 

the optimization, allowing for a soft margin in the separation of classes, and are regularized 

by 𝐶 . In the dual problem, 𝑄𝑖𝑗 = 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗) , and 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗)  is the kernel 

function. By solving the dual problem, the resultant classification decision function 𝐷(𝑥) is 

defined as: 

𝐷(𝑥𝑖) = 𝑠𝑔𝑛(∑𝑦𝑖𝛼𝑖𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏)

𝑚

𝑗=1

 

𝐾(𝑥𝑖, 𝑥𝑗) = exp {−
‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎2
} 

 

Equation 4-5 

 The problem was solved using LIBSVM168, an open source software tool for SVM 

classification. The model generation workflow is demonstrated in Figure 4-2. The selected 

feature vectors corresponding to the validation cohort of eight patients was inputted into 

the classification model created with the training cohort, and the classification results was 

compared with the ground truth classification status for inter-patient classification 

performance evaluation. 
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Figure 4-2: Inter-patient general model training workflow 

4.1.2.5 Patient-specific recurrence detection and validation 

 With the generated inter-patient classification model, the follow-up time points 

prior to recurrence can be classified for all patients in hopes for earlier recurrence detection. 

Classification was carried out on volumes in the vicinity of the eventual recurrence, and 

verification was performed on the generated distant control contour. The recurrence and 

validation volumes defined at the confirmed recurrence time point was transferred to all 

time prior time points via deformable image registration with the recurrence image as the 

moving image in registration, performed with Elastix159. The classification search regions 

were 2 cm expansions of the transferred recurrence volume at all time points. Through 

thresholding, irrelevant volumes such as fluid-filled surgical cavities were identified and 

removed from the classification search and validation regions. The workflow for patient 

specific classification is shown Figure 4-3.  The positive volumes within the classification 

search regions were obtained and an increasing trend over time is expected. 
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Figure 4-3: Patient-specific recurrence classification and validation workflow 

4.1.3 Results 

4.1.3.1 Recurrence classification model generation 

 The top 30 features obtained from mRMR feature selection contained features from 

all five image modalities. Utilized data size for the training and validation cohort is shown 

below in Table 4-2. The top five features were T1 Variance, T1 post-contrast Inverse 

Variance, T1 Inverse Difference Moment Normalized, ADC Inverse Difference Moment 

Normalized, and T2 first order image intensity. Information on the utilized data and the 

classification results are shown in Table 4-2. The corresponding ROC curve is shown in 

Figure 4-4. The reasonable model performance indicated inter-patient generalizability in 

distinguishing recurrence from non-recurrence at the recurrence time point with the 

implemented machine learning method.  
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Training Cohort (n=10) Validation cohort (n = 8) 

Recurrence Non-Recurrence Recurrence Non-Recurrence 
Voxel # 79698  68571  31406  22434 

Percentage 53.8% 46.2% 58.3% 41.7% 
SVM Model Classification Result 

Accuracy 91.34% 72.81% 
Sensitivity 91.39% 77.75% 
Specificity 91.31% 69.28% 

Table 4-2: Data size of training and validation cohorts. Breakdown of recurrence and non-
recurrence data size and classification results. 

 
Figure 4-4: ROC curve of classification on the validation cohort. 

4.1.3.2 Patient-specific longitudinal recurrence classification in follow-up imaging 

 The constructed SVM model was utilized to classify the five latest time points prior 

to the recurrence time point for all patients in hopes to achieve advanced detection of 

recurrence. The progression of classified recurrence volume over time within the defined 

search region for all patients are shown in Figure 4-5. Each curve represents the volume 

progression for one patient and all volumes were normalized to the classified volume size 

detected at the recurrence time point for visualization on an equivalent scale. 
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Figure 4-5: Classified recurrence volume within search region over time for all patients. Volumes 
normalized relative to the volume detected at the recurrence time point. 

 As evident from Figure 4-5, oscillatory behaviour was observed in the progression 

of classified recurrence volume throughout the patient cohort, instead of the steady increase 

that was initially expected. Visualization of classification results from one patient is shown 

in Figure 4-6, where the model classification region is labelled in blue, volumes classified as 

recurrence shown in red, and volume classified as recurrence within the remote control 

search region shown in green (false positives). The recurrence volume progression for the 

patient case shown in Figure 4-6 corresponds to the black curve in Figure 4-5, in which a 

slight decrease from the first available time point, followed a sudden increase from the 5th to 

the recurrence time point can be observed. As specified by white arrows, one region is 

consistently classified as recurrence, indicating some degree of longitudinal consistency 

over time. However, the remaining regions that were classified do not appear to remain 

consistent throughout all time points. Increase in noisy specks is observed in time point 3, 

and interestingly corresponded to an increase in false positives. This result indicates that the 

inconsistency in classification volume size could be associated with the image 
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standardization process. With the consistently detected region connected to the tumor 

volume that suddenly appeared in the final time point, one could interpret this as an early 

finding of possible tumor that was in the process of migrating to the final tumor location. 

However, the existence of surrounding noise renders such speculations inconclusive. More 

rigorous studies will be needed to study the effect the current image standardization method 

has on the classification result to further eliminate false positive classifications.  

 
Figure 4-6: Classification results (top) from all six time points with corresponding T1 post-
gadolinium contrast (center) and Flair (bottom) images, labeled with days from recurrence. White 
arrows indicate the region that is consistently classified as recurrence for all time points 
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4.1.4 Discussion 

 Radiomics have generally been utilized to establish correlations between image 

textures obtained from all voxels within a tumor volume to clinical indicators such as patient 

overall survival, histology and tumor extent. The goal of this study was to classify recurrence 

on a per-voxel level on a longitudinal time scale. The study result has shown that the 

classification performance of the proposed method is sensitive to differences in the resultant 

texture values in the longitudinal time scale.  The utilized image normalization method was 

shown effective for the other purposes such as brain segmentation, but might need to be 

more stringent for image texture analysis purposes due to the larger dependence on absolute 

image intensity. The imaging data utilized was also acquired from many different scanners, 

with differing in-plane resolution and slice thickness. Despite the fact that image histogram 

matching was performed after voxel resolution standardization, the resampling process still 

could have confounded the resultant texture values. It might be essential to perform 

classification training only with textures that are insensitive to the aforementioned 

unavoidable variations within the data.  

 In addition, one of the major drawbacks of the proposed method could be that the 

classification model was established based on recurrence voxels that are readily visible on 

the images. In order to detect abnormalities prior to those already visible, the training model 

could need to be established on the time point prior to the tumor being visible.  

 The abundance of MRI follow-up imaging for GBM patients is an extremely valuable 

resource for us to further understanding ways to advance the detection of disease 

recurrence. Methodologies that are not as sensitive to image intensity changes, and with 
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larger local neighborhoods, might achieve more robust longitudinal classification 

performance. A sensitivity analysis on parameters such as the texture generation local 

neighborhood size and number of intensity bins for GLCM calculation could also help 

produce more robust classification results. 

4.1.5 Conclusion 

 The proposed method in advancing GBM recurrence detection with image texture 

analysis and machine learning was shown unsuccessful at its current scope. Further studies 

are needed to understand the classification inconsistencies in between longitudinal time 

points. 

4.2 Predicting time to Glioblastoma Multiforme (GBM) 
recurrence with MR image texture analysis 

4.2.1 Introduction  

 An additional study was performed to evaluate whether image texture features 

immediately after surgery could predict time to recurrence. If a prediction model can be built 

based on the generated image features, the accurate prediction of time to recurrence could 

guide clinicians in understanding the aggressiveness of the disease and personalizing patient 

care.  

4.2.2 Methods  

  After performing the same image preprocessing procedures as described in section 

4.1.2.2 for the earliest images associated with the earliest available time point, 24 Gray-level 
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co-occurrence matrix (GLCM) texture features (as listed in Table 4-1), along with the 

histogram-normalized image intensity values for each modality within a 2 cm expansion of 

the original tumor volume was generated, resulting in 125 textures features for each patient. 

The recurrence progression of the patient cohort is shown in Figure 4-7. 

 
Figure 4-7: Recurrence progression of the utilized patient cohort (n = 18).   

 To generate a texture model correlating texture features and the time to recurrence 

with good accuracy, a model with five features was constructed by performing leave-one-out 

(LOO) least absolute shrinkage and selection operator (LASSO) regression analysis. The 

formulation of the LASSO regression problem is shown in Equation 4-6 below.  

minimize   
1

2
‖Ax − b‖2

2 + γ‖x‖1 

subject to  x ≥ 0,  

Equation 4-6 

with 𝐴 = [𝑇 1], 𝑇𝑖,𝑗 = ith texture value of the jth patient, 𝑏 representing a vector containing 

the time to recurrence for all 18 patients, and 𝛾  as a regularization coefficient inducing 

sparsity in 𝑥. 𝛾 was tuned until five features were selected. With the selected five features, a 

polishing optimization without L1 regularization (𝛾 = 0) was performed to obtain final LOO 
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models.  The predictive power of the resultant models were then evaluated with the 

correlation-of-determination metric (𝑅2).  

4.2.3 Results 

 All except one LOO-LASSO regression model selected the identical 5 features, 

namely, T1 post-contrast cluster shade, T1 pre-contrast cluster prominence, T2 entropy, 

Flair cluster prominence, and ADC entropy, as demonstrated in Figure 4-8. The average 𝑅2 

values of all models were 0.71, and ranged from 0.679-0.891. The correlation between each 

of the commonly selected texture features and day to recurrence values for all patients is 

shown in Figure 4-9. A distinct set of textures were selected, corresponding to a significantly 

lower 𝑅2 value of 0.538, when one patient with particularly long time to recurrence of 1551 

days was left out, as demonstrated in Figure 4-10. This result further infers the potential in 

predicting time to recurrence with image texture features within the vicinity of the original 

tumor volume. 
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Figure 4-8: Common features selected by all except one LOO-LASSO regression. Arrow indicates 
region at which the average texture values are taken. 

 
Figure 4-9: Commonly selected features and their individual correlation with time to recurrence. 
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Figure 4-10: Distinct set of features selected when the slowest recurring patient is left out. R2 = 0.539 

4.2.4 Discussion and Conclusion 

 The texture values generated for this study represent the average of texture values 

from a large volume in comparison with the smaller local neighborhoods utilized in the 

previous study. The lower sensitivity to noise made the correlation between day to 

recurrence and texture value clear for some of the features. Even with a lower R2 that 

resulted from leaving out the patient with the slowest relapse, correlation between the 

selected texture values and time to recurrence can still be visually identified. These results 

suggest texture analysis on a larger region might also aid in identifying recurrent disease 

that is occurring but not yet visible. With preliminary analysis, the potential in predicting 

time to first recurrence with post-surgical texture features was demonstrated. Expansion of 

the patient cohort will be needed for further validation. 
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5 PERSONALIZED 4Π 

RADIOTHERAPY, BIOLOGICAL 

MODELING, AND 

FRACTIONATION SCHEDULE 

OPTIMIZATION 

5.1 Introduction 

 In this chapter, we combine the previously introduced methodologies that are 

potentially capable of further improving GBM disease outcome, including 4π radiotherapy, 

and dose fractionation optimization with a biological model that reflects the definitive 

treatment failure of GBM, on identified tumor sub-volumes in which eventual recurrence will 

occur. With the original plan of identifying such subvolumes through serial MR image texture 

analysis shown unsuccessful at its current scope, we instead utilized the ground truth 

eventual recurrence volumes on a patient-specific basis as regions with higher tumor 

proliferation/aggressiveness and studied the compound effect in outcome improvement 

with 4π radiotherapy simultaneous integrated boost (SIB) on these volumes in conjunction 

with dose fractionation optimization.  Aside from achieving the optimal spatial dose 

distribution with 4π radiotherapy, the problem is further expanded to identify a maximum 

deliverable dose to the SIB volume through a novel convex optimization formulation. With 
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the developed biological model, known disease characteristics, and patient anatomy, a 

personalized framework is established to study the benefit of integrating the 

aforementioned methods across different patients. 

5.2 Methods 

5.2.1 Patient characteristics and boost volume generation 

 Seven GBM patients with data available from the first radiotherapy plan for the 

primary disease up to the MRI imaging acquired at the clinically diagnosed first recurrence 

time point were selected for this study. The patient characteristics, time to first disease 

recurrence, information on the delivered clinical plan such as fractionation scheme, mean 

dose to the normal brain outside of the PTV (𝐷𝑚𝑒𝑎𝑛), and the PTV size, are tabulated in Table 

5-1. 

 To realistically simulate patient-specific hypothetical volumes with higher tumor 

proliferation and aggressiveness, the locations at which the eventual disease recurrence 

occur were utilized.  Recurrence volumes were contoured on the MR images obtained on the 

clinically diagnosed first recurrence date, and transferred to the initial treatment planning 

CT image through rigid image registration in MIM 6.6.5 (MIM Software Inc., Cleveland, OH).  

The boost volume was then generated by performing a 3 mm isotropic expansion around the 

propagated recurrence contour.  The volume of the generated boost regions, the non-boost 

region (original PTV that does not overlap with the generated boost volume), are shown in 

Table 5-1. All recurrences were in proximity with the originally irradiated PTV. The status of 

whether the boost region was completely within the original PTV, or residing on the edge of 
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the original PTV with a partial overlap, is also denoted in the “Overlap Status” column in 

Table 5-1. 

Pt 
# 

Time to 1st 
recurrence 

(Days) 
Age Sex 

Original clinical plan information Volumes (cm3) 
Overlap 
Status Fx scheme 

Prescription 
(Gy) 

𝑫𝒎𝒆𝒂𝒏 
Original 

PTV 
Boost Non-Boost 

1 256 50 M 2 Gy x 30 60 32.19 319.06 17.78 309.33 Partial 

2 818 39 M 2 Gy x 30 60 29.42 343.55 2.39 341.16 Complete 

3 457 52 M 1.8 Gy x 33 59.4 19.02 252.34 2.80 249.54 Complete 

4 292 35 M 2 Gy x 30 60 40.30 632.59 7.49 625.10 Complete 

5 189 59 M 1.8 Gy x 33 59.4 20.63 430.07 12.23 424.50 Partial 

6 713 66 M 2 Gy x 30 60 18.25 119.91 5.52 114.39 Complete 

7 1516 54 F 1.8 Gy x 33 59.4 31.92 281.35 6.45 275.99 Partial 

Table 5-1: Patient characteristics, original clinical plan information, size of generated boost 
volume, and whether the generated SIB volume partially or completely overlaps with the original 
PTV volume. 

5.2.2 4π radiotherapy plan generation 

 With the patient-specific contours of the non-boost PTV, SIB volume, and OARs, our 

in-house 4π radiotherapy inverse optimization platform44 was utilized to select the optimal 

20 beam orientations that can achieve the original prescription dose (59.4 or 60 Gy) to the 

non-boost PTV volume, and 110 Gy to the assigned SIB volume for each case. Selected boost 

dosage of 110 Gy was selected based on a previously tested dose escalation clinical trial3. 

Prior to 4π inverse optimization, dose matrices with 2.5 x 2.5 x 2.5 mm3 resolution 

corresponding to each 5 × 5 mm2 intensity-modulating beamlet for all non-colliding 

candidate beam orientations were calculated using convolution/superposition of 6 MV poly-

energetic X-ray kernels. A column generation algorithm45 was utilized to iteratively select 

and optimize beam fluence until the desired 20 beam angles were selected.  

 The designated boost dosage of 110 Gy is substantially higher than the original 

prescription dose and is known to be achievable with 4π radiotherapy based on a previous 
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study46. However, we have no knowledge of whether that is indeed the highest achievable 

boost dose. Therefore, in the following section, we seek to identify the maximum viable boost 

dose on a patient-specific basis through inverse optimization. 

5.2.3 Simultaneous integrated boost (SIB) optimization formulation 

  The main objective of this optimization problem is to obtain the maximum 

achievable boost dosage to the SIB volume based on personalized anatomy, while 

maintaining mean and maximum dose to the normal brain, coverage to the PTV, and 

minimize dose to surrounding organs-at-risk. The problem formulation is shown in Equation 

5-1 below.  

𝑎𝑟𝑔𝑚𝑎𝑥
𝑥

     𝑑𝑆𝐼𝐵 −
1

2
𝑤𝐻‖(𝐴𝑆𝐼𝐵𝑥 − 𝑑𝑆𝐼𝐵)‖2

2 

 
subject to 1

2
‖(𝐴𝑁𝐵𝑥 − 𝑑)‖2

2  +
1

2
𝑤𝑂𝐴𝑅‖(𝐴𝑂𝐴𝑅𝑥)‖2

2 ≤ 𝛾 

1𝑇𝐴Brn𝑥 ≤ 𝑛 ∙ 𝐷𝑚𝑒𝑎𝑛 

𝐴𝑃𝑇𝑉95%
𝑥 ≥ 𝑑 

𝐴BrnM
𝑥 ≤ 𝑑 ∙ 𝑝 

𝑑𝑆𝐼𝐵 =
1𝑇𝐴𝑆𝐼𝐵𝑥

𝑛𝑆𝐼𝐵
 

𝑥 ≥ 0 

Equation 5-1 

 The optimization variable, 𝑥, is a vectorized representation of all beamlet intensities 

from the 20 beam angles selected from 4π column generation. All variables denoted in the 

format of 𝐴𝑉  represent fluence-to-dose transformation matrices corresponding to the 

specified volume 𝑉 . The volume definitions are described in Table 1-1. 𝑑  represents the 

original prescription dose.  
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Volumes Description 

𝑆𝐼𝐵 Defined volume to receive simultaneous integrated boost 

𝑃𝑇𝑉𝑈 The union of the original PTV and the SIB volume 

𝑁𝐵 Non-boost 𝑃𝑇𝑉 volume that does not contain the 𝑆𝐼𝐵 region 

𝑂𝐴𝑅 Union of all organs-at-risk that do not overlap with 𝑃𝑇𝑉 

Brn Normal brain volume outside of 𝑃𝑇𝑉 

BrnM Brn − (𝑃𝑇𝑉𝑈 + margin M) 

𝑃𝑇𝑉95% Central 95% of the 𝑃𝑇𝑉 

Table 5-2: Volume definitions 

 The first objective function maximizes 𝑑𝑆𝐼𝐵 , the mean dose received by the SIB 

volume, which is also defined within the problem constraint. The dose homogeneity within 

the SIB volume is maintained by the second objective term, with a relative weighting of 𝑤𝐻.   

 The problem is constrained by six conditions. The first condition maintains the dose 

of all voxels within 𝑁𝐵  to be close to the prescription dose 𝑑  while penalizing the dose 

received by all organs-at-risk. The summation of the two terms are constrained by γ, defined 

as the equivalent metric obtained from the 4π plan with fixed SIB prescription dose of 110 

Gy.  The second condition maintains the mean dose of the normal brain to be below the mean 

normal brain dose of the clinically delivered plan, where variable 𝑛 represents the number 

of voxels within the normal brain volume, and 𝐷𝑚𝑒𝑎𝑛 corresponds to the normal brain mean 

dose of the original clinical plan. The third constraint further ensure PTV coverage within 

the non-boost PTV volume. The fourth keeps the dose within volume BrnM under a cut off 

percentage 𝑝 of the prescription dose (0 < 𝑝 ≤ 1). The fifth constraint defines 𝑑𝑆𝐼𝐵, with 𝑛𝑆𝐼𝐵  

representing the number of voxels within the SIB volume. The beamlet intensities, 𝑥, are 

maintained as non-negative with sixth and final constraint. The problem was solved with the 

Chambolle-Pock algorithm169 with a linesearch procedure, as detailed in the Appendix.  
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 The resultant mean dose to the SIB volume from the optimization, 𝑆𝐼𝐵𝑜𝑝 , was 

utilized as a patient-specific boost prescription dose and re-optimized within the original 4π 

framework with identical OAR dose constraints and weighting parameters as that of the 

original 4π plans with 110 Gy boost. This additional polishing step enabled OAR-specific 

constraints to be kept and improved dose homogeneity within the SIB volume. OAR dose 

statistics of the 4π SIB 110 Gy boost, 4π 𝑆𝐼𝐵𝑜𝑝 boost, and the original clinical plans were 

calculated and compared. 

 The customized 𝑆𝐼𝐵𝑜𝑝  values were then utilized to perform patient-specific dose 

fractionation optimization, as described in the following section.  

5.2.4 Patient-specific biological modeling 

 The previously developed cancer stem cell dynamics ODE model, as described in 

detail in section 2.2.2.3 and shown in Equation 2-6 was used to model the dynamic 

interaction between cancer stem cells (CSC) and differentiated cancer cells (DCC) for both 

the boost and non-boost volumes.  

                     Self-renewal 
𝑈̇(𝑡) = (2𝑃 − 1)𝑚𝑈𝑘(𝑊(𝑡))𝑈(𝑡)   

𝑉̇(𝑡) = 2(1 − 𝑃)𝑚𝑈𝑘(𝑊(𝑡))𝑈(𝑡) + 𝑚𝑉𝑘(𝑊(𝑡))𝑉(𝑡) − 𝑎𝑉𝑉(𝑡)    
                 Differentiation from CSC          DCC growth            DCC natural cell death 
𝑊(𝑡) = 𝑈(𝑡) + 𝑉(𝑡) 
𝑘(𝑊) = max (1 − 𝑊4, 0)   

Equation 5-2 

 In short, U(t), V(t), and W(t) represent the volume fractions of CSCs, DCCs, and total 

tumor with respect to a specified volume of interest in which the tumor can grow. 𝑃 is the 

probability that one CSC gives rise to two CSC, instead of two DCCs.  The growth rates of CSC 

and DCC are 𝑚𝑈 and 𝑚𝑉, and 𝑎𝑉 is the natural cell death rate of DCCs.  Following previous 
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publications40,43, all three parameters were set to ln(2)/Tpot day-1, where Tpot represents the tumor 

potential doubling time of malignant brain tumors95. 𝑘(𝑊)  keeps the total tumor volume 

fraction in between 0 and 1 while simulating the slowdown in growth rate as new born cells 

compete for resources within the available growth volume69.  All simulations in this study 

were set to have the specified volume of interest to be 1011 cells.  As patients typically receive 

radiation thirty days after surgery (range, 3-6 weeks)109, the ODE was utilized to simulate 30 days 

of tumor growth with no treatment intervention from the specified initial conditions prior to 

starting radiation therapy. The recurrence time is defined as the time point at which the total tumor 

cell number exceeds 2.8 × 109 cells, 1 ml larger than the postoperative mean T1 post-gadolinium 

enhancement volume of 1.8 ml from 721 patients108.  

 Radiation therapy was modeled by halting the ODE prior to each dose fraction and 

applying LQ killing to  each compartment using radiosensitivity parameters obtained from 

fitting of GBM clonogenic survival data43. In addition, based on the evidence of radiation-

induced cell reprogramming where DCCs convert back to CSCs after radiation exposure at a 

rate proportional to the dose received103,110, a reprogramming term was also incorporated 

into the cell killing model. The linear quadratic radiation therapy cell killing and 

reprogramming to both compartments within the boost and non-boost volumes are applied 

as follows in Equation 2-8: 

𝑈(𝑡) = 𝑈0exp {−𝛼𝐶𝑆𝐶(𝐷)𝑖 − 𝛽𝐶𝑆𝐶(𝐷)𝑖
2}+𝑐𝑉0(𝐷)𝑖exp{−𝛼𝐷𝐶𝐶(𝐷)𝑖 − 𝛽𝐷𝐶𝐶(𝐷)𝑖

2} 

𝑉(𝑡) = (1 − 𝑐(𝐷)𝑖)𝑉0exp{−𝛼𝐷𝐶𝐶(𝐷)𝑖 − 𝛽𝐷𝐶𝐶(𝐷)𝑖
2
},  

Equation 5-3 

where U0 and V0 are the compartmental cell fractions after halting the ODE at dosing time 

points, (𝐷)𝑖  represents the radiation delivered to the volume of interest (boost or non-boost) 

on the 𝑖 th fraction. 𝑐  is the reprogramming coefficient that induces a dose dependent 
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reprogramming on the DCCs that remain after LQ killing. The ODE parameters that remained 

universal for all patients are shown in Table 5-3.  

𝑷 𝑭 𝜶𝑪𝑺𝑪 𝜷𝑪𝑺𝑪 𝜶𝑫𝑪𝑪 𝜷𝑫𝑪𝑪 𝒄 

0.51 0.016 0.01 1.77E-07 0.125 0.028 5.196E-03 

Table 5-3: Universal parameters for biological modeling.  

 With knowledge of the time to recurrence for each patient, the initial number of 

viable tumor cells (𝑁𝑉), and the potential doubling time (𝑇𝑝𝑜𝑡) were tuned to achieve the 

same model prediction in recurrence time after applying the same radiotherapy dose 

fractionation scheme that the patient had received. During the tuning step, the CSC and DCC 

populations are assumed to be uniformly distributed throughout the entire 𝑃𝑇𝑉𝑈  volume 

and receiving uniform dose. The model is therefore initialized as follows: 

𝑈0 = 𝑁𝑉𝐹, 𝑉0 = (1 − 𝐹)𝑁𝑉, 

Equation 5-4 

where 𝐹 represents the fraction of CSC out of the all viable tumor cells. The obtained patient-

specific models were then utilized to perform dose fractionation optimization.  
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Figure 5-1: Tumor growth ODE and radiation therapy simulation schematic with consideration of 
boost and non-boost volumes 

5.2.5 Dose fractionation optimization with SIB 

5.2.5.1 Volume initialization  

 The goal of this study is to assess the potential benefit in delivering boost dose to 

regions with higher tumor activity, which in theory could have an enhanced concentration 

of CSCs. Despite recent breakthroughs in in-vivo imaging of CSC, there is no fixed answer of 

how high the concentration enhancement would be for each patient. Therefore, a wide range 

of CSC concentration enhancements within the SIB volume were utilized to demonstrate the 

potential range of improvement that 4π SIB in conjunction with dose fractionation 

optimization could provide. The volumes are initialized with definitions shown in Equation 

5-5 below. 
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𝑈𝑆𝐼𝐵0
= 𝑚𝑁𝑉𝐹𝑅  

𝑉𝑆𝐼𝐵0
= 𝑁𝑉𝑅 − 𝑈𝑆𝐼𝐵0

  

𝑈𝑁𝐵0
= 𝑁𝑉𝐹 − 𝑈𝑆𝐼𝐵0

  

𝑉𝑁𝐵0
= (1 − 𝐹)𝑁𝑉 − 𝑉𝑆𝐼𝐵0

  

𝑅 =
𝑆𝐼𝐵

𝑃𝑇𝑉𝑈
 

Equation 5-5 

𝑈𝑆𝐼𝐵0
, 𝑉𝑆𝐼𝐵0

, 𝑈𝑁𝐵0
, and 𝑉𝑁𝐵0

represent the starting number of CSCs and DCCs in the boost and 

non-boost volumes. 𝐹 is the fraction of CSC out of the entire viable tumor volume, 𝑁𝑉. 𝑚 is a 

CSC concentration enhancement multiplier that increases the CSC concentration within the 

SIB volume. 𝑅  represents the volume fraction of boost region out of the 𝑃𝑇𝑉𝑈 . This 

initialization method assumes that the density of 𝑁𝑉  is uniform throughout 𝑃𝑇𝑉𝑈 .  The 

number of CSCs required to achieve the assigned concentration boost of 𝑚 within the boost 

volume is first obtained, the remaining is then filled in with DCCs. The remaining CSC and 

DCC then populates non-boost region.  𝑚 = 1   is equivalent to initializing with uniform 

concentrations throughout 𝑃𝑇𝑉𝑈. Dose fractionation optimizations with 𝑚 of 1, 2, 5, 10, 50, 

and 100 were calculated in this study. A full schematic of the tumor growth and radiotherapy 

simulation is shown in Figure 5-1.  

 
Figure 5-2: Schematic of optimization variables with respect to treatment time 

5.2.5.2 Problem formulation 

The formulated optimization problem is shown in Equation 5-6 below: 
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argmax
𝐷𝑆𝐼𝐵,𝐷𝑁𝐵,𝑇

       Recurrence Time(𝐷𝑆𝐼𝐵, 𝐷𝑁𝐵, 𝑇) 

 

subject to               ∑ (𝐷𝑆𝐼𝐵)𝑖

𝑛

𝑖=1
+

(𝐷𝑆𝐼𝐵)𝑖
2

𝛼 𝛽⁄
≤ BED𝑆𝐼𝐵 ,         ∑ (𝐷𝑁𝐵)𝑖

𝑛

𝑖=1
+

(𝐷𝑁𝐵)𝑖
2

𝛼 𝛽⁄
≤ BED𝑁𝐵, 

 

𝐷𝑚𝑖𝑛 ≤ 𝐷𝑆𝐼𝐵 , 𝐷𝑁𝐵 ≤ 𝐷𝑚𝑎𝑥 , ∑ 𝑇𝑖

𝑛−1

𝑖=1
= 𝐿, 𝐿𝑠 ≤ T ≤ 𝐿, 

1

𝑟
≤

(𝐷𝑆𝐼𝐵)𝑖

(𝐷𝑁𝐵)𝑖
≤ 𝑟, 𝑓𝑜𝑟 𝑖 =  1. . 𝑛 

Equation 5-6 

 The objective of the optimization is to maximize the recurrence time with 

optimization variables of interest 𝐷𝑆𝐼𝐵 , 𝐷𝑁𝐵 , and 𝑇 .  𝐷𝑆𝐼𝐵  and 𝐷𝑁𝐵  are vectors of length 𝑛, 

with each element (𝐷𝑆𝐼𝐵)𝑖  and (𝐷𝑁𝐵)𝑖  representing the dose applied to the SIB and non-

boost volumes during the 𝑖th dose fraction. 𝑇 is a vector of length n-1, with each element 𝑇𝑖 

as the time interval between fractions 𝑖 and 𝑖+1.The total treatment duration is specified as 

L. A schematic of the optimization variables with respect to treatment time is shown in 

Figure 5-2.  

Optimization constraints include total normal tissue biological effective dose (BED) 

to both volumes (𝐵𝐸𝐷𝑆𝐼𝐵  and 𝐵𝐸𝐷𝑁𝐵), fractional dose limits (𝐷𝑚𝑖𝑛 and 𝐷𝑚𝑎𝑥), time interval 

limits, and ratio constraint (𝑟) between dose delivered to SIB and non-boost to ensure plan 

deliverability (𝑟 > 1). The ratio constraint is set to be 10% larger than the case-specific ratio 

between optimized SIB dose ( 𝑆𝐼𝐵𝑜𝑝 ) and the original prescription dose obtained. 𝐿𝑠 

indicates the lower bound of the time intervals, which was set to 1 to ensure at least one full 

day between all fractions. 𝑛 and 𝐿 were set to equal that of the originally delivered dose 

fractionation schedule. For example, for a conventional once per weekday 2 Gy × 30 scheme, 

𝑛  and 𝐿   were 30 and 39, respectively. 𝛼 𝛽⁄  represents the ratio between the linear and 

quadratic terms within the classic LQ model for surrounding normal brain tissue, which was 
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set to 3 for all calculations.  𝐵𝐸𝐷𝑁𝐵 was set to be equivalent to the BED that the patient had 

received from the original dose fractionation scheme, as indicated in Table 5-1.  𝐵𝐸𝐷𝑆𝐼𝐵  was 

set to be equal to the BED of delivering the total optimized SIB dose as equal dose fractions 

throughout all the whole treatment course, as demonstrated in Equation 5-7.  

𝐵𝐸𝐷𝑆𝐼𝐵 =
𝑆𝐼𝐵𝑜𝑝

2

𝑛 ∙ 𝛼/𝛽
+ 𝑆𝐼𝐵𝑜𝑝 

Equation 5-7 

 The optimization problem was solved using a paired simulated annealing 

algorithm111, as detailed in section 2.2.2.3 and demonstrated in Figure 5-3. The optimization 

variables 𝐷𝑆𝐼𝐵  and 𝐷𝑁𝐵 were initialized as equal dose fractions, and 𝑇 was set to represent 

once every weekday treatments. The simulated annealing parameters and additional 

universal problem constraint parameters are tabulated in Table 5-4.  

 
Figure 5-3: Simulated annealing algorithm schematic 

Simulated annealing algorithm parameters Problem constraint parameters 

𝒔𝑫 𝒔𝑻 𝑻𝒑𝒓𝒐𝒃 𝑻𝒔𝒕𝒆𝒑 
Decision probabilities 

𝑳𝒔 𝑫𝒎𝒂𝒙 𝑫𝒎𝒊𝒏 𝜶/𝜷 
𝑻 𝑫𝑺𝑰𝑩 𝑫𝑵𝑩 

40 15 1 2 0.3 0.35 0.35 1 15 0.5 3 

Table 5-4: Optimization parameters 
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5.3 Results 

5.3.1 4π radiotherapy plan generation with fixed boost dose 

 Global improvement in OAR sparing was observed for all cases even with the 

substantially higher boost dose prescription of 110 Gy compared with the original clinical 

plans.   The average OAR mean and maximum dose statistics of the boost plans with 110 Gy 

delivered to the SIB volume are shown in Table 5-5. OARs mean or maximum dose with 

statistically significant dose reduction based on a one-sided Wilcoxon signed rank test 

compared with the original clinical plan are indicated with an asterisk (*). All maximum dose 

values reported are defined as 𝐷2%, dose received by at least 2% of the volume. All candidate 

beamlets within the selected beam angles for each case was used in SIB optimization to 

identify the maximum achievable boost dose. 

Table 5-5: Average OAR dose statistics for the 4π SIB with fixed boost of 110 Gy, patient-specific 
optimized boost, and original clinical plan. *Statistically significant dose reduction compared with 
clinical plan, with p<0.05 from one-sided Wilcoxon signed rank test.   

5.3.2 Simultaneous integrated boost (SIB) optimization  

 The resultant dose statistics and the utilized optimization parameters for each plan 

is shown in Table 5-6. The obtained mean dose to the boost volume (𝑆𝐼𝐵𝑜𝑝) is used for the 

dose fractionation optimization. All values are substantially higher than the originally 

 Average OAR Dose Statistics (Gy) 

 Brainstem Chiasm 
Cochlea Eye Lens Optic Nerve 

L R L R L R L R 

4π 
SIB 

110Gy 
Mean 17.96 11.75* 4.46 2.23 1.62* 1.32* 0.87* 0.60* 2.92* 3.72* 

Max 40.84 18.96* 5.97 3.20 3.16* 2.87* 1.09* 0.83* 4.98* 5.45* 

Opt 
Mean 18.77 12.47* 6.18 1.73 1.59* 1.39* 0.83* 0.72* 3.38* 3.61* 

Max 44.53 19.71* 8.08 2.93 3.09* 2.98* 1.10* 1.06* 5.86* 6.22* 

Clinical 
Mean 27.24 28.71 11.61 5.07 5.11 5.00 3.23 3.17 12.79 10.88 

Max 43.18 37.74 18.54 6.68 9.12 8.53 3.74 3.67 25.35 21.48 
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assigned 110 Gy boost dose, particularly for cases with boost volumes that overlap with the 

original PTV completely, which all achieved doses greater than 214 Gy. For cases with only 

partial overlap, the minimum dose to the boost volume was substantially lower as expected 

due to the need to minimize dose to the immediately abutting normal brain volume. For all 

generated SIB cases, the normal brain mean dose was maintained significantly lower than or 

equivalent to that of the original clinical plans ( 𝐷𝑚𝑒𝑎𝑛 ), indicating that the enforced 

maximum dose constraint to the normal brain volume is the dose limiting factor of this 

optimization problem instead of the overall mean dose. The resultant average OAR 

maximum and mean doses are reported in Table 5-5, indicated as “4π SIB Opt”. Statistically 

significant reduction in OAR dose values compared with the original clinical plans was still 

observed with the optimized boost doses for majority OARs, as indicated by asterisks (*). 

The only OAR with slightly worsened maximum dose average is the brainstem, which 

resulted from one case with brainstem partially overlapping with the original PTV volume 

and abutting the boost volume.  As expected, OAR doses from the “4π SIB Opt” plans are 

higher than that of plans with fixed boost dose of 110 Gy (4π SIB 110 Gy).  

Pt 
# 

Normal Brain Boost volume (SIB) Non-Boost (NB) Optimization hyper-parameters 

Mean dose (Gy) 
Max 
(Gy) 

Dose statistics (Gy) 
Mean 
(Gy) 

PreD 
Coverage 

(%) 

Cutoff 
𝒑 𝒘𝑺𝑰𝑩 𝒘𝑶𝑨𝑹 𝒘𝑯 

Margin 
M (mm) 

Clinical 
(𝑫𝒎𝒆𝒂𝒏) SIB Plan 

Mean 
(𝑺𝑰𝑩𝒐𝒑) 

Max Min 

1* 32.2 20.8 66.2 124.2 127.6 124.3 70.1 99.9 1 30 1 3 0 

2 29.4 26.3 61.1 214.0 219.4 213.4 73.9 99.6 0.7 200 2 3 2.5 

3 19.0 15.4 58.5 234.7 239.5 232.8 80.9 99.6 0.7 200 2 10 2.5 

4 40.3 32.0 61.8 245.6 250.4 245.3 81.2 98.9 0.9 200 2 20 0 

5* 20.6 20.6 65.8 117.3 121.4 117.3 68.6 99.6 1 30 2 2 0 

6 18.2 14.9 58.4 228.6 234.4 229.4 101.2 99.9 0.7 200 2 10 2.5 

7* 31.9 15.1 55.6 127.0 131.6 127.2 68.5 98.0 1 40 2 3 0 

Table 5-6: Case-specific optimization parameters and resultant dose statistics. PreD = prescription 
dose. Margin M = isotropic expansion radius around 𝑃𝑇𝑉𝑈 that was used to generate volume BrnM 
utilized as part of the optimization constraint.  All maximum dose values are defined as 𝐷2%. 
Patients with SIB only partially overlapping with the original PTV are marked with *. 
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Figure 5-4: SIB example dose wash (a) Case with partial overlap boost (patient 1) (b) Case with 
complete overlap between boost and original PTV (patient 3) 

 The resultant dose wash from one case with partial overlap between the boost and 

original PTV (patient 1) and another with complete overlap (patient 3) are shown in Figure 

5-4(a) and Figure 5-4(b).  The corresponding DVH comparisons between the generated 4π 

SIB plans and the original clinical plans of the same two cases are shown in Figure 5-5(a) and 

Figure 5-5(b). The substantial OAR dose reduction and homogenous dose within the boost 

volume can be visually seen from both DVHs. For patient 1, the maximum brainstem dose is 

slightly higher than the original clinical plan due to the partial intersection between the 

original PTV. For patient 3, substantial reduction for all OARs was achieved even with a boost 

dose as high as 234.7 Gy.  This can be combatted by modifying the problem in the future to 

have separate weighting values for each OAR instead of a global weighting term, 𝑤𝑂𝐴𝑅. The 

mean values of the non-boost region, as shown in Table 5-6, are maintained close to the 

original prescription dose despite the substantially larger SIB dose delivered.  
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Figure 5-5: DVH comparison between original clinical plan and 4π SIB plans. To better demonstrate 
the curves for both OARs and the boost volume, two separate scales in dose were utilized for each 
DVH. (a) Partial boost overlap (patient 1) (b) Complete boost overlap (patient 3) 

5.3.3 Patient-specific biological modeling and optimization  

 The patient-specific number of viable tumor cells (𝑁𝑉) and potential doubling time 

(𝑇𝑝𝑜𝑡) that were tuned based on the time to recurrence and received dose fractionation 

scheme for each patient is shown in Table 5-7.  The fraction of boost volume within the 

treated total treated PTV volume (𝑃𝑇𝑉𝑈), used in the volume initialization demonstrated in 



 

130 

Equation 5-5, and 𝐵𝐸𝐷𝑆𝐼𝐵  and 𝑟 employed in optimization constraints are also tabulated in 

Table 5-7. All parameters were used for patient specific dose fractionation optimization. 

Pt # Time to 1st recurrence (Days) 𝑵𝑽 𝑻𝒑𝒐𝒕 (Days) 
𝑺𝑰𝑩

𝑷𝑻𝑽𝑼
(%) 

𝑩𝑬𝑫𝑺𝑰𝑩 
(Gy) 

𝒓 

1 256 1.79×109 3.9 5.44 295.49 2.28 

2 818 1.30×108 3.9 0.70 722.85 3.92 

3 457 5.48×108 3.9 1.11 790.94 4.35 

4 292 1.41×109 3.9 1.18 915.65 4.50 

5 189 1.93×109 3 2.80 256.39 2.17 

6 713 1.96×108 3.9 4.60 809.27 4.19 

7 1516 6.88×107 6 2.28 289.81 2.35 
Table 5-7: Patient-specific model and optimization parameters. 𝑵𝑽 = number of viable tumor cells 

at beginning of simulation. 𝑻𝒑𝒐𝒕 = potential doubling time in days. 
𝑺𝑰𝑩

𝑷𝑻𝑽𝑼
 = percentage of boost 

volume out of the entire treated volume. 𝑩𝑬𝑫𝑺𝑰𝑩 = total dose applied to boost volume. r = utilized 
ratio constraint between boost and non-boost volumes.  

  

Pt # 
TR 

(Days) 

Case specific volume fraction with CSC fraction within boost increased by multiplication factors 

m = 1 m = 2 m = 5 m = 10 m = 50 m = 100 

Equal Opt Equal Opt Equal Opt Equal Opt Equal Opt Equal Opt 

1 256 262.8 367.2 265.4 367.2 273.8 377.1 289.4 403.2 302.8 441.1 302.8 439.0 

2 818 820.4 946.0 821.5 944.8 824.7 950.6 830.1 949.3 878.4 1019.8 942.0 1136.3 

3 457 460.3 564.7 461.6 564.4 465.7 562.1 472.8 571.2 542.0 690.7 564.9 732.1 

4 292 294.3 373.6 295.2 372.6 298.2 373.6 303.2 380.5 353.9 472.1 380.7 534.9 

5 189 191.1 262.5 191.9 262.5 194.3 262.1 198.6 266.6 217.4 310.4 217.4 312.5 

6 713 728.8 856.0 735.6 855.0 757.4 874.2 799.0 950.2 851.6 1049.0 851.6 1044.6 

7 1516 1524.0 1791.7 1527.0 1780.7 1536.0 1771.9 1551.6 1794.0 1625.6 1908.7 1625.6 1905.7 

Table 5-8:  Forward simulation with equal dose fractions and dose fractionation optimization 
recurrence time results across various CSC concentrations within boost volume. 𝒎 = CSC 
concentration multiplier. TR = time to recurrence. Forward simulation results are labeled as 
“Equal”, optimization results are indicated by “Opt”.  

 Comparisons between recurrence outcome from forward simulations with equal 

dose fractions treated on conventional per weekday time points (Equal), and optimized dose 

fractionation with variable time and doses (Opt) across various CSC concentration 

multipliers ( 𝑚 ) are shown in Table 5-8. Dose fractionation optimization resulted in 

substantial improvements in recurrence for all differing CSC concentration within the boost 
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region. This benefit is observed even without CSC concentration boost (m=1). The 

improvement provided by optimization compared with equal dose fractions ranges between 

68 - 242 days, and is up to 393 days compared with the original clinical recurrence without 

boost dose.  

 
Figure 5-6: Dose fractionation result and corresponding tumor growth vs. time for patient 2 with 
CSC concentration multiplier m = 5. (a) The breakdown of CSC and DCC, along with the total viable 
tumor volume. (b) Resultant dose delivered to both the non-boost (blue) and SIB (red) regions at 
the corresponding time points. 

 Two major types of dose fractionation outcome was observed across the patient 

cohort and differing CSC concentrations within boost.  For both representative trends, 

treatment begins with a very large fraction to both the boost and non-boost volumes, 

followed by remaining fractions with relatively similar dosages. The first type exhibits dense 

once per day dose fractions in the beginning of the treatment course followed by a long time 

interval in the end with no treatment, as shown in Figure 5-6. The second type has a long 

interval with no treatment after the first fraction is delivered, followed by dense once-per-
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day deliveries close to the end of the treatment course, as shown in Figure 5-7. For both 

figures, the two subplots share the same time axes to directly demonstrate how the obtained 

dose fractionation scheme effects tumor progression during the treatment course, and each 

set of bars in subplot (b) represents the doses simultaneously delivered to the SIB (red) and 

non-boost (blue) volumes, and the time correspondence for each fraction to the tumor 

growth plot is further illustrated by the vertical dashed lines.  

 
Figure 5-7: Dose fractionation result and corresponding tumor growth vs. time for patient 4 with 
CSC concentration multiplier m = 50.  (a) The breakdown of CSC and DCC, along with the total viable 
tumor volume. (b) Resultant dose delivered to both the non-boost (blue) and SIB (red) regions at 
the corresponding time points. 

For each patient, type 1 is observed for cases with lower 𝑚 values and transitions into type 

2 as the multiplier increases (𝑚 ≥ 10).  The 𝑚 value at which the type 1 to 2 transition occurs 

is smaller for cases with quicker original treatment time or smaller 𝐵𝐸𝐷𝑆𝐼𝐵 . For all cases, the 

extremely radioresistant CSC increases slightly in the beginning due to radiation induced cell 

reprogramming, and as the DCC compartment quickly reduces in size, the CSC reduction 
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from radiation killing gradually overtakes the increase due to reprogramming, resulting in 

steady decrease in CSCs.  

5.3.4 Discussion 

 In this work, we assess the power in improving GBM disease outcome by combining 

spatial and temporal dose optimization. State-of-the-art spatial dose optimization was 

performed with 4π radiotherapy on personalized boost volumes where the eventual disease 

recurrence occurred. Going beyond the current standard of attempting to treat with a 

manually assigned prescription dose, we explored the maximum achievable prescription 

dose to patient-specific boost volumes with a novel simultaneous integrated boost 

optimization formulation. Results from this formulation showed that substantial boost of up 

to 4 times the original prescription dose can be achieved to a smaller volume residing within 

the original PTV while still maintaining acceptable dose to the surrounding normal brain 

volume and critical organs at risk. Application of this discovered method is not merely 

limited to treatment on GBM. Case-specific maximized boost could be performed to any 

region with particularly higher PET or disease activity within a treatment volume, regardless 

of disease site. The dose maximizing concept itself is also not limited to 4π radiotherapy, but 

rather, could also be applied to many other existing delivery techniques. 

 With a unique cancer stem cell dynamics mathematical model that reflects the 

definitive treatment failure of GBM, a dose fractionation optimization framework was 

developed to examine potential solutions in further delaying disease recurrence. In 

conjunction with dose boost to a small volume, significant delay of up to 276 days was shown 

from dose fractionation optimization even without CSC concentration increase within the 
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simulated SIB volume. Improved recurrence delay is associated with higher boost dose, 

larger boost volume fraction, higher CSC concentration increase within boost volume, and 

cases with slower growing tumors, as expected. With CSC concentration increase of up to 

100 fold, maximum recurrence delay of 392 days was observed for a patient with the slowest 

growing disease (patient 7). Increase in CSC concentration within boost volume has resulted 

in differing optimal treatment strategies where fractions were delayed to close to the end of 

the treatment course rather than applied in the beginning. The possible reasoning of such 

behaviour is explained as follows. With the conservation of cell density to both volumes 

during initialization, higher CSC concentration results in substantially lower DCC volume 

within the boost volume. Even though CSC governs the eventual fate of the tumor, the CSCs 

are extremely radioresistant and grow very slowly, the timing of delivering on CSC alone 

became less essential. Therefore, the optimal solution for delaying eventual overall 

recurrence is instead to wait until more DCCs are also within the high radiation field. The 

demonstrated potential in substantial recurrence delay across a patient cohort with differing 

disease characteristics is exciting.  

 There are several limitations with the study. Although the model was able to 

successfully reproduce the aggressive regrowth of GBM after aggressive treatment, it does 

not take into consideration biological factors such as tumor vasculature, oxygen content, the 

effect of asymmetric divisions, and spatial heterogeneity. While the current mathematical 

model is simplistic, its potential in significant disease delay warrants further investigation 

with rigorously designed preclinical and clinical studies.  With the technological and 

algorithmic abilities to spatially optimize and modulate dose distributions, the long term 

goal would be to combine these highly complex spatial dose distributions with improved 
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biological models with spatial heterogeneity considerations to even more realistically 

predict and understand treatment response in order to further improve radiation therapy 

outcome in GBM patients.  

 

5.3.5 Conclusion 

 By combining the spatial dose sparing power of 4π radiotherapy and temporal dose 

fractionation optimization with a CSC dynamics biological model in a personalized manner, 

significant potential in GBM disease recurrence delay was demonstrated across a cohort with 

differing disease characteristics. Further investigation is needed to validate the proposed 

model and resultant dose fractionation schedules to fully realize and translate these 

substantial clinical benefits.  
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6  APPENDIX 

 

 

 

THE CHAMBOLLE-POCK ALGORITHM 

 The Chambolle-Pock algorithm is a first-order primal dual algorithm, utilized to 

solve the simultaneous integrated boost optimization problem in this dissertation. In this 

appendix, the format of the optimization problem required for this algorithm, details 

regarding the algorithm, and utilized line-search procedure, will be described. 

6.1 Optimization problem formulation 

The Chambolle-Pock algorithm solves problems in the following canonical form 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝐾𝑥) + 𝐺(𝑥) 

Equation 6-1 

,where F  and G  are functions and K  is a matrix. The SIB problem was written to fit this 

canonical form as follows in Equation 6-2.  
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𝐾 =

[
 
 
 
 
 
 

𝐴𝑁𝐵

𝐴𝑂𝐴𝑅

1𝑇𝐴𝐵𝑟𝑛

𝐴𝑃𝑇𝑉95%

𝐴𝐵𝑟𝑛𝑀

𝐴𝑆𝐼𝐵 ]
 
 
 
 
 
 

 

𝐹(𝑧) =
1

2
‖(𝑧1 − 𝑑)‖2

2 +
1

2
𝑤𝑂𝐴𝑅‖(𝑧2)‖2

2 + 𝐼−(𝑧3 − 𝑛𝐷𝑚𝑒𝑎𝑛) + 𝐼+(𝑧4 − 𝑑) + 𝐼−(𝑧5 − 𝑑 ∙ 𝑝)

+
1

2
𝑤𝐻 ‖(𝑧6 −

1𝑇𝐴𝑆𝐼𝐵𝑥

𝑛𝑆𝐼𝐵
)‖

2

2

 

𝐺(𝑥) =  −1𝑇𝐴𝑆𝐼𝐵𝑥 + 𝐼+(𝑥) 

Equation 6-2 

6.2 The Algorithm 

The problem was solved with the overrelaxed version of the Chambolle-Pock algorithm170, 

as shown below in Equation 6-3: 

𝑥̅𝑛+1 = 𝑝𝑟𝑜𝑥𝜏𝐺(𝑥𝑛 − 𝜏𝐾𝑇zn) 

z̅𝑛+1 = 𝑝𝑟𝑜𝑥σF∗(z𝑛 − σK(𝑥̅𝑛+1 + 𝜃(𝑥̅𝑛+1 − 𝑥𝑛)) 

𝑥𝑛+1 = 𝜌𝑥̅𝑛+1 + (1 − 𝜌)𝑥𝑛 

𝑧𝑛+1 = 𝜌𝑧̅𝑛+1 + (1 − 𝜌)𝑧𝑛, 

Equation 6-3 

with 𝑧 indicating the variable of the dual problem in Equation 6-4 . 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐺∗(−𝐾𝑇𝑧) + 𝐹∗(𝑧) 

Equation 6-4 

𝐹∗ indicates the convex conjugate of function F, defined as: 

𝐹∗(𝑧) = sup
𝑦

(𝑧𝑇𝑦 − 𝐹(𝑦)) 

Equation 6-5 

𝑝𝑟𝑜𝑥 indicates the proximal operator, defined as 
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𝑝𝑟𝑜𝑥𝑡ℎ(𝑥) = argmin
𝑣

(ℎ(𝑣) +
1

2𝑡
‖𝑣 − 𝑥‖2

2), 

Equation 6-6 

where t serves as a step size and ℎ indicates a lower semi-continuous function of which the 

prox operator tries to minimize. 𝜌 is the overrelaxation parameter, which was set at 1.9. 𝜃 

was initialized at 1.  
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6.3 Linesearch procedure 

The linesearch algorithm implemented is shown below, adapted from Malitsky and Pock171. 

 

𝜇 was set to 0.7, 𝛿 was initialized at 0.90. 

 𝛽 = 𝜎/𝜏 , and 𝜎 and  𝜏 were tuned through exhaustive search with the fixed step size version 

of Chambolle-Pock, as described in the previous section. 
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