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ABSTRACT OF THE DISSERTATION

Geometric Integrators for Stiff Systems, Lie Groups
and Control Systems

by

Xuefeng Shen

Doctor of Philosophy in Mathematics with a Specialization in Computational Science

University of California San Diego, 2019

Professor Melvin Leok, Chair

The main idea of a geometric integrator is to adopt a geometric viewpoint of the problem

and to construct integrators that preserve the geometric properties of the continuous dynamical

system. For classical mechanics, both the Lagrangian and the Hamiltonian formulations can be

described using the language of geometry. Due to the rich conservation properties of mechanics,

it is natural to study the construction of numerical integrators that preserve some geometric

properties, such as the symplectic structure, energy, and momentum maps. Such geometric

structure-preserving numerical integrators exhibit nice properties compared to traditional nu-

merical methods. This is especially true in galaxy simulations and molecular dynamics, where

xiii



long time simulations are required to answer the corresponding scientific questions. Variational

integrators have attracted interest in the geometric integration community as it discretizes Hamil-

ton’s principle, as opposed to the corresponding differential equation, to obtain a numerical

integrator that is automatically symplectic, and which exhibits a discrete Noether’s theorem.

Besides classical mechanics, such an approach has also been applied to other fields, such as

optimal control [31, 40], partial differential equations [44], stochastic differential equations [9],

and so on.

In this thesis, we consider generalizations of geometric integrators that are adapted to

three special settings. One is the case of stiff systems of the form, q̇ = Aq+ f (q), where the

coefficient matrix A has a large spectral radius that is responsible for the stiffness of the system,

while the nonlinear term f (q) is relatively smooth. Traditionally, exponential integrators have

been used to address the issue of stiffness. In Chapter 2, we consider a special semilinear

problem with A = JD, f (q) = J∇V (q), where JT = −J,DT = D, and JD = DJ. Then, the

system is described by q̇ = J(Dq+∇V (q)), which naturally arises from the discretization of

Hamiltonian partial differential equations. It is a constant Poisson system with Poisson structure

Ji j
∂

∂xi
⊗ ∂

∂x j
, and Hamiltonian H(q) = 1

2qT Dq+V (q). Two types of exponential integrators are

constructed, one preserves the Poisson structure, and the other preserves energy. Numerical

experiments for semilinear Possion systems obtained by semi-discretizing Hamiltonian PDEs are

presented. These geometric exponential integrators exhibit better long time stability properties as

compared to non-geometric integrators, and are computationally more efficient than traditional

symplectic integrators and energy-preserving methods based on the discrete gradient method.

The other generalization is to Lie groups. When configuration manifold is a Lie group,

we would like to utilize the group structure rather than simply regard it as embedded submanifold.

This is particularly useful when codimension of the embedding is large. For the rigid body

problem, the configuration space is R3 o SO(3), which is a Lie group. Lee et al. [35] were

the first to directly use the Lie group structure of the rotation group to construct a Lie group

variational integrator. In contrast, most prior approaches used the unit quaternion representation

xiv



of the rotation group and applied symplectic integrators for constrained systems with the unit

length constraint. In Chapter 3, we adopt the approach used in constructing Lie group variational

integrators for rigid body dynamics on the rotation group and applied it to the unit quaternion

representation. A Lie group variational integrator in the unit quaternion representation is derived,

and it can be shown that our method is related to the RATTLE method applied to the rotation

representation by the projection from unit quaternions to rotation matrices. The numerical results

for our Lie group quaternion variational integrator are presented. The integrators constructed

in Chapter 3 are only second-order, and in Chapter 4, variational integrators of arbitrarily high-

order on special orthogonal group SO(n) are constructed by using the polar decomposition.

It avoids the second-order derivative of the exponential map that arises in the traditional Lie

group variational integrator method. Also, a reduced Lie–Poisson integrator is constructed. The

resulting algorithms can naturally be implemented using fixed-point iteration. Numerical results

are given for the case of SO(3).

The last generalization is to control systems. We studied the problem of uncertainty

propagation and measurement update for systems that are partially unobservable. We construct a

method that satisfies the chain property that the unobservable subspace remains perpendicular

to the measurement dh during propagation. We characterize the unobservable subspace in

terms of the group-invariance of the control system, and obtain a reduced control system on the

observable variables. By decomposing the system explicitly into unobservable and observable

parts (xN ,xO), the chain property can be naturally satisfied. Also, we propose a reduced Bayesian

framework, where the update from the measurement is only applied to the observable variables

xO. In Chapter 5, we consider a planar robot model, which has one odometry sensor and one

camera. Odometry is used for propagation and the camera is used for measurement. In this

model, the two-dimensional position as well as the orientation are all unobservable. We applied

our technique to this model and performed numerical simulations. We tested this on straight

line, circle, and general trajectories and found that the reduced Kalman filter that we proposed

outperforms the classical Kalman filter and modifications that were proposed in the literature. In

xv



particular, it estimates the angle quite well, and as a result, yields a better estimate of the position

as well.
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Chapter 1

Introduction and Background

1.1 Geometric setting for classical mechanics

1.1.1 Lagrangian mechanics and Hamiltonian mechanics

There are three equivalent descriptions of classical mechanics:

1. Newton’s second law of motion,

F = ma;

2. Lagrangian mechanics,
∂L
∂q
− d

dt

(
∂L
∂ q̇

)
= 0; (1.1)

3. Hamiltonian mechanics, 
q̇ =

∂H
∂ p

(q, p),

ṗ =−∂H
∂q

(q, p).
(1.2)

It turns out that the notion of a manifold is a natural setting for describing the configuration

spaces for Lagrangian mechanics and Hamiltonian mechanics, especially in the case of problems

with constraints. Consider a planar pendulum, its trajectory is constrained to lie on a circle, which

is a one-dimensional manifold; Two balls connected by a light stick of length l are constrained

to be a fixed distance apart, so their positions are not independent. Thus, the configuration

space is {x1,x2 ∈ R3| |x1− x2| = l}, which is a five-dimensional submanifold of R6. For the
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rigid body problem, the configuration of the rigid body is uniquely determined by a translation

and rotation, thus the configuration space is the Euclidean group SE(3) = R3 oSO(3), which

a six-dimensional manifold, and in particular, a Lie group. Using the language of manifolds,

generalized coordinates becomes coordinate charts on a manifold, and generalized velocities

becomes tangent vectors, while generalized momenta can be represented by cotangent vectors.

The intrinsic viewpoint of dynamics on a manifold allows us to focus on the global space and

global properties of flow maps, independent of the choice of coordinates, which is essential in

deriving symplectic integrators for nonlinear configuration spaces.

In the geometric setting, a Lagrangian mechanical system is denoted by (T Q,L), where

Q is the configuration manifold, T Q is the tangent bundle, which is usually called the state space,

and L : T Q→ R is the Lagrangian of the system. In physics, the Lagrangian L is given by the

difference of the kinetic energy T and the potential energy V , i.e., L = T −V . The mechanics on

(T Q,L) is described by the principle of least action (or Hamilton’s principle), which states that

δ

∫ t1

t0
L(q(t), q̇(t))dt = 0,

for variations with fixed endpoints q(t0) = q0,q(t1) = q1. Given a local coordinate chart, Hamil-

ton’s principle yield the Euler–Lagrange equations (1.1). This variational principle serves as the

basis for constructing variational integrators.

In contrast, a Hamiltonian mechanical system is denoted by (T ∗Q,H), where T ∗Q is the

cotangent bundle, which is usually called the phase space, and H : T ∗Q→ R is the Hamiltonian

of the system. In the case of quadratic kinetic energies, the Hamiltonian H is the sum of the

kinetic energy and the potential energy, i.e., H = T +V . The cotangent bundle T ∗Q possesses a

canonical symplectic structure ω , which is given by

ω = ∑
i

dqi∧d pi, (1.3)
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in local coordinates (q1, . . . ,qn, p1, . . . pn) on T ∗Q. Given a symplectic structure ω , and a

Hamiltonian H, there is an associated Hamiltonian vector field XH on T ∗Q, that is defined by,

iXH ω = dH.

The Hamiltonian vector field XH defines a well-posed first-order differential equation on T ∗Q,

and yields a flow map φt : T ∗Q→ T ∗Q. Given a Darboux coordinate chart, where the symplectic

structure has the form given in (1.3), then the Hamiltonian vector field XH gives Hamilton’s

equations (1.2). The flow map φt of the Hamiltonian vector field XH has a very special geometric

property, that is, it preserves the symplectic structure ω , which can be elegantly verified by

applying Cartan’s magic formula,

£XH ω = iXH (dω)+d(iXH ω),

= iXH (0)+d2H,

= 0.

Any one-step integrator applied to XH with timestep h can be regarded as an approximation of

the flow map φh. It is desirable to construct integrators that preserve the symplectic structure,

and such methods are called symplectic integrators.

Lagrangian mechanics and Hamiltonian mechanics are connected by the Legendre trans-

form,

(T Q,L) FL−�===�−
FH

(T ∗Q,H), (1.4)
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where FL and FH are defined as

〈FL(q, q̇),δ q̇〉= d
dt

∣∣∣∣
t=0

L(q, q̇+ tδ q̇),

〈FH(q, p),δ p〉= d
dt

∣∣∣∣
t=0

H(q, p+ tδ p).

In local coordinates, FL(q, q̇) = (q, ∂L
∂ q̇ ), and FH(q, p) = (q, ∂H

∂ p ). The Lagrangian L and Hamil-

tonian H are connected by

H(q, p) = p · q̇−L(q, q̇)|(q,p)=FL(q,q̇) ,

L(q, q̇) = p · q̇−H(q, p)|(q,q̇)=FH(q,p) .

When L is hyperregular, i.e., FL is a global diffeomorphism between T Q and T ∗Q, then La-

grangian mechanics (T Q,L) and Hamiltonian mechanics (T ∗Q,H) are equivalent, and the

Euler–Lagrange equations (1.1) and Hamilton’s equations (1.2) are related by the Legendre

transforms. We can transfer everything from phase space T ∗Q to state space T Q, the pullback of

the Hamiltonian H to T Q yields the energy function,

EL(q, q̇) =
∂L
∂ q̇
· q̇−L(q, q̇),

which is preserved by Euler–Lagrange flow. The pullback of the canonical symplectic structure

ω to T Q yields

ωL = FL∗ω = ∑
i, j

∂ 2L
∂ q̇i∂q j dqi∧dq j +

∂ 2L
∂ q̇i∂ q̇ j dqi∧dq̇ j,

which is also preserved by the flow of the Euler–Lagrange equation.
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1.1.2 First integrals and Noether’s theorem

In classical mechanics, consider for example, the N-body problem of N point masses

moving under mutual gravitational interaction, has a Hamiltonian that is given by

H(q1,q2 . . .qN , p1, p2 . . . pN) =
N

∑
i=1

|pi|2

2mi
+∑

i< j
ϕi j(|qi−q j|), (1.5)

where ϕ represents the gravitational potential. There are many interesting physical quantities

that are conserved by flow, including the energy, linear momentum, and angular momentum.

Studying the conserved quantities or first integrals of the system is very important as the constrain

the dynamics of the system. For any function F,G defined on T ∗Q, we define the Poisson bracket

as follows,

{F,G}= ω(XF ,XG).

This is a bilinear map {·, ·} : C∞(T ∗Q)×C∞(T ∗Q)→ C∞(T ∗Q) that satisfies the following

properties,

1. Leibniz rule {FG,H}= F{G,H}+{F,H}G;

2. Antisymmetry {F,G}=−{G,F};

3. Jacobi identity {{F,G},H}+{{G,H},F}+{{H,F},G}= 0.

Later, we will see that this defines a Poisson structure on T ∗Q. By the definition of the Hamilto-

nian vector field,

{F,H}= ω(XF ,XH) = 〈dF,XH〉= XH(F),

from which we obtain the following equation describing the evolution of a scalar function F

evaluated along a trajectory of the Hamiltonian vector field XH ,

dF
dt

= {F,H}. (1.6)
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This implies that a physical quantity is a first integral if and only if its Poisson bracket with the

Hamiltonian H vanishes. By combining this with the Jacobi identity property, we can prove

Poisson’s theorem, which states that,

Theorem 1. If F,G are first integrals, then their Poisson bracket {F,G} is also a first integral.

Another way to identify first integrals is by Noether’s theorem, which relates symmetries

to conservation laws. For the N-body problem (1.5), the system is invariant under translations,

which leads to the conservation of linear momentum. Similarly, the system is invariant under

rotations, which leads to the conservation of angular momentum. More precisely, Noether’s

theorem states that,

Theorem 2. Given a Lie group G that acts on the configuration space Q, there is a momentum

map J : T ∗Q→ g∗, which is given by

〈J(αq),ξ 〉= 〈ξQ(q),αq〉.

If the Hamiltonian H is invariant under the cotangent lift of the action of G on Q, then

£XH J = 0.

In the N-body problem, (1.5) is invariant under the translation and rotation groups, thus

the linear momentum and angular momentum are preserved.

1.1.3 Euler–Poincaré reduction and Lie–Poisson reduction

When the configuration space is a Lie group G, the state space T G and phase space T ∗G

are diffeomorphic to G×g and G×g∗, respectively, by left-trivialization. First, this is because

left-trivialized velocity and momentum arise naturally in problems such as rigid body dynamics;

second, this provides a global product structure for the state and phase spaces that simplifies
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the representation and calculations. For the left-trivialized Lagrangian L : G×g→ R, applying

Hamilton’s principle yields the left-trivialized Euler–Lagrange equation,

g−1 ∂L
∂g
− d

dt

(
∂L
∂ξ

)
+ ad∗

ξ

(
∂L
∂ξ

)
= 0. (1.7)

If the Lagrangian L is G-invariant, i.e., L(g,ξ )=L(e,ξ ), then we can define a reduced Lagrangian

l(ξ ) = L(e,ξ ), and (1.7) reduces to

d
dt

(
∂ l
∂ξ

)
= ad∗

ξ

(
∂ l
∂ξ

)
, (1.8)

which evolves on the Lie algebra g. This kind of symmetry reduction is called Euler–Poincaré

reduction, and (1.8) is the Euler–Poincaré equation. Equation (1.8) together with the obvious

reconstruction equation ġ = gξ , describe the dynamics of the left-invariant Lagrangian system

(T G, l): 
d
dt

(
∂ l
∂ξ

)
= ad∗

ξ

(
∂ l
∂ξ

)
,

ġ = gξ .

(1.9)

The Legendre transform (1.4) can be specialized to the left-trivialized case,

(G×g,L) FL−�===�−
FH

(G×g∗,H),

where FL and FH are expressed in terms of the usual partial derivatives on g and g∗, and the

following relations hold,

∂L
∂ξ

(g,ξ ) = µ,
∂H
∂ µ

(g,µ) = ξ ,
∂L
∂g

(g,ξ ) =−∂H
∂g

(g,µ). (1.10)
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By (1.10), the Euler–Poincaré equations become

dµ

dt
= ad∗∂h

∂ µ

(µ), (1.11)

which describes the evolution on the dual of the Lie algebra g∗ for the left-invariant Hamiltonian

system (T ∗G,h), where h(µ) = H(e,µ). This kind of symmetry reduction is called Lie–Poisson

reduction, and (1.11) is called the Lie–Poisson equation. And the reconstruction equation

becomes ġ = g ∂h
∂ µ

. Together, they describe the dynamics of the left-invariant Hamiltonian system

(T ∗G,h): 
dµ

dt
= ad∗∂h

∂ µ

(µ),

ġ = g
∂h
∂ µ

.

(1.12)

1.1.4 Hamiltonian mechanics on symplectic manifolds and Poisson
manifolds

Hamiltonian mechanics can be generalized from the cotangent bundle T ∗Q to any sym-

plectic manifold. By definition, a symplectic manifold is a smooth manifold M equipped with a

nonsingular, closed two-form ω . Together with a Hamiltonian H, the triple (M,ω,H) describe a

general Hamiltonian system on a symplectic manifold. Similar to canonical case, we can define

a Hamiltonian vector field XH by requiring that

iXH ω = dH,

and show that the flow of XH preserves the symplectic structure ω . We can also define a Poisson

bracket {·, ·} : C∞(M)×C∞(M)→C∞(M) that describes the evolution of a scalar function along

a trajectory of the Hamiltonian vector field (1.6), and obtain Poisson’s theorem. Examples
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include the Lotka–Volterra model [53],

u̇

v̇

=

 0 uv

−uv 0

∇H(u,v),

where H(u,v) = u− logu+ v−2logv; the generalized harmonic oscillator,

ṗ

q̇

=

 0 −(1+ p2 +q2)2

(1+ p2 +q2)2 0

∇H(p,q),

where H(p,q) = p2/2− cos(q); and the Ablowitz–Ladik model [1],

 ṗ

q̇

=

 0 D

−D 0

∇H(p,q),

which comes from a finite-difference approximation of the nonlinear Schrödinger equation, where

D = diag(−Un, . . . ,Un), Ul = 1+ p2
l +q2

l , H(p,q) = ∑
n
l=−n(pl pl+1 +qlql+1). The problem of

constructing a numerical integrator for noncanonical Hamiltonian system that preserves the

noncanonical symplectic structure ω is still an open problem. The noncanonical case is more

complicated because the canonical symplectic structure is constant with respect to canonical

coordinates on T ∗Q, whereas on a general symplectic manifold, the symplectic structure is

typically nonconstant.

Poisson manifolds are a generalization of symplectic manifolds. A Poisson manifold

(M,{·, ·}) is a smooth manifold M equipped with a Poisson bracket {·, ·} : C∞(M)×C∞(M)→

C∞(M) which is bilinear, antisymmetric, and satisfies the Leibniz rule and Jacobi identity. The

Poisson bracket is equivalent to the existence of a Poisson structure, which a (2,0)-tensor
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τ = Ji j ∂

∂xi ⊗ ∂

∂x j , whose coefficients satisfy


Ji j(x)+ J ji(x) = 0,

∂Ji j

∂xl Jlk +
∂J jk

∂xl Jli +
∂Jki

∂xl Jl j = 0.
(1.13)

For any Hamiltonian H on M, we can define the corresponding Hamiltonian vector field XH =

τ(dH), which has the local coordinate representation,

ẋ = J(x)∇H(x).

Similar to the case of (M,ω,H), the flow map preserves the Hamiltonian H and the Poisson

structure τ . The simplest Poisson structure is constant, i.e. J(x) ≡ J, then we get a constant

Poisson system

ẋ = J∇H(x).

A more complicated Poisson structure is linear, defined by τ = (Ck
i jxk)

∂

∂xi ⊗ ∂

∂x j , where Ck
i j are

the structure constants from a Lie algebra. It is easy to verify that the linear coefficients Ck
i jxk

satisfy (1.13) due to the properties of structure constants, and therefore define a Poisson structure.

This linear Poisson system also has a nice geometric representation, defined on the dual of the

Lie algebra g∗, with Poisson bracket,

{ f ,g}(µ) = 〈µ, [ f ′(µ),g′(µ)]〉,

which is referred to as a Lie–Poisson bracket.
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1.2 Störmer–Verlet, SHAKE and RATTLE

1.2.1 Geometric integrators

As we have seen in Hamiltonian mechanics on (T ∗Q,H), noncanonical Hamiltonian

mechanics on (M,ω,H), or more generally Poisson systems on (M,{·, ·},H), the exact flow

map φt satisfies some special properties. Our numerical integrator ψh can be regarded as an

approximation of φt , and it is desirable for it to inherit these properties, and we refer to numerical

integrators that preserve such geometric properties as geometric integrators. Let us summarize

some of these geometric properties:

1. φt preserves the symplectic structure ω , or the Poisson structure τ;

2. φt preserves first integrals, such as energy, momentum and so on;

3. φt forms a group with respect to the index t;

4. φt is time-reversible for reflection symmetric Hamiltonians, H(q, p) = H(q,−p).

Property 1 is one of the most important properties that we will construct numerical integrators

for, and we refer to such integrators as symplectic integrators. For property 3, we mean that flow

map φt satisfies

φt ◦φs = φt+s, φ0 = id, φ−t = φ
−1
t ,

i.e., {φt}t∈R forms a commutative group. Precisely maintaining the group property is difficult

to achieve in a numerical integrator, and an integrator that satisfies the condition ψ−h = ψ
−1
h is

called a symmetric integrator. This can be constructed by composing any integrator ψh with its

adjoint ψ∗h = ψ
−1
−h , and for such methods, it can be shown that (see page 86 of [37]),

Theorem 3. The order of a symmetric method is necessarily even.
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Reflection symmetry, H(q, p) = H(q,−p), which arises in property 4, holds for almost

all practical mechanical system, and it essentially means that the resulting Hamiltonian system


q̇ =

∂H
∂ p

(q, p),

ṗ =−∂H
∂q

(q, p),

is time-reversible: if (q(t), p(t)) is a solution of Hamilton’s equations, then so is (q(−t),−p(−t)).

Let z = (q, p)T, S =

I 0

0 −I

, then φt satisfies the time-reversibility property if and only if

φt(z) = Sφ−t(Sz).

Similarly, a numerical integrator ψh is called time-reversible if and only if it satisfies

ψh(z) = Sψ−h(Sz). (1.14)

If ψh is also symmetric, then (1.14) is equivalent to

ψh(z) = Sψ
−1
h (Sz). (1.15)

1.2.2 Störmer–Verlet method

We consider Newton’s second law with potential energy V (q),

q̈ =−∇V (q). (1.16)

This is equivalent to the Hamiltonian equation


q̇ = p,

ṗ =−∇V (q),
(1.17)
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where H(q, p) = |p|2
2 +V (q). For (1.17), we have two very simple first-order symplectic integra-

tors, the Euler-B method 
pn+1 = pn−h ·∇V (qn),

qn+1 = qn +h · pn+1,

(1.18)

and the Euler-A method, 
qn+1 = qn +h · pn,

pn+1 = pn−h ·∇V (qn+1).

(1.19)

It is easy to verify that (1.18) and (1.19) both satisfy dqn+1 ∧ d pn+1 = dqn ∧ d pn, i.e., they

are symplectic, and that they are adjoints of each other. The composition of (1.18) and (1.19),

EulerA
(h

2

)
◦EulerB

(h
2

)
, yields the Störmer–Verlet method,


pn+ 1

2
= pn−

h
2
·∇V (qn),

qn+1 = qn +h · pn+ 1
2
,

pn+1 = pn+ 1
2
− h

2
·∇V (qn+1).

(1.20)

Since (1.20) is the composition of two adjoint symplectic methods, it is both symmetric and

symplectic. It also satisfies (1.15), and is therefore time-reversible. By Theorem 3, we can

see that (1.20) has at least order 2. It can be shown that Euler-B, Euler-A and Störmer–Verlet

method all preserve linear first integrals (as do all Runge–Kutta methods), and quadratic first

integrals of the form I(q, p) = pT Bq. The Störmer–Verlet method (also known as the leapfrog

method) is probably the most widely used low-order symplectic algorithm in practice; numerical

experiments and theoretical analysis demonstrate that symplectic integrators have long time

stability, and are particularly suitable for the long time simulation of Hamiltonian systems. A

typical example is galaxy simulations, which is a N-body problem that is simulated over long

timescales to study galaxy formation, and this makes symplectic integrators, in particular the

leapfrog method, the methods of choice for collisionless galaxy simulations.

The Störmer–Verlet method can be interpreted in many different ways: besides the
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composition of the Euler-A and Euler-B method, it is also equivalent to the following two-step

method,

qn+1−2qn +qn−1 =−h2 ·∇V (qn), (1.21)

while (1.21) is the most natural central-difference discretization of (1.16); another way is as

a splitting method, since H(q, p) = |p|2
2 +V (q) = T (p)+V (q) is separable, their exact flow

maps φ T
h and φV

h have a closed form, and an approximation of the exact flow map φH,h by the

composition φ T
h ◦φV

h , which gives the Euler-B method, and φV
h ◦φ T

h gives the Euler-A method,

while the Störmer–Verlet method is given by the Strang splitting φV
h/2 ◦φ T

h ◦φV
h/2. Since φ T

h and

φV
h are exact flow maps of Hamiltonian vector fields, they are naturally symplectic, so are their

compositions. Later, we will see that it also arises as a variational integrator.

For a nonseparable Hamiltonian system (1.2), we have the generalized Euler-B method,


qn+1 = qn +h · ∂H

∂ p
(qn, pn+1),

pn+1 = pn−h · ∂H
∂q

(qn, pn+1),

the generalized Euler-A method,


qn+1 = qn +h · ∂H

∂ p
(qn+1, pn),

pn+1 = pn−h · ∂H
∂q

(qn+1, pn),

and the generalized Störmer–Verlet method,



pn+ 1
2
= pn−

h
2
· ∂H

∂q

(
qn, pn+ 1

2

)
,

qn+1 = qn +
h
2
·
(

∂H
∂ p

(
qn, pn+ 1

2

)
+

∂H
∂ p

(
qn+1, pn+ 1

2

))
,

pn+1 = pn+ 1
2
− h

2
· ∂H

∂q

(
qn+1, pn+ 1

2

)
.

They are all symplectic, but notice that they are implicit as the Hamiltonian is no longer separable.
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1.2.3 SHAKE and RATTLE methods

We consider constrained Hamiltonian mechanics for a Hamiltonian H(q, p) with con-

straint g(q) = 0, where g : Rn→ Rk, the equations of motion are of the form


q̇ =

∂H
∂ p

(q, p), 0 = g(q),

ṗ =−∂H
∂q

(q, p)−G(q)T
λ ,

(1.22)

where G(q) ∈ Rk×n is the Jacobian matrix of g(q). We adopt a geometric viewpoint, and let the

configuration space be Q = {q ∈ Rn | g(q) = 0}, which is an embedded submanifold Q i−→ Rn.

The tangent bundle

T Q = {(q, q̇) | q ∈ Rn,G(q)q̇ = 0},

is naturally embedded into TRn: T Q Ti−→ TRn. Notice that {q̇ | G(q)q̇ = 0} defines a subspace

of TqRn, they provide an extrinsic coordinate representation of the intrinsic tangent space

TqQ. It turns out that the Lagrangian setting is natural for discussing constrained mechanics

due to the natural embedding of T Q into TRn, and the method of Lagrange multipliers for

variational problems. Given a Lagrangian L : TRn→ R, we define a constrained Lagrangian

LQ : T Q Ti−→ TRn→ R. Then, Hamilton’s principle of constrained mechanics on (T Q,LQ) can

be stated using extrinsic coordinates as

δ

∫ t1

t0
L(q(t), q̇(t))dt = 0, (1.23)

for variations q(t) with fixed endpoints q(t0) = q0,q(t1) = q1 that satisfy the constraint g(q(t)) =

0. Performing the variations on (1.23), we obtain the constrained Euler–Lagrange equation,


∂L
∂q
− d

dt

(
∂L
∂ q̇

)
= G(q)T

λ ,

0 = g(q).

(1.24)

15



It is harder to derive the constrained Hamilton’s equations (1.22), since T ∗Q does not naturally

embedded in T ∗Rn. First, notice that the following diagram commutes

TRn FL // T ∗Rn

T ∗i

��
T Q

FLQ
//

Ti

OO

T ∗Q

where T ∗i is the pullback map. Assume that the Lagrangian is hyperregular, i.e., FL and FLQ are

global diffeomorphisms, then we can construct an embedding η : T ∗Q→ T ∗Rn as follows,

η = FL◦Ti◦ (FLQ)−1. (1.25)

For any q ∈ Q, we have that

T ∗q Q
η−−⇀↽−−
T ∗i

T ∗q Rn,

where T ∗i is linear, and the preimage of T ∗i are parallel affine subspaces, i.e., the translations of

Null(T ∗i). While η is nonlinear, it satisfies T ∗i◦η = id. By applying the embedding η to the

cotangent bundle

T ∗Q =

{
(q, p) | g(q) = 0,G(q)

∂H
∂ p

(q, p) = 0
}
,

and applying the Legendre transform, (1.24) can be transformed into (1.22). So we can see that

the differential–algebraic equation (1.22) describes a Hamilton system (T ∗Q,H).

Consider a simpler case of a separable Hamiltonian H(q, p) = |p|2
2 +V (q), with constraint

g(q) = 0, which have the constrained Euler-Lagrange equations


q̈ =−∇V (q)−G(q)T

λ ,

0 = g(q),
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and constrained Hamilton’s equations,


q̇ = p, 0 = g(q),

ṗ =−∇V (q)−G(q)T
λ .

(1.26)

Applying the same central-difference discretization that lead to the Störmer–Verlet method, we

get the SHAKE method,


qn+1−2qn +qn−1 =−h2 · (∇V (qn)+G(qn)

T
λ ),

0 = g(qn+1),

which is a two-step method that was originally proposed by Ryckaert et al. [51] for molecular

dynamics simulations. The Störmer–Verlet method can be adapted to the constrained Hamilton’s

equations (1.26) to yield the RATTLE method,


pn+ 1

2
= pn−

h
2
· (∇V (qn)+G(qn)

T
λ ),

qn+1 = qn +h · pn+ 1
2
, 0 = g(qn+1),

pn+1 = pn+ 1
2
− h

2
· (∇V (qn+1)+G(qn+1)

T
µ), 0 = G(qn+1)

T pn+1.

(1.27)

Jay [28] and Reich [50] independently observed that the RATTLE method can be interpreted as

a partitioned Runge–Kutta method and this allows it to be extended to general Hamiltonians,



pn+ 1
2
= pn−

h
2
·
(

∂H
∂q

(qn, pn+ 1
2
)+G(qn)

T
λ

)
,

qn+1 = qn +
h
2
·
(

∂H
∂ p

(qn, pn+ 1
2
)+

∂H
∂ p

(qn+1, pn+ 1
2
)

)
,

0 = g(qn+1),

pn+1 = pn+ 1
2
− h

2
·
(

∂H
∂q

(qn+1, pn+ 1
2
)+G(qn+1)

T
µ

)
,

0 = G(qn+1)
T ∂H

∂ p
(qn+1, pn+1).

17



The restriction G(qn+1)
T ∂H

∂ p (qn+1, pn+1) = 0 guarantees that (qn+1, pn+1) lies in T ∗Q, so the

RATTLE method is a map T ∗Q→ T ∗Q. It inherits nice properties of the Störmer–Verlet method,

in that it is also symplectic and symmetric.

1.3 High-order symplectic integrators

The Störmer–Verlet, SHAKE, and RATTLE methods are typical geometric integrators

with nice properties, but the problem is that they are only second-order accurate. In contrast,

Runge–Kutta methods provide a systematic way of constructing high-order integrators. For a

general first-order differential equation

y′ = f (t,y),

and a Butcher tableau,

Table 1.1. Butcher Tableau

c1 a11 a12 a13 · · · a1s

c2 a21 a22 a23 · · · a2s

c3 a31 a32 a33 · · · a3s

...
...

...
... . . . ...

cs as1 as2 as3 · · · ass

b1 b2 b3 · · · bs

we have the corresponding Runge–Kutta method,


Yi = yn +h ·

s

∑
j=1

ai j f (tn + c jh,Yj),

yn+1 = yn +h ·
s

∑
i=1

f (tn + cih,Yi).

(1.28)

A Runge–Kutta method (1.28) is symplectic when applied to Hamilton’s equations (1.2) if its
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coefficients satisfy the following property,

Theorem 4 (Sanz-Serna [52]). If biai j +b ja ji−bib j = 0 for i, j = 1,2 · · ·s, then the correspond-

ing Runge–Kutta method (1.28) is symplectic.

In particular, we have that

Theorem 5. The Gauss–Legendre Runge–Kutta methods are symplectic.

The partitioned Runge–Kutta method is a generalization of the Runge–Kutta method

that is particularly appropriate for Hamilton’s equations (1.2), where it may be desirable for the

position and momentum to be updated in different ways. Given the Butcher tableau

Table 1.2. Partitioned Butcher Tableau

c1 a11 a12 a13 · · · a1s

c2 a21 a22 a23 · · · a2s

c3 a31 a32 a33 · · · a3s

...
...

...
... . . . ...

cs as1 as2 as3 · · · ass

b1 b2 b3 · · · bs

c1 a11 a12 a13 · · · a1s

c2 a21 a22 a23 · · · a2s

c3 a31 a32 a33 · · · a3s

...
...

...
... . . . ...

cs as1 as2 as3 · · · ass

b1 b2 b3 · · · bs
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the corresponding partitioned Runge–Kutta method for Hamilton’s equations (1.2) is


Qi = qn +h ·

s

∑
j=1

ai j
∂H
∂ p

(Q j,Pj), Pi = pn−h ·
s

∑
j=1

ai j
∂H
∂q

(Q j,Pj),

qn+1 = qn +h ·
s

∑
i=1

bi
∂H
∂ p

(Qi,Pi), pn+1 = pn−h ·
s

∑
i=1

bi
∂H
∂q

(Qi,Pi).

(1.29)

For the partitioned Runge–Kutta method (1.29) to be symplectic, the coefficients have the satisfy

the following property,

Theorem 6 (Geng [14]). If bi = bi, biai j + b ja ji− bib j = 0, for i, j = 1,2 · · ·s, then the corre-

sponding partitioned Runge–Kutta method (1.29) is symplectic.

Applying the partitioned Runge–Kutta method to the constrained Hamilton’s equa-

tions (1.22) yield



Q̇i =
∂H
∂ p

(Qi,Pi), Ṗi =−
∂H
∂q

(Qi,Pi)−G(Qi)
T

λi,

Qi = q0 +h ·
s

∑
j=1

ai jQ̇ j, Pi = p0 +h ·
s

∑
j=1

ai jṖj,

0 = g(Qi),

q1 = q0 +h ·
s

∑
i=1

biQ̇i, p1 = p0 +h ·
s

∑
i=1

biṖi.

(1.30)

The existence and uniqueness of the solution (q1, p1) to (1.30) is not guaranteed without further

assumptions. The symplecticity of (1.30) was studied in [28],

Theorem 7. If bi = bi, biai j +b ja ji−bib j = 0, for i, j = 1,2 · · ·s, and (1.30) is well-posed, then

the map (q0, p0)→ (q1, p1) is symplectic.

One well-posed version of (1.30) that yields a symplectic map from T ∗Q to T ∗Q is given
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as follows 

Q̇i =
∂H
∂ p

(Qi,Pi), Ṗi =−
∂H
∂q

(Qi,Pi)−G(Qi)
T

λi,

Qi = q0 +h ·
s

∑
j=1

ai jQ̇ j, Pi = p0 +h ·
s

∑
j=1

ai jṖj,

0 = g(Qi), 0 = G(q1)
T ∂H

∂ p
(q1, p1),

q1 = q0 +h ·
s

∑
i=1

biQ̇i, p1 = p0 +h ·
s

∑
i=1

biṖi,

(1.31)

where the coefficients of the Butcher tableau satisfy bi = bi, biai j +b ja ji−bib j = 0. We also

require the method to be stiff, i.e., asi = bi, which means that q1 = Qs. Furthermore, we require

that bi 6= 0, which implies that ais = 0. We also set a1i = 0, which means that q0 = Q1, and the

condition that bi 6= 0 now implies that ai1 = bi.

1.4 Variational integrators

Surprisingly, all the symplectic integrators we have introduced so far, including the

constrained and unconstrained cases, can be derived using a variational integrator approach. This

is a unified framework to derive a large class of geometric integrators, and the resulting methods

are automatically symplectic. Given a Lagrangian mechanical system (T Q,L), fix the timestep

h, and choose q0,q1 ∈ Q. Then, we define the exact discrete Lagrangian,

Lexact
d (q0,q1) = q∈C2([0,h],Q)

q(0)=q0,q(h)=q1

∫ h

0
L(q(t), q̇(t))dt, (1.32)

which is related to Jacobi’s solution of the Hamilton–Jacobi equation. It can equivalently be

defined as Lexact
d (q0,q1) =

∫ h
0 L(q(t), q̇(t))dt, where q(t) satisfies the Euler-Lagrange equation,

and the boundary conditions q(0) = q0, q(h) = q1. Consider

Lexact
d (qk−1,qk)+Lexact

d (qk,qk−1), (1.33)
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where q0 = q(t), q1 = q(t + h), q2 = q(t + 2h). By Hamilton’s principle, (1.33) should be

stationary with respect to variations in qk, i.e.,

D2Lexact
d (qk−1,qk)+D1Lexact

d (qk,qk+1) = 0,

which implicitly defines qk+1 in terms of qk−1, qk. However, the exact discrete Lagrangian

is a theoretical construct that is not practically computable. Suppose that Ld(qk,qk+1) is an

approximation of Lexact
d (qk,qk+1), then consider the discrete action sum,

Sd =
N−1

∑
k=0

Ld(qk,qk+1).

Then, the discrete Hamilton’s principle states that

δSd = 0,

where the variations at the endpoints vanish, i.e., δq0 = 0, δqN = 0. From this, we obtain the

discrete Euler–Lagrange equations,

D2Ld(qk−1,qk)+D1Ld(qk,qk+1) = 0, (1.34)

which is a two-step method (qk−1,qk) 7→ (qk,qk+1). To construct a one-step method on T ∗Q, we

need the following observation,

pk =−D1Lexact
d (qk,qk+1), pk+1 = D2Lexact

d (qk,qk+1),

pk, pk+1 are the exact momenta at the endpoints. This is simply a consequence of the fact that

the exact discrete Lagrangian is related to Jacobi’s solution of the Hamilton–Jacobi equation,

and it is the Type I generating function of the exact time-h flow map of Hamilton’s equations.
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Thus, by analogy, we can require that the same relationship holds with the approximated discrete

Lagrangian Ld(qk,qk+1), 
pk =−D1Ld(qk,qk+1),

pk+1 = D2Ld(qk,qk+1).

(1.35)

We refer to these as the implicit discrete Euler–Lagrange equations, and they define a map

(q0, p0) 7→ (q1, p1) that is automatically symplectic, since Ld(q0,q1) serves as the Type I gen-

erating function of a symplectic map here. It is also easy to verify that (1.35) implies (1.34) if

the momentum variables are eliminated. When Ld = Lexact
d , (1.35) implicitly defines the exact

time-h flow map of Hamilton’s equations. In general, the order of the one-step method (1.35) is

determined by the approximation order of Ld to Lexact
d , which is a variational error analysis result

that was introduced in [43].

Theorem 8. If Ld(q0,q1) = Lexact
d (q0,q1)+O(hr+1), then the one-step method (1.35) has order

r.

Given a Lagrangian L(q, q̇), one possible discrete Lagrangian is given by,

Ld(q0,q1) = h ·L
(

q0 +q1

2
,
q1−q0

h

)
.

This is obtained by restricting the curves q(t) to polynomials of degree one or less, and approxi-

mating the integral by the midpoint rule. Applying (1.35), we get


−p0 = h ·

[
∂L
∂q

(
q0 +q1

2
,
q1−q0

h

)
· 1

2
+

∂L
∂ q̇

(
q0 +q1

2
,
q1−q0

h

)
·
(
−1

h

)]
,

p1 = h ·
[

∂L
∂q

(
q0 +q1

2
,
q1−q0

h

)
· 1

2
+

∂L
∂ q̇

(
q0 +q1

2
,
q1−q0

h

)
· 1

h

]
.

(1.36)

The Lagrangian L(q, q̇) and the Hamiltonian H(q, p) are related by the Legendre transformation,

and from this, we can show that

q̇ =
∂H
∂ p

(q, p), p =
∂L
∂ q̇

(q, q̇),
∂L
∂q

(q, q̇) =−∂H
∂q

(q, p).
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Then, (1.36) can be expressed in terms of the Hamiltonian,


q1 = q0 +h · ∂H

∂ p

(
q0 +q1

2
,

p0 + p1

2

)
,

p1 = p0−h · ∂H
∂q

(
q0 +q1

2
,

p0 + p1

2

)
.

(1.37)

This is the midpoint rule, which by our construction, is a variational integrator. Similarly, for a

separable Lagrangian L(q, q̇) = 1
2 q̇T Mq̇−V (q), consider the discrete Lagrangian,

Ld(q0,q1) =
h
2

[
L
(

q0,
q1−q0

h

)
+L

(
q1,

q1−q0

h

)]
,

which is obtained by restricting the curves q(t) to polynomials of degree one or less, and

approximating the integral by the trapezoidal rule. The resulting Hamiltonian map is exactly the

Störmer–Verlet method (1.20).

To construct higher-order variational integrators, we need higher-order approxima-

tions of the exact discrete Lagrangian (1.32). One way to systematically construct such ap-

proximations is by using the Galerkin method. Given a quadrature rule
∫ h

0 L(q(t), q̇(t))dt ≈

h∑
s
i=1 biL(q(cih), q̇(cih)), we construct a Galerkin discrete Lagrangian,

Ld(q0,q1) = q∈Pk(0,h)
q(0)=q0,q(h)=q1

h
s

∑
i=1

biL(q(cih), q̇(cih)),

where Pk(0,h) is the space of polynomials of degree less than or equal to k. So we only consider

variation curves that are polynomials and satisfy the prescribed boundary conditions. The

resulting variational integrator is a partitioned Runge–Kutta method (1.29), with coefficients

given by

bi = bi =
∫ 1

0
li(x)dx, ai j =

∫ ci

0
l j(x)dx, ai j = b j(1−

a ji

bi
),

where li(x) are the Lagrange interpolating polynomials for nodes ci.

Let us derive a variational integrator for constrained mechanics (1.22). For the discrete
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Euler–Lagrange equation (1.34), we need to perform variations of qk that are restricted to the

configuration space Q, and this yields the constrained discrete Euler–Lagrange equations,


D2Ld(q0,q1)+D1Ld(q1,q2) = G(q1)

T
λ ,

0 = g(q1).

(1.38)

We can do the same for (1.35), but the momenta need to be represented by extrinsic coordinates

on T ∗Q embedded into T ∗Rn by η (1.25). Since the preimage of T ∗i is a parallel translation of

Null(T ∗i) = span(G(q)T ), (1.35) can equivalently be written as



p0 =−D1Ld(q0,q1)+G(q0)
T

λ0,

0 = g(q1),

p1 = D2Ld(q0,q1)−G(q1)
T

λ1,

0 = G(q1)
∂H
∂ p

(q1, p1).

(1.39)

From their construction, we expect that (1.39) implies (1.38), and that (1.39) is symplectic. Given

a Lagrangian L(q, q̇) = |q̇|2
2 −V (q), with the constraint 0 = g(q), and a discrete Lagrangian of

the form,

Ld(q0,q1) =
h
2

[
L
(

q0,
q1−q

h

)
+L

(
q1,

q1−q0

h

)]
.

Then, (1.38) and (1.39) specialized to this case both recover the SHAKE method.

1.5 Kalman Filters and Observability Analysis

1.5.1 Kalman Filters

Uncertainty is ubiquitous in practice, and may arise from incompleteness of the model,

inaccuracy of sensor data, and uncontrollable environmental factors. Probabilistic approaches

are a nice way to deal with uncertainty. Among these, the Kalman filter is quite popular in state

estimation. Suppose we have a robot moving in the environment, with state variable xt , control
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variable ut , and measurement zt . In practice, the state consists of the position and orientation of

the robot, the controls are data from odometry and IMU, and the measurements are data from the

camera and LIDAR. (xt ,ut ,zt) forms a discrete control system. We assume that the probability

distribution satisfies the Markovian property,


P(xt | x0:t−1,z0:t−1,u1:t) = P(xt | xt−1,ut),

P(zt | x0:t ,z0:t−1,u1:t) = P(zt | xt).

(1.40)

The state transition probability is denoted by P(xt | xt−1,ut), and the Markovian property implies

that we only need the current state and control data to predict the future, independent of the

history. The measurement probability is denoted by P(zt | xt), and it implies that the measurement

data only depends on the state. In principle, we would like to use all the information we have,

i.e., (z0:t ,u1:t), to get the best estimate of the state xt . This gives the posterior belief

bel(xt) = P(xt | z0:t ,u1:t),

which uses all the historical sensor data. This is in contrast to the prediction belief

bel(xt) = P(xt | z0:t−1,u1:t),

which uses all the historical data except for the current measurement zt .

We have a very efficient algorithm to estimate bel(xt), the Bayes filter,


bel(xt) =

∫
P(xt | xt−1,ut) ·bel(xt−1)dxt−1,

bel(xt) ∝ P(zt | xt) ·bel(xt).

(1.41)

Once we know bel(xt−1), we can estimate bel(xt) by using (1.41), and it yields the best estimate

based on historical data. The first step is propagation of the state distribution via the state
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transition model P(xt | xt−1,ut). The second step is essentially a Baysian inference, where bel(xt)

acts as the prior distribution, and bel(xt) is the posterior distribution. So Bayes filter is the

composition of propagation and measurement update.

The Kalman filter is a concrete implementation of (1.41) for the linear Gaussian model.

Suppose that the probability distributions are all Gaussian, and the state transition probability

and measurement probability are given by a linear noisy model,


xt = Atxt−1 +ut + εt ,

zt =Ctxt +δt .

(1.42)

where εt is the propagation error with Gaussian distribution N (0,Rt), and δt is the measurement

noise with Gaussian distribution N (0,Qt). Under the linear Gaussian model (1.42), suppose

that bel(xt−1) = N (µt−1,Σt−1), then bel(xt) = N (µt ,Σt) can be calculated as follows [4],



µ t = At µt−1 +ut ,

Σt = AtΣt−1AT
t +Rt ,

Kt = ΣtCT
t (CtΣtCT

t +Qt)
−1,

µt = µ t +Kt(zt−Ct µ t),

Σt = (I−KtCt)Σt .

(1.43)

For Gaussian distributions, besides the mean-covariance representation N (µ,Σ), we also have

an information-precision representation N (ξ ,Ω), where Σ = Ω−1, µ = Ω−1ξ . The Kalman
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filter (1.43) in the information-precision representation has the following form,



Ωt = (AtΩ
−1
t−1AT

t +Rt)
−1,

ξ t = Ωt(AtΩ
−1
t−1ξt−1 +ut),

Ωt =CT
t Q−1

t Ct +Ωt ,

ξt =CT
t Q−1

t zt +ξ t .

(1.44)

This is called the information filter.

1.5.2 Linear Time-invariant System

Consider a linear time-invariant control system,


ẋ = Ax+Bu,

z =Cx+Du.
(1.45)

where x is the state variable, u is the control variable, and z is the measurement. It has an explicit

solution for the initial condition x(t0) and a given control u(t). The state evolves as

x(t) = eA(t−t0)x(t0)+
∫ t

t0
eA(t−τ)Bu(τ)dτ,

and the measurement is given by

z(t) =CeA(t−t0)x(t0)+C
∫ t

t0
eA(t−τ)Bu(τ)dτ +Du(t).

Observability is an important concept for control systems. It quantifies the extent to which we

can recover state information directly based on the control u and the measurement z. If the

state is observable, then in state estimation, the state error will remain bounded, otherwise, the

estimation error will grow with bound. For a linear time-invariant system, we have the following

theorem [10],
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Theorem 9. The following statements are equivalent:

• A linear time-invariant control system (1.45) is observable;

• The observability Gramian Wo(t) =
∫ t

0 eAT τCTCeAτdτ is nonsingular for any t > 0;

• The observability matrix O =



C

CA

CA2

...

CAn−1


has full column rank.

When the observability matrix is rank deficient, i.e., rank(O) = n1 < n, the the linear time-

invariant control system (1.45) contains an unobservable subspace. Construct the transformation

matrix P, whose first n1 rows are a linearly independent basis for O, and remaining n−n1 rows

are chosen arbitrarily so that P has full rank. Then, we perform a coordinate transformation to

new variables x = Px. It can be verified that the transformed control system has the following

special structure, 

ẋO

ẋN

=

A11 0

A21 A22


xO

xN

+

B1

B2

u,

z =
(

C1 0

)xO

xN

+Du.

(1.46)

From (1.46), we can see that the measurement z only depends on observable part xO, and that xO

evolves independently of xN . Thus, the xN part is unobservable. This step is called a canonical

decomposition. Even though the transformation P is constructed with some freedom, the xN part

has a clear geometric meaning, it forms the unobservable subspace, which is the nullspace of the

observability matrix, i.e., xN = Null(O).
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1.5.3 Observability of Nonlinear systems

We require the language of manifolds to deal with nonlinear phenomena. On a differential

manifold, a distribution 4 on a smooth manifold M is a smooth assignment of a subspace

4(p) ⊆ TpM of the tangent space at each point p ∈M. A codistribution Ω on M is a smooth

assignment of a subspace Ω(p) ⊆ T ∗p M of the cotangent space at each point p ∈ M. Given

a codistribution Ω, we can define its orthogonal distribution Ω⊥, where each Ω⊥(p) is the

annihilator of Ω(p),

Ω
⊥(p) = {v ∈ TpM | 〈v,α〉= 0,∀α ∈Ω(p)}.

Given a distribution4, codistribution Ω, and vector field f on a smooth manifold M, we

say that a distribution4 is invariant under the vector field f if and only if

∀X ∈4, [ f ,X ] ∈4.

Similarly, we say that a codistribution Ω is invariant under the vector field f if and only if

∀ω ∈Ω, L f ω ∈Ω.

Suppose that we have vector fields f1, f2, . . . fN and a distribution4, then the smallest distribution

that contains4 and is invariant under f1, f2, . . . fN is denoted by 〈 f1, f2, . . . fN | 4〉. This can be

constructed by the following generating sequence,

40 =4,

4k =4k−1 +
N

∑
i=1

[ fi,4k−1].

Theorem 10. For all k,4k ⊆ 〈 f1, f2, . . . fN | 4〉, and when at a particular step k∗,4k∗ =4k∗+1,
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then4k∗ = 〈 f1, f2, . . . fN |4〉.

Similarly, for a codistribution Ω, the smallest codistribution that contains Ω and is

invariant under f1, f2, . . . fN is denoted by 〈 f1, f2, . . . fN |Ω〉, and it can be generated by

Ω0 = Ω,

Ωk =4k−1 +
N

∑
i=1

L fiΩk−1.

We consider a special class of nonlinear control systems, which are affine systems of the

form, 
ẋ = f (x)+

m

∑
i=1

gi(x)ui,

yi = hi(x), i = 1,2 . . . p.

(1.47)

Then, consider

Q = 〈 f ,q1,g2 . . .gm | span{dh1,dh2 . . .dhp}〉⊥,

which is the maximal distribution that is contained in the span{dh1,dh2 . . .dhp} and invariant

under f ,q1,g2 . . .gm. This distribution corresponds to the decomposition into the observable and

unobservable parts of system. We have the following theorem,

Theorem 11. Suppose Q is nonsingular, then at each point p, there exists a local coordinate
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change z = φ(x), such that (1.47) can be transformed into the form,



ż1 = f1(z1,z2 . . .zn)+
m

∑
i=1

gi1(z1, . . .zn)ui,

...

żs = f1(z1,z2 . . .zn)+
m

∑
i=1

gis(z1, . . .zn)ui,

żs+1 = fs+1(zs+1 . . .zn)+
m

∑
i=1

gi,s+1(zs+1, . . .zn)ui,

...

żn = fn(zs+1 . . .zn)+
m

∑
i=1

gin(zs+1 . . .zn)ui,

yi = hi(zs+1 . . .zn), 1≤ i≤ p.

(1.48)

It is apparent from the form of this system of equations that z1,z2 . . .zn are unobservable.

32



Chapter 2

Geometric Exponential Integrators

2.1 Introduction

Hamiltonian partial differential equations are often simulated by semi-discretizing the

spatial differential operators, and applying a symplectic or energy-preserving integrator to the

resulting system of Hamiltonian ordinary differential equations. The critical challenge associated

with such an approach is that the resulting system of differential equations become increasingly

stiff as the spatial mesh is refined. This is achieved by combining geometric integrators with

exponential integrators [22], which are a class of numerical integrators for stiff systems whose

vector field can be decomposed into a linear term and a nonlinear term,

q̇ = Aq+ f (q). (2.1)

Usually, the coefficient matrix A has a large spectral radius, and is responsible for the stiffness of

the system of differential equations, while the nonlinear term f (q) is relatively smooth. There

are various ways to construct an exponential integrator [45]. For example, we can perform a

change of variables q̃(t) = e−Atq(t), and transform (2.1) to obtain

[e−Atq(t)]′ = q̃
′
(t) = e−At f (eAt q̃(t)). (2.2)
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Notice that the Jacobi matrix of (2.2) equals e−At∇ f eAt , which has a smaller spectral radius

than the Jacobi matrix A+∇ f of (2.1). A natural idea is to apply a classical integrator for the

mollified system (2.2) to obtain an approximation of q̃(t), then invert the change of variables to

obtain an approximation of the solution q(t) of (2.1). In Section 2.2, we shall demonstrate how

to construct symplectic exponential integrators using this approach.

Another way of constructing exponential integrators starts from the variation-of-constants

formula,

q(t) = eA(t−t0)q(t0)+
∫ t

t0
eA(t−τ) f (q(τ))dτ, (2.3)

which is the exact solution for (2.1) with initial condition q(t0) = q0. Then, a computable

approximation can be obtained by approximating the f (q(τ)) term inside the integral. If we

approximate f (q(τ)) by f (qk), we arrive at the exponential Euler method,

qk+1 = eAhqk +
∫ h

0
eAτdτ · f (qk). (2.4)

An exponential Runge–Kutta method of collocation type [21] could also be constructed by

approximating f (q(τ)) with polynomials. In Section 2.3, we shall show how to construct

energy-preserving exponential integrators from (2.3).

In this paper, we consider a specific form of (2.1) which is a Poisson system. We assume

A = JD, f (q) = J∇V (q), where JT =−J,DT = D, and JD = DJ, thus the coefficient matrix A

is also skew-symmetric. The assumption that J and D commutes turns out to be essential for

constructing structure-preserving integrators, and it is naturally satisfied in practical problems.

Now, the semilinear system (2.1) can be written as,

q̇ = J(Dq+∇V (q)) = J∇H(q), (2.5)

with Hamiltonian function H(q) = 1
2qTDq+V (q). Equation (2.5) describes a constant Poisson

system, and there are at least two quantities that are preserved by the flow: the Poisson structure
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Ji j
∂

∂xi
⊗ ∂

∂x j
and Hamiltonian H(q). Geometric integrators that preserve the geometric structure

and first integrals of the system typically exhibit superior qualitative properties when compared

to non-geometric integrators, and they are an active area of research [17, 37, 43].

In this paper we will introduce the exponential midpoint rule and the energy-preserving

exponential integrator. Both of these methods are implicit, and a significant advantage of

adopting the exponential integrator approach in the context of geometric integrators is that

resulting geometric exponential integrators can be implemented using fixed point iterations as

opposed to the more computationally expensive Newton iterations. Recall that classical implicit

Runge-Kutta methods 
Yi = yn +h ·

s

∑
j=1

ai j f (tn + c jh,Y j),

yn+1 = yn +h ·
s

∑
i=1

bi f (tn + cih,Yi),

have a form that naturally lends itself to fixed point iterations. However, when ∂ f
∂y has a large

spectral radius, the timestep is forced to be very small in order to guarantee that the fixed point

iteration converges. The alternative is to use a Newton type iteration, which is time consuming

since we need to perform LU decomposition (O(n3) complexity) during each iteration. This is

the problem we face for the stiff semilinear system (2.1) when the coefficient matrix A has a

large spectral radius. In contrast, in both the exponential midpoint rule

qk+1 = eAhqk +h · eA h
2 f
(eA h

2 qk + e−A h
2 qk+1

2

)
,

and the energy-preserving exponential integrator

qk+1 = eAhqk +
∫ h

0
eAτdτ · J∇V (qk,qk+1),

the matrix A only appears in the exponential term eAh. Since A is skew-symmetric, this term is

an orthogonal matrix, which has spectral radius 1. Thus, fixed point iterations can be used to
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implement the exponential integrator, regardless of the stiffness of A.

In summary, the main contributions of this paper involve the derivation of geometric

exponential integrators that either preserve the Poisson structure or Hamiltonian of (2.5). They

exhibit long time stability, allow for relatively larger timesteps for the stiff problem, and are

computationally more efficient as they can be implemented using fixed point iterations as

opposed to Newton type iterations. For the rest of the paper, Section 2.2 is devoted to developing

symplectic exponential integrators that preserve the Poisson structure; Section 2.3 is devoted to

developing energy preserving exponential integrators; numerical methods and experiments are

presented in Section 2.4 and Section 2.5, respectively.

2.2 Symplectic Exponential Integrator

For constant Poisson systems (2.5), it was shown in [67] that the midpoint rule and

diagonally implicit symplectic Runge–Kutta methods preserve the Poisson structure Ji j
∂

∂xi
⊗ ∂

∂x j
.

We first start by constructing an exponential midpoint rule: apply the classical midpoint rule to

the transformed system (2.2) to obtain

q̃k+1− q̃k

h
= e−Atk+1/2 f

(
eAtk+1/2

q̃k+1 + q̃k

2

)
, (2.6)

where

tk+1/2 =
tk + tk+1

2
, h = tk+1− tk, q̃k = e−Atkqk, q̃k+1 = e−Atk+1qk+1.

Transform (2.6) back to qk and qk+1, and we obtain the exponential midpoint rule,

qk+1 = eAhqk +h · eA h
2 f
(eA h

2 qk + e−A h
2 qk+1

2

)
. (2.7)

Theorem 12. The exponential midpoint rule (2.7) preserves the Poisson structure when applied
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to the semilinear Poisson system (2.5).

Proof. Recall that a map φ preserves Poisson structure Ji j
∂

∂xi
⊗ ∂

∂x j
iff

(∇φ)J(∇φ)T = J. (2.8)

Differentiating (2.7), we obtain,

dqk+1 = eAhdqk +h · eA h
2 ∇ f

(1
2

eA h
2 dqk +

1
2

e−A h
2 dqk+1

)
,(

I− h
2
· eA h

2 ∇ f e−A h
2

)
dqk+1 =

(
eAh +

h
2
· eA h

2 ∇ f eA h
2

)
dqk.

So the map φ(qk) = qk+1 has Jacobi matrix ∇φ = M−1N, where

M = I− h
2
· eA h

2 ∇ f e−A h
2 = I− h

2
· eA h

2 J∇
2Ve−A h

2 ,

N = eAh +
h
2
· eA h

2 ∇ f eA h
2 = eAh +

h
2
· eA h

2 J∇
2VeA h

2 .

Then, we just need to verify (2.8), which is equivalent to MJMT = NJNT,

MJMT =
(

I− h
2
· eA h

2 J∇
2Ve−A h

2

)
J
(

I +
h
2
· eA h

2 ∇
2V Je−A h

2

)
= J− h2

4
eA h

2 J∇
2Ve−A h

2 JeA h
2 ∇

2V Je−A h
2

= J− h2

4
eA h

2 J∇
2V J∇

2V Je−A h
2

= NJNT.

(2.9)

In (2.9), we used the property that ∇2V is symmetric, that A is skew-symmetric which implies

that (eAh)T = e−Ah. Furthermore, the assumption that D and J commutes, implies that the matrix

exponential eA h
2 , where A = JD, also commutes with J.

The exponential midpoint rule is a second-order method, and we will now develop higher-

order symplectic exponential integrators. Recall that a general diagonally implicit Symplectic

37



Runge–Kutta method (DISRK) [17, Theorem 4.4] has a Butcher tableau of the form given in

Table 2.1:

Table 2.1. DISRK

c1
b1
2 0 0 0 0

c2 b1
b2
2 0 0 0

c3 b1 b2
b3
2 0 0

...
...

...
... . . . ...

cs b1 b2 b3 · · · bs
2

b1 b2 b3 · · · bs

If we apply the DISRK method to the transformed system (2.2), and then convert back,

we obtain the following diagonally implicit symplectic exponential (DISEX) integrator,


Qi = eAhciqk +h ·

i

∑
j=1

ai jeAh(ci−c j) f (Q j),

qk+1 = eAhqk +h ·
s

∑
i=1

bieAh(1−ci) f (Qi).

(2.10)

where ai j are the coefficients in Table 2.1. This integrator can be represented in terms of the

Butcher tableau given in Table 2.2:

Table 2.2. DISEX

eAhc1 b1
2 0 0 0 0

eAhc2 b1eAh(c2−c1) b2
2 0 0 0

eAhc3 b1eAh(c3−c1) b2eAh(c3−c2) b3
2 0 0

...
...

...
... . . . ...

eAhcs b1eAh(cs−c1) b2eAh(cs−c2) b3eAh(cs−c3) · · · bs
2

eAh b1eAh(1−c1) b2eAh(1−c2) b3eAh(1−c3) · · · bseAh(1−cs)

It was shown in [67] that any DISRK method can be regarded as the composition of

midpoint rules with timesteps b1h,b2h,b3h, · · ·bsh. As such, it is natural to ask whether DISEX

method is also the composition of exponential midpoint rules. Notice that (2.1) is autonomous

while the transformed system (2.2) is nonautonomous, and our application of DISRK method
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to (2.2) involves time explicitly, so the result does not immediately follow from the result of

[67]. However, the same conclusion still holds for the DISEX method, as demonstrated by the

following theorem:

Theorem 13. The DISEX method is equivalent to the composition of exponential midpoint rules

with timesteps b1h,b2h,b3h, · · ·bsh.

Proof. The composition of exponential midpoint rules

qk
b1h−−→ Z1

b2h−−→ Z2 · · ·
bsh−−→ Zs = qk+1

is represented as follows,

Z1 = eAhb1qk +b1h · eAh b1
2 f
(eAh b1

2 qk + e−Ah b1
2 Z1

2

)
, (M.1)

Z2 = eAhb2Z1 +b2h · eAh b2
2 f
(eAh b2

2 Z1 + e−Ah b2
2 Z2

2

)
, (M.2)

...

Zi = eAhbiZi−1 +bih · eAh bi
2 f
(eAh bi

2 Zi−1 + e−Ah bi
2 Zi

2

)
, (M.i)

...

Zs = eAhbsZs−1 +bsh · eAh bs
2 f
(eAh bs

2 Zs−1 + e−Ah bs
2 Zs

2

)
. (M.s)

Introduce Q1 = eAh
b1
2 qk+e−Ah

b1
2 Z1

2 in (M.1) as an intermediate variable. Then, on both sides

of (M.1), multiply by e−Ah b1
2 , add eAh b1

2 qk, and divide by two, which yields an equivalent form

of (M.1),

Q1 = eAh b1
2 qk +

b1

2
h · f (Q1). (S.1)

For the Runge–Kutta method represented by the Butcher tableau in Table 2.1 to be consistent,
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the coefficients have to satisfy,



c1 =
b1

2
,

c2 = b1 +
b2

2
,

...

ci = b1 +b2 + · · ·bi−1 +
bi

2
,

...

cs = b1 +b2 +b3 + · · ·+bs−1 +
bs

2
,

1 = b1 +b2 +b3 + · · ·+bs−1 +bs.

So equation (S.1) coincides with the first line of the Butcher tableau of the DISEX method.

Similarly, introduce Q2 =
eAh

b2
2 Z1+e−Ah

b2
2 Z2

2 . Then, on both sides of (M.2), multiply by e−Ah b2
2 ,

add eAh b2
2 Z1, then divided by two, which yields an equivalent form of (M.2):

Q2 = eAh b2
2 Z1 +

b2

2
h · f (Q2)

= eAh(b1+
b2
2 )qk +b1h · eAh( b1

2 +
b2
2 ) f (Q1)+

b2

2
h · f (Q2)

= eAhc2qk +b1h · eAh(c2−c1) f (Q1)+
b2

2
h · f (Q2).

(S.2)

So equation (S.2) coincides with the second line of the Butcher tableau of the DISEX method.

Then, as before, we introduce Qi =
eAh

bi
2 Zi−1+e−Ah

bi
2 Zi

2 , and apply the same technique to (M.i),

which yields

Qi = eAh bi
2 Zi−1 +

bi

2
h · f (Qi).

By induction,

Zi−1 = eAh(bi−1+···+b2+b1)qk +b1h · eAh(bi−1+bi−2+···+
b1
2 ) f (Q1)

+b2h · eAh(bi−1+bi−2+···+
b2
2 ) f (Q2)+ · · ·bi−1h · eAh(

bi−1
2 ) f (Qi−1),
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so
Qi = eAh( bi

2 +bi−1+···+b2+b1)qk +b1h · eAh( bi
2 +bi−1+bi−2+···+

b1
2 ) f (Q1)

+b2h · eAh( bi
2 +bi−1+bi−2+···+

b2
2 ) f (Q2)+ · · ·

+bi−1h · eAh( bi
2 +

bi−1
2 ) f (Qi−1)+

bi

2
h · f (Qi)

= eAhciqk +b1h · eAh(ci−c1) f (Q1)+ · · ·

+bi−1h · eAh(ci−ci−1) f (Qi−1)+
bi

2
h · f (Qi),

(S.i)

which coincides with the i-th row of the Butcher tableau of the DISEX method. Finally, we have

qk+1 = Zs

= eAhbsZs−1 +bsh · f (Qs)

= eAh(bs+···b2+b1)qk +b1h · eAh(bs+···b2+
b1
2 ) f (Q1)+ · · ·

+bs−1h · eAh(bs+
bs−1

2 ) f (Qs−1)+bsh · eAh bs
2 f (Qs)

= eAhqk +b1h · eAh(1−c1) f (Q1)+ · · ·bsh · eAh(1−cs) f (Qs),

which coincides with the last row of the Butcher tableau of the DISEX method. So the com-

position of exponential midpoint rules with timesteps b1h,b2h,b3h, · · ·bsh is equivalent to the

DISEX method of Table 2.2.

Theorem 13 establishes an equivalent relationship between the DISEX method and

exponential midpoint rules on the nonautonomous system (2.2) as was established in [67] for the

DISRK method and midpoint rules for the autonomous system (2.1), and it also shows that the

DISEX method preserves the Poisson structure.

2.3 Energy-preserving Exponential Integrator

Though classical symplectic methods exhibit superior long time stability, it was observed

that symplectic schemes are less competitive for the numerical integration of stiff systems with
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high frequency. In sharp contrast, energy-preserving methods perform much better [56]. A

general way to construct an energy-preserving method for a Poisson system q̇ = J∇H(q) is the

discrete gradient method [49]. We design a discrete gradient ∇H(qk,qk+1) that satisfies the

following property,

∇H(qk,qk+1) · (qk+1−qk) = H(qk+1)−H(qk). (2.11)

Then, the resulting discrete gradient method is given by,

qk+1−qk

h
= J∇H(qk,qk+1). (2.12)

Multiplying ∇H(qk,qk+1) on both sides of (2.12), we obtain

H(qk+1)−H(qk) = ∇H(qk,qk+1) · (qk+1−qk)

= h ·∇H(qk,qk+1)J∇H(qk,qk+1)

= 0.

(2.13)

The last equation of (2.13) holds simply due to the skew-symmetric property of matrix J, which

implies that discrete gradient method (2.12) preserves energy. We shall combine exponential

integrators with the discrete gradient method to obtain an energy-preserving exponential integra-

tor. This approach was initially proposed in [65] for separable Hamiltonian systems using the

extended discrete gradient method, and we generalize this to semilinear Poisson systems. Replace

the f (qk) term in the exponential Euler method (2.4) by the discrete gradient J∇V (qk,qk+1),

which yields

qk+1 = eAhqk +
∫ h

0
eAτdτ · J∇V (qk,qk+1). (2.14)

Theorem 14. Method (2.14) preserves the Hamiltonian H(q).

Proof. Let S = eAh, T =
∫ h

0 eAτdτ , then qk+1 = Sqk+T J∇V (qk,qk+1). It is beneficial to observe
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that the assumption that J and D commute implies that the matrices J, D, A, S, and T all commute

with each other. Also, we will show that the following properties hold:

1. ST = S−1;

2. AT = S− I;

3. AT T = I−ST;

4. STT = T T.

Property 1 follows from the fact that ST = (eAh)T = e−Ah = S−1. Property 2 follows from

eAh− I = eAτ

∣∣∣∣h
0
=
∫ h

0
A · eAτdτ = AT.

Taking transposes on both sides of Property 2 and using the fact that A and T commute gives

Property 3. Property 4 follow from

STT = e−Ah
∫ h

0
eAτdτ =

∫ h

0
e−A(h−τ)dτ =

∫ h

0
e−Aτdτ = T T.

From this, we obtain

1
2

qT
k+1Dqk+1 =

1
2

qT
k+1D(Sqk +T J∇V )

=
1
2
(Sqk +T J∇V )TDSqk +

1
2

qT
k+1DT J∇V

=
1
2

qT
k STDSqk +

1
2

qT
k (I−ST)∇V +

1
2

qT
k+1(S− I)∇V

=
1
2

qT
k Dqk− (qk+1−qk)

T
∇V − 1

2
qT

k (S
T + I)∇V +

1
2

qT
k+1(S+ I)∇V

=
1
2

qT
k Dqk−V (qk+1)+V (qk)+

1
2

∇V TJTT T(S+ I)∇V

=
1
2

qT
k Dqk−V (qk+1)+V (qk).

(2.15)

Here, we have used the fact that DT J = S− I, STDS = D, STDT J = I−ST, and JTT T(S+ I) =

JTT−JT T which is skew-symmetric. The above calculation demonstrates that H(qk+1) = H(qk).
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2.4 Numerical Methods

We will apply our proposed geometric exponential integrators to the semi-discretization

of two Hamiltonian PDEs, as the resulting system of differential equations can be expressed in

the semilinear form (2.1), with a coefficient matrix A whose spectral radius increases with the

spatial resolution of the discretization. The first is the nonlinear Schrödinger equation,

iψt +ψxx−2|ψ|2ψ = 0, (2.16)

in which ψ = u+ iv is the wave function with real part u and imaginary part v, and has the

following equivalent form, 
ut =−vxx +2(u2 + v2)v,

vt = uxx−2(u2 + v2)u.
(2.17)

The second is the KdV equation,

ut +uux +uxxx = 0. (2.18)

To discretize the two PDEs, we impose 2π periodic boundary conditions. Given a smooth 2π

periodic function f (x), on the interval [0,2π], choose 2n+1 equispaced interpolation points x j =

jh, j = 0,1,2, . . . ,2n, h = 2π

2n+1 . Given nodal values {v j}2n
j=0, there exists a unique trigonometric

polynomial v(x) with degree less or equal n, such that, v(x j) = v j (see, for example, [3]).

v(x) =
n

∑
k=−n

v̂keikx, v̂k =
1

2n+1

2n

∑
j=0

v je−ikx j .
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By substituting the expression for the coefficients v̂k, we obtain

v(x) =
2n

∑
j=0

v jφ(x− x j) =
2n

∑
j=0

v jφ j(x), (2.19)

where

φ(x) =
n

∑
k=−n

1
2n+1

eikx =
1

2n+1
sin((n+ 1

2)x)
sin( x

2)
.

From this, we see that {eikx}n
k=−n and {φ j}2n

j=0 are equivalent orthogonal bases for the trigono-

metric polynomial function space, and each such function can be parametrized by either the

nodal values {v j}2n
j=0 or Fourier coefficients {v̂k}n

k=−n. They represent the same function, but

with respect to two different bases. The transformation between {v j}2n
j=0 and {v̂k}n

k=−n can be

performed using the Fast Fourier transformation (FFT), which has O(n logn) complexity.

The first and second-order differentiation matrices [59] with respect to the representation

in terms of nodal values {v j}2n
j=0 are given by

(D1)k j =


0, k = j,

(−1)(k− j)

2sin( (k− j)h
2 )

, k 6= j,

(D2)k j =


−n(n+1)

3 , k = j,

(−1)(k− j+1) cos( (k− j)h
2 )

2sin2(
(k− j)h

2 )
, k 6= j,

respectively. However, with respect to the representation in terms of Fourier coefficients

{v̂k}n
k=−n, they are diagonal,

D̂1 = diag(ik)n
k=−n, D̂2 = diag(−k2)n

k=−n.

We can also define a third-order differentiation matrix D3, which has the property D3 = D1D2 =

D2D1, and it is diagonal with respect to the Fourier coefficients D̂3 = diag(−ik3)n
k=−n. The
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observation that D1, D2 and D3 are all diagonal in the Fourier representation is critical to a fast

implementation of the product of matrix functions with vectors.

Theorem 15. Suppose that D1, D2, D3 are the first, second and third-order differentiation

matrices, respectively, q = {q j}2n
j=0 is a vector with Fourier transform F [q] = q̂ = {q̂k}n

k=−n, and

f is an analytic function. Then

f (D1)q = F−1[diag( f (ik))q̂], f (D2)q = F−1[diag( f (−k2))q̂], f (D3)q = F−1[diag( f (−ik3))q̂],

where F−1 is the inverse Fourier transform.

Proof. Recall that the matrix D2 is diagonalizable with eigenvalues λk =−k2, and corresponding

eigenvectors ek = {eikx j}2n
j=0,

f (D2)q = f (D2)

(
n

∑
k=−n

q̂k · ek

)
=

n

∑
k=−n

q̂k · f (D2)ek

=
n

∑
k=−n

q̂k · f (λk)ek = F−1[diag( f (λk))q̂] = F−1[diag( f (−k2))q̂].

Notice D1 is also diagonalizable with eigenvalues λk = ik, and corresponding eigenvectors ek, D3

is diagonalizable with eigenvalues λk =−ik3, and corresponding eigenvectors ek, so the property

that f (D1)q = F−1[diag( f (ik))q̂], f (D3)q = F−1[diag( f (−ik3))q̂] can be verified in the same

way.

2.4.1 Nonlinear Schrödinger equation

We perform a semi-discretization of (2.17) by discretizing the solution u, v in space using

their corresponding nodal values {q j} and {p j}. Applying the pseudospectral method, we obtain
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the following system of ODEs,


q̇ =−D2 p+2(q2 + p2)p,

ṗ = D2q−2(q2 + p2)q,
(2.20)

where the nonlinear term (q2 + p2)p is computed elementwise, and represents the vector consist-

ing of {(q2
j + p2

j)p j} entries. We adopt this notation throughout the rest of the paper for brevity.

Then, (2.20) can be expressed as,

d
dt

q

p

=

 0 −D2

D2 0


q

p

+

 2(q2 + p2)p

−2(q2 + p2)q

 , (2.21)

where

A =

 0 −D2

D2 0

=

 0 I

−I 0


−D2 0

0 −D2

= J ·D,

f (q, p) =

 2(q2 + p2)p

−2(q2 + p2)q

=

 0 I

−I 0


2(q2 + p2)q

2(q2 + p2)p

= J ·∇V (q, p),

and V (q, p) = 1
2(q

2 + p2)2. It is easy to verify that J is skew-symmetric, D is symmetric, and

JD = DJ. Thus, (2.21) is a semilinear Poisson system.

To apply the exponential midpoint rule, we need to compute the product of a matrix

function and a vector, which has the form eAh

q

p

,

e
( 0 −D2

D2 0

)
=

∞

∑
k=0

1
k!

(
0 −D2

D2 0

)k
=
(

cos(D2) −sin(D2)
sin(D2) cos(D2)

)
.
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By Theorem 15, we have that

e
( 0 −D2

D2 0

)
h

q

p

=

cos(D2h) −sin(D2h)

sin(D2h) cos(D2h)


q

p


=

cos(D2h) ·q− sin(D2h) · p

sin(D2h) ·q+ cos(D2h) · p


=

F−1[cos(k2h)q̂k + sin(k2h)p̂k]

F−1[cos(k2h)p̂k− sin(k2h)q̂k]

 .

(2.22)

In summary, the exponential midpoint rule for the nonlinear Schrödinger equation is

given by

zk+1 = eAhzk +h · eA h
2 f
(

eA h
2 zk + e−A h

2 zk+1

2

)
,

where zk =

qk

pk

, zk+1 =

qk+1

pk+1

, A =

 0 −D2

D2 0

, and eAhzk can be efficiently calculated

using (2.22).

For the energy-preserving exponential integrator for the nonlinear Schrödinger equation,

zk+1 = eAhzk +
∫ h

0
eAτdτ · J∇V (zk,zk+1).

Here,

∫ h

0
e
( 0 −D2

D2 0

)
τ
dτ =

∫ h

0

(
cos(D2τ) −sin(D2τ)
sin(D2τ) cos(D2τ)

)
dτ

= h ·

 sin(D2h)
D2h

cos(D2h)−1
D2h

1−cos(D2h)
D2h

sin(D2h)
D2h

 ,

48



and by Theorem 15,

∫ h

0
e
( 0 −D2

D2 0

)
τ
dτ ·

q

p

=

 sin(D2h)
D2

q+ cos(D2h)−1
D2

p

1−cos(D2h)
D2

q+ sin(D2h)
D2

p

 ,

=

 F−1[ sin(k2h)
k2 q̂k− cos(k2h)−1

k2 p̂k]

F−1[−1−cos(k2h)
k2 q̂k +

sin(k2h)
k2 p̂k]

 .

We can construct the discrete gradient

∇V (zk,zk+1) =

2(q2
k+ 1

2
+ p2

k+ 1
2
) ·qk+ 1

2

2(q2
k+ 1

2
+ p2

k+ 1
2
) · pk+ 1

2

 ,

where

qk+ 1
2
=

qk +qk+1

2
, pk+ 1

2
=

pk + pk+1

2
, (2.23)

q2
k+ 1

2
=

q2
k +q2

k+1

2
, p2

k+ 1
2
=

p2
k + p2

k+1

2
. (2.24)

Notice that ∇V (zk,zk+1) is symmetric with respect to zk and zk+1, and it can be verified that it

satisfies (2.11). A classical discrete gradient method can be constructed as follows,

zk+1 = zk +hJ∇H(zk,zk+1), (2.25)

where

∇H(zk,zk+1) =

−D2 0

0 −D2

 zk + zk+1

2
+∇V (zk,zk+1).

The method described by (2.25) is very similar to classical midpoint rule, the only difference

is in ∇V (zk,zk+1), q2
k+ 1

2
is used, while (qk+ 1

2
)2 is used in the midpoint rule, so (2.25) can be

viewed as a modified midpoint rule.
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2.4.2 KdV equation

Rewrite (2.18) as

ut =
(
− ∂

∂x

)(1
2

u2 +uxx

)
,

then apply pseudospectral semi-discretization to obtain the following system,

q̇ = (−D1)
(1

2
q2 +D2q

)
= (−D1)D2q+(−D1)

(1
2

q2
)
,

which has the form of a semilinear Poisson system (2.5),

q̇ = J(Dq+∇V (q)) = J∇H(q),

where J =−D1, D=D2, A= JD=−D3, ∇V (q) = 1
2q2, H(q) = 1

2qTD2q+ 1
6q3. The exponential

midpoint rule for KdV reads as follows,

qk+1 = e−D3hqk +h · e−D3
h
2 f
(e−D3

h
2 qk + eD3

h
2 qk+1

2

)
,

and the energy preserving exponential integrator is given by,

qk+1 = e−D3hqk +
∫ h

0
e−D3τdτ · (−D1)∇V (qk,qk+1),

with discrete gradient ∇V (qk,qk+1) =
1
6(q

2
k + qk · qk+1 + q2

k+1). A related classical discrete

gradient method can be constructed as follows,

∇H(qk,qk+1) = (D2)
qk +qk+1

2
+∇V (qk,qk+1). (2.26)

By Theorem 15, in each iteration, the matrix function and vector product can be imple-
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mented as

e−D3hq = F−1[eik3hq̂k],

and (∫ h

0
e−D3τdτ

)
q =

(e−D3h− I
−D3

)
q = F−1

[eik3h−1
ik3 q̂k

]
.

2.4.3 Remarks

We have not analyzed the stiff order and long-time behavior of the methods proposed in

this paper. In particular, it should be observed that the standard backward error analysis results

for symplectic integration of Hamiltonian systems do not apply to the highly oscillatory systems

that we are considering here. A rigorous proof of long-time energy stability will likely involve

modulated Fourier expansions, as in [11, 13].

2.5 Numerical Experiments

2.5.1 Nonlinear Schrödinger equation

In Table 2.3 below, n denotes the number of nodes we discretize the spatial domain with,

and we tabulate the maximum timestep that the nonlinear solver converges for, and the number

of iterations taken to converge when averaged over the first thousand timesteps. We consider

the convergence properties of fixed point iteration and Newton type iteration for the midpoint

rule, and the fixed point iteration for the exponential midpoint rule, discrete gradient method

(2.25), energy-preserving exponential integrator, and diagonally implicit symplectic exponential

(DISEX) integrator with six stages [32]:

b1 = 0.5080048194000274 b2 = 1.360107162294827 b3 = 2.019293359181722

b4 = 0.5685658926458250 b5 =−1.459852049586439 b6 =−1.996119183935963.
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The underlying symplectic diagonally implicit Runge-Kutta method has algebraic order 5, and

due to the conjugacy between (2.1) and (2.2), the corresponding DISEX integrator also has order

5. The midpoint exponential integrator, discrete gradient integrator and energy preserving expo-

nential integrator, are all implemented using fixed point iteration, while DISEX is implemented

as the composition of midpoint exponential integrators. For the Newton iteration, since each

iteration requires the LU factorization of the Jacobian, which is computationally prohibitive,

we instead implemented a Quasi-Newton method, i.e., the Jacobian of the initial point is used

repeatedly until convergence, so the LU factorization need only be computed once per timestep.

Since for numerical integration of ODEs, the initial point is well approximated by a high order

explicit method, this technique works well in practice.

Table 2.3. Maximum timestep and average iteration number for convergence for the nonlinear
Schrödinger equation, as a function of the numerical integrator, nonlinear solver, and spatial
resolution.

midpoint midpoint exp discrete gradient energy exp DISEX
fixed point Newton fixed point fixed point fixed point fixed point

n hmax iteravg hmax iteravg hmax iteravg hmax iteravg hmax iteravg hmax iteravg
11 0.02 14.2 0.1 8.3 0.1 12.6 0.02 14 0.1 11.9 0.1 101.4
21 0.01 12.9 0.1 8.3 0.08 12.6 0.01 11.8 0.1 12 0.03 47.7
41 4×10−3 7.9 0.1 8.3 0.06 10.9 4×10−3 5.8 0.1 12 0.03 49.2
61 2×10−3 2.1 0.1 8.3 0.04 8.1 2×10−3 4 0.1 12 0.025 44.5
81 10−3 4.1 0.1 8.3 0.04 8.1 10−3 3 0.1 12 0.025 44.6

121 5×10−4 13.9 0.1 8.3 0.04 8.1 5×10−4 3.4 0.1 12 0.01 43.3
161 2×10−4 3.9 0.1 8.3 0.01 5 2×10−4 2 0.1 12 0.01 30.5
201 1×10−4 3.08 0.1 8.3 8×10−3 4.7 1×10−4 2 0.1 12 8×10−3 30
401 4×10−5 2 0.1 8.3 5×10−3 4.9 4×10−5 1 0.1 12 4×10−3 32

If the timestep is too large, the nonlinear solver fails to converge, the number of required

iterations diverges, or the numerical accuracy of the solution degrades dramatically. Here, we

have chosen the maximum timestep by considering both the long time stability and the number

of iterations necessary. Since DISEX is implemented as the composition of exponential midpoint

rules, the number of iterations reported is the sum of number of iterations for each component

exponential midpoint rule.
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We observe that when the midpoint rule is implemented using fixed point iterations, there

is a significant decay in the allowable timestep as the spatial resolution is increased, whereas

the Newton type iteration allows a relatively large timestep that is independent of the spatial

resolution. In contrast, the midpoint exponential method exhibits a slower rate of decrease in

allowable timestep when using fixed point iterations. When using fixed point iterations, the

discrete gradient method, which is an energy preserving method, the allowable timestep behaves

similarly to the midpoint rule, and in contrast, the energy preserving exponential integrator has

an allowable timestep that is independent of the spatial resolution.
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Figure 2.1. Maximum timestep for which fixed point iterations converge as a function of the
spatial resolution for the nonlinear Schrödinger equation.

In Figure 2.1, we observe that the allowable timestep when using fixed point iteration

scale like n−2 for the classical midpoint rule, and n−1 for both the midpoint exponential rule

and DISEX. As shown in Figure 2.2, the exponential midpoint rule exhibits an energy error that

remains small and bounded, which is consistent with it being a symplectic integrator, and the

trajectory error grows linearly.

The energy preserving exponential integrator is designed to preserve energy exactly, so
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(b) Trajectory error

Figure 2.2. Error plots for the exponential midpoint rule applied to the nonlinear Schrödinger
equation, n = 161, h = 0.01.
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(b) Trajectory error

Figure 2.3. Error plots for the energy preserving exponential integrator applied to the nonlinear
Schrödinger equation, n = 161, h = 0.1.
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even when the timestep is 0.1, we see in Figure 2.3 that the energy is still preserved approximately

to within machine error. For DISEX, the energy and trajectory error is shown in Figure 2.4.

Observe that the energy error is small and bounded, as expected of a symplectic integrator, and

the trajectory error is small as well, as expected of a higher-order numerical integrator.
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(b) Trajectory error

Figure 2.4. Error plots for the 6 stage DISEX applied to the nonlinear Schrödinger equation,
n = 161, h = 0.01.

In general, the number of iterations decrease as the timestep decreases, which is not

surprising since the initial guess is typically more accurate as the timestep decreases. For a fixed

time interval, the total computational cost depends on the number of timesteps, average number

of iterations per timestep, and the algorithmic complexity of each iteration. To illustrate the

relative computational efficiency of the various methods with different solvers, we set n = 161,

and plot the trajectory error over the time interval [0,1] vs. total computational cost in Figure 2.5.

As can be seen from the figure, for the same trajectory accuracy, the midpoint rule with Newton

iterations is the most computationally expensive, due to the higher complexity of the Newton

iterations. However, the minimum computational cost achievable using the midpoint rule with

fixed point iterations and the discrete gradient methods is rather high, as they require the use of

smaller timesteps in order to converge. This problem becomes more severe for non-exponential

integrators as the spatial resolution n increases, as the condition number of the matrix A increases
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Figure 2.5. Comparison of trajectory error vs. CPU time for the nonlinear Schrödinger equation

with n. In contrast, the minimum computational cost achievable by the midpoint exponential

and energy exponential methods is lower, and their trajectory error is also smaller for the same

computational cost. For DISEX, the steeper slope indicates that it is a higher-order method, and

it is the most economical choice when high accuracy is required.

2.5.2 KdV

We simulate the KdV equation,

ut +uux +νuxxx = 0,

where ν = 5×10−4. In Table 2.4, n denotes the number of nodes used to discretize the spatial

domain, and we tabulate the maximum timestep for which the nonlinear solver converges, and
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Table 2.4. Maximum timestep and average iteration number for convergence for the KdV
equation, as a function of the numerical integrator, nonlinear solver, and spatial resolution.

midpoint midpoint exp discrete gradient energy exp DISEX
fixed point Newton fixed point fixed point fixed point fixed point

n hmax iteravg hmax iteravg hmax iteravg hmax iteravg hmax iteravg hmax iteravg

401 4×10−4 17.9 4×10−4 25.5 8×10−4 8.4 4×10−4 15.4 0.005 14.9 4×10−4 26.9
601 1×10−4 4.2 1×10−4 7.3 6×10−4 8.6 1×10−4 3.4 0.005 14.8 4×10−4 48.0
801 6×10−5 18.5 5×10−5 4.4 6×10−4 9.4 5×10−5 3.5 0.005 14.9 1×10−4 19
10013×10−5 7.7 3×10−5 11.0 6×10−4 10.6 3×10−5 14.9 0.005 14.8 1×10−4 19
12011×10−5 2 1×10−5 2 6×10−4 11.4 1×10−5 1 0.005 14.8 1×10−4 22
14011×10−5 1 1×10−5 2 6×10−4 16.1 1×10−5 1 0.005 14.8 1×10−4 34

average number of iterations taken to converge. In particular, we explore the effect of the

numerical integrator, the nonlinear solver, and the spatial resolution of the semi-discretization,

on the convergence properties of the solver. The maximum timestep is chosen by considering

both the long time stability and the number of iterations necessary, and the number of iterations

is averaged over the first one thousand timesteps. For the midpoint rule, the maximum timestep

decreases like n−3 for fixed point iterations, and a comparable timestep is required for the

Newton iterations to converge, which renders it too costly in practice. It is interesting to compare

this with the convergence properties of the NLS problem, where the maximum timestep for the

midpoint rule with fixed point iteration decreases like n−2. This difference is due to the fact that

for NLS, the second order derivative term ψxx introduces a D2 term in the semi-discrete ODE,

and its spectral radius increases quadratically; whereas for KdV, uxxx introduces a D3 term in

the semi-discrete ODE, and its spectral radius increases cubicly. The classical discrete gradient

method for the KdV equation is given by (2.26), and it exhibits the same timestep restrictions as

the midpoint rule. In contrast, both the exponential midpoint and energy preserving exponential

integrator allow rather large timesteps that are independent of the spatial resolution. Even though

DISEX is implemented as the composition of exponential midpoint rules, it requires smaller

timesteps than a single exponential midpoint rule.

In Figure 2.6, we observe that the exponential midpoint rule has an energy error that is

small and bounded, as is typical for a symplectic integrator, and the trajectory error grows linearly.
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In Figure 2.7, the energy preserving exponential integrator has an energy that is preserved to

within machine precision, and the trajectory error grows linearly.
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(b) Trajectory error

Figure 2.6. Error plots for the exponential midpoint rule applied to the KdV equation, n = 401,
h = 5×10−4.

As in the NLS case, we explore the relative computational efficiency of the above

algorithms by setting n = 1001, and plotting the trajectory error over the time interval [0,1] vs.

the total computational cost in Figure 2.8. We did not implement the Newton based solvers here,

as we extrapolated that it would require approximately 4×104 seconds to compute the trajectory

over the time interval [0,1], so they are not included in the figure. As can be seen from the graph,

the minimum computational cost achievable by the energy exponential method is the lowest

of the methods considered, as it is capable of taking the largest timestep stably. In addition,

it has the highest accuracy for a given computational cost amongst all the low order methods.

The method with the next lowest minimum computational cost is the exponential midpoint rule,

followed by the midpoint rule with fixed point iteration, and the discrete gradient methods. As

before, DISEX still has the steepest slope, which indicates that it is a higher-order method. But,

the disadvantage is that the maximum possible timestep is not as large this time, which results in

it having the largest minimum computational effort amongst all the methods considered.
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Figure 2.7. Error plots for the energy preserving exponential integrator applied to the KdV
equation, n = 401, h = 0.005.
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Figure 2.8. Comparison of trajectory error vs. CPU time for the KdV equation

59



Chapter 2, in full, is a reprint of the material that has been accepted for publication by

Journal of Computational Physics, 2019. Xuefeng Shen; Melvin Leok, Elsevier Press, 2019. The

dissertation author was the primary investigator and author of this material.
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Chapter 3

Lie Group Variational Integrators for
Rigid Body Problems using Quaternions

3.1 Introduction

For Lagrangian mechanics on the tangent bundle T Q and the Lagrangian L, the theory of

variational integrators is well-established [43], and is based on discretizing Hamilton’s principle

rather than the Euler–Lagrange equations. The discrete Lagrangian Ld : Q×Q→R approximates

the action integral over a small time interval,

Ld(q0,q1)≈q(0)=q0,q(h)=q1

∫ h

0
L(q(t), q̇(t))dt,

and the discrete Hamilton’s principle states that the discrete action sum is stationary with respect

to variations in the discrete solution curve that fixes the endpoints,

δ

N−1

∑
k=0

Ld(qk,qk+1) = 0,

where δq0 = δqN = 0. This yields the discrete Euler–Lagrange equations,

D2Ld(q0,q1)+D1(q1,q2) = 0. (3.1)

61



By introducing the discrete Legendre transforms, we obtain a variational integrator on the

cotangent bundle T ∗Q, 
p0 =−D1Ld(q0,q1),

p1 = D2Ld(q0,q1).

(3.2)

It is easy to easy that (3.2) recovers (3.1) when the momentum variables are eliminated, and that

(3.2) is the usual characterization of a symplectic map in terms of a Type I generating function.

As such, variational integrators are automatically symplectic, and either form of the discrete

equations can be easily implemented in a linear space or in local coordinates. However, the

configuration manifold Q is not, in general, a Euclidean space. Symplectic integrators do not

exactly preserve energy, but instead rely on the existence of an associated modified energy for

their long-time energy stability properties.

Constructing a symplectic integrator naı̈vely on a local coordinate chart typically does

not result in a globally well-defined symplectic map on the Lie group. That is to say that if

we constructed variational integrators on two local coordinate charts that overlap, they will not

generally correspond to the same integrator on the overlapping region. A consequence of this

is that changing the coordinate chart at each time step results in the modified energy that is

preserved changing from step to step, which destroys the long-time energy stability typically

associated with symplectic integrators. In order to overcome this limitation, it is necessary to

consider symplectic integrators that is are well-defined globally on the configuration manifold,

and which commute with a change of coordinates.

One way to address this issue is to embed Q in Euclidean space. In many cases, the

configuration space naturally lives in a higher-dimensional Euclidean space Rn, and is the level

set of some constraint function g : Rn → Rm. So the position and velocity are represented

as vectors in the embedding space, and Lagrange multipliers are introduced to represent the

constraint forces.

When the configuration space Q has a high codimension in the Euclidean space, and
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the constraint function is complicated, the above method is costly to implement. For example,

the rotation group SO(3), which is a three-dimensional Lie group, naturally lives in R3×3, a

nine-dimensional Euclidean space, with six orthonormality constraints. As opposed to viewing

Q extrinsically as an embedded submanifold, when Q is a Lie group, the group structure could be

utilized to represent the position and tangent space intrinsically, thus avoiding the introduction of

Lagrange multipliers. This idea was used in [35] for the rigid body problem on the configuration

space SO(3), and later generalized to the full body problem on SE(3) [36].

Besides the rotation group SO(3), the motion of rigid bodies can also be described by

unit quaternions, which is an extremely popular approach in classical mechanics [23], computer

graphics [15, 62], virtual reality [33], and engineering applications in control [61, 66] and

estimation [54, 55] of aerial and space vehicles. In [64], a variational integrator for the rigid

body problem was derived in terms of unit quaternions embedded in R4, so as to avoid the

complicated constraints in SO(3), but where the unit quaternion constraint is enforced using a

Lagrange multiplier. We remark that the unit quaternions S3, is not only the unit sphere in R4,

but also a Lie group under quaternion multiplication.

In this paper, we will derive a Lie group variational integrator for rigid body problems

using unit quaternions, but without the use of unit length constraints. Instead, we use the fact

that R3 can be identified with the Lie algebra associated with S3 ⊂ H. This will allow us to

obtain a variational integrator for rigid body dynamics in the unit quaternion representation that

is globally valid, expresses the relative rotation using three degrees-of-freedom, and avoids the

need for explicit constraints. While the problem of constructing arbitrarily high-order Lie group

variational integrators has been addressed in numerous publications [7, 8, 19], the goal of this

paper is more focused, which is to derive a simple, easy to implement, second-order accurate

symplectic Lie group method that uses the unit quaternion representation without the need for

constraints, local coordinates, or reprojection.

This yields a numerical method in the unit quaternion representation that exhibits the

computational advantages of Lie group variational integrators developed for rotation matrices,
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thereby making the advantages of geometric integrators accessible to engineering applications

which are heavily invested in the unit quaternion representation of the rotation group. In

particular, because many existing on board controllers for aerial and space vehicles use the

unit quaternion representation, our Lie group variational integrator that natively uses the unit

quaternion representation can be easily retrofitted into an existing controller framework without

an extensive rewrite of the controller software.

3.2 Background

3.2.1 Rigid body problem

The configuration space of the rigid body is SE(3) = R3 oSO(3), where (x,R) ∈ SE(3)

describes the position and orientation of the body-fixed frame with respect to an inertial frame.

Let ρ ∈ R3 denotes the position of a mass element in the body-fixed frame. Then, the corre-

sponding inertial position is x+Rρ , the velocity is ẋ+ Ṙρ , and the kinetic energy is given by

T =
1
2

∫
B
‖ẋ+ Ṙρ‖2dm

=
1
2

∫
B
‖ẋ‖2dm+

∫
B

ẋTṘρdm+
1
2

∫
B
‖Ṙρ‖2dm

=
1
2

m‖ẋ‖2 +
1
2

tr[ṘJdṘT],

(3.3)

where Jd =
∫
B ρρTdm is the nonstandard moment of inertia matrix. In (3.3), we used the fact

that the origin of the body-fixed frame is the center of mass of the body, thus

∫
B

ρdm = 0.

Since R evolves on SO(3), it follows that RTR = I. By differentiating on both sides, we have

ṘTR+RTṘ = 0, thus RTṘ is skew symmetric. Define the hat map ·̂ : R3→ R3×3 by the condition
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that x̂y = x× y for all x,y ∈ R3. If x = (x1,x2,x3), then x̂ is given by

x̂ =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 ,

which is a skew-symmetric matrix. In particular, the hat map defines an isomorphism between

R3 and skew-symmetric matrices. Since RTṘ is skew-symmetric, there exists a unique vector Ω

such that RTṘ = Ω̂. In other words,

Ṙ = RΩ̂, (3.4)

where Ω is the angular velocity in the body-fixed frame. This equation has a natural geometric

interpretation: SO(3) is a Lie group under matrix multiplication, and its Lie algebra, so(3),

consists of all skew-symmetric matrices,

so(3) = {Ω̂ |Ω ∈ R3}.

The tangent space at each R can be represented as the pushforward by the left action of R on the

Lie algebra,

TRSO(3) = (LR)∗so(3).
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In this way, the tangent bundle T SO(3) is diffeomorphic to SO(3)× so(3) by left-trivialization.

With this, we can express the rotational term in the kinetic energy as follows,

tr[ṘJdṘT] = tr[RΩ̂JdΩ̂
TRT]

= tr[Ω̂JdΩ̂
T]

= Ω
TJΩ,

(3.5)

where J = tr[Jd]I3− Jd is standard moment of inertia matrix. Combining (3.3) and (3.5), we

obtain T = 1
2m‖ẋ‖2 + 1

2ΩTJΩ, and the Lagrangian for rigid body problems L : T SE(3)→ R is

given by,

L(x,R, ẋ,Ω) = T −V =
1
2

m‖ẋ‖2 +
1
2

Ω
TJΩ−V (x,R).

3.2.2 Unit quaternions

Quaternions are a noncommutative division algebra, usually denoted by H, with an

element q = (qs,~qv), where qs is the scalar part and ~qv ∈ R3 is the vector part. H inherits the

vector space structure and differential structure from R4, and has the following multiplication:

given q = (qs,~qv), p = (ps,~pv),

q · p = (qs · ps−~qv ·~pv,qs ·~pv + ps ·~qv +~qv×~pv).

We can also define conjugation q∗ = (qs,−~qv), norm ‖q‖=
√

qq∗, and inverse under quaternion

multiplication q−1 = q∗

‖q‖2 . The set of unit quaternions

S3 = {q ∈H | ‖q‖= 1}
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is diffeomorphic to the unit sphere in R4, and forms a Lie group under quaternion multiplication.

The identity element is e = (1,0,0,0), and the Lie algebra

TeS3 = {(0,ξ ) | ξ ∈ R3}.

The corresponding exponential map is

exp(ξ ) =
(

cos(|ξ |), ξ

|ξ |
sin(|ξ |)

)
. (3.6)

For any q0 ∈ S3, the map ξ 7→ q0 · exp(ξ ) gives a local diffeomorphism between a neighborhood

of the origin of R3 and a neighborhood of q0. By identifying R3 with the Lie algebra, this

reduces to canonical coordinates of the first kind on a Lie group [60]. It can be verified that for

q ∈ S3,v ∈ R3, q(0,v)q∗ is pure imaginary, i.e., the scalar part vanishes. This defines a linear

action on the vector part, which turns out to be a rotation. Thus, for each q ∈ S3, we have the

corresponding rotation π(q) ∈ SO(3),

S3 π−−−−→ SO(3), π(q) = (2q2
s −1)I3 +2~qv~qT

v +2qs~̂qv.

The map π is surjective, locally diffeomorphic, and is also a Lie group homomorphism:

π(q1 ·q2) = π(q1) ·π(q2),

where the operation on left side is quaternion multiplication, and the operation on the right side

is matrix multiplication. π is not a global diffeomorphism, for each R ∈ SO(3), its preimage is

always one pair of antipodal points ±q. Actually, S3 and SO(3) are not diffeomorphic, as they

have different homology groups.
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We can lift the Lagrangian dynamics on T SE(3) to TR3×T S3:

TR3×T S3 Id×T π−−−−→ T SE(3) L−−−−→ R,

As manifolds, we have T SE(3) = T (R3×SO(3)) = TR3×T SO(3), where Id is the identity map

from TR3 to itself, and T π : T S3→ T SO(3) is the tangent lift of π . Define the Lagrangian L̂ =

L◦ (Id×T π) on T (R3×S3), and we will develop our algorithm for the Lagrangian mechanics

defined by L̂ on T (R3×S3). Recall that Id×T π is a local diffeomorphism, so (T (R3×S3), L̂)

and (T SE(3),L) are equivalent for initial-value problems, and locally equivalent for two point

boundary-value problems. A calculation shows that,

(q,q · (0,ξ )) T π−−−−→ (π(q),π(q) ·2ξ ) ,

so
L̂(x,q, ẋ, q̇) = L̂(x,q, ẋ,q · (0,ξ ))

= L̂(x,q, ẋ,ξ )

=
1
2

m‖ẋ‖2 +2ξ
TJξ −V (x,q).

(3.7)

3.3 Lie group variational integrator

3.3.1 Continuous time equation

We derive the Euler–Lagrange equations for the Lagrangian L̂ on T (R3× S3). By

Hamilton’s principle, (x(t),q(t)) ∈ R3×S3 extremizes the action integral

∫ t1

t0
L̂(x(t),q(t), ẋ(t), q̇(t))dt,

for variations that fix the endpoints x(t0) = x0,x(t1) = x1 and q(t0) = q0,q(t1) = q1. Consider

variations of (x(t),q(t)) parameterized by λ : Given any (δx(t),η(t)) that vanish at the endpoints,
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we construct (x(t,λ ),q(t,λ )) as follows,

x(t,λ ) = x(t)+λδx(t),

and q(t,λ ) ∈ S3, such that q(t,0) = q(t), satisfies the following equation,

∂q
∂λ

(t,0) = q(t) · (0,η(t)). (3.8)

This implies that q(t0,λ ) = q0 and q(t1,λ ) = q1, since η(t) vanishes at the endpoints. Since

∂q
∂ t (t,λ ) ∈ Tq(t,λ )S3, we have by left-trivialization, ∂q

∂ t (t,λ ) = q(t,λ ) · (0,ξ (t,λ )), for a suitable

choice of ξ (t,λ ) ∈ R3. Taking derivatives with respect to λ on both sides, we obtain

∂ 2q
∂λ∂ t

(t,λ ) =
∂q
∂λ

(t,λ ) · (0,ξ (t,λ ))+q(t,λ ) ·
(

0,
∂ξ

∂λ
(t,λ )

)
.

Evaluating this at λ = 0 yields,

∂ 2q
∂λ∂ t

(t,0) =
∂q
∂λ

(t,0) · (0,ξ (t))+q(t) ·
(

0,
∂ξ

∂λ
(t,0)

)
= q(t) · (0,η(t)) · (0,ξ (t))+q(t) ·

(
0,

∂ξ

∂λ
(t,0)

)
,

(3.9)

where we used (3.8), and we let ξ (t) = ξ (t,0). Taking derivatives with respect to t on both sides

of (3.8) yields,

∂ 2q
∂ t∂λ

(t,0) = q̇(t) · (0,η(t))+q(t) · (0, η̇(t))

= q(t) · (0,ξ (t)) · (0,η(t))+q(t) · (0, η̇(t)).
(3.10)
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Equating (3.9) and (3.10) by the equality of mixed partials, we get

(
0,

∂ξ

∂λ
(t,0)

)
= (0, η̇(t))+(0,ξ (t)) · (0,η(t))− (0,η(t)) · (0,ξ (t))

= (0, η̇(t))+(0,2ξ (t)×η(t)).

Thus,

∂ξ

∂λ
(t,0) = η̇(t)+2ξ (t)×η(t). (3.11)

Using the Lagrangian given in (3.7), Hamilton’s principle states that

d
dλ

∣∣∣∣
λ=0

∫ t1

t0

[
1
2

m‖ẋ+λ δ̇x‖2 +2ξ (t,λ )TJξ (t,λ )−V (x(t,λ ),q(t,λ ))
]

dt = 0,

which means that

∫ t1

t0

[
mẋ · δ̇x+4ξ (t)TJ

∂ξ

∂λ
(t,0)−

(
∂V
∂x
·δx+

(
∂V
∂q

)T
∂q
∂λ

(t,0)
)]

dt = 0.

The terms involving the infinitesimal variation δx are

∫ t1

t0

[
mẋ · δ̇x− ∂V

∂x
·δx
]

dt =
∫ t1

t0

(
−mẍ− ∂V

∂x

)
δxdt, (3.12)

and using (3.11), we have that

∫ t1

t0
4ξ (t)TJ

∂ξ

∂λ
(t,0)dt =

∫ t1

t0
4ξ

TJ(η̇ +2ξ ×η)dt

=
∫ t1

t0
4
(
−ξ̇

TJ+2ξ
TJξ̂

)
ηdt,

(3.13)

where we integrated by parts, and used the fact that η vanishes at the endpoints.
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For any q ∈H,v ∈ R3, define F(q) : H→ R3×4 by the condition that

q · (0,v) = F(q)Tv.

It can be easily verified that for q = (qs,~qv), F(q) = (−~qv,qs · I−~qv), thus

∫ t1

t0

(
∂V
∂q

)T
∂q
∂λ

(t,0)dt =
∫ t1

t0

(
∂V
∂q

)T

(q · (0,η))dt

=
∫ t1

t0

(
∂V
∂q

)T

F(q)T
ηdt.

(3.14)

Combining (3.9), (3.12), (3.14), integrating by parts, and using the fact that δx vanishes at the

endpoints, we have

∫ t1

t0

(
−mẍ− ∂V

∂x

)
δx+

(
−4ξ̇

TJ+8ξ
TJξ̂ +

(
∂V
∂q

)T

F(q)T
)

ηdt = 0,

for all variations δx and η that vanish at the endpoints. By the fundamental theorem of the

calculus of variations, the Euler–Lagrange equations for the Lagrangian L̂ on T (R3× S3) is

given by, 

mẍ =−∂V
∂x

,

4Jξ̇ +8ξ × (Jε) = F(q)
∂V
∂q

,

q̇ = q · (0,ξ ).

(3.15)

3.3.2 Variational integrator on the Lagrangian side

The discrete Lagrangian from [64] is used here, which can be viewed as a midpoint rule

approximation of the integral, combined with linear interpolation. Given endpoints (x0,q0) and

(x1,q1), since (0,ξ )= q∗q̇≈ (q0+q1
2 )∗ ·(q1−q0

h )= (0, 1
h Im(q∗0q1)), we have that ξ is approximated
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by 1
h Im(q∗0q1). We can construct the discrete Lagrangian as

Ld(x0,q0,x1,q1)

= h
(

1
2

m
∥∥∥∥x1− x0

h

∥∥∥∥2

+
2
h2 (Im(q∗0q1))

TJ(Im(q∗0q1))−
V (x0,q0)+V (x1,q1)

2

)
.

(3.16)

This discrete Lagrangian is consistent as it converges, as h approaches zero, to h times the

continuous Lagrangian. Furthermore, it can be shown to be symmetric, and as such it is at least

second-order accurate. More generally, the order of accuracy of the discrete Lagrangian can be

obtained by comparing it to the exact discrete Lagrangian, using the variational error analysis

developed in [43]. This has been related to the quadrature error and best approximation error of

the finite-dimensional approximation space for Galerkin variational integrators in [18, 19].

The discrete Euler Lagrange equations are

{ Dx1(Ld(x0,q0,x1,q1)+Ld(x1,q1,x2,q2)) = 0, (3.17)

Dq1(Ld(x0,q0,x1,q1)+Ld(x1,q1,x2,q2)) = 0. (3.18)

By substituting the expression for the discrete Lagrangian (3.16) into (3.17), we obtain

m · x2−2x1 + x0

h2 =−∂V
∂x

(x1,q1). (3.19)

For (3.18), recall that q1 evolves on S3, so we consider a variation q1(λ ) of q1, such that

q1(0) = q1 and δq1 =
dq1(λ )

dλ

∣∣∣
λ=0

= q1 · (0,η), then

d
dt

∣∣∣∣
λ=0

(Im(q∗0q1(λ )))
TJ(Im(q∗0q1(λ ))) = 2(Im(q∗0q1))

TJ
(

d
dλ

∣∣∣∣
λ=0

Im(q∗0q1(λ ))

)
= 2(Im(q∗0q1))

TJ(Im(q∗0q1(0,η))).

(3.20)
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Define G(q) : H→ R3×3, such that for any q ∈H, v ∈ R3,

Im(q · (0,v)) = G(q)Tv.

It can be verified that

G(q) = qs · I3−~qv,

so

2(Im(q∗0q1))
TJ(Im(q∗0q1(0,η))) = 2(Im(q∗0q1))

TJG(q∗0q1)
T
η .

Similarly,

d
dt

∣∣∣∣
λ=0

(Im(q∗1(λ )q2))
TJ(Im(q∗1(λ )q2)) = 2(Im(q∗1q2))

TJ(Im((q1(0,η))∗q2)

= 2(Im(q∗2q1))
TJ(Im(q∗2q1(0,η)))

= 2(Im(q∗2q1))
TJG(q∗2q1)

T
η .

(3.21)

Substituting (3.20) and (3.21) into (3.18) yields

4
h2 (Im(q∗0q1))

TJG(q∗0q1)
T
η +

4
h2 (Im(q∗2q1))

TJG(q∗2q1)
T
η−

(
∂V
∂q

(x1,q1)

)T

F(q1)
T
η = 0,

which holds for any η , which gives

G(q∗0q1)J(Im(q∗0q1))+G(q∗2q1)J(Im(q∗2q1)) =
h2

4
F(q1)

∂V
∂q

(x1,q1). (3.22)

In summary, the discrete Euler–Lagrange equations derived from the discrete Lagrangian (3.16)

are given by


m · x2−2x1 + x0

h2 =−∂V
∂x

(x1,q1),

G(q∗0q1)J(Im(q∗0q1))+G(q∗2q1)J(Im(q∗2q1)) =
h2

4
F(q1)

∂V
∂q

(x1,q1),
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where G(q) = qs · I3−~qv, F(q) = (−~qv,qs · I−~qv).

3.3.3 Variational integrator on the Hamiltonian side

For any Lie group G, its tangent bundle T G is diffeomorphic to G×g by left-trivialization,

T G∼= G×g, (q,vq)
ψ−−−−→ (q,Lq−1∗vq),

and T ∗G is diffeomorphic to G×g∗,

T ∗G∼= G×g∗, (q, pq)
φ−−−−→ (q,Lq

∗pq).

Given a Lagrangian L : T G → R, we can define L̂ = L ◦ψ−1, and the following diagram

commutes,

T G
FL //

ψ

��

T ∗G

φ

��
G×g

FL̂

// G×g∗

where FL is the Legendre transformation and FL̂ denotes the partial derivative of L̂ with respect

to the Lie algebra element.

For a Lagrangian of the form L̂(x,q, ẋ,ξ ) = 1
2m‖ẋ‖2 + 2ξ TJξ −V (x,q), the Legendre

transform is given by (x,q, ẋ,ξ ) 7→ (x,q,mẋ,4Jξ ).

For a discrete Lagrangian Ld : G×G→R, we consider a variation q0(λ ) of q0, such that

q0(0) = q0 and δq0 =
dq0(λ )

dλ

∣∣∣
λ=0

= L∗q0
ξ , then an element α ∈ g∗ is defined by the condition

d
dλ

∣∣∣∣
λ=0

Ld(q0(λ ),q1) = 〈α,ξ 〉.

It is easy to verify that α = L∗q0
D1Ld(q0,q1). The same arguments hold for the derivative with

respect to q1. This allows us to conclude that the the partial derivative of the discrete Lagrangian
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with respect to the Lie algebra element in the left-trivialized coordinate system that generates the

variation of qi ∈ G is related to the partial derivative with respect to qi by a left translation. So

the variational integrator on the Hamiltonian side for the discrete Lagrangian (3.16) is given by



p0 = m · x1− x0

h
+

h
2

∂V
∂x

(x0,q0),

w0 =−
4
h

G(q∗1q0)J(Im(q∗1q0))+
h
2

F(q0)
∂V
∂q

(x0,q0),

p1 = m · x1− x0

h
− h

2
∂V
∂x

(x1,q1),

w1 =
4
h

G(q∗0q1)J(Im(q∗0q1))−
h
2

F(q1)
∂V
∂q

(x1,q1).

(3.23)

Here, w0,w1 are in the dual space of so(3), and the derivation follows the approach adopted in

the previous section.

3.4 Implementation of the algorithm

Given initial conditions (x0,R0, ẋ0, Ṙ0 = R0Ω̂0) for the rigid body problem, our algorithm

is given as follows,

1. lift (x0,R0) ∈ SE(3) to (x0,q0) ∈ R3×S3, such that π(q0) = R0 (see [42]);

2. start with initial conditions (x0,q0, p0 = mẋ0,w0 = 2JΩ0) on T ∗(R3×S3);

3. apply (3.23) repeatedly to generate the discrete sequence (xk,qk, pk,wk).

At each iteration, x1 can be directly calculated by

x1 = x0 +
h
m

(
p0−

h
2

∂V
∂x

(x0,q0)

)
.
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There is a trick to calculating the F(q0)
∂V
∂q (x0,q0) and F(q1)

∂V
∂q (x1,q1) terms. Notice that

F(q)T v = q · (0,v), thus

〈
F(q)

∂V
∂q

,ε
〉
=
〈

∂V
∂q

,F(q)T
ε

〉
=
〈

∂V
∂q

,q · (0,ε)
〉
,

=
〈

∂V
∂Q

,Q ·2ε

〉
= 2
〈

QT ∂V
∂Q

,ε
〉
.

(3.24)

From this, we conclude that F(q)∂V
∂q = 2Vec(QT ∂V

∂Q), where Vec is the inverse of the hat map.

The reason for calculating ∂V
∂Q instead of ∂V

∂q is due to the fact that calculating ∂V
∂q requires

the computation of ∂V
∂Q , so we will use both the quaternion and rotation representations of the

orientation at each step, but only store the orientation in the quaternion representation for the

numerical solution sequence. The update for q1 can recast as a novel fixed point problem as

opposed to a root finding problem. We have

G(q∗1q0)J(Im(q∗1q0)) =
h
4

(
−w0 +

h
2

F(q0)
∂V
∂q

(x0,q0)
)
,

and if we denote the updated unit quaternion q∗1q0 by q, and the right side (which is explicit) by

b, we obtain

G(q)JIm(q) = b.

As such, q can be calculated by the following fixed point iteration,

G(qk)JIm(qk+1) = b. (3.25)

During each iteration, the vector part of qk+1 is calculated by solving a linear system, and then

the scalar part is derived from the unit length constraint; another fixed point iteration is based on

the observation that G(q) = qs · I−~qv, thus

G(q)v = qs · v−~qv× v,
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for any vector v. As such, (3.25) can be modified to yield

qk
sJIm(qk+1) =~q k

v× JIm(qk)+b. (3.26)

In practice, (3.26) converges faster than (3.25). Once q1 is calculated, p1,w1 can both be

calculated explicitly from the last two equations in the system (3.23). If we wish to recover the

discrete solution in the rotation matrix representation, we can project (xk,qk, pk,wk) to T SE(3)

by using

Rk = π(qk), ẋk =
pk

m
, Ωk =

1
2

J−1wk.

3.5 Analysis of algorithm

Our algorithm inherits some very nice geometric properties of the exact flow. First, (3.23)

is by construction symplectic; second, if (3.23) is regarded as a map φh from (x0,q0, p0,w0) to

(x1,q1, p1,w1), and we replace h with −h, it would yield



p0 = m · x0− x1

h
− h

2
∂V
∂x

(x0,q0),

w0 =
4
h

G(q∗1q0)J(Im(q∗1q0))−
h
2

F(q0)
∂V
∂q

(x0,q0),

p1 = m · x0− x1

h
+

h
2

∂V
∂x

(x1,q1),

w1 =−
4
h

G(q∗0q1)J(Im(q∗0q1))+
h
2

F(q1)
∂V
∂q

(x1,q1).

(3.27)

It is easy to check that (3.27) defines the same map φh from (x1,q1, p1,w1) to (x0,q0, p0,w0),

thus φ−h = φ
−1
h , and (3.23) is symmetric. The order of a symmetric method is necessarily even

[37], so our algorithm has order two. Also the real system is time reversible, and we can verify

that

φ−h(x0,q0,−p0,−w0) = (x1,q1,−p1,−w1),
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thus, our method (3.23) is time reversible. Also, we observe that in this application that the

Lagrangian (3.7) is invariant under the S3 group action S3× (R3×S3) 7→ R3×S3:

q1(x,q) = (π(q1)x,q1q).

Thus, the corresponding momentum map is preserved, which is the total angular momentum

x× p+π(q)JΩ. The discrete Lagrangian (3.16) we designed is also invariant under this group

action, so by the discrete Noether’s theorem [43], our algorithm will also preserve total angular

momentum of the system.

A further investigation shows that discrete flow maps of (3.23) and the classical RATTLE

method [17] are related. For the rigid body problem in the rotation representation, the Lagrangian

is separable, and the RATTLE method is given by



p1/2 = p0−
h
2

∂V
∂x

(x0,Q0), x1 = x0 +h
p1/2

m
,

P1/2 = P0−
h
2

∂Q
∂x

(x0,Q0)−
h
2

Q0Λ0,

Q1 = Q0 +hP1/2J−1
d , QT

1 Q1 = I,

p1 = p1/2−
h
2

∂V
∂x

(x1,Q1),

P1 = P1/2−
h
2

∂Q
∂x

(x1,Q1)−
h
2

Q1Λ1, QT
1 P1J−1

d + J−1
d PT

1 Q1 = 0.

(3.28)

The RATTLE method can be derived using constrained mechanics with the discrete Lagrangian

Ld(x0,Q0,x1,Q1) = h

(
1
2

m
∣∣∣∣x1− x0

h

∣∣∣∣2 + 1
2

trace

[(
Q1−Q0

h

)
Jd

(
Q1−Q0

h

)T
]

− V (x0,Q0)+V (x1,Q1)

2

)
, (3.29)

where Q0 = π(q0) and Q1 = π(q1). We can prove that (3.29) is equivalent to the discrete

Lagrangian (3.16) we used to derive our method, thus the discrete flow maps of the two resulting

78



-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 3.1. Planar rigid body

methods (3.23) and (3.28) are related by the projection from unit quaternions to rotation matrices.

There are efficient ways of implementing (3.28), where the Lagrangian multipliers Λ0 and Λ1 are

eliminated, and the quaternion representation can be introduced to obtain a fixed point iteration

for Q1[17], and P1 can be obtained by solving a linear system. Here in our algorithm (3.23), the

angular momentum w1 is updated explicitly.

3.6 Numerical Experiments

We consider a planar rigid body composed of three uniform balls with unit mass and

radius 0.1, connected by massless rods as in Figure 3.1. We numerically simulate the motion

of the planar rigid body in a gravitational field centered at the origin with potential energy −1
r ,

initial conditions x0 = (8,0,0), q0 = (1,0,0,0), p0 = (0,1,0), and w0 = (1,2,3), and timestep

h = 0.01. The trajectory of the center of mass during the time interval [0,1000] and motion of the

rigid body over one orbital period are given in Figure 3.2. The energy error and quaternion error,

which is the deviation from the unit quaternion surface, during the time interval [0,1000] are

given in Figures 3.3a and 3.3b, and we observe that these invariants are preserved extremely well.

It can be seen that energy error remains stable due to the symplecticity of the proposed algorithm,

and the quaternion error remains stable due to the use of the intrinsic Lie group composition to

update the numerical trajectory. The error in each component of the angular momentum is given

in Figure 3.3c. As can be seen, it is preserved quite well.
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Figure 3.2. Motion of the rigid body in a central gravitational field.
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Figure 3.3. The Lie group variational integrator using quaternions preserves the energy and the
unit norm condition very well. In addition, the angular momentum is preserved quite well.
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(a) energy error of RATTLE (b) quaternion error of RATTLE

(c) momentum error of RATTLE

Figure 3.4. The RATTLE method performs very similarly to the Lie group variational integrator
using quaternions.

Since our method and RATTLE are analytically equivalent if the Lagrange multipliers

associated with the unit quaternion constraint are eliminated, it is natural to compare the perfor-

mance of our method with RATTLE to see if there are differences in the numerical properties

in practice. In Figure 3.4, we examine the numerical performance of RATTLE, in particular,

the energy error, unit quaternion error and momentum error. The quaternion representation is

adopted to update Q1 by fixed point iteration, and P1 is solved as a linear system. In our problem,

the nonstandard moment of inertia matrix Jd is diagonal, thus this linear system is decoupled

into three linear subsystems, and P1 has a closed form solution. The numerical performance of

RATTLE is similar to our method, with almost the same run time, which is demonstrated by the

computational efficiency plot in Figure 3.5.

In addition, a runtime comparison is also made between three methods: (i) our Lie group

variational integrator using the unit quaternion representation; (ii) the Lie group Störmer–Verlet

method [8, Eq. (4.15)-(4.18)], which is a special case of the Lie group variational partitioned
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Figure 3.5. The error vs. CPU time for both our proposed Lie group variational integrator using
quaternions and RATTLE are virtually indistinguishable.

Table 3.1. Runtime comparison (1000 steps)

Lie group quaternion Lie group Störmer–Verlet SHAKE
7.46s 7.20s 11.00s

Runge–Kutta method, where the Lie group is the rotation group SO(3); (iii) the SHAKE method,

which can be viewed as a special case of the variational integrator for constrained mechanics [43],

where the unit norm for quaternions is used as constraint. All these methods are symplectic by

construction. In Table 3.1, the runtime to perform 1000 steps with the same initial condition

is reported for each method. It is observed that the SHAKE constrained integrator, costs

significantly more than the other two. In practice, the difference in computational cost between

our method and the Störmer–Verlet Lie group method is negligible, and the cost depends strongly

on the choice of initial conditions, the timestep, and the code implementation. So, for this

rigid body example, our method is roughly comparable to the Störmer–Verlet Lie group method

in runtime complexity, maintains an advantage in memory cost, and is significantly cheaper

than the SHAKE symplectic constrained integrator. As such, our method is competitive with

methods using the rotation matrix representation, and cheaper than other methods using the unit

quaternion representation.

Chapter 3, in full, is currently being prepared for submission for publication of the

material. Xuefeng Shen; Melvin Leok. The dissertation author was the primary investigator and
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author of this material.
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Chapter 4

High-Order Symplectic Lie Group Meth-
ods on SO(n) using the Polar Decomposi-
tion

4.1 Introduction

Given a configuration manifold Q, variational integrators provide a useful method of

deriving symplectic integrators for Lagrangian mechanics on the tangent bundle T Q in terms of

the Lagrangian L, or for Hamiltonian mechanics on the cotangent bundle T ∗Q in terms of the

Hamiltonian H. It involves discretizing Hamilton’s principle or Hamilton’s phase space princi-

ple rather than the Euler–Lagrange or Hamilton’s equations. Discrete Lagrangian variational

mechanics is described in terms of a discrete Lagrangian Ld(q0,q1), which is an approximation

of the exact discrete Lagrangian,

Lexact
d (q0,q1) = q∈C2([0,h],Q)

q(0)=q0,q(h)=q1

∫ h

0
L(q(t), q̇(t))dt. (4.1)

The discrete Hamilton’s principle states that the discrete action sum is stationary,

δ

N−1

∑
k=0

Ld(qk,qk+1) = 0,
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for variations that vanish at the endpoints, i.e., δq0 = δqN = 0. This yields the discrete Euler–

Lagrange equation,

D2Ld(qk−1,qk)+D1Ld(qk,qk+1) = 0,

where Di denotes the partial derivative with respect to the ith-argument, and this defines an

update map on on Q×Q, where (qk−1,qk) 7→ (qk,qk+1). This update map can equivalent be

described in terms of the discrete Legendre transforms,

pk =−D1Ld(qk,qk+1), pk+1 = D2Ld(qk,qk+1), (4.2)

which defines an update map on T ∗Q, (qk, pk) 7→ (qk+1, pk+1), that automatically preserves the

canonical symplectic structure on T ∗Q. The order of the variational integrator depends on how

accurately Ld(q0,q1) approximates Lexact
d (q0,q1). To derive a high-order discrete Lagrangian

Ld(q0,q1), a typical approach is the Galerkin method [43]. This involves replacing in (4.1) the

function space C2([0,h],Q) with a finite-dimensional function space, and replacing the integral

with a numerical quadrature formula, and when the configuration manifold Q is a linear space,

and polynomials of degree less than or equal to s are chosen, the classical symplectic partitioned

Runge–Kutta methods are recovered. Later, Leok and Shingel [39] introduced the shooting-based

discrete Lagrangian, which allows one to construct a symplectic integrator from an arbitrary

one-step method.

When the configuration manifold Q is a Lie group G, the construction of the discrete

Lagrangian Ld(g0,g1) is more complicated than the linear space case. Leok [38] proposed

parametrizing curves on the Lie group using the exponential map, i.e., a curve g(t) connecting

g0 and g1 is represented by

g(t) = g0 · exp(ε(t)),

where ε(t) ∈ g is a curve on the Lie algebra of G, with fixed endpoints ε(0) = 0, ε(h) =

log(g−1
0 g1). This allows one to replace variations in g(t) by variations in ε(t) on the Lie algebra
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g, which is a linear space. This yields the following expression for the exact discrete Lagrangian,

Lexact
d (g0,g1) = ε∈C2([0,h],g)

ε(0)=0,ε(h)=log(g−1
0 g1)

∫ h

0
L(g0 · exp(ε(t)),g0 ·ε(t) (ε̇(t)))dt, (4.3)

where ε(ε̇) = exp(ε) · 1−e−adε

adε
(ε̇) is the tangent lift of the exponential map. In (4.3), if ε(t) is

restricted to a finite-dimensional function space, and we replace the integral with a quadrature rule,

then we obtain Galerkin Lie group variational integrators. The error analysis and implementation

details for such methods can be found in [7, 19]. The above construction can be naturally

extended to any retraction [2] τ on G, i.e., a diffeomorphism from a neighborhood of 0 ∈ g to

neighborhood of e ∈ G that satisfies a rigidity condition. The main disadvantage of Galerkin

Lie group variational integrators is that the discrete Lagrangian (4.3) involves , and the resulting

discrete Euler–Lagrange equations will involve 2.exp, which cannot be calculated exactly in

general, and requires the truncation of a series expansion.

For mechanics on a Lie group, when the Lagrangian L or Hamiltonian H is left-invariant,

the mechanical system can be symmetry reduced to evolution on the Lie algebra g or its dual

space g∗. On the Lagrangian side, it corresponds to Euler–Poincaré reduction, which is described

by the Euler–Poincaré equation,

d
dt

(
∂ l
∂ε

)
=∗ε

(
∂ l
∂ε

)
,

which is expressed in terms of the reduced Lagrangian l(g−1g) = L(g, ġ). This can be described

in terms of a reduced variational principle δ
∫ b

a l(ε(t))dt = 0, with respect to variations of form

δε = η̇ +[ε,η ], where η(t) is an arbitrary path in the Lie algebra g that vanishes at the endpoints,

i.e., η(a) = η(b) = 0. On the Hamiltonian side, this corresponds to Lie–Poisson reduction, and

the Lie–Poisson structure on g∗ can be defined as

{F,G}(µ) =
〈

µ,

[
∂F
∂ µ

,
∂G
∂ µ

]〉
,
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which together with the reduced Hamiltonian h, gives the Lie–Poisson equation on g∗,

dµ

dt
= ad∗∂h

∂ µ

(µ).

If the discrete Lagrangian Ld(g0,g1) is also G-invariant, i.e., Ld(g ·g0,g ·g1) = Ld(g0,g1), then

(4.2) can be reduced to a Lie–Poisson integrator [27],


µ0 = l

′
d( f0) f−1

0 ,

µ1 = f−1
0 ·µ0 · f0.

(4.4)

This algorithm preserves the coadjoint orbits and hence the Poisson structure on g∗. In (4.4),

ld( f0) = Ld(e, f0) is the reduced discrete Lagrangian that arises from G-invariance.

In this paper, we will derive a variational integrator on Lie group SO(n), but instead of

parametrizing curves on SO(n) by the exponential map or a retraction, we will embed SO(n)

naturally in the space GL+(n) = {A ∈ Rn×n | det(A) > 0}, which is an open subset of Rn×n.

Like with constrained mechanics, given fixed endpoints g0, g1, we will construct interpolating

polynomials in GL+(n), while requiring that certain internal points stay on SO(n). However, we

do not need to extend the Lagrangian L to GL+(n), instead, we will project the trajectory onto

SO(n). The projection from GL+(n) to SO(n) can be implemented using the polar decomposition.

When L is SO(n)-invariant, the constructed discrete Lagrangian is also SO(n)-invariant, and we

can obtain a reduced symplectic Lie–Poisson integrator by using (4.4).

Our Galerkin variational integrator will involve a discrete Lagrangian that differs from

the classical construction in [43]. Traditionally in the linear space setting, (4.1) is approximated

with a quadrature rule,

Ld(q0,q1) = h
s

∑
i=1

biL(q(cih), q̇(cih)) = h
s

∑
i=1

L(Qi, Q̇i),

and q(t) is approximated by polynomials with degree less than or equal to s with fixed endpoints
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q0, q1. By choosing interpolation nodes {dν
0 }s

ν=0 with d0
0 = 0,ds

0 = 1, and interpolation values

{qν
0}s

ν=0 with q0
0 = q0,qs

0 = q1, q(t) can be expressed as q(t) =
s
∑

ν=0
qν

0 φν(
t
h) on [0,h], where

φν(t) are Lagrange polynomials corresponding to the interpolation nodes {dν
0 }s

ν=0. So, by

taking variations with respect to the interpolation values {qν
0}

s−1
ν=1, q(t) is varied over the finite-

dimensional function space,

Ms = {q(t) | q(t) ∈ Ps[0,h],q(0) = q0,q(h) = q1}.

Consider the quadrature approximation of the action integral, viewed as a function of the endpoint

and interpolation values,

F(q0,q1,{qν
0}s−1

ν=1) = h
s

∑
i=1

biL(q(cih), q̇(cih)),

where q(t) =
s
∑

ν=0
qν

0 φν(
t
h). Then, a variational integrator (4.2) can be obtained as follows,



0 =
∂F
∂qν

0
, ν = 1,2 . . .s−1,

−p0 =
∂F
∂q0

,

p1 =
∂F
∂q1

.

(4.5)

However, (4.5) is often impractical due to the complexity of evaluating q(cih), q̇(cih) because of

the Lagrange interpolation form. The other issue is that (4.5) requires computing the root of a

system of nonlinear equations, as opposed to a fixed point equation as with the Runge–Kutta

method. The latter can be solved by fixed point iteration, which is much more efficient in practice.

Notice that the finite-dimensional function space Ms does not actually depend on the choice of
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nodes {dν
0 }

s−1
ν=1, and by a tricky elimination of φν(t), (4.5) can be simplified to yield,

q1 = q0 +h
s

∑
i=1

biQ̇i, p1 = p0 +h
s

∑
i=1

biṖi, (4.6a)

Qi = q0 +h
s

∑
j=1

ai jQ̇ j, Pi = p0 +h
s

∑
j=1

ãi jṖj, (4.6b)

Pi =
∂L
∂ q̇

(Qi, Q̇i), Ṗi =
∂L
∂q

(Qi, Q̇i), (4.6c)

where ãi j = b j(1−
a ji
bi
). When transformed to the Hamiltonian side, (4.6) just recovers the

symplectic partitioned Runge–Kutta method. The same variational integrator can be derived in a

much simpler way, instead of performing variations on internal points {qν
0}

s−1
ν=1, we will perform

variations on the internal derivatives {Q̇}s
i=1, subject to the constraint that q1 = q0 +h

s
∑

i=1
biQ̇i,

and with internal points reconstructed using Qi = q0 + h
s
∑
j=1

ai jQ̇ j. Consider the quadrature

approximation of the action integral, viewed as a function of the endpoint values and the internal

velocities,

F̃(q0,q1,{Q̇i}s
i=1,λ ) = h

s

∑
i=1

biL(Qi, Q̇i)+λ
T
(

q1−q0−h
s

∑
i=1

biQ̇i

)
,

where λ is a Lagrange multiplier that enforces the constraint. Then, a variational integrator (4.2)

can be obtained as follows,



0 =
∂ F̃
∂ Q̇i

, i = 1,2 . . .s,

0 =
∂ F̃
∂λ

,

Qi = q0 +h
s

∑
j=1

ai jQ̇ j,

−p0 =
∂ F̃
∂q0

,

p1 =
∂ F̃
∂q1

.

(4.7)
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Explicitly expanding (4.7) and eliminating the Lagrange multiplier yields (4.6) in a much more

straightforward manner. Here, in this paper, the same technique will be adopted on the rotation

group SO(n) in order to directly obtain a variational integrator in fixed point form.

4.2 Background

Given A ∈ GL(n), there exists a unique orthogonal matrix U ∈ O(n) and symmetric

positive-definite matrix P, such that A = UP. The corresponding map from GL(n) to O(n),

P(A) =U , is called the polar decomposition. Specifically when A∈GL+(n), we have U ∈ SO(n).

Geometrically, the polar decomposition is the closest point projection from GL(n) to O(n), with

respect to the Frobenius norm ‖A‖2
F = Tr(AT A). It satisfies the property

P(Q1AQ2) = Q1P(A)Q2, (4.8)

for ∀Q1,Q2 ∈ O(n). In practice, a fast and efficient algorithm for calculating the poolar decom-

position is the Newton iteration,

Uk+1 =
1
2
(Uk +U−T

k ),U0 = A. (4.9)

The polar decomposition can be used to construct a retraction on SO(n). The Lie algebra of

SO(n) is Asym(n) = {A ∈ Rn×n | AT =−A}. Now, consider the retraction from the Lie algebra

to SO(n), which maps Ω ∈ Asym(n) to

P(I +Ω) =U.

This provides a diffeomorphism between a neighborhood of 0 ∈ Asym(n) and a neighborhood

of I ∈ SO(n). To calculate the inverse of the above map, suppose that I +Ω = UP, and take

the transpose on both sides to obtain I−Ω = PUT , which implies that UT (I +Ω) = (I−Ω)U .

90



Thus, we have that

UT
Ω+ΩU +UT −U = 0. (4.10)

This is a Lyapunov equation, and it is well known that matrix equations of the form AX +XB+

C = 0 have a unique solution if and only if for ∀λ ∈ σ(A),µ ∈ σ(B), λ +µ 6= 0. For U in the

neighborhood of identity, its eigenvalues lie in the right open half plane, which ensures that

a unique solution to (4.10) exists. In principle, this Lyapunov equation can be solved using

classical algorithms [5, 16].

Next we introduce the tangent map and its pullback for the polar decomposition, which is

essential for the derivation of the variational integrator. Let P(A(t))=U(t), then A(t)=U(t)P(t),

where U(t) ∈ SO(n), P(t) is symmetric positive-definite. Differentiating both sides yields,

Ȧ = U̇P+UṖ, and we denote U̇ =UΩ, where Ω ∈ Asym(n). Then,

UT Ȧ−ΩP = Ṗ = ȦTU +PΩ,

from which we obtain,

ΩP+PΩ =UT Ȧ− ȦTU. (4.11)

So the tangent map of the polar decomposition dPA(Ȧ) : Rn×n→ Asym(n) can be calculated

by solving the Lyapunov equation (4.11). To define the pullback of tangent map, we introduce

inner products on Rn×n and Asym(n), and identify these spaces with their duals using the Riesz

representation theorem. For the space Rn×n, ∀A,B∈Rn×n, we define an inner product as follows,

A�B =
n

∑
i, j=1

ai j ·bi j,

for space Asym(n), ∀Ω,Ω′ ∈ Asym(n), we define an inner product by

〈Ω,Ω′〉= ∑
i< j

Ωi j ·Ω′i j =
1
2

Ω�Ω
′.
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The following properties can be easily verified,

(a) ∀A,B ∈ Rn×n, A�B = AT �BT ;

(b) ∀A,B,P,Q ∈ Rn×n, A� (PBQ) = (PT AQT )�B;

(c) ∀Ω ∈ Asym(n),A ∈ Rn×n, 〈Ω,Asym(A)〉= ∑
i< j

Ωi j(Ai j−A ji) = Ω�A.

The Asym operation above is defined to be Asym(A) = A−AT . Given the choice of inner

products, by Riesz representation, (Rn×n)∗ can be identified with Rn×n, and Asym(n)∗ can be

identified with Asym(n). Thus, the pullback of dPA can be defined as

dP∗A(Ω)�W = 〈Ω,dPA(W )〉, ∀Ω ∈ Asym(n),W ∈ Rn×n.

As discussed, dPA(W ) involves solving the Lyapunov equation (4.11). To compute out dP∗A , we

define two maps:

φ : Asym(n)→ Asym(n), Ω 7→ΩP+PΩ,

ψ : Rn×n→ Asym(n), W 7→UTW −W TU,

and dPA can be viewed as composition of ψ and φ−1,

dPA = φ
−1 ◦ψ : Rn×n→ Asym(n)→ Asym(n),

and dP∗A(Ω) = (φ−1 ◦ψ)∗(Ω) = ψ∗ ◦ (φ∗)−1(Ω). Let us derive the expressions for φ∗ and ψ∗.

For φ∗, ∀Ω,X ∈ Asym(n),

〈φ∗(Ω),X〉= 〈Ω,φ(X)〉= 〈Ω,XP+PX〉

= 〈Ω,Asym(XP)〉= Ω� (XP) = (ΩP)�X

= 〈ΩP+PΩ,X〉.
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Thus, φ∗ = φ , and φ is Hermitian. For ψ∗, ∀Ω ∈ Asym(n),W ∈ Rn×n,

ψ
∗(Ω)�W = 〈Ω,ψ(W )〉= 〈Ω,UTW −W TU〉

= 〈Ω,Asym(UTW )〉= Ω� (UTW )

= (UΩ)�W,

and therefore, ψ∗(Ω) =UΩ. Together, we obtain,

dP∗A(Ω) = ψ
∗ ◦ (φ∗)−1(Ω) = ψ

∗ ◦ (φ)−1(Ω) =ULyap(P,ΩT ),

where Lyap(P,ΩT ) represents the solution of the Lyapunov equation XP+PX +ΩT = 0.

Finally, we state a lemma that will be used later.

Lemma 1. P(I +S) = I iff S ∈ Sym(n) and eig(S)>−1.

4.3 Lagrangian variational integrators on the rotation
group SO(n)

Consider the case where the Lie group is the rotation group, i.e., G = SO(n). Given

a left-trivialized Lagrangian L : G×g→ R, we construct a discrete Lagrangian following the

approach used to derive (4.7). Denote the internal points by {Ui}s
i=1 ∈ G, and the left-trivialized

internal tangent vectors by {Ωi}s
i=1 ∈ g. Fixing the endpoints g0,g1, we obtain

Ld(g0,g1) = h
s

∑
i=1

biL(Ui,Ωi),

subject to the constraint

g1 = P
(

g0 +h
s

∑
i=1

biUiΩi

)
, (4.12)
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where the internal points Ui are represented by

Ui = P
(

g0 +h
s

∑
j=1

ai jU jΩ j

)
. (4.13)

(4.12), (4.13) applies the same interpolation rules as in the linear space case. Since the in-

terpolated points may not lie on the Lie group G, they are projected to G using the polar

decomposition.

Observe that (4.12) is equivalent to the condition that P
(

gT
1 (g0 + h

s
∑

i=1
biUiΩi)

)
= I.

Suppose that h is small, and g0, g1 are close enough to each other, then gT
1

(
g0 +h

s
∑

i=1
biUiΩi

)
is

in the neighborhood of I. By Lemma 1, (4.12) holds iff gT
1

(
g0 +h

s
∑

i=1
biUiΩi

)
∈ Sym(n), i.e.,

Asym
(

gT
1

(
g0 +h

s

∑
i=1

biUiΩi

))
= 0.

Now we can construct a discrete Lagrangian with the constraint enforced using a Lagrange

multiplier term,

F̃(g0,g1,{Ωi}s
i=1,Λ) = h

s

∑
i=1

biL(Ui,Ωi)+
〈

Λ,Asym
(

gT
1

(
g0 +h

s

∑
i=1

biUiΩi

))〉
,

where Λ ∈ Asym(n). The corresponding variational integrator is given by

0 =
∂ F̃
∂Ωi

, i = 1,2 . . .s, (4.14a)

0 =
∂ F̃
∂Λ

, (4.14b)

Ui = P
(

g0 +h
s

∑
j=1

ai jU jΩ j

)
, (4.14c)

−p0 =
∂ F̃
∂g0

, (4.14d)

p1 =
∂ F̃
∂g1

. (4.14e)
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It is easy to see that (4.14b) is equivalent to the constraint (4.12). We now turn to equation

(4.14a), where the main difficulty is that the dependence of {Ui}s
i=1 on {Ωi}s

i=1 is not explicit,

rather it involves solving a nonlinear system (4.13). Pick an index k ∈ {1,2 . . .s}, and vary Ωk,

i.e., Ωk→Ωk(τ), with Ωk(0) = Ωk, and Ω̇k(0) = δΩk, while {Ωi}i 6=k remain fixed. Then,

Ui(τ) = P
(

g0 +h ∑
j 6=k

ai jU j(τ)Ω j +haikUk(τ)Ωk(τ)
)
.

Differentiating both sides, and letting U̇i =UiXik, we have that

Xik = dPAi

(
h

s

∑
j=1

ai jU jX jkΩ j +haikUkδΩk

)
, (4.15)

where Ai = g0 +h
s
∑
j=1

ai jU jΩ j. Then, (4.15) can be rewritten as

Xik−dPAi

(
h

s

∑
j=1

ai jU jX jkΩ j

)
= hdPAi(aikUkδΩk), (4.16)

In order to represent {Xik}s
i=1 in terms of δΩk, we define three maps:

ψk : Asym(n)→ Asym(n)s, δΩk 7→ {dPAi(aikUkδΩk)}s
i=1,

φ : Asym(n)s→ Asym(n)s, {Xik}s
i=1 7→

{
Xik−dPAi

(
h

s

∑
j=1

ai jU jX jkΩ j

)}s

i=1
,

Pi : Asym(n)s→ Asym(n), {Ωi}s
i=1 7→Ωi.

Then, Xik =Pi◦φ−1◦(hψk)(δΩk) = h(Pi◦φ−1◦ψk)(δΩk). Now, we compute ∂ F̃
∂Ωk

by evaluating

d
dτ

∣∣
τ=0 F̃(· · ·Ωk(τ) · · ·), and expressing ∂L

∂U : G×g→ g∗ as a left-trivialized cotangent vector.
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Then,

d
dτ

∣∣∣∣
τ=0

F̃(· · ·Ωk(τ) · · ·) = h
s

∑
i=1

bi

〈
∂L
∂U

(Ui,Ωi),Xik

〉
+hbk

〈
∂L
∂Ω

(Uk,Ωk),δΩk

〉
+
〈

Λ,Asym
(

hgT
1

s

∑
i=1

biUiXikΩi +hgT
1 bkUkδΩk

)〉
,

where

〈
Λ,Asym

(
hgT

1

s

∑
i=1

biUiXikΩi +hgT
1 bkUkδΩk

)〉
= Λ�

(
hgT

1

s

∑
i=1

biUiXikΩi +hgT
1 bkUkδΩk

)
= h

s

∑
i=1

bi(UT
i g1ΛΩ

T
i )�Xik +hbk(UT

k g1Λ)�δΩk

= h
s

∑
i=1

bi〈Asym(UT
i g1ΛΩ

T
i ),Xik〉+hbk〈Asym(UT

k g1Λ),δΩk〉,

so that

d
dτ

∣∣∣∣
τ=0

F̃(· · ·Ωk(τ) · · ·) = h
s

∑
i=1

bi

〈
∂L
∂U

(Ui,Ωi)+Asym(UT
i g1ΛΩ

T
i ),Xik

〉
+hbk

〈
∂L
∂Ω

(Uk,Ωk)+Asym(UT
k g1Λ),δΩk

〉
= h

s

∑
i=1

bi

〈
∂L
∂U

(Ui,Ωi)+Asym(UT
i g1ΛΩ

T
i ),h(Pi ◦φ

−1 ◦ψk)(δΩk)
〉

+hbk

〈
∂L
∂Ω

(Uk,Ωk)+Asym(UT
k g1Λ),δΩk

〉
= h2

s

∑
i=1

bi

〈
(Pi ◦φ

−1 ◦ψk)
∗
(

∂L
∂U

(Ui,Ωi)+Asym(UT
i g1ΛΩ

T
i )
)
,δΩk

〉
+hbk

〈
∂L
∂Ω

(Uk,Ωk)+Asym(UT
k g1Λ),δΩk

〉
.

Thus, we can see that

∂ F̃
∂Ωk

= h2
s

∑
i=1

bi(Pi ◦φ
−1 ◦ψk)

∗
(

∂L
∂U

(Ui,Ωi)+Asym(UT
i g1ΛΩ

T
i )
)
+hbk

(
∂L
∂Ω

(Uk,Ωk)+Asym(UT
k g1Λ)

)

and (4.14a) reads as

h
s

∑
i=1

bi(Pi ◦φ
−1 ◦ψk)

∗
(

∂L
∂U

(Ui,Ωi)+Asym(UT
i g1ΛΩ

T
i )
)
+bk

(
∂L
∂Ω

(Uk,Ωk)+Asym(UT
k g1Λ)

)
= 0, (4.17)
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for k = 1,2 . . .s. Recall that Pi ◦φ−1 ◦ψk : Asym(n)→ Asym(n)s→ Asym(n)s→ Asym(n) is

a map from Asym(n) to Asym(n), and its dual is given by

(Pi ◦φ
−1 ◦ψk)

∗(Λ) = ψ
∗
k ◦ (φ∗)−1 ◦P∗i (Λ).

Let us derive an explicit expression for (Pi ◦φ−1 ◦ψk)
∗(Λ). For P∗i , it is easy to verify that

P∗i (Λ) = (0 . . .0,Λ, . . .0), (4.18)

where the Λ is in the i-th position. For φ∗, ∀(Λ1,Λ2 . . .Λs),(X1,X2 . . .Xs) ∈ Asym(n),

〈φ∗(Λ1,Λ2 . . .Λs),(X1,X2 . . .Xs)〉=
〈
(Λ1,Λ2 . . .Λs),

[
Xi−dPAi

(
h

s

∑
j=1

ai jU jX jΩ j

)]s

i=1

〉
=

s

∑
i=1

〈
Λi,Xi−dPAi

(
h

s

∑
j=1

ai jU jX jΩ j

)〉
=

s

∑
i=1
〈Λi,Xi〉−

s

∑
i=1

dP∗Ai
(Λi)�h

s

∑
j=1

ai jU jX jΩ j

=
s

∑
i=1
〈Λi,Xi〉−

s

∑
i, j=1

hai jUT
j dP∗Ai

(Λi)Ω
T
j �X j

=
s

∑
i=1
〈Λi,Xi〉−

s

∑
j=1

(
hUT

j

s

∑
i=1

ai jdP∗Ai
(Λi)Ω

T
j

)
�X j

=
s

∑
j=1

〈
Λ j−Asym

(
hUT

j

s

∑
i=1

ai jdP∗Ai
(Λi)Ω

T
j

)
,X j

〉
,

so

φ
∗(Λ1,Λ2 . . .Λs) =

[
Λ j−Asym(hUT

j

s

∑
i=1

ai jdP∗Ai
(Λi)Ω

T
j

]s

j=1
(4.19)
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For ψ∗k , ∀(Λ1,Λ2 . . .Λs),∈ Asym(n),X ∈ Asym(n),

〈ψ∗k (Λ1,Λ2 . . .Λs),X〉= 〈(Λ1,Λ2 . . .Λs), [dPAi(aikUkX)]si=1〉

=
s

∑
i=1

dP∗Ai
(Λi)� (aikUkX)

=
s

∑
i=1

aikUT
k dP∗Ai

(λi)�X

=
〈

Asym
(

UT
k

s

∑
i=1

aikdP∗Ai
(Λi)

)
,X
〉
,

so

ψ
∗
k (Λ1,Λ2 . . .Λs) = Asym

(
UT

k

s

∑
i=1

aikdP∗Ai
(Λi)

)
. (4.20)

Combining (4.18), (4.19), (4.20), then (Pi ◦φ−1 ◦ψk)
∗(Λ) can be implemented as

Λ j−Asym
(

hUT
j

s

∑
l=1

al jdP∗Al
(Λl)Ω

T
j

)
= Λ ·δi j, j = 1,2 . . .s, (4.21a)

(Pi ◦φ
−1 ◦ψk)

∗(Λ) = Asym
(

UT
k

s

∑
l=1

alkdP∗Al
(Λl)

)
. (4.21b)

We can first calculate {Λi}s
i=1 from (4.21a) by using fixed-point iteration, and then substitute the

result into (4.21b) to obtain (Pi ◦φ−1 ◦ψk)
∗(Λ).

Thus far, we have derived explicit formulae for (4.14a) and (4.14b), and now we de-

rive one for (4.14d). Notice that Ui depends on g0 by the nonlinear system Ui = P
(

g0 +

h
s
∑
j=1

ai jU jΩ j

)
. Consider a variation of g0 by g0(τ), such that g0(0) = g0, ġ0(0) = g0δg0,

so that

Ui(τ) = P
(

g0(τ)+h
s

∑
j=1

ai jU j(τ)Ω j

)
.

Differentiating on both sides, and letting U̇i = UiYi, where Yi ∈ Asym(n) is a left-trivialized
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tangent vector, we obtain

Yi = dPAi(g0δg0 +h
s

∑
j=1

ai jU jYjΩ j),

which can be rewritten as

Yi−dPAi(h
s

∑
j=1

ai jU jYjΩ j) = dPAi(g0δg0).

Similar to Xik = h(Pi ◦φ−1 ◦ψk)(Λ), we introduce a new map

ϕ : Asym(n)→ Asym(n)s, δg0 7→ {dPAi(g0δg0)}s
i=1,

then Yi = Pi ◦φ−1 ◦ϕ(δg0). Let us derive ϕ∗, ∀(Λ1,Λ2 . . .Λs) ∈ Asym(n)s,X ∈ Asym(n),

〈ϕ∗(Λ1,Λ2 . . .Λs),X〉= 〈(Λ1,Λ2 . . .Λs),{dPAi(g0X)}s
i=1〉

=
s

∑
i=1

dP∗Ai
(Ωi)� (g0X)

=
s

∑
i=1

gT
0 dP∗Ai

(Ωi)�X

=
〈

Asym
(

gT
0

s

∑
i=1

dP∗Ai
(Λi)

)
,X
〉
.

Thus, ϕ∗(Λ1,Λ2 . . .Λs) = Asym(gT
0

s
∑

i=1
dP∗Ai

(Λi)), and (Pi ◦φ−1 ◦ϕ)∗(Λ) can be implemented as


Λ j−Asym(hUT

j

s

∑
i=1

ai jdP∗Ai
(Λi)Ω

T
j ) = Λ ·δi j, j = 1,2 . . .s,

(Pi ◦φ
−1 ◦ϕ)∗(Λ) = Asym(gT

0

s

∑
i=1

dP∗Ai
(Λi)).
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We now compute

d
dτ

∣∣∣∣
τ=0

F̃(· · ·g0(τ) · · ·) = h
s

∑
i=1

bi

〈
∂L
∂U

(Ui,Ωi),Yi

〉
+
〈

Λ,Asym
(

gT
1

(
g0δg0 +h

s

∑
i=1

biUiYiΩi

))〉
= h

s

∑
i=1

bi

〈
∂L
∂U

(Ui,Ωi),Yi

〉
+Λ�

(
gT

1

(
g0δg0 +h

s

∑
i=1

biUiYiΩi

))
= h

s

∑
i=1

bi

〈
∂L
∂U

(Ui,Ωi),Yi

〉
+(gT

0 g1Λ)�δg0 +h
s

∑
i=1

bi(UT
i g1ΛΩ

T
i )�Yi

= h
s

∑
i=1

bi

〈
∂L
∂U

(Ui,Ωi)+Asym(UT
i g1ΛΩ

T
i ),Yi

〉
+ 〈Asym(gT

0 g1Λ),δg0〉

= h
s

∑
i=1

bi

〈
∂L
∂U

(Ui,Ωi)+Asym(UT
i g1ΛΩ

T
i ),Pi ◦φ

−1 ◦ϕ(δg0)
〉
+ 〈Asym(gT

0 g1Λ),δg0〉.

From the above calculation, we can rewrite (4.14d) as

−p0 = h
s

∑
i=1

bi(Pi ◦φ
−1 ◦ϕ)∗

(
∂L
∂U

(Ui,Ωi)+Asym(UT
i g1ΛΩ

T
i )
)
+Asym(gT

0 g1Λ), (4.22)

where p0 is a left-trivialized cotangent vector. For equation (4.14e), it is easy to show that

p1 = Asym
(

gT
1

(
g0 +h

s

∑
i=1

biUiΩi

)
Λ

T
)
. (4.23)

Now, combining (4.17),(4.12),(4.13),(4.22),(4.23), we obtain a Lagrangian variational integrator

on the rotation group SO(n):



0 = h
s

∑
i=1

bi(Pi ◦φ
−1 ◦ψk)

∗
(

∂L
∂U

(Ui,Ωi)+Asym(UT
i g1ΛΩ

T
i )
)
+bk

(
∂L
∂Ω

(Uk,Ωk)+Asym(UT
k g1Λ)

)
,

g1 = P
(

g0 +h
s

∑
i=1

biUiΩi

)
,

Ui = P
(

g0 +h
s

∑
j=1

ai jU jΩ j

)
,

−p0 = h
s

∑
i=1

bi(Pi ◦φ
−1 ◦ϕ)∗

(
∂L
∂U

(Ui,Ωi)+Asym(UT
i g1ΛΩ

T
i )
)
+Asym(gT

0 g1Λ),

p1 = Asym
(

gT
1

(
g0 +h

s

∑
i=1

biUiΩi

)
Λ

T
)
.

(4.24)
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4.4 Hamiltonian variational integrator on the rotation
group SO(n)

It is often desirable to transform a numerical method from the Lagrangian side to the

Hamiltonian side. The same mechanical system can be represented either on the Lagrangian side

or the Hamiltonian side, and they are related by the Legendre transform. In Euclidean space, this

gives

(T Q,L)
FL // (T ∗Q,H)
FH
oo

and we have the following relationship,

∂L
∂ q̇

(q, q̇) = p,
∂H
∂ p

(q, p) = q̇,
∂L
∂q

(q, q̇) =−∂H
∂q

(q, p).

Now on Lie groups, for a left-trivialized Lagrangian L : G×g→R and Hamiltonian H : G×g∗→

R, it is easy to verify that similar relations hold

∂L
∂ε

(g,ε) = µ,
∂H
∂ µ

(g,µ) = ε,
∂L
∂g

(g,ε) =−∂H
∂g

(g,µ). (4.25)

Using (4.25), and denoting the corresponding internal cotangent vectors by {µ j}s
j=1, (4.24) can

be transformed to the Hamiltonian side,



µk =−Asym(UT
k g1Λ))+h

s

∑
i=1

bi

bk
(Pi ◦φ

−1 ◦ψk)
∗
(

∂H
∂U

(Ui,µi)−Asym(UT
i g1ΛΩ

T
i )
)
,

g1 = P
(

g0 +h
s

∑
i=1

biUiΩi

)
,

Ui = P
(

g0 +h
s

∑
j=1

ai jU jΩ j

)
,

Asym(gT
0 g1Λ) =−p0 +h

s

∑
i=1

bi(Pi ◦φ
−1 ◦ϕ)∗

(
∂H
∂U

(Ui,µi)−Asym(UT
i g1ΛΩ

T
i )
)
,

p1 = Asym
(

gT
1

(
g0 +h

s

∑
i=1

biUiΩi

)
Λ

T
)
,

Ωi =
∂H
∂ µ

(Ui,µi).

(4.26)
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In the above algorithm, Ωi is given explicitly by ∂H
∂U (Ui,µi) and only serves to reduce the

redundancy in the computations as it is used numerous times in other expressions. The

first four equations are solved simultaneously by fixed-point iterations, i.e., the variables

({µk}s
k=1,g1,{Ui}s

i=1,Λ) are updated concurrently in each iteration. Also observe that the

equation for Λ is a Lyapunov equation. For the second to last equation of (4.26), p1 can be

calculated explicitly after solving for ({µk}s
k=1,g1,{Ui}s

i=1,Λ).

Now we consider a G-invariant Hamiltonian system given by H on the contangent bundle

T ∗G. In this case, Hamilton’s equations can be reduced to a Lie–Poisson system on g∗. As we

know, if the discrete Lagrangian Ld(g0,g1) is also G-invariant, (4.2) naturally reduces to yield a

Lie–Poisson integrator. For the discrete Lagrangian we have constructed,

Ld(g0,g1) ={Ωi}s
i=1

s

∑
i=1

bil(Ωi),

where

Ui = P
(

g0 +h
s

∑
j=1

ai jU jΩ j

)
,

g1 = P
(

g0 +h
s

∑
i=1

biUiΩi

)
,

and where l : g→ R is the reduced Lagrangian, it is easy to verify that it is G-invariant, i.e.,

Ld(g0,g1) = Ld(g ·g0,g ·g1) ={Ωi}s
i=1

s

∑
i=1

bil(Ωi),

where

g ·Ui = P
(

g ·g0 +h
s

∑
j=1

ai jg ·U jΩ j

)
,

g ·g1 = P
(

g ·g0 +h
s

∑
i=1

big ·UiΩi

)
.
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Thus, the variational integrator (4.26) can theoretically be reduced to a Lie–Poisson integrator.

By letting gT
0 g1 = f0, UT

i g1 = Θi, (4.26) can be simplified as follows



µk =−Asym(ΘkΛ)−h
s

∑
i=1

bi

bk
(Pi ◦φ

−1 ◦ψk)
∗(Asym(ΘiΛΩ

T
i ),

0 = Asym
(

f T
0 +h

s

∑
i=1

biΘ
T
i Ωi

)
,

Θ
T
i = P

(
f T
0 +h

s

∑
j=1

ai jΘ
T
j Ω j

)
,

Asym( f0Λ) =−p0−h
s

∑
i=1

bi(Pi ◦φ
−1 ◦ϕ)∗(Asym(ΘiΛΩ

T
i ),

p1 = Asym
((

f T
0 +h

s

∑
i=1

biΘ
T
i Ωi

)
Λ

T
)
,

Ωi =
∂h
∂ µ

(µi).

(4.27)

Multiplying by gT
1 on both sides of g1 = P(g0 +h

s
∑

i=1
biUiΩi) yields

I= P
(

f T
0 +h

s

∑
i=1

biΘ
T
i Ωi

)
.

Suppose that h is small, and g0, g1 are close, then f T
0 +h

s
∑

i=1
biΘ

T
i Ωi is in the neighborhood of I,

and by Lemma 1, this is equivalent to

Asym
(

f T
0 +h

s

∑
i=1

biΘ
T
i Ωi

)
= 0,

which can be regarded as equation for f0. The first four equations can be solved using fixed-point

iteration, with iteration variables ({µk}s
k=1, f0,{Θi}s

i=1,Λ). From this, p1 can be calculated

explicitly. In the above algorithm, we also need to figure out the reduced version of (Pi ◦φ−1 ◦

ψk)
∗ and (Pi ◦φ−1 ◦ϕ)∗. Notice that (4.21a), (4.21b) involves UT

j dP∗Ai
(Λ). Since {g0,g1,Ui}

and Ai = g0 + h
s
∑
j=1

ai jU jΩ j = UiPi are reduced, we need a reduced version of UT
j dP∗Ai

(Λ) as
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well. Multiplying Ai on the left by gT
1 , we obtain,

gT
1 Ai = f T

0 +h
s

∑
j=1

ai jΘ
T
j Ω j = (gT

1 Ui)Pi.

So, (gT
1 Ui)Pi is the polar decomposition of f T

0 +h
s
∑
j=1

ai jΘ
T
j Ω j, and

UT
j dP∗Ai

(Λ) =UT
j ·UiLyap(Pi,Λ

T ) = Θ jgT
1 UiLyap(Pi,Λ

T ),

= Θ jP
(

f T
0 +h

s

∑
j=1

ai jΘ
T
j Ω j

)
Lyap(Pi,Λ

T ).

This is the reduced version of UT
j dP∗Ai

(Λ) and so (Pi ◦φ−1 ◦ψk)
∗(Λ) can be implemented as

Λ j−Asym
(

hΘ j

s

∑
l=1

al jdP∗Al
(Λl)Ω

T
j

)
= Λ ·δi j, j = 1,2 . . .s, (4.28a)

(Pi ◦φ
−1 ◦ψk)

∗(Λ) = Asym
(

Θk

s

∑
l=1

alkdP∗Al
(Λl)

)
, (4.28b)

where {Ai} are redefined to be Ai = f T
0 +h

s
∑
j=1

ai jΘ
T
j Ω j. For (Pi ◦φ−1 ◦ϕ)∗, we need to compute

gT
0 dP∗Ai

(Λ), which is given by

gT
0 dP∗Ai

(Λ) = gT
0 ·UiLyap(Pi,Λ

T ) = f0gT
1 UiLyap(Pi,Λ

T ) = f0P
(

f T
0 +h

s

∑
j=1

ai jΘ
T
j Ω j

)
Lyap(Pi,Λ

T ).

4.5 Numerical experiment

Consider a free rigid body problem, with inertia matrix J = diag(1,2,3), and initial

angular momentum µ =(0.5,−0.5,0.5). The reduced Hamiltonian is given by h(µ)= 1
2 µT J−1µ ,

then the equations of motion in Hamiltonian form [35] is given by,

µ̇ +(J−1
µ)×µ = 0.
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The system of equations (4.27) can be applied to solve this problem. Here, we choose the

coefficients {ai j,bi} to be the Gauss–Legendre method with two stages, this is a fourth-order

method in classical numerical ODE theory. We set the timestep h= 0.2, and performed numerical

integration over the interval [0,100]. When implementing (4.27), we reduced the complexity of

the computation by using the following observation,

(Pi ◦φ
−1 ◦ψk)

∗(Asym(ΘiΛΩ
T
i ) = ψ

∗
k ◦ (Pi ◦φ

−1)∗Asym(ΘiΛΩ
T
i ),

(Pi ◦φ
−1 ◦ϕ)∗(Asym(ΘiΛΩ

T
i ) = ϕ

∗ ◦ (Pi ◦φ
−1)∗Asym(ΘiΛΩ

T
i ).

Notice that (Pi ◦ φ−1)∗Asym(ΘiΛΩT
i ) can be obtained by solving the fixed-point equation

(4.28a), and it need only be calculated once.
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Figure 4.1. Energy Error

Figure 4.1 shows the energy error for algorithm (4.27), and Figure 4.2 shows the trajectory

error of algorithm (4.27) when compared to a reference solution obtained by using a high-

resolution numerical simulation. We observe that the energy is preserved quite well, which

is a common feature of symplectic integrators, and the trajectory error grows linearly in time.

Figure 4.3 shows the maximum energy error and trajectory error on the fixed interval [0,100] for

different timesteps. The numerical results indicate that the error decreases with smaller timesteps,
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Figure 4.2. Trajectory Error
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Figure 4.3. Error convergence rate
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at approximately a fourth-order rate of convergence, which matches the classical order of the

two stage Gauss–Legendre method.

Chapter 4, in full, is a reprint of the material that has been submitted for publication to

Journal of Computational Dynamics, 2018. Xuefeng Shen; Melvin Leok, American Institute of

Mathematical Sciences , 2018. The dissertation author was the primary investigator and author

of this material.
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Chapter 5

Geometric Symmetry Reduction of the Un-
observable Subspace for Kalman Filtering

5.1 Introduction

Kalman filters are widely used in practical state estimation problems, including SLAM

(Simultaneous Localization and Mapping). This is primarily due to its conceptual simplicity

and the low computational complexity compared to optimization based methods. Various types

of sensors are used for localization tasks, including GPS, odometry, inertial measurement units

(IMU), cameras, Light Detection and Ranging (LIDAR), and so on, and the specific choice of

sensors used depends on the application. Kalman filters have been successfully applied to Visual

Odometry (VO) [12], Visual Inertial Odometry (VIO) [48], and more recently, to autonomous

driving cars, where information from multiple sensors (GPS, odometry, IMU, and cameras) and

HD maps are integrated together to yield a more robust and accurate result.

A Kalman filter is derived based on the assumptions that the probability distribution is

Gaussian and the dynamics are linear. However, practical models generally involve nonlinear

dynamics and non-Gaussian distributions, and for such applications, Kalman filters are less

accurate than optimization based methods.

There have been ongoing efforts to improve the performance of Kalman filters. The

unscented Kalman filter (UKF) [63] is used to reduce the local linearization error of the extended

Kalman filer (EKF); inverse depth parametrization [47] is used to represent the three-dimensional
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spatial location of feature points recognized by camera, as a Gaussian distribution on Euclidean

space about a feature point’s position does not model its depth uncertainty well; the multi-state

constraint Kalman filter (MSCKF) [48] method only maintains a sliding window of historic

camera poses, and removes feature points from the state space. Multiple views of the same

feature point gives a constraint on the state variable, and serves as measurement. Such an

approach can be viewed as an attempt to further relax the assumption that the uncertainty in

the feature point positions are described by Gaussian distributions and thereby improve the

algorithm’s performance.

There is also an effort to improve the consistency of the Kalman filter by taking into

account the issue of observability. The EKF does not respect the observability properties of the

underlying continuous control system, which is believed to be a major source of inconsistency

in the state estimate. It is hoped that by correctly incorporating the observability property into

the construction of the algorithm, the consistency and hence accuracy of the method will be

improved. An example of this phenomena is given in [30], where a stationary robot measured the

relative position of new landmarks multiple times, and the covariance of robot’s pose estimate

becomes smaller over time. This is contrary to our intuition, as the the robot is static and therefore

new landmarks do not provide new information about the robot’s pose, and re-observation of

these landmarks should not affect robot’s own pose estimation. So, the pose of the robot is

unobservable given such measurements, but the algorithm mistakenly treats it as an observable

variable.

This phenomena has been studied in depth using observability analysis [24]. It turns out

three dimensions of the state space, i.e., the robot’s position and its orientation, are unobservable

to odometry and camera measurements, while for the linearized discrete model, only two

dimensions (the robot’s position) remain unobservable. This was addressed by considering two

modifications, one is the special transition matrix Φ(x̌k+1, x̂k) that depends on x̂k (modified state

value at k-th step) and x̌k+1 (predicted state value at (k+1)-th step). If we denote the unobservable

subspace at x̂k by Nk, then after the measurement update, Φ(x̌k+1, x̂k)Nk is still perpendicular
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to dh(x̌k+1). More importantly, this transition matrix satisfies Φ(xk+2,xk+1) ·Φ(xk+1,xk) =

Φ(xk+2,xk), thus along the true trajectory, we have

Φ(xk+s,xk+s−1) . . .Φ(xk+2,xk+1) ·Φ(xk+1,xk)Nk = Φ(xk+s,xk)Nk ⊥ dh(xk+s), (5.1)

which means the unobservable subspace remains unobservable during the propagation, which is

a discrete version of the invariance property satisfied by the continuous control system. However,

since the Kalman filter is implemented by alternating propagation and measurement update, the

Jacobians are calculated at both x̂k and x̌k, and as a consequence, property (5.1) no longer holds;

based on this observation, the other modification is the First Estimate Jacobian (FEJ) framework,

where Jacobians are evaluated on the first ever available estimate of all the state variables so

to make property (5.1) hold again. Later, a revised technique termed observability constrained

(OC)-EKF [25] was proposed to not only guarantee the desired observability property but also to

minimize the expected errors of the linearization points. These techniques were combined with

the MSCKF method to obtain MSCKF2.0 [41], which is an efficient algorithm that claims to

have performance no worse than optimization-based methods.

In this paper, we try to approach the observability problem from a different perspective.

Notice that the Kalman filter is composed of alternating propagation and measurement update

steps. While the propagation step is simply a discretization of underlying stochastic differential

equation, the measurement update step is essentially Bayesian inference. Such a measurement

update step does not exist in the continuous control system when we perform observability

analysis, so the propagation of system is “interrupted” at each step, so forcing this discrete

system to mimic the observability property of the continuous system is somewhat artificial.

Since the measurement update step is essentially Bayesian inference, we would try to solve the

observability problem at this step from the perspective of probability theory. The main idea

is that by viewing the unobservability of the system as an invariance with respect to a group

action, the state space can be decomposed into unobservable and observable parts explicitly,
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x = (xN ,xO). As in the case of symmetry reduction in geometric mechanics, we can obtain

reduced equations that only involve the reduced (or observable) variables, and the propagation

and measurement equations will be expressed only in terms of the observable variables xO. We

claim that in order to keep xN unobservable during the algorithm, i.e., avoid introducing spurious

information from measurements to xN , Bayesian inference should only be employed on the xO

part, which yields a reduced measurement model. Mathematically, it means, for a probability

distribution p(xN ,xO), which can be factored into

p(xN ,xO) = p(xO) · p(xN | xO),

the conditional distribution p(xN | xO) shall remain unchanged during the measurement update,

and only p(xO) can be improved by the reduced measurement. So after the measurement update

p(xN ,xO) = p(xO) · p(xN | xO), (5.2)

where p(xO) is the improved distribution for the observable variables. Even though measurement

is not applied directly to xN , improvement in the estimation of xO helps to improve the estimation

of xN implicitly via the conditional probability p(xN | xO), which is a consequence of the

correlation between xN and xO. A geometric picture may help to understand this, the unobservable

subspaces are tangent spaces to a collection of submanifolds in state space, and xN denotes the

degrees of freedom on these submanifold. Each point on a given submanifold will yield the

same measurement results. The xO indicates which submanifold the state is in, and the different

submanifolds are distinguishable using the measurement data. Suppose we have a probability

distribution on state space, if we are more certain about xO, i.e., which submanifold we are

in, it also improves our estimate about xN as long as they are not independent. By using this

framework, the inconsistency counterexample in [30] is naturally avoided. In that case, the

unobservable variables are xN = (p,θ), the position and orientation of robot, and the observable
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variables are xO = (z1,z2 . . . ,zN), where zi is the relative position of i-th feature point. When new

features are observed, new zi will be appended to the state variables, and they are independent

from the old state variables. As long as the robot remains static, i.e., no propagation of the

uncertainty is performed, no matter how often we re-observe these feature points and improve

their relative position estimation, it will not affect the pose of the robot itself.

In Section 5.2, we review the planar robot model from [25], together with its observability

property. We stress the use of group actions to characterize unobservable subspaces. In Section

5.3, we discuss how to obtain a reduced control system by considering the invariant group action,

and how to decompose the planar robot system into the xN and xO parts. In Section 5.4, we

choose an appropriate Riemannian structure for the new coordinate system, and implement

reduced Bayesian inference (5.2) for the Gaussian distribution. Numerical experiments are given

in Section 5.5, where straight line, circle and general trajectories are tested, and the reduced EKF

method demonstrates superior performance when compared to the classical EKF and FE-EKF

method.

5.2 Background

A planar robot is considered, equipped with odometry and cameras, navigating in an

unknown environment. The odometry measures local velocity and angular velocity of the robot,

while cameras detect feature points and measure their relative position to the robot. To make

the notation simple and the numerical simulation easier to implement, we assume that the robot

is equipped with binocular cameras, thus at each instant, measurements from two cameras will

be combined to give an estimate of the relative position of feature points, and this serves as

our measurement. Fix a global frame, and assign an intrinsic frame {e1,e2} to the robot. The

robot pose is denoted by (p,θ), where p is the global position of the robot, and θ represents the

relative angle from the global frame to the intrinsic frame. Thus, the intrinsic frame of the robot

112



is given by

{e1,e2}= R(θ) =

cosθ −sinθ

sinθ cosθ

 .

The global position of feature points are denoted by (p f
1 , p f

2 , . . . p f
N), and together, they form the

classical state space of this problem

X = (p,θ , p f
1 , p f

2 , . . . p f
N).

The total dimension of X is 3+2N, and this state space has the structure SE(2)×R2N , where

SE(2) is the two-dimensional Euclidean group. Denote the local velocity and angular velocity

measured using odometry by v and w, and the relative position of the i-th feature point by zi.

Then, the underlying continuous control system is given by


ṗ = R(θ)v,

θ̇ = w,

ṗ f
i = 0;

(5.3)

zi = R(θ)T (p f
i − p), (5.4)

where (5.3) is the propagation equation, and (5.4) is the measurement equation.

As we have already mentioned, there are three unobservable dimensions in this model,

the robot position p and its orientation θ . There are two main ways to detect unobservable

dimensions in a given control system. One is the observability rank criterion [20]. Given a

general affine control system 
x′ = f (x)+

n

∑
i=1

gi(x)ui,

z = h(x),

(5.5)

regard f (x), g1(x), g2(x), . . . , gn(x) as vector fields on the state space X , then we construct the
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minimal dual distribution that is invariant under f (x), g1(x), g2(x), . . . , gn(x), which is given by

Ω = 〈 f ,g1,g2 . . . ,gn | dh〉.

This step involves repeated Lie derivative calculations, and is analogous to computing the

observability matrix for constant linear systems. Its orthogonal distribution Ω⊥, which is

analogous to the null space of the observability matrix, defines the unobservable subspace for

this system. There exists a corresponding local coordinate transformation φ(x) = (x1,x2) to the

distribution Ω⊥, such that the system (5.5) can be decomposed as follows



x′1 = f 1(x1,x2)+
n

∑
i=1

g1i(x1,x2)ui,

x′2 = f 2(x2)+
n

∑
i=1

g2i(x2)ui,

z = h(x2).

(5.6)

It is clear that the measurement only depends on the x2 part, and x2 evolves by itself, which is

unaffected by x1. For any solution (x(t),u(t),z(t)) that satisfies the system (5.5), if we move the

initial state x(t0) along the unobservable submanifold that passes through it, i.e., by only changing

the x1 part, the new trajectory corresponds to the same control u(t) and measurement z(t), and

thus x1 is unobservable in this system. Any physical property of this system that is observable has

to be independent of x1, in other words, has to be constant along each unobservable submanifold.
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It has been verified in [25] that for the system (5.3), (5.4),

Ω
⊥ = N = span



I2 Jp

0 1

I2 Jp f
1

I2 Jp f
2

...
...

I2 Jp f
N


, (5.7)

where

J =

0 −1

1 0

 .

The first two columns indicate that the robot position p is unobservable, and the third column

indicates that the robot orientation is also unobservable.

The disadvantage of the observability rank criterion technique is it involves massive

amounts of Lie derivative calculations. An easier way to detect unobservable dimensions is by

invariant group actions. In classical mechanics, for Hamiltonian systems, we have the famous

Noether’s theorem, which essentially relates symmetries to conserved quantities. For example,

if the system is invariant under translation, then the total linear momentum is preserved by

the system; if system is invariant under rotations, then the total angular momentum is also be

preserved. A similar idea can be applied to observability analysis. If our control system is

invariant under some group action, i.e., corresponds to the same control u(t) and measurement

z(t), then we have discovered an unobservable dimension of this system. For the planar robot

115



model, we can verify that under the following translation and rotation,


p 7→ p+∆p,

θ 7→ θ ,

p f
i 7→ p f

i +∆p;


p 7→ R(∆θ)p,

θ 7→ θ +∆θ ,

p f
i 7→ R(∆θ)p f

i ,

(5.8)

(5.3) (5.4) remains invariant. For each state (p,θ , p f
1 , p f

2 , . . . p f
N), we can calculate the tangent

subspace induced by the above group action. In particular, the translation action gives the first

two columns of (5.7), and the rotation action gives the third column of (5.7). It is sometimes

natural to find these invariant group actions by physical intuition. Odometry measures local

velocity and local angular velocity, while the camera measures relative position of feature points,

as such, the information that they provide is “local” and cannot give constraints on the global

pose. Global position can be measured by using GPS or if a map provides the absolute position of

feature points. In the case of VIO, the IMU provides measurements of the local acceleration and

angular velocity. Since the IMU measurement can detect the gravity direction, gravity breaks the

full rotational symmetry, so only rotations around the gravity direction keep the system invariant,

which indicates that the yaw angle is unobservable in VIO applications. The main disadvantage

of the invariant group action technique as a method of characterizing unobservable dimensions is

that we cannot determine if we have found all the unobservable dimensions.

We now describe the special transition matrix for (5.3) that satisfies the chain rule property

(5.1). Let v = vm +nv, w = wm +nw, where vm,wm are odometry measurements, and nv, nw are

measurement noise. A simple forward Euler integration of (5.3) gives


pk+1 = pk +∆t ·R(θk)(vk+1

m +nv),

θk+1 = θk +∆t · (wk+1
m +nw),

p f
i,k+1 = p f

i,k,

(5.9)
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so, the nominal values are updated as follows


pk+1 = pk +R(θk)∆dk+1,

θk+1 = θk +∆θk+1,

p f
i,k+1 = p f

i,k,

(5.10)

with ∆dk+1 = vk+1
m ·∆t, ∆θk+1 = wk+1

m ·∆t. The transition matrix for (5.10) is

Φ =


I2 JR(θk)∆dk+1

0 1

I2N

=


I2 J(pk+1− pk)

0 1

I2N

= Φ(xk+1,xk), (5.11)

The derivative of the measurement (5.4) is given by

dhi(x) =
(
−R(θ)T , R(θ)T JT (p f

i − p), 0, . . . R(θ)T . . .

)
= R(θ)T

(
−I2, JT (p f

i − p), 0, . . . I2 . . .

)
,

where I2 appears at the i-th index of the feature points. We first check that dhi ·N = 0, which

is theoretically guaranteed; then the nullspace Nk at xk after applying the transition matrix

Φ(xk+1,xk) is

Φ(xk+1,xk) ·Nk =


I2 J(pk+1− pk)

0 1

I2N

 ·



I2 Jpk

0 1

I2 Jp f
1,k

I2 Jp f
2,k

...
...

I2 Jp f
N,k


=



I2 Jpk+1

0 1

I2 Jp f
1,k

I2 Jp f
2,k

...
...

I2 Jp f
N,k


,

it is easy to verify that dhi(xk+1) ·Φ(xk+1,xk) ·Nk = 0, since p f
i,k+1 = p f

i,k. Finally, we can also
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verify that transition matrix Φ(xk+1,xk) (5.11) satisfies Φ(xk+2,xk) =Φ(xk+2,xk+1) ·Φ(xk+1,xk),

so the chain rule property (5.1) is satisfied along the exact trajectory.

5.3 Geometric reduction

Given the state space X , and a general control system


x′ = f (x,u),

z = h(x),
(5.12)

suppose we have a left Lie group action of G on X , i.e., G×X → X , which keeps the system

(5.12) invariant, i.e., for any (x(t),u(t),z(t)) that satisfies (5.12), (g ·x(t),u(t),z(t)) also satisfies

(5.12) for ∀g ∈ G, i.e., 
(g · x)′ = f (g · x,u),

z = h(g · x).
(5.13)

For each point x ∈ X , ∀ξ ∈ g, where g is the Lie algebra of G, the infinitesimal generator

ξX(x) = d
dt

∣∣
t=0 exp(ξ (t)) · x gives one unobservable direction of x, and the orbit of x,

Orb(x) = {g · x | g ∈ G},

gives the unobservable submanifold that passes through x. This invariant group action on the

control system allows us to perform reduction to express the system in terms of reduced variables

on the quotient space X/G. This kind of reduction due to the presence of a continuous symmetry

group arises in many disciplines. In optimization, when objective function is invariant under a

group action, the problem can be rephrased as an optimization problem on the quotient space [2];

also for classical mechanics on a Lie group, when Lagrangian or Hamiltonian is invariant under

the group action, the mechanics can be reduced to the Lie algebra g or its dual g∗, which is

referred to as Euler–Poincaré reduction and Lie–Poisson reduction [46], respectively. Here,
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suppose that the group action G×X → X is free and proper, then we obtain a smooth quotient

space X/G, with a quotient map[34]

π : X → X/G

that is a smooth submersion. Then, the control system (5.12) can be reduced to the quotient

space X/G. For [x] ∈ X/G, 
[x]′ = f ([x],u),

z = h([x]).
(5.14)

(5.14) is a reduced control system with reduced propagation and measurement equations. Con-

sider (5.3), (5.4) as a concrete example. The state space is X = SE(2)×R2N , and we already

know that the group action G = SE(2) (5.8) on X leaves (5.3) (5.4) invariant, so this induces a

reduced control system on X/G. However, X/G is an abstract quotient manifold, so in order to

deal with it explicitly, we need a concrete coordinate representation. It turns out that the relative

position of feature points zi provide a natural coordinate representation for X/G. With these

coordinates for the reduced space, the measurement equation (5.4) reduces to

zi = Id(zi);

and the propagation equation (5.3) reduces to

d
dt

zi =
d
dt

R(θ)T (p f
i − p)

= R(θ)T (ṗ f
i − ṗ)+ JT R(θ)T

θ̇(p f
i − p)

= R(θ)T (−R(θ)v)+ JT R(θ)T w(p f
i − p)

=−v−wJzi.
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Together with the robot position p and its orientation θ , we obtain a new coordinate representation

of the state space, (p,θ ,z1,z2 . . . ,zN), and the control system with respect to this new coordinate

system is given by 
ṗ = R(θ)v,

θ̇ = w,

żi =−v−wJzi,

(5.15)

zi = Id(zi). (5.16)

The coordinate system given by (p,θ ,z1,z2 . . . ,zN) is global, and can be regarded as the state

space being decomposed into the product of xN = (p,θ) and xO = (z1,z2 . . . ,zN), the former is

unobservable part, and the latter is observable part, while the group action (5.8) now acts trivially

on the xO part. In this case, the unobservable subspace at each point can be represented as

Ω
⊥ = N = span



I2 Jp

0 1

0 0

0 0
...

...

0 0


. (5.17)

We improved the linearity of the measurement equation (5.16) by transforming to the relative

feature position representation, and as a consequence, the originally trivial propagation equation

ṗ f
i = 0 now becomes the nontrivial żi =−v−wJzi.

We can construct a similar transition matrix for (5.15) as in (5.11), and apply forward
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Euler integration to (5.15), which yields


pk+1 = pk +∆t ·R(θk)(vk+1

m +nv),

θk+1 = θk +∆t · (wk+1
m +nw),

zi,k+1 = zi,k +∆t · (−(vk+1
m +nv)− (wk+1

m +nw)Jzi,k),

(5.18)

and the corresponding nominal value update step is given by


pk+1 = pk +R(θk)∆dk+1,

θk+1 = θk +∆θk+1,

zi,k+1 = (I−∆θk+1J)zi,k−∆dk+1,

(5.19)

and the transition matrix is

Φk+1,k =



I2 J(pk+1− pk)

0 1

I−∆θk+1J

I−∆θk+1J
. . .

I−∆θk+1J


. (5.20)

The derivative of the reduced measurement (5.16) is

dhi =

(
02×2, 02×1, 02×2 . . . I2 . . .

)
,

and we can see that dhi ·N = 0, which holds simply because the lower 2N×3 part of N (5.17)

is zero. This property still holds after repeated measurement updates

Φk+s,k+s−1 · . . .Φk+2,k+1 ·Φk+1,k ·Nk
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as the bottom left parts of the transition matrices Φk+ j,k+ j−1 vanish.

5.4 Bayesian inference

In Section 5.3, we discussed how to obtain the reduced control system that arises as

a consequence of the invariant group action, which lead to the reduced propagation and mea-

surement equations on the reduced quotient space. This motivated the use of a new coordinate

representation (p,θ .z1,z2 . . .zN) for the planar robot system. This decomposes the state space

into the product of the unobservable part (p,θ), and the observable part (z1,z2 . . .zN). We also

constructed a transition matrix which ensures that the unobservable subspace remains perpendicu-

lar to the measurement dh during propagation. But, as we noted, this propagation is “interrupted”

at each step during the Kalman update. In order to preserve the unobservability property of the

system during the measurement update, we propose a reduced Bayesian inference update(5.2) on

the observable part using the reduced measurement. It is natural to apply Bayesian inference on

p(z1,z2 . . .zN), and update p(p,θ ,z1,z2 . . .zN) using (5.2). However, before we do that, there are

some basic things that we need to make clear. The first question is, what is Bayesian inference?

As we all know, Bayesian inference is

p(x | y) = p(x) · p(y | x)
p(y)

,

which arises naturally from the fact that

p(x,y) = p(x) · p(y | x) = p(y) · p(x | y). (5.21)

where p(x), p(y), p(x,y) are probability density functions. The next question is, what is a

probability density function? As we all know, a probability distribution is a probability measure
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on the state space, and the probability density function is a concrete way to represent it,

P(x ∈ A) =
∫

A
p(x)dx. (5.22)

However, in (5.22) we need to specify a measure dx to perform the integration, and the represen-

tation of the probability measure as a probability density function depends on that choice of dx.

Also, given a probability distribution on state space, when we try to find the most probable point,

we find this problem also requires the introduction of a measure on the state space. As such, we

need to specify a measure on the state space in order to define the probability density function or

to find the most probable point. For a more detailed discussion of such issues, see [29]. After

specifying the measure dx, the density function associated with a probability measure µ is just

the Radon–Nikodym derivative of µ with respect to dx. A natural way to specify a measure on

a smooth manifold is by specifying a Riemannian structure on it. Each Riemannian structure

induces a Riemannian volume form, which in turn induces a measure. When we write down the

common Gaussian density function, we are actually assuming the standard Riemannian structure

on Rn implicitly. This structure is quite natural, as it is homogeneous and isotropic and does

not introduce prior information on the space. More precisely, this structure is invariant under

Euclidean transformations.

With the observation that each density function is defined with respect to an underlying

base measure, we look at (5.21) again, and find that there is a product measure implicitly defined

on (x,y), and that (5.21) is essentially an application of Fubini’s theorem.

Now consider the new coordinate system (p,θ ,z1,z2 . . .zN) we get for the planar robot

system, which is diffeomorphic to the original coordinate system by the following transformations
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(p,θ , p f
1 , p f

2 . . . p f
N)↔ (p,θ ,z1,z2 . . .zN) :


p = p,

θ = θ ,

p f
i = p+R(θ)zi;


p = p,

θ = θ ,

zi = R(θ)T (p f
i − p).

(5.23)

Given the decomposition p(xN ,xO) = p(xO) · p(xN | xO), where xN = (p,θ), xO = (z1,z2, . . .zN),

which Riemannian structure should we assign to the state space to obtain a base measure?

For the old coordinate system (p,θ , p f
1 , p f

2 . . . p f
N), it is natural to use the standard Riemannian

structure d p⊗d p+dθ ⊗dθ +∑
N
i=1 d p f

i ⊗d p f
i , as it is invariant under the group action (5.8).

Moreover, if a Lie group G acts freely and properly on a Riemannian manifold M, and the action

is isometric for ∀g ∈ G, then there is a natural Riemannian structure on M/G induced from M.

For our quotient space (z1,z2 . . .zN), it can be verified that the induced Riemannian structure

is simply the standard Riemannian structure of R2N . However, the Riemannian structure of

(p,θ ,z1,z2 . . .zN) induced by the diffeomorphism (5.23) is not simply the product of the standard

Riemannian structure of (p,θ) with the standard Riemannian structure of (z1,z2 . . .zN). This can

be verified by checking the Jacobian of (5.23), which is not a unitary matrix. We now have to

decide which Riemannian structure to use on (p,θ ,z1,z2 . . .zN), either choose the non-product

structure induced from (5.23), or choose the product structure. We choose the product structure

here, one reason is that it is simpler to apply the reduced Bayesian inference step (5.2), another

reason is this product structure is also invariant under the group action (5.8), which ensures that

(z1,z2 . . .zN) remains fixed.

Finally, we are in a position to discuss how to implement (5.2) for the Gaussian distri-

bution with respect to the standard Riemannian structure. Consider p(xN ,xO) with a Gaussian
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distribution given by

p(xN ,xO) = N


µN

µO

 ,

ΣNN ΣNO

ΣON ΣOO


 .

Then, by the property of conditional Gaussian distributions,

p(xN ,xO) = p(xO) · p(xN | xO)

= N (xO | µO,ΣOO) ·N (xN | µN|O,ΣN|O),

= N (xO | µO,ΣOO) ·N (xN | µN +ΣNOΣ
−1
OO(xO−µO),ΣNN−ΣNOΣ

−1
OOΣON).

The next step is to obtain an improved p(xO) = N (µO,ΣOO) by taking a reduced measurement

and computing the improved joint distribution p(xN ,xO). In order to compute the joint distribu-

tion from the product of two Gaussian distributions efficiently, we choose the precision matrix,

information vector representation of the Gaussian distribution,

N (xO | µO,ΣOO) = N (xO | ξO,ΩOO),

where ΩOO = Σ
−1
OO, ξO = Σ

−1
OO ·µO, and ΩN|O = Σ

−1
N|O. Suppose that the reduced discrete mea-

surement equation is given by

z =C · xO +δ ,

with measurement noise δ ∼N (0,Q), where Q is the noise covariance, then by the information

filter [58], 
ΩOO = ΩOO +CT Q−1C,

ξ O = ξO +CT Q−1z.

Let µN + ΣNOΣ
−1
OO(xO− µO) = AxO + b for notational simplicity, where A = ΣNOΣ

−1
OO, b =
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µN−ΣNOΣ
−1
OOµO. We calculate the density function of p(xN ,xO),

logp(xN ,xO) = logp(xO)+ logp(xN | xO)

= logN (xO | ξ O,ΩOO)+ logN (xN | A · xO +b,ΩN|O)

'−1
2

xT
OΩOOxO +ξ

T
OxO−

1
2
(xN−AxO−b)T

ΩN|O(xN−AxO−b)

'−1
2

xT
OΩOOxO +ξ

T
OxO−

1
2

xT
NΩN|OxN−

1
2

xOAT
ΩN|OAxO

+ xT
OAT

ΩN|OxN + xT
NΩN|Ob− xT

OAT
ΩN|Ob

=−1
2
(xN ,xO)

T

 ΩN|O −ΩN|OA

−AT ΩN|O ΩOO +AT ΩN|OA


xN

xO

+(xN ,xO)
T

 ΩN|Ob

ξ O−AT ΩN|Ob

 .

Thus, the improved joint probability distribution p(xN ,xO) has the following improved precision

matrix and information vector,

Ω =

 ΩN|O −ΩN|OA

−AT ΩN|O ΩOO +AT ΩN|OA

 , ξ =

 ΩN|Ob

ξ O−AT ΩN|Ob

 . (5.24)

We can see from (5.24) that if originally ΣNO = 0, then ΣN|O = ΣNN and A = ΣNOΣ
−1
OO = 0, thus

Ω is also block diagonal, and the improvement of ΩOO and ξ O does not affect the distribution of

xN .

5.5 Numerical experiment

We performed numerical experiments for the planar robot system (5.3), (5.4), where the

robot is assumed to be round with diameter 0.5m, and binocular cameras are equipped on the

left and right sides of the robot to detect feature points, each with a field angle of 120◦. The

odometry measures local velocity v (units: m/s) and angular velocity w (units: rad) with Gaussian

noise N (0,Qv), N (0,Qw), respectively. We set Qv =

0.01 0

0 0.01

 and Qw = 0.01 during

the simulation. The camera is assumed to measure the relative direction of the feature point with

126



Gaussian noise N (0,Qz). As we mentioned in Section 5.2, at each step, the measurement of

feature points by the binocular cameras shall be combined together to give an estimate of the

relative position of the feature points, and the uncertainty in the relative position is assumed to

be described by an approximate Gaussian distribution. The odometry and camera readings are

updated at the same frequency.

We tested three different methods, the first is the classical EKF on the state space

(p,θ , p f
1 , p f

2 . . . p f
N), with the propagation equation (5.9); the second is the First Estimate EKF

(FE-EKF) where the First Estimate technique in [24] is used; the third is our reduced EKF on

the state space (p,θ ,z1,z2 . . .zN), with propagation equation (5.18) and reduced measurement

update equation (5.24). We observed superior performance of the reduced EKF compared to

classical EKF and FE-EKF, especially at estimating the robot’s orientation θ . Furthermore, the

reduced EKF is less sensitive to measurement noise.

We considered three different trajectories: straight line, circle, and a general trajectory.

Feature points are generated along the trajectory randomly with a given density. We assume

that there are no errors introduced during feature detection and matching. We ignore feature

points that are far away (distance > 5m) from the robot, since triangulation for such points by

binocular cameras are unstable.

5.5.1 Straight line

We tested on a straight line trajectory that is 60 m long, and the robot traveled along it

with constant speed 1m/s. We also compared low and high densities of feature points.

127



-10 0 10 20 30 40 50 60 70
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) line, low density feature distribution

-10 0 10 20 30 40 50 60 70
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) line, high density feature distribution

Figure 5.1. Straight line trajectory

In Figure 5.1, the red line is the trajectory, the blue points are features, and yellow circle

is the robot. For the low density feature distribution, the average feature points recognized

at each step is approximately 20, and for the high density feature distribution, the average

recognized feature points at each step is approximately 40. Besides the feature distribution,

we also considered update frequencies of 10Hz and 20Hz. Moreover, for fixed feature density

and update frequency, we adjusted Qz to observe the sensitivity of the different methods to

changes in the measurement noise. Since the feature distribution is generated randomly for

fixed feature density, and odometry and camera readings are also generated randomly from

the given parameters, the results for a given method will vary between realizations. The three

methods (EKF, FE-EKF, reduced EKF) are applied to the same data set of feature distribution and

sensor readings, and we generate 20 realizations per combination of update frequency, feature

distribution, and measurement noise. We summarize the average position error (units: meters)

and the orientation error (units: rad) in Table 5.1 and Table 5.2.

We see that the accuracy of all three methods improve a little bit when we double the

update frequency and increase the average feature number per step, which is quite natural. In

addition, when we increase the uncertainty of measurement Qz, the performance of all three

methods degrade. There is no evident improvement in accuracy for both FE-EKF and reduced

EKF methods over the classical EKF method for the straight line case. A typical error growth in
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Table 5.1. Average error, straight line trajectory, average feature num = 20

Straight line trajectory, average feature num = 20
Frequency update frequency = 10Hz update frequency = 20Hz

Method EKF FE-EKF Reduced EKF EKF FE-EKF Reduced EKF
Error δ p δθ δ p δθ δ p δθ δ p δθ δ p δθ δ p δθ

Qz = 1×10−4 1.403 0.0375 1.539 0.0421 1.436 0.0373 1.365 0.0308 1.456 0.0345 1.300 0.0282
Qz = 2×10−4 2.492 0.0487 2.525 0.0552 2.549 0.0506 2.395 0.0411 2.621 0.057 2.397 0.0432
Qz = 4×10−4 4.332 0.0752 4.284 0.0758 4.449 0.0773 4.265 0.0578 4.283 0.0677 4.317 0.0644

Table 5.2. Average error, straight line trajectory, average feature num = 40

Straight line trajectory, average feature num = 40
Frequency update frequency = 10Hz update frequency = 20Hz

Method EKF FE-EKF Reduced EKF EKF FE-EKF Reduced EKF
Error δ p δθ δ p δθ δ p δθ δ p δθ δ p δθ δ p δθ

Qz = 1×10−4 1.303 0.0269 1.306 0.027 1.256 0.0227 1.21 0.0167 1.283 0.0238 1.258 0.0208
Qz = 2×10−4 2.409 0.0385 2.459 0.0446 2.43 0.0347 2.331 0.0279 2.318 0.0313 2.386 0.0345
Qz = 4×10−4 4.238 0.047 4.361 0.0628 4.386 0.0613 4.23 0.0445 4.353 0.0558 4.352 0.0577

the position and orientation for the straight line trajectory is given in Figure 5.2.
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Figure 5.2. Error growth, straight line trajectory

5.5.2 Circle

The robot now travels along a circle of radius 10m, with constant speed that is approx-

imately 1.57m/s. This is illustrated in Figure 5.3. In contrast to the straight line case, we

observed superior performance of the reduced EKF method over both the classical EKF and

FE-EKF methods.
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Figure 5.3. Circle trajectory and velocity

For the circle trajectory with low feature density, the average feature number per step

is approximately 20, and for the high feature density, the average feature number per step is

approximately 40. The average position error and orientation error of all three methods are

summarized in Table 5.3 and Table 5.4. The improvement of reduced EKF method is quite

significant compared to the classical EKF and FE-EKF methods. It can reduce the orientation

error by approximately 50% in each case, and as a consequence, the estimation of position is

also improved, and the position error is reduced by approximately 30% to 50%. A typical error

growth for the circle trajectory is given in Figure 5.4.
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Table 5.3. Average error, circle trajectory, average feature num = 20

Average error, circle trajectory, average feature num = 20
Frequency update frequency = 10Hz update frequency = 20Hz

Method EKF FE-EKF Reduced EKF EKF FE-EKF Reduced EKF
Error δ p δθ δ p δθ δ p δθ δ p δθ δ p δθ δ p δθ

Qz = 1×10−4 0.955 0.0875 1.063 0.0936 0.655 0.0443 0.746 0.0657 0.750 0.0576 0.532 0.0342
Qz = 2×10−4 1.630 0.152 1.496 0.119 0.959 0.0586 1.35 0.128 1.549 0.144 0.982 0.0667
Qz = 4×10−4 2.893 0.2914 2.721 0.2585 1.512 0.1033 2.295 0.2256 2.066 0.2102 1.469 0.1003

Table 5.4. Average error, circle trajectory, average feature num = 40

Average error, circle trajectory, average feature num = 40
Frequency update frequency = 10Hz update frequency = 20Hz

Method EKF FE-EKF Reduced EKF EKF FE-EKF Reduced EKF
Error δ p δθ δ p δθ δ p δθ δ p δθ δ p δθ δ p δθ

Qz = 1×10−4 0.816 0.0643 0.7972 0.0627 0.5815 0.0359 0.584 0.0462 0.681 0.0530 0.568 0.0374
Qz = 2×10−4 1.276 0.1193 1.3061 0.1091 0.9403 0.0591 1.260 0.1164 1.2402 0.1039 0.9178 0.0573
Qz = 4×10−4 2.593 0.253 2.428 0.236 1.752 0.121 2.4 0.239 2.397 0.216 1.631 0.113
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Figure 5.4. Error growth, circle trajectory

5.5.3 General trajectory

Besides the straight line and circle trajectories, we also consider a general trajectory, see

Figure 5.5. The average feature number for the low feature density per step is approximately 25,

and the average feature number for the high feature density per step is approximately 50.
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Figure 5.5. General trajectory and velocity

As before, we tested all three methods on this general trajectory, and summarized their

average position error and orientation error in Table 5.5 and Table 5.6. When the update frequency

is 20Hz, we observe noticeable improvement in both the position error and orientation error by

the reduced EKF method. The FE-EKF method exhibits better performance than the classical

EKF, but the reduced EKF method works even better. When the update frequence is 10Hz, and

the measurement noise Qz = 1×10−4, we see that the error of the reduced EKF is actually larger,

which is not observed in the circle case. This might possibly be due to the high velocity of the

general trajectory, since we construct the trajectory by cubic spline interpolation, and the velocity

is very high around corners, which is unrealistic in practice as the actuation bounds in a robot

result in bounded velocities as well.
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Table 5.5. Average error, general trajectory, average feature num = 25

Average error, general trajectory, average feature num = 25
Frequency update frequency = 10Hz update frequency = 20Hz

Method EKF FE-EKF Reduced EKF EKF FE-EKF Reduced EKF
Error δ p δθ δ p δθ δ p δθ δ p δθ δ p δθ δ p δθ

Qz = 1×10−4 0.673 0.0789 0.635 0.0803 1.309 0.1062 0.6527 0.0698 0.5620 0.0605 0.4659 0.0371
Qz = 2×10−4 1.388 0.139 1.143 0.12 1.23 0.107 1.2575 0.1156 0.9985 0.0997 0.8022 0.0654
Qz = 4×10−4 2.459 0.227 2.111 0.2267 1.592 0.1174 2.3852 0.2039 1.8924 0.1794 1.4595 0.1042

Thus, the propagation error is large when the update frequency is low, and it seems

that when the discrete system deviates far away from the true trajectory, forcing it to obey the

observability property of the underlying continuous system actually degrades the performance of

the algorithm. This is perhaps understandable, as when the timestep is too large to accurately

integrate the trajectory, the unobservable subspace becomes poorly approximated as well. This

is easily resolved by doubling the update frequency. Also, we see that even when the update

frequency is 10Hz, when we increase the measurement noise to 4× 10−4, the reduced EKF

method maintains a rather robust orientation error, and its position error is now smaller than

the classical EKF and FE-EKF methods, which demonstrates the stability of the reduced EKF

method to large measurement noise. This can be understood in terms of the relative error from

measurement noise compared to the propagation step. When the measurement noise is larger, the

spurious information introduced to the unobservable variables will be significant, which degrades

the estimation accuracy. We believe that the reduced EKF method that respects the observability

constraint is best suitable for applications where the propagation step is more precise than the

measurement step. This is the case in typical VIO systems, where the IMU for propagation has

very high update frequency (200–500Hz), and is very accurate for short time estimation, and the

camera for measurement has low update frequency (10–30Hz). A typical error growth in the

general trajectory case is given in Figure 5.6.
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Table 5.6. Average error, general trajectory, average feature num = 50

Average error, general trajectory, average feature num = 50
Frequency update frequency = 10Hz update frequency = 20Hz

Method EKF FE-EKF Reduced EKF EKF FE-EKF Reduced EKF
Error δ p δθ δ p δθ δ p δθ δ p δθ δ p δθ δ p δθ

Qz = 1×10−4 0.6039 0.0609 0.5815 0.0636 1.308 0.1049 0.5518 0.0518 0.4810 0.0447 0.4538 0.0381
Qz = 2×10−4 1.2201 0.1047 0.9836 0.0945 1.0738 0.0838 1.1676 0.1021 0.9752 0.0869 0.73 0.0611
Qz = 4×10−4 2.4264 0.2126 2.0421 0.1904 1.4674 0.1121 2.447 0.2141 1.8347 0.145 1.4322 0.1165

0 10 20 30 40 50 60 70
time /second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

po
si

tio
n 

er
ro

r 
/m

et
er

Position error

position error EKF
position error FE-EKF
position error Reduced EKF

(a) Position error, general trajectory

0 10 20 30 40 50 60 70
time/second

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

an
gl

e 
er

ro
r/

ra
d

Angle error

angle error EKF
angle error FE-EKF
angle error Reduced EKF

(b) Angle error, general trajectory

Figure 5.6. Error growth, general trajectory

Chapter 5, in full, is a reprint of the material that has been submitted for publication

to International Journal of Robotics Research, 2019. Xuefeng Shen; Melvin Leok, SAGE

Publishing , 2019. The dissertation author was the primary investigator and author of this

material.
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Chapter 6

Conclusions and Future Directions

Geometric integrators are developed that are applicable to stiff systems, Lie groups

and control systems. For stiff systems resulting from semi-discretizing Hamiltonian partial

differential equations, we designed the midpoint exponential rule that preserves the Poisson

structure, and the high-order diagonally implicit symplectic exponential integrator; we also

constructed energy-preserving exponential integrators using a discrete gradient method. In

general, exponential integrators allow the use of larger timesteps, and are therefore more compu-

tationally economical. In addition, geometric exponential integrators also inherit the long time

stability properties of geometric integrators. The energy preserving exponential integrator is

only second-order accurate, it would be interesting to construct higher-order energy preserving

exponential integrators, in particular, by combining methods such as the Hamiltonian Boundary

Value Method (HBVM) with exponential integrators.

On the Lie group side, for the rigid body problem, we recognized that the unit quaternions

have a Lie group structure, and we constructed a Lie group variational integrator on the space

of unit quaternions based on this observation. This technique can be naturally extended to

the full body problem on SE(3). On the n-dimensional rotation group SO(n), we constructed

high-order symplectic Lie group methods using the polar decomposition, and these methods can

be naturally implemented as fixed-point iterations, which yield much more efficient methods

than Jacobian based root finding methods when n is large. Also, for Hamiltonian systems with

135



symmetry where Lie–Poisson reduction applies, this method can be reduced to a Lie–Poisson

integrator that preserves the associated Lie–Poisson structure. An interesting application could

be to optimization on SO(n), which appears in the solution of the cocktail party problem by

independent component analysis [26]. In [57], the relationship between Nesterov’s accelerated

optimization method and a second-order damped dynamical system is described, while [6]

suggests applying a symplectic integrator to a time-dependent Lagrangian formulation of this

second-order damped dynamical system as a means of constructing accelerated optimization

methods. The resulting problem is a Lagrangian system on SO(n), and we will explore the

possibility of applying Lie group variational integrators to this problem in the future.

For control systems, we studied in depth the unobservability properties of the planar

robot equipped with odometry sensors and cameras, with an emphasis on the group-invariance

of the control system. Due to the Lie group symmetry, the original system can be reduced to the

observable part, and the state variable can be decomposed into (xN ,xO) explicitly. Since the Lie

group action on xN is trivial, the problem of requiring that the propagation step of the Kalman

filter satisfies the geometric property that the unobservable subspace remains perpendicular to

the measurement dh, becomes quite natural in the reduced representation. Moreover, in order

to deal with the problem that this property is destroyed at the measurement update step of the

Kalman filter, we propose a reduced Bayesian inference method, i.e., only the observable part xO

is updated by the reduced measurement. This special procedure guarantees that the unobservable

variable xN remains unobservable, and no spurious information is introduced by the measurement

update. This reduced Kalman filter method based on observability considerations outperforms

the traditional Kalman filter as well as the FEJ-Kalman filter by quite a lot. In the future, we

intend to apply this technique to a practical VIO system, where the geometry involved is more

complicated. In particular, the rotation group in R3 is SO(3) which is nonabelian, and only

rotations about the gravity direction are unobservable. Also, we would like to update the MSCKF

framework, where the state variables include historic poses of the camera, which makes the

decomposition into observable and unobservable components more interesting. In principle, all
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traditional techniques that are applicable to the Kalman filter, such as UKF, particle filters, and so

on, could all be combined with our reduced update method based on the observability property,

and we would like to test the efficiency of our method for all related practical applications.
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