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ABSTRACT OF THE DISSERTATION

Quality Estimation and Delivery of Visual Contents with Different Spatial Resolutions

By

A. Murat Demirtas

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2015

Professor Hamid Jafarkhani, Chair

In this thesis, we work on quality estimation and delivery of visual content with different

spatial resolutions. First, we study the quality estimation of images with different spatial

resolutions. Estimating the quality of the visual content accurately is crucial in providing sat-

isfactory multimedia communication. State of the art visual quality assessment approaches

are effective when the input image and the reference image have the same resolution. How-

ever, finding the quality of an image that has spatial resolution different than that of the

reference image is still a challenging problem. To solve this problem, we develop a qual-

ity estimator (QE) which computes the quality of the input image without resampling the

reference or the input images. We begin by identifying the potential weaknesses of previ-

ous approaches used to estimate the quality of experience. Next, we design a QE, called

Multiscale Image Quality Estimator (MIQE), to estimate the quality of a distorted image

with a lower resolution compared to the reference image. We also propose a subjective test

environment to explore the success of the proposed algorithm in comparison with other QEs.

When the input and test images have different resolutions, the subjective tests demonstrate

that in most cases the proposed method works better than other approaches. In addition,

the proposed algorithm also performs well when the reference image and the test image have

the same resolution.
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Second, we examine the quality estimation of videos with different spatial resolutions. Full-

reference video QEs either resize the distorted input video or the reference video to compute

the quality when these videos have different spatial resolutions. This resizing operation

causes several limitations. MIQE overcomes those limitations for images but it does not

consider the temporal characteristics of video. We develop a full-reference video quality

estimator that integrates MIQE with the motion information to estimate the quality of

the distorted video without resampling the reference or the test videos. We also perform

subjective tests to compare the proposed algorithm with the existing QEs. In these tests,

the reference and the input videos are displayed at their native resolutions. Test results

show that the proposed algorithm outperforms other QEs when the reference video and the

input video have different spatial resolutions. We have also evaluated the performance of

the approach using the Scalable Video Database.

Third, we work on the challenge of using a perceptual quality estimator to perform optimum

multicasting of videos to the devices with different spatial resolutions. We specifically focus

on the complexity of the optimum perceptual multicasting. The complexity increases due

to usage of scalable video coding in combined scalability mode and perceptual quality esti-

mators. Using combined scalability increases the number of scalability options, so we need

to perform multi-criteria optimization. As a result of the simulations we have performed,

we have observed that multi-criteria optimization is not necessary in the low bitrate region,

and we propose an algorithm to reduce the complexity of the optimization notably for this

region.
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Chapter 1

Introduction

1.1 Motivation and Previous Works

Multimedia communications have become ubiquitous as a result of progress in consumer

products and social media abilities. Now, we can stream and watch any program we want

from the Internet using Amazon, Netflix, Hulu. Even TV channels have started streaming

their programs. We can also visually communicate with somebody instantly without taking

long trips using programs like Skype and Gtalk. Furthermore, it is also possible to share video

clips via YouTube. Hence, people have become the broadcasters. This trend has increased

the wireless multimedia traffic substantially. According to estimations by Cisco [1], video

traffic will be at least 69% of all internet traffic by 2017. Since the demand is increasing

exponentially, the available wireless communication infrastructure may not be sufficient to

provide a satisfactory service in the future. Therefore, we should develop methods to employ

the resources efficiently. One of these methods is using perceptual coding approaches to

minimize the required bitrate without causing any noticeable artifact. To achieve this, the

quality of the visual content must be estimated with high accuracy.
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Quality estimators (QEs) are used to measure the perceived quality of the visual content.

Having an accurate QE is helpful to define system requirements, provide a benchmark to

compare among different image and video processing algorithms, and solve a rate-distortion

optimization problem related to visual communications or storage [2]. Objective QEs are

evaluated in three categories: Full-Reference (FR) QE, Reduced-Reference (RR) QE and

No-Reference (NR) QE. FR and RR QE approaches exploit the reference video as a whole

and partially to estimate the quality of the test video, respectively. On the other hand,

NR QE is independent of the reference video. To decide the type of the QE and design it

accurately, we must take into account the requirements of the environment.

The display resolution of the end user is one of the important requirements to develop an

accurate QE if the network consists of devices with various spatial resolution constraints. We

frequently use devices like smart phones, laptops and HDTVs to perform various visual tasks.

Viewing distance also affects the perceived spatial resolution. These features of viewing

experience can change our perception of visual quality. Hence, the QE design should include

the effect of resolution on the perception of quality. Having such a QE provides a solution to

the utility issue in [3] for spatially adapted videos. Adaptive streaming services like MPEG-

DASH can utilize this QE to provide high-quality spatially-scalable streaming. Quantifying

the quality of visual sources at different resolutions can also be useful for designing displays

for next generation of consumer products with very high resolution.

Image and video quality researchers have explored the effect of mixed spatio-temporal resolu-

tion change on the perceived quality of the visual content, both subjectively and objectively.

The first group of studies only uses subjective tests to understand the influence of spatial

or temporal resolution. Bae et al. [4] explore the preferred spatial resolution for a given

level of quantization error. The authors show that viewers prefer to see larger images with

a small amount of visible quantization error rather than a smaller image which has no vis-

ible quantization errors. They also demonstrate that the amount of acceptable distortion

2



increases as the spatial resolution decreases. In [5] and [6], the authors perform subjective

tests to examine the influence of jointly adjusting spatial resolution, temporal resolution,

and quantization step-size on the quality. According to tests in [5], people prefer a smaller

frame with smaller quantization errors compared to a larger frame with larger quantization

errors, for the same bit-rate when the bitrate is low. On the other hand, Lee et al. [6]

show that when the bitrate is high, increasing the temporal resolution is the most preferred

option. Cermak et al. [7] use the mean opinion scores (MOS) to find the required bitrate

to achieve a given level of video quality for a particular screen resolution. According to Mc-

Carthy et al. [8], people prefer high-quality video frames to smoothly moving video. Cranley

et al. [9] perform subjective tests using several combinations of resolution and quantization

parameters and formed an optimum path, called Optimum adaptation trajectory, to decide

which parameters to change. Zhai et al. [10] examine the trade-off between parameters for

low bitrates. They observe that enhancing the quantization level provides higher subjective

quality compare to increasing spatio-temporal resolution of the video. These studies provide

valuable information to understand the subjective effect of spatial resolution, but they do

not provide an objective metric that can quantify this effect.

The second group of studies focuses on developing objective quality estimators and measuring

their performance. We divide these studies into three subgroups: NR QEs, FR QEs that

were not specifically designed to account for different resolutions, and FR QEs that were.

An NR-QE does not use a reference image or video to estimate the quality. Instead, it may

use the characteristics of possible artifacts like blocking or noise to estimate the quality, or

it may use a model of the desired signal to identify deviations in the visual content from

the model [11]. NR QE algorithms in [12, 13, 14, 15, 16, 17] have satisfactory results if the

distorted visual content is not obtained by resampling. However, an NR QE cannot evaluate

the degree of detail loss if the distorted input image/video has a lower resolution compare to

the reference image/video. Hence, an NR QE will sacrifice valuable information if a reference

is available.
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The QE studies in the second subgroup have been designed to estimate quality when the

reference and input images/videos have the same spatial resolutions. There are two straight-

forward methods to adapt these QEs to estimate the quality when the displayed content has a

different spatial resolution. The first method compares the low-resolution input image/video

with the decimated reference image/video. The second method compares the interpolated

input image/video with the reference image/video. Throughout this document, we call these

methods QEdown and QEup, respectively. The QEs in this subgroup use either the QEdown or

QEup strategy to compute quality for different resolutions. Thus, these QEs do not explicitly

take into account the effect of spatial resolution. PSNR, Structural Similarity Index (SSIM)

[18], Multiscale SSIM (MSSIM) [19], Video Quality Metric (VQM) [20] and Motion-based

Video Integrity Evaluation (MOVIE) [21] are members of this subgroup. PSNR, SSIM and

MSSIM are image QEs, but we can apply them to video by averaging the quality of the

frames. On the other hand, VQM and MOVIE are video QEs.

Both QEdown and QEup have three significant drawbacks. The first drawback is the need

to resize the input or the reference visual content to estimate the quality. In QEdown, high-

frequency content is lost from the reference image/video prior to comparison. On the other

hand, in QEup, the input image/video is further degraded before the comparison due to

the upsampling filter. Hence, the resizing operation causes over- or under-estimation of the

input visual content’s quality in QEdown and QEup, respectively. The second drawback is

a potential mismatch between the filter that is used while creating the input image/video

and the one that is employed while computing the quality. These mismatches are especially

influential if we calculate the quality using a pixel-based method like PSNR. Finally, the third

drawback results from ignoring the effect of viewing distance on quality. A well-designed

QE must take into account the viewing distance because the sensitivity of the human visual

system (HVS) depends heavily on the spatial frequency, which changes with the viewing

distance as described in [22].
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The third subgroup consists of QEs which are designed to account for the effect of spatial

or temporal resolutions. To the best of our knowledge there are not any image QEs in this

subgroup. The video QEs approaches described in [23]-[28] belong to the third subgroup.

In [23]-[28], the authors extract several features of the video and use regression to find the

optimum weights to include the effect of spatial or temporal resolutions. Feghali et al. [23]

and Peng et al. [24] developed QEs to measure the joint effect of temporal resolution and

quantization. They both use a weighted combination of PSNR and motion information to

estimate the quality. In [23], the authors find the threshold corresponding to the largest 25%

of the motion vectors, while in [24], the authors employ MPEG-7 motion activity. Both [23]

and [24] do not take into account the effect of spatial resolution. Refs. [25] and [26] explore

subjective video quality on mobile platforms when spatial resolution, temporal resolution,

and quantization parameters are varied. Their results show that the amount of decrease in

subjective quality changes according to the content and the quantization parameter when

the spatial resolution is decreased. Kim et al. developed a metric in [27] which is a weighted

combination of PSNR, motion activity and a logarithmic function of frame size. Sohn et

al. [28] extend this work by inserting spatial complexity into the model. Motion activity

and spatial complexity features of videos are extracted using MPEG-7 motion activity and

MPEG-7 edge histogram functions, respectively. The performance of these estimators are

measured in [29] and [30]. In [23]-[28], the scaling factors are obtained using regression.

Although the QEs in the third subgroup provide a scientific way to compute the quality, they

depend on a specific dataset. This dependence might affect the reliability of these approaches

if we apply them to videos with different characteristics. In these studies, the authors also

resize either the reference video or the input video while performing the subjective tests.

Having a reliable QE for measuring the quality of visual contents with different spatial res-

olution is very important. Moreover, it is also critical to have such a QE in performing

perceptual optimum video multicasting. Multicasting has been studied thoroughly [31] for

wired and wireless networks when the devices have the same resolution and the channels of

5



these devices are heterogeneous. On the other hand, there are a few studies which work on

multicasting videos to devices with different spatial resolutions and these studies use scalable

video coding. Lee et al. [32] consider the change in the spatial scalability while performing

multicasting. In [33], the authors use both spatial and temporal scalabilities. The authors

in [34] and [35] employ the combination of SNR and Spatial scalabilities. These authors use

scalable video coding in combined scalibility mode which allows to use more than one scala-

bility. They work on the problem of optimum wireless multicasting of scalable video to the

users with heterogeneous displays using maximum utility and maxmin fairness constraints,

respectively. Although performing optimization for a specific constraint is a straight forward

problem, there are two important issues to take into account to do perceptually optimum

multicasting using combined scalability. The first one is the dimension increase due to usage

of more than one scalability option. The second one is the complexity of the QE used while

computing the utility.

1.2 Thesis Overview

In this thesis, we analyze the perceptual quality estimation concepts and apply it in a video

delivery scenario for different spatial resolutions. First, we design a quality estimator for

images. Secondly, we consider the effect of motion on the quality and extend our design to

cover video quality estimation. Finally, we apply the quality estimator concept we develop in

a perceptually optimum multicasting scenario. We explain the progress in thesis as follows:

In Chapter 2, we describe full reference quality estimation for images with different spatial

resolutions. In Chapter 3, we introduce full reference quality estimation for videos with

different spatial resolutions. In Chapter 4, we propose an algorithm to reduce the complexity

of perceptually optimum multicasting at low bitrates. Chapter 5 concludes the thesis.

6



Chapter 2

Quality Estimation for Images with

Different Spatial Resolutions

In this chapter, we design a QE to estimate the quality of the corrupted displayed image

with a lower resolution compared to the reference image. We also propose a subjective test

environment where we can evaluate the success of the proposed algorithm in comparison with

other QEs. When the reference and test images have different resolutions, the subjective tests

demonstrate that in most cases the proposed method works better than other approaches.

In addition, the proposed algorithm performs well when the reference image and the test

image have the same resolution. Section 2.1 explores the potential weaknesses of previous

approaches that are used to estimate the quality in our problem. In Section 2.2, we describe

our proposed QE approach, called Multiscale Image Quality Estimator (MIQE) and its

colored version. In Section 2.3, we describe the subjective test environment and analyze the

results of the subjective tests.

7
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Figure 2.1: Conventional Approaches : a) Input image vs decimated reference image
b) Interpolated input image vs reference image

2.1 Limitations of the Previous Approaches

To date, QEs have been designed to estimate quality when the displayed image has the

same number of pixels, or spatial resolution, as the reference image. However, viewers use

a variety of devices, including TVs and smart phones, to watch movies and perform video

conferencing. These devices have different spatial resolutions and are viewed from different

distances. To adapt existing QEs to estimate quality when the displayed image has a different

spatial resolution, we use QEdown and QEup approaches as described in Chapter 1.1. These

are illustrated in Figure 2.1a and 2.1b, respectively for the case where the image being

considered has lower resolution than the reference image. (The extension to the opposite

case is straightforward.) QEdown is used in Refs. [4] and [36] , and QEup is used in Refs. [37]

and [38] to estimate the quality. Despite their ease of use, QEdown and QEup have significant

limitations [39]. In this section, we present a motivating example that demonstrates these

two approaches fail to accurately estimate subjective quality, then describe their drawbacks

and limitations. We begin with some definitions.

2.1.1 Definitions

To mathematically compare two images that are viewed with different resolutions and/or

different distances, we describe the images using an angular frequency representation. Specif-
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ically, we compute the angular frequency using [40]:

f(l) =
π ∗ d ∗ n

180 ∗ h ∗ 2 ∗ 2l
(2.1)

In this expression, f(l) denotes the angular frequency in cycles per degree (cyc/deg); d,

h, and n represent the distance of the viewer, height of the screen, and the number of

pixels in the vertical direction, respectively. In addition, l indicates the level of a subband

decomposition. When there is no subband decomposition, we set l = 1.

Let the term input image describe the low-resolution degraded image, i, that is input to either

QEdown or QEup. Further, let r be the reference image. We reserve the term test image to

denote those images that are shown to viewers during a subjective test. The decimated

reference image, dr, is input to the QE-block in Figure 2.1a, while the interpolated input

image, ui, is input to the QE-block in Figure 2.1b.

2.1.2 Motivating Example Using QEup and QEdown

Our motivating example, from [39], uses the Visual Information Fidelity (VIF) [41] to com-

pare image compression using JPEG 2000 with and without downsizing the image prior to

compression. VIF has been demonstrated to have good performance in a variety of applica-

tions. Figure 2.2 shows quality estimated using VIF, as a function of compression level, for

the 512× 512 “log-seaside” image from the CSIQ database [42], when JPEG 2000 is applied

to either a full-sized or half-sized image. The curve labeled full-size is the conventional VIF

applied to the full-size compressed image. Two methods of computing VIF for the half-size

compressed image are also shown. The curve labeled “Half-size (QEdown)” is VIF computed

using QEdown, and the curve labeled “Half-size (QEup)” is VIF computed using QEup. To

create a fair comparison, the compression level for the half-sized images incorporates the

impact of downsampling.
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Figure 2.2: Calculated VIF values of the test images for each compression level

To explore whether VIF is accurate or not for this problem, we choose a VIF value of 0.4,

corresponding to the dashed line in Figure 2.2. A visual inspection of these three images

indicates that the half-size image computed using QEup is substantially better than the full-

size image, while the half-size image computed using QEdown is worse than both. Therefore,

these three images have different visual quality although they have the same estimated

quality. More details, including the three images, can be found in [39].

To understand the limitations of QEdown and QEup better, we next describe the impact of

these methods in the frequency domain.

2.1.3 Frequency Domain Comparison of QEdown and QEup

To estimate image quality objectively, r and i should be compared at the same visual angle.

Our motivating example indicates that both QEup and QEdown are not accurate. To un-

derstand their limitations better, we describe the effects of these methods pictorially, using
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Figure 2.3: 2D Projected Frequency Domain Representations of Image Models (a) Reference
image (b) Input Image (c) Decimated Reference Image (d) Interpolated Input image. The
downsampling rate is 2

simplified 1D frequency domain representations.

Figure 2.3a shows a sketch of the frequency representation of a reference image, r, where

the horizontal axis indicates frequency in cycles per degree and the vertical axis shows the

magnitude of the frequency content of the signal. While we do not know how the input

image, i, is generated from the reference image, it is reasonable to assume that is obtained

by low-pass filtering (LPF), downsampling (DS) , and some additional degradation. Figure

2.3b illustrates the frequency representation of such an input image. In this subsection,

upsampling and downsampling operations rates are 2.

First, we consider the method of QEdown, where we compare a decimated reference image at

downsampling rate 2, dr with i as in Figure 2.1a. During QEdown, LPF and DS operations are

performed consecutively. The resulting decimated reference image in the frequency domain

is shown pictorially in Figure 2.3c, where the x-axis is in cycles/degree and y-axis illustrates

the magnitude. The QE block of QEdown in Figure 2.1a compares the images represented in

Figures 2.3c and 2.3b.

Similarly, the method QEup estimates quality of an input image that is smaller than the

reference image by comparing an interpolated i with the reference image r. During QEup, we

upsample (US) i and perform LPF. The frequency domain representation of the interpolated

input image, ui, is shown pictorially in Figure 2.3d. The QE block of QEup in Figure 2.1b
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compares the images represented in Figures 2.3a and 2.3d.

Both QEdown and QEup have several drawbacks. In QEdown, high-frequency content is lost

from the reference image prior to comparison. On the other hand, in QEup, the input image

is further degraded before the comparison due to the LPF. In the former case, quality will

be estimated as better than the actual quality, because the reference has been degraded. In

the latter case, quality will be estimated as worse than the actual quality, because the input

image has been further degraded.

A second drawback arises due to potential mismatch between the filters. Since it is not

known what filter has been used to create the actual input image i, it is not possible to

ensure the same filter is used in QEdown to create dr. Difficulties arise not only due to

mismatch between the magnitude responses of the LPFs, but also a spatial shift between

the two images might be introduced if the two filters have different phase responses. This

could significantly affect the accuracy of the estimated quality.

Finally, one factor that is completely ignored in both QEup or QEdown is the viewing dis-

tance. Many existing QEs also do not account explicitly for viewing distance. However, the

sensitivity of the HVS depends heavily on the frequency. The Contrast Sensitivity Function

(CSF) [43] describes how humans perceive spatial frequency, and is effectively the spatial

frequency response of the HVS. The CSF has more weight at lower frequencies, and recent

subjective tests in [4] and [5] also show that our eyes are more resilient to distortions as the

spatial resolution decreases. Upsampling contracts i in the frequency domain, causing the

artifacts in ui to become more visible. Therefore, QEup will incorrectly estimate the quality

of i.
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Figure 2.4: Pictorial representation of the reference image and the input image that have
the same visual angle in the frequency domain

2.1.4 Design Requirements

To develop an accurate QE for our application, our design must satisfy several requirements.

First, our QE must allow the input image i and reference image r to have different spatial

resolutions. This requirement is not satisfied by pixel-based QE methods, like MSE and

SAE. To fulfill this requirement, our QE is based on a frequency or wavelet representation.

However, this is not sufficient, since as we have seen, even QEs like VIF which use a wavelet

decomposition are forced to rely on either QEup or QEdown when i has a different spatial

resolution than r.

Second, our design must compare r and i as if they are being viewed at the same visual angle.

To accomplish this, we assume that r is placed at a greater distance. Using the angular

frequency resolution defined in Eq. (2.1), if we increase the distance by a factor of two, the

visual display resolution of r is also multiplied by two. The frequency domain representations

of the i and the relocated r are shown in Figure 2.4. In this figure, the downsampling rate

is 2. This requirement enables us to adjust the sensitivity of HVS according to the angular

resolution. Hence, we model the effect of resolution change to the perception of the distortion

accurately.

The final requirement is robustness to small shifts. It is not possible to know the processing

that was applied to create the input image i. In particular, filtering and downsampling

often introduce small shifts into the resulting image. Moreover, using wavelet transform
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Figure 2.5: Block diagram of the proposed QE

can also cause shift during decomposition. Therefore, for this application of estimating

the quality of an image that has a different spatial resolution than the reference image, an

accurate QE must be robust to small shifts. To achieve this, our strategy is to compute

the correlation between image subbands instead of performing point by point comparison

between these subbands. In the next section, we describe how we use wavelet decomposition

and correlation to develop the proposed algorithm.

2.2 Multiscale Image Quality Estimator

The block diagram of the proposed QE, described in this section, is illustrated in Figure

2.5. As before, r represents the reference image and i represents the input image. The
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first block is Pixel Value to Physical Luminance Conversion. In this block, pixel values of

r and i are converted to luminance values and these values are kept in r′ and i′ matrices.

The second block is Wavelet Decomposition. r′ and i′ are decomposed into their subbands.

These bands are collected in R and I matrices, respectively. Decoupling is the third block.

It divides the subbands of R and I into smaller non-overlapping blocks. Decoupling consists

of two steps. In the first step, blocks of R’s subbands are represented using Gaussian Scale

Mixture (GSM). In the second step, the blocks of I are estimated from the blocks of R using

a linear least square estimator. In the fourth block of the diagram, the Mutual Information is

calculated between the blocks of R and I. However, each subband has a different importance.

Therefore, in the fifth block, we scale the similarity of each subband with the corresponding

sensitivity value and subband size compensator. Finally, in the last block, Pooling, the value

of the estimated quality is found. The final quality value is between 0 and 1, and this value

increases as the quality increases. In what follows, we explain the details of each block.

Pixel Value to Physical Luminance Conversion

In the first block, we convert pixel values in r and i to luminance values r′ and i′. The

image information is kept as pixel values in the memory. However, the display changes these

values to adapt to HVS. These adapted values are called luminance values. Therefore, it is

necessary to alter the pixel values to luminance values. We use the following equation to

calculate the corresponding luminance value for each pixel [44]:

L(P ) = (b+ k ∗ P )γ (2.2)

In this equation, b, k and, γ represent black-level offset, voltage scaling factor and the gamma

of the display monitor, respectively. Typical parameter values are b = 0, k = 0.02874 and

γ = 2.2. We apply this operation to both the reference image, r, and the input image, i, to
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obtain their luminance counterparts r′ and i′.

Wavelet Transform

In this step, the luminance image matrices r′ and i′ are decomposed into their subbands.

There are two reasons for using subband decomposition. First, the space-frequency localiza-

tion of the HVS is frequently modeled using wavelet-based approaches. Watson [45] modeled

it using Cortex Transform. Daly also used a similar transform in Visible Difference Predictor

(VDP) [46] model. Second, using a frequency-domain representation is required to enable

a scale-independent QE. In this block, we use the 9/7 bi-orthogonal wavelet transform [47].

The main disadvantage of using wavelet transforms is the fact that the ratio between the

size of the input image and the size of the reference image can only be a power of 2. Never-

theless, the ratio of popular visual content standard pairs like CIF-QCIF, VGA-QVGA and

HDTV-UHDTV satisfy this requirement. The inputs to the wavelet decomposition, r′ and

i′, contain the spatial luminance values. Output matrices of the wavelet decomposition block

are R and I. They are the wavelet transforms of r′ and i′, respectively. Matrices R and I

consist of 3×L+ 1 subbands where L represents the total number of levels. Each subband

is represented with its level and orientation indices. Specifically, if Il,o represents a subband

of the I, then l and o stand for the level and orientation, respectively. The subbands in the

first level of the I, (I1,2, I1,3 and I1,4), are 0 matrices.

Decoupling

Now, we have the wavelet subbands in Rl,o and Il,o matrices. In this block, we find the

relationship between each subband of R and I, using two steps. In the first step, Rl,o

are represented as Gaussian Scale Mixtures (GSMs). In the second step, blocks of Il,o are

estimated from the blocks of Rl,o. To estimate Il,o blocks, we assume that there is a linear
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Figure 2.6: Mathematical model of the reference image observation

relationship between the corresponding blocks of Rl,o and Il,o. We represent this linear

relationship with attenuation and additive noise. We also assume that the additive noise is

White Gaussian Noise and independent of the blocks of Rl,o. Hence, we can use a Linear

Least Square Estimator (LLSE) to find these estimation parameters. We elaborate the

details of the decoupling process in the following paragraphs.

The first part of the decoupling process is based on a statistical evaluation of images. In this

part, we assume that the reference image is accurately characterized by a model based on

natural scene statistics (NSS) [48]. The hypothesis of NSS is that images of natural scenes

occupy only a small subset of all possible images. Wainwright et al. [49] have used this

information to represent images in terms of GSMs. To do that, they represent each subband

of the image as a summation of Gaussian distributions [49]:

~Rl,o,j = Sl,o,j.~Ul,o,j, j = 1, . . . , K (2.3)

The index of the block is shown by j, and it can take values from 1 to the number of the blocks

in the subband. In this expression, ~Rl,o,j represents the jth block of subband (l,o). ~Ul,o,j is a

Gaussian vector with mean zero and covariance Cu. The covariance Cu can be computed by

averaging the autocorrelation of ~Ul,o,j in the same subband. Sl,o,j is a random number from

a positive scalar random field. Given Sl,o,j, ~Rl,o,j is normally distributed with N(0, S2
l,o,jCu).
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Hence, after finding Sl,o,j, the blocks can be characterized as Gaussian distributions.

The aim of the second part of the decoupling process is to represent the input blocks, ~Il,o,j,

in terms of the reference blocks, ~Rl,o,j. Here, the noise is assumed to be orthogonal to ~Rl,o,j,

so we use the LLSE to find the attenuation (Al,o,j) and additive noise ( ~Wl,o,j) parameters

using the following equations.

~Il,o,j = Al,o,j ~Rl,o,j + ~Wl,o,j (2.4)

A∗l,o,j = min
Al,o,j
||~Il,o,j − Al,o,j ~Rl,o,j||2 (2.5)

This process is performed for each ~Rl,o,j-~Il,o,j block pair. In Eq. (2.5), A∗l,o,j denotes the

optimum attenuation that minimizes the noise. We can find the optimum attenuation by

setting the derivative of Eq. (2.5) to 0. Next, we obtain the variance of the additive noise

by subtracting the attenuated reference signal from noise. The corresponding attenuation

and noise variance terms are expressed as follows:

Al,o,j = cov(~Il,o,j, ~Rl,o,j)var(~Rl,o,j)
−1 (2.6)

var( ~Wl,o,j) = var(~Il,o,j)− Al,o,jcov(~Il,o,j, ~Rl,o,j) (2.7)

In Eq. (2.6), ~Rl,o,j is a 16x1 vector. Hence, var(~Rl,o,j) is a scalar and we can find the inverse

as long as var(~Rl,o,j) is not zero. To prevent having a zero in the denominator, we add a

very small regularization constant to the var(~Rl,o,j)
−1. These attenuation and noise variance

values are obtained for each block, and are used in the next step to find the distortion in
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each block, employing mutual information as the distortion metric.

Mutual Information

Now, we have subband blocks of I and R in terms of GSMs. We use a similar model men-

tioned in the mutual information calculation of VIF [41]. Mutual information is a function of

two random variables and is an indication of how much information we get from one random

variable about the other one. As such, a lower mutual information is an indication of lack

of similarity. In the extreme case of zero mutual information, the two random variables are

independent. Therefore, mutual information of each block gives us an indication of local

similarity.

R and I are the reference and input signals. We model E and F as being created by passing

R and I through the HVS, as in [41], where the HVS is modeled as Additive White Gaussian

Noise (AWGN) with unit variance. Al,o,j and ~Wl,o,j represent the attenuation, noise for each

subband block, respectively. sl,o,j is a realization of Sl,o,j and it is computed as in [41], Eq.

(15). In this step, two items will be performed as follows.

First, the mutual information [50] between non-overlapping 4x4 blocks of El,o and Rl,o

(I(El,o; Rl,o)) is found for all (l, o) pairs. Since we have used a correlation based block

similarity metric during the mutual information computation, we have relieved the effect

of shift variance which can occur as a result of wavelet decomposition or decimation filter

mis-match. El,o is obtained by adding Rl,o with N which is an AWGN, as illustrated in

Figure 2.6. Before computing the mutual information, the block indices are represented as a

vector. Moreover, ~Rl,o,j has a Gaussian distribution if sl,o,j is known. Using these facts, we

can find the mutual information for a (l, o) pair as

I(El,o; Rl,o|sK) =
1

2

K∑
j=1

log2

(
s2l,o,jCu + σ2

nI

σ2
nI

)
(2.8)
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Figure 2.7: Mathematical model of the input image observation

Second, the mutual information between the blocks of Fl,o and Rl,o is found. The relationship

between ~Fl,o,j and ~Rl,o,j is shown in Figure 2.7. Using this relationship we can write ~Fl,o,j in

terms of ~Rl,o,j, Al,o,j, ~Wl,o,j and ~N ′l,o,j as follows:

~Fl,o,j = Al,o,j ∗ ~Rl,o,j + ~Wl,o,j + ~N ′l,o,j (2.9)

We use Eqs. (2.8) and (2.9) to find the mutual information between Fl,o and Rl,o as follows:

I(Fl,o; Rl,o|sK) =
1

2

K∑
j=1

log2

(
s2l,o,jA

2
l,o,jCu + σ2

ql,o,j
I

σ2
ql,o,j

I

)
(2.10)

where, σ2
ql,o,j

= σ2
wl,o,j

+ σ2
n. We use Eqs. (2.8) and (2.10) to find the mutual information

for each subband. However, we also need to scale these values (I(El,o; Rl,o), I(Fl,o; Rl,o))

according to the size and the importance of the subband.

Scaling with Contrast Sensitivity Function and Subband Size Compensator

To estimate the quality accurately, we next scale the value of each (l, o) pair. To calculate

the magnitude of these scaling coefficients, we take into account two factors: the visual

importance of each subband determined by the characteristics of HVS, and the size difference

of each subband.
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First, HVS has a different weight for each subband [43]. The corresponding weight changes

according to the resolution and height of the screen, the distance between the viewer and

the screen, and the level of the subband. To find the effect of HVS, we first calculate the

angular frequency by Eq. (2.1). Next, the CSF is calculated using the following formula

from [40]:

CSF (f) = (0.69 + 0.31 ∗ f).e−0.28∗f (2.11)

This CSF function is used to compute the quality of monochromatic images. We can take

into account the effect of color if we use the chromatic and achromatic CSF functions as

described in [51]. In calculating the QE, if we use both chromatic and achromatic CSF

functions instead of the one described in Eq. (2.11) the corresponding QE is called MIQE-

Color (MIQEC).

The second factor is the size of the subband. As the subband level increases by one, the

size of the band decreases by four. Rouse et al. [52] show that incorporating this improves

the accuracy of quality estimation. As a result, each subband CSF value is also scaled with

22l to compensate the size of each level l. Hence, the scaling coefficient for each subband is

calculated as follows:

gl = CSF (f(l)) ∗ 22l (2.12)

Pooling

In this step, we calculate the quality using the scaling coefficients and mutual information

for each subband. Specifically, we compute the estimated quality by

MIQE =

∑
l,o∈subbands gl ∗ II,l,o∑
l,o∈subbands gl ∗ IR,l,o

(2.13)
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In this expression, gl is the scaling coefficient for level l given in Eq. (2.12). II,l,o and IR,l,o

represent the scaled mutual information of the input and the reference signals for the pair

(l, o).

To check the validity of the proposed algorithm, it is necessary to compare the estimated

quality values with the preference of viewers. In the following section, we describe the details

of our subjective tests to obtain viewer preferences.

2.3 Subjective Tests

Subjective tests are performed to obtain the viewers’ preferences for images that have differ-

ent spatial resolutions. The test results are used both to ensure that the proposed algorithm

is accurate and to compare our algorithm with existing approaches. Our subjective tests are

performed by employing a paired comparison test using two distorted test images, one with

full resolution and the other with half resolution. In the following subsections, we describe

how we create the test set, perform subjective tests, and analyze results.

2.3.1 Test Set Creation

Original images are selected from the National Park Service Digital Image Archive and

WikiMedia Commons. There are in total 24 images in 5 categories. These categories are

human, landscape, plant, animal, and urban. These images represent a wide variety of scenes.

They include homogeneous regions, edges, and details. The resolution of the reference images

is 800 × 800. The images that are downloaded from the databases have greater resolution

than 800× 800; hence, they are decimated and cropped. We decimate the images such that

minimum edge resolution of the decimated image is greater than or equal to 800. Next, we

determine the border coordinates to crop the image. We choose these coordinates to keep
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the maximum information in the reference image.

The test images shown to viewers consist of two groups: high resolution and low resolution

images. High resolution test images are obtained by distorting the reference images. Low

resolution test images are created by decimating the reference images and then corrupting

the decimated images.

To obtain a subjective estimate of image quality, it is conventional to ask viewers for their

opinion score and then compute the mean opinion scores (MOSs). This method is effective

when the reference image and the test image have equal resolutions; however, finding the

qualities of images that have different spatial resolutions is more challenging [6]. Therefore,

instead of obtaining the MOS score for each image, we use paired comparison to find the

relative preference of test images with different resolutions.

To obtain the test images, we corrupt a full-size reference image r and a decimated reference

image dr using one of the following four distortions: compression with JPEG, compression

with JPEG 2000, blurring, or noise. For the two compression algorithms, we use three dis-

tortion levels, representing good quality, medium quality and bad quality images. However,

both blur and noise have only two distortions levels: good and bad. A 2D Gaussian low

pass filter is used for blurring, where the distortion level of the blur is controlled by the

standard deviation of the filter. In addition, we use AWGN as noise distortion. To explore

the impact of filter type, we use two low-pass filter types to decimate the r. The first is

the Non-Normative LPF, which is a Sine-windowed Sinc-function. We implement the filter

employing Eq. (4) from Segall and Sullivan [53]. The parameters are D = 2.5 and N = 3

and phase offset= 0, and the implementation is performed using floating point. The second

LPF is the Raised-Cosine function which is formulated as follows.

f(x) =
1

2
(1 + cos(

π ∗ (w − wc ∗ (1− α))

2 ∗ α ∗ wc
)) (2.14)
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In this expression, wc is the cut-off frequency and α is the roll-off factor. Non-Normative filter

only causes blurring. It especially decreases the magnitude of the signal between frequencies

0.4π and 0.5π. On the other hand, Raised Cosine causes both aliasing and blurring. When

it is necessary to distinguish the two decimated reference images, we use dr1 and dr2, to

represent drs created using the Non-Normative and Raised-Cosine LPFs, respectively. All

distortion types are used to distort decimated reference images dr1, while only JPEG 2000

is used to distort decimated reference images dr2. We use JP2K-RC as an abbreviation for

the latter case. To minimize the number of comparisons in our subjective test, we use all

images in the reference image set to obtain dr1 and half of the images in the set to obtain

dr2.

The next challenge is to determine appropriate levels of distortion for each image pair in

the paired comparison experiment. Ideally, we should choose the distortion level of the

low resolution test image, relative to that of the high resolution test image, such that we

obtain the most information about how the QEs perform. If we choose the image pairs

such that all QEs rank the images in the same order, our subjective test will not be able to

distinguish the relative performance among the QEs. If instead, we pick an image pair such

that one QE classifies the images correctly and the remaining QEs classify them incorrectly,

we immediately determine the best QE for that image pair. However, this is difficult because

we do not know the viewers’ preferences a-priori.

In consequence, we use a method similar to that described in [54] to select the images.

According to this approach, for a given high resolution test image, we select a corresponding

low resolution test image which divides a set of QEs into two groups, with approximately

half of the QEs classifying an image pair one way and approximately half classifying the

pair the other way. We perform QEdown approach while estimating the quality of the low

resolution test image using the Non-Normative filter [53].

We use this strategy to create a pair of images for each reference image, each distortion, and
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each distortion level (good, medium, or bad), where one image in the pair has high resolution

and the other low. In our subjective test, in addition to simply having viewers rate this pair,

we create additional pairs using these images. For JPEG and JPEG 2000, we use three

additional pairs per reference image by pairing the bad-quality high-resolution image with

the medium-quality low-resolution image, and the medium-quality high-resolution image

with both good and bad low-resolution images. For blur and noise, we create one additional

pair per reference image by pairing the bad-quality high resolution image with the good-

quality low resolution image. These additional pairs provide additional information about

viewers’ preferences while balancing the expense of the subjective test.

2.3.2 Subjective Test Implementation

Until now, we have described how we create the test images and form the possible pairs.

Next, we describe the subjective tests themselves. The tests contain a total of 504 pairs of

images, with 60 people viewing 252 pairs each. Hence, each pair is seen by 30 viewers, and

each test session takes approximately an hour. The viewers selected for the test are graduate

students and undergraduate students. They have clear vision and they are non-experts.

During tests, the viewers saw images that have different spatial resolutions side by side.

They were asked to choose which image they prefer more. They had 10 seconds to see each

image pair, but they could choose a preference before or after 10 seconds. The distance

between the viewers and the screen was 4 times the height of the low resolution image. Tests

were performed using 17” Dell N7110 Inspiron with a display resolution of 1600× 900.
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2.3.3 Analysis of Subjective Test Results

In this section, we compare the performance of our proposed QE to nine others using the

results of the subjective test. We begin by examining whether the QEs can rank the images

in each pair according to the viewers’ preferences using QEdown setup. Then, we explore the

sensitivity to the choice of decimation filter applied in the QEdown, with emphasis on the case

when it differs from the filter used to create low resolution test images. We also study how

using the QEup approach will affect the ranking. Next, we apply a well-known statistical

model to transform viewer preferences into an estimate of subjective quality among all the

images with the same reference image and distortion type. Lastly, we explore the perfor-

mance of the proposed algorithm when the images have the same resolutions. We compare

our proposed MIQE and MIQEC to seven FR and two NR state-of-the-art QE methods.

Compared state-of-the-art FR QE methods are Structural Similarity Index (SSIM) [18], VIF

[41], Visual Signal-to-Noise Ratio (VSNR) [44], PSNR, Multiscale-SSIM (MSSIM) [19], In-

formation Content Weighted SSIM (IWSSIM) [55] and Complex Wavelet SSIM (CWSSIM)

[56]. The two NR QE methods are BIQI [16] and BRISQUE [17].

In our first comparison, we begin by identifying the image that was preferred by most viewers,

for each pair shown to viewers. We also use each QE to rank the two images in each pair.

Dividing the total number of correct rankings by the total number of pairs gives us the

fraction of correct rankings. Table 2.1 shows the percentage of correct rankings for each QE

according to different distortions and different decimation filters.

In “Different Distortions” heading of Table 2.1, we evaluate the effect of different distortions

to the correct ranking. The Non-Normative filter is used while performing QEdown, and

test images are obtained by distorting the images in dr1. According to the table, MIQEC

algorithm performs better than other QEs for all distortions except JP2K. If the distortion

is JP2K, MIQE performs better than other QEs. Both MIQE and MIQEC have higher
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Table 2.1: Fraction of Correct Rankings

Different Distortion Different Filter
Blur JP2K JPEG Noise JP2K JP2K-RC

SSIM 0.597 0.601 0.569 0.354 0.569 0.556
VIF 0.556 0.531 0.597 0.396 0.500 0.417

VSNR 0.722 0.677 0.667 0.660 0.653 0.653
MIQE 0.819 0.774 0.729 0.910 0.736 0.792
PSNR 0.708 0.747 0.688 0.910 0.708 0.708

MSSIM 0.597 0.524 0.569 0.340 0.500 0.403
IWSSIM 0.542 0.531 0.569 0.340 0.500 0.403
MIQEC 0.917 0.760 0.736 0.924 0.736 0.708

CWSSIM 0.736 0.760 0.639 0.507 0.514 0.583
BIQI 0.667 0.573 0.59 0.563 0.653 0.681

BRISQUE 0.625 0.510 0.576 0.507 0.542 0.514

ranking fractions for blur and noise compared to other distortions. The results also show

that the proposed QE is robust to small shifts. The proposed QE uses a wavelet LPF during

subband decomposition instead of employing the Non-Normative filter to estimate quality.

Nevertheless, MIQEs’s correct ranking fraction is higher than other QEs.

In “Different Filters” heading of Table 2.1, the effect of different filters to the correct ranking

is analyzed. The fifth and the sixth columns of Table 2.1 illustrate the fraction of correct

rankings when the decimation filter is Non-Normative and Raised Cosine LPF, respectively.

In each case, we use the same LPF during the creation of test images and the decimation

operation in QEdown. Here, the comparison is performed for the reference images which

are common in dr1 and dr2. Note that, the number of images in dr1 and dr2 are different.

Therefore, the QE values for JP2K in “Different Distortions” and “Different Filters” are

slightly different. The ranking fractions show that MIQE performs slightly better when

the Raised Cosine LPF is employed instead of the Non-Normative to create test images.

Furthermore, the ranking fractions of other QEs either decrease or remain the same when

the Raised Cosine LPF is employed during QEdown.

We also study the effect of a mis-match between the decimation filters that are utilized in

the creation of the test images and QEdown. We employ the 9/7 biorthogonal wavelet, raised

cosine and non-normative filters to compute the fraction of correct ranking scores in this
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Table 2.2: Fraction of Correct Rankings When the Low Pass Filter is a Wavelet Filter

Different Distortion Different Filter
Blur JP2K JPEG Noise JP2K JP2K-RC

SSIM 0.819 0.788 0.722 0.590 0.750 0.792
VIF 0.639 0.545 0.618 0.576 0.528 0.569

VSNR 0.597 0.677 0.729 0.882 0.625 0.750
MIQE 0.819 0.774 0.729 0.910 0.736 0.792
PSNR 0.819 0.719 0.694 0.965 0.681 0.764

MSSIM 0.875 0.615 0.715 0.396 0.597 0.528
IWSSIM 0.875 0.642 0.771 0.521 0.625 0.528
MIQEC 0.917 0.760 0.736 0.924 0.736 0.728

CWSSIM 0.778 0.490 0.556 0.410 0.514 0.486
BIQI 0.667 0.573 0.59 0.563 0.653 0.681

BRISQUE 0.625 0.510 0.576 0.507 0.542 0.514

scenario. If the test images are created using the image set dr1, we apply the wavelet and

the raised cosine filters in the decimation block of the QEdown. Otherwise, we employ the

Non-Normative and Wavelet filters to compute the quality. The filter mis-match may cause

the estimated quality to be under-estimated if the QE is not shift invariant. On the other

hand, the Dec block causes QEdown to over-estimate quality because it causes detail loss in

the reference image. The two effects may, coincidentally, cancel each other, producing an

accurate quality estimation. No one filter in QEdown is likely to perform best for all possible

content, distortions, and image-creation filter. When we search for the best decimation

filter in QEdown over a variety of scenarios, in a few cases, QEdown outperforms MIQE and

MIQEC. However, MIQE and MIQEC do not rely on a specific filter, and there is no one

quality estimation approach that consistently outperforms the others, i.e., the approach

providing the highest correct ranking scores varies depending on the applied filter, content,

and distortion. On average, MIQEC has the highest ranking scores. Tables 2.2 and 2.3 show

the percentage of correct rankings for each QE using Wavelet and Raised Cosine decimation

filters in QEdown, respectively.

As described in Section 2.1, we can also use QEup to estimate the quality using existing

approaches. We use bilinear and 9/7 biorthogonal wavelet filters while interpolating the test

images in QEup. We explore the effect of QEup using different distortions and decimation
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Table 2.3: Fraction of Correct Rankings When the Low Pass Filter is a Raised Cosine Filter

Different Distortion Different Filter
Blur JP2K JPEG Noise JP2K JP2K-RC

SSIM 0.819 0.684 0.681 0.465 0.667 0.694
VIF 0.514 0.538 0.604 0.465 0.514 0.597

VSNR 0.514 0.747 0.743 0.951 0.694 0.806
MIQE 0.819 0.774 0.729 0.910 0.736 0.792
PSNR 0.750 0.760 0.708 0.951 0.722 0.792

MSSIM 0.514 0.531 0.611 0.354 0.500 0.500
IWSSIM 0.625 0.545 0.667 0.382 0.514 0.514
MIQEC 0.917 0.760 0.736 0.924 0.736 0.728

CWSSIM 0.778 0.503 0.590 0.424 0.514 0.486
BIQI 0.667 0.573 0.59 0.563 0.653 0.681

BRISQUE 0.625 0.510 0.576 0.507 0.542 0.514

Table 2.4: Fraction of Correct Rankings for QEup When Upsampling Filter is Wavelet Filter

Different Distortion Different Filter
Blur JP2K JPEG Noise JP2K JP2K-RC

SSIM 0.486 0.670 0.597 0.924 0.681 0.764
VIF 0.514 0.691 0.597 0.660 0.694 0.750

VSNR 0.694 0.649 0.597 0.660 0.667 0.750
MIQE 0.819 0.774 0.729 0.910 0.736 0.792
PSNR 0.597 0.670 0.604 0.910 0.681 0.750

MSSIM 0.514 0.531 0.611 0.354 0.694 0.750
IWSSIM 0.639 0.684 0.625 0.757 0.681 0.736
MIQEC 0.917 0.760 0.736 0.924 0.736 0.728

CWSSIM 0.730 0.670 0.640 0.765 0.684 0.742
BIQI 0.667 0.573 0.59 0.563 0.653 0.681

BRISQUE 0.625 0.510 0.576 0.507 0.542 0.514

filters. For low resolution test images, a QEup approach results in smaller QE values com-

pared to QEdown. Ranking classification results in Tables 2.4 and 2.5 show that, MIQE and

MIQEC have the highest ranking scores. Moreover, the fraction of correct ranking scores

obtained using the wavelet filter are higher than that of the bilinear filter.

The ranking classification only considers whether one image is preferred to the other, either

objectively or subjectively, but does not consider the magnitude of the preference. Therefore,

in our second comparison we compute the distance similarity between the subjective results

and the QE scores. Before describing how we compute distance similarity, we first describe

how we obtain distances both subjectively and objectively.

Assigning a continuous quality value to each image is a well-defined problem in statistics
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Table 2.5: Fraction of Correct Rankings for QEup When Upsampling Filter is Bilinear Filter

Different Distortion Different Filter
Blur JP2K JPEG Noise JP2K JP2K-RC

SSIM 0.486 0.642 0.597 0.674 0.653 0.764
VIF 0.486 0.642 0.597 0.660 0.653 0.764

VSNR 0.486 0.642 0.597 0.660 0.653 0.764
MIQE 0.819 0.774 0.729 0.910 0.736 0.792
PSNR 0.486 0.642 0.597 0.729 0.653 0.764

MSSIM 0.486 0.642 0.597 0.799 0.653 0.764
IWSSIM 0.486 0.642 0.597 0.729 0.653 0.764
MIQEC 0.917 0.760 0.736 0.924 0.736 0.728

CWSSIM 0.556 0.670 0.729 0.729 0.653 0.764
BIQI 0.667 0.573 0.59 0.563 0.653 0.681

BRISQUE 0.625 0.510 0.576 0.507 0.542 0.514

literature [57],[58]. The relationship between the actual qualities of images Ii and Ij, and

the viewers’ preference is expressed as follows:

P (Y = πij) = Qi −Qj + Z (2.15)

where Qi and Qj denote the qualities of Ii and Ij, respectively, Y is a random variable which

represents the tendency to choose Ii over Ij, and πij denotes the ratio of preferring Ii to

all comparisons between Ii and Ij, and Z is a random variable that models the deviation

from the actual quality difference. The distribution of Z changes according to the model

used. Thurstone-Mosteller (TM ) [57] assumes that Z has a Gaussian distribution, whereas

Bradley-Terry (BT ) [58] models Z with a logistic distribution. Handley [59] shows that the

BT model provides two important advantages. First, BT offers a mathematically developed

model where quantities like confidence can be calculated analytically. Second, unlike TM,

we can use BT when we do not have all the paired comparison results [59]. Because of these

reasons, we choose BT to convert paired comparisons to continuous values.

We use Eq. (2.15) to find the relationship between the preference probability and quality as
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follows:

πmn =

∫ ∞
Qn−Qm

e−
(x−µ)
s

s(1 + e−
(x−µ)
s )2

dx =
e
µ
s

e
µ
s + ( πn

πm
)
1
s

(2.16)

In Eq. (2.16), Qm − Qn = log(πm
πn

), where πk’s are positive real numbers and
∑N

k=1 πk = 1.

µ denotes the mean of the logistic distribution and s is a parameter proportional to the

standard deviation of the distribution. If µ = 0 and s = 1, we can write πmn = πm
πm+πn

. We

find πm values using maximum likelihood. BT assumes that all comparisons are independent.

Hence, we can calculate the likelihood function for all comparisons by.

L(πmn) =
∏
m<n

(
nmn
αmn

)
παmnmn (1− πmn)nmn−αmn (2.17)

In this expression, nmn denotes the total number of viewers and αmn represents the number

of viewers that prefer Im. To maximize the likelihood, we take the derivative of Eq. (2.17)

with respect to πm and equate it to zero:

∑
m6=n

nmn
πm + πn

−
∑
m<n

αmn
πm

= 0 (2.18)

The BT model provides relative scores only for a specific image and distortion in our paired

comparisons. Therefore, we cannot analyze these scores across images or across distortions.

Further, only their differences are well-defined, not their actual values. Therefore, we com-

pute the differences of the BT scores, (∆BT ), for all images with the same reference image

and same distortion, regardless of spatial resolution.

Next, to determine the distances between these images objectively, we recognize that the

QEs have different ranges and often have a nonlinear relationship with subjective quality.

Therefore, it is important to normalize the QE scores. In this text, we choose to normalize

the QE scores using the observed probability distribution of QE scores across the set of 504
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Figure 2.8: Illustration of distance dissimilarity
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images we considered. Specifically, we use the observed cumulative distribution function of

the QE scores to map the QE scores into values between 0 and 1. During this mapping,

we decrease the Kullback-Liebler Divergence [50] among different QEs. We then define an

objective distance between two images by the difference, ∆QE, between their normalized

QE scores.

Now, we have sets of N images for each reference image and distortion combination, and we

have meaningful BT scores defined within each set. We compute the distances between each

pair of images, both objectively and subjectively to create a collection of T =
(
N
2

)
pairs.

Thus, there are
(
T
2

)
possible combinations of two pairs, which may or may not contain one

image in common. To assess the accuracy of the QEs, we compute the similarity of the

distances of these combinations.

While there are many ways to compute the similarity among distances, in this text we focus

on the following strategy, which is illustrated by the example in Figure 2.8. We have three

test images, TI1, TI2 and TI3, each created from the same reference image using the same

distortion. The BT scores of the images are BT 1, BT 2 and BT 3, and we assume that as

the index of the image increases the quality improves. Therefore, ∆BT 1 < ∆BT 2 < ∆BT 3,

and ∆BT 1 −∆BT 2 < 0 and ∆BT 2 −∆BT 3 < 0.

Next, consider two QEs, QEA and QEB, for estimating quality, where the QEA and QEB

values for image TIi are QEi
A, and QEi

B, respectively. As illustrated in Figure 2.8, the

distribution of QEB scores are more similar to the distribution of BT scores than the QEA

scores are. This is because |∆QE1
B| < |∆QE2

B| and |∆BT 1| < |∆BT 2|, while |∆QE1
A| >

|∆QE2
A|. A correct ordering of distances only happens when all of the following conditions

hold: sign(∆BT1) = sign(∆QE1), sign(∆BT2) = sign(∆QE2), and sign(∆BT1−∆BT2) =

sign(∆QE1 −∆QE2).

We employ this approach to compute the distance similarities for each distortion type. We
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Table 2.6: Fraction of Correct Distance Similarity For Different Distortions

Different Distortion Different Filter
Blur JP2K JPEG Noise JP2K JP2K-RC

SSIM 0.117 0.369 0.350 0.206 0.344 0.320
VIF 0.264 0.334 0.423 0.161 0.294 0.354

VSNR 0.161 0.366 0.463 0.194 0.392 0.417
MIQE 0.539 0.465 0.539 0.533 0.471 0.534
PSNR 0.167 0.426 0.460 0.161 0.406 0.421

MSSIM 0.147 0.334 0.389 0.192 0.287 0.330
IWSSIM 0.272 0.358 0.400 0.208 0.314 0.343
MIQEC 0.519 0.457 0.469 0.506 0.474 0.342

CWSSIM 0.406 0.328 0.411 0.228 0.324 0.192
BIQI 0.025 0.048 0.019 0.008 0.029 0.103

BRISQUE 0.011 0.052 0.022 0.031 0.058 0.042

also calculate the distance similarities for JP2K when we use different decimation filters

during QE computation. We obtain the fraction of correct distance similarities by dividing

the total number of correct distance similarities by the total number of comparisons. Table

2.6 presents these fractions for each distortion type and for different decimation filters when

the distortion is JP2K. According to the table, MIQE has the highest distance similarity

fraction. When the decimation filters are different, the distance similarity values of JP2K-

RC is relatively higher than JP2K for all QEs except for SSIM. Hence, it can be inferred

that the filter type affects the correct distance similarity fraction.

In addition to these metrics, we explore the relationship between QE score differences and

BT score differences graphically. We also compute Spearman Rank Correlation Coefficients

(SRCCs) for each QE. Figures 2.9-2.12 illustrate the relationship between four QE scores

and BT scores for all distortions. We have picked these QEs because they have the highest

SRCC values among all the QEs. The captions of the figures show the SRCC values of the

utilized QEs.

Finally, MIQE and MIQEC have been designed to compare images with different spatial

resolutions. However, it also has a reasonable performance if the images have the same

resolution. We employ LIVE [60], TID [61] and CSIQ [42] databases to evaluate the perfor-

mance of MIQE and MIQEC when the test and reference images have the same resolution.
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Figure 2.9: Illustration of relationship between QE scores’ difference and BT scores’ dif-
ference when the distortion is Blur. The QEs and their corresponding Spearman Rank
Correlation Coefficients are : a) SSIM (0.721), b) MSSIM (0.746), c) IWSSIM (0.724) and
d) MIQEC (0.782)

Figure 2.10: Illustration of relationship between QE scores’ difference and BT scores’ dif-
ference when the distortion is JP2K. The QEs and their corresponding Spearman Rank
Correlation Coefficients are : a) VSNR (0.399), b) MIQE (0.503), c) PSNR (0.432) and d)
MIQEC (0.446)

Figure 2.11: Illustration of relationship between QE scores’ difference and BT scores’ dif-
ference when the distortion is JPEG. The QEs and their corresponding Spearman Rank
Correlation Coefficients are : a) VSNR (0.464), b) MIQE (0.637), c) PSNR (0.411) and d)
MIQEC (0.498)
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Figure 2.12: Illustration of relationship between QE scores’ difference and BT scores’ dif-
ference when the distortion is Noise. The QEs and their corresponding Spearman Rank
Correlation Coefficients are : a) VSNR (0.482), b) MIQE (0.651), c) MIQEC (0.647) and d)
BIQI (0.394)

Table 2.7: Correlation Coefficients

LIVE TID CSIQ Average
PCC SRCC KRCC PCC SRCC KRCC PCC SRCC KRCC PCC SRCC KRCC

SSIM 0.936 0.939 0.794 0.740 0.775 0.577 0.859 0.876 0.691 0.845 0.863 0.687
VIF 0.972 0.972 0.857 0.777 0.749 0.586 0.925 0.919 0.754 0.891 0.880 0.732

VSNR 0.952 0.939 0.785 0.232 0.705 0.535 0.801 0.811 0.625 0.662 0.818 0.648
MIQE 0.962 0.964 0.838 0.840 0.807 0.623 0.916 0.911 0.738 0.906 0.894 0.733
PSNR 0.847 0.893 0.727 0.279 0.553 0.403 0.800 0.806 0.608 0.642 0.751 0.579

MSSIM 0.947 0.951 0.818 0.790 0.854 0.657 0.898 0.913 0.739 0.878 0.906 0.738
IWSSIM 0.952 0.960 0.838 0.809 0.856 0.664 0.903 0.921 0.753 0.888 0.913 0.751
MIQEC 0.960 0.961 0.828 0.829 0.788 0.608 0.926 0.930 0.765 0.905 0.893 0.734

CWSSIM 0.862 0.894 0.721 0.334 0.528 0.378 0.640 0.674 0.491 0.612 0.699 0.53
BIQI 0.832 0.897 0.720 0.414 0.351 0.244 0.695 0.619 0.442 0.647 0.622 0.469

BRISQUE 0.928 0.941 0.789 0.408 0.322 0.228 0.739 0.556 0.423 0.692 0.606 0.48

We calculate Pearson Correlation Coefficents (PCC), Spearman Rank Correlation Coeffi-

cients (SRCC) and Kendall Rank Correlation Coefficients (KRCC) using the corresponding

regression approach for each database. The results are provided in Table 2.7. Highlighted

values show the highest correlation coefficients. The QE with the highest correlation values

changes for different databases and correlation types. However, the correlation coefficients

of MIQE and MIQEC are very close to the highlighted values in each case. This is the first

subjective test for different resolutions in which these QEs have been compared.
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Chapter 3

Quality Estimation for Videos with

Different Spatial Resolutions

In this chapter, we propose a video quality estimator for an input video that has different

spatial resolution from its associated reference video. Because it estimates quality without

resampling the reference or the input videos, it overcomes the drawbacks of QEdown and

QEup. It extends MIQE [62] to consider video by incorporating the effect of motion on the

sensitivity of the human vision system (HVS). Further, the proposed quality estimator does

not use regression while computing the quality, so it is independent of any subjective dataset.

In Section 3.1, we describe our proposed quality estimator, the Multiscale Video Quality

Estimator (MVQE). In Section 3.2, we present our subjective test environment, which we

created to determine the effectiveness of the proposed QE and compare its performance with

other video QEs. In this subjective test, the reference and test videos are displayed at the

native resolutions. In Section 3.3, we analyze the results of the subjective test, as well as

evaluate the performance of the proposed approach using the Scalable Video Database [6].
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3.1 Multiscale Video Quality Estimator

The design of our proposed video quality estimator is based on MIQE [62] to handle the

limitations of QEdown and QEup. However, it also takes into account the temporal character-

istics of the video on the perceived quality. Hence, we develop the Multiscale Video Quality

Estimator (MVQE) by incorporating the effect of motion information into the MIQE. We

describe how we integrate motion into MIQE in detail in the following three subsections.

First, we describe how the contrast sensitivity of the HVS depends on the spatial and tem-

poral frequencies. Second, we explain the motion estimation methods. Third, we use the

spatio-temporal effects of the HVS to construct our video QE.

3.1.1 The Spatio-Temporal Effect of the HVS on Video Quality

To design a video QE that takes into account the effect of motion and the viewing distance,

we should employ the spatio-temporal contrast sensitivity function (STCSF) [43], which

describes the sensitivity of the HVS at different spatial and temporal frequencies to changes

in visual content. The STCSF has been incorporated into the video QEs described in [63]

and [64] which are developed using HVS characteristics.

To incorporate the STCSF, we need to use appropriate frequency units. We use the angular

frequency to represent spatial frequency components of two video frames that are viewed

with different resolutions and/or different distances. The angular frequency is computed as

follows [40]:

f(l) =
π ∗ d ∗ n

180 ∗ h ∗ 2l+1
(3.1)

In this expression, f(l) denotes the angular (spatial) frequency in cycles per degree (cyc/deg);

d, h, and n represent the distance of the viewer, height of the displayed frame, and the number
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Figure 3.1: Contrast Sensitivity Function

of pixels in the vertical direction of the displayed frame, respectively. Lastly, l indicates the

level of a subband decomposition. If there is no subband decomposition, we set l = 1.

Throughout the text, we denote matrices using bold characters and denote constants and

vectors using italics. The temporal frequency is obtained by multiplying the magnitude of

the velocity with the spatial frequency [65]. Note that in [62], we had only considered the

spatial frequency since there is no need to consider the temporal frequency for images.

The contrast sensitivity of the HVS depends heavily on the spatial and temporal character-

istics of the visual content. Kelly [43] measured and modeled the STCSF under stabilized

conditions. Daly enhanced this model using unconstrained eye movements as parameters in

the model [22]. The contrast sensitivity function of the HVS is illustrated in Figure 3.1. The

STCSF has more weight at lower spatial and temporal frequencies, but the spatial resolution

which has the maximum sensitivity changes according to the temporal frequency. The sensi-

tivity decreases gradually as either spatial or temporal frequencies increase. As observed in

[4] and [5], these characteristics explain why distortions are more tolerable as the size of the
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visual content decreases and why interpolation of the distorted content makes the artifacts

more visible. We use Daly’s model [22] to calculate the frequency response of the STCSF.

It is computed as follows:

STCSF (f, vR) = kc0c2vR(c12πf)2exp

(
−c14πf
fmax

)
k = s1 + s2

∣∣∣log(
c2vR

3
)
∣∣∣3

fmax =
f1

c2vR + 2

(3.2)

where the values s1 = 6, s2 = 7.3, f1 = 45.9, c0 = 1.14, c1 = 0.67 and c2 = 1.92 are obtained

from [22]. In this equation, f is the spatial frequency in cyc/deg and it is computed using

Eq. (3.1). The terms k and fmax are utilized to adjust the amplitude of the sensitivity

function and the location of the function’s peak spatial frequency. The retinal velocity is

denoted using vR and measured in deg/sec. We compute vR using the following equation

[22]:

vR = vT − vE (3.3)

In this expression, vT is the velocity of the target object in deg/sec. It depends on the frame

rate of the video and spatial frequency and is computed as follows [22]:

vT (f) =
m.FR

f
(3.4)

where, m is the estimated motion of the target object in cyc/frame, FR is the frame rate

of the video and f is the spatial frequency. The estimated motion of the target object is

computed using one of the estimation methods described in Section 3.1.2. Additionally, vE

denotes the velocity of the eye and it is calculated using the following expression [22]:

vE = min[(gsp.vT ) + vMIN , vMAX ] (3.5)
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where, gsp = 0.82, vMIN = 0.15 deg/sec, and vMAX = 80 deg/sec. Using Eqs. (3.2)-(3.5),

we can find the sensitivity of each spatial frequency and velocity pair. While computing the

quality of videos that have different resolutions, we should also take into account the effect

of resizing on the computation of the spatial frequency of the visual content. As seen in Eq.

(3.1), increasing the viewing distance or decimating by two doubles the spatial frequency of

the visual content. Since temporal frequency depends on the motion and spatial frequency,

resizing or distance change also indirectly affects the temporal frequency. Algorithms like

Video Quality Metric (VQM) [20] and Motion-based Video Integrity Evaluation (MOVIE)

[21] take into account temporal characteristics. However, they do not consider the change in

frequency-domain representation due to altering the spatial frequency. Hence, they do not

fully incorporate spatio-temporal characteristics of the HVS. In addition to using the correct

spatial resolution, accurate motion prediction is also necessary to find the sensitivity with

high precision.

3.1.2 Motion Estimation

The motion prediction is realized by computing the displacement of objects in space. Here,

we only consider the apparent motion and ignore occlusion. Further, the frame rate of the

videos that we consider is high enough to prevent flickering. The motion is local in space

and frequency. Motion estimation (ME) can be performed between two frames or a group of

frames. Different approaches have been proposed including Block Matching, Gradient-Based,

and Spatio-temporal Energy-Based methods.

Among these motion estimation approaches, we need to use a method which takes into

account the spatial frequency while estimating the motion. Without this, we cannot com-

pute the STCSF value accurately because the STCSF employs retinal velocity that changes

according to the spatial frequency as described in Section 3.1.1. We have selected two ME
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approaches to satisfy this requirement: Hierarchical Block-Based ME using Wavelet (HBME)

[66] and Watson-Ahumada Optical Flow-Based Motion Estimation (WAME) [65].

Hierarchical Block-Based ME using Wavelets (HBME)

This approach [66] uses the correlation between the blocks in the consecutive two frames of

the video. The first one is called the anchor frame and the second one is called the target

frame. These two frames are decomposed into subbands using wavelet-based transforms.

The motion is estimated for each subband using block-based motion estimation. HBME also

assumes that motion is a correlated among subbands. Hence, the motion information which

is found in the lower level is used as a starting point in the next level. The estimation starts

with the lowest subband level.

First, the subband of the target frame and anchor frame are divided into non-overlapping

4× 4 blocks. Second, a destination block is picked from the target frame’s subband. Third,

a search range is defined in the anchor frame’s subband for the corresponding block. The

center of this range collocates with the center of the destination block. Fourth, all the

candidate blocks within the search are compared with the destination block. The comparison

is performed using the mean absolute difference (l1 norm). The index of the block which

has the minimum difference determines the motion vector for the chosen destination block.

These operations are repeated until all the motion vectors are computed. After motion

vectors of all blocks are found in the lowest subband level, they are scaled and used as

starting locations for the motion estimation in the upper layers.

Watson-Ahumada Optical Flow-Based Motion Estimation (WAME)

This model [65] is based on the optical flow motion estimation. The motion is computed for

each point individually and the computation is performed in the frequency domain. The ME
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Figure 3.2: Scalar Motion Estimation Block Diagram

algorithm uses the motion trajectory of a particular point and denotes it c(x, y, t). Here, x

and y represent the 2D position of the point and t denotes the time index when the point is

at location (x, y). Next, the algorithm gets the Fourier transform of this motion trajectory

and denotes it C(u, v, w), where u, v and w stand for the spatial frequency components and

temporal frequency, respectively. Using these notations, the Fourier transform of the motion

is expressed as follows [65]:

F (c(x+ rxt, x+ ryt, t)) = C(u, v, w + rxu+ ryv) (3.6)

where F (.) denotes the Fourier transform. The terms rx and ry are the motion components

in the x and y directions, respectively. According to Eq. (3.6), if the point does not move,

the temporal frequency component of the transform will be 0. Otherwise, the amount and

the direction of the motion information can be extracted from the shift in the temporal

frequency. WAME consists of two stages. In the first stage, Scalar Motion Computation, the

motion information of a point for different directions and subbands are computed. In the

second stage, Vector Motion Computation, nonlinear operations are performed to compute

the amplitude and the direction of the motion vector for a point at a specific frequency.
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These two stages are explained in detail as follows.

In Scalar Motion Computation stage, the motion information of a point is found for all

frequency and orientation pairs. During implementation, we have used 10 orientations and

4 frequency levels. Figure 3.2 illustrates the block diagram of Scalar Motion Computation.

We perform scalar motion computation by using the following steps:

1. The video is divided into groups of 8 non-overlapping consecutive frames. We process

these video groups in several scales. We denote the video group of the zth scale with

vz(x, y, t) where x, y and t stand for the spatial components and temporal component,

respectively. The index of the first scale is 0.

2. The 3D Fourier transform (3DFT) of each group is computed. The Fourier transform

of the vz(x, y, t) is denoted with Vz(u, v, w) where u and v stand for spatial frequencies;

w denotes the temporal resolution.

3. A band pass filter group is created which consists of 10 bandpass filters for each scale.

If ~s denotes the center spatial frequency of the first band and the orientation index is

k (0-9), then ~s can be represented with (|~s| ∗cos(0.2πk), |~s| ∗sin(0.2πk)). The filter for

the zth scale is represented with Mz(~s, ~f, w). The frequency response of the Mz(~s, ~f, w)

is calculated as follows [65]:

Mz(~s, ~f, w) = {exp[−(πλ|~s− ~f |)2]+

exp[−(πλ|~s+ ~f |)2]}[1− sgn(~s. ~f)sgn(w)]

(3.7)

where λ = 0.795/|~s|

4. Vz is filtered using Mz(~s, ~f, w) and the result is transformed using 3D Inverse Fourier

Transform (3DIFT) to obtain the motion at the corresponding frequency and direction.

5. Vz+1 is obtained by shrinking Vz. The shrinking operation is implemented by filtering
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out the frequencies higher than the half of the maximum frequency.

6. Mz+1(~s, ~f, w) is computed by downsampling the filter Mz(~s, ~f, w).

7. Increment the scale. If the scale is smaller than 4, steps between 1-6 are repeated;

otherwise, the procedure is complete.

Vector Motion Computation collects the motion vectors obtained in the previous stage and

finds the motion information of a point for a specific frequency. The magnitude of motion

vectors at different directions are compared. The motion vector that has the maximum

amplitude is selected. The index and the amplitude of this motion vector determine the

direction and the magnitude of the estimated motion, respectively. More details about this

approach can be found in [65].

3.1.3 Quality Calculation

In this section, we describe how we take into account the motion information to estimate the

MVQE. We construct the QE by appropriately weighting the mutual information of each

subband block. The calculation of the mutual information for each subband block is similar

for image and video. Although the details are explained in [62], for the sake of clarity, we

summarize this computation below.

The terms r and b represent the reference video frame and the input video frame, respectively.

First, we convert pixel values of r and b to luminance values using Eq. (2.2) and these values

are kept in r′ and b′ matrices. This operation is performed to simulate the adaptation of

the pixel values to the HVS.

After that, r′ and b′ are decomposed into their subbands using 9/7 bi-orthogonal wavelet

transformation. There are two reasons for using subband decomposition. The wavelet trans-

forms of r′ and b′ are kept in R and B matrices, respectively. R and B have the same
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size and they both consist of 3×L+ 1 subbands where L denotes the total number of levels.

Since the size of b′ is smaller than r′, some of the subbands in B are missing and we represent

these subbands with 0 matrices. For instance, if the resampling rate to create the test video

is 0.5, the three subbands in the first level of B are 0 matrices. Each subband is represented

with its level and orientation indices. Specifically, if Bl,o represents a subband of the B, then

l and o stand for the level and orientation, respectively.

Next, we represent R and B in terms of distributions. We start by modelling non-overlapping

blocks of R’s subbands using Gaussian Scale Mixture (GSM)as in Eq. (2.3).

The index of the block is shown by j, and it can take values from 1 to the number of

the blocks in the subband. ~Rl,o,j is normally distributed with N(0, S2
l,o,jCu) where Sl,o,j is a

random number from a positive scalar random field and ~Ul,o,j is a Gaussian vector with mean

zero and covariance Cu. Next, blocks of Bl,o are estimated from the blocks of Rl,o using a

linear least square estimator (LLSE). We use Eqs. (2.4) and (2.5) to find the attenuation

(Al,o,j) and additive noise ( ~Wl,o,j) parameters for each ~Rl,o,j- ~Bl,o,j block pair.

Lastly, the Mutual Information is calculated for the subband blocks of R and B. We model

E and F as being created by passing R and B through the HVS, as in [41]. The HVS is

modeled as an Additive White Gaussian Noise. First, the mutual information [50] between

non-overlapping 4x4 blocks of El,o and Rl,o (I(El,o,j; Rl,o,j)) is computed as follows:

I(El,o,j; Rl,o,j|sl,o,j) =
1

2
log2

(
s2l,o,jCu + σ2

nI

σ2
nI

)
(3.8)

where sl,o,j is a realization of Sl,o,j. If sl,o,j is known, ~Rl,o,j has a Gaussian distribution.
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Second, the mutual information between the blocks of Fl,o and Rl,o is found.

I(Fl,o,j; Rl,o,j|sl,o,j) =
1

2
log2

(
s2l,o,jA

2
l,o,jCu + σ2

ql,o,j
I

σ2
ql,o,j

I

)
(3.9)

where, σ2
ql,o,j

= σ2
wl,o,j

+ σ2
n. We use Eqs. (3.8) and (3.9) to find the mutual information for

each subband.

Next, we scale (I(El,o,j; Rl,o,j), I(Fl,o,j; Rl,o,j)) according to the size and the importance of

the subband block. To calculate the magnitude of scaling coefficients, we take into account

two factors: the size of each subband, and the visual importance of each subband block

determined by the characteristics of the HVS. In MIQE, the weighting coefficients only

depend on the first factor. Our video QE here incorporates the impact of motion in the

STCSF as described in Eq. (3.2). Since the motion may vary according to the position of

the subband, the weight of each subband block is computed separately in MVQE.

First, the HVS has a different weight for each subband block. As expressed in Eq. (3.2), the

STCSF depends on the motion and the spatial frequency. Since the motion information is

local and varies with spatial frequency, the value of the contrast sensitivity can change for

each block.

Second, the effect of subband size should be compensated. As the subband level increases

by one, the size of the band decreases by four. STCSF only takes into account the influence

of the spatial and temporal frequencies on the perception of visual quality. It does not

take into account the effect of the number of samples in each frequency band. Rouse et al.

[52] show that incorporating this improves the accuracy of quality estimation. Therefore,

to compensate for the size of each level l, the mutual information of each subband block is

scaled by 22l. Hence, the scaling coefficient of each subband block is computed using the
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following expression:

Gl,o,j = STCSF (fl,o, vR,l,o,j) ∗ 22l (3.10)

where, fl,o is the spatial frequency for subband (l, o) and vR,l,o,j is the retinal velocity for

subband block (l, o, j).

Finally, the similarity of each subband block is scaled with the corresponding weight and the

value of the estimated quality for a particular frame is found using the following formula:

FQ =

∑
l,o,j ∈ subband blocksGl,o,j ∗ IB,l,o,j∑
l,o,j ∈ subband blocksGl,o,j ∗ IR,l,o,j

(3.11)

In this expression, FQ denotes the quality of the frame, Gl,o,j is the scaling coefficient for

block (l, o, j) given in Eq. (3.10). IB,l,o,j and IR,l,o,j represent the mutual information of the

input and the reference signals for the subband block (l, o, j). FQ takes into account the

joint effect of motion and spatial resolution on the perception using STCSF. However, it

denotes the quality of a particular frame. Hence, we average FQ values for all frames in the

video to obtain the video quality as follows:

MVQE =
1

N
∗

N∑
k=1

FQk (3.12)

The final quality value is between 0 and 1, and this value increases as the quality increases.

To check the validity of the proposed algorithm, it is necessary to compare the estimated

quality values with the preference of viewers. In the following section, we describe the details

of our subjective tests to obtain viewer preferences.
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Figure 3.3: Snapshots of subjective test videos : (a) Mobile Calender (b) Soccer (c) IntoTree
(d) ParkJoy

3.2 Subjective Tests

We perform subjective tests to obtain the viewers’ mean opinion scores of videos that have

different spatial resolutions. The test results are used to ensure that the proposed algorithm

works properly. They also provide a benchmark to compare our algorithm with existing

approaches. Our subjective tests are performed by displaying a group of videos with different

compression and resolution parameters at their native resolutions to the viewers to obtain

their scores. In the following subsections, we describe how we create the test set, perform

subjective tests, and analyze results.

3.2.1 Test Set Creation

There are in total 4 reference videos with different spatial and temporal complexities. They

are chosen from a public database in [67] where the original sources are referenced. The name

of the videos are Soccer, MobileCalendar, IntoTree and ParkJoy. MobileCalendar, IntoTree

and ParkJoy have a 1280 × 720 spatial resolution; their frame rate is 50 fps. On the other

hand, the spatial resolution of Soccer is 704×576 and its frame rate is 60 fps. The snapshots

of the videos are illustrated in Figure 3.3. The videos have different spatial and temporal

characteristics. To quantify the spatial and temporal complexities of the videos, we used
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Table 3.1: SI and TI values of the test videos

MobileCalendar Soccer TreeInto ParkJoy
SI 106.165 77.641 68.196 126.477
TI 23.462 37.444 16.471 37.837

spatial information (SI) and temporal information (TI) indices as described in ITU-R 910

[68]. The SI and TI values of the videos are shown in Table 3.1.

We have created nine test videos for each reference video. Of these nine test videos, five are

high-resolution and are created by compressing a reference video. The remaining four videos

are low-resolution test videos. These videos are obtained by decimating the reference video

by a factor of 0.5 and compressing the decimated video. We compress the full-size reference

video and the decimated reference video using the H.264 AVC JM 18.1 [69] reference software.

We employ the Non-Normative Filter as a low pass filter during decimation. It is a Sine-

windowed Sinc-function and is formulated in [70]:

f(x) =


sin(π∗XD )

π∗X
D

sin
(
π
2
(1 + x

N∗D )
)
|x| < N ∗D

0 Otherwise

(3.13)

where D is the decimation parameter and N represents the number of lobes. The parameters

are D = 2.5 and N = 3 and phase offset= 0, and the implementation is performed using the

DownConvert application of JSVM codec. The corresponding filter is the default mode of

the application.

Test videos should cover a range from excellent quality to very bad quality. We utilize the

quantization parameter instead of the bitrate to select the test videos because the spatial and

temporal complexities of the test videos are dramatically different. We should also observe

the effect of the bitrate on the quality of high and low resolution test videos at different

quality regions. Therefore, QP values of the low resolution test videos are determined ac-

cording to the QP values of the high resolution test videos. We use the following notations to
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Table 3.2: QPs and Bitrates (BRs) of Test Videos

MobileCalendar Soccer IntoTree ParkJoy
Index QP HR BR LR BR QP HR BR LR BR QP HR BR LR BR QP HR BR LR BR

1 28 1166.9 295.4 28 599 175.3 28 1156 235.9 28 4836.9 901.9
2 31 724.4 202.6 31 381.6 118.2 31 664.1 144.1 32 2766.8 502.9
3 37 296.9 86.7 36 172.4 56.1 36 233.2 55.6 39 868.4 159.2
4 42 139.1 39.6 39 113.6 37.8 39 135.1 33.5 42 463.5 87.2
5 45 89.1 44 54.7 44 55.3 47 149.9

describe the relationships between the bitrate and the quantization values of high-resolution

and low-resolution test videos. HR and LR denote high-resolution and low-resolution test

videos, respectively. The index of the test video for a specific resolution is denoted by β.

Hence, QPHR
β represents the QP value of high-resolution test video at the βth index, and

BRHR
β denotes the bitrate of this video. The QP value increases (quality decreases) as β

increases. Based on this notation, we choose the bitrates of the test videos as follows. First,

we assume that QPHR
1 = 28 and QPLR

1 = 28 for all reference video types.

If β is even (β ∈ 2, 4), then BRHR
β will be found by averaging BRHR

β−1 and BRLR
β−1. QP

HR
β

and QPLR
β are equal to the QP value of the high-resolution test video which has the closest

bitrate to the BRHR
β . On the other hand, if β is odd (β ∈ 3, 5), we set BRHR

β to BRLR
β−2

and the QP value which satisfies this requirement is assigned to QPHR
β . The bitrates and

the QP values of the test videos are in Table 3.2. The unit of the bitrate is KBps. More

information about the video database can be found at [71].

To understand the joint effect of quantization and resolution clearly, we should design the

subjective tests carefully. The subjective test results should give us score estimates. To have

reliable quality estimates [72], the viewers should playback the videos anytime during the

test. This can be achieved using the Subjective Assessment Methodology for Video Quality

(SAMVIQ) [73] method. This method allows the viewer to access any video more than once.

A viewer can also update the score based on their evaluation of other videos. During these

updates, the viewer implicitly ranks videos. More details about the implementation of the

test is given in the next subsection.
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Table 3.3: Mean Opinion Scores and ANOVA F Scores

H1 L1 H2 L2 H3 L3 H4 L4 H5 F p
MobileCalendar 88.9 74.2 83.5 70.4 63.7 48.2 43.0 30.8 31.7 62.53 4.55*10−52

Soccer 90.5 73.8 86.7 64.2 70.7 53.0 58.2 42.5 36.9 37.87 3.47*10−37

IntoTree 88.8 71.7 82.4 62.0 60.8 42.7 42.7 28.8 20.8 58.13 9.78*10−50

ParkJoy 89.1 72.8 85.0 66.2 65.2 43.0 48.6 27.6 24.6 56.33 9.60*10−49

Note that using more conventional approaches can cause several drawbacks. Single Stimulus

(SS) and Double Stimulus (DS) [74] based methods are effective when the reference video

and the test videos have equal spatial resolutions. However, characterizing the qualities of

videos that have different spatial resolutions is more challenging. First, the videos have

multiple distortions and viewers may have difficulties scoring videos by watching them once.

Second, video scores may depend on the order in which they are presented, i.e. the quality of

the videos which are at the beginning of the test could be underestimated or overestimated

because the remaining videos have not been viewed yet. Third, videos seen earlier cannot be

reviewed later in the test; so it is not possible to exploit a viewed video while determining

the quality of the remaining videos. Fourth, as explained in [6], when the quality of the

test videos are similar or hard to score, comparison based approaches are more reliable

than absolute category rating approaches like DS or SS. On the other hand, the paired

comparison approach can provide a reliable ranking among different videos. Nevertheless,

the paired comparison method can also be improved by using the actual opinion scores while

ranking the test videos.

3.2.2 Subjective Test Implementation

The settings for our subjective test environment were based on the requirements of ITU-R

910 [68]. The tests were performed in a low-illuminated room. The color of the wall behind

the monitor was gray. We padded the sequences with mid-gray to cover the full screen. The

color temperature of the monitor was 6500 K◦. The test contained a total of 40 videos, and

25 people performed the tests. Each test session took approximately 40 minutes. A training
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session is performed before the testing session to familiarize the viewers with the test. The

viewers were either graduate or undergraduate students. They had clear vision and they were

non-experts. The test session consisted of 4 groups. In each group, a reference video and

its corresponding 9 test videos were displayed to the viewers. There were 4 low-resolution

and 5 high-resolution test videos for each group. Each group starts with the corresponding

reference video and by pressing 0 the reference video could be displayed again as described

in [73]. However, the indices of the test videos changed randomly for each test session and

each test group to prevent bias. The order of test groups was also random.

We asked the viewers to give a score for each test video between 0 and 100. The score of

the reference video was 100. The SAMVIQ [73] methodology instructs the viewers that:

Bad (0-20), Poor (21-40), Fair (41-60), Good (61-80), Excellent (81-100). Each video was 10

seconds long. Viewers were encouraged to watch the whole video a few times before finalizing

their decisions. The distance between the viewers and the screen was 6 times the height of

the 640 × 360 frame. Tests were performed using Dell XPS 8100 with a 12 GB RAM and

NVidia Geforce GT640 graphics card. The display was a Dell 2212HM with a resolution

of 1920 × 1080. Hence, the values of n, h and d in Eq. (3.1) are 360 pixels, 89.1 mm and

approximately 6×h, respectively, for the low resolution test video and they are 720 pixels,

178.2 mm and approximately 3×h, respectively, for the high resolution test video.

3.3 Performance Evaluation

In this section, we compare the performance of our proposed video QE to 13 approaches

using the results of the subjective test. We begin by evaluating the statistical characteristics

of the subjective test. Then, we examine the similarity between subjective test scores and

QE scores using QEdown and QEup setups. Next, we explore similarity scores of QEs for two

specific quality regions. As a final step, we evaluate the performance of MVQE using the
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Scalable Video Database [6].

We have used the method described in Rec. ITU-R BT.500-11 [74] to perform consistency

check on the subjective test scores. According to the results of this check, we do not have any

outlier in our subjective test. We have also employed Analysis of Variance (ANOVA) [75] to

assess whether the distribution of subjective scores for the test videos in the same video group

is different. We have used anova1 function of Matlab to compute the F scores and p values

of ANOVA analysis. According to ANOVA, Fcrit value is 1.98 for 95% confidence interval.

Table 3.3 shows the MOSs, F scores and p values for subjective test results. According to

Table 3.3, all F scores are greater than Fcrit (p <0.05), therefore the subjective scores satisfy

the 95% confidence interval. Next, we calculate the similarity between MOSs and QEs

using the following correlation metrics: Pearson, Spearman Rank Correlation Coefficient

(SRCC), Kendall Rank Correlation Coefficient (KRCC), Root Mean Square Error (RMSE)

and Outlier Ratio (OR). These metrics [76] measure the ranking similarity, accuracy, linearity

and consistency of QEs. We also compute the Fraction of Correct Ranking (FCR) and

Fraction of Correct Similarity (FCS) [62] metrics. Pearson, SRCC, KRCC, RMSE and OR

consider the relationship between all test video scores, but FCR and FCS only examine

the relationship between HR and LR test videos. In addition to measure these metrics, we

check whether the QEs are statistically different for a specific correlation metric. To test the

statistical difference of two QEs’ SRCC scores, we use the following formula [77]:

δ(η − 3) =
(ρ13 − ρ23) ∗

√
(1 + ρ12) ∗ (η − 1)√

2 ∗ κ ∗ η−1
η−3 + (ρ13+ρ23)2

4
∗ (1− ρ12)3

(3.14)

where δ and η denote the statistical difference and number of test videos, respectively. SRCC

scores of the QEs are denoted with ρ13 and ρ23, respectively. We also compute the spearman

correlation coefficient between the QEs and denote it with ρ12. Lastly, κ is computed as
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follows:

κ = 1− ρ213 − ρ223 − ρ212 + 2 ∗ ρ13 ∗ ρ23 ∗ ρ12 (3.15)

If η is greater than or equal to 30, δ has to be greater than 1.96 to have statistically different

metrics [77]. If η is smaller than 30, we use the t-distribution table to find the threshold

level and check whether δ is greater than this value. While analyzing the results, we check

whether the QE metric with the maximum SRCC score is statistically different from other

QEs. We indicate statistically indistinguishable QEs’ SRCC scores with “ * ” in the tables.

We use both QEdown and QEup setups to compute the QE values for the full-reference QEs

that are designed for visual contents with same spatial resolutions. During QEdown, we

use the Non-Normative filter as the decimation filter, while we used the Lanczos 3 filtering

after upsampling in QEup. We perform the filtering via DownConvert application in JSVM.

Compared QE methods that have to employ QEdown or QEup are PSNR, VQM [20], MOVIE

[21], MIQE [62], SSIM [18], MSSIM [19]. In addition to these FR QEs, we use scalable

QEs [26], [27], [28] in our comparisons. We denote these estimators with SQM1, SQM2 and

SQM3, respectively. Note that, SQM1, SQM2 and SQM3 are developed using regression

parameters and we use the parameters given in the corresponding papers. In addition to

that, we resize the videos to compute SQM2 and SQM3 whenever it is required. We also

measure the performance of three NR QEs: NR-BLUR [14], NR-GBIM [15] and NR-BIQI

[16]. NR-BLUR and NR-GBIM compute the quality of the video frame using the amount of

blur and blocking, respectively. On the other hand, NR-BIQI is a two-step framework and

computes the quality using natural scene statistics. In addition to these metrics, we also

test the performance of MVQE without using G, STCSF or 22l in Eq.(3.10) to understand

the influence of scaling coefficients. We denote these metrics with MVQE-noG, MVQE-noS

and MVQE-noL, respectively. We use logistic regression as described in [78] to remove the

nonlinearity of QE scores. The logistic regression function is as follows:
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Table 3.4: Metric Scores of QEs

Pearson SRCC KRCC RMSE OR FCR FCS
PSNR-QEdown 0.851 0.836 0.648 10.937 0.444 0.788 0.559
VQM-QEdown 0.937 0.927 0.756 7.293 0.278 0.850 0.677

MOVIE-QEdown 0.930 0.938 0.803 7.676 0.306 0.875 0.706
SSIM-QEdown 0.856 0.840 0.663 10.752 0.500 0.763 0.530

MSSIM-QEdown 0.833 0.804 0.619 11.515 0.667 0.700 0.449
PSNR-QEup 0.778 0.709 0.546 13.101 0.444 0.763 0.510
VQM-QEup 0.974 0.968* 0.844 4.693 0.056 0.925 0.788

MOVIE-QEup 0.912 0.907 0.749 8.566 0.389 0.788 0.572
SSIM-QEup 0.851 0.823 0.638 10.951 0.417 0.775 0.545

MSSIM-QEup 0.922 0.914 0.765 8.074 0.194 0.862 0.667
MIQE 0.938 0.943 0.825 7.213 0.167 0.938 0.815

MVQE-HB 0.973 0.973* 0.883 4.782 0.083 0.975 0.880
MVQE-WA 0.976 0.977 0.879 4.583 0.056 0.963 0.860
MVQE-noG 0.742 0.739 0.543 14.100 0.611 0.675 0.370
MVQE-noS 0.868 0.864 0.682 10.327 0.444 0.825 0.627
MVQE-noL 0.925 0.928 0.781 7.901 0.278 0.888 0.727

SQM1 0.908 0.925 0.769 8.717 0.333 0.900 0.748
SQM2 0.869 0.860 0.679 10.318 0.444 0.800 0.575
SQM3 0.237 0.494 0.356 20.239 0.750 0.600 0.279

NR-BIQI 0.524 0.519 0.387 17.740 0.639 0.725 0.481
NR-BLUR 0.612 0.486 0.381 16.471 0.583 0.663 0.423
NR-GBIM 0.857 0.860 0.670 10.736 0.417 0.850 0.665

LR(Q) =
b1 − b2

1 + e
−(Q−b3)
|b4|

+ b2 (3.16)

where Q denotes the estimated quality score and b1, b2, b3 and b4 are the parameters of

the logistic regression function. Table 3.4 shows the correlation scores between QEs and

MOSs for all videos. The columns of the table represent the metrics and the rows of Table

3.4 show different QE approaches. We add QEdown and QEup suffixes to the QEs to de-

note which resizing approach is used during QE computation. WA and HB suffixes stand

for Watson-Ahumada optical flow based and Hierarchical Block-based motion estimation

models, respectively. According to the table, SQM3 has the lowest scores. MVQE-HB and

MVQE-WA algorithms perform better than the other QEs. MIQE’s correlation scores are

lower than the proposed approaches. Hence, integrating motion information has improved

the QE estimation. MVQE-WA also outperforms MVQE-noG and MVQE-noS. MVQE-noG

performs even worse than PSNR. Therefore, we can infer that employing scaling coefficients
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Figure 3.4: Illustration of relationship between MOS scores and QE Scores for the following
quality models : (a) SSIM-QEdown, (b) MOVIE-QEdown, (c) SSIM-QEup, (d) MOVIE-QEup,
(e) MVQE-WA

provides a noticeable improvement although this improvement is not as big as the contri-

bution of mutual information scores. We have also observed that the correlation scores of

MVQE-noL are higher than the correlation scores of MVQE-noS. Hence, the improvement

due to STCSF is more than the contribution of Subband Size Compensator (22l). VQM-

QEup has slightly lower scores than the proposed approaches for Pearson and SRCC metrics

and OR scores of MVQE-WA and VQM are the same. The difference increases when we

look at the KRCC and RMSE scores. FCR and FCS scores of the proposed approaches

are also higher than others. Both NR metrics and SQMs have lower correlation scores than

the proposed approaches. MVQE-WA is statistically different from all the metrics except

VQM-QEup. We also illustrate the relationship between MOS and several QEs in Figure

3.4, for SSIM-QEdown, MOVIE-QEdown, SSIM-QEup, MOVIE-QEup and MVQE-WA.

To obtain more insight about the robustness of the QE scores, we should also examine the

correlation metrics in different quality regions. As explained in Section 2.1, both QEdown

and QEup have several limitations. However, the effects of these limitations might not be

apparent in certain conditions and may become more problematic when these conditions

change. To explore the efficiency and the consistency of each approach, we divide the test

videos into 2 regions. Test videos with a MOS greater than 50 are collected into the High-

Quality Region. The remaining videos are put into the Low-Quality Region.

In Table 3.5, we demonstrate the results of similarity scores for the videos that are in the
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Table 3.5: Metric Scores for Low Quality Region Videos

Pearson SRCC KRCC RMSE OR FCR FCS
PSNR-QEdown 0.663 0.506 0.383 7.744 0.625 0.688 0.363
VQM-QEdown 0.860 0.776 0.583 5.272 0.500 0.750 0.475

MOVIE-QEdown 0.895 0.847* 0.650 4.612 0.313 0.750 0.475
SSIM-QEdown 0.731 0.709 0.583 7.058 0.500 0.688 0.388

MSSIM-QEdown 0.679 0.632 0.483 7.590 0.563 0.625 0.325
PSNR-QEup 0.634 0.434 0.305 7.998 0.688 0.563 0.338
VQM-QEup 0.847 0.800 0.583 5.491 0.438 0.750 0.475

MOVIE-QEup 0.753 0.759 0.533 6.869 0.625 0.563 0.263
SSIM-QEup 0.685 0.665 0.467 7.534 0.688 0.625 0.325

MSSIM-QEup 0.821 0.806 0.583 5.904 0.313 0.750 0.450
MIQE 0.770 0.762 0.617 6.593 0.438 0.813 0.563

MVQE-HB 0.907 0.941 0.833 4.351 0.250 1.000 0.775
MVQE-WA 0.894 0.891* 0.733 4.624 0.313 0.875 0.625
MVQE-noG 0.289 0.271 0.167 9.900 0.750 0.438 0.162
MVQE-noS 0.622 0.644 0.542 8.097 0.625 0.562 0.238
MVQE-noL 0.745 0.794 0.633 6.902 0.625 0.875 0.625

SQM1 0.707 0.702 0.518 7.310 0.563 0.813 0.538
SQM2 0.664 0.521 0.400 7.736 0.625 0.688 0.363
SQM3 0.286 0.278 0.234 9.954 0.813 0.500 0.250

NR-BIQI 0.419 0.456 0.317 9.390 0.563 0.625 0.325
NR-BLUR 0.192 0.176 0.133 10.148 0.563 0.500 0.225
NR-GBIM 0.453 0.476 0.317 9.218 0.688 0.750 0.450

Table 3.6: Metric Scores for High-Quality Region Videos

Pearson SRCC KRCC RMSE OR FCR FCS
PSNR-QEdown 0.516 0.469 0.384 8.616 0.750 0.563 0.238
VQM-QEdown 0.694 0.741 0.516 7.242 0.750 0.708 0.458

MOVIE-QEdown 0.684 0.788 0.653 7.355 0.800 0.750 0.488
SSIM-QEdown 0.451 0.463 0.347 8.981 0.850 0.500 0.226

MSSIM-QEdown 0.387 0.313 0.263 9.279 0.850 0.375 0.125
PSNR-QEup 0.860 0.735 0.547 5.131 0.400 0.708 0.411
VQM-QEup 0.957 0.920* 0.758 2.914 0.200 0.917 0.702

MOVIE-QEup 0.926 0.788 0.653 3.791 0.300 0.708 0.399
SSIM-QEup 0.803 0.735 0.547 5.994 0.500 0.708 0.399

MSSIM-QEup 0.814 0.729 0.600 5.850 0.350 0.708 0.399
MIQE 0.949 0.890* 0.747 3.187 0.200 0.917 0.702

MVQE-HB 0.936 0.880* 0.737 3.546 0.150 0.917 0.702
MVQE-WA 0.955 0.925 0.779 2.970 0.200 0.958 0.768
MVQE-noG 0.919 0.841 0.693 3.964 0.300 0.708 0.400
MVQE-noS 0.912 0.779 0.612 4.123 0.350 0.708 0.399
MVQE-noL 0.890 0.796 0.614 4.710 0.400 0.750 0.440

SQM1 0.592 0.779 0.583 8.109 0.900 0.792 0.530
SQM2 0.577 0.592 0.505 8.219 0.700 0.667 0.387
SQM3 0.502 0.614 0.421 8.704 0.650 0.708 0.411

NR-BIQI 0.310 0.244 0.203 9.565 0.700 0.542 0.446
NR-BLUR 0.390 0.410 0.343 9.263 0.800 0.625 0.357
NR-GBIM 0.562 0.535 0.379 8.322 0.600 0.708 0.446
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Low-Quality Region. There is a slight decrease in MVQE-HB and MVQE-WA correlation

metric scores with respect to the scores in Table 3.4. Nevertheless, they still have the highest

metric scores. MOVIE-QEdown has the third highest score among all QEs. The decrease in

QEup-based approaches are much higher than the decrease in the proposed approaches. For

instance, in Table 3.4, the Kendall metric difference between MVQE-WA and VQM-QEup

is 0.035, but this difference is 0.15 in Table 3.5. This difference change occurs because of

QEup’s limitations. As described in Section 2.1, QEup-based approaches underestimate the

quality of low-resolution test videos. However, people prefer LR test videos more than HR

test videos in the low quality region.

We introduce the following definitions to clarify this discussion. HRwinner denotes the total

number of times the MOS of a HR test video is higher than the MOS of a LR test video,

and LRwinner stands for the total number of cases where the MOS of a LR test video is

higher than that of a HR test video. During the computation of HRwinner and LRwinner,

comparisons between HR and LR videos are performed for each content separately. In the

Low-Quality Region, LRwinner, 9, is higher than HRwinner, 7. Therefore, we observe the rank

mismatch between MOSs and QEup-based approaches in Table 3.5. In the low quality region,

MVQE-WA is statistically different from VQM-QEup but it is not statistically different from

MOVIE-QEdown.

Table 3.6 shows the correlation scores when the test videos are in the High-Quality Region.

According to the table, MVQE-WA has the highest scores for SRCC, KRCC, FCR and FCS

metrics. However, VQM-QEup has the highest Pearson, RMSE and OR scores. NR-BLUR

has the lowest scores. Moreover, the correlation scores of QEdown-based approaches are

lower than those of the QEup-based approaches. This is due to the characteristics of QEdown

QEs. QEdown QEs overestimate the quality of low-resolution videos. This limitation can be

observed if HRwinner is higher than LRwinner. For instance, for the set of the test videos in

the High-Quality Region, HRwinner is 17 and LRwinner is 7. As in Table 3.4, MVQE-WA is
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Table 3.7: Metric Scores for H.264 SVC Coded Videos

Pearson SRCC KRCC RMSE OR
PSNR 0.768 0.795 0.609 12.244 0.286
VQM 0.851 0.746 0.556 10.026 0.357

MOVIE 0.913 0.838 0.646 7.808 0.179
SSIM 0.907 0.872 0.672 8.060 0.250

MSSIM 0.851 0.882 0.688 10.035 0.321
MIQE 0.935 0.927 0.767 6.809 0.107

MVQE-HB 0.912 0.897* 0.720 7.841 0.250
MVQE-WA 0.937 0.924* 0.767 6.711 0.107
MVQE-noG 0.929 0.897* 0.725 7.033 0.107
MVQE-noS 0.927 0.907* 0.730 7.160 0.178
MVQE-noL 0.916 0.872 0.693 7.669 0.286

SQM2 0.770 0.808 0.630 12.193 0.286
SQM3 0.557 0.715 0.561 15.874 0.536
SQM4 0.874 0.884* 0.698 9.297 0.357

NR-BIQI 0.575 0.566 0.470 15.636 0.536
NR-BLUR 0.748 0.725 0.534 12.689 0.500
NR-GBIM 0.094 0.218 0.138 19.029 0.643

statistically different from all the metrics except VQM-QEup.

MVQEs have been designed to compare videos with different spatial resolutions at their

native resolutions. However, we should also consider the case when the test video is spatially

and temporally interpolated at the end user’s device. For instance, we can perform optimum

video transmission using scalable video coding. In this case, the reference and modified

test videos can have same spatial and temporal resolutions. To evaluate the performance

of MVQE-WA and MVQE-HB in this scenario, we can utilize Scalable Video Database [6].

This database consists of test videos that are encoded either using H.264 Scalable Video

Coder (SVC) or Wavelet SVC (WSVC). These videos are created using a combination of

spatial, temporal and SNR scalability parameters. Before subjective tests, they are spatially

or temporally upsampled to the spatial and temporal resolution of the reference video. We

calculate correlation scores of the QEs after applying logistic regression approach in Eq.

(3.16) to the QEs. We add Feghali’s QE [23] to the QEs and denote it with SQM4. SQM4

is computed by adding PSNR with a function of temporal resolution and motion activity.

Therefore, the performance of SQM4 and PSNR is the same if there is no change in the

temporal resolution. However, in the Scalable Video Database, some videos are encoded
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Table 3.8: Metric Scores for WSVC Coded Videos

Pearson SRCC KRCC RMSE OR
PSNR 0.735 0.754 0.565 13.989 0.405
VQM 0.834 0.786 0.595 11.366 0.262

MOVIE 0.843 0.757 0.586 11.067 0.310
SSIM 0.907 0.883* 0.723 8.656 0.190

MSSIM 0.899 0.842* 0.679 9.003 0.262
MIQE 0.863 0.852* 0.665 10.402 0.357

MVQE-HB 0.873 0.861* 0.686 10.020 0.214
MVQE-WA 0.882 0.886* 0.702 9.709 0.214
MVQE-noG 0.872 0.854* 0.665 10.291 0.286
MVQE-noS 0.898 0.890 0.711 9.611 0.238
MVQE-noL 0.881 0.856* 0.665 9.742 0.286

SQM2 0.749 0.745 0.562 13.640 0.333
SQM3 0.697 0.831* 0.648 14.749 0.476
SQM4 0.798 0.780 0.600 12.404 0.405

NR-BIQI 0.101 0.070 0.058 20.476 0.619
NR-BLUR 0.545 0.561 0.383 17.256 0.548
NR-GBIM 0.611 0.594 0.491 16.293 0.548

using temporal scalability. Note that, we cannot compute SQM1 for this database because

the quantization parameters are not available for these videos. Tables 3.7 and 3.8 provide

the metric scores for H.264 SVC and WSVC videos, respectively. The correlation scores of

MIQE and MVQE-WA are higher than other approaches when the videos are encoded using

H.264 SVC. On the other hand, SSIM and MVQE-WA outperform other approaches if the

test videos are encoded using WSVC. Although MVQE-WA is not statistically different from

VQM-QEup for some of the results in Tables 3.4 and 3.6, MVQE-WA is statistically different

from VQM for all test videos in the Scalable Video Database. Moreover, according to Tables

3.7 and 3.8, MVQE-WA performs slightly better than MVQE-noS, MVQE-noG and MVQE-

noL. Hence, we can infer that using scaling coefficients slightly improves the performance

of MVQE when the quality estimation is performed for different resolution videos that are

displayed at the same resolution. We also compute the running time of the QEs. Table

3.9 reports the relative running time of each algorithm as computed on the same computer

used for the subjective tests, where all run times are relative to the time needed to compute

PSNR.
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Table 3.9: Relative Running Time of QEs to the Running time of PSNR

QE Comp QE Comp QE Comp
PSNR 1 MIQE 165 SQM3 738.7
VQM 56.5 MVQE-HB 1495.4 SQM4 669.2

MOVIE 8002.7 MVQE-WA 4741.8 NR-BIQI 89.7
SSIM 21.7 SQM1 1 NR-BLUR 129

MSSIM 40.1 SQM2 666.2 NR-GBIM 3073.3
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Chapter 4

Reduced Complexity Perceptually

Optimum Multicasting

In this chapter, we work on problem of optimum multicasting of videos to the devices with

different spatial resolutions using perceptual QEs. We specifically focus on the complexity of

the optimum perceptual multicasting that increases due to usage of multiple scalabilities and

perceptual quality estimators. We use H.264 scalable video coding in combined scalability

mode to deliver videos to these devices. Using combined scalability increases the number

of scalability options, so we need to perform multi-criteria optimization. In the low bitrate

region, we show that multi-criteria optimization is not necessary and we propose an algorithm

to reduce the complexity of the optimization problem. The rest of the chapter is as follows.

In Section 4.1, we describe the system model. In Section 4.2, we compute the number of

QEs that is required to perform optimum multicasting in our model. In Section 4.3, we

describe the proposed approach which notably reduces the number of QE computations at

low bitrates.
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Figure 4.1: System Model

4.1 System Model

We represent the system model in Figure 4.1. In this figure, there is a content provider, a

wireless access point and end users with different spatial resolution. We use H.264 Scalable

Video Coding (SVC) [79] to compress the video into several layers. The first coded layer

is the base layer and the remaining layers are enhancement layers. The decoding starts

with the base layer and enhancement layers increase the quality gradually. SVC can be

performed using three scalability options. They are SNR(Quality), Spatial and Temporal

based scalabilities. We can also use more than one scalability option which is called Combined

Scalability (CS) [80]. In this model, we use the combination of SNR (QP) and Spatial

scalabilities.

We represent the SNR and Spatial layers of the encoded bitstream using a two-dimensional

array as in Figure 4.1. The base layer is at the bottom-left first row and column of the array.

All the other layers are enhancement layers. Each row denotes a different SNR scalability

layer and each column shows a different spatial scalability layer. We can name a particular

layer as qxqy where x and y denote the number of SNR layers in the spatial base and spatial

enhancement layers, respectively. We denote the total available transmission rate with R.

The scalable bitstream consists of two parts. One part is decoded by both users. This part
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Figure 4.2: Combination of SNR layers at different spatial layers

is called the common part in our model and it is the left most column of the array. In Figure

4.1, the corresponding part of the bitstream is denoted with blue. The necessary rate to

transmit this data is Rl. The second part of the bitstream, denoted by red blocks, shows the

enhancement layers of spatial scalability. These blocks are only used by the receiver with

the high resolution display. The necessary rate of this part is R -Rl.

During optimization, the aim is to allocate the available bitrate R to these blocks such that

the quality is optimized for a specific metric. We denote the quality of the low-resolution

user with Ql and the quality of the high-resolution user with Qh. Then, Ql only depends on

Rl. However, Qh depends on both Rl and R because we can have different number of SNR

layers in each spatial layer as shown in Figure 4.2. We can use the following two approaches

to perform optimization as described in [34] and [35]:

1) Max-min Fairness : Maximize the minimum quality among users:

maxminR,Rl(Nh ∗Qh(R,Rl), Nl ∗Ql(Rl)) (4.1)

2) Maximize the total utility of the users:

max
R,Rl

(Nh ∗Qh(R,Rl) +Nl ∗Ql(Rl)) (4.2)

where Nh and Nl are the number of high resolution and low resolution video viewers, respec-
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tively. Perceptually optimum multicasting using combined scalability is a straight-forward

problem, but it has two deficiencies. First, there is a dimension increase due to usage of an

extra scalability option. The second one is the complexity of the QE used while computing

the utility. In the next section, we describe how we compute the required number of QEs to

perform optimum multicasting.

4.2 Complexity of Performing Optimum Multicasting

Using Combined Scalability

The problem of multicasting to devices with different spatial resolutions is a multi-criteria

optimization problem in [34, 35], so it needs to be solved based on a maximization or a fairness

constraint. In either case, there is a trade off in quality between the devices of different spatial

resolutions. We use combined scalability (CS) mode of H.264 SVC to compress the video

such that we allocate the available bitstream to devices with different spatial resolutions

flexibly.

In CS mode, we can have different SNR levels at different spatial layers. Hence, we need to

compute the quality of each (SNR, Spatial) layer combination to perform the optimization.

We assume that we have N layers in total and that we have 2 spatial layers. We also assume

that the maximum number of layers for a upsampled low resolution (US-LR) video is N .

For instance, in Figure 4.3, we show possible layer combinations when N is smaller than

7. Obviously, the total number of possible cases depends on N . The total number QE

computations is calculated as follows:

If N is odd and P = (N + 1)/2,
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Figure 4.3: Possible layer combinations when the total number of layers is smaller than 7

TQo = 2 ∗ (
P ∗ (P + 1)

2
)− 2 =

N2 + 4N − 5

4
(4.3)

On the other hand, if N is even and P = N/2, the total number of computations is:

TQe =
P ∗ (P + 1)

2
− 1 +

P ∗ (P + 3)

2
− 1 =

N2 + 4N − 4

4
(4.4)

Hence, the total number of QE calculation is O(N2). Such a quadratic complexity may

not be possible in real time. Furthermore, using such an optimization procedure is very

time-consuming if we use a complicated perceptual QE approach like MOVIE [21].

4.3 Proposed Approach

In this section, we discuss the observations for optimum multicasting using combined scala-

bilities and how we use these observations to reduce the number of QE computations. We

create scalable video streams using CS and compute their qualities to obtain. We have used

H.264 SVC to encode videos in the combined scalability mode. We have used Old Town,

Stockholm, Shields, and Ducks [67] videos. These videos have different spatial and temporal

characteristics. The spatial resolution of the videos is 1280× 720 and the frame rate of the
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videos is 50 fps. We use the normative option of JSVMs DownConvert application while

decimating to create a low-resolution 640 × 360 video. To have reliable quality measure-

ments, we should use a quality estimator which has a good performance for different spatial

resolution videos that are displayed at the full resolution. Tables 3.7 and 3.9 in Section

3.3 and show the performance of QEs and their complexities with respect to PSNR for this

task. According to these tables, MIQE and MVQE almost have the same performance but

the complexity of MIQE is less than the complexity of MVQE. Hence, we use MIQE to

estimate the quality. We compute the qualities of bitstreams for each CS combination. We

also compute the qualities of US-LR videos which do not have any SNR layers in the spatial

enhancement layer.

Figure 4.4 shows the rate-quality curves of CS and US-LR videos at low bitrates. In Figure

4.4, the colored curves with square symbols illustrate the rate-quality curves of CS videos.

Each color denotes the number of SNR layers in the base spatial layer. For example, the

blue curve for q4qx, depicts five circles representing the performance of a system with 5

layers in the spatial base and x = 0, 1, 2, 3, 4 spatial enhancement layers. The black curves

with + symbols show the rate-quality curve of the US-LR videos. We have observed that

the quality of the US-LR video is always better than any CS video at the same bitrate at

low bitrates. This feature is valid up to a bitrate which we call the Critical Bitrate (CBR).

The CBR is denoted with dashed lines in Figure 4.4. We can use this observation to reduce

the complexity. At low bitrates, we downsample the video and compress it instead of only

compressing it. In this case, we use all the available bitrate for the smaller resolution to

maximize the quality of high-resolution video. This rate allocation scheme automatically

maximizes the quality of the low-resolution video. Hence, it is not necessary to perform

multi-criteria optimization at low bitrates. However, we can only use this property up to

the CBR, so it is necessary to find CBR.

We can find the CBR by determining the intersection points between the quality-rate curve
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Figure 4.4: Rate-Quality curves of CS and US-LR videos at low bitrates
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Figure 4.5: Binary search to find the SNR layer index of the spatial base layer

of the US-LR videos and the quality-rate curves of CS videos. The intersection point with

the smallest bitrate is the CBR. Using this approach, the problem has evolved from finding

the optimum allocation of layers for each bitrate to the computation of the CBR. We use

Figures 4.5-4.6 to describe how we find the CBR. This approach consists of two parts. In

the first part, we should determine SNR layer of the base spatial layer. Then, we need to

determine the bitrate of the intersection point. Each colored curve represents a specific SNR

layer in the base spatial layer in Figure 4.4. Our aim is finding the curve which intersects

the rate-quality curve of the US-LR videos with minimum bitrate. We use a binary search

to find the corresponding curve so we need O(log2(N)) number of QE computations both

for CS and US-LR videos as shown in Figure 4.5. In this figure, the blue circles denote the

rate-quality values of CS videos which have the same number of SNR layers in both spatial

base and enhancement layers. Moreover, the red curve denotes the rate-quality curve of the

US-LR videos. In this part, we find the number of SNR layers in the base spatial layer and

we denote this number with k. In Figure 4.5, k is equal to 5. Next we need to determine the
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Figure 4.6: Binary search to find the SNR layer index of the spatial enhancement layer and
the intersection point

critical bitrate. We search the SNR layer index in the spatial enhancement layer by using

a binary search. In this case, the number of QE computations is O(log2(k)) as shown in

Figure 4.6. Hence the total number of computations is:

LTQ = 2 ∗ (dlog2(N)e+ dlog2(k/2)e) ≤ 4 ∗ (dlog2(N)e − 1) (4.5)

As a result, the complexity drops from O(N2) to O(log2N). This approach is especially

useful when the stepsize of the QP is 1. For instance, in Figure 4.3b (Ducks), the intersection

occurs when QP = 24 and the QP value of the base layer is 45. If the QP stepsize is 1, N will

be 22. The total number of QE calculations using Eq. (4.4) is 139, and the total number of

computations using the proposed approach is 20. Hence using this approach we can reduce

the complexity of perceptually optimum multicasting at low bitrates without compromising

the reliability of the perceptual QE.

71



Chapter 5

Conclusion

In this thesis we study the quality estimation and the delivery of videos with different spatial

resolutions. First, we explore the quality estimation of images with resolutions different

from that of the reference image. We show that conventional approaches have significant

limitations to estimate this quality. We propose several ideas to overcome these limitations.

We develop an algorithm using these ideas to solve the problem. We perform subjective tests

to verify whether the proposed approach improves the results. We analyze the subjective

test results using different test cases. When the reference and test images have different

resolutions, the subjective tests demonstrate that in most cases the proposed method works

better than other approaches. In addition, the proposed algorithm performs well when the

reference image and the test image have the same resolution.

Second, we work on computing the quality of a video with lower spatial resolution compared

to the reference video. We propose an algorithm to solve this problem. We develop this

algorithm by incorporating the effect of motion into our previously proposed method for

images, i.e. MIQE. We also perform subjective tests to measure the performance of the

proposed approach. According to the test results, the proposed algorithm outperforms other
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QEs when the reference video and test videos have different spatial resolutions. Lastly,

we evaluate the performance of the proposed quality estimators using the Scalable Video

Database.

Third, we work on the challenge of using a perceptual quality estimator to perform optimum

multicasting of videos to the devices with different spatial resolutions. We specifically focus

on the complexity of the optimum perceptual multicasting. The complexity increases due

to usage of scalable video coding in combined scalability mode and perceptual quality esti-

mators. Using combined scalability increases the number of scalability options, so we need

to perform multi-criteria optimization. As a result of the simulations we have performed,

we have observed that multi-criteria optimization is not necessary in the low bitrate region,

and we propose an algorithm to reduce the complexity of the optimization notably for this

region.
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