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ABSTRACT OF THE DISSERTATION

TOWARD CHEAT-PROOF NETWORKING

by

Barath Raghavan

Doctor of Philosophy in Computer Science and Engineering

University of California, San Diego, 2009

Professor Alex C. Snoeren, Chair

Over the last three decades the Internet has evolved from a network of a dozen aca-

demics to one that spans the globe and is the primary medium of electronic communication.

When the two most fundamental Internet protocols—IP and TCP—were designed, they were in-

tended to address the problems of the day: addressing, routing, reliable delivery, and, eventually,

congestion. This dissertation studies how these protocols may be augmented to adjust to today’s

reality and cope with the possibility of cheating—the overuse of network resources—by network

users.

We study cheating in the Internet in two contexts. First, we examine strictly limiting

the resources a user or entity can consume in the network. Second, we study self-interested,

greedy users who want to consume as many resources as possible. The key challenge in both

of these contexts is not primarily in designing cheat-proof mechanisms, but in doing so while

avoiding unwanted network or architectural overhead.

For the former, we develop the notion of Distributed Rate Limiting, which enables a

network service provider to cap the aggregate bandwidth consumed by a user at different loca-

tions in the network. Distributed Rate Limiters operate at the network layer and aim to emulate

the behavior of today’s centralized limiters with low inter-limiter communication overhead. For

xi



the latter—for developing a transport layer that not only copes with the vicissitudes of network

application traffic, but also with the desires and motivations of network users—we develop the no-

tion of Decongestion Control, a congestion control paradigm in which users attempt to maximize

their individual throughput in the course of normal operation. In networking canon, dropped

packets represent wasted resources, and thus traditional network congestion control protocols

aim to avoid sending at a rate that induces packet loss. We study whether the benefits of a

transport layer that embraces—rather than avoids—widespread packet loss and user self interest

outweigh the potential loss in efficiency.

For both of these systems, we identify numerous potential benefits to and applications

for both the network provider and network user alike, and develop a framework in which such

systems can subsequently be evaluated. For Distributed Rate Limiting we identify two impor-

tant metrics—the inter-flow fairness and the rate that a limiter can deliver under shifting traffic

patterns—and evaluate how communication overhead impacts the algorithms we present with

respect to these metrics. For Decongestion Control, we similarly identify and examine the prin-

cipal challenges—that the protocol must provide performance not worse than TCP and that its

widespread use must not cause congestion collapse.

xii



Chapter 1

Introduction

While the protocols we use today in the Internet have remained essentially unchanged

since their first standardization in the early 1980s, the Internet itself has changed dramatically.

In 1981, when the current versions of TCP and IP were specified, there were 231 hosts in the

Internet [119], connected by slow dedicated links between mainframes at a handful of select aca-

demic, research, government, and military installations. The users of the network were highly

knowledgeable about the network itself, used it for non-profit purposes and in a spirit of com-

munity. Today’s Internet is the boiler room of the world economy—a communication medium

without which most major corporations could not function. This decades-long evolution of the

Internet has left an important piece behind—the underlying protocols. Indeed, we still use IP

and TCP today essentially unchanged from their specification in the original IETF Requests for

Comment from September 1981 [152, 153]; we are driving Model Ts on the Autobahn. It is a

testament to the vision shown by the designers of these original protocols that they have served

us so well for so many years, but the world has changed sufficiently to warrant a re-evaluation.

The most glaring changes to the Internet over the last decade are ones of capacity and

scale. The network now touches every remote region of the globe at remarkable bandwidths.

Perhaps more impressively, the number of users on the network is in the billions. Beyond simply
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the network’s physical and geographic structure, the philosophy of the network has changed. The

notion of the Internet as a community with shared goals, values, and interests is long gone. In

its place, we have a communication medium, not a community, and as with any shared medium,

there need be common interests and self-enforcement or, alternatively, exogenous constraints.

Many other mediums fit this paradigm. For example, the radio spectrum is a shared

medium—broadcasters compete in auctions for frequency licences and are held to their allocations

by the FCC. However, not all of the usable electromagnetic spectrum is strictly enforced—some,

such as the 2.4 GHz region, are unlicensed. As a result, all users of unlicensed frequency spectrum

must share the medium with each other; this requires cooperation or coordination. Without such

cooperation, entities can negatively interfere with each other such as in the case of 802.11 wireless

devices and microwave ovens.

When IP and TCP were designed, they were intended to address the problems of the

day: addressing, routing, reliable delivery, and, eventually, congestion. At the time, network

users were cooperative (even incidents such as the Internet worm of 1988 were not borne of

malicious intent [174]); this was an assumption that underpins protocol designs from that era.

Today’s challenges constanly remind us that the underlying assumptions of yesteryear may no

longer apply. Instead, we must capture today’s reality: in a shared medium, some users may not

cooperate.

We study this lack of cooperation in two respects. The first is that of the microwave

oven—failure or malice—in which the entity is, intentionally or not, stopping normal progress

for others. The second is one that is more natural in a modern network, and can be designed for:

self-interested, greedy users who want to consume as many resources as possible. We use the term

“cheating” narrowly to define these behaviors: obstructive, excessive, or greedy consumption of

network resources by an entity at one or more locations in the network.

The goal of this dissertation is to answer the following question: what changes can be

made at the network layer and the transport layer to effectively limit the ability of individuals in
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the Internet to unilaterally impose their own will upon the network? In other words, can we stop

cheating—in this context the consumption of resources above and beyond that allocated for a

single entity—by making changes at the network and transport layers of the Internet?

We explore two paths to this destination. The first views the Internet’s architecture from

the perspective of a network provider, and examines what changes can be made to ensure that

cheating parties can be held to their aforementioned resource limit. Since a provider cannot make

changes at the host, all changes must be imposed upon already-existing traffic running today’s

protocols such as TCP and UDP. The second path views the Internet holistically, allowing for

changes at the end host, and examines how to design for self interest. As a result, we study

what changes can to be made both by Internet providers and end hosts to mitigate cheating and

improve operation of the network.

1.1 Approach

To understand the consequences of our designs at both the network layer and the trans-

port layer, we view the network holistically. First, to select the right metrics for study we must

understand the goals of Distributed Rate Limiting and Decongestion Control. Broadly, we aim to

prevent entities from consuming more than their share of resources—for some externally defined

notion of “share”—in the network. At the same time, our goal is to maintain some consistency of

behavior with respect to the current network—we want to ensure that the changes are deployable.

Our goal is not to merely design systems to be cheat proof, but rather to design practical, efficient

systems that happen to also be cheat proof. As such, for each system we require definitions of

constraints that tie the hands of the user of the network and the operator of the network alike.

1.1.1 Evaluation

In the context of Distributed Rate Limiting we define that the behavior of the rate

limiter must be, from the perspective of traffic traversing that limiter, the same as that of a
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single token bucket limiter. This constrains the user, since each user receives a limited share of

bandwidth, and the designer, since the system must provide fairness and demand responsiveness

similar to a single token bucket. Thus we judge each DRL algorithm based upon its ability

to deliver the desired rate limit and its ability to emulate an ideal, centralized token bucket

and the fairness such a token bucket would deliver; we measure its fairness using Jain’s fairness

index [91]. To evaluate each algorithm with respect to these properties, we use emulation, testbed

deployment, and analytic study. We use emulation to study each algorithm’s behavior at scale,

since it is difficult to provide such large-scale repeatability in the wide-area. We use testbed

deployment to understand the potential behavior of our algorithms in a real-world deployment.

Finally, we use analytic study to better understand the stability of the algorithms in the abstract.

In the context of Decongestion Control, we assume that the protocol must present the

same flow-based interface at the transport layer that applications rely upon TCP for. Inherent

in this interface—typically presented to applications as sockets—is inter-flow fairness and data

loss-free communication. Thus we design Decongestion Control to ensure fairness between flows

and provide reliable delivery of data via a socket-based interface. We also incentivize users

to cooperatively participate in the use of the protocol. In addition, the protocol must deliver

bandwidth at least comparable to that of TCP, and as a result must not cause wasteful overload

of the network.

To evaluate these properties, we study the protocol in two types of simulation. First,

we aim to understand whether the protocol will cause undesirable overload of the network—a

decline in aggregate end-to-end goodput for end hosts—and as a result, be unable to provide

high bandwidth communication. To this end, we simulate the behavior of the protocol for a

variety of large, ISP-like topologies and evaluate the degree to which overload-induced packet

loss causes wastage of bandwidth within the network itself. Second, to understand the behavior

of the protocol from the perspective of an end-host we simulate it using ns2 to determine whether

it can deliver TCP-like responsiveness to new traffic demands and low jitter.
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1.1.2 Principles

Over the years researchers have studied how to secure networks from both selfish and

malicious behavior; still, there are few guiding principles—unlike for other areas of network

protocol design [12, 52, 54, 177]—that one can follow when designing new protocols. To this

end, we highlight several broad principles for cheat-proof networks: conflicting but necessary

requirements for networks that both operate smoothly and are free from cheating by user or

provider alike. We intentionally avoid defining what constitutes “cheating” as it is almost always a

matter of perspective, and present these principles merely as rough guidelines. Each component,

each protocol, and each architecture must have system-wide goals that identify desirable and

undesirable system operation.

First, there exists a necessary tradeoff between inter-user fairness guarantees and the

needs and demands of operators, those with reserved resources, and other privileged users. This

tradeoff manifests itself in the context of congestion control and traffic policing—ordinary users

should receive their fair share of network bandwidth, but operators should be able to restrict

particular flows or traffic classes.

Second, users should be allowed to send traffic as they want, to anyone they want but

no user should have a strong incentive to deviate from a system-specified desired behavior. This

highlights the need for user freedom and autonomy in the use of a network, but that “rational”

parties will not have an incentive to behave in a way that is against their own interests. This

tradeoff stems from the need to allow for innovation, but the need to ensure that anarchy is not

the result of that innovation. Indeed, many important new technologies, such as peer to peer

protocols, have leveraged this freedom.

While these principles are by no means comprehensive, they serve as rough guidelines

that help in the design of Distributed Rate Limiting and Decongestion Control.
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1.1.3 Scope

In this dissertation we focus our efforts upon only the network and transport layers—the

layers currently governed by IP and TCP. However, “cheating”—both broadly defined and as we

define it in this dissertation—can exist at any layer of the network. For example, hosts using non-

switched Ethernet [86] or IEEE 802.11 [85] can cheat by acquiring their shared communication

medium faster or more often than allowed, disobeying the MAC-layer specification. Similarly,

users can cheat Web download systems to consume more than such services define as a user’s

fair share.

While the possibility of cheating at these layers exists today, just as they did for their

counterparts of yesteryear, only IP and TCP have remained in use in largely their original manner

for decades. Two decades ago, in 1989, neither the Web—a higher layer—nor IEEE 802.11—

at a lower layer—existed, yet TCP and IP were in use for the protocols of the day such as

SMTP [154], NNTP [94], FTP [155], and Telnet [156]. Since that time, hosts have gone from

connecting via modems or shared 10Mbps Ethernet to connecting via numerous wireless protocols

and 10Gbps switched Ethernet. We believe that the longevity of use of IP and TCP indicates

the fundamental value they deliver as protocols and as abstractions, and therefore believe that

efforts to cheat-proof networking protocols must begin with the network and transport layers.

1.2 Contributions

In Chapter 3 we approach cheating in the Internet at the network layer, from the

perspective of a network service provider. Specifically, today’s cloud-based services integrate

globally distributed resources into seamless computing platforms. Accounting for the resource

usage of these Internet-scale applications presents a challenging technical problem, especially

given that users of these services can consume these distributed resources at many locations

simultaneously.

We present the design and implementation of Distributed Rate Limiters, which work
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together to enforce a global rate limit across traffic aggregates at multiple sites, enabling the

coordinated policing of a cloud-based service’s network traffic. Our system enables us to limit

the potential cheating of such a service’s users, and to do so at the network layer. However,

our abstraction not only enforces a global limit, but also ensures that congestion-responsive

transport-layer flows behave as if they traversed a single, shared limiter.

We present two primary designs—one general purpose, and one optimized for TCP—

that allow service operators to explicitly trade off between communication costs and system

accuracy, efficiency, and scalability. Both designs are capable of rate limiting thousands of flows

with negligible overhead. We demonstrate that our TCP-centric design is scalable to hundreds

of nodes while robust to both loss and communication delay, making it practical for deployment

in nationwide service providers. More concretely, we make the following contributions:

• We introduce the network primitive of Distributed Rate Limiting (DRL), which can contain

misbehavior by the selfish users of a distributed service.

• We introduce a series of metrics that define what it means for a Distributed Rate Limiting

system to effectively limit network traffic.

• We develop several DRL algorithms that expose inherent design tradeoffs in the design of

Distributed Rate Limiters.

• We build a DRL system and evaluate these algorithms according to our metrics and present

our findings.

In Chapter 4 we approach cheating in the Internet at the transport layer, and consider the case of

self-interested end hosts. We propose an alternative approach to Internet congestion control called

Decongestion Control, one which presumes that end hosts aim to maximize their own network

goodput, no matter the impact on others. In a departure from traditional approaches, end hosts

using decongestion control strive to transmit packets faster than the network can deliver them,
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leveraging end-to-end erasure coding—to ensure that recieved packets convey useful data—and

in-network fairness enforcement—to ensure fairness between mutually uncooperative end hosts.

While loss avoidance has long been central to the Internet architecture, we study whether

the benefits of a network architecture that embraces—rather than avoids—widespread packet

loss outweigh the potential loss in efficiency. We argue that such an approach may decrease

the complexity of routers while increasing stability, robustness, and tolerance for misbehavior.

While a number of important design issues remain open, we show that our approach may avoid

congestion collapse and may deliver high steady-state goodput for a variety of traffic demands in

three different backbone topologies. Specifically, we make the following contributions:

• We introduce a new approach to Internet congestion control that aims to address cheating

at end hosts. Our approach is contrary to conventional wisdom on the subject of congestion

control: instead of limiting congestion, we embrace packet loss and operate the network at

capacity.

• We evaluate the structure of the Internet to determine whether it is appropriate to operate

the network under conditions heretofore considered “overload.”

• We present the design of a decongestion control protocol that aims to cope with cheating

at end hosts and packet loss in the network by erasure coding transport streams.



Chapter 2

Background

The subject of cheat-proof networking has been approached over the years from a variety

of angles. In this chapter we examine prior research on congestion control, traffic policing,

network incentives, queue management, fairness, Internet architecture, distributed algorithms,

and reliable data delivery as it relates to cheat-proofing the network and transport layers. The

works we highlight cover a broad swath of networking research, as cheat-proofing requires subtle

changes of both protocols and assumptions across the network. Each of the algorithms, protocols,

and systems that we overview in this chapter represents an attempt by network designers to

reign in the Internet, to maximize the utility of the network for its users, to decrease overhead

for network operators, to simplify the network’s operation, or to codify exogenous policy desires

using network mechanisms. Since the topics covered in this chapter are interrelated and cannot

be strictly ordered, we present them iteratively, progressing from the broadest, most basic, or

most fundamental work toward more specialized or advanced work.

The early approach to design of Internet protocols still influences the evolution of pro-

tocols and systems on the Internet [52]. Clark described how the Internet is built on “rough

consensus and running code”—a philosophy that has held true over the decades for everything

from TCP SACK to peer-to-peer networking. The most successful protocol or architectural

9
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changes to the network have occurred organically, because end users, software vendors, or net-

work providers found individual benefit. This approach has made fundamental architectural

change difficult in the Internet—indeed, while the Internet’s architecture has not changed radi-

cally in over a decade, the telephone network, which is far more authoritarian, has transparently

but fundamentally shifted its architecture in recent decades towards using digital switching and,

in some cases, packet-switched networks to carry voice traffic.

Indeed, one of the primary challenges in Internet architecture design is accommodating

for incremental deployment. Not only do new protocols, systems, and architectures need to be

able to deliver the same service that existing ones do, but they need to provide some incentive

for the user and the network provider alike to make the switch. At the same time, they need

to be technologically feasible for a large enough population in order for the upgrade to make

a difference. Where applicable, we highlight the inroads researchers have made to successfully

change the Internet’s architecture.

2.1 Internet architecture

The Internet aims to help people and systems communicate; consequently, it must be

designed to enable the best and withstand the worst of user behavior. Economists, philosophers,

and myrmecologists have known for ages that societies must be built upon rules that work for

the individual as well as the whole. Today, the Internet is in need of a new design ethos, one

that takes into account all types of user behavior. Before we can examine what new directions

are possible, we must examine how the Internet has been designed and refined.

TCP was originally designed to provide reliable, in-order delivery of a data stream across

a best-effort, IP packet-switched network. Consequently, TCP must cope with the fact a) that

the network does not guarantee end-to-end delivery of data, b) that all data streams are divided

into datagrams (the generation of which is the responsibility of end hosts), c) that the end hosts

are likely to have numerous flows between them, not just one, and d) that almost all network
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applications need to deal with these same challenges. To address these challenges, Cerf and Kahn

introduced TCP/IP as a combined protocol in 1974 [48] (that combined the functionality of both

the network and transport layers [217]), which a) used acknowledgments to determine whether a

packet successfully reached its destination and retransmitted those that did not while assuming

no aid from the network [177], b) divided data streams into a sequence of packets that were

tagged with a sequence number designating the packet’s position in the byte stream, c) used port

numbers to allow the operating system to effectively multiplex and demultiplex flows, and d)

used a simple abstraction of a reliable data stream which enabled easy integration with existing

operating system primitives [135].

TCP’s creators were visionary—they designed a protocol that was general enough to be

adapted to many unforeseen scenarios, and yet was able to be fixed through modification at end

hosts. Over the years, researchers and engineers have identified and addressed numerous problems

with TCP. Chief among these was the need for congestion control. A series of “congestion

collapses” in the 1980s exposed the problem: there was a need not only for a system that helped

use the network’s resources, but also for a system that helped equitably manage and share

consumption of the network’s resources—that with freedom also came responsibility.

The solution of the day, and today, was for hosts to participate in a voluntary congestion

control protocol that was signaled on top of TCP’s existing packet headers and that would govern

the rate of transmission by a TCP sender. This has proved to work remarkably well. However,

this approach to congestion control itself made many implicit assumptions about the network

and its users, including a) that users will always use a “correct” implementation of the protocol,

b) that all hosts in the network use the same congestion control protocol, and c) that hosts have

numerous users and thus fairness in the network should be defined on the granularity of a flow,

not a host or user [169]. Indeed, these assumptions have held true for the most part until recently,

but now a) users have an incentive to disobey the protocol to obtain superior performance, b)

every operating system vendor uses a different variant of TCP congestion control, and many
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applications ignore TCP in its entirety and implement their own transport protocol, and c)

very few end hosts today are used simultaneously by multiple people or entities—instead, most

machines are used by a single person at a time.

Researchers have not been caught by surprise by the gradual shift in computing and

networks that has upturned old assumptions. Indeed, over the years numerous alternative designs

have been proposed in an attempt to cope with changing assumptions or cope with vexing

problems; we examine many of these protocols and systems in this chapter.

2.2 Traffic policing and provisioning

Since the Internet is a shared network operated and used by parties with disparate

interests, network providers require a means for network traffic control. Since their resources

are limited, they require means of provisioning—for ensuring that there exist resources in the

network to let desirable traffic through and drop undesirable traffic. This traffic control can

be either be enforced beforehand, through reservations or admission control, or after the fact,

through rate limiting and packet dropping.

2.2.1 Local rate limiters

We begin at a high level and consider the problem of policing user behavior. Indeed, the

network layer has a high-level view of packet transmission—sources send packets; destinations

receive packets; neither is typically held to account for the bandwidth consumed. Coalitions of

hosts, human users with multiple IP addresses, classes of application traffic, and other logical

groupings of hosts are irrelevant to the largely stateless, packet-switching core of the Internet.

The simplest manner in which a network provider can control traffic is by selectively

forwarding or dropping packets. There are two classic mechanisms—token buckets and leaky

buckets—that accomplish this task, and while they are very similar, we review them both due to

their popularity. A token bucket represents metaphorical bucket that is used to make decisions
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to forward or drop packets based on traffic rate. Upon packet arrival, if a token exists in the

virtual bucket, it is removed and the packet is forwarded; if no tokens remain, the packet is

dropped. A token bucket allows for packet bursts of a fixed maximum size—the bucket depth—

while maintaining a fixed long term rate, governed by the fill rate—the rate at which new tokens

are added to the bucket.

A leaky bucket represents a similar concept in which the bucket fills as packets are sent,

rather than emptied. When a packet arrives, it is added to the bucket. Any packets that arrive

when the bucket is already full are dropped, otherwise they are forwarded. The bucket is also

set to “leak” at a fixed rate, thereby ensuring a fixed long-term average.

Over the years, both token buckets and leaky buckets have been used to achieve a

variety of traffic shaping goals. For example, Sahu et al. analyzed token buckets for achieving

differentiated service of TCP flows with packet marking [176]; Liu and Towsley and Rexford et

al. considered uses of leaky buckets [115, 171].

Several recent studies have attempted to first identify and quantify, and then limit, net-

work traffic. Estan et al. have developed algorithms to identify high-bandwidth flows in limited

space [67] and Kumar et al. have devised an approach to do approximate per-flow counting [109].

After performing estimation, several techniques can be used to perform rate limiting. For ex-

ample, Mahajan et al. showed how to efficiently identify overly aggressive aggregate flows [126].

Active queue management algorithms such as CHOKe [149] and RED-PD [127] can also be

used to perform local rate limiting of misbehaving flows. To prevent misbehavior and enforce

desirable fairness properties, researchers have taken two basic approaches: explicitly enforcing

fairness [26, 27, 59, 76, 150, 189, 196] and limiting aggressive traffic [126, 149, 210]. While neither

of these approaches has seen widespread deployment, they form the foundation upon which we

build in this dissertation.
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2.2.2 Admission control

Admission control is an old idea—one that dates to the era of circuit switching on

telephone networks. The idea is simple: admit traffic based on capacity or fairness criteria and

deny resources to traffic not admitted. Though the systems we propose in this dissertation are

designed for the Internet’s best-effort, packet-switched architecture, both DRL and Decongestion

Control fit the model of admission control [33]. DRL can be viewed as a real-time admission

control system that aims to provide a global notion of fairness and a hard limit on resources.

Decongestion is a modern incarnation of the concept of isarithmic networks [57]—where the

network is always saturated with packets and where hosts must remove a packet from the network

to send a packet—which at its heart is an admission control system.

While there has been considerable work to determine the optimal allocation of band-

width between end-point pairs in virtual private networks (VPNs), the goal is fundamentally

different. In the VPN hose model [108], the challenge is to meet various quality-of-service guar-

antees [56] by provisioning links in the network to support any traffic distribution that does not

exceed the bandwidth guarantees at each end point in the VPN [62]. DRL, on the other hand,

is a traffic policing problem where the goal is to emulate the behavior of a single virtual pipe. In

contrast, in a VPN, the traffic aggregate is constrained by a single link at the ingress or egress

point. Zhang et al. introduce an algorithm for admission control that can guarantee network

properties along a whole path [214] and for scalable bandwidth management [215].

2.3 Reliable transport and congestion control

While traffic policing and auditing can aid in detecting and preventing misbehavior, to-

day’s Internet works because end hosts are cooperative. If we look at large Autonomous Systems

(ASes), we find well-connected, over-provisioned backbone networks connected to constrained

edge networks. Most routers within these ASes perform FIFO forwarding, leaving them vulner-

able to attacks well documented in the literature. Unlike in such attacks, however, users can be
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greedy without being directly malicious: they can send packets to legitimate recipients as fast

as they want. Since the network lacks mechanisms to prevent such behavior, users can improve

their individual throughputs. In aggregate, however, this behavior can lead to Internet-wide

congestion collapse [187]. This scenario is a classic tragedy of the commons; individual selfish

behavior can drive the system to a globally pessimal state, yet there is no incentive for any user

to unilaterally back off.

2.3.1 TCP congestion control

After the congestion collapses of the 1980s, Jacobsen developed a series of congestion

control mechanisms for TCP [88]. Concurrently, Ramakrishnan and Jain developed a more

theoretically refined “binary feedback” congestion avoidance algorithm, though ultimately this

congestion control approach was not widely deployed [167].

To remedy Jacobson’s congestion control’s inability to recover quickly, researchers devel-

oped fast retransmit and fast recovery [195], and later selective acknowledgements (SACK) [132].

Mathis and Mahdavi improved upon SACK without requiring additional protocol changes with

the ingenious FACK algorithm [131]. While these modifications of TCP helped cope with packet

reordering, TCP was still unable to cope with large-scale reordering; Blanton and Allman worked

to improve TCP’s ability to handle reordering [31] and Zhang et al. designed a new TCP variant,

RR-TCP, to make TCP robust to packet reordering [212]. Mogul and Minshall studied the classic

TCP Nagle algorithm and provided recommendations on its use in modern networks [139].

Despite TCP’s flexibility and its ever-improving performance, researchers have found

that TCP faces fundamental performance bottlenecks in numerous environments. For example,

Balakrishnan et al. found that path asymmetry can severely impact TCP performance [20].

More fundamental is its inability to respond quickly to packet loss in high bandwidth, high delay

environments, an issue which we discuss subsequently.

Prior work [179, 187] has also established that congestion-control misbehavior is both
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easy and individually profitable, but can have serious effects on the network as a whole. Since no

prevention mechanisms exist today, it may only be a matter of time before users take advantage of

this vulnerability. For example, the release of a greedy UDP-based Bittorrent client could easily

drive the Internet to congestion collapse in a matter of days. Lopez et al. analyzed the potential

game-theoretic behavior of a fountain-based protocol that uses FEC for transmissions [116, 117].

Their initial investigations show that there is potential for such protocols, which they term

“fountain-based protocols”. This line of research has also led to more theoretical analyses of

TCP congestion control in a competitive setting [6, 96] and the study of the effects of partially

cooperative or slow-responding congestion control protocols [22].

2.3.2 Network-centric approaches

One prominent approach to managing network congestion is to apply enforcement in

the network. This approach comes with significant history: the “Plain Old Telephone System”

(POTS), which is the most similar historical antecedent of the Internet, is designed around the

idea of smart network switches that reserve bandwidth for individual flows or sessions. Since the

Internet is a best-effort packet-switched network, providing POTS-like reservations and smart

sharing is inherently difficult. Specifically, with regard to congestion control, there have been

several efforts in the past decade to use router-based information to better guide congestion

control decisions by end hosts. Hosts running the XCP and RCP protocols, for example, could

receive information about available path bandwidth from routers, and then be able to quickly

adjust their send rates [63, 97]. Since it is often the case that determining available path band-

width is most useful at the beginning of a flow, QuickStart for TCP aims to provide and use that

information within the constraints of TCP, easing deployment [71, 178]. An earlier approach—

Explicit Congestion Notification (ECN)—ensured that hosts would learn of congestion (at a

coarse granularity) [166]; subsequent work has ensured that hosts cooperate with such a mecha-

nism [38, 39, 64].
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2.3.3 Endpoint approaches

In addition to the numerous alterations to base-line TCP congestion control (including

mechanisms such as fast retransmit, fast recovery, and SACK), researchers have proposed nu-

merous more aggressive end host-based improvements to TCP. Many of these algorithms, such

as HighSpeed TCP [70] and Scalable TCP [101], aim to improve TCP’s performance in high

bandwidth-delay product networks while making as small changes to the protocol itself. Indeed,

HighSpeed simply uses alternative window decrease constants when TCP’s congestion window

is large, thereby ensuring that TCP avoids precipitously backing off upon experiencing a packet

loss in a high-bandwidth flow; Scalable TCP alters the AIMD constants for all scenarios, to

similar effect. TCP BIC [208] and CUBIC [80] improve upon TCP’s ability to converge upon the

available bandwidth on its path, while simultaneously allowing for flows to recognize when the

available bandwidth has increased significantly.

Along another line of thinking beginning with TCP Vegas [34] and more recently FAST

TCP [93, 207], researchers have aimed to use the round-trip delay experienced by a TCP flow’s

packets to infer when the flow is experiencing queuing, and thus, congestion. Compound TCP

aims to leverage information gleaned both from packet drops and from round-trip delay to adjust

a flow’s congestion window [199].

In addition to TCP-compatible congestion control protocols, researchers have suggested

alternatives with more radical changes, such as PCP [11] which paces its packets [3] and performs

in-line packet-pair tests to determine the available bandwidth along a path without router assis-

tance. Some protocols have also targeted specific application domains. TFRC [74], for example,

ensures that a flow’s packets aren’t subjected to the bursts of ordinary TCP congestion control

while still ensuring that the flow competes fairly for network bandwidth with existing TCP flows;

this can prove useful for streaming flows that do not require reliable delivery guarantees [107].
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2.3.4 Coded transport

As an alternative to automatic-repeat request (ARQ) reliable transport, researchers have

considered using erasure codes and forward-error correction (FEC) to mask losses experienced

by transport protocols [114]. There are numerous ways to integrate TCP and forward-FEC [122,

173]; FEC can be placed below, inside, or above TCP—thus, FEC can hide losses from TCP,

be used to prevent retransmissions, or be applied to application-layer datagrams. Fountain

codes [121, 133] enable senders to send a near-infinite stream of coded packets, and to do so

with low encoding and decoding complexity, thereby aiding in the design of non-ARQ based

transport [43, 44] for broadcast and bulk data transmission. Others have considered using erasure

codes to aid multipath transport protocols [184]. None of these schemes, however, have explored

the practicality and ramifications of an entirely FEC-based congestion control on network design.

2.3.5 Fairness and incentives

TCP’s notion of fairness—that each flow, irrespective of source or destination, is equal—

has become so central to the Internet’s architecture that new protocols often must demonstrate

their TCP friendliness. However, some have questioned whether TCP friendliness is always an

ideal goal [36, 37, 140]. Indeed, even without any new protocols, it is easy to break TCP’s notion

of fairness: parallel TCP sockets allow a single user or host to capture more resources than their

evident fair share [8].

Over the years, researchers have examined whether pricing can suitably alter the incen-

tive structures of the network, and thereby influence the way we think about network fairness.

In two fundamental works, Cocchi et al. established some foundations on network pricing [55]

and Kelly studied charging and rate control [99]. To better understand the consequences of

such greedy behavior, researchers have also applied game-theoretic analyses to congestion con-

trol [6, 116, 117, 186, 190, 211].
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2.4 Distributed coordination and control

The challenges of designing a cheat-proof network architecture are fundamentally

distributed—hosts, routers, and other systems must be involved in a series of distributed co-

ordinations. Next we examine several more basic but important distributed algorithms and

protocols for coordination, counting, admission control, and group communication. We draw

upon the designs and lessons of this area of research in our work on DRL and Decongestion

Control.

2.4.1 Distributed counting

Today’s routers must maintain counters for many accounting tasks, but to do so is

difficult given the high speeds at which packets must be counted and the limited amount of SRAM.

To address this issue, Shah et al. proposed LCF, a counting algorithm that uses an optimal

amount of SRAM [182], but has a fundamental bottleneck that was subsequently eliminated

by Ramabhadran et al. with the algorithm LR(T) [165]. The direct relevance of these counting

algorithms may not be clear at first, but their approach to updating the values of multiple counters

in SRAM is the same as recently suggested approaches to updating distributed counters [90]. The

general problem of using and efficiently computing aggregates across a distributed set of nodes

has been studied in a number of other contexts. These include distributed monitoring [60],

triggering [90], counting [185, 206], and data stream querying [19, 129].

A natural extension of local counting algorithms are distributed counters. Viewed ab-

stractly, a distributed counter is a global data structure over n nodes such that any node may

perform operations such as incrementing the counter or getting the counter’s current value. Wat-

tenhofer et al. proved that there is a fundamental bound of Ω(log n/ log log n) on the number

of messages required to update the global state of a distributed counter for n operations over n

nodes, and also present an algorithm which achieves this bound [206]. In their work, they view

the network as a graph of nodes each of which must be able to increment the counter and find its
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correct current value. Shavit et al. proposed randomized data structures called diffracting trees

that similarly implement efficient distributed counters [185]. Distributed counters are analogous

to counting networks [15], which were proposed to alleviate coordination overhead in intercon-

nection networks when performing synchronization. Counting networks themselves are related

to sorting networks as used in the analysis of parallel sorts [106].

2.4.2 Distributed admission control

Unlike ordinary admission control, most distributed admission control systems consider

allocations independent from the edge router at which the request originates; these same ap-

proaches are also used to protect against denial-of-service attacks [10]. While it appears that

centralized and distributed bandwidth broker architectures provide a mechanism to enforce fair

allocations across edge routers, they only consider basing admission on flow types, such as for

“large” or “small” flows [215].

Distributed rate limiting can be viewed as a continuous form of distributed admission

control. Distributed admission control allows participants to test for and acquire capacity across

a set of network paths [92, 215]; each edge router performs flow-admission tests to ensure that

no shared hop is over-committed. While our limiters similarly “admit” traffic until the virtual

limiter has reached capacity, they do so in an instantaneous, reservation-free fashion. Jamin et

al. described a measurement-based admission control system [92] while Goel et al. proved

theoretical bounds for specific approaches to theoretical admission control [78]. To understand

the performance impact of end-point vs. router-based admission control, Breslau et al. performed

simulations under a variety of conditions [35]. Abraham and Kumar presented algorithms for

rate control of flows in IntServ networks [1, 53] whereas Kelly et al. presented an alternative

framework for distributed admission control [100].
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2.4.3 Distributed monitoring

Recently, Babcock et al. have explored computing Iceberg queries on distributed data

streams [19], naturally extending the problem finding “elephants” in local data streams. Simply,

they aim to find the k most common elements appearing in distributed streams. Manjhi et

al. improve upon this result by enabling time-sensitive Iceberg queries on distributed data

streams [129].

To find aggregate values over a distributed set of nodes that exceed some threshold,

Dilman et al. proposed efficient reactive monitoring, in which nodes monitor their local rates

and signal a global controller (which polls all nodes) when they exceed some threshold [60]. Their

primary goal is to detect such events with minimal inter-node communication. More recently,

Jain et al. have proposed exploring the same problem from a database-inspired perspective—

distributed triggering [90]. A distributed trigger is set to notify of some aggregate constraint

being met, in the vein of database triggers. In these contexts, such events are expected to be the

uncommon case, as opposed to ours, in which they are the common case; triggers, for example,

are proposed as an aid to applications such as distributed debugging. In concept, we view

reactive monitoring and distributed triggers as complementary to DRL—our mechanisms can be

used, as in our deployment scenarios, when enforcing limits is the common case, and reactive

monitoring (or distributed triggers) can be used when it is uncommon, and only notification, not

enforcement, is needed.

2.4.4 Distributed traffic management

Zhao et al. studied a similar problem of resource sharing in distributed clusters [216].

In their setting, the resources in question are available subject to redirectors, which control

user demands and where they are sent. To express resource sharing agreements, they used

currencies as done with lottery scheduling. Much of their work focused on enforcement through

a single redirector, which made enforcement and redirection decisions for the whole system.
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Bhatnagar et al. have examined distributed admission control for QoS guarantees in core-stateless

networks [30]; their approach used a token that is passed between nodes to provide mutual

exclusion in admitting traffic and anticipatory reservation to improve response. Finally, in a more

theoretical approach, Reif et al. examined a similar problem, in which the goal of the system is

to satisfy unknown user demands to distributed resources with minimal response time [170].

2.4.5 Group communication

To enable the distributed algorithms examined in this section, the nodes involved in each

system must communicate. As an alternative to traditional distributed computation approaches

that use simple communication substrates such as fully-connected meshes, several researchers

have proposed using gossip-based approaches, in which information flows semi-randomly through

the system from node to node [103, 203]. Gossip protocols lend themselves to theoretical anal-

ysis, and often can be proved to converge reliably to a correct state. In doing so, nodes can

compute distributed aggregate functions without centralized control. For example, Mehyar et al.

developed algorithms for asynchronous, distributed averaging [136].



Chapter 3

Distributed Rate Limiting

Today, many distributed systems operate on the scale of the Internet, serving the same

set of users at many physically distinct locations. As a result, notions of resource control—

particularly, rate limiting—that make sense in centralized systems become difficult to apply.

Constraining a self-interested user to a fixed utilization is relatively easy when all decisions and

data needed to make decisions are local; when multiple distant nodes must coordinate to do so,

it becomes complex and costly.

In the systems of interest, a set of users has access to resources at distributed resource

providers. Users may choose to consume resources at any of the providers at any time, with the

constraint that, over the whole system, each user does so without exceeding some agreed upon

aggregate rate. However, since the providers are distributed, they are immediately aware of only

the local rate consumed by each user, not the aggregate of a user’s usage over all nodes. Thus,

a greedy user has not only the incentive but the means to consume bandwidth—to cheat—far

beyond what was possible in a centralized context.

Aside from the functionality and management benefits distributed services afford the

end user, today’s hosted platforms present significant benefits to the service provider as well.

Rather than deploy each component of a multi-tiered application within a particular data center,

23
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so-called “cloud-based services” can transparently leverage widely distributed computing infras-

tructures. Google’s service, for example, reportedly runs on hundreds of thousands of servers

distributed around the world [41]. Potential world-wide scale need not be limited to a few large

corporations, however. Recent offerings like Amazon’s Elastic Compute Cloud (EC2) promise to

provide practically infinite resources to anyone willing to pay [9].

A key barrier to moving traditional applications to the cloud is the loss of control

of bandwidth, and thus cost. A cheating user has the potential to consume resources in a

cloud environment far beyond that of their network uplink. Ultimately service providers only

provide services they get paid for. In the cloud-based services model, cost recovery is typically

accomplished through metered pricing. For example, Amazon’s EC2 charges incrementally per

gigabyte of traffic consumed [9]. Experience has shown, however, that ISP customers prefer

flat fees to usage-based pricing [146], and in a distributed environment, greedy users are apt to

consume far greater resources than they had access to in years past. At a corporate level, IT

expenditures are generally managed as fixed-cost overheads, not incremental expenses [81].

A flat-fee model requires the ability for a provider to limit consumption to control

costs. Limiting global resource consumption in a distributed environment, however, presents a

significant technical challenge. Ideally, resource providers would not require services to specify

the resource demands of each distributed component a priori ; such fine-grained measurement

and modeling can be challenging for rapidly evolving services. Instead, they should provide a

fixed price for an aggregate, global usage, and allow services to consume resources dynamically

across various locations, subject to the specified aggregate limit.

In this chapter, we focus on a specific instance of this problem: controlling the aggregate

network bandwidth consumed by a selfish user or cloud-based service, or distributed rate limiting

(DRL). Our goal is to allow a set of distributed traffic rate limiters to collaborate to subject a

class of network traffic (for example, the traffic of a particular user, group of users, or cloud-based

service itself) to a single, aggregate global limit. While traffic policing is common in data centers
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and widespread in today’s networks, such limiters typically enforce policy independently at each

location [147]. For example, a resource provider with 10 hosting centers may wish to limit the

total amount of traffic it carries for a particular service to 100 Mbps. Its current options are to

either limit the service to 100 Mbps at each hosting center (running the risk that they may all

use this limit simultaneously, resulting in 1 Gbps of total traffic), or to limit each center to a

fixed portion (i.e., 10 Mbps) which over-constrains the traffic aggregate and is unlikely to allow

the user or service to consume its allocated budget unless traffic is perfectly balanced across the

cloud.

The key challenge of distributed rate limiting is to allow individual flows to compete dy-

namically for bandwidth not only with flows traversing the same limiter, but with flows traversing

other limiters as well. Thus, flows arriving at different limiters should achieve the same rates as

they would if they all were traversing a single, shared rate limiter. Fairness between flows inside

a traffic aggregate depends critically on accurate limiter assignments, which in turn depend upon

the local packet arrival rates, numbers of flows, and up/down-stream bottleneck capacities. We

address this issue by presenting the illusion of passing all of the traffic through a single token-

bucket rate limiter, allowing flows to compete against each other for bandwidth in the manner

prescribed by the transport protocol(s) in use. For example, TCP flows in a traffic aggregate

will share bandwidth in a flow-fair manner [28]. The key technical challenge to providing this

abstraction is measuring the demand of the aggregate at each limiter, and apportioning capacity

in proportion to that demand. We present three primary contributions:

Rate Limiting Cloud-based Services. We identify a key challenge facing the practical de-

ployment of cloud-based services and identify the chief engineering difficulties: how to effectively

balance accuracy (how well the system bounds demand to the aggregate rate limit), responsive-

ness (how quickly limiters respond to varying traffic demands), and communication between the

limiters. A distributed limiter cannot be simultaneously perfectly accurate and responsive; the

communication latency between limiters bounds how quickly one limiter can adapt to changing
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demand at another.

Distributed Rate Limiter Design. We present the design and implementation of two dis-

tributed rate limiting algorithms. First, we consider an approach, global random drop (GRD),

that approximates the number, but not the precise timing, of packet drops. Second, we observe

that applications deployed using Web services will almost exclusively use TCP. By incorporating

knowledge about TCP’s congestion control behavior, we design another mechanism, flow propor-

tional share (FPS), that provides improved scalability.

Evaluation and Methodology. We develop a methodology to evaluate distributed rate lim-

iters under a variety of traffic demands and deployment scenarios using both a local-area testbed

and an Internet testbed, PlanetLab. We demonstrate that both GRD and FPS exhibit long-term

behavior similar to a centralized limiter for both mixed and homogeneous TCP traffic in low-loss

environments. Furthermore, we show that FPS scales well, maintaining near-ideal 50-Mbps rate

enforcement and fairness up to 490 limiters with a modest communication budget of 23 Kbps

per limiter.

3.1 Problem space

We consider the specific case of class-based rate limiting, where the goal is to restrict

the total bandwidth consumed by a given class of traffic. A variety of well-understood mecha-

nisms exist to implement per-class limiting, including class-based queuing, token buckets, and a

variety of active queue management (AQM) schemes. Traditionally, however, these schemes have

considered limiting the traffic that arrives at a particular network bottleneck. In distributed rate

limiting, the goal is to enforce a similar, aggregate per-class rate limit, but do so simultaneously

across a set of distinct network locations. Packets from each class of traffic may arrive at any lo-

cation at any time; since the limiters are topologically distributed, they are only instantaneously

aware of the local rate consumed by each traffic class, not the aggregate of a class’s usage at all



27

limiters.

3.2 Applications

Cloud-based services come in varying degrees of complexity; as the constituent services

become more numerous and dynamic, resource provisioning becomes more challenging. We ob-

serve that the distributed rate limiting problem arises in any service composed of geographically

distributed sites. In this section we describe three increasingly mundane applications, each illus-

trating how DRL empowers service providers to enforce heretofore unrealizable traffic policies,

and how it offers a new service model to customers.

Beyond the cloud-based services described earlier, we also discuss DRL in the context of

content distribution networks (CDNs), perhaps today’s canonical example of distributed resource

consumption. And while, we unfortunately do not have access to these large application scenarios,

DRL may also be deployed across Internet testbeds, such as PlanetLab, to control resource

consumption for particular users or applications.

3.2.1 Limiting cloud-based services

Cloud-based services promise a “utility” computing abstraction in which clients see a

unified service and are unaware that the system stitches together independent physical sites to

provide cycles, bandwidth, and storage for a uniform purpose. In this context, we are interested

in rate-based resources that clients source from a single provider across many sites or hosting

centers.

For clouds, distributed rate limiting provides the critical ability for resource providers

to control the use of network bandwidth as if it were all sourced from a single site. A provider

runs DRL across its sites, setting global limits on the total network usage of particular traffic

classes or clients. Providers are no longer required to migrate requests to accommodate static

bandwidth limits. Instead, the available bandwidth gravitates towards the sites with the most
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demand. Alternatively, clients may deploy DRL to control aggregate usage across providers as

they see fit. DRL removes the artificial separation of access metering and geography that results

in excess cost for the client and/or wasted resources for service providers.

3.2.2 Content distribution networks

While full-scale cloud-based computing is in its infancy, simple cloud-based services such

as content-distribution networks (CDNs) are prevalent today and can benefit from distributed

rate limiting. CDNs such as Akamai provide content replication services to third-party Web

sites. By serving Web content from numerous geographically diverse locations, CDNs improve

the performance, scalability, and reliability of Web sites. In many scenarios, CDN operators

may wish to limit resource usage either based on the content served or the requesting identity.

Independent rate limiters are insufficient, however, as content can be served from any of numerous

mirrors around the world according to fluctuating demand.

Using DRL, a content distribution network can set per-customer limits based upon

service-level agreements. The CDN provides service to all sites as before, but simply applies

DRL to all out-bound traffic for each site. In this way, the bandwidth consumed by a customer is

constrained, as is the budget required to fund it, avoiding the need for CDNs to remove content

for customers who cannot pay for their popularity.1 Alternatively, the CDN can use DRL as

a protective mechanism. For instance, the CoDeeN content distribution network was forced to

deploy an ad-hoc approach to rate limit nefarious users across proxies [205]. DRL makes it simple

to limit the damage on the CDN due to such behavior by rate limiting traffic from an identified

set of users. In summary, DRL provides CDNs with a powerful tool for managing access to their

clients’ content.

1For example, Akamai customers are typically not rate limited and billed in arrears for actual ag-
gregate usage, leaving them open to potentially large bills. If demand dramatically exceeds expectation
and/or their willingness to pay, manual intervention is required [5].
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3.2.3 Internet testbeds

PlanetLab supports the deployment of long-lived service prototypes. Each PlanetLab

service runs in a slice—essentially a fraction of the entire global testbed consisting of 1/N of each

machine. Currently PlanetLab provides work-conserving bandwidth limits at each individual site,

but the system cannot coordinate bandwidth demands across multiple machines [84].

DRL dynamically apportions bandwidth based upon demand, allowing PlanetLab ad-

ministrators to set bandwidth limits on a per-slice granularity, independent of which nodes a slice

uses. In the context of a single PlanetLab service, the service administrator may limit service to

a particular user. In Section 3.5.9 we show that DRL provides effective limits for a PlanetLab

service distributed across North America. In addition, while we focus upon network rate limiting

in this chapter, we have begun to apply our techniques to control other important rate-based

resources such as CPU.

3.2.4 Wireless metropolitan-area networks

In recent years, many cities have begun to deploy wireless Internet service in many public

spaces such as outdoor areas and airports. Indeed, many are considering (and a few already have)

open city-wide deployments [193]. As with all free, public resources, access must be controlled to

ensure fair access to all users. In particular, we can consider independent traffic classes such as

Web downloads or peer-to-peer file sharing. Because users may actually be communicating with

other hosts inside the access network itself (with peer-to-peer file sharing software, for example),

limiting at the gateway to the Internet is unlikely to effectively manage network utilization.

Instead, by limiting the total usage by particular aggregates—all peer-to-peer traffic receives a

maximum aggregate service rate regardless of location or access point, for example—the city can

appropriately apportion capacity across traffic classes.
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3.2.5 VPN service

Today, large, multinational businesses often purchase network access from ISPs at each

physical location. In such an access model, each location leases a solitary Internet connection of

some bandwidth—this capacity is independent of the business’s other locations and their usage.

Had the company been physically centralized, it likely would have preferred to lease a single line

and had its usage metered in aggregate. The artificial separation of the access metering due to

geography may result in excess cost and/or wasted resources: if half the company is working and

the other half is sleeping, the bandwidth from one location cannot be used at another. This is

especially true if the ISP provides a burstable charging model, as the increased multiplexing on

the single link is likely to decrease the traffic variance.

DRL allows an ISP to logically join such physically dispersed resources, treating them as

a single pipe leased to the customer. Thus, the company can purchase fixed network bandwidth

world-wide; the ISP can both meet and constrain the demand at that limit. This arrangement

is mutually beneficial: the company can use network resources irrespective of geography as its

needs change and the ISP can support more customers while provisioning, in aggregate, less

bandwidth.

Such a physical separation should not require a logical separation of resources. Instead,

with DRL, the company can purchase some fixed network bandwidth world-wide; the ISP can

both meet and constrain the demand at that limit. This arrangement is mutually beneficial:

the company can use network resources irrespective of geography as its needs change and the

ISP can gain customers with this attractive access model while guaranteeing, in aggregate, less

bandwidth.

3.2.6 Assumptions and scope

Like centralized rate limiting mechanisms, distributed rate limiting does not provide

QoS guarantees. Thus, when customers pay for a given level of service, providers must ensure
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the availability of adequate resources for the customer to attain its given limit. In the extreme,

a provider may need to provision each limiter with enough capacity to support a service’s entire

aggregate limit. Nevertheless, we expect many deployments to enjoy considerable benefits from

statistical multiplexing. Determining the most effective provisioning strategy is worthy of future

study.

The goal of this work is to discover DRL mechanisms that are both accurate and re-

sponsive, allowing the identity to attain the limit just as it would were it crossing a single pipe.

Furthermore, we assume that mechanisms are already in place to quickly and easily identify traf-

fic belonging to a particular service [124]. In many cases such facilities, such as simple address

or protocol-based classifiers, already exist and can be readily adopted for use in a distributed

rate limiter. In others, we can leverage recent work on network capabilities [161, 210] to provide

unforgeable means of attribution. Finally, without loss of generality, we discuss our solutions in

the context of a single service; multiple services can be limited in the same fashion.

3.3 Algorithms

We are concerned with coordinating a set of topologically distributed limiters to enforce

an aggregate traffic limit while retaining the behavior of a centralized limiter. That is, a receiver

should not be able to tell whether the rate limit is enforced at one or many locations simultane-

ously. Specifically, we aim to approximate a centralized token-bucket traffic-policing mechanism.

We choose a token bucket as a reference mechanism for a number of reasons: it is simple, reason-

ably well understood, and commonly deployed in Internet routers. Most importantly, it makes

instantaneous decisions about a packet’s fate—packets are either forwarded or dropped—and so

does not introduce any additional queuing.

We do not assume anything about the distribution of traffic across limiters. Thus, traffic

may arrive at any or all of the limiters at any time. We use a peer-to-peer limiter architecture:

each limiter is functionally identical and operates independently. The task of a limiter can be
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split into three separate subtasks: estimation, communication, and allocation. Every limiter

collects periodic measurements of the local traffic arrival rate and disseminates them to the other

limiters. Upon receipt of updates from other limiters, each limiter computes its own estimate of

the global aggregate arrival rate that it uses to determine how to best service its local demand

to enforce the global rate limit.

We do not innovate in estimation or communication; we focus on the appropriate traffic

metrics to estimate and the allocation mechanism to deploy at each limiter.

3.3.1 Estimation and communication

We measure traffic demand in terms of bytes per unit time. Each limiter maintains an

estimate of both local and global demand. Estimating local arrival rates is well-studied [76, 196];

we employ a strategy that computes the average arrival rate over fixed time intervals and applies

a standard exponentially-weighted moving average (EWMA) filter to these rates to smooth out

short-term fluctuations. The estimate interval length and EWMA smoothing parameter directly

affect the ability of a limiter to quickly track and communicate local rate changes; we determine

appropriate settings in Section 3.5.2.

To separate the rate of smoothing from the actual estimate interval, our EWMA weight

is defined per unit time as opposed to per estimate interval. Given this parameter and an estimate

interval, we can compute the actual EWMA weight as k
√

α where k is the number of estimate

intervals per second and α is the per-second EWMA weight.

At the end of each estimate interval, local changes are merged with the current global

estimate. In addition, each limiter must disseminate changes in local arrival rate to the other

limiters. The simplest form of communication fabric is a broadcast mesh. While fast and ro-

bust, a full mesh is also extremely bandwidth-intensive (requiring O(N2) update messages per

estimate interval). Instead, we implement a gossip protocol inspired by Kempe et al. [103]. Such

“epidemic” protocols have been widely studied for distributed coordination; they require little to
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no communication structure, and are robust to link and node failures [58]. Our gossip algorithm

computes global sums: at every estimate interval, each limiter sends its current information

about the average (which is represented as a sum and a weight—each gossip update contains 20

bytes of message data).

At the end of each estimate interval, limiters select a fixed number of randomly chosen

limiters to update; limiters use any received updates to update their global demand estimates.

The number of limiters contacted—the gossip branching factor—is a parameter of the system.

We communicate updates via a UDP-based protocol that is resilient to loss and reordering; for

now we ignore failures in the communication fabric and revisit the issue in Section 3.5.8. Each

update packet is 48 bytes, including IP and UDP headers.

Limiters may lack sufficient bandwidth to communicate rate updates. More sophisti-

cated communication fabrics may reduce coordination costs using structured approaches [79];

we defer an investigation to future work. Another option is to locally filter updates or apply

hysteresis to reduce communication costs. In this case, a limiter generates a new update only if

it differed from its last advertised value by more than a certain factor2. Thus the system does

not communicate when the arriving demand is stable. We have tested this approach, and have

found that this optimization significantly reduces cost with only a small compromise in accuracy.

3.3.2 Allocation

Having addressed estimation and communication mechanisms, we now consider how

each limiter can combine local measurements with global estimates to determine an appropriate

local limit to enforce. A natural approach is to build a global token bucket (GTB) limiter that

emulates the fine-grained behavior of a centralized token bucket. Recall that arriving bytes

require tokens to be allowed passage; if there are insufficient tokens, the token bucket drops

packets. The rate at which the bucket regenerates tokens dictates the traffic limit. In GTB, each

2This is straightforward to apply in the case of a full mesh. In the case of gossip, a limiter must still
propagate an update on behalf of other limiters for a certain number of rounds. This could be resolved
by associating a TTL with each update.
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GTB-Update-Token-Bucket(P : Packet)

1 elapsed ← (lastupdate − now)

2 demand ←
n
∑

j 6=i

rj

3 tokencount ← tokencount + (limit · elapsed)

4 tokencount ← Min(bucketsize, tokencount)

5 tokencount ← tokencount − (demand/2 · elapsed)

6 if tokencount ≥ length(P )

7 tokencount ← tokencount − length(P )

8 forward P

9 else

10 drop P

11 tokencount ← tokencount − (demand/2 · elapsed)

12 tokencount ← Max(0, tokencount)

13 bytecount ← bytecount + length(P )

GTB-Handle-Packet(P : Packet)

14 GTB-Update-Token-Bucket(P )

GTB-Recv-Update-Msg(M : Msg)

15 GTB-Update-Token-Bucket(NULL)

16 store M

Estimate()

17 est ← bytecount / (now − lasttime)

18 lasttime ← now

19 bytecount ← 0

20 ri ← (ri · α) + (est·(1− α))

21 propagate ri

Figure 3.1 Pseudocode for GTB. We denote the local limiter as i; rj is the local knowledge of
demand at limiter j, so ri corresponds to the local demand estimate. α as the EWMA weight.
We save tokencount and lasttime between calls to GTB-Update-Token-Bucket.
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GRD-Handle-Packet(P : Packet)

1 demand ←
n
∑

i

ri

2 bytecount ← bytecount+Length(P )

3 if demand > limit then

4 dropprob ← (demand − limit) / demand

5 if Rand() < dropprob then

6 Drop(P )

7 return

8 Forward(P )

Figure 3.2 Pseudocode for GRD. Each value ri corresponds to the current estimate of the rate
at limiter i.

limiter maintains its own global estimate and uses reported arrival demands at other limiters to

estimate the rate of drain of tokens due to competing traffic.

Figure 3.1 shows the pseudo-code of a GTB limiter. Specifically, each limiter’s token

bucket refreshes tokens at the global rate limit, but removes tokens both when bytes arrive locally

and to account for expected arrivals at other limiters. At the end of every estimate interval, each

limiter computes its local arrival rate and sends this value to other limiters via the communication

fabric. Each limiter sums the most recent values it has received for the other limiters and removes

tokens from its own bucket at this “global” rate until a new update arrives.

As shown in Section 3.5.1, however, GTB is highly sensitive to stale observations that

continue to remove tokens at an outdated rate, making it impractical to implement at large scale

or in lossy networks.

Global random drop

Instead of emulating the precise behavior of a centralized token bucket, we observe

that one may instead emulate the higher-order behavior of a central limiter. For example, we can
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ensure the rate of drops over some period of time is the same as in the centralized case, as opposed

to capturing the burstiness of packet drops—in this way, we emulate the rate enforcement of a

token bucket but not its burst limiting. Figure 3.2 presents the pseudocode for a global random

drop (GRD) limiter that takes this approach. Like GTB, GRD monitors the aggregate global

input demand, but uses it to calculate a packet drop probability. GRD drops packets with a

probability proportional to the excess global traffic demand in the previous interval (line 4).

Thus, the number of drops is expected to be the same as in a single token bucket; the aggregate

forwarding rate should be no greater than the global limit.

GRD somewhat resembles RED queuing in that it increases its drop probability as the

input demand exceeds some threshold [75]. Because there are no queues in our limiter, however,

GRD requires no tuning parameters of its own (besides the estimator’s EWMA and estimate

interval length). In contrast to GTB, which attempts to reproduce the packet-level behavior of a

centralized limiter, GRD tries to achieve accuracy by reproducing the number of losses over longer

periods of time. It does not, however, capture short-term effects. For inherently bursty protocols

like TCP, we can improve short-term fairness and responsiveness by exploiting information about

the protocol’s congestion control behavior.

Flow proportional share

One of the key properties of a centralized token bucket is that it retains inter-flow fairness

inherent to transport protocols such as TCP. Given the prevalence of TCP in the Internet, and

especially in modern cloud-based services, we design a flow proportional share (FPS) limiter that

uses domain-specific knowledge about TCP to emulate a centralized limiter without maintaining

detailed packet arrival rates. To do so, we compute the demand at each limiter in terms of the

number of TCP flows and set limits at all limiters proportionally.

Each FPS limiter uses a token bucket for rate limiting—thus, each limiter has a local

rate limit. Unlike GTB, which renews tokens at the global rate, FPS dynamically adjusts its

local rate limit in proportion to a set of weights computed every estimate interval. These weights
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are based upon the number of live flows at each limiter and serve as a proxy for demand; the

weights are then used to enforce max-min fairness between congestion-responsive flows [28]. While

this approach should be fair for any congestion-responsive protocols that approximate max-min

fairness (such as equation-based congestion control [74]), we describe FPS in the context of TCP.

The primary challenge in FPS is estimating TCP demand. In the previous designs,

each rate limiter estimates demand by measuring packets’ sizes and the rate at which it receives

them; this accurately reflects the byte-level demand of the traffic sources. In contrast, FPS must

determine demand in terms of the number of TCP flows present, which is independent of arrival

rate. Furthermore, since TCP always attempts to increase its rate, a single flow consuming all

of a limiter’s rate is nearly indistinguishable from 10 flows doing the same. There is a slight

difference between these scenarios: larger flow aggregates have smaller demand oscillations when

desynchronized [13]. Since TCP is periodic, we considered distinguishing TCP flow aggregates

based upon the component frequencies in the aggregate via the FFT. However, we found that

the signal produced by TCP demands is not sufficiently stationary. Nevertheless, we would like

that a 10-flow aggregate receive 10 times the weight of a single flow.

Our approach to demand estimation in FPS is shown in Figure 3.3. Flow aggregates

are in one of two states. If the aggregate under-utilizes the allotted rate (local limit) at a limiter,

then all constituent flows must be bottlenecked. In other words, the flows are all constrained

elsewhere. On the other hand, if the aggregate either meets or exceeds the local limit, we say

that one or more of the constituent flows is unbottlenecked—for these flows the limiter is the

bottleneck.

We calculate flow weights with the function FPS-Estimate. If flows were max-min fair,

then each unbottlenecked flow would receive approximately the same rate. We therefore count a

weight of 1 for every unbottlenecked flow at every limiter. Thus, if all flows were unbottlenecked,

then the demand at each limiter is directly proportional to its current flow count. Setting the

local weight to this number results in max-min fair allocations. We use the computed weight on
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FPS-Estimate()

1 for each flow f in sample set

2 Estimate(f)

3 localdemand ← ri

4 if localdemand ≥ locallimit then

5 maxflowrate ← MaxRate(sample set)

6 idealweight ← locallimit / maxflowrate

7 else

8 remoteweights ←
n
∑

j 6=i

wj

9 idealweight ← localdemand·remoteweights

limit−localdemand

10 locallimit ← idealweight·limit

remoteweights+idealweight

11 Propagate(idealweight)

FPS-Handle-Packet(P : Packet)

1 if Rand() < resampleprob then

2 add Flow(P ) to sample set

3 Token-Bucket-Limit(P )

Figure 3.3 Pseudocode for FPS. wi corresponds to the weight at each limiter i that represents
the normalized flow count (as opposed to rates ri as in GRD).

line 10 of FPS-Estimate to proportionally set the local rate limit.

A seemingly natural approach to weight computation is to count TCP flows at each

limiter. However, flow counting fails to account for the demands of TCP flows that are bottle-

necked: 10 bottlenecked flows that share a modem do not exert the same demands upon a limiter

as a single flow on an OC-3. Thus, FPS must compute the equivalent number of unbottlenecked

TCP flows that an aggregate demand represents. Our primary insight is that we can use TCP

itself to estimate demand: in an aggregate of TCP flows, each flow will eventually converge to



39

its fair-share transmission rate. This approach leads to the first of two operating regimes:

Local arrival rate ≥ local rate limit. When there is at least one unbottlenecked flow at

the limiter, the aggregate input rate is equal to (or slightly more than) the local rate limit. In

this case, we compute the weight by dividing the local rate limit by the sending rate of an un-

bottlenecked flow, as shown on lines 5 and 6 of FPS-Estimate. Intuitively, this allows us to

use a TCP flow’s knowledge of congestion to determine the amount of competing demand. In

particular, if all the flows at the provider are unbottlenecked, this yields a flow count without

actual flow counting.

Thus, to compute the weight, a limiter must estimate an unbottlenecked flow rate. We

can avoid per-flow state by sampling packets at a limiter and maintaining byte counters for a

constant-size flow set. We assume that the flow with the maximum sending rate is unbottlenecked.

However, it is possible that our sample set will contain only bottlenecked flows. Thus, we

continuously resample and discard small flows from our set, thereby ensuring that the sample set

contains an unbottlenecked flow. We have empirically determined settings for re-sampling in our

implementation; the parameters seem to work irrespective of flow properties. We leave a further

exploration of this parameter to future work.

It is likely that we will select an unbottlenecked flow in the long run for two reasons.

First, since we uniformly sample packets, an unbottlenecked flow is more likely to be picked than

a bottlenecked flow. Second, a sample set that contains only bottlenecked flows results in the

weight being overestimated, which increases the local rate limit, causes unbottlenecked flows to

grow, and makes them more likely to be chosen subsequently.

To account for bottlenecked flows, FPS implicitly normalizes the weight by scaling

down the contribution of such flows proportional to their sending rates. A bottlenecked flow

only contributes a fraction equal to its sending rate divided by that of an unbottlenecked

flow. For example, if a bottlenecked flow sends at 10 Kbps, and the fair share of an unbottle-

necked flow is 20 Kbps, the bottlenecked flow counts for half the weight of an unbottlenecked flow.
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Local arrival rate < local rate limit. When all flows at the limiter are bottlenecked,

there is no unbottlenecked flow whose rate can be used to compute the weight. Since the flow

aggregate is unable to use all the rate available at the limiter, we compute a weight that, based

on current information, sets the local rate limit to be equal to the local demand (line 9 of FPS-

Estimate).

A limiter may oscillate between the two regimes: entering the second typically returns

the system to the first, since the aggregate may become unbottlenecked due to the change in

local rate limit. As a result, the local rate limit is increased during the next allocation, and the

cycle repeats. We note that this oscillation is necessary to allow bottlenecked flows to become

unbottlenecked should additional capacity become available elsewhere in the network; like the

estimator, we apply an EWMA to smooth this oscillation. (In the next section we show that

FPS is stable—given stable input demands, FPS remains at the correct allocation of weights

among limiters once it arrives in that state. It remains an open question, however, whether FPS

converges under all conditions, and if so, how quickly.)

Finally, TCP’s slow start behavior complicates demand estimation. Consider the arrival

of a flow at a limiter that has a current rate limit of zero. Without buffering, the flow’s SYN will

be lost and the flow cannot establish its demand. To combat this, one natural approach is to

allot a percentage of the aggregate rate limit as slack at each node to allow for the start of new

flows. Unfortunately, this wastes resources, as nodes that are completely unused still consume

rate that could be used elsewhere.

Thus, we allow bursting of the token bucket when the local rate limit is zero to allow

a TCP flow in slow start to send a few packets before losses occur. When the allocator detects

nonzero input demand, it treats the demand as a bottlenecked flow for the first estimate interval.

As a result, FPS allocates rate to the flow equivalent to its instantaneous rate during the beginning

of slow start, thus allowing it to continue to grow.
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3.3.3 Stability

Here we show that FPS correctly stabilizes to the “correct” allocations at all limiters

in the presence of both unbottlenecked and bottlenecked flows. Our goal is not to exhaustively

prove convergence properties about the algorithm, but simply determine whether it will remain

stable—when the algorithm produces the correct allocation between (idealized) TCP flows, it

will continue to correctly allocate rate.

First, we present a model of TCP estimation over n limiters. Let a1, a2, . . . , an be the

number of unbottlenecked flows at limiters 1 to n respectively. Similarly, let B1, B2, . . . , Bn be the

local bottlenecked flow rates (which may include multiple flows). At the ith limiter, there exists

a local rate limit, li. These limits are subject to the constraint that l1 + l2 + · · ·+ ln = L, where

L is the global rate limit. Let U = L −
∑

i Bi represent the total amount of rate available for

unbottlenecked flows. Let A =
∑

i ai represent the total number of unbottlenecked flows across

all limiters. Given these values, a TCP estimator outputs a tuple of weights (w1, w2, . . . , wn)

that are used by FPS to assign rate limits at all limiters. Suppose we are given perfect global

knowledge and are tasked to compute the correct allocations at all limiters. The allocation would

be

I = (U ·
a1

A
+ B1, U ·

a2

A
+ B2, . . . , U ·

an

A
+ Bn).

Note that these weights are also equal to the actual rate limits assigned at each node. This

corresponds to an allocation which would result for each limiter’s flow aggregate had all flows

(globally) been forced through a single pipe of capacity L.

FPS first estimates the rate of a single unbottlenecked flow at each limiter. Once

stabilized, such a flow at limiter number i will receive a rate f (where li is the current rate limit

at limiter i):

f =
li −Bi

ai

.

Given these flow rates, FPS will compute a new weight wi at each limiter:

wi =
li · ai

li −Bi

.
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Once FPS arrives at the ideal allocation, it will remain at the ideal allocation in the absence

of any demand changes. That is, suppose (l1, . . . , ln) = (I1, . . . , In). We claim that the newly

computed weights (w1, . . . , wn) result in the same allocation; equivalently,

w1

w1 + · · ·+ wn

=
I1

I1 + · · ·+ In

.

The weights computed given this starting state are, for each i,

wi =
(U · ai

A
+ Bi) · ai

(U · ai

A
+ Bi)−Bi

.

Thus, considering the allocation at limiter 1,

w1

w1 + · · ·+ wn

=
Ua1+AB1

U
Ua1+AB1

U
+ · · ·+ Uan+ABn

U

,

which is equal to

Ua1 + AB1

Ua1 + AB1 + · · ·+ Uan + ABn

=
I1

I1 + · · ·+ In

,

the ideal allocation fraction for limiter 1. The allocations at other limiters are analogous.

3.4 Methodology

Given the problem of distributed rate limiting, how might we conclude that a particular

limiter design is good and for what parameters? To this end, we appeal to centralized behavior—

for the representative metrics we detail below, we aim to determine how close the DRL system’s

behavior is to that of a centralized token bucket limiter.

Traffic policing mechanisms can affect packets and flows on several time scales; partic-

ularly, we can aim to emulate packet-level behavior or flow-level behavior. However, packet-level

behavior is non-intuitive, since applications typically operate at the flow level. Even in a single

limiter, any one measure of packet-level behavior fluctuates due to randomness in the physical

system, though transport-layer flows may achieve the same relative fairness and throughput.

This implies a weaker, but tractable goal of functionally equivalent behavior. To this end, we

measure limiter performance using aggregate metrics over real transport-layer protocols.
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3.4.1 Metrics

We study three metrics to determine the fidelity of limiter designs: utilization, flow

fairness, and responsiveness. The basic goal of a distributed rate limiter is to hold aggregate

throughput across all limiters below a specified global limit. To establish fidelity we need to

consider utilization over different time scales. Achievable throughput in the centralized case

depends critically on the traffic mix. Different flow arrivals, durations, round trip times, and

protocols imply that aggregate throughput will vary on many time scales. For example, TCP’s

burstiness causes its instantaneous throughput over small time scales to vary greatly. A limiter’s

long-term behavior may yield equivalent aggregate throughput, but may burst on short time

scales. Note that, since our limiters do not queue packets, some short-term excess is unavoidable

to maintain long-term throughput. Particularly, we aim to achieve fairness equal to or better

than that of a centralized token bucket limiter.

Fairness describes the distribution of rate across flows. We employ Jain’s fairness index

to quantify the fairness across a flow set [91]. The index considers k flows where the throughput

of flow i is xi. The fairness index f is between 0 and 1, where 1 is completely fair (all flows share

bandwidth equally):

f =

(

∑k
i=1

xi

)2

k
(

∑k
i=1

x2
i

)

We must be careful when using this metric to ascertain flow-level fidelity. Consider a set of

identical TCP flows traversing a single limiter. Between runs, the fairness index will show

considerable variation; establishing the flow-level behavior for one or more limiters requires us

to measure the distribution of the index across multiple experiments. Additional care must be

taken when measuring Jain’s index across multiple limiters. Though the index approaches 1 as

flows receive their fair share, skewed throughput distributions can yield seemingly high indices.

For example, consider 10 flows where 9 achieve similar throughput while 1 gets nothing; this

results in the seemingly high fairness index of 0.9. If we consider the distribution of flows across

limiters—the 9 flows go through one limiter and the 1 flow through another—the fairness index
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does not capture the poor behavior of the algorithm. Nevertheless, such a metric is necessary

to help establish the flow-level behavior of our limiters, and therefore we use it as a standard

measure of fairness with the above caveat. We point out discrepancies when they arise.

3.4.2 Implementation

To perform rate limiting on real flows without proxying, we use user-space queuing

in iptables on Linux to capture full IP packets and pass them to the designated rate limiter

without allowing them to proceed through kernel packet processing. Each rate limiter either

drops the packet or forwards it on to the destination through a raw socket. We use similar, but

more restricted functionality for VNET raw sockets in PlanetLab to capture and transmit full

IP packets. Rate limiters communicate with each other via UDP. Each gossip message sent over

the communication fabric contains a sequence number in addition to rate updates; the receiving

limiter uses the sequence number to determine if an update is lost, and if so, compensates by

scaling the value and weight of the newest update by the number of lost packets. Note that

all of our experiments rate limit traffic in one direction; limiters forward returning TCP ACKs

irrespective of any rate limits.

3.4.3 Evaluation framework

We evaluate our limiters primarily on a local-area emulation testbed using Model-

Net [200], which we use only to emulate link latencies. A ModelNet emulation tests real, deploy-

able prototypes over unmodified, commodity operating systems and network stacks, while pro-

viding a level of repeatability unachievable in an Internet experiment. Running our experiments

in a controlled environment helps us gain intuition, ensures that transient network congestion,

failures, and unknown intermediate bottleneck links do not confuse our results, and allows direct

comparison across experiments. We run the rate limiters, traffic sources, and traffic sinks on

separate endpoints in our ModelNet network topology. All source, sink, and rate limiter ma-
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Figure 3.4 Time series of forwarding rate for a centralized limiter and our three limiting al-
gorithms in the baseline experiment—3 TCP flows traverse limiter 1 and 7 TCP flows traverse
limiter 2.

chines run Linux 2.6.9. TCP sources use New Reno with SACK enabled. We use a simple mesh

topology to connect limiters and route each source and sink pair through a single limiter. The

virtual topology connects all nodes using 100-Mbps links.

3.5 Experiments

Our evaluation has two goals. The first is to establish the ability of our algorithms to

reproduce the behavior of a single limiter in meeting the global limit and delivering flow-level

fairness. These experiments use only 2 limiters and a set of homogeneous TCP flows. Next we

relax this idealized workload to establish fidelity in more realistic settings. These experiments
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Figure 3.5 Delivered forwarding rate for the aggregate at different time scales—each row repre-
sents one run of the baseline experiment across two limiters with the “instantaneous” forwarding
rate computed over the stated time period.

help achieve our second goal: to determine the effective operating regimes for each design. For

each system we consider responsiveness, performance across various traffic compositions, and

scaling, and vary the distribution of flows across limiters, flow start times, protocol mix, and

traffic characteristics. Finally, as a proof of concept, we deploy our limiters across PlanetLab to

control a mock-up of a simple cloud-based service.

3.5.1 Baseline

The baseline experiment consists of two limiters configured to enforce a 10-Mbps global

limit. We load the limiters with 10 unbottlenecked TCP flows; 3 flows arrive at one limiter while 7

arrive at the other. We choose a 3-to-7 flow skew to avoid scenarios that would result in apparent

fairness even if the algorithm fails (which would occur in the case of a 1-to-9 flow skew). The

reference point is a centralized token-bucket limiter (CTB) servicing all 10 flows. We fix flow and

inter-limiter round trip times (RTTs) to 40 ms, and token bucket depth to 75,000 bytes—slightly

greater than the bandwidth-delay product, and, for now, use a loss-free communication fabric.

Each experiment lasts 60 seconds (enough time for TCP to stabilize), the estimate interval is 50
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Figure 3.6 Quantile-quantile plots of a single token bucket vs. distributed limiter implementa-
tions. For each point (x, y), x represents a quantile value for fairness with a single token bucket
and y represents the same quantile value for fairness for the limiter algorithm.

ms, and the 1-second EWMA parameter is 0.1; we consider alternative values in the next section.

Figure 3.4 plots the packet forwarding rate at each limiter as well as the achieved

throughput of the flow aggregate. In all cases, the aggregate utilization is approximately 10

Mbps. We look at smaller time scales to determine the extent to which the limit is enforced.

Figure 3.5 shows histograms of delivered “instantaneous” forwarding rates computed over two

different time periods, thus showing whether a limiter is bursty or consistent in its limiting. All

designs deliver the global limit over 1-second intervals; both GTB and GRD, however, are bursty

in the short term. By contrast, FPS closely matches the rates of CTB at both time scales. We

believe this is because FPS uses a token bucket to enforce local limits. It appears that when

enforcing the same aggregate limit, the forwarding rate of multiple token buckets approximates

that of a single token bucket even at short time scales.

Returning to Figure 3.4, the aggregate forwarding rate should be apportioned between

limiters in about a 3-to-7 split. GTB clearly fails to deliver in this regard, but both GRD and FPS

appear approximately correct upon visual inspection. We use Jain’s fairness index to quantify the

fairness of the allocation. For each run of an experiment, we compute one fairness value across
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Figure 3.7 Quantile-quantile plots of a single token bucket vs. a single random drop limiter.

all flows, irrespective of the limiter at which they arrive. Repeating this experiment 10 times

yields a distribution of fairness values. We use quantile-quantile plots to compare the fairness

distribution of each limiter to the centralized token bucket (CTB). Recall that an important

benchmark of our designs is their ability to reproduce a distribution of flow fairness at least as

good as that of CTB. If they do, their points will closely follow the x = y line; points below the

line are less fair, indicating poor limiter behavior and points above the line indicate that the rate

limiting algorithm produced better fairness than CTB.

Figure 3.6 compares distributions for all algorithms in our baseline experiment. GTB

has fairness values around 0.7, which corresponds to the 7-flow aggregate unfairly dominating the

3-flow aggregate. This behavior is clearly visible in Figure Figure 3.4(b), where the 7-flow limiter

receives almost all the bandwidth. GRD and FPS, on the other hand, exhibit distributions that

are at or above that of CTB. GRD, in fact, has a fairness index close to 1.0—much better than

CTB. We verify this counter-intuitive result by comparing the performance of CTB with that

of a single GRD limiter (labeled “Central Random Drop” in the figure) in Figure 3.7. It is not

surprising, then, that FPS is less fair than GRD, since it uses a token bucket at each limiter to

enforce the local rate limit. In future work, we hope to experiment with a local GRD-like random
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drop mechanism instead of a token bucket in FPS; this will improve the fairness of FPS in many

scenarios.

Additionally, with homogeneous flows across a wide range of parameters—estimate in-

tervals from 10 ms to 500 ms and EWMA from 0 to 0.75—we find that GTB and GRD are

sensitive to estimate intervals, as they attempt to track packet-level behaviors. In general, GTB

exhibits poor fairness for almost all choices of EWMA and estimate interval, and performs well

only when the estimate interval is small and the EWMA is set to 0 (no filter). We conjecture that

GTB needs to sample the short-term behavior of TCP in congestion avoidance, since considering

solely aggregate demand over long time intervals fails to capture the increased aggressiveness

of a larger flow aggregate. We verified that GTB provides better fairness if we lengthen TCP’s

periodic behavior by growing its RTT. Since all results show that GTB fails with anything but

the smallest estimate interval, we do not consider it further.

GRD is sensitive to the estimate interval, but in terms of short-term utilization, not

flow fairness, since it maintains the same drop probability until it receives new updates. Thus, it

occasionally drops at a higher-than-desired rate, causing congestion-responsive flows to back off

significantly. While its long-term fairness remains high even for 500-ms estimate intervals, short-

term utilization becomes exceedingly poor. By contrast, for homogeneous flows, FPS appears

insensitive to the estimate interval, since flow-level demand is constant. Both GRD and FPS

require an EWMA to smooth input demand to avoid over-reacting to short-term burstiness.

Though neither are particularly sensitive to EWMA, we empirically determined that a reasonable

setting of the 1-second EWMA is 0.1. We use this value unless otherwise noted.

3.5.2 EWMA sweep

The baseline experiment uses only one point in the space of possible estimation intervals

and EWMA values. At this point GTB exhibits poor fairness and GRD, though fair, is bursty.

To understand this behavior we have explored changing the estimate interval and EWMA. 3.5.2
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Table 3.1 Parameter space evaluation over estimate intervals T and 1-second EWMA α. Each
entry represents the median fairness index over 5 runs of the experiment. The median for CTB
was 0.904.

T α GTB GRD FPS

10
0.0 0.922 0.912 0.838
0.01 0.653 0.997 0.881
0.1 0.712 0.996 0.856

100
0.0 0.697 0.996 0.875
0.01 0.621 0.997 0.838
0.1 0.718 0.997 0.873

500
0.0 0.670 0.969 0.843
0.01 0.688 0.981 0.879
0.1 0.720 0.993 0.824

highlights the results of our parameter sweep. Given the above baseline experiment, we examine

how the estimate interval and EWMA affect the behavior of GTB, GRD, and FPS. We are

particularly interested in the fairness, which we consider in Figure 3.8, Figure 3.9, and Figure

3.10. Next we aim to gain an intuitive, analytical understanding of the behavior of sampling and

the EWMA.

How fast must we sample to capture the behavior of TCP’s congestion avoidance such

that it can be reproduced faithfully? In an effort to gain some intuition about this question, we

can think of TCP’s AIMD as a periodic signal. For example, consider a single flow of some fixed

RTT sec bottlenecked by a token bucket of rate B bytes/sec. Assuming the token bucket is of

sufficient depth (B×RTT for a single flow or proportional to
√

n for n flows [13]) to allow TCP

to fully utilize the path, its maximum window will be of size B ·RTT bytes. After experiencing a

congestion loss, it will halve its window to B ·RTT/2, pause for RTT/2 seconds for outstanding

ACKs to return, and resume transmission of packets. Since TCP will increase its window by

1 packet per RTT, for some maximum segment size MSS, we can determine the period P ′ of

TCP’s AIMD sawtooth:

MSS

RTT
=

B ·RTT/2

P ′
.

Solving for P ′, and adding the appropriate pause time, we obtain the period P of a single TCP
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flow:

P =
B ·RTT 2

2 ·MSS
+

RTT

2
.

From this simple derivation, we now can upper-bound the frequency of a TCP sawtooth of n

flows, to be 1/(n · P ). Thus, by Nyquist’s theorem, we must sample at a frequency of at least

2/(n · P ) to be able to reproduce the signal. We note that since it is unlikely that flows will

remain synchronized, it is unlikely that the signal will be stationary on long time scales [151];

particularly, while the highest-frequency component of the signal may be less than our estimate

above in most cases, there are also cases that will result in even higher frequencies than we

estimate (the case of a flow in an aggregate of n flows that has a congestion window of at most 3

packets that hits its ceiling every RTT due to contention with other flows). Altman et al. have

determined a formula to compute the aggregate throughput for an arbitrary number of TCP

flows, though this is insufficient to compute the effective demand exerted by such flows [8].
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Figure 3.8 Quantile-quantile plots of a single token bucket vs. various DRL implementations
with a 10ms estimate interval.
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Figure 3.9 Quantile-quantile plots of a single token bucket vs. various DRL implementations
with a 100ms estimate interval.
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Figure 3.10 Quantile-quantile plots of a single token bucket vs. various DRL implementations
with a 500ms estimate interval.
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3.5.3 Flow dynamics

We now investigate responsiveness (time to convergence and stability) by observing the

system as flows arrive and depart. We sequentially add flows to a system of 5 limiters and

observe the convergence to fair share of each flow. Figure 4.7(a) shows the reference time-series

behavior for a centralized token bucket. Note that even through a single token bucket, the

system is not completely fair or stable as flows arrive or depart due to TCP’s burstiness. With a

500-ms estimate interval, GRD (Figure 4.7(b)) fails to capture the behavior of the central token

bucket. Only with an order-of-magnitude smaller estimate interval (Figure 4.7(c)) is GRD able

to approximate the central token bucket, albeit with increased fairness. FPS (Figure 4.7(d,e)),

on the other hand, exhibits the least amount of variation in forwarded rate even with a 500-ms

estimate interval, since flow-level demand is sufficiently constant over half-second intervals. This

experiment illustrates that the behavior GRD must observe occurs at a packet-level time scale:

large estimate intervals cause GRD to lose track of the global demand, resulting in chaotic packet

drops. FPS, on the other hand, only requires updates as flows arrive, depart, or change their

behavior.
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(a) Central token bucket
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(b) Global random drop with 500-ms estimate interval
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(c) Global random drop with 50-ms estimate interval
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(d) Flow proportional share 50 ms.
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Figure 3.11 Time series of forwarding rate for a flow join experiment. Every 10 seconds, a flow
joins at an unused limiter.
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Table 3.2 Goodput and delivered rates (Kbps), and fairness for bulk flows over 10 runs of the
Web flow experiment. We use mean values for goodput across experiments and use the harmonic
mean of rates (Kbps) delivered to Web flows of size (in bytes) within the specified ranges.

CTB GRD FPS

Goodput (bulk mean) 6900.90 7257.87 6989.76
(stddev) 125.45 75.87 219.55

Goodput (web mean) 1796.06 1974.35 2090.25
(stddev) 104.32 93.90 57.98

Web rate (h-mean) [0,5000) 28.17 25.84 25.71
[5000, 50000) 276.18 342.96 335.80

[50000, 500000) 472.09 612.08 571.40
[500000, ∞) 695.40 751.98 765.26

Fairness (bulk mean) 0.971 0.997 0.962

3.5.4 Traffic distributions

While TCP dominates cloud-based service traffic, the flows themselves are far from

regular in their size, distribution, and duration. Here we evaluate the effects of varying traffic

demands by considering Web requests that contend with long-running TCP flows for limiter

bandwidth. To see whether our rate limiting algorithms can detect and react to Web-service

demand, we assign 10 long-lived (bulk) flows to one limiter and the service requests to the other;

this represents the effective worst-case for DRL since short and long flows cannot exert ordinary

congestive pressures upon each other when isolated. We are interested in the ability of both

traffic pools to attain the correct aggregate utilization, the long-term fairness of the stable flows,

and the service rates for the Web flows.

Since we do not have access to traffic traces from deployed cloud-based services, we use

a prior technique to derive a distribution of Web object sizes from a CAIDA Web trace for a

high-speed OC-48 MFN (Metropolitan Fiber Network) Backbone 1 link (San Jose to Seattle)

that follows a heavy-tailed distribution [202]. We fetch objects in parallel from an Apache Web

server using httperf via a limiter. We distribute requests uniformly over objects in the trace

distribution. Requests arrive according to a Poisson process with average µ of 15.

3.5.4 gives the delivered rates for the Web flows of different sizes and the delivered

rates for the 10-flow aggregates in each scenario across 10 runs. This shows that the 10-flow
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Figure 3.12 FPS rate limiting correctly adjusting to the arrival of bottlenecked flows.
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Figure 3.13 GRD rate limiting adjusting to the arrival of bottlenecked flows.

aggregate achieved a comparable allocation in each scenario. When seen in conjunction with

the Web download service rates, it also indicates that the Web traffic aggregate in the other

limiter received the correct allocation. Considering the Web flow service rates alone, we see that

both GRD and FPS exhibit service rates close to that of a single token bucket, even for flows

of significantly different sizes. The fairness index of the long-lived flows once again shows that

GRD exhibits higher fairness than either CTB or FPS. FPS does not benefit from the fact that

it samples flow-level behavior, which, in this context, is no more stable than the packet-level

behavior observed by GRD.

3.5.5 Bottlenecked TCP flows

So far, the limiters represent the bottleneck link for each TCP flow. Here we demonstrate

the ability of FPS to correctly allocate rate across aggregates of bottlenecked and unbottlenecked

flows. The experiment in Figure 3.12 and Figure 3.13 begins as our baseline 3-to-7 flow skew

experiment where 2 limiters enforce a 10 Mbps limit. Around 15 seconds, the 7-flow aggregate

experiences an upstream 2-Mbps bottleneck, and FPS quickly re-apportions the remaining 8
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Table 3.3 Average throughput for 7 short (10-ms RTT) flows and 3 long (100 ms) RTT flows
distributed across 2 limiters.

CTB GRD FPS

Aggregate (Mbps) 10.57 10.63 10.43
Short RTT (Mbps) 1.41 1.35 0.92

(stddev) 0.16 0.71 0.15
Long RTT (Mbps) 0.10 0.16 0.57

(stddev) 0.01 0.03 0.05

Mbps of rate across the 3 flows at limiter 1. Then, at time 31, a single unbottlenecked flow

arrives at limiter 2. FPS realizes that an unbottlenecked flow exists at limiter 2, and increases

the allocation for the (7+1)-flow aggregate. In a single pipe, the 4 unbottlenecked flows would

now share the remaining 8 Mbps. Thus, limiter 2 should get 40% of the global limit, 2 Mbps

from the 7 bottlenecked flows, and 2 Mbps from the single unbottlenecked flow. By time 39, FPS

apportions the rate in this ratio.

3.5.6 Mixed TCP flow round-trip times

TCP is known to be unfair to long-RTT flows. In particular, short-RTT flows tend to

dominate flows with longer RTTs when competing at the same bottleneck, as their tighter control

loops allow them to more quickly increase their transmission rates. FPS, on the other hand, makes

no attempt to model this bias. Thus, when the distribution of flow RTTs across limiters is highly

skewed, one might be concerned that limiters with short-RTT flows would artificially throttle

them to the rate achieved by longer-RTT flows at other limiters. We conduct a slight variant

of the baseline experiment, with two limiters and a 3-to-7 flow split. In this instance, however,

all 7 flows traversing limiter 2 are “short” (10-ms RTT), and the 3 flows traversing limiter 1 are

“long” (100-ms RTT), representing a worst-case scenario. 3.5.6 shows the aggregate delivered

throughput, as well as the average throughput for short and long-RTT flows for the different

allocators. As expected, FPS provides a higher degree of fairness between RTTs, but all three

limiters deliver equivalent aggregate rates.
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Figure 3.14 Time series of forwarding rate of multi-protocol interactions. The global rate limit
is 50 Mbps and RTT is 40ms. FPS and GRD use a gossip branching factor of 3 with a 50ms
estimate interval.

3.5.7 Multi-protocol interactions

While TCP is the dominant transport protocol in use in cloud-based services today,

there may be occasion to limit a mix of protocols. In the interest of completeness, we consider

simultaneously limiting both congestion responsive and unresponsive flows by performing an

experiment with constant-bit-rate (CBR) UDP traffic joining existing TCP traffic. We initially

start three TCP flows at one limiter and seven more TCP flows at a second limiter 10 seconds

later. For the next three 10-second intervals, we start a new 10-Mbps CBR UDP flow at its own

limiter (again, a worst-case scenario), using 5 limiters in total at a global rate limit of 50 Mbps.
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Once all UDP flows have started, we terminate them in reverse order every 10 seconds. Figure

3.14 presents a time series of this experiment. As expected, FPS provides a poor emulation of the

central token bucket because it expects all flows (including UDP) to be congestion-responsive.

As a result, FPS treats each UDP flow as a bottlenecked flow, and allocates rate proportionally

to its knowledge of global weights. GRD, on the other hand, does not depend on the flow-fairness

properties of TCP, and closely matches the behavior of a centralized token bucket.

3.5.8 Scaling

We explore scalability along two primary dimensions: the number of flows, and the

number of limiters. First we consider a 2-limiter setup similar to the baseline experiment, but

with a global rate limit of 50 Mbps. We send 5000 flows to the two limiters in a 3-7 ratio:

1500 flows to the first and 3500 to the second. GRD and FPS produce utilization of 53 and

46 Mbps and flow fairness of 0.44 and 0.33 respectively. This is roughly equal to that of a

single token bucket with 5000 flows (which yielded 51 Mbps and 0.34). This poor fairness is not

surprising, as each flow has only 10 Kbps, and prior work has shown that TCP is unfair under

such conditions [141]. Nevertheless, our limiters continue to perform well with many flows.

Next, we investigate rate limiting with a large number of limiters and different inter-

limiter communication budgets, in an environment in which gossip updates can be lost. We

consider a topology with up to 490 limiters; our testbed contains 7 physical machines with 70

limiters each. Flows travel from the source through different limiter nodes, which then forward

the traffic to the sink. (We consider TCP flows here and use symmetric paths for the forward

and reverse directions of a flow.) We set the global rate limit to 50 Mbps and the inter-limiter

and source-sink RTTs to 40 ms. Our experiment setup has the number of flows arriving at each

limiter chosen uniformly at random from 0 to 5. For experiments with the same number of

limiters, the distribution and number of flows is the same. We start 1 random flow from the

above distribution every 100 ms; each flow lives for 60 seconds.
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(b) FPS fairness.

Figure 3.15 Fairness vs. number of limiters in the scaling experiment.

To explore the effect of communication budget, we vary the branching factor (br) of the

gossip protocol from 1 to 7; for a given value, each extra limiter incurs a fixed communication cost.

Figure 3.15 and Figure 3.16 show the behavior of FPS and GRD in this scaling experiment. At

its extreme there are 1249 flows traversing 490 limiters. (We stop at 490 not due to a limitation

of FPS, but due to a lack of testbed resources.) When br = 3, each extra limiter consumes
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(b) FPS delivered rate.

Figure 3.16 Delivered rate vs. number of limiters in the scaling experiment.

48× 20× 3 = 2.88 KBps. Thus, at 490 limiters, the entire system consumes a total of 1.4 MBps

of bandwidth for control communication.

We find that beyond a branching factor of 3, there is little benefit either in fairness or

utilization. Indeed, extremely high branching factors lead to message and ultimately information

loss. Beyond 50 limiters, GRD fails to limit the aggregate rate, but this is not assuaged by an
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increasing communication budget (increasing br). Instead it indicates GRD’s dependence on

swiftly converging global arrival rate estimates. In contrast, FPS, because it depends on more

slowly moving estimates of the number of flows at each limiter, maintains the limit even at 490

limiters.

This experiment shows that limiters rely upon up-to-date summaries of global infor-

mation, and these summaries may become stale when delayed or dropped by the network. In

particular, our concern lies with stale under-estimates that cause the system to overshoot the

global rate; a completely disconnected system—due to either congestion, failure, or attack—could

over-subscribe the global limit by a factor of N . We can avoid these scenarios by initializing lim-

iters with the number of peers, N , and running a light-weight membership protocol [112] to

monitor the current number of connected peers. For each disconnected peer, the limiter can re-

duce the global limit by 1

N
, and set each stale estimate to zero. This conservative policy drives the

limiters toward a 1

N
limiter (where each limiter enforces an equal fraction of the global aggregate)

as disconnections occur. More generally, though, we defer analysis of DRL under adversarial or

Byzantine conditions to future work.

3.5.9 Constraining distributed cheating

Finally, we subject FPS to inter-limiter delays, losses, and TCP arrivals and flow lengths

similar to those experienced by a greedy user of a cloud-based service. As in Section 3.5.4, we

are not concerned with the actual service being provided by the cloud or its computational load,

nor with merely preventing cheating itself—we are interested in traffic demands and the ability

of the limiters to provide useful service while enforcing the limit. Thus, we emulate a cloud-

based service by using generic Web requests as a stand-in for actual service calls. We co-locate

distributed rate limiters with 10 PlanetLab nodes distributed across North America configured to

act as component servers. Without loss of generality, we focus on limiting only out-bound traffic

from the servers; we could just as easily limit in-bound traffic as well, but that would complicate
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our experimental infrastructure. Each PlanetLab node runs Apache and serves a series of Web

objects; an off-test-bed client machine generates requests for these objects using wget. The rate

limiters enforce an aggregate global rate limit of 5 Mbps on the response traffic using a 100-ms

estimate interval and a gossip branching factor of 4, resulting in a total control bandwidth of 38.4

KBps. (We use a 100 ms interval rather than a 50 ms interval to avoid bursty update losses due

to PlanetLab per-sliver limits; we use a branching factor of 4 instead of 3 to partially compensate

for the decreased gossip rate.) The inter-limiter control traffic experienced 0.47% loss during the

course of the experiment.

Figure 3.17 shows the resulting time-series plot. Initially each content server has de-

mands to serve 3 requests simultaneously for 30 seconds, and then the total system load shifts to

focus on only 4 servers for 30 seconds, emulating a change in the service’s request load, perhaps

due to a phase transition in the service, or a flash crowd of user demand. Figure 3.17(a) shows

the base case, where a static 1

N
limiting policy cannot take advantage of unused capacity at the

other 6 sites. In contrast, FPS, while occasionally bursting above the limit, accommodates the

demand swing and delivers the full rate limit. GRD (not shown) exhibits erratic behavior due to

the high inter-limiter delays (one observed maximum RTT was 800 ms) and loss (greater than

4%) on PlanetLab.

3.6 Related work

The problem of online, distributed resource allocation is not a new one, but to our

knowledge we are the first to present a concrete realization of distributed traffic rate limiting.

Ensuring fairness across limiters can be viewed as a distributed instance of the link-

sharing problem [76]. A number of packet scheduling techniques have been developed to enforce

link-sharing policies, which provide bandwidth guarantees for different classes of traffic sharing

a single link. These techniques, such as weighted fair queuing [59], apportion link capacity

among traffic classes according to some fixed weights. These approaches differ from ours in
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Figure 3.17 A time-series graph rate limiting at 10 PlanetLab sites across North America. Each
site is a Web server, fronted by a rate limiter. Every 30 seconds total demand shifts to four
servers and then back to all 10 nodes. The top line represents aggregate throughput; other lines
represent the served rates at each limiter.

two key respects. First, by approximating generalized processor sharing [150], they allocate

excess bandwidth across back-logged classes in a max-min fair manner; we avoid enforcing any

explicit type of fairness between limiters, though FPS tries to ensure max-min fairness between

flows. Second, most class-based fair-queuing schemes aim to provide isolation between packets of

different classes. In contrast, we expose traffic at each limiter to all other traffic in the system,

preserving whatever implicit notion of fairness would have existed in the single-limiter case. As

discussed earlier, we use a token bucket to define the reference behavior of a single limiter.

There are a broad range of active queue management schemes that could serve equally well as a

centralized reference [69, 75, 17, 69, 73, 149]. Determining whether similar distributed versions

of these sophisticated AQM schemes exist is a subject of future work.

The general problem of using and efficiently computing aggregates across a distributed

set of nodes has been studied in a number of other contexts. These include distributed mon-

itoring [60], triggering [90], counting [185, 206], and data stream querying [19, 129], which we
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review in Chapter 2. Two systems in particular also estimate aggregate demand to apportion

shared resources at multiple points in a network. The first is a token-based admission architec-

ture that considers the problem of parallel flow admissions across edge routers [30]. Their goal

is to divide the total capacity fairly across allocations at edge routers by setting an edge router’s

local allocation quota in proportion to its share of the request load. However they must revert

to a first-come first-served allocation model if ever forced to “revoke” bandwidth to maintain the

right shares. Zhao et al. use a similar protocol to enforce service level agreements between server

clusters [216]. A set of layer-7 switches employ a “coordinated” request queuing algorithm to

distribute service requests in proportion to the aggregate sum of switch queue lengths.

3.7 Summary

Our work on DRL shows that it is possible to effectively limit the distributed resource

consumption of greedy users and/or service classes, and to do so while providing inter-flow fairness

and responsiveness, all with low coordination overhead. That we ensure these properties in DRL

allows for straightforward deployment of DRL in a variety of increasingly popular distributed

services. Refinements of GRD and/or FPS coupled with improved communication fabrics (per-

haps that use hysteresis) may have the potential to reduce the coordination overhead of DRL

and allow it to scale to thousands or even millions of limiters.
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Chapter 4

Decongestion Control

Thus far we have addressed the potential for cheating by potentially selfish network

users via Distributed Rate Limiting at the network layer. While DRL can constrain the band-

width consumed at many points in the network by a user or traffic class, it cannot cope with

cheating behavior by users at the transport layer—specifically, regarding congestion control. One

of the key problems in network design is ensuring that available capacity is fairly and efficiently

shared between competing end points. Traditionally, fairness has been achieved either in the

network itself using fair queuing at routers [59], or through the cooperation of end hosts using

a common congestion control protocol such as TCP. Unfortunately, both approaches have sig-

nificant drawbacks: fair queuing is expensive to implement, while end-host congestion control is

typically far from optimal and, critically, relies on the goodwill of end hosts for success [179, 187].

While the Internet has relied upon end-host cooperation for some time, ill-conceived

or intentionally-aggressive end-point behavior can drive a network without fair queuing into

congestion collapse. This scenario is a classic tragedy of the commons; individual selfish be-

havior can drive the system to a globally pessimal state, yet there is no incentive for any user

to unilaterally back off. Thus, in game-theoretic terms, the Nash equilibrium of the network

congestion-control game is particularly suboptimal [6, 116, 117, 186, 211]. Researchers have pro-

68
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posed a number of router-based enforcement mechanisms to avoid congestion collapse that vary

in both complexity and effectiveness: some maintain per-flow state to provide near perfect fair-

ness [27, 59, 76, 150, 189, 196], while others simply throttle the most aggressive senders [126, 149].

We observe that most of the complexity of both fair queuing and end-host-based conges-

tion control is due to the perceived need to avoid dropping packets: in both models, well-behaved

flows should experience little or no packet loss. Packet loss is taboo; to an Internet architect, it

immediately signifies an inefficient design likely to exhibit instability and poor performance. In

this chapter, we argue that such an implication is not fundamental. In particular, there exist de-

sign points that provide many desirable properties—including near optimal performance—while

suffering high loss rates. We focus specifically on congestion control, where researchers have

long held the belief that loss avoidance is central to high throughput. Starting with Jacobson’s

initial TCP congestion control algorithm [88], the traditional approach to end-to-end congestion

control has been to optimize network performance by tempering transmission rates in response

to loss [72]. We argue that by removing the unnecessary yoke of loss avoidance from congestion

control protocols, they can become less complex yet simultaneously more efficient, stable, and

robust.

Of course, there are a number of very good reasons to avoid loss in today’s networks.

Many of these stem from the fact that loss is often a symptom of overflowing router buffers in

the network, which can also lead to high latency, jitter, and poor fairness. Hence, one should

contemplate congestion control protocols that thrive in the face of loss solely in the absence

of queues—or at least only in the presence of very short ones. Yet queues are not an end in

and of themselves; they exist largely to smooth bursty traffic arrivals and facilitate fair resource

sharing. If these goals can be met—or obviated—through other means, then router buffers may

be removed, or at least considerably shortened.

In this chapter, we propose an alternative approach to congestion control that we call

decongestion control [162]. As opposed to previous schemes that temper transmission rates to
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arrive at an efficient, loss-free allocation of bandwidth between flows, we do not limit an end host’s

sending rate. All hosts send faster than the bottleneck link capacity, which ensures flows use

all the available bandwidth along their paths. Our architecture separates efficiency and fairness;

end hosts manage efficiency while fairness; for simplicity we focus on max-min flow fairness [89].

is enforced by the routers. (Decongestion control itself is also agnostic to the metric of fairness

desired; as with XCP, network operators are free to select among different notions of fairness by

implementing such policies in routers [97].)

We depart from previous architectures based upon network-enforced fairness by allow-

ing overloaded routers to drop packets rather than queuing them, with the aim of decreasing

the complexity and amount of resources required to enforce fairness. Our model suggests that

efficiency can be maintained without requiring senders to decrease their transmission rates in the

face of congestion.

Such an approach (sometimes referred to as a fire-hose [196]) may be dismissed due

to the potential for congestion collapse—a condition in which the network is saturated with

packets but total end-to-end goodput is low. However, congestion collapse occurs only under two

conditions: if receivers are unable to deal with high loss (so-called classical congestion collapse),

or if the network topology is such that packet drops occur deep in the network, thereby consuming

network resources that could be fruitfully consumed by other flows [72]. The first concern can

be addressed by applying efficient erasure coding [121, 133]. It is unknown whether the second

condition arises frequently in practice; it occurs rarely in the backbone topologies we study.

Thus, we argue that packet loss may not need to be avoided, and that the potential

exists to operate future networks at 100% utilization. Operating in this largely uncharted regime,

where loss is frequent but inconsequential, raises a number of new design challenges, but also

presents tremendous opportunity. We have identified several potential advantages over traditional

schemes:

Robustness. Existing congestion control protocols are susceptible to a variety of sender
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misbehaviors, many of which cannot be mitigated by router fairness enforcement. Because end

points are already forced to cope with high levels of loss and reordering in steady state, decon-

gestion is inherently more tolerant.

Efficiency. Sending packets faster than the bottleneck capacity ensures utilization of

all available network resources between source and destination. With appropriate use of erasure

codes, almost all delivered packets will be useful.

Simplicity. Because coding renders packet drops (and reordering) inconsequential,

it may be possible to simplify the design of routers and dispense with the need for expensive,

power-hungry fast line-card memory.

Stability. Decongestion transforms a sender’s main task from adjusting transmission

rate to ensuring an appropriate encoding. Unlike the former, however, one can design a protocol

that adjusts the latter without impacting other flows.

Historically, congestion control has artificially intertwined the underlying goals of ef-

ficiency, fair multiplexing of resources, and reliable delivery. Specifically, current notions of

efficiency, fairness, and reliable delivery in the Internet are inextricably tied to the behavior of

TCP. Emboldened by recent initiatives to consider new Internet architectures, we consider a blue-

sky approach and suggest that our goals should be efficiency, fairness, and reliability themselves.

Taking a step back, we might ask: “What general approaches are there to achieve these goals?” In

his seminal paper, Nagle observed that solutions to congestion control (and more generally, to the

tragedy of the commons) are either authoritarian, cooperative, or “market-based” [143]. Using

this taxonomy, today’s Internet is largely cooperative with occasional deployments of authoritar-

ian router-based enforcement; we offer decongestion control as a third path: a practical approach

to Internet-wide congestion control that requires neither compliant end hosts nor high-powered

authoritarian routers.

Given our substantial departure from conventional congestion control, we do not at-

tempt to exhaustively address all of the details needed for a complete protocol, a process which
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requires iteration via real-world deployment. Instead, we make the following concrete contribu-

tions:

• We introduce the concept of decongestion control and discuss the ways in which congestion

control designs can be uncoupled from network packet loss.

• We present a rigorous study of the potential for congestion collapse in a number of realistic

backbone topologies under a variety of conditions. In particular, we confront the key

concern raised by our approach: By saturating network links, decongestion control is in

danger of wasting network resources on dead packets—packets that are transmitted over

several hops, only to be dropped before arriving at their destinations [72, 102].

• We demonstrate that while abundant, dead packets frequently do not impact network-wide

goodput when fairness is enforced by routers. We introduce the concept of zombie packets,

a far more rare, restricted class of dead packets, and show that they are the key cause of

congestion collapse.

• We propose a decongestion control algorithm that eliminates zombie packets, and imple-

ment a prototype called Opal. We evaluate several basic properties by comparing its per-

formance to TCP in simulation and identify key areas of future work, including improving

the efficiency of very short flows.

To be clear, we are not claiming that existing approaches to end-to-end congestion control are ill-

considered. Rather, we assert that a far wider design space exists than researchers have previously

explored, and evaluate the pros and cons of one particular alternative. Our simulation results

augur well for decongestion control; if the the challenges presented by short request/response

flows can be overcome, decongestion may provide an avenue to deliver performance similar or

superior to existing approaches while simultaneously alleviating a number of long-standing vexing

issues.
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4.1 Context and approach

Decongestion control is optimistic: senders always attempt to over-drive network links.

Should available capacity increase at any router due to, for example, the completion of a flow,

the remaining flows instantaneously take advantage of the freed link resources. To translate in-

creased throughput into increased goodput, senders encode flows using an erasure coding scheme

appropriate for the path loss rate experienced by the receiver.

4.1.1 Incentive compatibility

Decongestion control sidesteps many aspects of greed and malicious behavior. Because

routers enforce fairness, it is nearly impossible for users to unilaterally increase their goodput

by injecting more packets into the network. Moreover, in a network dominated by decongestion

control flows senders are transmitting at a high rate anyway. The most effective way for a sender

to increase its goodput is to adjust its coding rate, which, as previously mentioned, has no impact

on other flows. This contrasts with TCP, whose throughput can be gamed in a number of ways,

such as via simple parameter modifications by senders or via the misbehaving-receiver attacks of

Savage et al. [179].

A well-designed decongestion control protocol may be similarly more robust to mali-

cious behavior due to its time independence. Senders adjust coding rates based upon reported

throughputs—not individual packet events—so they are not as sensitive to short-term packet

behaviors as with TCP. In particular, there is little opportunity to launch well-timed bursty

“shrew” attacks [110], which have been shown to be lethal to BGP [213]. Ideally, decongestion

might reduce all attacks to bandwidth attacks: there should be nothing more effective that a

malicious source can do than send traffic at a high rate, which both routers and decongestion

end hosts are already designed to tolerate.
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4.1.2 Simplicity

Much of the complexity in today’s routers stems from the elaborate cross-connects and

buffering schemes necessary to ensure the loss-free forwarding at line rate that TCP requires.

In addition, TCP’s sensitivity to packet reordering complicates parallelizing router switch fab-

rics. Adding traditional fairness enforcement or policing mechanisms to high-speed routers even

further complicates matters [127, 149, 189, 196]. Lifting the requirements for loss-free, in-order

forwarding may enable significantly simpler and cheaper router designs. Decongestion control

requires only a fair dropping policy to enforce inter-flow fairness. A number of efficient schemes

have been proposed in the literature [95, 148], and it may be possible to further reduce the

implementation complexity in core routers [196].

In addition to their inherent complexity, a significant portion of the heat, board space,

and cost of high-end routers is due to the need for large, high-speed RAM for packet buffers.

While Appenzeller et al. have argued that smaller router buffers may suffice for large TCP flow

aggregates [13], smaller router buffers make TCP more vulnerable to bursty DoS attacks [110,

213]. (Arisoylu et al. have also studied rate allocation in networks that have small buffers [14].)

Decongestion, however, needs almost no buffering. Theoretically, this is not surprising; previous

work has shown that erasure coding can reduce the need for queuing in the network. In particular,

for networks with large numbers of flows, coding schemes can provide similar goodput by replacing

router buffers with coding windows of similar sizes [29]. Practically speaking, in addition to

reducing cost, small buffers also decrease the variance and maximum-possible end-to-end queuing

delay. In decongestion control, router buffers the role of buffers is inverted. Buffers no longer

exist to avoid losses during traffic bursts, as in traditional networks. Instead, they exist only to

ensure that output links are driven to capacity: if the offered load is roughly equal to the router’s

output link capacity, small queues are needed to absorb the variation in arrival rates. We show

in Section 4.5.2, however, that if the offered load is paced or sufficiently large, we can virtually

eliminate buffering. Moreover, small queues help to bound delay and jitter for end-to-end traffic.
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In addition to simplifying the routers themselves, decongestion control may also ease

the task of configuring and managing them. Today, traffic engineers expend a great deal of effort

to avoid overload during peak traffic times or during planned or unplanned maintenance. If

a link fails, traffic is diverted along a backup path; as a result, the backup path may become

congested, which, for TCP, can result in catastrophic performance. Decongestion control, by

contrast, can operate effectively at a lower goodput despite the high loss rates caused by severely

restricted capacity. Similarly, researchers have proposed deliberately diverting traffic through

overlays, intelligent multihoming, and source routing to improve performance and reliability.

In such systems, packets are switched across paths as traffic conditions change; additionally,

in some designs, packets are sent across multiple paths simultaneously. Decongestion control’s

insensitivity to packet loss and reordering is a perfect fit for such aggressive route change and

multipath mechanisms.

4.1.3 Stability

Traditional end-to-end congestion control protocols need to probe the network for avail-

able bandwidth [11, 70, 88, 93, 208]. While many techniques exist for conducting probes, they

all require the injection of additional traffic into the network, which may be at capacity. The

result is a bursty traffic load—which router queues must absorb—and short-term oscillations in

available bandwidth—that further complicate end hosts’ attempts to conduct measurements. We

propose that senders dynamically adjust the coding rates and methods employed based on recent

throughput rates. A key distinction between adjusting the coding methods and changing the

transmission rate, however, is that the encoding has no impact on other flows. Hence, changes

in available capacity may be less frequent than with TCP.

The challenges facing bandwidth-probing end-to-end control loops are well docu-

mented [97, 120]. In particular, Low et al. have shown analytically that TCP’s control loop

becomes oscillatory and prone to instability in high capacity and/or long-delay environments.
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Furthermore, they conjecture that it is unlikely that active queue management schemes can com-

bat this trend. This issue is particularly acute during slow start, when the sender needs to rapidly

re-discover an appropriate rate. While numerous modifications to TCP have been proposed to

improve slow-start [71], they still must rely upon complex mechanisms to help TCP rapidly

discover additional available capacity should it become available during congestion avoidance.

Moreover, even router-assisted protocols like XCP [97] are likely to be slightly inaccurate and

can only capture newly available capacity on the order of round-trip times.

4.2 Fairness enforcement

Decongestion control starts from the premise that in-network fairness enforcement is

required to limit the impact of greedy or misbehaving senders [59, 186]. The notion of enforcing

a fair share of bandwidth for flows at the router was introduced as early as 1984 by Nagle [142].

Since then, researchers have proposed countless approaches to in-network fairness enforcement

and active queue management (AQM). We hope to simplify many aspects of router design by

freeing router architects from the constraints long imposed by TCP’s unique quirks. Before

moving forward, however, it is important to precisely define what form of fairness we expect

routers to provide.

4.2.1 Defining fairness

Fairness in the Internet is inextricably tied to TCP’s notion of fairness—that is, ap-

proximate max-min fairness [89] on a per-flow basis. This flow-fair notion has endured, and, if

not principle, then perhaps pragmatism has driven the designers of competing protocols to tailor

their notions of fairness to what is “TCP-friendly.” In recent years, however, there has been a

growing call to reevaluate whether the notion of flow fairness is the right one [37]. While there

is increasing awareness of this issue, no consensus has emerged.

We use max-min flow fairness in our study of decongestion control. To be clear, we
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do not seek to be TCP friendly, nor contemplate interacting with TCP in the same network.

For now, we assume all flows in the network use decongestion. We define a “flow” to consist of

all packets between two hosts, irrespective of ports or other multiplexing, so no communicating

parties can increase their share by adding more flows [8]. In addition to aiding comparison and

understanding, we opt for max-min flow fairness for several specific reasons. First, it is similar to

TCP, and TCP’s fairness is well understood. Second, it can be implemented in routers using only

local knowledge with existing algorithms, including, but not limited to fair queuing algorithms

such as deficit round robin (DRR) [189] and fair dropping algorithms such as approximate fair

dropping (AFD) [148]. We opt to use fair dropping, AFD in particular, which benefits from O(1)

per-packet complexity, no per-class or per-flow state, and appears likely to enjoy widespread

deployment (AFD is expected to ship in the next generation of routers from Cisco). Third,

max-min fairness—but not just max-min—provides a useful property that we leverage in our

design.

4.2.2 Brickwall dropping

In an idealized model, routers implement what we term a brickwall policy, meaning,

given a fixed set of competing demands, an overloaded router provides each flow with a well-

defined maximum outgoing share of the link regardless of the amount of demand in excess of its

share that a flow offers. Concisely, throughput is not proportional to offered load: increasing a

flow’s arrival rate above its fair share will not increase its delivery rate. Most explicitly designed

router fairness mechanisms that we are aware of (including AFD) have this property. Both FIFO

and RED queuing are not brickwall policies, however. In particular, a flow can increase its share

of the bottleneck by offering more load [113].

In some sense, brickwall enforcement is the opposite of economically-oriented fairness

policies, among which Kelly’s fairness [99] is most notable. In these schemes, routers drop packets

in proportion to flow arrival rates. While it would be ideal to enforce a global, economically-
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derived fairness criterion, the approaches we are aware of require the sender to behave rationally

to perceived congestion. Moreover, such designs might also result in a change of operation that

would impact applications in unintended ways—they would magnify the benefit to those on high-

bandwidth connections, possibly undermining the spirit of fair bandwidth sharing in the Internet

as it exists today.

We believe, however, that notions of fairness other than max-min may be more appro-

priate for today’s Internet. Due to decongestion’s inherent separation of fairness enforcement

from end-host transmission, there is cause for optimism that our architecture may admit alter-

native definitions. For now, however, we suggest that max-min is more than adequate for our

initial exploration, and defer the important and interesting question of whether decongestion can

be made to work with other fairness models to future work.

4.2.3 Implications for senders

One task of the sender in decongestion control is to apportion its outgoing link ca-

pacity across flows. Because flows to different destinations will traverse various portions of the

network—and, therefore, encounter distinct bottlenecks—some flows may be able to put the ca-

pacity to more effective use. Recall that the goal in decongestion control is to over-drive the

bottleneck for each flow. The remaining question, however, is to what degree? The answer

depends on the dropping policy enforced at the routers. Bottlenecked flows, by definition, will

experience loss. In a brickwall network, bottlenecked flows do not benefit from additional load.

Any level of bandwidth over and above the flow’s bottleneck rate provides equivalent goodput

in the brickwall regime. Furthermore, links downstream of the bottleneck will not observe any

difference; we evaluate this in greater depth next.
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4.3 The impact of loss

There are two distinct impacts of packet loss, direct and indirect. Packet loss within a

flow directly reduces the throughput delivered to the intended receiver. Indirectly, packet loss

may cause inefficient use of upstream network resources: flows other than the one experiencing

loss may have been able to put the upstream capacity to better use.

4.3.1 Erasure coding

The congestion collapses of 1986 and 1987 gave networking researchers pause, and led

to the pioneering work of Jacobson to develop end-to-end congestion control [88]. This type of

congestion collapse—termed classical congestion collapse by Floyd and Fall [72]—occurs when

the network is busy forwarding packets that are duplicates or otherwise irrelevant when they

eventually arrive at their destination. (Nagle observed that networks with infinite buffers are

especially susceptible [143]). TCP’s congestion control mechanisms seek to ensure that a net-

work of TCP senders avoids classical congestion collapse by judicious use of ARQ (automatic

repeat request), and enhancements such as SACK further ensure that only useful packets will be

retransmitted.

Erasure codes provide an alternative mechanism for transport protocols to ensure that

delivered packets are useful. Their application in networking is not new. Following the vast

literature comparing ARQ schemes with forward error correction (FEC) schemes [114], there have

been several approaches to integrating TCP and FEC [122, 173]. As we observe in Chapter 2,

FEC can be placed below, inside, or above TCP—thus, respectively, FEC can hide losses from

TCP, be used to prevent retransmissions, or be applied to application-layer datagrams. Similarly,

work on fountain codes have highlighted the feasibility of non-ARQ based transports [43, 44].

However, many of these approaches are rooted in today’s network architecture, and are in large

part designed to serve only in an auxiliary role to avoid wasted transmissions or to be used in

domain-specific environments.
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Figure 4.1 Dropped and dead packets. Each link is labeled with its capacity.

Luby’s development of rateless erasure codes—codes for which a practically-infinite

number of unique erasure-coded blocks can be efficiently generated—makes it possible to leverage

erasure coding to transmit data streams that are almost impervious to loss [121, 133]. Unlike

traditional codes, such as Reed-Solomon, encoding in a rateless fashion can be quite fast—many

require only XOR operations—but are not maximum-distance separable (MDS). MDS codes

require the reception of only the same amount of data as the original unencoded content. Non-

MDS codes require the delivery of some small ǫ more coded blocks than the length of the original

payload. For most codes, ǫ depends on the size of the erasure coded payload, and in practice

can be as low as 0.03, as we observe in Section 4.5.2—or even lower with the benefit of partial

acknowledgments from the receiver. We leverage Online codes [133] in our decongestion control

prototype to inoculate end-to-end flows against ordinary packet loss, which has the potential to

stave off classical congestion collapse with only small losses in goodput.

4.3.2 Dead packets

The far greater concern facing decongestion control is the potential inefficiency due to

dead packets that are transmitted over several hops, only to be dropped before arriving at their

destinations. To be precise, we call a packet dead if it is dropped at a router other than its

source’s access router.

Figure 4.1 illustrates this distinction. Suppose there are two flows, S1  D1 and

S2  D2, and each sender is transmitting at a rate of twenty, saturating its access link. Both

routers enforce max-min flow fairness, so the throughput of the S1  D1 flow is five, while the
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throughput of S2  D2 is only one. Twenty packets are dropped at R1, ten from each flow,

but none are dead, as R1 is the access router. At R2, however, five more are dropped from

the S1  D1 flow. These are dead packets, as they traversed the bottleneck link R1 → R2; if

S1 were sending to D1 at a rate of five, five more packets from the S2  D2 flow could have

traversed the link. In this instance, however, the goodput of the network would not increase, so

these dead packets are inconsequential. It is unknown whether there are likely to be other flows

that would make better use of this “wasted” capacity in general [196], especially in networks with

fairness enforcement. We set out to address this question by simulating the behavior of fire-hose

protocols like decongestion in networks with router-enforced max-min fairness.

Loss sites

When Internet demand exceeds network capacity, the precise set of locations where loss

is likely to occur is the subject of considerable debate and disagreement. For some time, many

researchers have suspected that the effective bottlenecks in the Internet are at the edge, due to

low-capacity access technologies such as POTS, ADSL, and analog cable. However, the story is

much more complicated. Access networks have been growing in capacity in recent years, and in

some countries a large fraction of users have fiber connections to the home [51]. As a counterpoint,

edge links have not always been seen as the bottlenecks, even in domestic backbones: public

peering points such as MAE-EAST and MAE-WEST were among the primary sites of congestion

during the mid to late 1990s [98].

Others have observed that congestion points appear to be dispersed—Akella et al. find

that bottlenecks are distributed evenly between intra-ISP links and inter-ISP peering links [7].

And further still, spectacular collapses such as those caused by the Baltimore tunnel [47] and

Taiwan earthquake [201] cause one to suspect that there may be instances where relatively few

links carry a great deal of the traffic, in which case there is likely to be a great deal of loss at

their ingress. In contrast, some have made the argument that the network has or will have near

infinite capacity, and that congestion is a minor concern, if at all [145]. It may seem to be the
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case that these various contentions are mutually exclusive, but we suspect that they are likely

all reflective of what is happening in some real networks.

In contrast to previous studies, our concern is not with where or if loss might occur in

networks dominated by TCP. Instead, we are interested in whether fire-hose approaches like de-

congestion control cause significant, fundamental inefficiency when max-min fairness is enforced.

We conclude from the lack of consensus on the matter of Internet choke points that a definitive

answer is likely to be elusive and certainly requires a more comprehensive and in-depth study

than can be reported on here. Hence, we restrict ourselves to the more modest goal of making

a case for decongestion by considering a small set of intra-domain topologies with the hope of

showing instances where it holds promise. We defer a rigorous study of what aspects of network

topologies and traffic demands make them amenable to decongestion—and whether they can be

engineered for—to future work.

Network topologies

We aim to better understand, for a given network topology, bandwidth assignment, and

flow distribution, whether decongestion will induce congestion collapse due to dead packets. Our

experiments are limited to a single “network” or autonomous system (AS); we do not consider

super-topologies of many ISPs all connected by direct peering links or connections at public

exchanges because we do not have access to such topologies annotated with link capacities and

routing tables. In our experiments, we consider both actual and synthetic topologies; existing

topologies demonstrate whether decongestion is practical today, while synthetic ones allow us to

consider whether it will remain or become practical tomorrow.

We consider two separate real—if not necessarily representative—large-ISP PoP (point

of presence)-level topologies, an August 2007 snapshot of the GEANT2 pan-European research

and education network, and a once-public Level 3 PoP-level map from 2006 annotated with link

capacities. The GEANT2 topology consists of a variety of European research networks attached

to a core of 21 PoPs connected by a 10-Gbps backbone; we prune the topology to the 35 core
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Figure 4.2 The prevalence of dead (left) and zombie (right) packets in the HOT with arithmetic
capacity assignments.

links for which we were able to obtain routing and traffic information. The Level 3 topology

contains 66 PoPs connected primarily by OC-198 links and secondarily by OC-48 and OC-12.

In the synthetic case, we use the HOT router-level topology [111], which is thought to be highly

representative of a large ISP’s router-level topology. Our HOT graph consists of 989 links and

939 nodes, 768 of which are edge nodes. We augment the HOT graph with a three-tier bandwidth

hierarchy, and consider two different options for assigning capacity to each tier. The first is an

assignment of geometrically increasing capacities—100 Mbps on edge links, 1 Gbps on inter-PoP

links, and 10 Gbps on core links—the second an arithmetic assignment of 100 Mbps at the edge,

200 Mbps at the PoP, and 300 Mbps in the core.

Traffic distributions

The prevalence and location of dead packets in any given network depends on traffic

demands. For simplicity, we study steady-state behavior and do not concern ourselves with

the absolute amount of data transfered between origin/destination (OD) pairs; instead, for each

source we need only the distribution of destinations and proportion of demand reflected by each.

We obtained actual GEANT2 traffic matrices for August 1, 2007. In those snapshots,
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the demand does not saturate—let alone overdrive—the network. To generate higher demand

that continues to reflect the distribution of the original traffic matrix, we attach leaf nodes to

each flow’s actual origin and destination and source and sink the simulated traffic at these leaf

nodes. (Hence, each leaf node sources and sinks precisely one flow.) The total leaf node access

capacity at each original node is identical to the actual capacity of the original node; each leaf

node’s incoming/outgoing capacity is set in proportion to the fraction its flow represents of the

actual node’s total original incoming/outgoing demand.

We do not have access to information about the traffic on Level 3’s backbone, so we

generated a synthetic traffic matrix following a log-normal distribution as recommended by Nucci

et al. [144] and augmented the topology in the same manner as for GEANT2. Unfortunately, the

log-normal model depends on a number of parameters that are not specified in the HOT topology,

so we construct two simple models. First, we use uniformly distributed connections—pairs of edge

nodes are selected to communicate uniformly at random. Second, we model client-server traffic

patterns through exponentially distributed connections with a wide range of exponents. We

select the source from this exponential distribution and the destination uniformly at random. As

a point of reference we find that GEANT2 traffic is well modeled by an exponential distribution

with exponent 0.5.

Simulation

To facilitate evaluation at scale, we implemented a flow-based simulator that models

perfect max-min link fairness. The simulation is not packet-based and is intended to model

only steady-state flow behavior. The simulator takes as input a topology annotated with link

capacities and a set of OD flow demands. Each flow is routed via its shortest path (or actual

route based on IS-IS link weights in the case of GEANT2) from source to destination, and is

subject to no notion of propagation, transmission, or queuing delay. At each link, we derive

the output flow allocation using a max-min apportionment of the input flows. We compute the

steady state of the network based on the offered load using a fixed-point algorithm,
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Figure 4.3 Number of dead and zombie packets as a function of traffic skew for the HOT topology.

We are now equipped to answer the question of if and where dead packets may occur.

We can simulate the effect of an uncontrolled fire-hose protocol by setting all of the OD flow

demands to be infinite, and keeping track of the amount of loss at each router. The left-hand side

of Figure 4.2 depicts the prevalence of dead packets under fire-hose in one run of our simulator

on the HOT topology, using arithmetic link capacity assignments and 10,000 flows distributed

uniformly at random. Each router’s diameter is scaled according to its capacity and shaded

according to the amount of dead-packet induced loss occurring at that router, each link is sized

according to its capacity and shaded according to its utilization. In both instances, light shades

correspond to low values, higher values are darker. Note almost all links are completely utilized.

In this run, almost all the dead packets occur at one particular router with a large attached

subtree, called out in the lower left.

Intuitively, a uniform traffic demand will produce the most dead packets, as flows are

least likely to share bottlenecks. As traffic matrices become skewed, more and more demand

bottlenecks at the access links of a few popular sources, so a smaller portion of the packet loss

will be caused by dead packets. Figure 4.3 confirms this hypothesis by plotting the total number

of dead packets for fire-hose (“fire-hose dead,” we discuss the ratio, balanced, and zombie lines

in Section 4.3.4) in the HOT topology with arithmetic capacity assignments shown earlier for
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increasing degrees of demand skew. Because our simulator does not model packets per se, we

cannot use packets as the quantity of dead traffic. Instead, we consider the total quantity of dead

“flow”—a unit-less quantity normalized to the access link bandwidth. I.e., if a single sender had

all of its demand dropped in the network after forcing out another sender’s demand, there would

be one dead flow. For ease of exposition, however, we will continue to refer to this quantity as

dead packets.

Each simulation data-point considers 10,000 unique source-destination flows (a flow

includes all traffic from a source to destination) with sources chosen from an exponential distri-

bution with exponent λ and destinations chosen uniformly at random. Results with a uniform

distribution of sources (λ = 0, not shown) are essentially identical to those with λ = 0.0001. As

expected, the number of dead packets generated by fire-hose decreases as demand concentrates.

It is difficult to directly compare the dead packet counts in real topologies, as the

demand distributions and capacity hierarchies are quite different. For GEANT2, we scaled the

traffic demands proportionally so that each node’s demand is 50 times its capacity. Fire-hose

induces 1,674 Gbps of dead packets on 162 Gbps of goodput. Level 3, at a similar demand level,

produced a far higher number of dead packets: 112,000 Gbps on a goodput of 211 Gbps.

4.3.3 Potential inefficiency

While the absolute number of dead packets may seem alarming at first glance, the far

more important metric is the degree of inefficiency these dead packets may cause. We use the

results of our fire-hose simulation to compute the optimal max-min flow assignment in an iterative

fashion through an algorithm we call clamp. We begin by selecting the fire-hose flow with the

globally minimum throughput (ties are broken arbitrarily) and set its demand in the optimal

assignment to be the throughput currently achieved in the simulation. We then subtract that

demand from the capacity of each link traversed by the flow, remove the flow from the traffic

matrix, and rerun the simulator. At each step, we select the flow with minimum throughput and
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Figure 4.4 Total network goodput vs. traffic skew (λ) in the HOT topology with geometric
capacity assignments.

use its achieved value as the flow’s demand. After iterating for each flow, we arrive at an optimal

set of traffic demands. The flow demands computed by clamp are admissible by construction.

In the case of GEANT2, clamp achieves a goodput of 192 Gbps, only 19% higher than

fire-hose’s 162 Gbps despite the huge number of dead packets that fire-hose creates. Fire-hose is

similarly efficient in Level 3, as clamp is able to achieve 250 Gbps as opposed to fire-hose’s 211.

Figure 4.4 shows the network-wide goodput achieved by fire-hose and clamp (again, the ratio and

balanced lines are introduced later) in the same HOT topology over a variety of traffic demands.

The relative performance of fire-hose is quite poor for low skew. For the case of arithmetic

capacity assignments, the goodput of fire-hose degrades to 40% of optimal in the worst case. Most

networks are unlikely to have arithmetic bandwidth hierarchies, however. Fire-hose substantially

improves in the HOT topology with geometric capacity assignment—to within 15% of optimal

(not shown). Regardless of capacity, adding more flows decreases the relative performance of

fire-hose; conversely, as the number of flows decreases, fire-hose approaches optimal (also not

shown). Just as in real topologies, however, the decrease in performance of fire-hose does not

correspond directly to the number of dead packets. The absolute difference in goodput between

fire-hose and clamp in the HOT topology with uniform demand is approximately 200 flow units,
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far less than the 650 units of dead packets shown in Figure 4.3.

4.3.4 Zombie packets

This gap actually corresponds directly to a slightly different quantity. The issue is not

purely the presence of dead packets, rather the presence of dead packets that cause potentially

live packets (those that would have otherwise contributed to some flow’s goodput) to be dropped.

Only this restricted class of dead packets, which we term zombie packets, are deleterious from the

network’s potential goodput. Returning to the example in Figure 4.1, if the link from R2 → D2

had capacity greater than ten, any packets dropped from flow S1  D1 at R2 would be zombies.

Counting dead packets

We determine which dead packets in our simulation are actually zombie packets in the

following fashion. For a given network topology and traffic pattern, we compare the simulated

throughput of each flow with the ideal (the throughput computed by clamp). For each dropped

packet in the simulation, we consider whether it causes the flow to decrease below its ideal

allocation. Such a drop will occur only if another flow on the same link is over-sending. In other

words, another flow will be restricted further along its path, and the packets dropped there are

actually zombies. We superimpose the number of zombie packets caused by fire-hose in Figure

4.3. It is reassuring to note that this quantity is precisely the respective difference in goodput

between fire-hose and clamp in Figure 4.4 (the same is true for GEANT2 and Level 3): In our

simulation, zombie packets are the only cause of inefficiency. The right-hand side of Figure 4.2

shows that almost none of the dead packets at the access router impact performance, as the

capacity could not have been effectively used by any other flows.

Reducing zombies

Now that we’ve precisely identified and quantified the source of inefficiency in a fire-hose

approach, a natural question is whether it is fundamental to all decongestion control protocols.
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So far, we have considered the simplest case of oblivious senders who fill their outgoing link with

packets equally distributed among all of their destinations. We say that such a sender is exerting

equal effort on behalf of each flow. Rational senders, on the other hand, seek to maximize their

own self-interest, i.e., the total goodput across all of their flows’ destinations. In particular, if

they are sending zombie packets on any flow that detract from the goodput of their other flows,

they are clearly motivated to adjust their behavior. We use this insight to devise for two slightly

more sophisticated send algorithms, balanced and ratio.

A balanced sender seeks to equalize the loss rate experienced by flows all of its destina-

tions. In other words, if any flow is seeing proportionally more drops than another, the sender

transfers some of its send effort from a flow seeing high loss to a flow seeing low loss. Regardless

of the distribution of effort, a balanced sender always fills up its access link. A ratio sender

observes that blindly filling ones access link may be fruitless: any effort in excess of each flow’s

bottleneck capacity does not increase throughput in the steady state (although it may not hinder

it, either). Recall that the main benefit of over-driving a flow is being able to instantaneously

take advantage of newly available capacity. A ratio sender balances this opportunity with the

potential of injecting zombie packets by attempting to achieve a certain, fixed loss rate for each

of its flows. Said another way, a ratio sender transmits each flow a fixed constant, ρ > 1, faster

than the throughput currently reported by the receiver.

In addition to clamp and fire-hose discussed previously, Figure 4.3 and Figure 4.4 report

on the behavior of balanced and ratio (where ρ = 1.2) senders as well. Ratio approaches clamp

as ρ goes to 1. As one might expect, balanced sending results in far more dead packets than

ratio, but both significantly reduce the number of zombie packets, allowing their goodput to

approach optimal. Balance and ratio achieve at least 80% and 97% of optimal, respectively,

for the arithmetic capacity HOT topology, and 96–99% for a geometric capacity hierarchy (not

shown). For both GEANT2 and Level 3, balanced is no better than fire-hose (84%), while ratio

achieves 97–98% of optimal.
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Our simulator is measuring steady state behavior with perfect knowledge, in which case

there is no benefit to over-sending if the sender is aware of the true bottleneck capacity. A more

complete measure of goodput depends on the dynamics of the system, which we cannot evaluate

without making a number of engineering decisions. We therefore flesh out a particular algorithm

based on the ratio sender in the next section before subsequently evaluating it further.

4.4 A prototype design

We now describe our initial approach to designing a decongestion control protocol, Opal.

Our intention is to identify key tradeoffs and offer our design choices not as mandates, but simply

as a concrete way forward.

4.4.1 Basic operation

Opal is a reliable transport protocol that transmits a paced packet stream composed of

erasure-coded windows of data blocks which we call caravans. Each caravan represents some n

application data blocks; in our prototype, each block is 1000 bytes. These data blocks are then

encoded using an erasure code; the erasure code’s blocks do not necessarily correspond to the

application data blocks. In particular, when using Online codes, we subdivide each application

data block into 10 blocks of size 100 bytes and perform coding over these smaller blocks. Finally,

the coded blocks are placed into packets and sent. With a rateless code, the sender can generate

a virtually limitless stream of encoded blocks from a fixed set of data blocks. (The strict limit on

the number of unique encoded blocks in a rateless code is the size of the powerset of the number

of blocks, which is 2k given k coding blocks.) The sender selects n, and assigns a monotonically

increasing caravan number, and, within each caravan, a packet sequence number starting at 0.

The receiver collects packets from the same caravan together and decodes them to recover the

original payload.

As with TCP, all packets contain ACK data that is sent irrespective of whether there is
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application data to deliver. Opal ACK headers include a cumulative caravan acknowledgment—

the number of the last completely received caravan and the total number of packets received

that contributed to the flow’s goodput, irrespective of the caravans to which they belonged. The

receiver also encodes a partial ACK consisting of a caravan-wide bitmap; each bit in the map

denotes whether the corresponding block has been received and decoded into its source-data form.

Both the sender and receiver transmit their packet reception rates to each other in a symmetric

fashion.

4.4.2 Managing goodput

In the context of this work, we only consider decongestion control protocols that provide

reliable transport. As a result, we require, as every reliable transport protocol does, an acknowl-

edgment (ACK) mechanism to confirm reception, and thus face many of the same challenges as

TCP. (Just as TCP’s algorithm has admitted a host of improvements over the years, we expect

that an equally large number of optimizations can be made to a decongestion sender.)

Opal’s acknowledgment mechanism is similar in many ways to TCP. The key difference

in Opal, however, is that senders transmit data in caravans and only one ACK per caravan is

required. In comparison to TCP, Opal is less sensitive to moderate increases in the loss rate,

and, thus, has a less urgent need to adjust its sending behavior.

Sizing caravans

A caravan of erasure-coded packets is akin to a freight train—it can push through

anything but is hard to stop: Up to one full bandwidth-delay product of outdated data can be in

flight when the sender receives a caravan’s ACK. This sets up a clear trade-off between short and

long caravans: many coding schemes cannot deliver data from a caravan to the application until

decoding the entire caravan, so applications that demand low latency require short caravans.

However, short caravans are less efficient for both the control loop and for rateless erasure codes.

A potential solution to this that we have yet to explore is to smoothly transition transmission
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between caravans by decreasing the current caravan’s send rate while increasing that of the

subsequent caravan. This relies upon the sender’s ability to accurately anticipate the point at

which the current caravan will be acknowledged, which is ultimately tied to local history about

network conditions.

Currently, we opt to increase caravan size as often as possible so as to improve the

efficiency of erasure coding and to decrease inter-caravan waste. Starting with a fixed initial

caravan size, we monitor the goodput of each caravan, looking for a decrease of more than a fixed

percentage—currently 20%—below the expected goodput; if such a decrease occurs, we shrink

the caravan’s size, currently by a factor of 8. We double the caravan’s length otherwise, up to

a maximum caravan length of 5,000 blocks. We have yet to explore the best strategies for flows

that pause intermittently and do not have enough data to send at all times to fill a full caravan.

(TCP’s push flag and Nagle’s algorithm are designed to address a similar issue.)

Adapting coding parameters

Given a fixed caravan size, the sender selects the type and rate of coding to use. It

is important to note that changes in the coding or in caravan internals are not externally-

visible events—they simply have the effect of changing the information rate, and ultimately,

the application-to-application goodput of the flow. For caravans of size 100 or less, we encode

using Reed-Solomon coding with an equal number of parity blocks (that is, for a caravan of size

100, we generate 200 coded blocks, only 100 of which are needed to decode); above that size,

we use Online codes [133]. When generating blocks for coding using Online codes, we subdivide

packets into 100-byte words. In the course of integrating Online codes into Opal, we devised

several helpful optimizations, including the use of partial ACKs. In Opal, receivers perform

decoding of the coded blocks incrementally, and thus recover some original source data blocks

within a caravan before others. Receivers then notify senders which original data blocks have

been fully decoded, and senders simply skip random seeds—used in selecting the in-degree of

each coded block and which data blocks to XOR—that yield a coded block that consists solely of
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source blocks already received. We find that for our implementation, a small number of partial

ACKs from the receiver can significantly improve coding efficiency.

More generally, there are several tradeoffs: while rateless codes are designed to decode

fast, they are efficient at encoding only asymptotically, and thus typically require large caravans,

often on the order of a few hundred blocks, which is why we subdivide packets into smaller blocks

during encoding. In addition, there is no requirement that caravans within a flow use the same

coding scheme—in fact, far more efficient, fixed-rate codes exist for particular small caravan sizes

and loss rates, as do fully general but non-rateless codes such as Reed-Solomon. In practice, a

sender can use a lookup table to select an optimal coding scheme for a given caravan size and

expected loss rate. For extremely small caravan sizes, simple redundant packet transmission

suffices.

4.4.3 Allocating bandwidth

Senders face three challenges in allocating their limited outgoing bandwidth. First, they

aim to use their bandwidth for each flow efficiently; sending substantially above the brickwall

rate of that flow is unlikely to yield dividends in terms of throughput. Second, they aim to

effectively apportion their bandwidth between flows to different destinations. Third, they must

reserve bandwidth for ACKs for any flows for which they are the destination. Senders perform

these allocations explicitly using only local information.

Setting a flow’s rate

Following the ratio algorithm described previously, senders set the transmission rate of

each flow to induce a fixed loss rate. Thus, we send a fixed multiplicative factor above the current

observed throughput. If a sender observes that it is obtaining a throughput of 2 Mbps for a flow,

then it sends at (2 · ρ) Mbps, where ρ = 1.2 in our implementation. The excess 20% of packets

will both capture bandwidth if and when it becomes available and enable the sender to detect a

change in its brickwall bottleneck rate. Our experience suggests that for modest (≤ 1.5) settings
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of ρ, assuming it is sufficiently large to be likely to capture freed bottleneck capacity, the precise

value does not have a dramatic effect. Accordingly, we have not yet attempted to identify the

optimal setting for any particular topologies.

Sharing limited bandwidth

Many senders will have orders of magnitude more access capacity than the sum of their

Internet flows’ bottleneck bandwidths, so it is unlikely that they will ever need to be parsimonious

with transmission bandwidth. Such may not be the case for large servers or in wireless or local-

area networks, however, where the networks are fast or experience congestion at the MAC layer;

losses in these environments may happen at the hands of a non-brickwall process.

To combat this issue, it may be necessary to compare loss rates between flows in the

manner of the previous balance algorithm. For now, we assume each host has a single, dedicated

access link of fixed capacity. Should the sum of a sender’s outgoing flow rates ever exceed this

capacity (which may happen during flow start-up, see below), the sender restricts its flows as a

router would, implementing a brickwall, max-min fair policer on its access link.

Reserving ACK bandwidth

Opal includes ACKs for the reverse-direction flow in every packet it sends, so bi-

directional flows have no need to set an explicit ACK transmission rate. However, senders must

weigh the benefit of transmission goodput with reception goodput, and decide how to apportion

bandwidth to flows for which they are only receiving data, or those that only send data sporadi-

cally. In the case that ACKs do not compete locally for bandwidth with other flows (the receiver

has outgoing access bandwidth to spare), we draw inspiration from TCP and use the incoming

data rate to determine the outgoing ACK rate. Unlike TCP, however, we do not perform explicit

ACK clocking; receivers pace ACK transmissions independently from packet reception.

In a decongestion-controlled network, ACKs are likely to be lost or compressed, as the

ACK path may have very different congestion than the data path. Hence, we cannot use the
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data packet reception rate by itself to determine the ACK rate. Instead, in Opal we use the ACK

reception rate at the sender to set the ACK rate at the receiver. Thus, akin to setting a data

transmission rate, the receiver learns of the throughput of its ACKs and sets its transmission

rate such that the ACK throughput is a fixed fraction of the data throughput. This approach

maintains several of the beneficial properties of TCP’s control loop, notably that receivers are

not obligated to transmit ACKs if they are not receiving packets from the sender. In our current

implementation, we set the ACK rate to be 2% of the data rate, which yields roughly the same

ratio of ACK to data bandwidth as TCP for MTU-sized packets. In the common case, TCP

receivers send delayed ACKs and use TCP timestamps and SACK, so for maximum sized packets,

each 52 byte ACK is a reply to 3000 bytes of data packets and the ACK channel’s bandwidth

is 1.73% of the data channel’s. In Opal, ACKs that include partial ACKs are up to 150 bytes

each (allowing for partial ACKs for caravans of up to 1000 blocks), and at a rate of 0.02 or 2%,

correspond to 5 data packets.

4.4.4 Start-up behavior

At flow startup an Opal host must make two choices: how large of a caravan to send,

and how fast to send it.

In practice, the appropriate first caravan size depends on the amount of data in the

transmit socket buffer, which varies depending on the application involved. For now, we focus

on bulk senders—ones that have an unlimited amount of data to send while active—and select a

fixed initial caravan of 10 packets, striking an imperfect balance between the needs for low-delay

delivery of application data to the receiver’s socket buffer and the needs of the sender to estimate

its goodput adequately. Ideally, applications could provide hints to the Opal stack via system

calls regarding their startup needs.

There are three prominent approaches to determine how fast to send a flow initially. The

first, used by TCP, is to begin transmission slowly and rapidly ramp up. Such a timid approach
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is antithetical to the ethos of decongestion. The second, used by router-based protocols such as

RCP [63] and XCP [97], is to rely upon routers to tell end hosts at what rate to send. The third

is to use statistics collected previously about the network, which can be particularly valuable for

short flows [21].

We choose not to rely upon routers to explicitly dictate initial sending rates, because

appropriate operation requires obedient senders and cooperation across mutually distrustful ASes

and hosts. Hints from routers, on the other hand, such as those provided by QuickStart TCP [71],

might work well. Both history and hint-based approaches require significant engineering and test-

ing on real networks to implement effectively, so for now we assume that each host is preconfigured

with the capacity of its closest bottleneck access link. We set the initial send rate of a flow to

half of this value.

4.5 Experimental evaluation

We evaluate the performance of Opal using the ns2 network simulator. Opal is real-

ized as a (short-term) fixed-rate sender that communicates partial and caravan ACKs in packet

headers. Both ends of each Opal flow continually update their rate estimates and adjust caravan

sizes and transmission rates accordingly. Each sender’s rate is randomized very slightly in or-

der to avoid simulation artifacts due to artificial synchronization. Max-min fairness is currently

enforced at routers using the built-in stochastic fair queuing (SFQ). A research-grade implemen-

tation of AFD we obtained does not operate well at the scale of our simulations; SFQ with a very

short buffer size suffices for our current purposes. We begin by validating several of our find-

ings from our flow-level simulator, and then proceed from macro-level experiments to micro-level

experiments, and test Opal on smaller topologies.
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Table 4.1 Goodput comparison for fire-hose and ratio/Opal senders in simulation.
Arithmetic Geometric
ns2 Sim ns2 Sim

Clamp (optimal) — 126.0 — 252.7
Ratio/Opal 110.5 121.1 251.1 250.4
Fire-hose 90.4 101.7 243.5 244.7
TCP New Reno 96.0 — 221.0 —

4.5.1 Simulator validation

To facilitate comparisons between the ns2 Opal implementation and the simulation

results presented earlier, we also implement fire-hose in ns2 as an extremely high-rate (slightly

randomized) constant bit-rate (CBR) sender and repeat (scaled-down versions of) several of

the steady-state simulations conducted on the HOT topology. Table 4.1 compares the goodput

achieved by both approaches as implemented in ns2 with the results provided by our simulator

(where ratio corresponds to Opal). In order to bound the simulation time, we restrict these

simulations to 500 uniformly distributed flows with access link speeds of 10 Mbps. To eliminate

startup effects, we run the simulation for thirty seconds, but only consider the last fifteen. All

goodput values are normalized to the access link capacity.

The main result from Table 4.1 is that the performance of our ns2 implementation is

quite similar to the simulated idealized ratio sender, giving us confidence that further experimen-

tation based on the ns2 implementation can be interpreted in the same light. Fire-hose however,

performs slightly worse in in ns2 implementation. Upon examination, we found that this per-

formance degradation was due to imperfect fairness delivered by SFQ. Finally, we include the

goodput achieved by TCP New Reno. Interestingly, both fire-hose and Opal outperform TCP,

Opal by a substantial margin.

4.5.2 Smaller topologies

Next we consider the behavior of Opal in smaller-scale topologies. Our goal is not to

be exhaustive, but rather to consider a few common cases that shed insight into the behavior of
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our initial prototype.

Coding

Before we delve into the behavior of Opal during operation, we first consider the perfor-

mance of our erasure coding. We do not implement any form of erasure coding itself in our ns2

implementation. Instead, we compute erasure coding overhead off-line through our stand-alone

C++ implementation of Reed-Solomon and Online codes. During the simulation, partial ACKs

reflect blocks received, not decoded, and we assume a caravan has been fully decoded (and move

on to the next one) based upon the type of coding used in that caravan. For redundant and

Reed-Solomon caravans, we declare the caravan over after precisely n distinct blocks have been

received. For larger caravans that use Online codes, we wait until (n · (1 + ǫ)) blocks have been

received. By selecting an appropriate ǫ, we ensure that we report a lower bound on the achievable

goodput.

We built a coding simulator to test the performance of our rateless codes under varying

conditions. Using the ρ = 1.2 parameter to determine the loss rate expected on the forward chan-

nel and a rate of 2% of the flow’s goodput for ACKs, our Online codes implementation leverages

partial-ACK information to reduce the erasure-induced overhead for caravans of more than 100

packets (1,000 blocks) to less than 1%. In the absence of partial ACKs, our implementation still

keeps the coding overhead to 3%, as originally suggested by Maymounkov [134].

Basic stability

We compare the stability of Opal with that of TCP New Reno. We do not intend to

argue that TCP is deficient, as there are many TCP variants that likely perform better; we use

New Reno as a well-understood reference point.

In Figure 4.5, we push a single bulk flow between a pair of hosts through a 10-Mbps

dumbbell topology with 10-ms link delays. For this bulk flow, with TCP, we use 25-packet buffers,

while for Opal we use only 5. For comparison, we also plot the small-buffer case for TCP. The
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Figure 4.5 Opal and TCP reacting to congestion induced by an unresponsive UDP flow.

RTT of the flow is 60 ms. At 30 seconds and again at 60 seconds after the beginning of the

simulation, we inject a 10-second burst of 10-Mbps CBR UDP traffic between another pair of

hosts sharing the bottleneck link. The results are unsurprising, but lend credence to the notion

that even an unengineered prototype of Opal can match TCP’s steady-state throughput.

Self-congestion

A more interesting experiment considers the impact of loss on Opal’s ACK channel. In

order to induce disproportional loss on the ACK channel, we introduce a UDP CBR flow with the

same source and destination as the flow under test, just in the reverse direction. As a result, the

routers place the Opal ACK and UDP traffic in the same bin and provide no isolation between

the two. Figure 4.6 shows that Opal automatically increases its ACK rate to compensate for the

increased loss on the ACK channel, suffering almost no penalty at the hands of the UDP flow.

By comparison, TCP’s performance is well known to deteriorate, an effect only exacerbated by

small buffers.
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Figure 4.6 Opal and TCP reacting to congestion induced by self-induced reverse flow congestion.
The Opal ACK rate is the rate of transmission of ACKs from the receiver.

Flow join

We test Opal through a fixed bottleneck with the join and departure of 10 flows, in

sequence, shown in Figure 4.7. By definition, each flow has a distinct source, and we select

distinct destinations as well. Fairness on the bottleneck link is dictated by the router; notably,

however, Opal flows recapture the capacity freed by a departing flow faster than TCP, as the

aggregate goodput indicates.

Short flows

Perhaps the most worrisome aspect of Opal is the potential for poor performance on

short flows, say, less than one bandwidth-delay product, where the sender seems guaranteed

to waste capacity. Intuitively, Opal has the potential to overdrive the link for some time while

waiting for the ACK from the receiver. This problem is not unique to Opal, since many congestion

control protocols, notably TCP, have an initial probing phase during which they may overdrive

the link, but Opal is particularly aggressive in its current form.

In Figure 4.8 we consider a challenging scenario for Opal: the rapid arrival of many

short flows through the same bottleneck. In this experiment, we test the arrival of 100 flows
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Figure 4.7 Opal reacting to congestion induced by flow joins and departures.

per second; each flow is only 20 KB long. Opal suffers as expected—each sender attempts to

overdrive while sending limited amounts of data, only to cause significant overrun. We report

on each Opal flow’s goodput only once it completes, and as a result, the computed delivery rate

ebbs.

In practice, all connections (in the TCP sense) between a single source destination are

multiplexed on a single Opal flow, so there is reason for hope. In particular, a sophisticated

implementation would pipeline caravans (and, as a consequence, pipeline series of small requests

such as a Web page download) to decrease wasted capacity.

Jitter

While bulk transport flows seem to do well with Opal, we would also like that protocols

that rely upon low delay and jitter (multimedia and VoIP, for example) do not suffer under

decongestion. Just as most specialized streaming protocols use a transport other than TCP

today, we expect that analogous protocols will exist in a decongestion controlled network. Thus,

our concern is with the jitter induced upon a bare, CBR packet stream that is competing with

a large number of Opal flows at a bottleneck.
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Figure 4.8 Opal and TCP reacting to the rapid arrival of many short flows.

Figure 4.9 shows the jitter of a CBR UDP flow meant to model the G.729A VoIP codec

(100 pps, 64 Kbps) when competing with 30 Opal or TCP flows that arrive every 5 seconds and

last for 30 seconds each. We calculate the jitter based upon the recommendation RFC 1889 for

calculating jitter in RTP [181]. Since Opal uses very short-to-non-existent router buffers, there

is little opportunity for varying queue levels, and thus, the jitter remains low.

Delay

One final metric of concern is delay, which is related to the depth of the queues along

a packet’s path. Opal will likely saturate queues at most routers, so Opal flows will generally

suffer maximum delay. One of the key potential benefits of decongestion control, however, is

that it operates with drastically reduced queue sizes as compared to TCP. Traditionally, the rule

of thumb was to provision routers with at least a bandwidth-delay product worth of buffering

to overcome TCP’s burstiness. For high-speed backbone routers, this implies queue sizes that

are both prohibitively expensive and difficult to implement. Recent work has shown, however,

that the aggregate behavior of a large number of flows on high-capacity links is less bursty, and

suggests that it is possible to scale down the queue size by the square root of the number of
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Figure 4.9 A simulated VoIP flow’s jitter when competing with Opal and TCP.

flows [13]. Further studies suggest that an even smaller queue may suffice if TCP sends at a

paced rate [65]; Shorten and Leith also examine queue provisioning and its effect on TCP [188].

Decongestion control is not bursty by nature: Once a caravan begins, packets are trans-

mitted continuously until the data has been received. In such a regime, router buffers no longer

exist to absorb large bursts and meter them out during the ensuing lull; instead, queues are kept

consistently full and exist only to smooth out instantaneous variations in arrival rates. (If the

router has no queue at all, and packets arrive at multiple interfaces at the same instant, only one

can be forwarded.) Thus we ask: how long must the queue be to ensure that it never becomes

empty (at which point the output link may go idle)?

In TCP, under-utilization during periods of high demand is caused by the filling of

the router queue and the ensuing drops cause exponential back-off [65]; if there are too many

flows in back-off, the link utilization goes down. Opal has no exponential back-off and the

concern, instead, is that the queue become empty due to the simultaneous arrival of packets from

several flows. The rate adaptation of Opal suggests a natural tendency away from synchronized

overlaps in a situation where the bottleneck link is not overdriven. Even if we simulate completely

unresponsive CBR senders with initial random offsets, we observe good utilization using small

queue lengths. Using a dumbbell topology with 400 flows collectively sending at the bottleneck

bandwidth of 40 Mbps, we see no loss with queues larger than 9 packets and only 10% loss with

a 5-packet queue. Moreover, slower links likely to be severely overdriven can employ even shorter

queues.
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4.6 Related work

We are not the first to explore the relationship between erasure coding and congestion

control. Researchers have compared ARQ schemes with FEC schemes [114] and integrated TCP

and FEC [122, 173]. Fountain codes [121, 133] famously highlighted the feasibility of non-ARQ

based transport [43, 44] for broadcast and bulk data transmission. We are unaware, however,

of any previous work that directly addresses the question of what sort of congestion control

protocol—encoded or otherwise—would be best suited for a network with pervasive router-based

max-min fairness enforcement.

Researchers have also previously proposed pushing networks to their capacity and be-

yond. Isarithmic networks are always fully utilized, just with empties when end hosts have no

useful data to transmit [57]. Tracking empties proves problematic, however: just as a token ring

protocol requires a token-recovery mechanism, an isarithmic network requires some way to ensure

empties are not lost forever. At the application level, Speak-Up deliberately over-drives servers

and encourages clients of DDoS victims to increase their sending rates in order to drown out the

attackers [204], yet all request streams remain congestion-controlled through TCP.

4.7 Summary

Our results indicate that there exist changes to the Internet architecture that can enable

protection from end-host cheating at the transport layer, and that for the topologies and traffic

demands we study, decongestion control holds promise. A great deal more study is required to

determine just how efficient a practical decongestion protocol could be; our current design clearly

admits many optimizations. A well-engineered solution could have fair bandwidth allocation

with simple routers, predictable traffic patterns, low latency and jitter, and sender isolation.

We recognize that considerable additional development is required to convert on each of these

potential benefits, but the ensuing rewards may be the effort. Moreover, even if deployment of

decongestion turns out to be impractical, its design raises questions about long-standing Internet
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architectural principles that may currently be promulgated neither of necessity nor sufficiency,

but habit.
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Chapter 5

Future Directions

The two approaches to cheat-proof networking examined in this dissertation only scratch

the surface of the Internet architecture challenges and issues that must be addressed in the years

to come. In parting, we consider subsequent work in the space of Distributed Rate Limiting and

Decongestion Control and explore several future directions for work in this space.

5.1 Impact

Our work on Distributed Rate Limiting demonstrated that it is possible to limit the

aggregate bandwidth consumed by potentially greedy network users at hundreds of locations,

and to do so with low inter-limiter communication overhead. Our work on Decongestion Control

addressed the design of congestion control in an environment dominated by greedy users, and in

doing so challenged the conventional wisdom regarding the network and end-host performance

impacts of aggressive transport protocols.

Since our initial study of Distributed Rate Limiting [164], others have conducted fur-

ther research in the area. Though we showed that one algorithm—Flow Proportional Share—

computes stable allocations, we did not show its convergence, nor did we attempt to construct a

theoretical framework within which DRL algorithms could be studied. Thus, of particular note
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is the work of Stanojevic and Shorten on the theoretical underpinnings of DRL. They found

that it is both possible to provide strong theoretical guarantees for DRL and also generalize the

underlying problem statement, though they do not experimentally validate their results [194]. In

their work they also developed revised versions of Global Random Drop and Flow Proportional

Share and prove various properties about their algorithms.

Since we introduced Decongestion Control [162], researchers have continued to explore

the space in several directions. Lopez et al. have explored the game theoretic consequences of

the use of a FEC-based protocol versus ordinary TCP-like congestion control, and have found

in a simple model that hosts unilaterally switch to using the FEC-based protocol [118]. Their

work indicates that were a decongestion-like protocol implementation be made publicly available,

its use might spread rapidly. In addition, Bonald et al. approached the question of congestion

collapse in decongestion-like networks from an analytic perspective and concluded that congestion

collapse may be unlikely [32].

5.2 Direct extensions

In our study of cheat-proof networking protocols, we have not addressed the problem of

identifying traffic and traffic clusters within the network. These topics provide ample opportunity

for future study.

5.2.1 Distributed Traffic Classification

Our work on Distributed Rate Limiting leaves an important issue unresolved: how to

identify traffic to limit. This is the job of a distributed traffic classifier, for which there are several

key issues to address: devising concise representations of packet information, defining upper and

lower bounds for detection guarantees, and applying traffic classification results in a distributed,

active policer.

The consequences of a narrow view of the network are immediate: those who wish to
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consume more resources, thwart network policies, or simply operate under the radar can do so

across multiple hosts or addresses. (Another consequence is that auditing traffic becomes difficult;

we consider auditing next.) In this context, a natural problem is distributed rate limiting, as

we have studied. Nevertheless, the distributed rate limiters policing the user’s traffic should

adapt to changing demands and provide fairness guarantees comparable to a centralized network

pipe. Before we can perform distributed rate limiting, however, we must select users or traffic

clusters to limit—in our work on DRL, we assumed that some external mechanism was used to

pre-process traffic before presenting it to a limiter.

To resolve this question we turn to distributed traffic classification, which requires that

individual network observation points share summaries of the traffic they see. In this way, traffic

aggregates [66] cannot escape detection simply by spreading across multiple links. We believe that

we must consider treating classic network traffic policing problems from this new, pan-network

perspective. In this dissertation we have addressed distributed rate limiting using algorithms that

look at packet and/or flow behavior at different levels of granularity and communicate between

different network choke points to limit traffic aggregates.

Unlike DRL, distributed traffic classification requires semantic information about the

traffic streams seen at various network locations; this may increase coordination overhead signif-

icantly. There are two basic approaches to distributed traffic classification: coordinating funda-

mentally centralized classifiers and emulating a centralized classifier using a distributed algorithm.

The former approach could use techniques such as Autofocus [66] to summarize local traffic and

then communicate the resulting summaries to others, though such an approach may miss im-

portant traffic clusters. Alternatively, the latter approach could use similar techniques to those

in distributed rate limiting to directly emulate the behavior of a centralized classifier by sharing

summaries of the actual packets being processed.
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5.2.2 Traffic identification

While most network users are cooperative, or at worst, greedy, others are explicitly

malicious. Such users mount attacks on a daily basis, leaving ordinary users, network operators,

and law enforcement with the impossible task of figuring out what happened given little forensic

information. Indeed, in this context, the statelessness of modern networks is both a feature and

a bug. Instead of reasoning about communication abstractly, routers, switches, hosts, and other

network elements, to a first approximation, have a narrow, per-packet view of data transmission.

One consequence of this statelessness is the difficulty of securing and auditing networks; a classic

example is the complexity of finding the origin of spoofed denial of service attacks [180, 191].

The need for such complex protocols is just one instance of the problems faced in an unauditable

Internet.

Instead, to aid in both enforcing network policy in real time and enabling post-mortem

analysis, packets must be self-identifying, proving their senders’ right to transmit; it should be

difficult to mount Sybil attacks [61]. Nevertheless, we would like that packet owners remain

anonymous unless there is a legitimate reason to de-anonymize packets (such as a legal inquiry);

furthermore, it should be easy for almost anyone to verify packets’ validity.

To date, much of the work on authenticating traffic has focused squarely on preventing

denial of service attacks attacks. Prior work has aimed to prevent DoS attacks in the network

through pushback [87, 126], monitoring [125, 149], and overlay routing [10, 104]; these approaches

aim to prevent attacks without requiring per-packet authentication. Alternatively, researchers

have proposed using capabilities for authenticating packets to prevent DoS attacks [68, 209, 210]

and to authenticate source routes [161]. In these approaches, routers are trusted and the goal is

to authorize packets for entry into the network; no effort is made to provide forensic information

for later use. Researchers have also considered scenarios in which routers themselves may be

malicious [18, 138].

While we have worked on an system that enables network providers to authenticate
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the source routes of packets [161], this is only a first step towards properly stamping packets

with authentication information. To enforce network policy, there is a need to stamp packets

with more than the right to source routes: the right to exist in the network at all [209, 210].

However, such stamping has several consequences—the identity of the packet’s owner becomes

easily traceable by routers and other empowered parties. Worse, only pre-chosen parties can

verify the packet’s validity; since end hosts are typically unaware of the networks their packets

transit, it is difficult for them to coordinate a priori with transit networks. To address these

concerns, we can employ a variety of cryptographic protocols, including ring signatures [172],

group signatures [24, 25, 50], transitive signatures [137], identity-based signatures [49, 77, 183],

and proxy signatures [16, 123]. Each of these classes of signature schemes will yield, when applied

appropriately, a packet authentication scheme with specific guarantees and tradeoffs, though their

straightforward application cannot resolve all the engineering challenges.

Beyond simply enabling packet verification, network operators would benefit from mech-

anisms to glean more information from packet stamps with the proper authorization. While the

above signature schemes enable this property, many issues remain: selecting the right crypto-

graphic mechanisms, maintaining confidentiality, anonymity, and authenticity of packets, stamp-

ing and checking packets at line rate, dividing authority among appropriate parties, logging large

packet traces efficiently for post-mortem analysis, building an incremental deployment path, and

identifying legal mechanisms for enforcement.

5.3 Media access control

Even if we are able to protect network users from wide-area misbehavior and selfishness,

they may still face contention at access links, particularly at the link layer. Link-layer media

access control is an old problem [2]; in its most basic form, multiple nodes wish to share a

communication channel. Traditionally, it is a assumed that all parties are cooperative and obey

the protocol. In such circumstances, many MAC protocols can achieve high channel utilization.
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However, what happens if nodes are malicious or greedy—what if they cheat? In most

protocols, such nodes can arbitrarily increase their own throughput to the detriment of others,

or can simply cause the network to perform poorly by introducing interference. This problem is

worse in wireless networks, where access to the network itself is typically less protected, either

for social (public-access wireless) or technical reasons (insecurity, such as with WEP [197]).

Today, 802.11 wireless networks are ubiquitous, and are increasingly deployed by cities

for open use. In these deployments, users have an incentive to cheat by disobeying the MAC

protocol to increase their throughput. In many ways, this problem is analogous to that of selfish

behavior in congestion control, but manifests itself at the link layer.

Research on wireless MAC insecurity has dealt with two distinct environments: infras-

tructure (access-point) networks and ad-hoc networks. While the techniques used to prevent

ad-hoc network misbehavior can be generalized [4, 40, 42, 82, 128, 130], here we focus on in-

frastructure networks. Specifically, several researchers have analyzed [45, 198] and proposed

techniques to detect [46, 157, 168, 175] greedy wireless nodes in 802.11. Unfortunately, such

work can only detect and/or prevent misbehavior in restricted scenarios; for example, DOMINO

primarily prevents attacks on the 802.11 DCF [168], leaving it trivially vulnerable to tricks such

as the de-authentication attack [23].

Existing wireless MAC protocols have insufficient mechanisms to prevent cheating by

malicious or greedy nodes. While some malicious attacks may be nearly impossible to defend

against (for example, out-of-band, radio interference attacks), there are ways to improve the

MAC layer to provide substantially-improved protection.

Prior work has studied techniques to find nodes disobeying backoff timing rules and,

similarly, timing transmissions inappropriately. A next step may require modifying the MAC:

through appropriately randomized slotting of transmissions, the MAC can help prevent timed

attacks. One approach may be to not notify nodes of the transmission schedule until they are

scheduled to transmit; this makes anticipating the schedule and stealing the channel difficult.
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The problem space of protecting wireless MACs is fraught with issues—many out-of-

band attacks are feasible, making it hard both to protect such networks and to model malicious

or greedy behavior accurately. Particularly important challenges remain, including modeling the

capabilities and motives of a malicious or greedy node, considering tradeoffs in power, efficiency,

and security, and analyzing the maximum theoretical throughput of the system assuming selfish

behavior.
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