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Abstract

Fast Algorithms for Interior Point Methods

by

Qiuyi Zhang

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Nikhil Srivastava, Chair

Interior point methods (IPM) are first introduced as an efficient polynomial time algorithm
to solve linear programs. Since then, they have enjoyed success in general convex optimization
with the introduction of self-concordant barriers, replacing the ellipsoid method as the optimizer
of choice in many settings. As compared to the ellipsoid method, interior point methods boast a
better runtime complexity due to its O(

√
n) iteration complexity, where each iteration requires a

linear system solve for the Newton step computation. This implies a naive O(n0.5+ω) total runtime
for IPMs, where ω is the exponent of matrix multiplication.

In a recent breakthrough work, [Cohen, Lee, Song’18] showed that we can solve linear pro-
grams in the IPM framework in current matrix multiplication time Õ(nω), implying that linear
programs are computationally not much harder than matrix inversion. In this thesis, we extend this
result to general Empirical Risk Minimization (ERM), showing that many convex optimization
problems can be solved as efficiently as matrix inversion.

Specifically, many convex problems in machine learning and computer science share the same
form:

min
x

∑
i

fi(Aix+ bi),

where fi are convex functions on Rni with constant ni, Ai ∈ Rni×d, bi ∈ Rni and
∑

i ni = n. This
problem generalizes linear programming and we give an algorithm that runs in time

O∗((nω + n2.5−α/2 + n2+1/6) log(1/δ))

where α is the dual exponent of matrix multiplication, and δ is the relative accuracy, and O∗ hides
sub-polynomial terms. Note that the runtime has only a log dependence on the condition numbers
or other data dependent parameters and these are captured in δ. For the current bound ω ∼ 2.38 and
α ∼ 0.31, our runtime O∗(nω log(n/δ)) matches the current best for solving a dense least squares
regression problem, which is a special case of the problem we consider. Very recently, [Alman’18]
proved that all the current known techniques can not give a better ω below 2.168, which is larger
than our 2 + 1/6.
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Our algorithm proposes two novel concepts, which can be of independent interest :
•We give a robust deterministic central path method, whereas the previous central path is a stochas-
tic central path which updates weights by a random sparse vector.
•We propose an efficient data-structure to maintain the central path of interior point methods even
when the weights update vector is dense.
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Chapter 1

Interior Point Methods

1.1 Linear Programs
Linear optimization is one of the typical starting points of any optimization literature, and has
unsurprisingly become a well-studied problem in theoretical computer science, convex optimiza-
tion, and applied mathematics. Let c, x ∈ Rn and b ∈ Rm be vectors and our constraint matrix is
A ∈ Rm×n, we want to solve

min
x≥0,Ax=b

c>x (1.1)

where x ≥ 0 is an entry-wise inequality. In general, we will assume that the linear program has
a feasible solution and that it is bounded. Otherwise, there are standard reductions to ensure this
is the case, which we will show later. Furthermore, we assume that A contains no redundant
constraints and so n ≥ m.

Perhaps the first algorithm invented to solve 1.1 is the greedy vertex-walk algorithm of Dantzig
in the early 1900’s, popularly known as the Simplex Method. Each step of the Simplex Method in-
volves a greedy pivoting procedure: first, find a variable that can be altered in order to decrease the
objective function and then, decrease or increase the variable maximally until a constraint would
be violated. Theoretically, the Simplex Method suffers from an exponential run-time complexity
in the worst case despite a variety of pivot rules [41]. However, it is still heavily used in practice
and very recently, a smoothed analysis of the Method with the shadow pivoting rule has shown
polynomial average-case runtime complexity bounds under mild perturbations [82, 24].

The breakthrough paper of Karmarkar in 1984 showed that shifting from the combinatorial piv-
oting rules of the Simplex Method to a more continuous optimization procedure provides a prov-
ably polynomial runtime algorithm for linear programming [40]. Because Karmarkar’s method
always maintain a candidate point x that is in the interior of the feasible polytope, these meth-
ods became known as Interior Point Methods (IPM). In general, an IPM follows a sequence of
intermediate solutions near what is known as the central path.

We now provide a primal-dual view of the central path for linear programs. Later, we will gen-
eralize to convex programs and provide a barrier approach to deriving the central path. Associated
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with our primal formulation 1.1 is the dual linear program:

max
s≥0,A>y+s=c

b>y (1.2)

Let x∗ denote the optimal solution of 1.1 and (y∗, s∗) denote that of the dual. By weak duality,
for any feasible dual variables (y, s), b>y provides a lower bound for c>x∗ and by strong duality,
we have that b>y∗ = c>x∗. Therefore, we see that for any feasible primal-dual pair (x, y, s), we
upper bound our distance to OPT by the duality gap:

c>x− c>x∗ ≤ c>x− b>y = c>x− x>A>y = x>s

In the analysis of convergence, we will use the duality gap, x>s, as a bound on how close
we are to optimum. In fact, we can state the Karush-Kuhn-Tucker (KKT) conditions that ensure
optimality.

Theorem 1.1.1 (KKT Conditions for Linear Programs). [92] x∗ is a solution of 1.1 if and only if
there exists y∗, s∗ such that

Ax∗ = b, x∗ ≥ 0 (Primal Feasibility)

A>y∗ + s∗ = c, s∗ ≥ 0 (Dual Feasbility)
(x∗)i(s

∗)i = 0 (Complementary Slackness)

By relaxing the complementary slackness conditions, we derive the primal dual formulation of
the central path.

Definition 1.1.2. (x, y, s) is a point on the central path of 1.1 if there exists t ≥ 0

Ax = b, x ≥ 0 (Primal Feasibility)

A>y + s = c, s ≥ 0 (Dual Feasbility)
xisi = t (Approximate Complementary Slackness)

Note that by definition, we can immediately bound the duality gap by n · t, so often finding
a point near the central path with path parameter t = O(1/n) suffices to solve 1.1 by applying
a rounding procedure. It is often easy to find a point on the central path with t = Ω(1); then
the optimization procedure attempts to decrease t. Specifically, if we are at some feasible point
(x, y, s), note that we wish to decrease xisi to make progress along the central path. Therefore, we
would like our progress step (δx, δy, δs) to satisfy:
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Aδx = 0, x+ δx ≥ 0

A>δy + δs = 0, s+ δs ≥ 0

(x+ δx)i(s+ δs)i = 0

By dropping the inequality constraints and linearizing the complementary slackness conditions
by dropping the quadratic term, we see that we can solve a system of linear equations to find a
good direction of progress. Let X,S represent the diagonal matrices with diagonal entries that are
given by the vectors x, s, respectively, then we want to solve:

Aδx = 0

A>δy + δs = 0

Xδs + Sδx = δ

To center, we want to set δ = −XSe, where e is the all-ones vector. Then, we simply take a
step of a certain size in the direction given by this linear system. The stepsize is chosen carefully
to remain in our polytope, in order to satisfy our feasibility inequalities. Specifically, note that our
linear system admits an easy solution that is given by:

δx = X(XS)−1/2(I − P )(XS)−1/2δ

δs = S(XS)−1/2P (XS)−1/2δ

where P = (X/S)1/2A>(AX
S
A>)−1A(X/S)1/2 is a projection matrix. Notice that when x, s are

close enough to the central path, we expect δ = −XSe ≈ −te and XS ≈ tI . Therefore, since P
and I − P are projection matrices, we can bound

‖X−1δx‖ ≤ ‖(I − P )e‖ ≤
√
n

‖S−1δs‖ ≤ ‖Pe‖ ≤
√
n

Therefore, we often choose our stepsize α so that setting δ = −α · XSe with α = O(1/
√
n)

ensures that the max relative change in the primal and dual variables are bounded by 1 since
‖X−1δx‖∞ ≤ ‖X−1δx‖2 < O(1). This ensures that we always satisfy the inequality constraints
that were dropped: x ≥ 0, s ≥ 0. The stepsize bound of n−0.5 is intuitively why the analysis will
require O(n0.5) iterations for an IPM to converge.

In summary, to stay close to the central path, the path-following procedure is split into multiple
iterations of two major steps: 1) the progress steps during which we aim to move towards a more
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optimal point in our polytope by decreasing t and 2) the centering steps where we recenter towards
the central path via a linear system solve that finds (δx, δy, δs). Now, we rigorize the notion of
staying close to the central path. The measure of proximity to the central path is usually achieved
via the `2 potential:

Φt
2(x, y, s) =

∑
i

(xisi
t
− 1
)2

It can be shown that centering steps can maintain Φt
2 ≤ O(1) while decreasing t by a factor

of (1 − 1/
√
n), giving us the standard O(n0.5) iteration analysis of IPM convergence (see [92]

for complete proofs). We note that there have been some notable other potentials such as an `∞-
threshold potential[92] and the Tanabe-Todd-Ye potential [95] which is given by

Φt(x, y, s) = t log(x>s)−
∑
i

log(xisi)

The centering or potential reduction steps are the computational bottleneck of the algorithm
and requires a linear system solve at each iteration. Using the framework of Karmarkar, it is not
hard to get a runtime complexity of O(n0.5+ω), where we have O(n0.5) iterations of linear systems
solves that take O(nω) time per iteration and ω is the matrix multiplication constant. Note that the
original paper of Karmarkar stated worse runtime complexity bounds.

Since then, a steady line of work has tried to reduce the runtime complexity of solving linear
programs via the IPM framework via a two-pronged approach: 1) reducing the iteration complex-
ity and 2) reducing the runtime complexity of each linear system solve. Reducing the iteration
complexity of the IPM is notoriously difficult and except for specific linear programs problems or
when n is significantly larger than m[51, 19, 60, 1], there is no significant speedup in the iteration
complexity of the IPM from the O(n0.5) bound despite over decades of continuous research.

Therefore, in this thesis, we focus on the second approach, which is to reduce the runtime of
each linear system solve per iteration. The main idea behind possible runtime savings is that over
multiple consecutive iterations, the matrix that needs to be inverted has a very nice structure that
is changing very slowly over iterations. Therefore, many have exploited this structure to achieve
O(n2) work per iteration [85, 50] by maintaining the inverse of our desired matrix efficiently. This
seemed optimal since a matrix vector product must take n2 time in the worse case and implies a
O(n2.5) total runtime bound for solving linear programs.

Very recently, novel ideas of stochastic sampling of matrices and randomized linear algebra
were introduced to IPMs to further speed up the runtime of the centering steps, leading to aO∗(nω)
runtime for solving linear programs as long as ω > 2.17 [18]. The main speedup comes from taking
a sparse stochastic step during the centering process that only depends on Õ(n0.5) coordinates; and
over the O(n0.5) iterations of the IPM, we would have only moved each coordinate Õ(1) times on
average. Therefore, given the current matrix multiplication time, the complexity of solving a linear
program is the same, up to to sub-polynomial factors, as solving a linear system.
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1.2 Self-Concordance and Convex Optimization
We consider the more general convex optimization problem:

min
x∈K,Ax=b

c>x (1.3)

for some convex set K. Note that every convex optimization problem can be converted into this
form and this problem generalizes our linear program by setting K to be the non-negative orthant.
Now, we can rewrite this as

min
Ax=b

c>x+ IK(x) (1.4)

where IK(x) = 0 if x ∈ K and∞ otherwise. The indicator function is rather difficult to optimize
over so convex barrier functions were introduced to serve a similar role [14]. The power of IPM
is underscored by Nesterov and Nemirovsky, who introduced the idea of using self-concordant
barriers to solve 1.4 in an IPM framework.

Definition 1.2.1. We call a convex function φ a ν self-concordant barrier for K if domφ = K and
φ→∞ at the boundary of K and for any x ∈ domφ and for any u ∈ Rn

|D3φ(x)[u, u, u]| ≤ 2‖u‖3/2
x and ‖∇φ(x)‖∗x ≤

√
ν

where ‖v‖x := ‖v‖∇2φ(x) and ‖v‖∗x := ‖v‖∇2φ(x)−1 , for any vector v.

Remark 1.2.2. It is known that ν ≥ 1 for any self-concordant barrier function.

For the case of the linear program with n variables, we just need a barrier for the non-negative
orthant so the typical n-self-concordant barrier is the familiar coordinate-wise log barrier:

φ(x) = −
∑
i

log(xi)

Nesterov and Nemirovsky introduced the concept of following a generalization of the linear pro-
gramming central path, which are the path of solutions to the following optimization problem:

x(t) = arg min
Ax=b

c>x+ tφ(x) (1.5)

and as before, we want to let t→ 0 [68]. The proximity measure to the central path is generalized
to a quantity known as the Newton Decrement:

λt(x) = ‖c+ t∇φ(x)‖∇2φ(x)−1

Note that this exactly becomes our `2 potential, Φ2, in the case of the log barrier. Finally, they
showed that one may use a Newton step to keep λt(x) ≤ O(1) throughout the algorithm while
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Figure 1.1: Central path for an example linear program as in 1.1. The dashed lines show different
contours of the log barrier. Figure is from [14].

reducing t by a factor of (1 − 1/
√
ν), where ν is the self-concordance parameter of φ [68, 14].

For completeness, we note that the Newton step direction is simply −∇2f(x)−1∇f(x), where
f(x) is the objective that we are minimizing. Interestingly, the rate at which we decrease t and
subsequently the runtimes of these path-following algorithms are usually governed by the self-
concordance properties of the barrier functions we use.

Nesterov and Nemirovsky showed that for any open convex set K ⊂ Rn, there is a O(n)
self-concordant barrier function [68]. Moreover, such barriers can be explicitly constructed and
furthermore, there are matching lower bounds[15]. Therefore, the IPM framework can be used to
give a general optimization procedure for convex programs with strong convergence guarantees.
One of the major applications of this generalized framework is for Semi-Definite Programming
(SDP) with the log determinant barrier.

Why is self-concordance the natural condition that we want to impose on our barrier functions?
The main result we will use about self-concordance is that the norm ‖·‖x is stable when we change
x. This is the intuitive reason why second-order methods, such as Newton’s Method, work well for
centering. For two symmetric matrices A,B, we define A � B if B − A is positive semidefinite
matrix, meaning the spectrum of the matrix admits only non-negative eigenvalues. We will see that
Hessian does not move much in the spectral sense.

Theorem 1.2.3 (Theorem 4.1.6 in [68]). If φ is a self-concordant barrier and if ‖y − x‖x < 1,
then we have :

(1− ‖y − x‖x)2∇2φ(x) � ∇2φ(y) � 1

(1− ‖y − x‖x)2
∇2φ(x).
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1.3 Randomized Linear Algebra
Randomized linear algebra has been a tool that has many applications in fast algorithms for nu-
merous optimization problems [91, 55, 54, 33, 71, 65]. Perhaps one of the first uses of randomized
linear algebra comes from the dimension-reduction approach of Johnson-Lindenstrauss Lemma,
which states that we may embed n points in Rd into dimension O(log(n)/ε2) with `2 distortion
at most ε with high probability. Perhaps amazingly, the embedding algorithm is simply a linear
transformation and it can be oblivious, meaning it is independent of the position of the n points.
The canonical example of such a matrix is a random k × d Gaussian matrix S, that has Sij being
i.i.d. N(0, 1/k).

Indeed if S is such a matrix, then for a vector v, we see that (Sv)i =
∑

j Sijvj , which is
distributed like a Gaussian with mean 0 and variance 1

k

∑
j v

2
j = ‖v‖2/k. Therefore, E[(Sv)2

i ] =

‖v‖2/k for all 1 ≤ i ≤ k and we have E[‖Sv‖2] = ‖v‖2. By a simple Chernoff bound, since each
(Sv)i is independent, we see that

Pr
[
‖Sv‖2 6∈ (1− ε, 1 + ε)‖v2‖

]
≤ e−Ω(kε2)

Therefore, setting k = log(n)/ε2 suffices for a high probability bound to hold over all n points.
While it is useful to preserve the `2 structure of a discrete point set, we often would want to
preserve the `2 structure of an entire subspace so that we may compute projections and solve
approximate regression problems fast. Solving regressions faster will ultimately allow for a speed-
up in IPM centering steps, making randomized linear algebra an invaluable tool in reducing the
runtime complexity of optimization procedures.

Definition 1.3.1 (Subspace Embedding). [91] A (1±ε)-subspace embedding for the column space
of a n× d matrix A is a k × n matrix S for which for all x ∈ Rd

‖SAx‖2 ∈ (1− ε, 1 + ε)‖Ax‖2

Inspired by the success of random Gaussian projections, one can show that if we let S be a
matrix i.i.d. Gaussian entries with an appropriate scale, then it suffices to set k = Ω(d/ε2) for
S to be a (1 ± ε)-subspace embedding. Intuitively, this scaling of k should be correct since by a
standard chaining argument on a 1/2-net for the d-dimensional subspace [91], we see that we can
just apply the Johnson-Lindenstrauss Theorem on a point set of size O(2d). Therefore, we expect
k = Ω(d/ε2) for the `2 structure of an entire d-dimension structure to be preserved.

The utility of subspace embeddings can be illustrated in the following regression problem.
Suppose we want to solve linear regression of the form

min
x
‖Ax− b‖

where A is a n× d matrix with n� d. Then, with a good subspace embedding S, we can instead
solve

min
x
‖S(Ax− b)‖
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which is a good approximation to our original regression problem. Furthermore, it can be shown
that the approximate version of the regression problem can be used, via an fast iterative method
along the lines of preconditioned gradient descent, to solve our original regression problem exactly
[17]. This implies that if we can compute SA fast, then the regression problem can be solved in
O(dω) time.

However, since our current subspace embedding matrix S is a dense Gaussian matrix, the run-
time of simply computing the matrix product SA will dominate. Subsequently, a long line of work
then proceeded to reduce the runtime of computing the matrix product SA by using a variety of
different embeddings S. In [25], S was reduced to haveO(poly(d)/ε) non-zero entries per column
and this was later optimized to have O(d/ε) non-zero entries, with tight lower bounds for arbitrary
point sets of sizeO(2d) [39, 64]. This implies that we can compute SA in timeO(nnz(A)d/ε). An-
other line of reasoning exploits properties the Fast Fourier and Hadamard Transforms to speed up
the product of SA, leading eventually to O(nd log(1/ε)) runtime [91]. Finally, the breakthrough
paper of [17] showed that S can be shown to have O(1) non-zero entries per column and that
SA can be computed in an optimal O(nnz(A)) runtime. For a more complete exposition of the
previous work and proofs, we refer the reader to [91].

Because the IPM centering steps can be re-written as solving a least squares problem, we may
use the fast regression solvers of [17] to speed up our computations to depend mainly on the rank
of our constraint matrix, as was done in [52, 71]. Note that the usage of randomized linear algebra,
before our proposed result, focused on preserving the `2 structure of the reduced linear system and
thus could only reduce to Ω(d) dimensions at best.
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Chapter 2

Empirical Risk Minimization in Matrix
Multiplication Time

2.1 Introduction
Empirical Risk Minimization (ERM) problem is a fundamental question in statistical machine
learning. There are a huge number of papers that have considered this topic [69, 87, 72, 67, 12,
13, 66, 61, 30, 48, 38, 88, 80, 28, 27, 32, 29, 81, 96, 97, 98, 34, 62, 70, 2, 23, 37]1 as almost
all convex optimization machine learning can be phrased in the ERM framework [78, 87]. While
the statistical convergence properties and generalization bounds for ERM are well-understood, a
general runtime bound for general ERM is not known although fast runtime bounds do exist for
specific instances [1].

Examples of applications of ERM include linear regression, LASSO [84], elastic net [99],
logistic regression [22, 36], support vector machines [21], `p regression [16, 26, 15, 1], quantile
regression [42, 44, 43], AdaBoost [31], kernel regression [63, 89], and mean-field variational
inference [94].

The classical Empirical Risk Minimization problem is defined as

min
x

m∑
i=1

fi(a
>
i x+ bi)

where fi : R→ R is a convex function, ai ∈ Rd, and bi ∈ R, ∀i ∈ [m]. Note that this formulation
also captures most standard forms of regularization as well.

Letting yi = a>i x + bi, and zi = fi(a
>
i x + bi) allows us to rewrite the original problem in the

1Feel free to notify/email us for missing reference, we are happy to add/remove.
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following sense,

min
x,y,z

∑
i=1

zi

s.t. Ax+ b = y

(yi, zi) ∈ Ki = {(y, z) : f(y) ≤ z},∀i ∈ [m]

We can consider a more general version where dimension of Ki can be arbitrary, e.g. ni.
Therefore, we come to study the general n-variable form

min
x∈

∏m
i=1Ki,Ax=b

c>x

where
∑m

i=1 ni = n. In this thesis, we show that as long as ni = O(1), we may extend the work of
[18] to show that the general form of our problem can be solved in current matrix multiplication
time.

Theorem 2.1.1 (Main result, informal version of Theorem 3.3.3). Given a matrix A ∈ Rd×n, two
vectors b ∈ Rd, c ∈ Rn, and m compact convex sets K1, K2, · · · , Km. Assume that there is no
redundant constraints and ni = O(1), ∀i ∈ [m]. There is an algorithm (procedure MAIN in
Algorithm 6) that solves

min
x∈

∏m
i=1Ki,Ax=b

c>x

up to δ precision and runs in expected time

Õ
(

(nω+o(1) + n2.5−α/2+o(1) + n2+1/6+o(1)) · log(
n

δ
)
)

where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication.
For the current value of ω ∼ 2.38 [90, 46] and α ∼ 0.31 [47], the expected time is simply

nω+o(1)Õ(log(n
δ
)).

Remark 2.1.2. More precisely, when ni is super constant, our running time depends polynomially
on maxi∈[m] ni (but not exponential dependence).

Also note that our runtime depends on diameter, but logarithmically to the diameter. So, it can
be applied to linear program by imposing an artificial bound on the solution.

Related Work
First-order algorithms for ERM are well-studied and a long series of accelerated stochastic gradient
descent algorithms have been developed and optimized [68, 38, 93, 79, 32, 56, 59, 8, 75, 77, 7,
76, 62, 57, 53, 6, 3, 5, 4]. However, these rates depend polynomially on the Lipschitz constant
of ∇fi and in order to achieve a log(1/ε) dependence, the runtime will also have to depend on
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the strong convexity of the
∑

i fi. In this paper, we want to focus on algorithms that depend
logarithmically on diameter/smoothness/strong convexity constants, as well as the error parameter
ε. Note that gradient descent and a direct application of Newton’s method do not belong to these
class of algorithms, but for example, interior point method and ellipsoid method does.

Therefore, in order to achieve high-accuracy solutions for non-smooth and non strongly convex
case, most convex optimization problems will rely on second-order methods, often under the gen-
eral interior point method (IPM) or some sort of iterative refinement framework. So, we note that
our algorithm is thus optimal in this general setting since second-order methods require at least nω

runtime for general matrix inversion. Indeed, note that if we can solve linear regression faster than
nω time, then matrix inversion would also be sped up.

Our algorithm applies the interior point method framework to solve ERM. The most general
interior point methods require O(

√
n)-iterations of linear system solves [68], requiring a naive

runtime bound of O(nω+1/2). Using the inverse maintenance technique [86, 18], one can improve
the running time for LP to O(nω). This essentially implies that almost all convex optimization
problems can be solved, up to subpolynomial factors, as fast as linear regression or matrix inver-
sion!

The specific case of `2 regression can be solved in O(nω) time since the solution is explicitly
given by solving a linear system. In the more general case of `p regression, [15] proposed a
Õp(n

|1/2−1/p|)-iteration iterative solver with a naive O(nω) system solve at each step. Recently,
[1] improved the runtime to Õp(n

max (ω,7/3)), which is current matrix multiplication time as ω >
7/3. However, both these results depend exponentially on p and fail to be impressive for large p.
Otherwise, we are unaware of other ERM formulations that have have general runtime bounds for
obtaining high-accuracy solutions.

Recently several works [10, 11, 9] try to show the limitation of current known techniques for
improving matrix multiplication time. Alman and Vassilevska Williams [11] proved limitations of
using the Galactic method applied to many tensors of interest (including Coppersmith-Winograd
tensors [20]). More recently, Alman [9] proved that by applying the Universal method on those
tensors, we cannot hope to achieve any running time better than n2.168 which is already above our
n2+1/6.
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2.2 Overview of Techniques
In this section, we discuss the key ideas in this paper. Generalizing the stochastic sparse update
approach of [18] to our setting is a natural first step to speeding up the matrix-vector multiplica-
tion that is needed in each iteration of the interior point method. In linear programs, maintaining
approximate complementary slackness means that we maintain x, s to be close multiplicatively to
the central path under some notion of distance. However, the generalized notion of complementary
slackness requires a barrier-dependent notion of distance. Specifically, if φ(x) is a barrier func-
tion, then our distance is now defined as our function gradient being small in a norm depending
on ∇2φ(x). One key fact of the stochastic sparse update is that the variance introduced does not
perturb the approximation too much, which requires understanding the second derivative of the dis-
tance function. For our setting, this would require bounding the 4th derivative of φ(x), which may
not exist for self-concordant functions. So, the stochastic approach may not work algorithmically
(not just in the analysis) if φ(x) is assumed to be simply self-concordant. Even when assumptions
on the 4th derivative of φ(x) are made, the analysis will become significantly more complicated
due to the 4th derivative terms. To avoid these problems, the main contributions of this thesis is
to 1) introduce a robust version of the central path and 2) exploit the robustness via sketching to
apply the desired matrix-vector multiplication fast.

More generally, our main observation is that one can generally speed up an iterative method
using sketching if the method is robust in a certain sense. To speed up interior point methods,
in Section 2.4 and 2.5, we give a robust version of the interior point method; and in Section 3.1,
we give a data structure to maintain the sketch; and in Section 3.3, we show how to combine
them together. We provide several basic notations and definitions for numerical linear algebra in
Section 2.3. In Section 3.4, we provide some classical lemmas from the literature of interior point
methods. In Section 3.2, we prove some basic properties of the sketching matrix. Now, we first
begin with an overview of our robust central path and then proceed with an overview of sketching
iterative methods.

Central Path Method
We consider the following optimization problem

min
x∈

∏m
i=1Ki,Ax=b

c>x (2.1)

where
∏m

i=1 Ki is the direct product of m low-dimensional convex sets Ki. We let xi be the i-
th block of x corresponding to Ki. Interior point methods consider the path of solutions to the
following optimization problem:

x(t) = arg min
Ax=b

c>x+ t
m∑
i=1

φi(xi) (2.2)

where φi : Ki → R are self-concordant barrier functions. This parameterized path is commonly
known as the central path. Many algorithms solve the original problem (2.1) by following the
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central path as the path parameter is decreased t → 0. In practice, most ERM problems lend
themselves to explicit O(1) self-concordant barriers for majority of the convex functions people
use. For example, for the set {x : ‖x‖ < 1}, we use − log(1 − ‖x‖2); for the set {x : x > 0},
we use − log(x), and so on. That is the reason why we assume the gradient and hessian can be
computed in O(1) time. Therefore, we assume a νi self-concordant barrier φi is provided and that
we can compute∇φi and ∇2φi in O(1) time.

In general, we can simply think of φi as a function penalizing any point xi /∈ Ki. It is known
how to transform the original problem (2.1) by adding O(n) many variables and constraints so that
• The minimizer x(t) at t = 1 is explicitly given.
• One can obtain an approximate solution of the original problem using the minimizer at small
t in linear time.

For completeness, we show how to do it in Lemma 3.4.2. Therefore, it suffices to study how we
can move efficiently from x(1) to x(ε) for some tiny ε where x(t) is again the minimizer of the
problem (2.2).

Robust Central Path
In the standard interior point method, we use a tight `2-bound to control how far we can deviate
from x(t) during the entirety of the algorithm. Specifically, if we denote γti(xi) is the Newton
Decrement in each block coordinate xi at path parameter t, then as we let t→ 0, the old invariant
that we are maintaining is,

Φt
old(x) =

m∑
i=1

γti(xi)
2 ≤ O(1)

It can be shown that a Newton step in the standard direction will allow for us to maintain Φt
old

to be small even as we decrease t by a multiplicative factor of O(m−1/2) in each iteration, thereby
giving a standardO(

√
m) iteration analysis. Therefore, the standard approach can be seen as trying

to remain within a small `2 neighborhood of the central path by centering with Newton steps after
making small decreases in the path parameter t. Note however that if each γi can be perturbed by
an error that is Ω(m−1/2), Φt

old(x) can easily become too large for the potential argument to work.
To make our analysis more robust, we introduce a robust version that maintains the soft-max

potential:

Φt
new(x) =

m∑
i=1

exp(λγti(xi)) ≤ O(m)

for some λ = Θ(logm). The robust central path is simply the region of all x that satisfies our
potential inequality. We will specify the right constants later but we always make λ large enough to
ensure that γi ≤ 1 for all x in the robust central path. Now note that a `∞ perturbation of γ translates
into a small multiplicative change in Φt, tolerating errors on each γi of up to O(1/poly log(n)).

However, maintaining Φt
new(x) ≤ O(m) is not obvious because the robust central path is a

much wider region of x than the typical `2-neighborhood around the central path. We will show
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later how to modify the standard Newton direction to maintain Φt
new(x) ≤ O(m) as we decrease t.

Specifically, we will show that a variant of gradient descent of Φt
new in the Hessian norm suffices

to provide the correct guarantees.

Speeding up via Sketching
To motivate our sketching algorithm, we consider an imaginary iterative method

z(k+1) ← z(k) + P · F (z(k))

where P is some dense matrix and F (z) is some simple formula that can be computed efficiently
in linear time. Note that the cost per iteration is dominated by multiplying P with a vector, which
takes O(n2) time. To avoid the cost of multiplication, instead of storing the solution explicitly, we
store it implicitly by z(k) = P · u(k). Now, the algorithm becomes

u(k+1) ← u(k) + F (P · u(k)).

This algorithm is as expensive as the previous one except that we switch the location of P . How-
ever, if we know the algorithm is robust under perturbation of the z(k) term in F (z(k)), we can
instead do

u(k+1) ← u(k) + F (R>RP · u(k))

for some random Gaussian matrixR : Rb×n. Note that the matrixRP is fixed throughout the whole
algorithm and can be precomputed. Therefore, the cost of per iteration decreases from O(n2) to
O(nb).

For our problem, we need to make two adjustments. First, we need to sketch the change of z,
that is F (P · u(k)), instead of z(k) directly because the change of z is smaller and this creates a
smaller error. Second, we need to use a fresh random R every iteration to avoid the randomness
dependence issue in the proof. For the imaginary iterative process, it becomes

z(k+1) ← z(k) +R(k)>R(k)P · F (z(k)),

u(k+1) ← u(k) + F (z(k)).

After some iterations, z(k) becomes too far from z(k) and hence we need to correct the error by
setting z(k) = P · u(k), which zeros the error.

Note that the algorithm explicitly maintains the approximate vector z while implicitly maintain-
ing the exact vector z by Pu(k). This is different from the classical way to sketch Newton method
[71], which is to simply run z(k+1) ← z(k) +R>RP ·F (z(k)) or use another way to subsample and
approximate P . Such a scheme relies on the iteration method to fix the error accumulated in the
sketch, while we are actively fixing the error by having both the approximate explicit vector z and
the exact implicit vector z.

Without precomputation, the cost of computing R(k)P is in fact higher than that of P ·F (z(k)).
The first one involves multiplying multiple vectors with P and the second one involves multiplying
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1 vector with P . However, we can precompute [R(1)>;R(2)>; · · · ;R(T )>]> · P by fast matrix
multiplication. This decreases the cost of multiplying 1 vector with P to nω−1 per vector. This is
a huge saving from n2. In our algorithm, we end up using only Õ(n) random vectors in total and
hence the total cost is still roughly nω.

Maintaining the Sketch
The matrix P we use in interior point methods is of the form

P =
√
WA>(AWA>)−1A

√
W

where W is some block diagonal matrix. [18] showed one can approximately maintain the matrix
P with total cost Õ(nω) across all iterations of interior point method. However, the cost of applying
the dense matrix P with a vector z is roughly O(n‖z‖0) which is O(n2) for dense vectors. Since
interior point methods takes at least

√
n iterations in general, this gives a total runtime of O(n2.5).

The key idea in [18] is that one can design a stochastic interior point method such that each step
only need to multiply P with a vector of density Õ(

√
n). This bypasses the n2.5 bottleneck.

In this paper, we do not have this issue because we only need to compute RPz which is much
cheaper than Pz. We summarize why it suffices to maintain RP throughout the algorithm. In gen-
eral, for interior point method, the vector z is roughly an unit vector and since P is an orthogonal
projection, we have ‖Pz‖2 = O(1). One simple insight we have is that if we multiply a random√
n × n matrix R with values ± 1√

n
by Pz, we have ‖RPz‖∞ = Õ( 1√

n
) (Lemma 3.2.5). Since

there are Õ(
√
n) iterations in interior point method, the total error is roughly Õ(1) in a correctly

reweighed `∞ norm. In Section 2.5, we showed that this is exactly what interior point method needs
for convergence. Furthermore, we note that though each step needs to use a fresh random matrixRl

of size
√
n×n, the random matrices [R>1 ;R>2 ; · · · ;R>T ]> we need can all fit into Õ(n)×n budget.

Therefore, throughout the algorithm, we simply need to maintain the matrix [R>1 ;R>2 ; · · · ;R>T ]>P

which can be done with total cost Õ(nω) across all iterations using idea similar to [18].
The only reason the data structure looks complicated is that when the block matrix W changes

in different location in
√
WA>(AWA>)−1A

√
W , we need to update the matrix [R1;R2; · · · ;RT ]P

appropriately. This gives us few simple cases to handle in the algorithm and in the proof. For the
intuition on how to maintain P under W change, see [18, Section 2.2 and 5.1].

Fast rectangular matrix multiplication
Given two size n × n matrices, the time of multiplying them is n2.81 < n3 by applying Strassen’s
original algorithm [83]. The current best running time takes nω time where ω < 2.373 [90, 46].
One natural extension of multiplying two square matrices is multiplying two rectangular matrices.
What is the running time of multiplying one n × na matrix with another na × n matrix? Let α
denote the largest upper bound of a such that multiplying two rectangular matrices takes n2+o(1)

time. The α is called the dual exponent of matrix multiplication, and the state-of-the-art result is
α = 0.31 [47]. We use the similar idea as [18] to delay the low-rank update when the rank is small
so that fast maintenance is possible.
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2.3 Preliminaries
Given a vector x ∈ Rn and m compact convex sets K1 ⊂ Rn1 , K2 ⊂ Rn2 , · · · , Km ⊂ Rnm with∑m

i=1 ni = n. We use xi to denote the i-th block of x, then x ∈
∏m

i=1Ki if xi ∈ Ki, ∀i ∈ [m].
We say a block diagonal matrix A ∈ ⊕mi=1Rni×ni if A can be written as

A =


A1

A2

. . .
Am


where A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 , and Am ∈ Rnm×nm . For a matrix A, we use ‖A‖F to denote its
Frobenius norm and use ‖A‖ to denote its operator norm. There are some trivial facts ‖AB‖2 ≤
‖A‖2 · ‖B‖2 and ‖AB‖F ≤ ‖A‖F · ‖B‖2.

For notation convenience, we assume the number of variables n ≥ 10 and there are no redun-
dant constraints. In particular, this implies that the constraint matrix A is full rank.

For a positive integer n, let [n] denote the set {1, 2, · · · , n}.
For any function f , we define Õ(f) to be f · logO(1)(f). In addition to O(·) notation, for two

functions f, g, we use the shorthand f . g (resp. &) to indicate that f ≤ Cg (resp. ≥) for some
absolute constant C. For any function f , we use domf to denote the domain of function f .

For a vector v, We denote ‖v‖ as the standard Euclidean norm of v and for a symmetric PSD
matrix A, we let ‖v‖A = (v>Av)1/2. For a convex function f(x) that is clear from context, we
denote ‖v‖x = ‖v‖∇2f(x) and ‖v‖∗x = ‖v‖∇2f(x)−1 .
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2.4 Robust Central Path
In this section we show how to move move efficiently from x(1) to x(ε) for some tiny ε by stay-
ing on a robust version of the central path. Because we are maintaining values that are slightly
off-center, we show that our analysis still goes through despite `∞ perturbations on the order of
O(1/poly log(n)).

Newton Step
To follow the path x(t), we consider the optimality condition of (2.2):

s/t+∇φ(x) = 0,

Ax = b,

A>y + s = c

where∇φ(x) = (∇φ1(x1),∇φ2(x2), · · · ,∇φm(xm)). To handle the error incurred in the progress,
we consider the perturbed central path

s/t+∇φ(x) = µ,

Ax = b,

A>y + s = c

where µ represent the error between the original central path and our central path. Each iteration,
we decrease t by a certain factor. It may increase the error term µ. Therefore, we need a step to
decrease the norm of µ. The Newton method to move µ to µ+ h is given by

1

t
· δ(ideal)

s +∇2φ(x) · δ(ideal)
x = h,

Aδ(ideal)
x = 0,

A>δ(ideal)
y + δ(ideal)

s = 0

where ∇2φ(x) is a block diagonal matrix with the i-th block is given by ∇2φi(xi). Letting W =
(∇2φ(x))−1, we can solve this:

δ(ideal)
y = − t ·

(
AWA>

)−1
AWh,

δ(ideal)
s = t · A>

(
AWA>

)−1
AWh,

δ(ideal)
x = Wh−WA>

(
AWA>

)−1
AWh.

We define projection matrix P ∈ Rn×n as follows

P = W 1/2A>
(
AWA>

)−1
AW 1/2
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and then we rewrite them

δ(ideal)
x = W 1/2(I − P )W 1/2δµ, (2.3)

δ(ideal)
s = tW−1/2PW 1/2δµ. (2.4)

One standard way to analyze the central path is to measure the error by ‖µ‖∇2φ(x)−1 and uses the
step induced by h = −µ. One can easily prove that if ‖µ‖∇2φ(x)−1 < 1

10
, one step of Newton

step decreases the norm by a constant factor. Therefore, one can alternatively decrease t and do a
Newton step to follow the path.

Robust Central Path Method
In this section, we develop a central path method that is robust under certain `∞ perturbations. Due
to the `∞ perturbation, we measure the error µ by a soft max instead of the `2 type potential:

Definition 2.4.1. For each i ∈ [m], let µti(x, s) ∈ Rni and γti(x, s) ∈ R be defined as follows:

µti(x, s) = si/t+∇φi(xi), (2.5)
γti(x, s) = ‖µti(x, s)‖∇2φi(xi)−1 , (2.6)

and we define potential function Φ as follows:

Φt(x, s) =
m∑
i=1

exp(λγti(x, s))

where λ = O(logm).

The robust central path is the region (x, s) that satisfies Φt(x, s) ≤ O(m). To run our conver-
gence argument, we will be setting λ appropriately so that staying on the robust central path will
guarantee a `∞ bound on γ. Then, we will show how to maintain Φt(x, s) to be small throughout
the algorithm while decreasing t, always staying on the robust central path. This is broken into a
two step analysis: the progress step (decreasing t) and the centering step (moving x, s to decrease
γ).

It is important to note that to follow the robust central path, we no longer pick the standard
Newton direction by setting h = −µ. To explain how we pick our centering step, suppose we can
move µ → µ + h arbitrarily with the only restriction on the distance ‖h‖∇2φ(x)−1 = α. Then, the
natural step would be

h = arg min
‖h‖∇2φ(x)−1=α

〈∇f(µ(x, s)), h〉

where f(µ) =
∑m

i=1 exp(λ‖µ‖∇2φi(xi)−1). Note that

∇f(µt(x, s))i = λ exp(λγti(x, s))/γ
t
i(x, s) · ∇2φi(xi)

−1µti(x, s).



CHAPTER 2. EMPIRICAL RISK MINIMIZATION IN MATRIX MULTIPLICATION TIME19

Therefore, the solution for the minimization problem is

h
(ideal)
i = −α · cti(x, s)(ideal)µti(x, s) ∈ Rni ,

where µti(x, s) ∈ Rni is defined as Eq. (2.5) and cti(x, s) ∈ R is defined as

cti(x, s)
(ideal) =

exp(λγti(x, s))/γ
t
i(x, s)

(
∑m

i=1 exp(2λγti(x, s)))
1/2
.

Eq. (2.3) and Eq. (2.4) gives the corresponding ideal step on x and s.
Now, we discuss the perturbed version of this algorithm. Instead of using the exact x and s

in the formula of h, we use a x which is approximately close to x and a s which is close to s.
Precisely, we have

hi = −α · cti(x, s)µti(x, s) (2.7)

where

cti(x, s) =

{
exp(λγti (x,s))/γ

t
i (x,s)

(
∑m
i=1 exp(2λγti (x,s)))

1/2 if γti(x, s) ≥ 96
√
α

0 otherwise
. (2.8)

Note that our definition of cti ensures that cti(x, s) ≤ 1
96
√
α

regardless of the value of γti(x, s). This
makes sure we do not move too much in any coordinates and indeed when γti is small, it is fine
to set cti = 0. Furthermore, for the formula on δx and δs, we use some matrix Ṽ that is close to
(∇2φ(x))−1. Precisely, we have

δx = Ṽ 1/2(I − P̃ )Ṽ 1/2h, (2.9)

δs = t · Ṽ −1/2P̃ Ṽ 1/2h. (2.10)

where
P̃ = Ṽ 1/2A>(AṼ A>)−1AṼ 1/2.

Here we give a quick summary of our algorithm. (The more detailed of our algorithm can be
found in Algorithm 5 and 6 in Section 3.3.)
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• ROBUSTIPM(A, b, c, φ, δ)

– λ = 216 log(m), α = 2−20λ−2, κ = 2−10α.
– δ = min( 1

λ
, δ).

– ν =
∑m

i=1 νi where νi are the self-concordant parameters of φi.
– Modify the convex problem and obtain an initial x and s according to Lemma 3.4.2.
– t = 1.
– While t > δ2

4ν

∗ Find x and s such that ‖xi − xi‖xi < α and ‖si − si‖∗xi < tα for all i.
∗ Find Ṽi such that (1− α)(∇2φi(xi))

−1 � Ṽi � (1 + α)(∇2φi(xi))
−1 for all i.

∗ Compute h = −α · cti(x, s)µti(x, s) where

cti(x, s) =

{
exp(λγti (x,s))/γ

t
i (x,s)

(
∑m
i=1 exp(2λγti (x,s)))

1/2 if γti(x, s) ≥ 96
√
α

0 otherwise
.

and µti(x, s) = si/t+∇φi(xi) and γti(x, s) = ‖µti(x, s)‖∇2φi(xi)−1

∗ Let P̃ = Ṽ 1/2A>(AṼ A>)−1AṼ 1/2.
∗ Compute δx = Ṽ 1/2(I − P̃ )Ṽ 1/2h and δs = t · Ṽ −1/2P̃ Ṽ 1/2h.
∗ Move x← x+ δx, s← s+ δs.
∗ tnew = (1− κ√

ν
)t.

– Return an approximation solution of the convex problem according to Lemma 3.4.2.

Theorem 2.4.2 (Robust Interior Point Method). Consider a convex problem minAx=b,x∈
∏m
i=1Ki

c>x
where Ki are compact convex sets. For each i, we are given a νi-self concordant barrier function
φi for Ki. Also, we are given x(0) = arg minx

∑m
i=1 φi(xi). Assume that

1. Diameter of the set: For any x ∈
∏
Ki, we have that ‖x‖2 ≤ R.

2. Lipschitz constant of the program: ‖c‖2 ≤ L.
Then, the algorithm ROBUSTIPM finds a vector x such that

c>x1:n ≤ min
Ax=b,x∈

∏
iKi

c>x+ LR · δ,

‖Ax− b‖1 ≤ 3δ ·

(
R
∑
i,j

|Ai,j|+ ‖b‖1

)
,

x ∈
∏
i

Ki.

in O(
√
ν log2m log(ν

δ
)) iterations.

Proof. Lemma 3.4.2 shows that the initial x and s satisfies

‖s+∇φ(x)‖∗x ≤ δ ≤ 1

λ
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where the last inequality is due to our step δ ← min( 1
λ
, δ). This implies that γ1

i (x, s) = ‖si +
∇φi(xi)‖∗xi ≤

1
λ

and hence Φ1(x, s) ≤ e ·m ≤ 80m
α

for the initial x and s. Apply Lemma 2.5.8
repetitively, we have that Φt(x, s) ≤ 80m

α
during the whole algorithm. In particular, we have this

at the end of the algorithm. This implies that

‖si +∇φi(xi)‖∗xi ≤
log(80m

α
)

λ
≤ 1

at the end. Therefore, we can apply Lemma 3.4.3 to show that

〈c, x〉 ≤ 〈c, x∗〉+ 4tν ≤ 〈c, x∗〉+ δ2

where we used the stop condition for t at the end. Note that this guarantee holds for the modified
convex program. Since the error is δ2, Lemma 3.4.2 shows how to get an approximate solution for
the original convex program with error LR · δ.

The number of steps follows from the fact we decrease t by 1− 1√
ν log2m

factor every iteration.
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Statement Parameters
Lemma 2.5.2 µti(x, s)→ µti(x

new, snew)
Lemma 2.5.4 γti(x, x, s)→ γti(x

new, x, snew)
Lemma 2.5.5 Φ(x, x, s)→ Φ(xnew, x, snew)
Lemma 2.5.6 Φ(xnew, x, snew)→ Φ(xnew, xnew, snew)
Lemma 2.5.7 Φt → Φtnew

Lemma 2.5.8 Φt(x, s)→ Φtnew(xnew, snew)

Table 2.1: Bounding the changes of different variables

2.5 Analysis of Robust Central Path
Basically, the main proof is just a simple calculation on how Φt(x, s) changes during 1 iteration.
It could be compared to the proof of `∞ potential reduction arguments for the convergence of
long-step interior point methods, although the main difficulty arises from the perturbations from
stepping using x, s instead of x, s.

To organize the calculations, we note that the term γti(x, s) = ‖µti(x, s)‖∇2φi(xi)−1 has two
terms involving x, one in the µ term and one in the Hessian. Hence, we separate how different x
affect the potential by defining

γti(x, z, s) = ‖µti(x, s)‖∇2φi(zi)−1 ,

Φt(x, z, s) =
m∑
i=1

exp(λγti(x, z, s)).

One difference between our proof and standard `2 proofs of interior point is that we assume the
barrier function is decomposable. We define αi = ‖δx,i‖xi is the “step” size of the coordinate i.
One crucial fact we are using is that sum of squares of the step sizes is small.

Lemma 2.5.1. For all i ∈ [m], let αi = ‖δx,i‖xi . Then,

m∑
i=1

α2
i ≤ 4α2.

Proof. Note that

m∑
i=1

α2
i = ‖δx‖2

x = h>Ṽ 1/2(I − P̃ )Ṽ 1/2∇2φ(x)Ṽ 1/2(I − P̃ )Ṽ 1/2h.

Since (1− α)(∇2φi(xi))
−1 � Ṽi � (1 + α)(∇2φi(xi))

−1, we have that

(1− α)(∇2φ(x))−1 � Ṽ � (1 + α)(∇2φ(x))−1.
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Using α ≤ 1
10000

, we have that
m∑
i=1

α2
i ≤ 2h>Ṽ 1/2(I − P̃ )(I − P̃ )Ṽ 1/2h ≤ 2h>Ṽ h

where we used that I − P̃ is an orthogonal projection at the end. Finally, we note that

h>Ṽ h ≤ 2
m∑
i=1

‖hi‖∗2xi

= 2α2

m∑
i=1

cti(x, s)
2‖µti(x, s)‖∗2xi

≤ 2α2

m∑
i=1

exp(2λγti(x, s))/γ
t
i(x, s)

2∑m
i=1 exp(2λγti(x, s))

1/2
‖µti(x, s)‖∗2xi

= 2α2

∑m
i=1 exp(2λγti(x, s))∑m
i=1 exp(2λγti(x, s))

= 2α2

where the second step follows from definition of hi (2.7), the third step follows from definition cti
(2.8), the fourth step follows from definition of γti (2.6).

Therefore, putting it all together, we can show
m∑
i=1

α2
i ≤ 4α2.

Changes in µ and γ
We provide basic lemmas that bound changes in µ, γ due to the centering steps.

Lemma 2.5.2 (Changes in µ). For all i ∈ [m], let

µti(x
new, snew) = µti(x, s) + hi + ε

(µ)
i .

Then, ‖ε(µ)
i ‖∗xi ≤ 10α · αi.

Proof. Let x(u) = uxnew + (1 − u)x and µnew
i = µti(x

new, snew). The definition of µ (2.5) shows
that

µnew
i = µi +

1

t
δs,i +∇φi(xnew

i )−∇φi(xi)

= µi +
1

t
δs,i +

∫ 1

0

∇2φi(x
(u)
i )δx,i du

= µi +
1

t
δs,i +∇2φi(xi)δx,i +

∫ 1

0

(
∇2φi(x

(u)
i )−∇2φi(xi)

)
δx,i du.
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By the definition of δx and δs (2.9) and (2.10), we have that 1
t
δs,i + Ṽ −1

i δx,i = hi. Hence, we have

µnew
i = µi + hi + ε

(µ)
i

where

ε
(µ)
i =

∫ 1

0

(
∇2φi(x

(u)
i )−∇2φi(xi)

)
δx,i du+ (∇2φi(xi)− Ṽ −1

i )δx,i. (2.11)

To bound ε(µ)
i , we note that

‖x(t)
i − xi‖xi ≤ ‖x

(t)
i − xi‖xi + ‖xi − xi‖xi ≤ ‖δx,i‖xi + α ≤ 3α

where we used Lemma 2.5.1. Using α ≤ 1
100

, Theorem 1.2.3 shows that

−7α · ∇2φi(xi) � ∇2φi(x
(u)
i )−∇2φi(xi) � 7α · ∇2φi(xi).

Equivalently, we have

(∇2φi(x
(u)
i )−∇2φi(xi)) · (∇2φi(xi))

−1 · (∇2φi(x
(u)
i )−∇2φi(xi)) � (7α)2 · ∇2φi(xi).

Using this, we have∥∥∥∥∫ 1

0

(
∇2φi(x

(u)
i )−∇2φi(xi)

)
δx,i du

∥∥∥∥∗
xi

≤
∫ 1

0

∥∥∥(∇2φi(x
(u)
i )−∇2φi(xi)

)
δx,i

∥∥∥∗
xi

du

≤ 7α‖δx,i‖xi = 7α · αi. (2.12)

For the other term in ε(µ)
i , we note that

(1− 2α) · (∇2φi(xi)) � Ṽ −1
i � (1 + 2α) · (∇2φi(xi)).

Hence, we have ∥∥∥(∇2φi(xi)− Ṽ −1
i )δx,i

∥∥∥∗
xi
≤ 2α‖δx,i‖xi = 2α · αi. (2.13)

Combining (2.11), (2.12) and (2.13), we have

‖ε(µ)
i ‖∗xi ≤ 9α · αi.

Finally, we use the fact that xi and xi are α close and hence again by self-concordance, ‖ε(µ)
i ‖∗xi ≤

10α · αi.

Before bounding the change of γ, we first prove a helper lemma:

Lemma 2.5.3. For all i ∈ [m], we have

‖µti(x, s)− µti(x, s)‖∗xi ≤ 4α.
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Proof. Note that

‖µti(x, s)− µti(x, s)‖∗xi =
1

t
‖si − si‖∗xi + ‖∇φi(xi)−∇φi(xi)‖∗xi .

For the first term, we have ‖si − si‖∗xi ≤ tα.
For the second term, let x(u)

i = uxi + (1− u)xi. Since xi is close enough to xi, Theorem 1.2.3
shows that∇2φi(x

(u)
i ) � 2 · ∇2φi(xi). Hence, we have

‖∇φi(xi)−∇φi(xi)‖∗xi =

∥∥∥∥∫ 1

0

∇2φi(x
(u)
i ) · (xi − xi)du

∥∥∥∥∗
xi

≤ 2‖xi − xi‖xi = 2α.

Hence, we have ‖µti(x, s) − µti(x, s)‖∗xi ≤ 3α and using again xi is close enough to xi to get the
final result.

Lemma 2.5.4 (Changes in γ). For all i ∈ [m], let

γti(x
new, x, snew) ≤ (1− α · cti(x, s))γti(x, x, s) + ε

(γ)
i .

then ε(γ)
i ≤ 10α · (αcti(x, s) + αi). Furthermore, we have |γti(xnew, x, snew)− γti(x, x, s)| ≤ 3α.

Proof. For the first claim, Lemma 2.5.2, the definition of γ (2.6), h (2.7) and c (2.8) shows that

γti(x
new, x, snew) = ‖µti(x, s) + hi + ε

(µ)
i ‖∗xi

= ‖(1− α · cti(x, s))µti(x, s) + εi‖∗xi

where εi = α · cti(x, s)(µti(x, s)− µti(x, s)) + ε
(µ)
i .

From the definition of cti, we have that cti ≤ 1
96
√
α
≤ 1

α
and hence 0 ≤ 1 − α · cti(x, s) ≤ 1.

Therefore, we have

γti(x
new, x, snew) ≤(1− α · cti(x, s))γti(x, x, s) + ‖εi‖∗xi . (2.14)

Now, we bound ‖εi‖∗xi:

‖εi‖∗xi ≤ αcti(x, s) · ‖µti(x, s)− µti(x, s)‖∗xi + ‖ε(µ)
i ‖∗xi

≤ 4α2cti(x, s) + 10α · αi (2.15)

where we used Lemma 2.5.3 and Lemma 2.5.2 at the end.
For the second claim, we have∣∣γti(xnew, x, snew)− γti(x, x, s)

∣∣ ≤ ‖hi + ε
(µ)
i ‖∗xi ≤ 2α + 10α · αi

where we used (2.15) and that ‖hi‖∗xi ≤ 2‖h‖∗x ≤ 2α. From Lemma 2.5.1 and that α ≤ 1
10000

, we
have 10α · αi ≤ 20α2 ≤ α.
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Movement from (x, x, s) to (xnew, x, snew)

In the previous section, we see that γi will be expected to decrease by a factor of α · cti up to some
small perturbations. We show that our potential Φt will therefore decrease significantly.

Lemma 2.5.5 (Movement along the first and third parameters). Assume that γti(x, x, s) ≤ 1 for all
i. We have

Φt(xnew, x, snew) ≤ Φt(x, x, s)− αλ

5

(
m∑
i=1

exp(2λγti(x, s))

)1/2

+
√
mλ · exp(192λ

√
α).

Proof. Let Φnew = Φt(xnew, x, snew), Φ = Φt(x, x, s),

γ(u) = uγti(x
new, x, snew) + (1− u)γti(x, x, s).

Then, we have that

Φnew − Φ =
m∑
i=1

(eλγ
(1)
i − eλγ

(0)
i ) = λ

m∑
i=1

eλγ
(ζ)
i (γ

(1)
i − γ

(0)
i )

for some 0 ≤ ζ ≤ 1. Let vi = γ
(1)
i − γ

(0)
i . Lemma 2.5.4 shows that

vi ≤ −α · cti(x, s) · γti(x, x, s) + ε
(γ)
i = −α · cti(x, s) · γ

(0)
i + ε

(γ)
i

and hence

Φnew − Φ

λ
≤ −α

m∑
i=1

cti(x, s) · γ
(0)
i exp(λγ

(ζ)
i ) +

m∑
i=1

ε
(γ)
i exp(λγ

(ζ)
i ). (2.16)

To bound the first term in (2.16), we first relate γ(0)
i , γ(ζ)

i and γti(x, s). Lemma 2.5.4 shows that

|γ(0)
i − γ

(ζ)
i | ≤ |γ

(0)
i − γ

(1)
i | ≤ 3α. (2.17)

Lemma 2.5.3 with standard self-concordance argument shows that∣∣∣γti(x, s)− γ(0)
i

∣∣∣ ≤ ∣∣γti(x, x, s)− γti(x, x, s)∣∣+
∣∣γti(x, x, s)− γti(x, x, s)∣∣

≤ ‖µti(x, s)− µti(x, s)‖∗xi +
∣∣‖µti(x, s)‖∗xi − ‖µti(x, s)‖∗xi∣∣

≤ 2‖µti(x, s)− µti(x, s)‖∗xi + 2α‖µti(x, s)‖∗xi
≤ 8α + 2α ≤ 10α (2.18)

where we used that ‖µti(x, s)‖∗xi = γti(x, x, s) ≤ 1 for all i.
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Using (2.17) and (2.18), we have

m∑
i=1

cti(x, s) · γ
(0)
i exp(λγ

(ζ)
i )

=
m∑
i=1

cti(x, s) · γ
(0)
i exp(λγti(x, s)− λγti(x, s) + λγ

(0)
i − λγ

(0)
i + λγ

(ζ)
i )

≥
m∑
i=1

cti(x, s) · γ
(0)
i exp(λγti(x, s)− 13λα)

≥ 1

2

m∑
i=1

cti(x, s) · γ
(0)
i exp(λγti(x, s))

≥ 1

2

m∑
i=1

cti(x, s) · γti(x, s) exp(λγti(x, s))− 3α
m∑
i=1

cti(x, s) exp(λγti(x, s)). (2.19)

where the third step follows from exp(−13λα) ≥ 1/2.
For the first term in (2.19), we have

m∑
i=1

cti(x, s) · γti(x, s) exp(λγti(x, s))

=
∑

γti (x,s)≥96
√
α

exp(2λ · γti(x, s))
(
∑m

i=1 exp(2λγti(x, s)))
1/2

=
m∑
i=1

exp(2λ · γti(x, s))
(
∑m

i=1 exp(2λγti(x, s)))
1/2
−

∑
γti (x,s)<96

√
α

exp(2λ · γti(x, s))
(
∑m

i=1 exp(2λγti(x, s)))
1/2

≥

(
m∑
i=1

exp(2λγti(x, s))

)1/2

− m · exp(192λ ·
√
α)

(
∑m

i=1 exp(2λγti(x, s)))
1/2
.

So, if
∑m

i=1 exp(2λγti(x, s)) ≥ m · exp(192λ ·
√
α), we have

m∑
i=1

cti(x, s) · γti(x, s) exp(λγti(x, s)) ≥

(
m∑
i=1

exp(2λγti(x, s))

)1/2

−
√
m · exp(192λ

√
α).

Note that if
∑m

i=1 exp(2λγti(x, s)) ≤ m · exp(192λ ·
√
α), this is still true because left hand side is
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lower bounded by 0. For the second term in (2.19), we have

m∑
i=1

cti(x, s) exp(λγti(x, s)) =
∑

γti (x,s)≥96
√
α

exp(λ · γti(x, s))/γti(x, s)
(
∑m

i=1 exp(2λγti(x, s)))
1/2

exp(λγti(x, s))

≤ 1

96
√
α

∑
γti (x,s)≥96

√
α

exp(2λ · γti(x, s))
(
∑m

i=1 exp(2λγti(x, s)))
1/2

≤ 1

96
√
α

m∑
i=1

exp(2λ · γti(x, s))
(
∑m

i=1 exp(2λγti(x, s)))
1/2

=
1

96
√
α

(
m∑
i=1

exp(2λγti(x, s))

)1/2

.

where the second step follows 1
γti (x,s)

≤ 1
96
√
α

, and the third step follows from each term in the
summation is non-negative.

Combining the bounds for both first and second term in (2.19), we have

m∑
i=1

cti(x, s) · γ
(0)
i exp(λγ

(ζ)
i ) ≥ 1

2

( m∑
i=1

exp(2λγti(x, s))

)1/2

−
√
m · exp(192λ

√
α)


− 3α

96
√
α

(
m∑
i=1

exp(2λγti(x, s))

)1/2

≥ 2

5

(
m∑
i=1

exp(2λγti(x, s))

)1/2

−
√
m · exp(192λ

√
α). (2.20)

where the last step follows from 1
2
− 3α

96
√
α
≥ 1

2
− 3

96
= 45

96
≥ 2

5
.

For the second term in (2.16), we note that |γ(ζ)
i − γti(x, s)| ≤ 13α ≤ 1

2λ
by (2.17) and (2.18).

Hence,
m∑
i=1

ε
(γ)
i exp(λγ

(ζ)
i ) ≤ 2

m∑
i=1

ε
(γ)
i exp(λγti(x, s)).

Now, we use ε(γ)
i ≤ 10α · (αcti(x, s) + αi) (Lemma 2.5.4) to get

m∑
i=1

ε
(γ)
i exp(λγ

(ζ)
i ) ≤ 20α

m∑
i=1

(αcti(x, s) + αi) · exp(λγti(x, s))

≤ 20α

(
m∑
i=1

(αcti(x, s) + αi)
2

)1/2( m∑
i=1

exp(2λγti(x, s))

)1/2

.

where the last step follows from Cauchy-Schwarz inequality.
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Note that by using Cauchy-Schwarz,(
m∑
i=1

(αcti(x, s) + αi)
2

)1/2

≤ α

(
m∑
i=1

cti(x, s)
2

)1/2

+

(
m∑
i=1

α2
i

)1/2

≤ α · 1

96
√
α

+ 2α ≤
√
α

90
.

where we used the definition of cti, Lemma 2.5.1 and α ≤ 1
224

. Together, we conclude

m∑
i=1

ε
(γ)
i exp(λγ

(ζ)
i ) ≤ 1

5
α

(
m∑
i=1

exp(2λγti(x, s))

)1/2

. (2.21)

Combining (2.20) and (2.21) to (2.16) gives

Φnew − Φ

λ
≤ − 2

5
α

(
m∑
i=1

exp(2λγti(x, s))

)1/2

+
√
m · exp(192λ

√
α) +

1

5
α

(
m∑
i=1

exp(2λγti(x, s))

)1/2

= − 1

5
α

(
m∑
i=1

exp(2λγti(x, s))

)1/2

+
√
m · exp(192λ

√
α).

where the last step follows from merging the first term with the third term.

Movement from (xnew, x, snew) to (xnew, xnew, snew)

Next, we must analyze the potential change when we change the second term.

Lemma 2.5.6 (Movement along the second parameter). Assume that ‖γti(x, s)‖∞ ≤ 1. Then we
have

Φt(xnew, xnew, snew) ≤ Φt(xnew, x, snew)+12α(‖γti(x, s)‖∞+3α)λ

(
m∑
i=1

exp(2λγti(x, x, s))

)1/2

.

Proof. We can upper bound Φt(xnew, xnew, snew) as follows

Φt(xnew, xnew, snew) =
m∑
i=1

exp(λγti(x
new, xnew, snew))

≤
m∑
i=1

exp(λγti(x
new, x, snew)(1 + 2αi)).

where the second step follows from γti(x
new, xnew, snew) ≤ γti(x

new, x, snew) · (1 + 2αi) by self-
concordance (Theorem 1.2.3) and ‖xnew

i − xi‖xi ≤ 2‖xnew
i − xi‖xi ≤ 2αi.
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Now, by Lemma 2.5.4, we note that γti(x
new, x, snew) ≤ γti(x, x, s) + 3α ≤ 1 + 3α and that

α ≤ 1
100λ

. Hence, by a simple taylor expansion, we have

Φt(xnew, xnew, snew)

≤
m∑
i=1

exp(λγti(x
new, x, snew)) + 3

m∑
i=1

αi exp(λγti(x
new, x, snew))γti(x

new, x, snew).

Finally, we bound the last term by

m∑
i=1

exp(λγti(x
new, x, snew))γti(x

new, x, snew)αi

≤
m∑
i=1

exp(λγti(x, s) + 3λα)(γti(x, s) + 3α)αi

≤ 2(‖γti(x, s)‖∞ + 3α)
m∑
i=1

exp(λγti(x, s))αi

≤ 2(‖γti(x, s)‖∞ + 3α)

(
m∑
i=1

exp(2λγti(x, s))

)1/2(∑
i

α2
i

)1/2

≤ 4α(‖γti(x, s)‖∞ + 3α)

(
m∑
i=1

exp(2λγti(x, x, s))

)1/2

,

where the third step follows from Cauchy-Schwarz inequality, the last step follows from
∑m

i=1 α
2
i ≤

4α2.

Movement of t
Lastly, we analyze the effect of setting t→ tnew.

Lemma 2.5.7 (Movement in t). For any x, s such that γti(x, s) ≤ 1 for all i, let tnew =
(

1− κ√
ν

)
t

where ν =
∑m

i=1 νi, we have

Φtnew(x, s) ≤ Φt(x, s) + 10κλ

(
m∑
i=1

exp(2λγti(x, s))

)1/2

.
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Proof. Note that

γt
new

i (x, s) =
∥∥∥ s

tnew
+∇φi(xi)

∥∥∥∗
xi

=

∥∥∥∥ s

t(1− κ/
√
ν)

+∇φi(xi)
∥∥∥∥∗
xi

≤ (1 + 2κ/
√
ν)γti(x, s) + 2‖(κ/

√
ν)∇φi(xi)‖∗xi

≤ (1 + 2κ/
√
ν)γti(x, s) + 3κ

√
νi/
√
ν

≤ γti(x, s) + 5κ
√
νi/
√
ν

where the first step follows from definition, the second step follows from tnew = t(1 − κ/
√
ν),

the second last step follows from the fact that our barriers are νi-self-concordant and the last step
used γti(x, s) ≤ 1 and νi ≥ 1. Using that 5κ ≤ 1

10λ
and γti(x, s) ≤ 1, we have by simple taylor

expansion,

Φtnew(x, s) ≤
m∑
i=1

exp(λγti(x, s)) + 2λ
m∑
i=1

exp(λγti(x, s))
(

5κ
√
νi/ν

)
=

m∑
i=1

exp(λγti(x, s)) + 10κλ
m∑
i=1

exp(λγti(x, s))
(√

νi/ν
)

≤
m∑
i=1

exp(λγti(x, s)) + 10κλ

(
m∑
i=1

exp(2λγti(x, s))

)1/2( m∑
i=1

νi
ν

)1/2

=
m∑
i=1

exp(λγti(x, s)) + 10κλ

(
m∑
i=1

exp(2λγti(x, s))

)1/2

,

where the third step follows from Cauchy-Schwarz, and the last step follows from
∑m

i=1 νi =
ν.

Potential Maintenance
Putting it all together, we can show that our potential Φt can be maintained to be small throughout
our algorithm.

Lemma 2.5.8 (Potential Maintenance). If Φt(x, s) ≤ 80m
α

, then

Φtnew(xnew, snew) ≤
(

1− αλ

40
√
m

)
Φt(x, s) +

√
mλ · exp(192λ

√
α).

In particularly, we have Φtnew(xnew, snew) ≤ 80m
α

.
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Proof. Let

ζ(x, s) =

(
m∑
i=1

exp(2λγti(x, s))

)1/2

.

By combining our previous lemmas,

Φtnew(xnew, snew)

≤Φt(xnew, snew) + 10κλ · ζ(xnew, snew)

≤Φt(xnew, x, snew) + 12αλ(‖γti(x, s)‖∞ + 3α) · ζ(x, s) + 10κλ · ζ(xnew, snew)

≤Φt(x, x, s)− αλ

5
ζ(x, s) +

√
mλ · exp(192λ

√
α)

+ 12αλ(‖γti(x, s)‖∞ + 3α) · ζ(x, s) + 10κλ · ζ(xnew, snew) (2.22)

where the first step follows from Lemma 2.5.7, the second step follows from Lemma 2.5.6, and
the last step follows from Lemma 2.5.5. We note that in all lemma above, we used that fact that
‖γti‖∞ ≤ 1 (for different combination of x, x, xnew, s, s, snew) which we will show later.

By Lemma 2.5.4, we have that

γti(x
new, snew) ≤ γti(x

new, x, snew) + 2α ≤ γti(x, x, s) + 5α. (2.23)

Hence, ζ(xnew, snew) ≤ 2ζ(x, s).
Lemma 2.5.3 shows that ‖µti(x, s)− µti(x, s)‖∗xi ≤ 4α and hence

ζ(x, s) ≥ 2

3

(
m∑
i=1

exp(2λγti(x, x, s))

)1/2

≥ 2

3

(
m∑
i=1

exp(2λγti(x, x, s)− 8αλ)

)1/2

≥ 1

2
ζ(x, s). (2.24)

Combining (2.23) and (2.24) into (2.22) gives

Φtnew(xnew, snew)

≥Φt(x, s) +

(
12αλ(‖γti(x, s)‖∞ + 3α) + 20κλ− αλ

10

)
· ζ(x, s) +

√
mλ · exp(192λ

√
α)

≥Φt(x, s) +

(
12αλ‖γti(x, s)‖∞ −

αλ

20

)
· ζ(x, s) +

√
mλ · exp(192λ

√
α)

where we used κ ≤ α
1000

and α ≤ 1
10000

on the second equation.
Finally, we need to bound ‖γti(x, s)‖∞. The bound for other ‖γti‖∞ are similar. We note that

Φt(x, s) ≤ 80
m

α
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implies that ‖γti(x, s)‖∞ ≤
log 80m

α

λ
. Hence, by our choice of λ and α, we have that λ ≥ 480 log(80m

α
)

and hence
12αλ‖γti(x, s)‖∞ ≤

αλ

40
.

Finally, using Φt(x, s) ≤
√
m · ζ(x, s), we have

Φtnew(xnew, snew) ≥ Φt(x, s)− αλ

40
ζ(x, s) +

√
mλ · exp(192λ

√
α)

≥
(

1− αλ

40
√
m

)
Φt(x, s) +

√
mλ · exp(192λ

√
α).

Since λ ≤ 1
400
√
α

, we have Φt(x, s) ≤ 80m
α

implies Φtnew(xnew, snew) ≤ 80m
α

.
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Chapter 3

Inverse Maintenance

3.1 Central Path Maintenance
The goal of this section is to present a data-structure to perform our centering steps in Õ(nω−1/2)
amortized time and prove a theoretical guarantee of it. The original idea of inverse maintenance
is from Michael B. Cohen [49], then [18] used it to get faster running time for solving Linear
Programs. Because a simple matrix vector product would require O(n2) time, our speedup comes
via a low-rank embedding that provides `∞ guarantees, which is unlike the sparse vector approach
of [18]. In fact, we are unsure if moving in a sparse direction h can have sufficiently controlled
noise to show convergence. Here, we give a stochastic version that is faster for dense direction h.

We first present the guarantees of the inverse maintenance along with the full algorithm and
proofs. The sketching guarantees for `∞ perturbations are given in Section 3.2. We combine our
robust central path with the data structure guarantees to prove our final theorem in Section 3.3.
Finally, we show initialization and termination can be done efficiently in Section 3.4.

Theorem 3.1.1 (Central path maintenance). Given a full rank matrix A ∈ Rd×n with n ≥ d, a

Name Type Statement Algorithm Input Output
INITIALIZE public Lemma 3.1.4 Alg. 1 A, x, s,W, εmp, a, b ∅
UPDATE public Lemma 3.1.5 Alg. 2 W ∅
FULLUPDATE private Lemma 3.1.7 Alg. 3 W ∅
PARTIALUPDATE private Lemma 3.1.6 Alg. 2 W ∅
QUERY public Lemma 3.1.8 Alg. 1 ∅ x, s
MULTIPLYMOVE public Lemma 3.1.11 Alg. 4 h, t ∅
MULTIPLY private Lemma 3.1.10 Alg. 4 h, t ∅
MOVE private Lemma 3.1.9 Alg. 4 ∅ ∅

Table 3.1: Summary of data structure CENTRALPATHMAINTENANCE
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tolerance parameter 0 < εmp < 1/4 and a block diagonal structure n =
∑m

i=1 ni. Given any
positive number a such a ≤ α where α is the dual exponent of matrix multiplication. Given any
linear sketch of size b, there is a randomized data structure CENTRALPATHMAINTENANCE (in
Algorithm 1, 2, 4) that approximately maintains the projection matrices

√
WA>(AWA>)−1A

√
W

for positive block diagonal psd matrix W ⊕i Rni×ni; exactly implicitly maintains central path
parameters (x, s) and approximately explicitly maintains path parameters through the following
five operations:

1. INITIALIZE(W
(0)
, · · · ) : Assume W

(0) ∈ ⊗iRni×ni . Initialize all the parameters in O(nω)
time.

2. UPDATE(W ) : Assume W ∈ ⊕iRni×ni . Output a block diagonal matrix Ṽ ⊕i Rni×ni such
that

(1− εmp)ṽi � wi � (1 + εmp)ṽi.

3. QUERY() : Output (x, s) such that ‖x − x‖Ṽ −1 ≤ εmp and ‖s − s‖Ṽ ≤ tεmp where t is
the last t used in MULTIPLYMOVE, where εmp = α log2(nT )n

1/4
√
b

and the success probability is
1− 1/ poly(nT ). This step takes O(n) time.

4. MULTIPLYMOVE(h, t) : It outputs nothing. It implicitly maintains:

x = x+ Ṽ 1/2(I − P̃ )Ṽ 1/2h, s = s+ tṼ −1/2P̃ Ṽ 1/2h.

where P̃ = Ṽ 1/2A>(AṼ A>)−1AṼ 1/2. It also explicitly maintains x, s. Assuming t is decreasing,
each call takes O(nb+ naω+o(1) + na‖h‖0 + n1.5) amortized time.

Let W
(0)

be the initial matrix and W
(1)
, · · · ,W (T )

be the (random) update sequence. Under
the assumption that there is a sequence of matrix W (0), · · · ,W (T ) ∈ ⊕mi=1Rni×ni satisfies for all k∥∥∥w−1/2

i (wi − wi)w−1/2
i

∥∥∥
F
≤ εmp,

m∑
i=1

∥∥∥(w
(k)
i )−1/2(E[w

(k+1)
i ]− w(k)

i )(w
(k)
i )−1/2

∥∥∥2

F
≤ C2

1 ,

m∑
i=1

(
E

[∥∥∥(w
(k)
i )−1/2(w

(k+1)
i − w(k)

i )(w
(k)
i )−1/2

∥∥∥2

F

])2

≤ C2
2 ,∥∥∥(w

(k)
i )−1/2(w

(k+1)
i − w(k)

i )(w
(k)
i )−1/2

∥∥∥
F
≤ 1

4
.

where w(k)
i is the i-th block of W (k), ∀i ∈ [m].

Then, the amortized expected time per call of UPDATE(w) is

(C1/εmp + C2/ε
2
mp) · (nω−1/2+o(1) + n2−a/2+o(1)).
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Remark 3.1.2. For our algorithm, we have C1 = O(1/ log2 n), C2 = O(1/ log4 n) and εmp =
O(1/ log2 n). Note that the input of UPDATE W can move a lot. It is working as long as W is
close to someW that is slowly moving. In our application, ourW satisfiesC1, C2 deterministically.
We keep it for possible future applications.

Proof of Theorem 3.1.1
Definition of X and Y . Consider the k-th round of the algorithm. For all i ∈ [m], matrix
y

(k)
i ∈ Rni×ni is constructed based on procedure UPDATE (Algorithm 2) :

y
(k)
i =

w
(k+1)
i

v
(k)
i

− I.

and π is a permutation such that ‖y(k)
π(i)‖F ≥ ‖y

(k)
π(i+1)‖F .

For the purpose of analysis : for all i ∈ [m], we define x(k)
i , x(k)

i and y(k)
i ∈ Rni×ni as follows:

x
(k)
i =

w
(k)
i

v
(k)
i

− I, y
(k)
i =

w
(k+1)
i

v
(k)
i

− I, x
(k+1)
i =

w
(k+1)
i

v
(k+1)
i

− I,

where w
(k)
i

v
(k)
i

denotes (v
(k)
i )−1/2w

(k)
i (v

(k)
i )−1/2.

Note that the difference between x(k)
i and y(k)

i is that w is changing. The difference between
y

(k)
i and x

(k+1)
i is that v is changing. For simplicity, we define βi = ‖(w(k)

i )−1/2(E[w
(k+1)
i ] −

w
(k)
i )(w

(k)
i )−1/2‖F , then one of assumption becomes

∑m
i=1 β

2
i ≤ C2

1 .

Assume sorting. Assume the diagonal blocks of matrix x(k) ∈ ⊕mi=1Rni×ni are sorted such
that ‖x(k)

i ‖F ≥ ‖x
(k)
i+1‖F . Let τ and π are permutations such that ‖x(k+1)

τ(i) ‖F ≥ ‖x
(k+1)
τ(i+1)‖F and

‖y(k)
π(i)‖F ≥ ‖y

(k)
π(i+1)‖F .

Definition of Potential function. Let g be defined as

gi =

{
n−a, if i < na;

i
ω−2
1−a n−

a(ω−2)
1−a , otherwise.

Let ψ : square matrix→ R be defined by

ψ(x) =


‖x‖2F
2εmp

, ‖x‖F ∈ [0, εmp];

εmp −
(4ε2mp−‖x‖2F )2

18ε3mp
, ‖x‖F ∈ (εmp, 2εmp];

εmp, ‖x‖F ∈ (2εmp,+∞).

(3.1)
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Algorithm 1 Central Path Maintenance Data Structure - Initial, Query, Move
1: datastructure CENTRALPATHMAINTENANCE . Theorem 3.1.1
2:
3: private : members
4: W ∈ ⊗i∈[m]Rni×ni . Target vector, W is εw-close to W
5: V, Ṽ ∈ ⊗i∈[m]Rni×ni . Approximate vector
6: A ∈ Rd×n . Constraints matrix
7: M ∈ Rn×n . Approximate Projection Matrix
8: εmp ∈ (0, 1/4) . Tolerance
9: a ∈ (0, α] . Batch Size for Update (na)

10: b ∈ Z+ . Sketch size of one sketching matrix
11: R ∈ Rn1+o(1)×n . A list of sketching matrices
12: Q ∈ Rb×n . Sketched matrices
13: u1 ∈ Rn, F ∈ Rn×n, u2 ∈ Rn . Implicit representation of x, x = u1 + F · u2

14: u3 ∈ Rn, G ∈ Rn×n, u4 ∈ Rn . Implicit representation of s, s = u3 +G · u4

15: x, s ∈ Rn . Central path parameters, maintain explicitly
16: l ∈ Z+ . Randomness counter, Rl ∈ Rb×n

17: tpre ∈ R+ . Tracking the changes of t
18: end members
19:
20: public : procedure INITIALIZE(A, x, s,W, εmp, a, b) . Lemma 3.1.4
21: . parameters will never change after initialization
22: A← A, a← a, b← b, εmp ← εmp
23: . parameters will still change after initialization
24: W ← W , V ← W , Ṽ ← V
25: Choose Rl ∈ Rb×n to be sketching matrix, ∀l ∈ [

√
n] . Lemma 3.2.5

26: R← [R>1 , R
>
2 , · · · ]> . Batch them into one matrix R

27: M ← A>(AV A>)−1A, Q← R
√
Ṽ M . Initialize projection matrices

28: u1 ← x, u2 ← 0, u3 ← s, u4 ← 0 . Initialize x and s
29: x← x, s← s
30: l← 1
31: end procedure
32:
33: public : procedure QUERY() . Lemma 3.1.8
34: return (x, s)
35: end procedure
36:
37: end datastructure

where ‖x‖F denotes the Frobenius norm of square matrix x, and let L1 = maxxDxψ[h]/‖H‖F ,
L2 = maxxD

2
xψ[h, h]/‖H‖2

F where h is the vectorization of matrix H .
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Algorithm 2 Central Path Maintenance Data Structure - Update and PartialUpdate
1: datastructure CENTRALPATHMAINTENANCE . Theorem 3.1.1
2:
3: public : procedure UPDATE(W

new
) . Lemma 3.1.5, W

new
is close to W new

4: yi ← v
−1/2
i wnew

i v
−1/2
i − 1, ∀i ∈ [m]

5: r ← the number of indices i such that ‖yi‖F ≥ εmp
6: if r < na then
7: PARTIALUPDATE(W

new
)

8: else
9: FULLUPDATE(W

new
) . Algorithm 3

10: end if
11: procedure
12:
13: private : procedure PARTIALUPDATE(W

new
) . Lemma 3.1.6

14: W ← W
new

15: ṽnew
i ←

{
vi if (1− εmp)vi � wi � (1 + εmp)vi

wi otherwise

16: F new ← F + ((Ṽ new)1/2 − (Ṽ )1/2)M . only takes n1+a time, instead of n2

17: Gnew ← G+ ((Ṽ new)−1/2 − (Ṽ )−1/2)M
18: u1 ← u1 + (F − F new)u2, u3 ← u3 + (G−Gnew)u4

19: F ← F new, G← Gnew

20: Let Ŝ denote the blocks where Ṽ and Ṽ new are different
21: xŜ ← (u1)Ŝ + (Fu2)Ŝ , sŜ ← (u3)Ŝ + (Gu2)Ŝ . make sure x and x are close, similarly for

s and s
22: end procedure
23:
24: end datastructure

We define the potential at the k-th round by

Φk =
m∑
i=1

gi · ψ(x
(k)
τk(i))

where τk(i) is the permutation such that ‖x(k)
τk(i)‖F ≥ ‖x

(k)
τk(i+1)‖F .
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Algorithm 3 Central Path Maintenance Data Structure - Full Update
1: datastructure CENTRALPATHMAINTENANCE . Theorem 3.1.1
2:
3: private : procedure FULLUPDATE(W

new
) . Lemma 3.1.7

4: yi ← v
−1/2
i wnew

i v
−1/2
i − 1, ∀i ∈ [m]

5: r ← the number of indices i such that ‖yi‖F ≥ εmp
6: Let π : [m]→ [m] be a sorting permutation such that ‖yπ(i)‖F ≥ ‖yπ(i+1)‖F
7: while 1.5 · r < m and ‖yπ(1.5r)‖F ≥ (1− 1/ logm)‖yπ(r)‖F
8: r ← min(d1.5 · re,m)
9: end while

10: vnew
π(i) ←

{
wnew
π(i) i ∈ {1, 2, · · · , r}

vπ(i) i ∈ {r + 1, · · · ,m}
11: . Compute Mnew = A>(AV newA>)−1A via Matrix Woodbury
12: ∆← V new − V . ∆ ∈ Rn×n and ‖∆‖0 = r
13: Γ←

√
V new −

√
V

14: Let S ← π([r]) be the first r indices in the permutation
15: Let M∗,S ∈ Rn×O(r) be the r column-blocks from S of M
16: Let MS,S,∆S,S ∈ RO(r)×O(r) be the r row-blocks and column-blocks from S of M , ∆
17: Mnew ←M −M∗,S · (∆−1

S,S +MS,S)−1 · (M∗,S)> . Update M
18: Qnew ← Q+R · (Γ ·Mnew) +R ·

√
V · (Mnew −M) . Update Q

19: W ← W
new

, V ← V new, M ←Mnew, Q← Qnew . Update in memory

20: ṽi ←

{
vi if (1− εmp)vi � wi � (1 + εmp)vi

wi otherwise

21: F new ←
√
Ṽ M , Gnew ← 1√

Ṽ
M

22: u1 ← u1 + (F − F new)u2, u3 ← u3 + (G−Gnew)u4

23: F ← F new, G← Gnew

24: Let Ŝ denote the blocks where Ṽ and Ṽ new are different
25: xŜ ← (u1)Ŝ + (Fu2)Ŝ , sŜ ← (u3)Ŝ + (Gu2)Ŝ . make sure x and x are close, similarly for

s and s
26: tpre ← t
27: end procedure
28:
29: end datastructure

Bounding the potential. We can express Φk+1 − Φk as follows:

Φk+1 − Φk =
m∑
i=1

gi ·
(
ψ(x

(k+1)
τ(i) )− ψ(x

(k)
i )
)

=
m∑
i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k)
i )
)

︸ ︷︷ ︸
w move

−
n∑
i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k+1)
τ(i) )

)
︸ ︷︷ ︸

v move
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Algorithm 4 Central Path Maintenance Data Structure - Multiply and Move
1: datastructure CENTRALPATHMAINTENANCE . Theorem 3.1.1
2:
3: public : procedure MULTIPLYANDMOVE(h, t) . Lemma 3.1.11
4: MULTIPLY(h, t)
5: MOVE()
6: end procedure
7:
8: private : procedure MULTIPLY (h, t) . Lemma 3.1.10
9: Let S̃ be the indices i such that (1− εmp)vi � wi � (1 + εmp)vi is false.

10: ∆̃← Ṽ − V
11: Γ̃←

√
Ṽ −

√
V

12: δm ← ((∆̃−1

S̃,S̃
+MS̃,S̃)−1 · ((MS̃,∗)

>
√
Ṽ h)) . |S̃| ≤ na

13: . Compute δ̃x = Ṽ 1/2(I −R>RP̃ )Ṽ 1/2h

14: δ̃x ← Ṽ h−
(

(R>l · ((Ql +Rl · Γ̃ ·M) ·
√
Ṽ · h))− (R>l · ((Ql,S̃ +Rl · Γ̃ ·MS̃,∗) · δm))

)
15: . Compute δ̃s = tṼ −1/2R>RP̃ Ṽ 1/2h

16: δ̃s ← t · Ṽ −1 ·
(

(R>l · ((Q+Rl · Γ̃ ·M) ·
√
Ṽ · h))− (R>l · ((Ql,S̃ +Rl · Γ̃ ·MS̃,∗) · δm))

)
17: l← l + 1 . Increasing the randomness counter, and using the new randomness next time
18: . Implicitly maintain x = x+ Ṽ 1/2(I − P̃ )Ṽ 1/2h

19: u1 ← u1 + Ṽ h

20: u2 ← u2 −
√
Ṽ h+ 1S̃δm

21: . Implicitly maintain s = s+ tṼ −1/2P̃ Ṽ 1/2h
22: u3 ← u3 + 0

23: u4 ← u4 − t
√
Ṽ h+ t1S̃δm

24: end procedure
25:
26: private : procedure MOVE() . Lemma 3.1.9
27: if l >

√
n or t ≥ tpre/2 . Variance is large enough

28: x← u1 + Fu2, s← u3 + Fu4

29: INITIALIZE(A, x, s,W, εmp, a, b) . Algorithm 1
30: else
31: x← x+ δ̃x, s← s+ δ̃s . Update x, s
32: end if
33: return (x, s)
34: end procedure
35:
36: end datastructure
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Initialization time, update time, query time, move time, multiply time
Remark 3.1.3. In terms of implementing this data-structure, we only need three operations INI-
TIALIZE, UPDATE, and QUERY. However, in order to make the proof more understoodable, we
split UPDATE into many operations : FULLUPDATE, PARTIALUPDATE, MULTIPLY and MOVE.
We give a list of operations in Table 3.1.

Lemma 3.1.4 (Initialization). The initialization time of data-structure CENTRALPATHMAINTE-
NANCE (Algorithm 1) is O(nω+o(1)).

Proof. The running time is mainly dominated by two parts, the first part is computingA>(AV A>)−1A,
this takes O(n2dω−2) time.

The second part is computing R
√
Ṽ M . This takes O(nω+o(1)) time.

Lemma 3.1.5 (Update time). The update time of data-structure CENTRALPATHMAINTENANCE

(Algorithm 2) is O(rgrn
2+o(1)) where r is the number of indices we updated in V .

Proof. It is trivially follows from combining Lemma 3.1.6 and Lemma 3.1.7.

Lemma 3.1.6 (Partial Update time). The partial update time of data-structure CENTRALPATH-
MAINTENANCE (Algorithm 2) is O(n1+a).

Proof. We first analyze the running time of F update, the update equation of F in algorithm is

F new ← F + ((Ṽ new)1/2 − (Ṽ )1/2)M

F ←F new

which can be implemented as

F ← F + ((Ṽ new)1/2 − (Ṽ )1/2)M

where we only need to change na row-blocks of F . It takes O(n1+a) time.
Similarly, for the update time of G.
Next we analyze the update time of u1, the update equation of u1 is

u1 ← u1 + (F − F new)u2

Note that the difference between F and F new is only na row-blocks, thus it takes n1+a time to
update.

Finally we analyze the update time of x. Let Ŝ denote the blocks where Ṽ and Ṽ new are
different.

xŜ ← (u1)Ŝ + (Fu2)Ŝ

This also can be done in n1+a time, since Ŝ indicates only na blocks.
Therefore, the overall running time is O(n1+a).
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Lemma 3.1.7 (Full Update time). The full update time of data-structure CENTRALPATHMAIN-
TENANCE (Algorithm 3) is O(rgrn

2+o(1)) where r is the number of indices we updated in V .

Proof. The update equation we use for Q is

Qnew ← Q+R · (Γ ·Mnew) +R ·
√
V · (Mnew −M).

It can be re-written as

Qnew ← Q+R · (Γ ·Mnew) +R ·
√
V · (−M∗,S · (∆−1

S,S +MS,S)−1 · (M∗,S)>)

The running time of computing second term is multiplying a n × r matrix with another r × n
matrix. The running time of computing third term is also dominated by multiplying a n× r matrix
with another r × n matrix.

Thus running time of processing Q update is the same as the processing M update.
For the running time of other parts, it is dominated by the time of updating M and Q.
Therefore, the rest of the proof is almost the same as Lemma 5.4 in [18], we omitted here.

Lemma 3.1.8 (Query time). The query time of data-structure CENTRALPATHMAINTENANCE (Al-
gorithm 1) is O(n) time.

Proof. This takes only O(n) time, since we stored x and s.

Lemma 3.1.9 (Move time). The move time of data-structure CENTRALPATHMAINTENANCE (Al-
gorithm 4) isO(nω+o(1)) time in the worst case, and isO(nω−1/2+o(1)) amortized cost per iteration.

Proof. In one case, it takes only O(n) time. For the other case, the running time is dominated by
INITIALIZE, which takes nω+o(1) by Lemma 3.1.7.

Lemma 3.1.10 (Multiply time). The multiply time of data-structure CENTRALPATHMAINTE-
NANCE (Algorithm 4) is O(nb + n1+a+o(1)) for dense vector ‖h‖0 = n, and is O(nb + naω+o(1) +
na‖h‖0) for sparse vector h.

Proof. We first analyze the running time of computing vector δm, the equation is

δm ←
(

((∆̃S̃,S̃)−1 +MS̃,S̃)−1 · (MS̃,∗)
>
√
Ṽ h
)

where ∆̃ = Ṽ − V . Let r̃ =
∑

i∈S̃ ni = O(r) where r is the number of blocks are different in Ṽ
and V .

It contains several parts:
1. Computing M̃>

S̃
· (
√
Ṽ h) ∈ Rr̃ takes O(r̃)‖h‖0.

2. Computing (∆̃−1

S̃,S̃
+MS̃,S̃)−1 ∈ RO(r̃)×O(r̃) that is the inverse of a O(r̃)×O(r̃) matrix takes

O(r̃ω+o(1)) time.
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3. Computing matrix-vector multiplication between O(r̃) × O(r̃) matrix ((∆̃S̃,S̃ + MS̃,S̃)−1)

and O(r̃)× 1 vector ((M̃S̃,∗)
>
√
Ṽ h) takes O(r̃2) time.

Thus, the running time of computing δm is

O(r̃‖h‖0 + r̃ω+o(1) + r̃2) = O(r̃‖h‖0 + r̃ω+o(1)).

Next, we want to analyze the update equation of δ̃x

δ̃x ← Ṽ h−
(

(R>l · ((Ql +Rl

√
∆̃M) ·

√
Ṽ · h))− (R>l · ((Ql,S̃ +RlΓ̃MS̃) · δm))

)
where Γ̃ =

√
Ṽ −

√
V has O(r) non-zero blocks.

It is clear that the running time is dominated by the second term in the equation. We only focus
on that term.

1. Computing R>l Ql

√
Ṽ h takes O(bn) time, because Ql, Rl ∈ Rb×n.

2. Computing R>l Rl

√
∆̃M

√
Ṽ h takes O(bn + br̃ + r̃‖h‖0) time. The reason is, computing√

∆̃M
√
Ṽ h takes r̃‖h‖0 time, computing Rl · (

√
∆̃M

√
Ṽ h) takes br̃, then finally computing

R>l · (Rl

√
∆̃M

√
Ṽ h) takes nb.

Last, the update equation of u1, u2, u3, u4 only takes the O(n) time.
Finally, we note that r ≤ O(na) due to the guarantee of FULLUPDATE and PARTIALUPDATE.
Thus, overall the running time of the MULTIPLY is

O(r̃‖h‖0 + r̃ω+o(1) + r̃2 + br̃ + nb) = O(r̃‖h‖0 + r̃ω+o(1) + nb)

= O(r‖h‖0 + rω+o(1) + nb)

= O(na‖h‖0 + naω+o(1) + nb)

where the first step follows from br̃ ≤ nb and r̃2 ≤ r̃ω+o(1), and the second step follows from
r̃ = O(r), and the last step follows from r = O(na).

If h is the dense vector, then the overall time is

O(nb+ n1+a + naω+o(1)).

Based on Lemma 5.5 in [18], we know that aω ≤ 1 + a. Thus, it becomes O(nb + n1+a+o(1))
time.

If h is a sparse vector, then the overall time is

O(nb+ na‖h‖0 + naω+o(1)).

Lemma 3.1.11 (MULTIPLYMOVE). The running time of MULTIPLYMOVE (Algorithm 3.1.11) is
the MULTIPLY time plus MOVE time.
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Bounding W move
Lemma 3.1.12 (W move).

m∑
i=1

gi · E
[
ψ(y

(k)
π(i))− ψ(x

(k)
π(i))

]
= O(C1 + C2/εmp) ·

√
log n · (n−a/2 + nω−5/2).

Proof. Let I ⊆ [m] be the set of indices such that ‖x(k)
i ‖F ≤ 1. We separate the term into two :

m∑
i=1

gi · E[ψ(y
(k)
π(i))− ψ(x

(k)
π(i))] =

∑
i∈I

gπ−1(i) · E[ψ(y
(k)
i )− ψ(x

(k)
i )] +

∑
i∈Ic

gπ−1(i) · E[ψ(y
(k)
i )− ψ(x

(k)
i )].

Case 1: Terms from I . Let vec(y
(k)
i ) denote the vectorization of matrix y

(k)
i . Similarly,

vec(x
(k)
i ) denotes the vectorization of x(k)

i . Mean value theorem shows that

ψ(y
(k)
i )− ψ(x

(k)
i ) = 〈ψ′(x(k)

i ), y
(k)
i − x

(k)
i 〉+

1

2
vec(y

(k)
i − x

(k)
i )>ψ′′(ζ)vec(y

(k)
i − x

(k)
i )

≤ 〈ψ′(x(k)
i ), y

(k)
i − x

(k)
i 〉+

L2

2
‖y(k)

i − x
(k)
i ‖2

F

= 〈ψ′(x(k)
i ), (v

(k)
i )−1/2(w

(k+1)
i − w(k)

i )(v
(k)
i )−1/2〉

+
L2

2
‖(v(k)

i )−1/2(w
(k+1)
i − w(k)

i )(v
(k)
i )−1/2‖2

F

where the second step follows from definition of L2 (see Part 4 of Lemma 3.1.17).
Taking conditional expectation given w(k) on both sides

E[ψ(y
(k)
i )− ψ(x

(k)
i )] ≤ 〈ψ′(x(k)

i ), (v
(k)
i )−1/2(E[w

(k+1)
i ]− w(k)

i )(v
(k)
i )−1/2〉

+
L2

2
E[‖(v(k)

i )−1/2(w
(k+1)
i − w(k)

i )(v
(k)
i )−1/2‖2

F ]

≤ L1‖(v(k)
i )−1/2(E[w

(k+1)
i ]− w(k)

i )(v
(k)
i )−1/2‖F

+
L2

2
E[‖(v(k)

i )−1/2(w
(k+1)
i − w(k)

i )(v
(k)
i )−1/2‖2

F ]

≤ L1‖(v(k)
i )−1/2(w

(k)
i )1/2‖2 · ‖(w(k)

i )−1/2(E[w
(k+1)
i ]− w(k)

i )(w
(k)
i )−1/2‖F

+
L2

2
‖(v(k)

i )−1/2(w
(k)
i )1/2‖4 · E[‖(w(k)

i )−1/2(w
(k+1)
i − w(k)

i )(w
(k)
i )−1/2‖2

F ]

= L1‖(v(k)
i )−1/2(w

(k)
i )1/2‖2 · βi +

L2

2
‖(v(k)

i )−1/2(w
(k)
i )1/2‖4 · γi

where the second step follows from definition of L2 (see Part 4 of Lemma 3.1.17), the third step
follows from ‖AB‖F ≤ ‖A‖F · ‖B‖, and the last step follows from defining βi and γi as follows:

βi =
∥∥∥(w

(k)
i )−1/2(E[w

(k+1)
i ]− w(k)

i )(w
(k)
i )−1/2

∥∥∥
F

γi = E
[∥∥∥(w

(k)
i )−1/2(w

(k+1)
i − w(k)

i )(w
(k)
i )−1/2

∥∥∥2

F

]
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To bound
∑

i∈I gπ−1(i) E[ψ(y
(k)
i )− ψ(x

(k)
i )], we need to bound the following two terms,∑

i∈I

gπ−1(i)L1

∥∥∥(v
(k)
i )−1/2(w

(k)
i )1/2

∥∥∥2

βi, and
∑
i∈I

gπ−1(i)

L2

2

∥∥∥(v
(k)
i )−1/2(w

(k)
i )1/2

∥∥∥4

γi

For the first term, we have

∑
i∈I

gπ−1(i)L1‖(v(k)
i )−1/2(w

(k)
i )1/2‖2βi ≤

(∑
i∈I

(
gπ−1(i)L1‖(v(k)

i )−1/2(w
(k)
i )1/2‖2

)2∑
i∈I

β2
i

)1/2

≤ O(L1)

(
n∑
i=1

g2
i · C2

1

)1/2

= O(C1L1‖g‖2). (3.2)

where the first step follows from Cauchy-Schwarz inequality, the second step follows from ni =

O(1) and ‖(v(k)
i )−1/2(w

(k)
i )1/2‖2 = O(1).

For the second term, we have

∑
i∈I

gπ−1(i)

L2

2
‖(v(k)

i )−1/2(w
(k)
i )1/2‖4niγi ≤ O(L2) ·

m∑
i=1

gi · γi = O(C2L2‖g‖2). (3.3)

Now, combining Eq. (3.2) and Eq. (3.3) and using that L1 = O(1), L2 = O(1/εmp) (from part
4 of Lemma 3.1.17) and ‖g‖2 ≤

√
log n ·O(n−a/2 + nω−5/2) (from Lemma 3.1.13), we have∑

i∈I

gπ−1(i) · E[ψ(y
k)
i )− ψ(x

(k)
i )] ≤ O(C1 + C2/εmp) ·

√
log n · (n−a/2 + nω−5/2).

Case 2: Terms from Ic.
For all i ∈ Ic, we have ‖x(k)

i ‖F ≥ 1. Note that ψ(x) is constant for ‖x‖2
F ≥ (2εmp)

2 and that
εmp ≤ 1/4. Therefore, if ‖y(k)

i ‖F ≥ 1/2, we have that ψ(y
(k)
i ) − ψ(x

(k)
i ) = 0. Hence, we only

need to consider the i ∈ Ic such that ‖y(k)
i ‖F < 1/2. For these i, we have that

1

2
< ‖y(k)

i − x
(k)
i ‖F

= ‖(v(k)
i )−1/2(w

(k+1)
i − w(k)

i )(v
(k)
i )−1/2‖F

= ‖(v(k)
i )−1/2(w

(k)
i )1/2 · (w(k)

i )−1/2(w
(k+1)
i − w(k)

i )(w
(k)
i )−1/2 · (w(k)

i )1/2(v
(k)
i )−1/2‖F

≤ ‖(v(k)
i )−1/2(w

(k)
i )1/2‖ · ‖(w(k)

i )−1/2(w
(k+1)
i − w(k)

i )(w
(k)
i )−1/2‖F · ‖(w(k)

i )1/2(v
(k)
i )−1/2‖

= ‖(v(k)
i )−1/2w

(k)
i (v

(k)
i )−1/2‖ · ‖(w(k)

i )−1/2(w
(k+1)
i − w(k)

i )(w
(k)
i )−1/2‖F

≤ 3

2
‖(w(k)

i )−1/2(w
(k+1)
i − w(k)

i )(w
(k)
i )−1/2‖F
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where we used that ‖y(k)
i ‖F = ‖w

(k+1)
i

v
(k)
i

− I‖F ≤ 1/2. Hence, the above long equation gives us

‖(w(k)
i )−1/2(w

(k+1)
i − w(k)

i )(w
(k)
i )−1/2‖F > 1/3

and hence it has > 1/4, which is impossible (because we assume it is ≤ 1/4).
Thus, we have ∑

i∈Ic
gπ−1(i) · E[ψ(y

(k)
i )− ψ(x

(k)
i )] = 0.

We state a Lemma that was proved in previous work [18].

Lemma 3.1.13 (Lemma 5.8 in [18]).(
n∑
i=1

g2
i

)1/2

≤
√

log n ·O(n−a/2 + nω−5/2)

Bounding V move

Definition 3.1.14. We define block diagonal matrices X(k), Y (k), X(k+1) and Y
(k) ⊗i∈[m] Rni×ni

as follows

x
(k)
i =

w
(k)
i

v
(k)
i

− I, y
(k)
i =

w
(k+1)
i

v
(k)
i

− I, x
(k+1)
i =

w
(k+1)
i

v
(k+1)
i

− I, y
(k)
i =

w
(k+1)
i

v
(k)
i

− I.

Let εw denote the error between W and W

‖W−1/2
i (W i −Wi)W

−1/2
i ‖F ≤ εw.

Lemma 3.1.15 (V move). We have,

n∑
i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k+1)
τ(i) )

)
≥ Ω(εmprkgrk/ log n).

Proof. To prove the Lemma, we will split the proof into two cases.
Let us first understand several simple facts which are useful in the later proof. Note that from

the definition of the algorithm, we only change the block if ‖y(k)
i ‖F is larger than the error between

wi and wi. Hence, all the changes only decreases the norm, namely ψ(y
(k)
i ) ≥ ψ(x

(k+1)
i ) for all i.

So is their sorted version ψ(y
(k)
π(i)) ≥ ψ(xτ(i))

(k+1) for all i.
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Case 1. We exit the while loop when 1.5rk ≥ n.
Let u∗ denote the largest u such that ‖y(k)

π(u)‖F ≥ εmp. If u∗ = rk, we have that ‖y(k)
π(rk)‖F ≥

εmp ≥ εmp/100. Otherwise, the condition of the loop shows that

‖y(k)
π(rk)‖F ≥ (1− 1/ log n)log1.5 rk−log1.5 u

∗‖y(k)
π(u∗)‖F ≥ (1− 1/ log n)log1.5 nεmp ≥ εmp/100.

where we used that n ≥ 4.
According to definition of x(k+1)

τ(i) , we have

n∑
i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k+1)
τ(i) )

)
≥

2n/3∑
i=n/3+1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k+1)
τ(i) )

)

≥
2n/3∑

i=n/3+1

gi · (Ω(εmp)−O(εw))

≥
2n/3∑

i=n/3+1

gi · Ω(εmp)

= Ω(rkgrkεmp).

where the second step follows from ‖y(k)
π(i)‖F ≥ ‖y

(k)
π(rk)‖F ≥ (1−O(εw))‖y(k)

π(rk)‖F ≥ εmp/200 for
all i < 2n/3.

Case 2. We exit the while loop when 1.5rk < n and ‖y(k)
π(1.5rk)‖F < (1− 1/ log n)‖y(k)

π(rk)‖F .

By the same argument as Case 1, we have that ‖y(k)
π(rk)‖F ≥ εmp/100. Part 3 of Lemma 3.1.17

together with the fact

‖y(k)
π(1.5r)‖F < min

(
εmp, ‖y(k)

π(r)‖F · (1− 1/ log n)
)
,

shows that

ψ(y
(k)
π(1.5r))− ψ(y

(k)
π(r)) = Ω(εmp/ log n). (3.4)

Now the question is, how to relax ψ(y
(k)
π(1.5r)) to ψ(y

(k)
π(1.5r)) and how to relax ψ(y

(k)
π(r)) to ψ(y

(k)
π(r))

Note that ‖y(k)
i ‖F ≥ ‖x

(k+1)
i ‖F for all i. Hence, we have ψ(y

(k)
π(i)) ≥ ψ(x

(k+1)
τ(i) ) for all i.

Recall the definition of y, y, π and π,

y
(k)
i =

w
(k+1)
i

v
(k)
i

− I, y
(k)
i =

w
(k+1)
i

v
(k)
i

− I.

and π and π denote the permutations such that ‖y(k)
π(i)‖F ≥ ‖y

(k)
π(i+1)‖F and ‖y(k)

π(i)‖F ≥ ‖y
(k)
π(i+1)‖F .
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Using Fact 3.1.16 and ‖ · ‖2 = Θ(1)‖ · ‖F when the matrix has constant dimension

‖y(k)
π(i) − y

(k)
π(i)‖F ≤ O(εw).

where εw is the error between W and W .
Next, ∀i, we have

ψ(y
(k)
π(i)) = ψ(y

(k)
π(i))±O(εwεmp) (3.5)

Next, we note that all the blocks the algorithm updated must lies in the range i = 1, · · · , 3rk
2
− 1.

After the update, the error of rk of these block becomes so small that its rank will much higher
than rk. Hence, rk/2 of the unchanged blocks in the range i = 1, · · · , 3rk

2
will move earlier in the

rank. Therefore, the rk/2-th element in x(k+1) must be larger than the 3
2
rk-th element in y(k). In

short, we have ψ(x
(k+1)
τ(i) ) ≤ ψ(y

(k)
π(1.5rk)) for all i ≥ rk/2.

Putting it all together, we have

n∑
i=1

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k+1)
τ(i) )

)
≥

rk∑
i=rk/2

gi ·
(
ψ(y

(k)
π(i))− ψ(x

(k+1)
τ(i) )

)
≥

rk∑
i=rk/2

gi ·
(
ψ(y

(k)
π(i))− ψ(y

(k+1)
τ(1.5rk))

)
≥

rk∑
i=rk/2

gi ·
(
ψ(y

(k)
π(i))− ψ(y

(k+1)
τ(1.5rk))−O(εw)

)
≥

rk∑
i=rk/2

gi ·
(
ψ(y

(k)
π(rk))− ψ(y

(k+1)
τ(1.5rk))−O(εw)

)
≥

rk∑
i=rk/2

grk ·
(

Ω(
εmp

log n
)−O(εw)

)
by (3.4)

≥
rk∑

i=rk/2

grk · Ω(
εmp

log n
) by εw < O(εmp/ log n)

= Ω (εmprkgrk/ log n) .

Therefore, we complete the proof.

Fact 3.1.16. Given two length n positive vectors a, b. Let a be sorted such that ai ≥ ai+1. Let π
denote the permutation such that bπ(i) ≥ bπ(i+1). If for all i ∈ [n], |ai − bi| ≤ εai. Then for all
i ∈ [n], |ai − bπ(i)| ≤ εai.
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Proof. Case 1. π(i) = i. This is trivially true.
Case 2. π(i) < i. We have

bπ(i) ≥ bi ≥ (1− ε)ai

Since π(i) < i, we know that there exists a j > i such that π(j) < π(i). Then we have

bπ(i) ≤ bπ(j) ≤ (1 + ε)aj ≤ (1 + ε)ai

Combining the above two inequalities, we have (1− ε)ai ≤ bπ(i) ≤ (1 + ε)ai.
Case 3. π(i) > i. We have

bπ(i) ≤ bi ≤ (1 + ε)ai

Since π > i, we know that there exists j < i such that π(j) > π(i). Then we have

bπ(i) ≥ bπ(j) ≥ (1− ε)aj ≥ (1− ε)ai.

Combining the above two inequalities gives us (1− ε)ai ≤ bπ(i) ≤ (1 + ε)ai.
Therefore, putting all the three cases together completes the proof.

Potential function ψ
[18] used a scalar version potential function. Here, we generalize it to the matrix version.

Lemma 3.1.17 (Matrix version of Lemma 5.10 in [18]). Let function ψ : square matrix → R
(defined as Eq. (3.1)) satisfies the following properties :
1. Symmetric (ψ(x) = ψ(−x)) and ψ(0) = 0
2. If ‖x‖F ≥ ‖y‖F , then ψ(x) ≥ ψ(y)
3. |f ′(x)| = Ω(1/εmp),∀x ∈ [(0.01εmp)

2, ε2mp]

4. L1
def
= maxx

Dxψ[H]
‖H‖F

= 2 and L2
def
= maxx

D2
xψ[H,H]

‖H‖2F
= 10/εmp

5. ψ(x) is a constant for ‖x‖F ≥ 2εmp

Proof. Let f : R+ → R be defined as

f(x) =


x2

2ε3mp
, x ∈ [0, ε2mp];

εmp −
(4ε2mp−x)2

18ε3mp
, x ∈ (ε2mp, 4ε

2
mp];

εmp, x ∈ (4ε2mp,+∞).

We can see that
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f(x)′ =


x
ε3mp

, x ∈ [0, ε2mp];
4ε2mp−x

9ε3mp
, x ∈ (ε2mp, 4ε

2
mp];

0, x ∈ (4ε2mp,+∞).

and f(x)′′ =


1
ε3mp

, x ∈ [0, ε2mp];

− 1
9ε3mp

, x ∈ (ε2mp, 4ε
2
mp];

0, |x| ∈ (4ε2mp,+∞).

It implies that maxx |f(x)′| ≤ 1
εmp

and maxx |f(x)′′| ≤ 1
ε3mp

. Let ψ(x) = f(‖X‖2
F ).

Proof of Part 1,2 and 5. These proofs are pretty standard from definition of ψ.
Proof of Part 3. This is trivially following from definition of scalar function f .
Proof of Part 4. By chain rule, we have

Dxψ[h] = 2f ′(‖X‖2
F ) · tr[XH]

D2
xψ[h, h] = 2f ′′(‖X‖2

F ) · (tr[XH])2 + 2f ′(‖x‖2
F ) · tr[H2]

where x is the vectorization of matrix X and h is the vectorization of matrix H . We can upper
bound

|Dxψ[h]| ≤ 2|f ′(‖X‖2
F )| · | tr[XH]| ≤ 2|f ′(‖X‖2

F )| · ‖X‖F · ‖H‖F

Then, we have

|f ′(‖X‖2
F )| · ‖X‖F =


‖X‖3

F/ε
3
mp ≤ 1, ‖X‖F ∈ [0, εmp]

(4ε2mp − ‖X‖2
F )‖X‖F/9εmp ≤ 2/3, ‖X‖F ∈ (εmp, 2εmp]

0, ‖X‖F ∈ (2εmp,+∞)

It implies that |Dxψ[h]| ≤ 2‖H‖F , ∀x.
By case analysis, we have

|f ′′(‖X‖2
F )| · ‖X‖2

F ≤

{
1
ε3mp
‖X‖2

F ≤ 4/εmp, ‖X‖2
F ∈ [0, 4ε2mp]

0, ‖X‖2
F ∈ (4εmp,+∞)

We can also upper bound

|D2
xψ[h, h]| ≤ 2|f ′′(‖X‖2

F )| · (tr[XH])2 + 2|f ′(‖X‖2
F )| · tr[H2]

≤ 2|f ′′(‖X‖2
F )| · (‖X‖F‖H‖F )2 + 2|f ′(‖X‖2

F )| · ‖H‖2
F

≤ 2 · 4

εmp
‖H‖2

F + 2 · 1

εmp
‖H‖2

F

=
10

εmp
‖H‖2

F .
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x and x are close
Lemma 3.1.18 (x and x are close in term of Ṽ −1). With probability 1− δ over the randomness of
sketching matrix R ∈ Rb×n, we have

‖xi − xi‖Ṽ −1
i
≤ εx

εx = O(α log2(n/δ) · n1/4
√
b

), b is the size of sketching matrix.

Proof. Recall the definition of δ̃x and δx, we have

δ̃x,i − δx,i = Ṽ
1/2
i (I −R>RP̃ )Ṽ 1/2h− Ṽ 1/2

i (I − P̃ )Ṽ 1/2h = Ṽ
1/2
i (P̃ −R>RP̃ )Ṽ 1/2h

For iteration t, the definition should be

δ̃
(t)
x,i − δ

(t)
x,i = (Ṽ

(t)
i )1/2(P̃ (t) − (R(t))>R(t)P̃ (t))(Ṽ (t))1/2h.

For any i, let k be the current iteration, ki be the last when we changed the Ṽi. Then, we have
that

x
(k)
i − x

(k)
i =

k∑
t=ki

δ̃
(t)
x,i − δ

(t)
x,i

because we have x(ki)
i = x

(ki)
i (guaranteed by our algorithm). Since Ṽ (t)

i did not change during
iteration ki to k for the block i. (However, the whole other parts of matrix Ṽ could change). We
consider

(x
(k)
i − x

(k)
i )> · (Ṽ (k)

i )−1 · (x(k)
i − x

(k)
i ) =

(
k∑

t=ki

δ̃
(t)
x,i − δ

(t)
x,i

)>
· (Ṽ (k)

i )−1 ·

(
k∑

t=ki

δ̃
(t)
x,i − δ

(t)
x,i

)

=

∥∥∥∥∥
k∑

t=ki

(
(I − (R(t))>R(t))P̃ (t)(Ṽ (t))1/2h(t)

)
i

∥∥∥∥∥
2

2

.

We consider block i and a coordinate j ∈ block i. We define random vector Xt ∈ Rni as
follows:

Xt =
(

(I −R(t)>R(t))P̃ (t)(Ṽ (t))1/2h(t)
)
i
.

Let (Xt)j denote the j-th coordinate of Xt, for each j ∈ [ni].
By Lemma 3.2.5 in Section 3.2, we have for each t,

E[Xt] = 0, and E[(Xt)
2
j ] =

1

b
‖(P̃ (t)(Ṽ (t))1/2h(t))i‖2

2
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and with probability 1− δ,

|(Xt)j| ≤ ‖(P̃ (t)(Ṽ (t))1/2h(t))i‖2
log(n/δ)√

b
:= M.

Now, we apply Bernstein inequality (Lemma 3.2.3),

Pr

[∑
t

(Xt)j > τ

]
≤ exp

(
− τ 2/2∑

tE[(Xt)2
j ] +Mτ/3

)
Choosing τ = 103

√
T√
b

log2(n/δ) · ‖(P̃ (t)(Ṽ (t))1/2h(t))i‖2

Pr

[∑
t

(Xt)j > 103

√
T√
b

log2(n/δ) · ‖(P̃ (t)(Ṽ (t))1/2h(t))i‖2

]

≤ exp

(
−

106 T
b

log4(n/δ) · ‖(P̃ (t)(Ṽ (t))1/2h(t))i‖2
2/2

T
b
‖(P̃ (t)(Ṽ (t))1/2h(t))i‖2

2 + 103
√
T
b

log3(n/δ)‖(P̃ (t)(Ṽ (t))1/2h(t))i‖2
2/3

)
≤ exp(−100 log(n/δ))

Now, taking a union, we have∥∥∥∥∥
k∑

t=ki

(
(I − (R(t))>R(t))P̃ (t)(Ṽ (t))1/2h(t)

)
i

∥∥∥∥∥
2

= O

(√
T√
b

log2(n/δ)
∥∥∥(P̃ (t)(Ṽ (t))1/2h(t))i

∥∥∥
2

)

≤ O

(√
T√
b

log2(n/δ)α

)
where we use that ‖(P̃ (t)(Ṽ (t))1/2h(t))i‖2 ≤ ‖((Ṽ (t))1/2h(t))i‖2 = O(α), ni = O(1).

Finally, we use the fact that the algorithm reset x = x, s = s in less than
√
n iterations.

s and s are close
Lemma 3.1.19 (s and s are close). With probability 1− δ over the randomness of sketching matrix
R ∈ Rb×n, we have

t−1‖si − si‖Ṽi ≤ εs,

εs = O(α log2(n/δ) · n1/4
√
b

, and b is the size of sketching matrix.

Proof. Recall the definition of δ̃s, δs, we have

δ̃s,i − δs,i = tṼ
−1/2
i (R>R− I)P̃ Ṽ 1/2h

The rest of the proof is identical to Lemma 3.1.18 except we use also the fact we make s = s
whenever our t changed by a constant factor. We omitted the details here.



CHAPTER 3. INVERSE MAINTENANCE 53

Data structure is maintaining (x, s) implicitly over all the iterations
Lemma 3.1.20. Over all the iterations, u1 + Fu2 is always maintaining x implicitly, u3 + Gu4 is
always maintaining s implicitly.

Proof. We only focus on the PARTIALUPDATE. The FULLUPDATE is trivial, we ignore the proof.
For x.
Note that M is not changing. Let’s assume that u1 + Fu2 = x, we want to show that

unew
1 + F newunew

2 = xnew.

which is equivalent to prove

unew
1 + F newunew

2 − (u1 + Fu2) = δx

Let ∆u1 = unew
1 − u1 be the change of u1 over iteration t, then

∆u1 = Ṽ newh+ (F − F new)u2

Let ∆u2 = unew
2 − u2 be the change of u2 over iteration t, then

∆u2 = −(Ṽ new)1/2h+ 1S̃(∆̃−1

S̃,S̃
+MS̃,S̃)−1M>

S̃
(Ṽ new)1/2h.

By definition of δx at iteration t, we have

δx = Ṽ newh−
(√

Ṽ newM
√
Ṽ newh−

√
Ṽ newMS̃(∆̃−1

S̃,S̃
+MS̃,S̃)−1(MS̃)>

√
Ṽ newh

)
.

We can compute

unew
1 + F newunew

2 − (u1 + Fu2)

= ∆u1 + (F newunew
2 − Fu2)

= Ṽ newh+ (F − F new)u2 + (F newunew
2 − Fu2)

= Ṽ newh+ F new(unew
2 − u2)

= Ṽ newh+ F new∆u2

= Ṽ newh− F new
√
Ṽ newh+ F new1S̃(∆̃−1

S̃,S̃
+MS̃,S̃)−1(MS̃)>

√
Ṽ newh

= δx

where we used F new =
√
Ṽ newM in the last step.

For s.
We have

Gnew =
1√
Ṽ new

M,G =
1√
Ṽ
M



CHAPTER 3. INVERSE MAINTENANCE 54

Let ∆u3 = unew
3 − u3 be the change of u3 over iteration t, then

∆u3 = (G−Gnew)u4

Let ∆u4 = unew
4 − u4 be the change of u4 over iteration t, then

∆u4 = t ·∆u2

By definition of δs in iteration t,

δs =

(
1√
Ṽ new

M
√
Ṽ new(th)− 1√

Ṽ new
MS̃(∆̃−1

S̃,S̃
+MS̃,S̃)−1(MS̃)>

√
Ṽ new(th)

)

We can compute

(unew
3 +Gnewunew

4 )− (u3 +Gu4) = ∆u3 + (Gnewunew
4 −Gu4)

= (G−Gnew)u4 + (Gnewunew
4 −Gu4)

= Gnew(unew
4 − u4)

= Gnewt∆u2

= δs

where the last step follows by definition of ∆u2.
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3.2 Basic Properties of Subsampled Hadamard Transform
Matrix

This section provides some standard calculations about sketching matrices, it can be found in pre-
vious literatures [91, 74]. Usually, the reason for using subsampled randomized Hadamard/Fourier
transform [58] is multiplying the matrix with k vectors only takes kn log n time. Unfortunately, in
our application, the best way to optimize the running is using matrix multiplication directly (with-
out doing any fast Fourier transform, or more fancy Fourier transform [35, 73]). In order to have
an easy analysis, we still use subsampled randomized Hadamard/Fourier matrix.

Concentration inequalities
We first state a useful for concentration,

Lemma 3.2.1 (Lemma 1 on page 1325 of [45]). Let X ∼ X 2
k be a chi-squared distributed random

variable with k degrees of freedom. Each one has zero mean and σ2 variance. Then

Pr[X − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp(−t)

Pr[kσ2 −X ≥ 2
√
ktσ2] ≤ exp(−t)

Lemma 3.2.2 (Khintchine’s Inequality). Let σ1, · · · , σn be i.i.d. sign random variables, and let
z1, · · · , zn be real numbers. Then there are constants C,C ′ > 0 so that

Pr

[∣∣∣∣∣
n∑
i=1

ziσi

∣∣∣∣∣ ≥ Ct‖z‖2

]
≤ exp(−C ′t2)

Lemma 3.2.3 (Bernstein Inequality). Let X1, · · · , Xn be independent zero-mean random vari-
ables. Suppose that |Xi| ≤M almost surely, for all i. Then, for all positive t,

Pr

[
n∑
i=1

Xi > t

]
≤ exp

(
− t2/2∑n

j=1 E[X2
j ] +Mt/3

)

Properties obtained by random projection
Remark 3.2.4. The Subsampled Randomized Hadamard Transform [58] can be defined as R =
SHnΣ ∈ Rb×, where Σ is an n × n diagonal matrix with i.i.d. diagonal entries Σi,i in which
Σi,i = 1 with probability 1/2, and Σi,i = −1 with probability 1/2. Hn refers to the Hadamard
matrix of size n, which we assume is a power of 2. The b × n matrix S samples b coordinates
of n dimensional vector uniformly at random. If we replace the definition of sketching matrix in
Lemma 3.2.5 by Subsampled Randomized Hadamard Transform and let R = SHn, then the same
proof will go through.
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Lemma 3.2.5 (Expectation, variance, absolute guarantees for sketching a fixed vector). Let h ∈ Rn

be a fixed vector. Let R ∈ Rb×n denote a random matrix where each entry is i.i.d. sampled from
+1/
√
b with probability 1/2 and −1/

√
b with probability 1/2. Let Σ ∈ Rn×n denote a diagonal

matrix where each entry is 1 with probability 1/2 and −1 with probability 1/2. Let R = RΣ, then
we have

E[R>Rh] = h, E[(R>Rh)2
i ] ≤ h2

i +
1

b
‖h‖2

2, Pr

[
|(R>Rh)i − hi| > ‖h‖2

log(n/δ)√
b

]
≤ δ.

Proof. Let Ri,j denote the entry at i-th row and j-th column in matrix R ∈ Rb×n. Let R∗,i ∈ Rb

denote the vector in i-th column of R.
We first show expectation,

E[(R>Rh)i] = E[〈R,R∗,ih>〉]

= E

[
b∑

j=1

n∑
l=1

Rj,lRj,ihl

]

= E

[
b∑

j=1

R2
j,ihi

]
+ E

 b∑
j=1

∑
l∈[n]\i

Rj,lRj,ihl


= hi + 0

= hi

Secondly, we prove the variance is small

E[(R>Rhi)
2] = E[〈R,R∗,ih>〉2]

= E

( b∑
j=1

n∑
l=1

Rj,lRj,ihl

)2


= E

 b∑
j=1

R2
j,ihi +

b∑
j=1

∑
l∈[n]\i

Rj,lRj,ihl

2
= E

( b∑
j=1

R2
j,ihi

)2
+ 2E

 b∑
j′=1

R2
j′,ihi

b∑
j=1

∑
l∈[n]\i

Rj,lRj,ihl


+ E

 b∑
j=1

∑
l∈[n]\i

Rj,lRj,ihl

2
= C1 + C2 + C3,
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where the last step follows from defining those terms to be C1, C2 and C3. For the term C1, we
have

C1 = h2
i E

( b∑
j=1

R2
j,i

)2
 = h2

i E

[
b∑

j=1

R4
j,i +

∑
j′ 6=j

R2
j,iR

2
j′,i

]
= h2

i

(
b · 1

b2
+ b(b− 1) · 1

b2

)
= h2

i

For the second term C2,

C2 = 0.

For the third term C3,

C3 = E

 b∑
j=1

∑
l∈[n]\i

Rj,lRj,ihl

2
= E

 b∑
j=1

∑
l∈[n]\i

R2
j,lR

2
j,ih

2
l

+ E

 b∑
j=1

∑
l∈[n]\i

Rj,lRj,ihl
∑

j′∈[b]\j

∑
l′∈[n]\i\l

Rj′,l′Rj′,ihl′


=

b∑
j=1

∑
l∈[n]\i

1

d

1

d
h2
l + 0 ≤ 1

d
‖h‖2

2

Therefore, we have

E[(R>Rh)2
i ] ≤ C1 + C2 + C3 ≤ h2

i +
1

b
‖h‖2

2.

Third, we prove the worst case bound with high probability. We can write (R>Rh)i − hi as
follows

(R>Rh)i − hi = 〈R,R∗,ih>〉 − hi

=
b∑

j=1

n∑
l=1

Rj,l ·Rj,i · hl − hi

=
b∑

j=1

R2
j,ihi − hi +

b∑
j=1

∑
l∈[n]\i

Rj,lRj,i · hl

=
b∑

j=1

∑
l∈[n]\i

Rj,lRj,i · hl by R2
j,i = 1/b

=
∑
l∈[n]\i

hl〈R∗,l, R∗,i〉

=
∑
l∈[n]\i

hl · 〈σlR∗,l, σiR∗,i〉 by R∗,l = σlR∗,l
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First, we apply Khintchine’s inequality, we have

Pr


∣∣∣∣∣∣
∑
l∈[n]\i

hl · σl · 〈R∗,l, σiR∗,i〉

∣∣∣∣∣∣ ≥ Ct

∑
l∈[n]\i

h2
l (〈R∗,l, σiR∗,i〉)2

1/2
 ≤ exp(−C ′t2)

and choose t =
√

log(n/δ).
For each l 6= i, using [58] we have

Pr

[
|〈R∗,l, R∗,i〉| ≥

√
log(n/δ)√

b

]
≤ δ/n.

Taking a union bound over all l ∈ [n]\i, we have

|(R>Rh)i − hi| ≤ ‖h‖2
log(n/δ)√

b

with probability 1− δ.
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3.3 Combining Robust Central Path with Data Structure
The goal of this section is to combine Section 2.5 and Section 3.1.

Notation Choice of Parameter Statement Comment
C1 Θ(1/ log2 n) Lem. 3.3.1, Thm. 3.1.1 `2 accuracy of W sequence
C2 Θ(1/ log4 n) Lem. 3.3.1, Thm. 3.1.1 `4 accuracy of W sequence
εmp Θ(1/ log2 n) ROBUSTIPM Alg in Sec. 2.5 accuracy for data structure
T Θ(

√
n log2 n log(n/δ)) Thm. 2.4.2 #iterations

α Θ(1/ log2 n) ROBUSTIPM Alg in Sec. 2.5 step size in Hessian norm
b Θ(

√
n log6(nT ) Lem. 3.1.18, Lem. 3.1.19, Lem. 3.3.2 sketch size

εx Θ(1/ log3 n) Lem. 3.1.18 accuracy of x (respect to x)
εs Θ(1/ log3 n) Lem. 3.1.19 accuracy of s (respect to s)
εw Θ(1/ log3 n) Lem. 3.3.2 accuracy of W (respect to W )
a min(2/3, αm) αm is the dual exponent of MM batch size

Table 3.2: Summary of parameters

Guarantee for W matrices
Lemma 3.3.1 (Guarantee of a sequence of W ). Let xnew = x + δx. Let W new = (∇2φ(xnew))−1

and W = (∇2φ(x))−1. Then we have

m∑
i=1

∥∥∥w−1/2
i (wnew

i − wi)w−1/2
i

∥∥∥2

F
≤ C2

1 ,

m∑
i=1

∥∥∥w−1/2
i (wnew

i − wi)w−1/2
i

∥∥∥4

F
≤ C2

2 ,∥∥∥w−1/2
i (wnew

i − wi)w−1/2
i

∥∥∥
F
≤ 1

4
.

where C2 = Θ(α2) and C1 = Θ(α).
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Proof. For each i ∈ [m], we have∥∥∥W−1/2
i (W new

i −Wi)W
−1/2
i

∥∥∥2

F

= ni

∥∥∥W−1/2
i (W new

i −Wi)W
−1/2
i

∥∥∥2

= ni
∥∥(∇2φ(xi))

1/2(∇2φ(xnew
i )−1 −∇2φ(xi)

−1)(∇2φ(xi))
1/2
∥∥2

≤
(

1

(1− ‖xnew
i − xi‖∇2φ(xi))

2
− 1

)2

·
∥∥(∇2φ(xi))

1/2∇2φ(xi)
−1(∇2φ(xi))

1/2
∥∥2

= ni

(
1

(1− ‖xnew
i − xi‖∇2φ(xi))

2
− 1

)2

≤ 100ni‖xnew
i − xi‖2

∇2φ(xi)
,

where the second step follows by Theorem 1.2.3.
In our problem, we assume that ni = O(1). It remains to bound

‖xnew
i − xi‖2

∇2φ(xi)
= ‖δx,i‖2

∇2φ(xi)
. ‖δx,i‖2

xi
= α2

i

where the last step follows from definition αi = ‖δx,i‖xi .
Then, we have

m∑
i=1

‖xnew
i − xi‖2

∇2φ(xi)
≤

m∑
i=1

O(α2
i ) ≤ O(α2).

where the last step follows by Lemma 2.5.1.

Lemma 3.3.2 (Accuracy ofW ). Let x and x be the vectors maintained by data-structure STOCHAS-
TICPROJECTIONMAINTENANCE. Let W = (∇2φ(x))−1 and W = (∇2φ(x))−1. Then we have

‖w−1/2
i (wi − wi)w−1/2

i ‖F ≤ εw,

where εw = O
(
α log2(nT ) · n1/4

√
b

)
, b is the size of sketching matrix.

Proof. By similar calculation, we have

‖w−1/2
i (wi − wi)w−1/2

i ‖F = O(1) · ‖xi − xi‖∇2φ(xi).

Then, using Lemma 3.1.18 with δ = 1/T

‖xi − xi‖∇2φ(xi) ≤ O

(
α log2(nT ) ·

√
n1/4

√
b

)
.
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Algorithm 5 Robust Central Path
1: procedure CENTRALPATHSTEP(x, s, t, λ, α)
2: for i = 1→ m do . Figure out direction h
3: µti ← si/t+∇φi(xi) . According to Eq. (2.5)
4: γti ← ‖µti‖∇2φi(xi)−1 . According to Eq. (2.6)
5: cti ←

exp(λγti )/γ
t
i

(
∑m
i=1 exp(2λγti ))

1/2 if γti ≥ 96
√
α and cti ← 0 otherwise . According to Eq. (2.8)

6: hi ← −α · cti · µti . According to Eq. (2.7)
7: end for
8: W ← (∇2φ(x))−1 . Computing block-diagonal matrix W
9: return h,W

10: end procedure
11:
12: procedure ROBUSTCENTRALPATH(mp, t, λ, α) . Lemma 2.5.8
13: . Standing at (x, s) implicitly via data-structure
14: . Standing at (x, s) explicitly via data-structure
15: (x, s)← mp.QUERY() . Algorithm 1, Lemma 3.1.8
16:
17: h,W ← CENTRALPATHSTEP(x, s, t, λ, α)
18:
19: mp.UPDATE(W ) . Algorithm 2, Lemma 3.1.5
20: mp.MULTIPLYMOVE(h, t) . Algorithm 4, Lemma 3.1.10, Lemma 3.1.9
21: . x← x+ δx, s← s+ δs, achieved by data-structure implicitly
22: . x← x+ δ̃x, s← s+ δ̃s, achieved by data-structure explicitly
23: . If x is far from x, then x← x
24: end procedure

Main result
Theorem 3.3.3 (Main result, formal version of Theorem 2.1.1). Consider a convex problem

min
Ax=b,x∈

∏m
i=1Ki

c>x

where Ki are compact convex set. For each i, we are given a νi-self concordant barrier function
φi for Ki. Also, we are given x(0) = arg minx

∑
i φi(xi). Assume that

1. Diameter of the set: For any x ∈
∏
Ki, we have that ‖x‖2 ≤ R.

2. Lipschitz constant of the program: ‖c‖2 ≤ L.
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Algorithm 6 Our main algorithm (More detailed version of ROBUSTIPM in Section 2.4)
1: procedure MAIN(A, b, c, φ, δ) . Theorem 2.1.1, Theorem 3.3.3
2: λ← 216 log(m), α← 2−20λ−2 , κ← 2−10α
3: δ ← min( 1

λ
, δ) . Choose the target accuracy

4: a← min(2/3, αm) . Choose the batch size
5: bsketch ← 210

√
ν log6(n/δ) · log log(1/δ) . Choose the size of sketching matrix

6: Modify the ERM(A, b, c, φ) and obtain an initial x and s
7: CENTRALPATHMAINTENANCE mp . Algorithm 1, Theorem 3.1.1
8: mp.INITIALIZE(A, x, s, α, a, bsketch) . Algorithm 1, Lemma 3.1.4
9: ν ←

∑m
i=1 νi . νi are the self-concordant parameters of φi

10: t← 1
11: while t > δ2/(4ν) do
12: tnew ← (1− κ√

ν
)t

13: ROBUSTCENTRALPATH(mp, t, λ, α) . Algorithm 5
14: t← tnew

15: end while
16: Return an approximate solution of the original ERM according to Section 3.4
17: end procedure

Then, the algorithm MAIN finds a vector x such that

c>x1:n ≤ min
Ax=b,x∈

∏
iKi

c>x+ LR · δ,

‖Ax− b‖1 ≤ 3δ ·

(
R
∑
i,j

|Ai,j|+ ‖b‖1

)
,

x ∈
∏
i

Ki.

in time

O(nω+o(1) + n2.5−α/2+o(1) + n2+1/6+o(1)) · Õ(log(n/δ)).

where ω is the exponent of matrix multiplication [90, 46], and α is the dual exponent of matrix
multiplication [47].

Proof. The number of iterations is

O(
√
ν log2(m) log(ν/δ)) = O(

√
n log2(n) log(n/δ)).
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For each iteration, the amortized cost per iteration is

O(nb+ n1+a + n1.5) +O(C1/εmp + C2/ε
2
mp) · (nω−1/2+o(1) + n2−a/2+o(1)) +O(nω−1/2+o(1))

= O(nb+ n1+a + n1.5) +O(α + α2) · (nω−1/2+o(1) + n2−a/2+o(1)) +O(nω−1/2+o(1))

= O(nb+ n1+a + n1.5) +O(1/ log4 n) · (nω−1/2+o(1) + n2−a/2+o(1)) +O(nω−1/2+o(1))

= O(n1.5+o(1) log6 log(1/δ) + n1+a+o(1)) +O(nω−1/2+o(1) + n2−a/2+o(1)).

where the last step follows from choice of b (see Table 3.2).
Finally, we have

total time
= #iterations · cost per iteration

= O
(√

n log2 n log(n/δ)
)︸ ︷︷ ︸

#iterations

·O
(
n1.5+o(1) log6 log(1/δ) + n1+a+o(1) + nω−1/2+o(1) + n2−a/2+o(1)

)︸ ︷︷ ︸
cost per iteration

= O
(
n1.5+a+o(1) + nω+o(1) + n2.5−a/2+o(1)

)
· log(n/δ) · log6 log(1/δ)

= O
(
n2+1/6+o(1) + nω+o(1) + n2.5−αm/2+o(1)

)
· log(n/δ) · log6 log(1/δ)

where we pick a = min(2/3, αm) and αm is the dual exponent of matrix multiplication[47].
Thus, we complete the proof.
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3.4 Initial Point and Termination Condition
We first need some result about self concordance.

Lemma 3.4.1 (Theorem 4.1.7, Lemma 4.2.4 in [68]). Let φ be any ν-self-concordant barrier.
Then, for any x, y ∈ domφ, we have

〈∇φ(x), y − x〉 ≤ ν,

〈∇φ(y)−∇φ(x), y − x〉 ≥ ‖y − x‖2
x

1 + ‖y − x‖x
.

Let x∗ = arg minx φ(x). For any x ∈ Rn such that ‖x− x∗‖x∗ ≤ 1, we have that x ∈ domφ.

‖x∗ − y‖x∗ ≤ ν + 2
√
ν.

Lemma 3.4.2. Consider a convex problem minAx=b,x∈
∏m
i=1Ki

c>x where Ki are compact convex
set. For each i, we are given a νi-self concordant barrier function φi for Ki. Also, we are given
x(0) = arg minx

∑
i φi(xi). Assume that

1. Diameter of the set: For any x ∈
∏
Ki, we have that ‖x‖2 ≤ R.

2. Lipschitz constant of the program: ‖c‖2 ≤ L.
For any δ > 0, the modified program minAx=b,x∈

∏m
i=1Ki×R+

c>x with

A = [A | b− Ax(0)], b = b, and c =

[
δ
LR
· c

1

]
satisfies the following:

1. x =

[
x(0)

1

]
, y = 0d and s =

[
δ
LR
· c

1

]
are feasible primal dual vectors with ‖s +

∇φ(x)‖∗x ≤ δ where φ(x) =
∑m

i=1 φi(xi)− log(xm+1).
2. For any x such that Ax = b, x ∈

∏
Ki × R+ and c>x ≤ minAx=b,x∈

∏
Ki×R+

c>x + δ2, the
vector x1:n (x1:n is the first n coordinates of x) is an approximate solution to the original
convex program in the following sense

c>x1:n ≤ min
Ax=b,x∈

∏
Ki
c>x+ LR · δ,

‖Ax1:n − b‖1 ≤ 3δ ·

(
R
∑
i,j

|Ai,j|+ ‖b‖1

)
,

x1:n ∈
∏

Ki.

Proof. For the first result, straightforward calculations show that (x, y, s) are feasible.
To compute ‖s+∇φ(x)‖∗x, note that

‖s+∇φ(x)‖∗x = ‖ δ

LR
· c‖∇2φ(x(0))−1 .
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Lemma 3.4.1 shows that x ∈ Rn such that ‖x − x(0)‖x(0) ≤ 1, we have that x ∈
∏
Ki because

x(0) = arg minx
∑

i φi(xi). Hence, for any v such that v>∇2φ(x(0))v ≤ 1, we have that x(0)± v ∈∏
Ki and hence ‖x(0) ± v‖2 ≤ R. This implies ‖v‖2 ≤ R for any v>∇2φ(x(0))v ≤ 1. Hence,

(∇2φ(x(0)))−1 � R2 · I . Hence, we have

‖s+∇φ(x)‖∗x = ‖ δ

LR
· c‖∇2φ(x(0))−1 ≤ ‖

δ

L
· c‖2 ≤ δ.

For the second result, we let OPT = minAx=b,x∈
∏
Ki c

>x and OPT = minAx=b,x∈
∏
Ki×R+

c>x.

For any feasible x in the original problem, x =

[
x
0

]
is a feasible in the modified problem.

Therefore, we have that

OPT ≤ δ

LR
· c>x =

δ

LR
· OPT.

Given a feasible x with additive error δ2. Write x =

[
x1:n

τ

]
for some τ ≥ 0. We can compute

c>x which is δ
LR
· c>x1:n + τ . Then, we have

δ

LR
· c>x1:n + τ ≤ OPT + δ2 ≤ δ

LR
· OPT + δ2. (3.6)

Hence, we can upper bound the OPT of the transformed program as follows:

c>x1:n =
LR

δ
· δ

LR
c>x1:n ≤

LR

δ

(
δ

LR
· OPT + δ2

)
= OPT + LR · δ,

where the second step follows by (3.6).
For the feasibility, we have that τ ≤ − δ

LR
· c>x1:n + δ

LR
· OPT + δ2 ≤ δ + δ + δ because

OPT = minAx=b,x≥0 c
>x ≤ LR and that c>x1:n ≤ LR. The constraint in the new polytope shows

that
Ax1:n + (b− Ax(0))τ = b.

Rewriting it, we have Ax1:n − b = (Ax(0) − b)τ and hence

‖Ax1:n − b‖1 ≤ ‖Ax(0) − b‖1 · τ.

Lemma 3.4.3. Let φi(xi) be a νi-self-concordant barrier. Suppose we have si
t

+∇φi(xi) = µi for
all i ∈ [m], A>y + s = c and Ax = b. Suppose that ‖µi‖∗x,i ≤ 1 for all i, we have that

〈c, x〉 ≤ 〈c, x∗〉+ 4tν

where x∗ = arg minAx=b,x∈
∏
iKi

c>x and ν =
∑m

i=1 νi.
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Proof. Let xα = (1 − α)x + αx∗ for some α to be chosen. By Lemma 3.4.1, we have that
〈∇φ(xα), x∗ − xα〉 ≤ ν. Hence, we have ν

1−α ≥ 〈∇φ(xα), x∗ − x〉. Hence, we have

να

1− α
≥ 〈∇φ(xα), xα − x〉

= 〈∇φ(xα)−∇φ(x), xα − x〉+
〈
µ− s

t
, xα − x

〉
≥

m∑
i=1

‖xα,i − xi‖2
xi

1 + ‖xα,i − xi‖xi
+ 〈µ, xα − x〉 −

1

t

〈
c− A>y, xα − x

〉
≥

m∑
i=1

α2‖x∗i − xi‖2
xi

1 + α‖x∗i − xi‖xi
− α

m∑
i=1

‖µi‖∗xi‖x
∗
i − xi‖xi −

α

t
〈c, x∗ − x〉 .

where we used Lemma 3.4.1 on the second first, Axα = Ax on the second inequality. Hence, we
have

〈c, x〉
t
≤ 〈c, x

∗〉
t

+
ν

1− α
+

m∑
i=1

‖µi‖∗xi‖x
∗
i − xi‖xi −

m∑
i=1

α‖x∗i − xi‖2
xi

1 + α‖x∗i − xi‖xi
.

Using ‖µi‖∗xi ≤ 1 for all i, we have

〈c, x〉
t
≤ 〈c, x

∗〉
t

+
ν

1− α
+

m∑
i=1

‖x∗i − xi‖xi
1 + α‖x∗i − xi‖xi

≤ 〈c, x
∗〉

t
+

ν

1− α
+
m

α
.

Setting α = 1
2
, we have 〈c, x〉 ≤ 〈c, x∗〉+ 2t(ν+m) ≤ 〈c, x∗〉+ 4tν because the self-concordance

νi is always larger than 1.
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