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ABSTRACT OF THE DISSERTATION

Measuring and Inferring Demographics
from Multi-modal Communication Networks

by

Yi Wang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2013

Professor Michalis Faloutsos, Chairperson

With the proliferation of electronic modes of communication (e.g., e-mails, phone calls and

short messages), a group of people can form several distinct communication networks. A

communication network is essentially a graph representation of who talks (or texts) to

whom among a group of individuals. In this thesis, we conduct an empirical study of com-

munication networks in two modern countries and focus on four questions: 1) what are

the patterns of multimodal communication across countries and over time? 2) how much

information can we extract regarding the roles of users? 3) can we infer the demographic

properties of certain users? 4) can we predict the phone choices for a group of users? For

the first question, I study the correlation between calling and texting across two countries:

China and the U.S., and the evolution of the usage of the two communications over the

last five years. I propose to depend on communication channels (calling and texting) and

time-slices (weekday, weekend, and holiday) to study how people in China and the U.S.

contact one another. This idea is inspired by the fact that different human relationships
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can be indicated by communications in different time slicess. For example, texting tends

to indicate a friendship, while calling on a weekday morning could indicate a relationship

between colleagues. For the second question, I examine the effect of communication chan-

nels on role prediction. I first show the similarity and differences in calling and texting

between managers and ordinary employees and then propose a ranking algorithm, called

HumanRank, which infers employee role of the job title with 10% higher accuracy than

existing methods. I discuss how the texting graph is 10% better at role prediction than the

calling graph. For the third question, I explore the effect of time slices on the prediction

of age group and income level on call networks by studying the correlation between call-

ing features and the demographic homophily and then proposing a prediction algorithm to

reach an accuracy of 80% for age group and 71% for income level. Moreover, I discuss how

the weekday graph is 15% better than the night-weekend graph regarding the prediction

accuracy. for the fourth question, I study correlations between demographics and phone

preference. With the features emerging from the correlations, I devise a solution to infer

a user’s phone choice. Compared with existing methods, my solution reduces the error by

1/3 and related costs by half.
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Chapter 1

Introduction

Today‘s proliferation of electronic modes of communication (e.g., phone calls, text

messages, and e-mails) are changing the way people read, learn, and interact. More and

more people are engaging in electronic activities for an unprecedented level of convenience.

The number of mobile phone users in the U.S. has increased from 34 million to 203 million

in the last ten years. Every year, there are 2.12 trillion text messages sent. Smartphones

have also shown a significant growth worldwide over the past few years. Estimates say that

there are now more than 1.5 billion smartphones in the world, and about 81% of mobile

users are using 3G/4G services via smartphones in the U.S..

The explosion in the use of electronic communications also record the ways in

which people interact with each other and store them in form of system logs. By analyzing

these logs, researchers have been able to study and answer a fundamental question of “how

people communicate with others, where, when, and in what kind of way”, from various

aspects across diverse areas of computer science. For example, in the area of data mining,
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some researchers are exploring the answer utilizing graphs. In the area of networking,

researchers are finding the solution from studying mobility patterns.

In this thesis, I use Call Detail Records (CDR), where each line records information

of a call event, including its caller and callee, both parties’ geographical locations, and the

time of the event. I explore the answer to the general question and study it by inferring

personal attributes. Generally speaking, the fundamental question of the thesis is “what

attributes of people can we predict from the CDR?” I answer this general question from

four aspects: multimodal communication, detection of user role, inference of demographics,

and prediction of phone choices. Each of them corresponds, respectively, to one question:

1. What are the patterns of multimodal communication across countries and over time?

2. How much information can we extract regarding the roles of users?

3. Can we infer the demographic properties of certain users?

4. Can we predict the phone choices for a group of users?

For the first question, I present correlations in multimodal communications, the

effect of culture on communication patterns, and the evolution of multimodal communica-

tions over the last five years. The goal of this question is to show the basic and aggregated

results from citywide CDR datasets so that people can obtain straightforward knowledge

about the “shape” of multimodal communications. For the second question, I show how

people in the same company contact one another via multimodal communications and how

to utilize their communication patterns to infer an employee’s job title. For the third ques-

tion, I am interested in the ability to infer age group, income level, and home locations of a
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user and discuss how to depend on a user’s “best friends” to infer his/her demographics. For

the last question, I will show correlations between user demographics and phone preference

and present a solution to the problem of predicting the phone a subscriber will use next.

The contributions of my dissertation to existing research are as follows. First, I

study the correlation between calling and texting across two countries: China and the U.S.,

and the evolution of the usage of the two communications over the last five years. I propose

to depend on communication channels (calling and texting) and time-slices (weekday, week-

end, and holiday) to study how people in China and the U.S. contact one another. This

idea is inspired by the fact that different human relationships can be indicated by com-

munications in different time slices and channels and utilizing this separation will increase

the accuracy of prediction algorithms. For example, texting tends to indicate a friendship,

while calling on a weekday morning shows a relationship between colleagues.

Second, I examine the effect of communication channels on title prediction. I first

show the similarity and differences in calling and texting between managers and ordinary

employees and then propose a ranking algorithm, called HumanRank, which infers job title

with 10% higher accuracy than existing methods. I discuss how the texting graph is 10%

better at title prediction than the calling graph.

Third, I explore the effect of time slices on the prediction of age group and income

level on call networks by studying the correlation between calling features and the demo-

graphic homophily and then proposing a prediction algorithm to reach an accuracy of 80%

for age group and 71% for income level. Moreover, I discuss how the weekday graph is 15%

better than the night-weekend graph regarding the prediction accuracy.
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Fourth, I study correlations between demographics and phone preference. With

the features emerging from the correlations, I devise a solution to infer a user’s phone choice.

Compared with existing methods, my solution reduces the error by 1/3 and related costs

by half.

My dissertation belongs to an interdisciplinary work between two areas: network-

ing and data mining. On the one side, I utilize classical data mining methods to solve a

series of new problems appearing in networking. More concretely, my work heavily shows

a selection of features that are specific to the domain of networking and discusses how to

use those features through classical data mining methods to deal with a problem. On the

other side, my work extends and adopts powerful data mining techniques and show their

ability to infer and predict useful properties of human behavior.

Limitation. My work focuses specially on the communications through calling

and texting. I do not consider communications via Online Social Networks, like Facebook

and Twitter. The focus of my work is reflected by the following aspects. First, we use

only CDR and its associated datasets to answer all the questions. Our CDRs are from two

countries: China and the U.S. Second, the underlying social network extracted from the

CDR is actually a call graph in which one node is a caller or a callee and an edge represents

a call event. The call graph is not able to capture the completeness of human interactions.

Note that the definition of the graph will be different in each chapter, so please refer to

each chapter for detailed definitions.
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1.1 Overview

This dissertation is an effort to serve as an introduction to the measurement of

multi-modal communication networks as well as inference of demographic properties of net-

work subscribers, including home location, company title, age group, income level, and

phone preference. The general organization of this dissertation is as follows. Chapter 2

provides the patterns of multimodal communication across countries and over time. Chap-

ter 3 discusses extraction of information regarding the roles of users from an enterprise

communication network. Chapter 2 and 3 use both calling and texting datasets. Chapter

4 discusses inference of the users’ demographic properties. Chapter 5 studies patterns of

phone switching and algorithms for predictions of phone preferences. Chapter 4 and 5 use

only the calling datasets. Chapter 6 provides a summary of the work.

Each chapter is organized in the measurement-inference style with 2-3 sub-questions

in the interest of answering the general questions. In other words, at first, I discuss various

observations and then, based on these observations, I discuss how to design the inference

algorithms. For example, in answering the second question, I will show the similarities and

differences of how multimodal communications are used among ordinary employees and

managers and then discuss how extensively one should rely on the differences to infer their

company titles.
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Chapter 2

The patterns of multimodal

communication across countries

and over time

2.1 Introduction

So far, most research efforts have studied different communication modes in iso-

lation. Wireline calling patterns in isolation have been analyzed extensively over the last

100 year and recently mobile calling patterns[2]. Relatively fewer studies have analyzed

texting[3], again in isolation. Other communication modes, such as emailing, and instant

messaging, have been study but these are not modes we study here. To the best of our

knowledge, there has not been a study focusing on the composite communication network

of calls and texts, as we do here. In section 2.3, we provide an overview of previous work.
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Modern communications between human beings are multimodal, so looking at only

one mode is providing an incomplete picture of the communication pattern. Here, we focus

on text and call multimodal networks and ask three key questions:

a. How do we capture multimodal correlations?

b. How does culture affect communication patterns? chapter c. How has it evolved

over the last five years?

An underlying challenge, multimodal analysis for human-centric networks requires

some new descriptive terms and metrics to quantify interesting behaviors, as we elaborate

below.

The contributions of this chapter are threefold. First, we present some initial ideas

towards a framework for analyzing multimodal communication networks, which we refer to

as MCNs. Second, we study the effect of culture on multimodal communications. Third,

we observe the evolution of texts and calls within 5 years. We use three large datasets

in our study obtained from cellphone service providers: (a) a Chinese dataset (CN-07) in

2007-2008, with 154 thousand users and 3 million records, from the captial of a province

in China, (b) the great San Francisco dataset (SF-07) in 2007-2008 with 1 million users

and 450 million records, and (c) the San Francisco dataset (SF-11) in 2011 with 1.4 million

users and more than 1 billion records.

As a first step towards a systematic study, we find it necessary to introduce a set

of definitions and metrics to describe and capture interesting aspects of the communication

duality. First, we suggest that it is important to study behavior at both user and communi-

cating pair levels, namely two users that engage in a communication. Second, we introduce
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the concepts of time-slices, essentially time-based windows, and channels, each of which

captures a mode of communication over a specific time-slice. For example, we propose three

time-slices: weekday, weekend and holiday, and we define six channels to be pairs of (mode,

time-slice) e.g. (text, weekend). Third, we propose techniques to assess the correlation

between an activity in one channel with the existence of the activity in another channel.

Our key observations can be summarized as follows.

A. Dual-mode statistics and Correlations: Our goal is to understand and

quantify the different ways people use the different communication modes.

a. 51% of the people in CN-07 and 48% in SF-07 use both texts and calls.

b. Aggregate user behavior is stable along three time-slices: weekday, weekend,

and holiday. The key observation is that the behavior is (a) repeatable and stable, and (b)

different from each other. This suggests that studying the behavior along those time-slices

is meaningful and potentially useful at level of granularity.

c. For a communicating pair, we find that the existence of texting during the

weekend time-slice is the strongest indicator of persistent communication in terms of the

likelihood that the pair interacts in other channels.

B. Cultural comparison: Our goal is to quantify whether different cultures or

countries exhibit significantly different multimodal communication patterns.

a. Cultural differences: Chinese users exhibit dual peaks for calls (at 10 a.m. and

5 p.m.) and a single peak for text (at 4 p.m.) on weekdays. In contrast, the U.S. users

have a single peak for calls (at 6 p.m.) and no pronounced peak for texts. Holidays exhibit

spikes in texts for both countries, but by different levels of 100% increase in China, and
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30% in the U.S.. Surprisingly, the number of calls decreases during one major holiday in

China. Moreover, Chinese users text more than the U.S. users in terms of the percentage

of texters (68% v.s. 52% ).

b. Cultural similarities: The number of callers is 2.7 times that of texters on a sin-

gle day for both countries in 2007. We have also seen obvious daily and weekly periodicities,

and a similar decrease of activities during weekends for both countries.

C. Evolution: Texting has started to dominate. We find that texting has

taken over in sheer number of events by flipping the ratio of number of calls over number

of texts ratio from 2:1 in 2007 to 1:2 in 2011 based on the U.S. datasets. Investigating this

further, we find an increase in both the number of texts per texting user, and the number

of people texting: the percentage of texters is up to 74% in 2011 from 52% in 2007 of all

users. Interestingly, although the number of texters has increased, it is still less than the

number of callers: from 1:3 in 2007 to 2:3 in 2011.

2.2 Framework and definitions

We model communications as an undirected network, where nodes are cellphone

numbers and links correspond to one or more communication events, which could be either a

text or a call. A record or communication event relates two participating users and the

time of occurrence. We use the term user or individual to refer to a cellphone number,

although one phone can be shared among different people. We use the terms caller or

texter to refer to users making at least one call or text. Note that a caller can also be a

texter, as we discuss below.
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Table 2.1: Basic statistics of dataset

Time range #calls #texts #users #callers #texters

CN-07 12/07-03/08 2,065K 1,208K 154K 128K 105K

SF-07 12/07-03/08 273,245K 189,983K 1,065K 1,043K 532K

SF-11 06/11-08/11 327,136K 629,045K 1,453K 1,301K 1,097K

Framework, definitions and concepts. We introduce a set of definitions and

metrics in order to analyze Multimodal Communication Network effectively.

First, we find important to study the behavior at both the user level and the

communicating pair level, essentially an edge of the network. For example, a dual-mode

user is a user who is both a caller and a texter, while a dual-mode communicating pair

uses both modes to communicate with each other.

Second, we introduce the concepts of time-slices and channels, as we mentioned

in the introduction. which capture modes of communication over distinct time-based win-

dows in a human centric way that we call time-slice s. We argue that it useful to have

three time-slices: weekday, weekend and holiday, since we see different behaviors over those

time-frames. We can further define channels to be pairs of (mode, time-slice) e.g. (text,

weekend). We show that their correlations and the nature of the communication differs

across the different channels.

Finally, we propose different metrics and techniques to assess the correlation be-

tween an activity in one mode or channel with the existence of the activity in another

channel. Due to space limitations, we can only show a small subset here.
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Datasets of this study: We use three large datasets in our study obtained from

cellphone service providers: (a) CN-07: a Chinese dataset between Dec-2007 and March-

2008, with 154 thousand users and 3 million records, (b) SF-07: the greater San Francisco

area between Dec-2007 and March-2008 in 2007-2008 with 1 million users and 450 million

records, (c) SF-11: the greater San Francisco area data in 2011 with 1.4 million users and

more than 1 billion records, and (d) SF-days: San Francisco data on several distinct days:

August 26th 2008, March 11th 2009, July 7th 2009, April 14th 2010 and Feburary 28th

2011. For studying cultural differences, we use the CN-07 and SF-07 datasets, which include

Christmas Day and New Year and the Chinese New Year. For studying the evolution, we

use the SF-07, SF-11, and SF-days datasets.

User selection filter. We prefer to reduce the number of users we analyze to

ensure homogeneity, and avoid introducing statistical artifacts. First, our data only consists

of cellphone users, so that any two nodes can call and text1. Second, we distinguish between

two types of users in our dataset: (a) customers of the telecom carrier, which provide user

logs, and (b) non-customers who communicate with customers. Here, we only consider

customers of two telecom carriers as users. The reason is that in profiling a user we want to

be sure that we see all the activity of each user, which is only true for the customer belonging

to the two carriers. Studying how customers of one carrier interact with customers of other

carriers could be an interesting study in its own right.

1We assume that all cellphones are text capable, which is for all practical purposes a reasonable assump-
tion.
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2.3 Related work

Many research efforts have studied communication modes in isolation: phone

calls[4], text messages[3], email and instant messaging[5]. Most previous works [6], [2],

[3] on cellphone networks, study calls and texts in isolation, while we study the interplay

of these two modes. Some studies focus on topology features of a larger-scale phone-call

network[6], while other studies focus on tie persistence in a text message networks in order

to detect anomalies [3, 7]. Characterizing mobile phone networks can help telecom carriers

to better manage and provision their networks[8][9], and we believe that studying the com-

munication patterns jointly could help this further, and potentially also inspire user friendly

call and text end-user packages.

2.4 Statistics and Correlations

In this section, we analyze the CN-07 dataset on both user and pair levels. We

study the evolution of texts and calls in Section 2.6.

Both text and calls exhibit three stable time-slices. We observe three

distinct time-slices: weekday (WD), weekend (WE) , and holiday (HD). A sample of this

stable behavior is shown in Figure ?? in section 2.5 where we discuss its properties in more

detail. Due to space limitations, we cannot show more instances, but this behavior was

very consistent. Apart from the weekly periodicity, daily activity was very predictable in

terms of spikes. Furthermore, weekends always exhibit lower activity than weekdays. This

suggests that studying the behavior along those time-slices is meaningful and provides a
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Figure 2.1: The joint probability of (a) Number of texts and calls (b) Text degree and call
degree

useful level of granularity. Given these three time-slices, we can define six channels, by

associating a communication mode with a time-slice: for example, (text, WD), (call, HD)

etc.

Dual-mode behavior is fairly limited: Only half of the people (51%)

in the CN-07 dataset are dual-mode users. Specifically, the user base includes 51%

dual-mode users, 32% use calls exclusively, and 17% use texts exclusively. Going a step

further, we analyze communication pairs and we find that only 23.7% are dual-mode pairs,

while slightly more than half of the pairs (58.7%) use exclusively calls, and 17.6% use texts

exclusively.

2.4.1 Are calling and texting correlated?

Here, the goal is to quantify the correlation between the two modes of communi-

cation. We start by looking at two level analysis: (a) number of events, and (b) number
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of neighbors that each mode is used on. First, we study the numbers of calls and texts of

dual-mode users (both caller and texter) and plot the joint probability shown in Figure 2.1

(a). The correlation coefficient is 0.31, indicating a weak positive correlation. We see that

> 85% of the users make more calls than texts, as indicated by the larger lighter area above

diagonal than below it.

We identify some less common, but quite surprising behaviors. First, we find a

group of users with very low number of calls (<10) but very high number of texts (>500).

Some of them send texts to 400 persons per day, which very likely text spamming, especially

given the really low calling activity. Note that, for visual clarity, these users are beyond

the visible scale in figure which focuses on the user majority. Although this extends beyond

the scope of this chapter, this could be a good first step in identifying suspicious behavior

using correlation information.

In Figure 2.1 (b), we study the number of partners that a dual-mode user calls (or

call degree) and the number of partners who the same user texts (text degree). The joint

probability of the call degree and text degree is shown in Figure 2.1 (b), and exhibits weak

correlation with a 0.30 coefficient. It is fairly easy to see that most of the users are near

the diagonal, compared to the number of calls and texts that a user engages in.

Inferring texting from calling and vice versa. We attempt to delve deeper

into the correlations of the texting and calling behaviors for two questions: (1) if I call you,

do I text you? (2) If I text you, do I call you? Namely, we investigate the predictive power

of one mode of communication for the existence of the other mode in a communicating pair.

We formalize this by employing the conditional probability of the appearance of
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an edge, r, in a network (N2) given that it exists in network (N1) based on the observed

behavior. We consider that a communicating pair can be connected with two types of edges

texting edge, a calling edge, or both edges. We calculate this as shown below, with edges()

indicating the edges of a network:

P (r ∈ N2|r ∈ N1) =
|edges(N1)

⋂
edges(N2)|

|edges(N1)|

In the above equation, we can consider N1 and N2 to represent the call net-

work and the text network. We find that the probability P(CALL|TEXT) is 57.3% while

P(TEXT|CALL) is 28.7%. This shows that a pair that texts is likely to also call, but not

the other way around.

Correlation across time-slices and channels. We go one step further and

analyze the conditional probabilities between behaviors over different time-slices (weekend,

weekday and holiday). In Table 2.2 we show all the conditional probabilities. The way to

read this table is to start from the row, say TWE, and match it with a column, say CWD:

if I text you on weekends, do I call you on weekdays?. The answer is with 0.63 probability.

The first observation is that texting on the weekend (TWD) seems to be the

strongest indicator that there will be communication in all other channels: the row TWD

shows high values, with the only exception that the correlation between TWD and calling

on holidays (CHD) is as low as 0.29. In other words, TWD implies strong multimodal

relationships in the other channels.

The second observation is that almost all communication channels are good in-

dicators that the pair will also call on weekdays (CWD): the column CWD exhibits high

values. In other words, if a pair is communicating in any other channel, the chance is high
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Table 2.2: Correlation across channels. C = CALL, T = TEXT, WD = WEEKDAY, HD
= HOLIDAY, WE =WEEKEND. Two users who have texting on weekends are more likely
(more than 50%) to communicate with each other at other channels.

CWD CWE CHD TWD TWE THD

CWD • 0.33 0.18 0.17 0.08 0.19

CWE 0.68 • 0.28 0.22 0.15 0.24

CHD 0.72 0.54 • 0.22 0.15 0.32

TWD 0.63 0.39 0.23 • 0.31 0.43

TWE 0.63 0.55 0.29 0.64 • 0.50

THD 0.45 0.28 0.19 0.28 0.15 •

that it will also be calling on weekdays.

2.5 Cross-cultural study

In this section, we use the datasets CN-07 and SF-07 in 2007-2008 to compare

behavior differences between Chinese and the U.S. users. We discuss similarities and dif-

ferences interdispersed, since often an type of behavior can exhibit both similarities and

differences.

2.5.1 More calls than texts in 2007

From 2007 to 2008, calling in CN-07 and in SF-07 was the dominant mode of

communication in terms of sheer numbers of communication events. However, the relative

ratios of calls to texts where different in the two countries. In more detail, there are roughly

3 times more calls than texts in the daytime in CN-07, as we can see in Figure 2.2(a). To
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Figure 2.2: Texting and calling temporal patterns: number of calls and texts per hour over
a week of (a) December 2007 in a Chinese city (b) December 2007 in Greater San Francisco
Area. In (a), the numbers of calls peak at 10 a.m. and at 5 p.m. and that of texts is at 4
p.m..

quantify, an average day has 239740 calls and 52947 texts exchanged. The figure represents

a typical week in December 2007 before the holidays (from the 3rd to the 10th Dec). In

SF-07, an average day has 4 million calls and 3 million texts exchanged (See Figure 2.2(b)).

2.5.2 Periodicity and intra-day peaks

There are several similarities here. As expected, for both calling and texting, we

discover daily and weekly periodicities: the last two days are the weekend, and they exhibit

lower volumes in a typical week as shown in Figure 2.2 (a) and (b).

At the same time, there are significant differences between calling and texting

regarding the intra-day behavior. In CN-07, the calling activity peaks at 10 a.m. and at 5

p.m., while the texting activity peaks at 4 p.m (See Figure 2.2(a)). The only similarity is

that noon (12 p.m. - 2 p.m.) sees the lowest activities of the working hours for both texts

and calls.
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Figure 2.3: Texting and calling temporal patterns: number of calls and texts per hour over
a week of (c) July 2011 in Greater San Francisco Area. In 2007, the numbers of calls peak
at 10 a.m. and at 5 p.m. and that of texts is at 4 p.m.. In 2011, calls burst at 6 p.m..

In SF-07, the calling activity peaks at 6 p.m. while the texting activity has no

pronounced peak (See Figure 2.2(b))! There is no obvious drop-off at lunch time. Intrigued,

we investigate further and we conclude that in China, people often sleep for one hour after

lunch, but this does not happen in the U.S.

Similar ratio of unique callers to unique texters per day. The number of

unique callers per day is around 2.7 times that of unique texters both in China and in the

U.S.. In more detail, on average there are 141K callers and 56K texters per day in China

and 429K callers and 155K texters in U.S. We find this to be an interesting observation,

which requires further investigation.

2.5.3 Holidays is the season for texting

As we saw, the number of callers per day is higher than that of texters in both

CN-07 and in SF-07. However, as we see in Figure 2.4 (a), holidays see significantly different
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user behavior: more people text than call. In CN-07, the number of texts increases by 100%

and in SF-07, it also increases but only by 30%.

Moreover, we observe that the number of texts peaked on New Year’s Day both in

China and in the U.S. In particular, on the Spring Festival, a major holiday in China, the

number of texts skyrockets, leading to a visible spike in Figure 2.4 (a). The number of texts

is around five times that of calls, while the number of calls drops by 30%. This seems to

suggest that, in China, texting has replaced calling as the way to spread holiday greetings.

Discussion. It seems that spikes in texting are a better indication of special

events (like holidays). It would be interesting to see if this is true in emergencies or joyful

events (e.g. local team winning the world cup). Understanding this, monitoring the volume

of texts and calls could enable a telecom carrier detect such an event and maybe infer its

nature.

2.5.4 China adopts texting earlier than the U.S.

The fraction of dual-mode users is about 51% in CN-07 and 48% in SF-07. In

contrast, the fraction of texters is 68% in CN-07, while this fraction is only 52% in SF-07,

which is especially interesting, since San Francisco is particularly high-tech.

A possible explanation could be attributed to the policies and user contracts that

the telecom industries in each country follow. In a nutshell, texting is cheaper in China,

while calling is more affordable in the U.S.

Discussion: Tracing the origin of differences to culture versus money.

The structure and pricing of contracts by a telecom carrier have hugh impact on communi-
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cation behaviors of its customers. The Chinese carrier’s policy states that a call is charged

by durations with rate of 3 cents/minute anytime, even within the network of the same

operator while a text is 1.5 cents/text. As a result, calling is more expensive than texting.

By contrast, the U.S. operator follows the opposite policy: there is a fixed monthly fee for

calling, whereas texting is charged by text message at the time frame of our SF-07 dataset.

Furthermore, for several user plans, calling is free within the same operator and during

off-peak hours (typically 8 p.m. - 8 a.m.), while there is no free-period for texting.

As both culture and financial considerations affect it is hard to know which factor

influences more or is responsible for a particular behavior. We already saw that after-lunch

naps could be responsible for the sharp daily valley among chinese users. One could also

conjecture that the high spikes among chinese users during holidays could be the result of
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Figure 2.4: Number of records per day with the holidays indicated. On Christmas Day and
New Year’s Day, the number of texts increases by 100% in the Chinese city
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fixed price of texting. In the U.S., the pricing has gone through several different approaches,

including the my-favourite circle, that enabled unlimited calling to a limited number of

people, truly unlimited calling, pay-as you go with different pricing schemes, etc. It would

be interesting to do a more extensive study to quantify the effect of pricing on user behavior.

2.6 Time evolution study

In this section, we study the evolution of texting and calling focusing on the relative

growth of the two communications modes. We use the SF-07, SF-11, and SF-days datasets

here. Unfortunately, we did not have a more recent dataset from the Chinese carrier to do

a similar evolution study.

The number of texts surpassed that of calls with a 2:1 ratio. We find

that texting has taken over in sheer number of events by flipping the number of calls over

the number of texts ratio from 2:1 in SF-07 to 1:2 in SF-11. Due to space limitations, we

option to show the daily snapshots that span multiple different years Figure 2.5 (a). The

year 2009 seems to be the time where the number of texts overtook calls, while the number

of texts in 2011 has doubled compared to that of 2007.

Note that the decrease in the number of call activity in the first two plots can be

contributed to the variable number of users who are monitored. In any case, our interest

is more on the relative trend of evolution between the texts and calls than on the absolute

numbers.

Intrigued, we wanted to identify the causes of the increase in texting, and we find

an increase in both the number of people texting as a percentage of the number of cellphone
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Figure 2.5: The evolution of (a) communication events, and (b) users for users active in
that mode of communication over 4 years in the greater San Francisco area. The number
of active texters per day surpasses that of callers in 2009. D1 = 12/08/07, D2 = 08/26/08,
D3 = 03/11/09, D4 = 07/07/09, D5 = 04/14/10, D6 = 02/28/11, D7 = 07/16/11

.

users, and the number of texts per texting user.

The fraction of texters increased to 74% in 2011. More people are active

in texting; as a result the fraction of texters in SF climb to 74% in 2011 from 52% in 2007.

Despite the increase, the number of texters is still less than that of callers: the ratio changed

from 1:3 in SF-07 to 2:3 in SF-11.

In more detail, the number of texters per day in July 2011 has doubled compared

to that in December 2007, while the number of callers is only 20% (See Figure 2.5(b)). In

December 2007, there are around 415,000 callers and 156,000 texters per day, while in July

2011 the two number increase to 495,000 and 319,000. At the level of a user, 65% users

employ both calls and texts, 26% use only calls and 9% use only texts.

A texter sends roughly double the daily texts compared to 4 years ago.

We focus on users that text actively and we plot the average number of texts per day,

and show the result in Figure 2.6. On December 8th, 2007, the average number of texts
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increased from 17.8 in 2007, to 37.1 in 2011. In contrast, the average number of daily calls

by active callers has increased relatively little, and appears to have stayed rather constant

over the last few years.

2.7 Conclusions

To the best of our knowledge, this is the first study that focuses on understanding

the interplay and correlation between texting and calling of cellphone users. We use data

from two cellphone carriers from China and the U.S and datasets from 2007 and 2001. We

provide some definitions towards a framework for capturing multi-modal communication,

to capture granularity in time and usage, with the aid of time-slices, and channels, and

recommend the study at both the user and communicating pair levels. For a communicating

pair, we find that the existence of texting during the weekend time-slice is the strongest

indicator of persistent communication in terms of the likelihood that the pair interacts in

other time-slices. In terms of cultural comparison, there are both similarities and differences.

For example, holidays exhibit spikes in texts for both countries, but by a different level of

increase: 100% in China, and 30% in the U.S.. Finally, our analysis suggests that the

dominant status of calling no longer exists, since texting has surpassed calling in terms of

absolute number of communication events by flipping the number of calls over the number

of texts ratio from 2:1 in 2007 to 1:2 in 2011.
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Figure 2.6: The evolution of average daily activity for users active in that mode of commu-
nication over 4 years in the greater San Francisco area. The number of active texters per
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Chapter 3

Extraction of information

regarding the roles of users

3.1 Introduction

Today we are seeing a diversity of available electronic modes of communication,

such as e-emails and short messages, which increases the ways people can interact while

at work. To facilitate the study of interactions in an enterprise, we represent a group of

communicating individuals as a graph, where nodes denote employees and edges capture

particchapterular communications, such as phone-calls, between two nodes. We refer to

these graphs as Communication Interaction Networks, or CINs. With the ever increasing

availability of CINs, it is important for enterprises to effectively analyze and understand

their data and exploit any information they may infer. Such information is essential for

accessing potential security risks from information leakage, as well as for improving the
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communication services in the enterprise (e.g., differentiating among users based on their

communication behavior or role). At the same time, understanding and baselining the

different CINs today, it is a fundamental first step in identifying anomalies in the future;

such as the spread of spamming or smart-phone malware.

In this chapter, we focus on three key questions:

• Q1: How do the CINs from two modern enterprises look and which are their common

characteristics?

• Q2: How are the different communication modes used within an enterprise? Are

there differences between ordinary employees and managers in how they use different

communication modes?

• Q3: How much information can we extract regarding the roles of their participants

and how can we identify hosts in different levels of the hierarchy (e.g., managers versus

ordinary employees)?

We address the above questions using empirical CINs from the Enron Corporation

and a communication provider. To the best of our knowledge, we are the first to present

similarities between CINs from different enterprises as well as to compare CINs created by

different communication modes (short messages and phone calls) within the same enterprise.

In the remaining of the chapter, all our observations reflect behaviors seen in the two

enterprises for which we have data. In the future, we plan to include data from more

enterprises in order to identify key properties that capture intrinsic behaviors in modern

corporations.
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With regards to Q1, we observe that CINs from our two different enterprises have

common graph structural features: they have high edge density, high clustering coefficient,

and close to zero assortativity coefficient. Those similarities are present even though the

CINs we study are formed using various communication modes, such as phone calls, text

messages and emails. In order to further highlight these features, we compare CINs with

(1) real-world complex networks and (2) synthetic random graphs with the same node and

edge numbers as our CINs. That allows us to identify key structural properties of our CINs

that are not observed in other graphs, even when the other graphs share the exact degree

distribution.

With regards to Q2, we observe that edges in CINs formed by different commu-

nication modes, even within the same enterprise can be different. In fact, we observe that

only 41% of communicating node pairs use both short messages and phone calls when in-

teracting with each other. Moreover, we notice that employees with different roles in the

enterprise have distinct communication behaviors: for example managers are more likely to

utilize multiple modes to contact others whereas ordinary employees use just one.

With respect to Q3, we focus on a very specific question: Can we distinguish

between ordinary employees and managers by using only the graph topology? Towards this

end, we propose HumanRank (§3.6.1), a method of ranking individuals based on their

position in the hierarchy (e.g., CEOs having higher rank than ordinary employees). Next,

using our HumanRank method, we introduce an unsupervised and parameter-free algorithm

that separates managers from ordinary employees. Our algorithm achieves above 70%

accuracy in labeling managers and employees. Especially, our method is better in capturing

27



managers and outperforms the state-of-the-art [1] by more than 15%.

The chapter is organized as follows. In §5.2, we review related work and discuss

how we differ from it. In §5.3, we describe the data sets and the metrics we used for

analyzing CINs. In §3.4 and §3.5, we present the analysis of CINs and compare with other

real-word and synthetic networks. In §3.6, we present HumanRank and compare it with

others. We conclude the chapter in §5.6.

3.2 Related Work

Analyzing complex networks. Real-world complex networks have attracted

significant attention over the past years. Such networks include: scientific collaboration

networks [10], actor collaboration networks [11], online social networks [?][12], the Internet

AS-level topology [13], the Web graph [11], and biological networks [14]. In this work, we

capitalize on the methodologies and the different graph metrics proposed in the literature

and use them to shed light to a different kind of complex network, namely, the interaction

communication networks within an enterprise. As we discuss next in more detail, we an-

alyze our graphs using a diversity of metrics proposed in previous work, such as: degree

and degree correlations [15] [16], clustering coefficient [17], assortativity [18], path length,

betweenness [19], and network motifs [20].

Ranking nodes and identifying roles in networks. Significant information

can be extracted from structures of real-world complex networks. Kleinberg shows how

to extracts hub and authority pages from the structures of WWW [21]. Google uses the

PageRank algorithm to assign importance values to web-pages [22]. Our method, is inspired
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by PageRank, but aims to answer a very different question. That is, with HumanRank we

identify the roles of employee in an enterprise, e.g., managers, CEO, etc. by looking at the

structures of their communication networks. In similar spirit, Karagiannis et al. also study

email exchanges in a large enterprise [23], but their work focuses on profiling users based on

personal communication features, such as the volume of emails being send and the number

of email addresses in the contact list of a user, and not the structure of the network.

Inferring hierarchy in enterprise CINs. Here we describe the studies that

are more related to ours. Using the same Enron dataset with us, Shetty et al. propose an

entropy-based method to rank employees based on personal communication patterns [1]. As

we show in §3.6, in our experiments HumanRank performed better than the entropy-based

approach [1]. Powe et al. [24] propose a method that uses topological features to rank

employees, such as the degree of the nodes. The method in [24] requires significant input

from the user, such as the assignment of weights to features, which is hard to do in practice.

By applying this method to our data and using the same weight for all metrics we observed

poor ranking results. Because of the low quality of the results we do not include them

here. Gupte et al. propose a method to identify social ranks in online social networks [25].

Social networks are based on explicit friendship relationships, which is different from the

exchange of message as we use them for CINs. For example, in a social network we expect

people to interact with people of the same status, whereas in CINs we expect managers to

communicate more frequently with their employees. Maiya et al. proposed a method to

infer the tree-like hierarchy in the two networks of the George W. Bush and the Barack

H. Obama administrations [26]. There work is based on strong assumptions about the
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underlining shape of the graph and relies heavily on information other than the structures

of the graph.

3.3 Datasets and Graph Metrics

3.3.1 Datasets

For facilitating the analysis of communication patterns, we represent a group of

people as a network G(V,E) (or graph), where nodes (V) represent individuals and edges (E)

capture particular interactions. Here, we study enterprise CINs, where nodes are employees

in the same enterprise and edges are formed from the chapter exchange of phone-call, short

message or emails among them. We will refer to these CINs as CALL, SMS and EMAIL

networks respectively.

CALL and SMS: These data capture communications among 235 employees

from a city branch of a large corporation in 2007. For each employee, we have their job

titles: manager and ordinary employee. We use this information as ground truth when

evaluating our algorithms. The data span over half a year. The SMS data is from the

exchanges of short messages from the employees’ cell-phones. The CALL captures all the

phone calls between the same set of employees. For CALL, we have callers and callees

and thus we produce directed edges. Unfortunately, SMS is undirected because sender and

receiver are not able to be distinguished in the dataset. Edge weight is defined as the

number of communications between two participants during the data span.
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EMAIL: This network is extracted from the Enron public email dataset collected

by J. Shetty [1]. The public data is comprised of email exchanges among 151 employees

that span over 2.5 years. For 101 employees, we have his/her name job title (e.g., CEO,

manager) and job description. The job title is unknown for 50 Enron employees. We always

include these nodes in our graphs, but we do not use them when we evaluate our methods.

Like CALL, EMAIL is directed. However, in order to study CALL, SMS and EMAIL in a

uniform way, we consider them as undirected networks except in motif discovery.

To the best of our knowledge, this work is the first that focuses on enterprise CINs,

using data from two different enterprises and three different communication channels. The

enterprises we study are from two countries with different cultures, which adds to the

diversity of our data. For example, in 2007 short message in China is a more popular

communication means than in U.S. from our another study. Moreover, studying CINs from

different communication channels allows more detailed analysis of the behaviors within

an enterprise. For example, the interactions using phone-calls appears to be more direct

than contacts by short message and email. This can explain the higher similarity of SMS

and EMAIL CINs compared to the CALL graph, as we show in §3.4 in more detail. The

collection of data from more enterprise organizations can further support our findings, and

this is something we plan to pursue in the future. However, we need to underscore that this

is not an easy task due to security and privacy concerns.

3.3.2 Metrics for analyzing and comparing graphs

Degree of nodes. We begin our analysis of enterprise CINs by looking at the
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degrees of their nodes. Given a network G(V,E), V denotes the set of nodes and E the set

of edges. The |.| notation denotes the cardinality of a set. The undirected degree of a node

u, denoted with ku, is the number of its direct neighbors. The average degree of a graph is

given by k̄ =
∑

u∈V ku/|V |. The edge density (ED) is given by 2 · |E|/(|V | · (|V | − 1)). The

degree distribution is the probability distribution of those degrees over the entire network,

and is denoted as P (k). It is often captured with a complementary cumulative distribution

function (CCDF), CCDF (k) =
∑|V |

k P (k), and plotted in a logarithmic scale to highlight

if there is a power-law distribution [16].

Degree-to-degree correlations. We also examine the degree-to-degree corre-

lations in the graph. This value is a correlation between all nodes with degree k and the

mean degree of their direct neighbors. These degree correlations are often summarized in a

single value called assortativity (r), which is expressed as:

r =
|E|−1

∑
i k

i
uk

i
v − [|E|−1

∑
i
1
2(kiu + kiv)]2

|E|−1
∑

i
1
2((kiu)2 + (kiv)2)− [|E|−1

∑
i
1
2(kiu + kiv)]2

where kiu, kiv are degrees of two end-points (u, v) of the ith edge, with i = 1...|E|. When

r < 0, it indicates that high degree nodes in the network tend to link with low degree nodes

and when r > 0 high degree nodes like to connect to high degree ones [18]. The assortativity

of a random network is near zero, which indicates there is no degree-to-degree correlation.

Distances between nodes. We measure how far two randomly selected nodes

in a graph are by using the distance distribution (a.k.a path length distribution). For that

metric, we first calculate the length of all pair shortest paths in the graphs and plot their

distribution. The diameter of a network is defined to be the longest path, and is often used

as a metric for comparing graphs [27, 28]. The number of all pair shortest paths that pass
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through a node measures the centrality of the node [19].

Graph decomposition. A powerful set of metrics for analyzing graphs are

based on decomposing the graph and studying it as a set of small sub-graphs. Here, we are

interested in maximal cliques [29]. A maximal clique is a clique that cannot be extended

by including one more adjacent node, and typically reflects a group of nodes having a

close relationships with each other [29]. The clustering coefficient of a node is defined to

be the ratio of the number of existing links over the number of possible links between its

neighbors [17]. Given a network G(V,E), the clustering coefficient of a node C(u), u ∈ V

is:

C(ui) =
2|{exy}|
ki(ki − 1)

where ux,uy are neighbors of ui. The value of C(u) captures the probability that two u’s

neighbors are also connected. This is often used as a measure of how well connected the

local neighborhoods are in a graph. The average clustering coefficient of a graph is given

by C̄ =
∑

u∈V C(u)/|V |.

3.3.3 Generating synthetic random networks for comparison

In order to highlight the unique structural properties of real-world CINs, we gen-

erate various synthetic graphs for comparison. Intuitively, using synthetic data we can

generate networks that have exactly the same sizes (number of nodes), or even networks

that follow identical degree distributions with our CINs. Here we use two ways to produce

a synthetic network: (a) one is to depend on an existing real network, randomly re-arrange
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edges and get a randomized version of the network and (b) the other is to rely on a graph

generation model and produce a network with a predefined set of characteristics.

NEP: To generate a random network with the same number of nodes and edges as

our initial enterprise CINs, we use the 0k-preserving re-wiring technique introduced in [15].

In a nutshell, at each iteration of the re-wiring process, one edge is selected at random and

then moved to a random location, that is, it connects a different pair of nodes. This step

is repeated multiple times to give a random version of the initial graph. Here, we executed

10 |E| re-wirings, as suggested in [15]. In the chapter, we call random networks produced

by this process as Node and Edge Preserving (NEP) graphs.

DDP: For generating synthetic graphs with exactly the same degree distribution

as our CINs, we used the 1k- preserving re-wiring technique from [15]. In this technique,

two edges are chosen at random and then exchange node connections, that is, two given

edges (v, w) and (m, n) are turned into two new ones (v, n) and (m, w). Here, we executed

10 |E| re-wirings, as suggested by the work [15]. The main advantage here is that the

degree distribution of the input network is exactly preserved. We use the name Degree

Distribution Preserver Network (DDP) to refer to this type of synthetic networks.

BA: Here we generate synthetic graphs that follow a power-law distribution and

have the same number of nodes as our CINs. Towards this end, we use the well-known

Barabasi−Albert (BA) [11] generator. The generator uses the concept of preferential at-

tachment. It keeps adding nodes with each new node preferring to connect to nodes with

high degree[11]. Since we want the graph to follow a power-law distribution, we do not

impose any restriction on the resulting number of edges. That is, the final graph will have
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the same nodes as the target CIN but potentially different number of edges.

R-MAT: Finally, we use the R-MAT generator to make synthetic graphs (a) with

the exactly same numbers of nodes and edges as our initial CINs and (b) that follow the

structure of other popular complex networks, such as the Web graph[30]. In a nutshell,

the generator uses an iterative process based on fractals [30] resulting in self-similar graphs.

The model generates directed graphs, which enables a detailed comparison with our directed

CINs.

3.4 Characterizing Enterprise CINs

Our goal in this section is to answer the following questions: (1) How do the three

enterprise CINs look and what are their differences and similarities, (2) How different are

the CINs from popular complex networks? and (3) How different are the CINs from synthetic

graphs we generated?

3.4.1 Comparing the CALL, SMS, and EMAIL CINs

We summarize a set of scalar metrics for the three CINs in Table 3.1, and plot six

non-scalar metrics in Figure 3.1. As we see from Table 3.1, all three networks are of similar

scale, having 235, 234, and 151 nodes for the CALL SMS, and EMAIL CINs respectively.

Even though the number of nodes is small, relatively to other complex networks, their

number of edges is high leading to high edge densities (> 12%). The degree distribution

for all three graphs is shown in Figure 3.1(a). Even though there are some differences, all

three CINs follow similar trends in their degree distributions.
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Figure 3.1: Comparison of the CALL, SMS, and EMAIL CINs using six different no-scalar
metrics. All networks have similarities in their degree distributions, clustering coefficient,
path lengths, and their degree-to-degree correlations. The SMS and EMAIL are more
similar to each than to the CALL graph.
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Our next step is to compare the clustering coefficient in the graphs. In Table 3.1,

we see that CALL’s average clustering coefficient is the lowest. Even though CALL and SMS

are produced by the same group of employees, they have difference, indicating individuals

have different communication behaviors depending on the communication channel they use.

To highlight the differences, we show the distribution of clustering coefficient over all nodes

in Figure 3.1(b). We see that more than 50% of the nodes in SMS and EMAIL have

clustering coefficient larger than 0.5, whereas the percentage of such nodes in CALL is only

7%. This figure shows that SMS and EMAIL CINs are more similar to each other than to

the CALL graph. In Figure 3.1(c), we show the relation between the clustering coefficient

and the degree of nodes in the graphs. The x-axis shows the degree and the y-axis the mean

clustering coefficient for all the nodes having that particular degree. We see that all graphs

show a similar pattern, where the clustering coefficient decreases as the degree of the node

increases. Moreover, we see again the similarity between the SMS and the EMAIL CINs.

We plot the distribution of maximal cliques of various sizes in Figure 3.1 (e). In EMAIL

and SMS networks, there are more maximum cliques with more nodes than in the CALL

network. We speculate that we observe this because short messages and emails may be

sent between a set of people with the option to reply to the entire group (e.g., reply-all in

emails), but this cannot be done with phone-calls.

The degree-to-degree correlation is captured in the assortativity coefficient shown

in Table 3.1. Interestingly, the three values are around zero with values 0.095, -0.084 and

-0.061 for the CALL, SMS and EMAIL respectively. To study degree correlations in more

detail, we plot the average neighbor degree metric in Figure 3.1(f). The x-axis shows the
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Table 3.1: Scalar graph metrics for CALL, SMS and EMAIL CINs compared to real and
synthetic Networks. |V |: number of nodes, ED: Edge density, k̄: average degree, D: Diam-
eter. P: Path length and C̄: average clustering coefficient

ID Family Data set |V | ED k̄ r D P C̄

1 CINs CALL 235 13.4% 31.5 0.095 4 2 0.35

2 SMS 234 12.9% 30.1 -0.084 3 1.9 0.47

3 EMAIL 151 13.4% 20.2 -0.061 4 2.6 0.51

4 Networks Physics [10] 52,909 0.018% 9.7 0.363 20 5.9 0.43

5 Capturing Biology [10] 1,520,251 0.0009% 14.8 0.127 21 4.4 0.072

6 Human Actor [17] 282,219 0.027% 78.6 0.22 16 3.65 0.63

7 Relationships Cyworld [28] 12,048,186 0.0002% 31.6 -0.13 18 3.2 0.16

8 MySpace [28] 100,000 0.14% 137.1 0.43 8 2.7 0.43

9 Other Internet [31] 35,186 0.012% 4.2 -0.22 9 3.83 0.29

10 Networks WWW[11] 269,504 0.003% 9.19 -0.05 40 7.53 0.24

11 Power grid[17] 4,941 0.054% 2.67 0.003 46 18.7 0.080

12 Protein[14] 1,870 0.13% 2.35 -0.161 19 3.75 0.067

13 Neural[17] 297 4.9% 14.5 -0.163 5 2.45 0.29

14 Synthetic NEP 235 13.4% 31.5 -0.008 3 1.88 0.13

15 Networks DDP 235 13.4% 31.5 0.009 4 1.95 0.2

16 (see §3.3.3 ) R-MAT 234 13.2% 31 0.123 3 1.93 0.21

17 BA 235 1.4% 3.16 -0.15 8 3.8 0.03

degree of a node and the y-axis shows the average degree of all the neighbors of all nodes

with the particular degree. Different from other complex networks, like popular OSNs,

the degree of a node in CINs does not reveal information about the degrees of its direct

neighbors. In other words, the average degree of the neighbors of a node u, is close to the
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average degree of the entire graph, and is not correlated with the degree of u. At first, this

might suggest that CINs are like random networks, but it does not hold because random

networks tend to have low clustering coefficient (lower than 0.15).

Next, we measure the network diameter and average path length over all pairs of

nodes. From Table 3.1, we observe that the diameter is 4 and average path length is close

to 2, indicating that our graphs are small-world and the majority of nodes are just two hops

away. The path length distribution is shown in Figure 3.1(d). We see that all three graphs

share very similar path length characteristics.

3.4.2 Comparing CINs with popular complex networks

The comparison with other real-world networks is essential for understanding the

unique features of CINs. From our study, we observe that CINs are different from other

networks in the following: they have high edge density and clustering coefficient, and close

to zero assortativity. To facilitate our comparison study, we collect five networks that

capture some form of social interactions and five networks that do not represent social

relationships. We then calculate our metrics of interest and compare them with the three

CINs. We summarize our set of scalar metrics for all graphs in Table 3.1. All the graphs

we use for comparison are publicly available and a detailed description is provided in their

corresponding citations (see Table 3.1). Next, we present our findings in more detail.

From the networks we used for comparison, those representing human relationships

(IDs 4-8 in Table 3.1) have lower edge density than our studied CINs. In addition, the three

CINs have close to zero assortativity (|r| < 0.1) and high clustering coefficient (C̄ > 0.35).

39



This is different from in networks with IDs 4-8, where either the C̄ is high or the |r| is low,

but never both at the same time. For example, the Actor network (ID6) has high C̄, but

its assortativity is positive; showing that high degree nodes tend to connect with other high

degree nodes and low degree nodes with others with low degree. Similarly, the Cyworld

network (ID7), has low assortativity (|r| = 0.13) but its clustering coefficient is also small

(C̄ = 0.16). Our results indicate when human relationship networks have high clustering,

they also have high absolute values in their assorativities.

Our three CINs are also different from the group of networks with IDs 9-13. All

these networks, with the notable exception of ID13 (Neural network), have lower edge

density than our CINs. The ID13 network is of the same scale as the three CINs and it also

has relatively high edge density. However, its |r| = 0.163 value is higher and its average

degree (k̄ = 14.5) is lower than three CINs.

The number of nodes and edges of a graph can affect other graph metrics. We see

this in Table 3.1, where the diameter and average path length of the three CINs, it is much

lower than all graphs with IDs 4-12. Intuitively, in a dense network with few nodes, is much

more likely to have a short diameter and short paths than in a large and sparse network,

such as the Web graph (ID10). It is therefore important to compare our graphs with other

networks of the same size (number of nodes and edges), which is what we discuss next.

3.4.3 Comparison with synthetic networks

Here we have two goals. First, we want to compare our CINs with graphs of the

same scale (e.g., same number of nodes). Second, we want to see which features of CINs
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are not likely to happen by chance. Such features can then be traced back to the driving

forces that lead to their formation. Details on our synthetic networks are given in §5.3. For

all our experiments, we have generated 10 random versions for each synthetic graph. Here

we include results from a single run, since all versions resulted in similar results.

We have generated synthetic random networks with characteristics from all three

CINs. We observed qualitatively similar observations using all three networks. For ease of

exposition of the findings we only include our results from the CALL network.

We use four synthetic networks for comparison. The NEP and DPP are based on

re-wiring of the CALL network, and the BA and R-MAT are produced by graph generators

(see §5.3 for details). For each synthetic network, their scalar metrics are listed in Table 3.1

and we plot their non-scalar metrics in Figure 3.2.

From Table 3.1, we see that our graphs are very different from the BA power-law

network. The BA network has few edges (only 372) and small clustering coefficient (0.03).

The difference with BA is highlighted in the degree distribution of Figure 3.2 (a). Moreover,

the difference with BA is clearly observed in all plots of Figure 3.2, where the values of BA

are always very far away from those of the rest of the graphs.

The R-MAT graph is closer to the targeted CINs compared to the other synthetic

networks. We see the similarity in all the scalar metrics in Table 3.1. From Figure 3.2, we

see that R-MAT follows the CALL graph very closely in all metrics except the clustering

coefficient. This shows that the high clustering coefficient observed in CINs is unique and

hard to be captured by the R-MAT generator. We see this also in Figure 3.2 (e) where

R-MAT is not able to generate the large maximal cliques observed in the CALL network.
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Figure 3.2: Comparing the CALL network with four synthetic graphs. The CALL CIN is
different from random graphs, especially in the clustering and the formation of large cliques.
From all the synthetic graphs, the power-law (BA) is the most different from our CALL
CIN.
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Table 3.2: Presentation of selected directed motifs of size three.

1

2

3

1

2

3

1

2

3

1 2

3

Motif ID 1 2 3 4

CALL 21.4% 17.2% 6.9% 3%

NEP 1.6% 0.1% 26.6% 0.004%

DPP 1.1% 0.06% 30.2% 0.001%

R-MAT 9.8% 1.5% 17.6% 0.09%

Our enterprise CINs are not random and they show properties that are

unlikely to occur by the random connection of nodes. In particular, the degree

distribution and clustering coefficient of the CALL CIN cannot be attributed to the high

edge density. We show this in our comparison with the NEP randomized graph version.

This synthetic network has exactly the same number of nodes and edge density as our CIN,

but as we see from Figure 3.2 (a) and (b) its degree distribution and clustering coefficient

are different.

We compare the CALL graph with a DPP random graph that has exactly the

same degree distribution. Even though we see from Figure 3.2(a) that the degree of DPP

and CALL are identical, the clustering coefficient shown in Figure 3.2(b) is very different.

Moreover, the randomized process of generating DPP fails to form the large cliques we see

in the CALL network, as we observe from Figure 3.2(e). On the other hand, the NEP

and DDP random networks have degree-to-degree correlations (e.g., assortativity) and path

lengths (Figure 3.2(d)) that are very similar to the CALL graph’s.
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Our findings indicate that the clustering coefficient of the CIN graphs is the main

property that distinguishes them from the synthetic graphs. To further highlight these

differences, we decompose these networks to their corresponding sub-graphs (a.k.a. mo-

tifs [20]) of size three. We summarize motifs we found particularly interesting in Table 3.2.

Motifs 1,2 and 4 occur with much higher frequency in the CALL graph, compared to the

synthetic graphs. In particular, the directed full-way clique-motif (4) appears two orders

of magnitude more often than in any of the synthetic networks. This reflects the nature

of CALL networks that edges represent human interactions, so interactions are usually bi-

directional. For example, the motif 3 shows two edges that are not bidirectional. This motif

happens very frequently by chance, but in CINs its frequency is considerably lower. The

findings hold in all three CINs.

3.5 Communication patterns in CALL and SMS

A unique advantage of our dataset from the communication provider is that we

have two different CINs, one using short messages and one using phone calls, for the same

group of employees. This enables us to study the behavior of individual employees when

they use those two communication modes. In this section we answer the following questions:

(a) Are the local graph features (e.g., the degree) of an employee in CALL similar to his

or her corresponding characteristics in SMS?, (b) Are the employees likely to use single-

mode or multi-mode communications? and (c) Are there any differences between ordinary

employees and managers?

To answer the first question, we use the scatter-plots in Figures 3.3 (a) and (b)
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Figure 3.3: In the scatter plots we compare the characteristics of each employee in the
communication provider’s enterprise using the CALL (x-axis) and SMS (y-axis) CINs. In
(a) and (b) we compare the degrees and clustering coefficients for the managers (crosses)
and ordinary employees (dots), for the CALL and SMS networks respectively. In (c) we
compare the number of phone calls made and short messages send by each employee over
the duration of our dataset.

where we compare the degree and clustering coefficient for each employee in the two graphs.

In both scatter-plots we see that some points are far away from the diagonal, showing

differences in how the two communication modes are used by some employees. On the

other hand, as a general trend, both plots indicate a loosely positive correlation, where if a

node has high node degree or clustering coefficient in one network, it will have high degree

of clustering coefficient in the other network. This supports our observation in the previous

section where the two CINs showed similar structural graph properties.

An interesting observation from Figure 3.3 (a) is that 40% of the points are above

and 60% below the diagonal. This shows that most employees have a larger local neigh-

borhood size in the CALL compared to the SMS graph. On the other hand, the clustering

coefficient scatter-plot (Figure 3.3 (b)) shows a different trend, where 85% of the points are

now above the diagonal. This shows that even though most employees have smaller degree
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in the SMS CIN their local neighborhood is on average better connected. This observation

is suggestive of a collaborative behavior where employees tend to use short messages to

communicate with their close collaborators forming well connected neighborhoods. In the

next section, we show results where the higher clustering coefficient of the SMS graph can

explain why the SMS CIN is better for inferring hierarchies compared to CALL.

For the second question, we find 2056 communication node pairs to be shared by

both CALL and SMS, while 1634 and 1468 communication node pairs exclusively belong

to CALL or SMS respectively. Our findings are graphically illustrated in Figure 3.4. From

the figure we see that the corresponding percentages are 41%, 31% and 28%, which are

very close to each other. In other words, if we randomly select a pair of communicating

employees, is equally likely to use only short message, only phone calls or both. Interestingly,

it is more popular in this enterprise for employees to use a singe-mode than a multi-mode

communication. This observation indicates that when we study interactions within an

enterprise adding more communication modes increases the number of observed links in the

interaction graphs.

For the third question, we plot total number of calls made by an employee against

his or her total number of short messages. We illustrate these results in the scatter-plot of

Figure 3.3 (c). We see that most points are below the diagonal, showing that employees

make more phone calls than text messages. It is very interesting to observe that managers

are closer to the diagonal line than ordinary employees. This indicates that managers use

both phone call and text to contact others in a relatively balanced way. In contrast, ordinary

employees are inclined to use phone call as their priority choice. These observations motivate
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28%
node pairs
only use text

41%
node pairs
use both
text and call

31%
node pairs
only use call

Figure 3.4: A Venn diagram comparing the number of communicating pair of nodes that use:
(a) only short messages, (b) only phone calls, and (c) both short messages and phone calls.
From the diagram we see than most of the communicating node pairs use a single-mode
communication and only 41% are observed to use multi-mode communications.

our next section where we utilize the information within CINs in order to infer the roles of

different employees.

3.6 Detecting Hierarchy Structure in Enterprise CINs

chapterIn this section, our goal is to use CINs to infer the position of employees in

the hierarchy of the enterprise. Moreover, we want to see if the choice of CIN (e.g., CALL

versus SMS) can affect the inference process.

3.6.1 HumanRank: Ranking employees in enterprises using CINs

Any ranking method works as follows. First, it assigns a score to each node

(employee) in the graph (enterprise). Then, it ranks all nodes by sorting them according

to their assigned scores. The node with the highest score gets rank=1 and the one with

the lowest gets |V |. In our case, our goal is to give a score to each node that describes its
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status in the enterprise.

Our ranking method is motivated by the following observation: The importance

of an individual can be inferred from the importance of the people he or she interacts with.

Intuitively, senior managers will interact more with other managers than ordinary managers.

A similar observation regarding the structure of the Web lead to Google’s PageRank [22].

In PageRank, if a web page is linked from other important web pages, it is regarded as a

more important page.

In this section, we introduce HumanRank: An iterative process of ranking in-

dividuals based on their position in the hierarchy. We have adapted PageRank to fit the

requirements of our problem. The PageRank algorithm treats edges differently based on

their direction and one of its simplied versions for calculating v’s PageRank is defined below:

PR(v) =
∑

w∈B(v)

PR(w)/D(w)

where B(v) contains all pages linking to page v and D(w) is the outdegree of w.

In our work, we treat a CIN as an undirected network. In the Web, if a small

website w has a hyperlink to a popular website (e.g., google.com), this does not say anything

about the importance of website w. However, if an individual contacts the CEO of a

company, there is a high chance that this individual is also important. We also apply

PageRank without our adaptation and observed lower accuracy in all our directed graphs.

In HumanRank the hierarchy score of a node is defined as follows:
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H(v) =
∑

w∈L(v)

H(w)

Where L(v) is the set of v’s neighbor nodes. The complete process is outlined in

Algorithm 1. In practice, the iteration process stops when the score of each node does not

change significantly from the previous step. In all our experiments, we used a 1% threshold,

which resulted in convergence after 10 to 20 iterations

Algorithm 1 HumanRank

Require: a network G

for each v ∈ V (G) do

H(v)← 1

end for

while H(v) changes do

for each v ∈ V (G) do

NH(v)←
∑

w∈L(v)H(w), where w is one of v’s neighbor nodes

end for

NH ←
∑

v∈V (G)NH(v)/|V (G)|

for each v ∈ V (G) do

H(v)← NH(v)/NH

end for

end while

return H(v), v ∈ V (G)

Exploring other ranking methods. We are interested in the following ques-
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tion: Why not use a simple graph metric for ranking, such as the degree or the clustering

coefficient of a node? As we see from Figure 3.3 (a), the degree of a manager is not abso-

lutely higher than an ordinary employee, especially in the CALL network where the average

degree of ordinary managers (43.9) is higher than that of senior managers (38.4). The clus-

tering coefficient also shows its limitations. These observations highlight the difficulty of

the problem at hand and suggest that trivial solutions are unlikely to lead to good results.

We revisit the comparison with other methods in §3.6.3.

3.6.2 Hierarchy detection using HumanRank

Given the ranking results from HumanRank, we want to form two groups. Intu-

itively, nodes with low HumanRank scores are more likely to be ordinary employees, whereas

those with high scores are more likely to be managers. In addition, we want our classifier

to be unsupervised. That is, we do not want to depend on training data, which are often

hard to obtain in practice. We compare our approach with supervised machine learning

classifiers in §3.6.3.

The steps of our classification algorithm are outlined in Figure 3.5. First, we

calculate HumanRank on the input CIN. Next, we use K-means to group nodes into two

disjoint groups based on their HumanRank score. The last step is to label each cluster as

ordinary employees or managers. We use the average ranking score of each group to achieve

this. All the nodes in the cluster with the high score are labeled as managers. Similarly, all

the nodes in the other cluster are labeled as ordinary employees.
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HumanRank
K-mens
(k=2)

Group
Score?

High

Low

Manager
  Group

 Ordinary
Employee
   Group

V1, V2
G(V,E)

H(u)
u  V 

Ranking of nodes Grouping of nodes

Figure 3.5: The two step process for labeling nodes as ordinary employees or managers. All
the nodes are firstly ranked according to HumanRank and then are assigned in two groups
using k-means (k=2).

3.6.3 Experimental Evaluation

In our dataset, we have the job description of every employee, therefore we use

this information as ground truth to evaluate our algorithms. The classification accuracy

is defined as the number of correctly classified employees divided by the total number of

employees with ground truth. F-score is a measure of a test’s accuracy and considers both

precision and recall.

Ranking results

For evaluating the ranking results, and comparing it with other methods, we use

the following test. We rank nodes using their score by a given method, e.g., HumanRank.

We then measure how many managers are located in the top k ranked nodes and measure

this for different k’s in the range 1...|V |. We compare our results with the state-of-the-art in

hierarchy detection, which uses graph entropy [1]. In addition, we compared with ranking

based on the node degree and PageRank. We also used ranking on clustering coefficient
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Figure 3.6: Ranking results: The plots show the number of managers identified in the top
k nodes, as ranked by our HumanRank and three other ranking methods. We also compare
our results with an optimal ranker where all managers have higher score than ordinary
employees. PageRank is not applied on SMS because SMS is undirected.

that did not give good results and we omit it from the remaining of the chapter.

The comparison results are illustrated in Figure 3.6. We also report the results of

an Optimal ranking method, which always gives better ranking to managers than ordinary

employees. As we see from the figure, the HumanRank gives results that are closer to

the optimal ranker than others. In particular, we are doing significantly better than the

state-of-the-art method, which uses entropy [1]. In Figure 3.6, we magnify the ranges up

to rank 20 for better comparison. In the top 10 ranks for all three CINs, our approach

gives eight, nine, and ten managers, which corresponds to 90% of the time on average.

This is in contrast to 70%, 65%, and 67% for the degree, PageRank, and entropy rankings,

respectively.

It is also interesting to observe that the ranking results are better when we use

the SMS network compared to the CALL network, even though they capture interactions
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from the same enterprise. This suggest that the “informal” exchange of SMS can reveal the

hierarchical structure of an enterprise better than the more “formal” exchange of phone-call.

In the EMAIL network, the ranking appears more challenging for all methods. However,

even with this data set, our algorithm gives better results over a long range of ks. We

hypothesize that the lower accuracy in the Enron dataset is due to the removal of some email

exchanges after personal requests by the participating individuals [32]. Since retrieving the

lost emails is hard, establishing causality can be difficult.

Hierarchy detection

We group the competing methods into supervised and unsupervised solutions.

Supervised solutions combine graph features for different nodes. We try different machine

learning methods: logistic regression, SVM, Random forest, and Bayesian Networks. The

features we used for classification are: degree, clustering coefficient, betweenness, average
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Figure 3.7: Accuracy and Manager’s F-score in hierarchy detection using HumanRank and
K-means (k=2). We also show measure results of two supervised learning methods, and
one unsupervised method using the ranking from [1] and K-means (k=2).
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degree of its neighbors, and the average distance to all other nodes in the graph. We then

use 10-fold cross validation to generate the results in the chapter. That is, we used 90% of

the data for training and 10% for testing. We repeat this several times until all the instances

are included in the testing and training at least once. For the unsupervised methods, we

repeat the same process as in our classifier, but we rank nodes using the method in [1].

We applied our classification results on all three CINs. In Figure 3.7 (a) and (b), we

show the accuracy of our approach compared to different methods. As we see, our method

gives consistently good results. Even though in some data sets another method can be

better, we found the performance of these approaches to vary significantly across different

networks. Especially, HumanRank outperforms other methods in each CIN in terms of

manager identification, which is an important advantage of HumanRank, because inferring

key members in an organization is more meaningful than inferring ordinary members.

3.7 Summary and Conclusions

With our work we aim to give an in-depth study of the communication patterns

formed by employees interacting in two modern enterprise organizations. We call these

graphs Communication Interaction Networks, or CINs. Towards this end, we use data

from two different organizations; the Enron email dataset, and data from the exchange

of short messages and phone-call from a communication provider. Our data are unique

in two ways: (a) we are the first to study CINs using two different organizations, and

(b) chapterwe are the first to study two CINs by the same employees and two different

communication modes. The key observations from our study are: (a) three CINs share
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common features despite of their diverse background; (b) employees that play different

roles have distinct communication behavior; (c) CINs carry valuable information about the

hierarchical structure of an enterprise, and our HumanRank method can correctly identify

the job titles for above 70% of their employees.

We hope that our observations and proposed algorithms can find their way to

other applications that use interaction networks. For example, it will be very interesting to

see if we can identify leaders in criminal or terrorist organizations using only the observed

interactions.
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Chapter 4

Inference of the demographic

properties of users

4.1 Introduction

Homophily, the social phenomenon that individuals tend to bond with similar

others, has been discovered in social networks [33]. Past work on homophily is mostly

based on surveys, known communities, and more recently online social networks (OSNs) [34].

There has been recent work on OSNs that attempts to infer users’ demographic attributes

using information from their peer groups [35, 36, 37]. The increasing penetration and usage

of cell phones and the availability of their call logs bring another opportunity to study and

potentially exploit homophily.

The goal of this chapter is to see whether homophily exists in call networks and if

so, to what degree we can infer a cellphochapterne user’s demographic properties by knowing
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the demographic information of people (s)he talks to. Specifically, we attempt to address a

series of questions: 1) Does homophily exist in call networks? 2) What features (related to

communication, graph structure, etc.) indicate stronger homophily between two cellphone

users? 3) How to exploit homophily so that we can infer the demographic properties of

certain subscribers using demographic properties of their social(call) friends? We focus on

three types of demographic information: a) home location, b) age group, and c) income

level.

Our works is largely motivated and similar to recent studies on Online Social

Networks (OSNs) that exploit information from online friends to infer users’ demographic

profiles. Backstrom et al. predict the locations of Facebook users using locations of their

friends [36]. Facebook users’ ages are estimated by Dey et al. in [35]. Both age and country

of residence are inferred by MacKinnon and Warren in [37]. It is worth mentioning that our

work is not a duplication of these studies. Little is known about whether or not homophily

exists in call social networks, or call networks; and if it exists, how to exploit homophily

given the communication features and graph-structural features of the call networks.

Call Detail Records (CDRs) have attracted attention from both academia and in-

dustry in studying people’s social, mobility, and communication behaviors and there has

been some recent work on inferring location and/or age/income information of subscribers

using CDRs. Some work studies mobility patterns to infer the important places of cellphone

users including home and work places [38, 39, 40]. Some other studies attempt to link com-

munication behaviors with demographic profiles and then utilize communication behavior

to infer demographics. Mehrotra et al. reveal differences between men and women in phone
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usage [41]. Frias-Martinez et al. predict genders using communication and structural fea-

tures in [42] and infer socioeconomic levels in [43] for subscribers in a Latin American

country. Blumenstock et al. have done a series of studies using CDRs from Rwanda on the

relationship between phone usage and gender and socioeconomic status [44] and propose a

method to estimate wealth based on phone usage [45]. Most of these studies lack ground

truth information and have to either estimate it with another method (surveys for example,

was conducted to estimate wealth levels), or using aggregated statistics (such as census).

Our work differs from these studies in that we use homophily to predict demographics in-

stead of communication features directly, and we conduct individual instead of aggregated

inference.

We conduct an extensive study on a nationwide cellular network with over twenty

million subscribers observed over one month. We construct three call graphs according to

different time slices: the weekday graph, the night-and-weekend graph and the complete

graph.Our contribution can be summarized as follows:

• We observe the existence of homophily in terms of home location, age group and

income level on call networks. For example, 80% of a subscriber’s (call) friends reside

within 100 km from him/her. About 60% of wealthy subscribers’ friends are also

wealthy. However, we notice that around 20% users do not have a friend with the

same age group or income level.

• We discover that people interact with friends sharing different demographic attributes

at different times. For example, age homophily has a stronger appearance on the

weekday graph than on the night-and-weekend graph or on the complete graph.
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• We develop effective algorithms to infer home location, age group, and income level.

Home locations can be predicted within 20 km radius with 80% probability and we

achieve accuracies of 78% and 72% for age and incoming prediction, respectively.

The work is a first step towards understanding how much information can be

extracted from a communication network. This could be useful in anti-terrorism and police

work, to more benign target-marketing efforts. Due to space limitation, we will elaborate

and showcase such applications in future work.

The rest of the chapter is organized as follows. We describe our dataset in Section

5.3. In section 5.4, we present evidence of the existence of homophily on call graphs and

introduce its correlations with communication and graph structure properties. In section

4.4, we develop algorithms to infer demographics and measure the accuracy of our proposed

algorithms. We conclude in section 5.6.

4.2 Problem definition and data introduction

We use anonymized Call Data Records (CDRs) from a cellular service provider

collected during a month in 2010. The dataset consists of over 27 billion call records and

93 million callers out of which 25 million are the provider’s subscribers. A record in that

dataset consists of two anonymized phone numbers, call direction, start time, end time and

the location of the base station that carried the call. For a set of anonymized subscriber

numbers (as opposed to the whole set of 25 million for certain reasons), we have associated

age group and income level for the subscriber. Home location of the subscriber is inferred

from the CDRs as location of the base station that carried the most night-time calls of the
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subscriber.

Graph formation. We use CDRs to construct a call graph where its nodes

are callers and edges represent bi-directional communication between pairs, meaning both

users must call each other. We only consider bi-directional communication, because this

reciprocity has been shown to be a good indication of a strong relationship [46].

We have two types of users: the operator’s callers, which we refer to as sub-

scribers, and callers of other networks. The term user or node describes all users irre-

spective of their mobile carrier. Note that for non-subscribers we do not have information

of their demographics, thus we cannot evaluate the accuracy of our inference. Therefore,

we only study node properties of subscribers and edge features of subscriber-subscriber

pairs. The degree of a subscriber is the total number of communicating friends, including

subscribers and other users. By contrast, the term subscriber-neighborhood or simply

Table 4.1: Basic statistics of data sets

weekday night-weekend complete

Num. of nodes 93 million 89 million 93 million

Num. of edges 146 million 140 million 213 million

Num. of subscribers 25 million 25 million 25 million

Ave. Num. of calls 10.9 10.8 14.6

Ave. Average call duration 258 secs 296 secs 275 secs

Ave. Num. of Common nodes 0.65 0.81 1.11

Ave. degree difference 43 31 40
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neighborhood of a subscriber refers only to other subscribers among all communicating

pairs.

Time slices. We use three types of graphs based on the time of data collection,

which we refer to as time slice: (a) weekdays, (b) night-weekend, and (c) all interactions.

The reason for using time slices is that earlier work has shown that human interactions

vary along these different time slices [47]. The weekday slice includes activity between 9:00

a.m. to 6:00 p.m. on weekdays. The night-weekend slice includes records from 9:00 p.m. to

8:00 a.m. on weekdays and all hours on weekends. Based on these time slices, we construct

and use three call graphs: a weekday graph, a night-weekend graph, and the the

complete graph which includes all recorder communication interactions.

Demographic properties of a subscriber. We select the following demo-

graphic properties: age group, income level and home location. We have four age groups:

18-30, 31-45, 46-65 and 66+, which consist of 14.94% , 40.31% , 33.62% and 11.12% of the

subscriber population respectively (with known information). We have five income levels:

wealthy, affluent, middle, low middle and low, which represent 12.09% , 34.94%, 13.41%,

19.48% and 20.61% of the subscribers respectively. The home location of a subscriber is

unknown, but we estimate it using the location of the base station where his/her calls are

transmitted most frequently on weekday nights (from 9:00 p.m. to 8:00 a.m.), which is a

(longitude, latitude) pair denoted as h. Note that this heuristic for finding home location

has been shown to work quite well for call networks [38].

Features of an edge. We enrich the concept of a subscriber-subscriber edge

using four features: the number of calls, average call duration, degree difference and the
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number of common friends. Degree difference means the absolute difference between the

degrees of the two subscribers. Number of common friends means the number of callers

that two subscribers both connect with. The averages of those features over all edges are

shown below.

Defining the fi communication features. If we consider the time slice, we

have time-slice-specific versions of the above features. For example, when they are applied

on the weekday and night-weekend graphs, we have: number of weekday calls (f1), number

of night-weekend calls (f2), average weekday call duration (f3), average night-weekend call

duration (f4), weekday degree difference (f5), night-weekend degree difference (f6), number

of weekday common friends (f7) and number of night-weekend common friends (f8).

There are a large number of other features, such as the percentage of common

friends, which we intend to evaluate in future work.

4.3 Observations

We are interested in two inter-related questions: (1) Does a call graph exhibit

homophily with respect to home location, age group and income level? (2) Which pair-wise

communication features are correlated with homophily?

4.3.1 Quantifying graph homophily

Home location homophily. We quantify the effect of home distance on the

formation of an edge in the call graph. We expect to see that people residing closer have a

higher chance of calling each other. We define and measure two probabilities. First, p1(d) is
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Figure 4.1: The probabilities p1(d) (LEFT) and p2(d) (MIDDLE) as a function of d and
Cumulative Distribution Function (CDF) of p2(d) (RIGHT).
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Figure 4.2: People talk to people of same age group and income level with more than
50% probability: Probability of communication among (LEFT) age groups, and (RIGHT)
income levels. The x-axis presents a and y-axis presents b.

the probability that two subscribers residing at a home distance d are connected by an edge,

that is, p1(d) = p(Edge(ui, uj)||hi−hj | = d). Second, given two connected subscribers, p2(d)

is the probability that their home distance is d, that is, p2(d) = p(|hi−hj | = d|Edge(ui, uj)).

ui and uj are any two subscribers on a call graph and hi and hj are their home locations.

We plot the p1 and p2 probabilities on the complete graph in Fig. 4.1. We approx-

imate the tail of the distribution with a power-law distribution y = axb for both curves.
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Their exponents are about b = −0.3 and b = −1.27 respectively, suggesting that the forma-

tion of an edge has inverse correlation with home distance. The corresponding probability

to p1 on a Facebook friendship graph has been reported to follow a power law with the

exponent b = −1[36]. Using the cumulative distribution function (CDF) of the p2(d), for

a subscriber, we find that 80% of his/her neighbors reside less than 100km from him/her.

The curves from the weekday and night-weekend graphs have similar patterns.

Age homophily. We investigate whether subscribers have high chance of talking

to those of the same age. We start with the conditional probability that a subscriber ui of age

a calls the other uj of age b on the complete graph, that is, p(AGE(uj) = b|AGE(ui) = a),

which is briefly denoted as p(b|a).

We calculate the probabilities of all the combinations for age groups a and b in

Fig. 4.2. We find that subscribers have more than 50% chance of calling others

of the same age among the four age groups. This finding is an indication of strong

homophily regarding age groups. The weekday and night-weekend graphs exhibit present

strong homophily and their associated probabilities are very close to those from the complete

graph. Interestingly, the weekday graph exhibits slightly stronger homophily, which could

be explained that working relationships could favor same-age communication.

Income Homophily: income levels communicate within the same level.

With similar analysis as above, we find again a more than 50% probability for people to

talk to people of the same income level as shown in Fig. 4.2.

Understanding neighbor dynamics. The existence of homophily provides

promise for the possibility of inferring subscriber properties. Here, we take a step closer
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and we analyze the neighborhood of each subscriber. The intuitive thought is that: one’s

age should be the same as the majority (> 50%) of its neighbors. We find that this is

true but not for all subscriber neighborhoods. In Fig. 4.3(LEFT), we see that only 60%

of subscribers (y-axis) have a neighborhood where the fraction of the same age neighbors

is higher than 50% (x-axis). To investigate further, we plot the percentage of subscribers

who have k neighbors with similar properties as a function of k in Fig. 4.3 (RIGHT) as a

CCDF. Roughly 80% of the subscribers have at least one neighbor (greater than k=0 on

x-axis) of the same age and income.

This suggest an alternative approach for our inference compared to a “majority

vote”: is there a way to identify the neighbor that is most similar to the subscriber in

question among all neighbors? To answer this, we would have to look at other communi-

cation features between the communicating neighbors that can indicate this “most similar

neighbor”. Thus, we continue further to study the pair-wise homophily and its correlation

with communication features which we defined in section 5.3.

4.3.2 Communication features as indicators of homophily

Our goal here is to find communication features between a pair of subscribers that

would suggest a higher similarity of demographic properties. For example, if I talk to you

for half an hour per call at night, does this imply we live closer or further? If we have 5

common friends, are we more likely to be in same age group or income level? To identify

such correlations, we use linear regression to identify significant features for demographic

homophily over all possible pairs on the complete graph. We establish a linear regression
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Figure 4.3: Complementary cumulative distribution functions (CCDF) of (LEFT) the per-
centage, and (RIGHT) the absolute number of neighbors of the same age/income.

model δ(ui, uj) =
∑8

x=1 βxfx(ui, uj), where δ(ui, uj) is the distance of two homes|hi − hj |

for home homophily. Recall that fx are the features that we defined in section 5.3. For

age/income, δ(ui, uj) is 1 if their age/income is same, otherwise, it is 0.

Home location homophily. With the regression, both average weekday and

weekend-night call durations f3 and f4 and the number of weekday and night-weekend

common friends f7 and f8 are proved to be more important than others. The four show

statistical significance with p-value < 0.05 under t-test.

The regression coefficients reveal interesting relationships between calling features

and home distance of a communicating pair. First, the regression coefficients of average

weekday and night-weekend call durations β3 and β4 are 0.075 and 0.069 in the linear

model. This suggests that the average call duration is positively correlated with home

distance. Second, the coefficient of number of weekday β7 = -10.018 and night-weekend

common friends β8 = -30.933 show that the number of common friends in weekday and
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night-weekend time-slices is negative correlated with home distance. The average distance

between the homes of a pair with 5 or more common friends is 50km, while the distance for

a pair with 15 or more common friends decreases to 10km.

Age homophily. Regarding age, all the eight features show statistical significance

with p-value < 0.05 except the number of night-weekend calls f2 and number of night-

weekend common friends f8.

The regression coefficients reveal interesting relationships between calling features

and age group. First, the coefficient associated with number of weekday calls β1 is 0.0245,

which suggests that people make more weekday calls to those of the same age group. If two

subscribers have more than 20 weekday calls, the probability is as high as 80%. Second, the

coefficients associated with weekday and night-weekend call duration β3 and β4 are around

-0.00025, indicating people on average make shorter-duration calls to those of the same age

group. For example, calls with average call duration less than 10 minutes on weekends

have 50% chance of happening between two subscribers in the same age group. Finally,

the coefficient associated with the number of weekday common friends β7 is 0.30, indicating

that two subscribers with more weekday common friends show higher probability of being in

the same age group. When two subscribers have more than one weekday or night-weekend

common friends, the probability of having the same age is as high as 75%.

Income homophily. We find that all the features show statistical significance

with p-value < 0.05 except the number of night-weekend calls f2. The correlations between

features and income level are similar to those between the same features for age homophily,

and in fact the regression coefficients have similar values. Because of that, and due to space
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limitations, we do not re-state them.

4.4 Inference of home location, age and income

We attempt to infer demographic properties using three different algorithms, Max-

imum Likelihood (ML), majority vote (MAJ), and RANK, which attempts to find the most

similar neighbor. Specifically, RANK orders the neighbors according to ”strength of sim-

ilarity” and labels the subscriber in question with the most likely to be similar neighbor.

The algorithms are further explained below. We also consider all three graphs, weekday,

night-weeked and complete. For ease of discussion, we number each inference attempt with

an ID using a different different graph and infer: (a) location in attempts 1 to 6, (b) age

group in 7 to 12, and (c) income level in attempts 13 to 18 in Table 4.2.

We randomly select 1 million subscribers for experiments. For algorithms ML and

MAJ, we use all the data for testing. For algorithm RANK, we use 5-fold cross-validation.

Each round uses 80% for training and 20% for testing.

Inferring home location. The question here is to assess how accurately we can

predict the location of a subscriber’s home based on the home locations of his/her neighbors.

We select two algorithms to test the accuracy of home location prediction: 1) maximum

likelihood (ML)[36] , and 2) our RANK approach.

Given the home locations of the neighbors NS, ML calculates the probability of

each home h′ by PX(h′) =
∏

uk∈NS p1(|h′ − hk|)
∏

uk 6∈NS (1− p1(|h′ − hk|)), where p1 is

shown in Fig. 4.1 and picks the one with the largest PX as the answer.

RANK uses linear regression as explained in section 5.4 with carefully selected
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Table 4.2: The results of inferring demographic properties

ID call graph G Algorithm accuracy ID call graph G Algorithm accuracy

1 weekday ML 5.1km 4 weekday RANK 5.2 km

2 night-weekend ML 5.1km 5 night-weekend RANK 5.1 km

3 complete ML 4.0km 6 complete RANK 4.0 km

7 weekday MAJ 78% 10 weekday RANK 77%

8 night-weekend MAJ 65% 11 night-weekend RANK 64%

9 complete MAJ 72% 12 complete RANK 71%

13 weekday MAJ 72% 16 weekday RANK 71%

14 night-weekend MAJ 58% 17 night-weekend RANK 57%

15 complete MAJ 67% 18 complete RANK 66%

features. It uses the features of each target-neighbor pair to estimate the distance between

target’s and neighbor’s homes, selects the nearest neighbor and returns its home location

as the answer. We use f3 and f7 for the weekday graph, f4 and f8 for the night-weekend

graph and all for the complete graph. The reported accuracy of prediction is defined to be

the median from distances between the inferred home location l and the actual one h over

all subscribers.

Using ML, we find that the complete graph is better at home inference than the

weekday and night-weekend graphs. The accuracy of experiment 1 and 2 is 5.0 km and

the accuracy of experiment 3 is 4.3 km. To highlight the difference, we also calculate the

distribution of the distances |l − h| and find that 80% of distances are less than 20km
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on the complete graph, but 75% on the weekday graph. Using RANK, we find that its

accuracy is similar to that of ML on the complete graph. However, a key advantage is that

RANK only needs the home location of the most likely neighbor. This argues that the two

algorithms can be equally useful under different scenarios. If we have the call records (ie.

communication features), and few of home locations, RANK may be useful, because it use

the information of the best neighbor, when known. But, if we only have the graph but

without accurate communication features (such as intensity of communication), and many

of home locations, ML might be a better choice.

Inferring age group: accuracy as high as 78%. We use two algorithms MAJ

and RANK to predict the age group. MAJ identifies the most dominant property among the

neighbors of the subscriber, and uses that property to label the subscriber in question. The

algorithm RANK uses the features of each target-neighbor pair to estimate the likelihood of

their similarity, selects the most likely similar neighbor and returns its label as the answer,

and we use f1, f3, f5 and f7 on weekday graph, f4 and f6 on the night-weekend graph and

all of them on the complete graph. The accuracy is defined as the ratio of the number of

subscribers with correctly inferred age over the total number.

We find that the accuracy of RANK is comparable to that of MAJ, within 1%

difference. Using MAJ, we find that the weekday graph gives better results than the night-

weekend graph: comparing 78% (ID= 7) with 65% (ID=8) in Table 4.2. We also attempt

to understand the source of misclassification. For this, we study the confusion matrix for

inference on the complete graph (ID=9) in Table 4.3. We find that 31-45 is the age group

that is most likely misclassified.
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Table 4.3: Confusion matrix of inferences IDs = 9 and 15. ACT=Actual, PRE=Predicted

H
HHH

HHH
HHH

ACT

PRE
18-30 31-45 46-65 66+ wealthy affluent middle low mid low

18 - 30 72K 37K 25K 5K wealthy 89K 29K 5K 7K 6K

31 - 45 15K 325K 38K 9K affluent 10K 325K 11K 18K 17K

46 - 65 12K 69K 274K 8K middle 3K 35K 67K 13K 13K

66+ 4K 23K 17K 62K low mid 4K 46K 7K 110K 21K

low 3K 38K 6K 13K 93K

Going a step further, we analyze whether subscribers with different subscriber-

degree are handled differently by the two algorithms. Using the complete graph, we find that

RANK outperforms MAJ on low-degree subscribers (d<7) but falls behind on high-degree

subscribers (d>7). This comparison shows that two methods can be used synergistically:

We can utilize RANK for subscribers with low degree, and we can employ MAJ for higher

degree nodes.

Inferring income level. We find several similarities between income and age

inference. The weekday graph is again better at income inference than the other two.

RANK is more suitable for low-degree subscribers (< 10) and the MAJ algorithm is suitable

for high-degree ones (> 10). We use all the features except f2.

We are also interested in whether the use of a phone can indicate your age group

or income level. We use the dataset where uses of phones of a subscriber are recorded,

which will be introduced in the next chapter, to extract features to infer the two kinds of

demographics. The result is that it is hard to rely on the current and used phones to infer
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your age group or income level. The accuracy is around 50%.

Moreover, we also study the usefulness of features of communications extracted

from CDRs for predicting age group and income level. They are total call frequency of a

subscriber, his/her average talking duration, total number of short messages (s)he sends

and his/her total bytes of consumed data. The accuracy is still around 50%.

4.5 Conclusions

In this chapter, we check the existence of demographic homophily on a call graph:

home location, age group and income level and explore how to utilize the homophily to

infer those demographics. First, we create three kinds of call graphs according to different

time slices: the weekday, night-weekend and complete graphs. Second, we find all three call

graphs present demographic homophily. Third, we quantify the effect of pairwise commu-

nication and topology properties on the homophily. Finally, we measure the accuracy of

demographics prediction on three call graphs by using homophily and correlated features.
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Chapter 5

Patterns of Phone Switching and

Inference

5.1 Introduction

In recent years, the rapid development of the mobile application market and mobile

commerce has driven smartphone adoption. Estimates state that there are now more than

1.5 billion smartphones in the world and that 81% of U.S. mobile subscribers have 3G/4G

subscriptions. Another study shows that the average life of a smartphone is 18 months.

People change phones so frequently that it it critical for telecom operators to study the

evolution of smartphones and to keep the pace with the era.

Predicting phone preference is an important topic in the study of the evolution of

phone popularity. Previous efforts have studied the correlation between phone functionality

and personal preference[48][49]. However, these early efforts have two limitations. First,
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they focus on the evolution of cellphones as smartphones have been replacing cellphones.

Thus, observations provided by those previous works are out-of-date; (2) they depend on

surveys to ask people about their preferences over limited choices but are unable to know

actual phones to which they switch .

In this chapter, our goal is to predict future phone preferences accurately. We are

interested in the following problem given the properties of subscribers, such as demographics

and previous phone choice, how can we infer preferences for their next phones? The input of

the problem is a group of k subscribers with intents of switching phones and their properties,

the output is the numbers of different types of phones for these subscribers. In order to

address this problem, we decompose the problem into two sub-questions: 1) what are the

trends in switching phones, and are they correlated to user properties? 2) Based on these

trends, how can we estimate the demand for new smartphones?

Our work is largely motivated by the need for telecom operators to anticipate

phone demands. Currently, it is difficult to predict what phone a subscriber may use next

and to determine on what to base that prediction. Inaccurately predicting demand for

phones leads to financial loss, especially when ordering expensive smartphones, which cost

more than ordinary cellphones.

We conduct an extensive study on a nationwide cellular network dataset with

3 millions subscribers. For each subscriber, we know his/her age groups, income levels,

previously used phones and the phone preference of his/her friends (1) who are on the same

bill plan and (2) whom they frequently communicate with. In contrast to previous work,

we know the actual phones those subscribers switch to, which is more accurate than relying
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on survey data. Our contributions can be summarized as follows:

(1) Demographics and information about the previous phone is strongly correlated

with the next phone preference. For example, 90% of subscribers who are both rich and

young prefer to use smartphones while 65% of subscribers who are both poor and old like

to use them.

(2) Social influence affects phone switching for subscribers on the business plan.

For example, 75% of them use the same phone as others on the same plan while the corre-

sponding fraction on non-business plans is only 50%. This shows that the phone preference

is more predictable for business persons.

(3) Given the properties of a group of subscribers, we build classifiers using

Bayesian Network to infer their choices. Compared with previous methods, our approach

reduces the prediction errors by 1/3 and the related costs by half.

The rest of the chapter is organized as follows. We describe our dataset in Section

5.3. In Section 5.4, we present correlations between the phone preference and demographic

properties, previous phone choice and the effect of influences from friends respectively. In

Section 5.5, we develop algorithms to predict demand for phones and measure the accuracy

of our proposed algorithms. We conclude in Section 5.6.

5.2 Related Work

Predicting the purchase intent of a phone has attracted much attention in the fields

of social, management and computer science. People found functionality and mobile appli-

cation are important features influencing the purchase of a cellphone[48]. Safiek Mokhlis et
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al. [49] found that innovative features, such as built-in camera, significantly affect personal

choice in the smartphone. Yuri Park et al. [50] showed the strong correlation between

phone adoption and mobile applications in Korea. Matti Haverila [51] revealed business

functionality has a significant correlation with repurchase intent. All the literatures con-

sidered more functional features than ours, such as input style, touch-screen and keyboard.

These data is not available in our dataset. Our work considers more on the properties of

subscriber. Moreover, we have features, for example, the use of the previous phone, from

the phone-switching history of subscribers to study correlation between uses of previous

and current phones.

Feature selection plays a key role to the accuracy of the prediction. Previous

efforts listed below inspire us to use demographics and social network-related features.

Okazaki et al. [52] revealed the effects of demographic characteristics, including the age,

gender, marital status, and occupation, on the adoption of mobile contents. June Lu [53]

found that the social influences are potential but not direct determinants of the adoption

of wireless Internet service.

The work of inferring the purchase intent of a phone is on the beginning stage

and few works is known on the prediction of purchase of a smartphone. Erin Strauts [54]

made the prediction of cell phone and landline from a social survey. Derek Strauts [55]

mined purchase history to predict adoption of mobile computing, which is most similar to

our work in terms of dataset. In two works, logistic regression was used as the prediction

model. However, Sergiu Nedevschi [56] also proposed to use Bayesian Network as the

model. In this chapter, we use the two models for the demand prediction and compare their
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performance.

5.3 Datasets and features

We show the overview of our dataset, define features from the dataset and discuss

its possible limitation to the result of this chapter.

5.3.1 Dataset introduction

Dataset of phone-switching history Our dataset consists of over 3 million

subscribers who switch phones from Januray to June 2012. We know demographic properties

of subscribers from the third party, including age group, income level and the life of his/her

used phone and what phone they are using. Of those subscribers, 90% have only one used

phone and 10% have more than one used phone. For simplicity, we only study one used

phone, so for the 10% we only consider their latest used phones as the used phone. Table

5.1 shows a concrete example where the subscriber 49 is young, his income level is Middle

and he used Samsung Galaxy III from 07/01/2011 to 01/31/2012 and switched to iPhone

4s on 02/01/2012.

There are more than 200 types of phones in the dataset. We cluster these phones

in the level of operating system (OS) into six groups: iOS, Android, Blackberry, Palm,

Windows and Cellphone. The cellphone group mainly includes non-smartphones installed

with operating systems except the previous five. Note that in the rest of the chapter, when

we mention the term “phone”, we do not mean a particular phone but the name of a group

of phones. In Table 5.1, Phone 1 is an Android phone because Samsung Galaxy III is
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installed with Android OS and Phone 2 is an iOS phone.

Dataset of CDRs and bill plan. First, we collect Call Data Records (CDRs)

generated by the 3 million subscribers in 03/2012, which is named as CDR-Mar. This

dataset contains all their communication records. In a record there are a caller, a callee,

the direction of calling, etc. Using these records, we construct a call graph where nodes

are subscribers and edges represent two subscribers calling each other at least once. In the

chapter, a call friend means a 1-degree neighbor on the call graph. Second, we also get

the information of bill plans of the 3 million subscribers in 06/2012, which is named as

BILL-Jun. This dataset contains the bill plan to which a subscriber belongs so we know

that “who is on the same bill plan with whom”. Here, a plan friend means a subscriber

who is on the same bill plan.

Table 5.1: An example of the phone-switching history of a subscriber

Field Value Field Value

ID 49 Age group Young

Income level Middle

Phone 1 Samsung Galaxy III OS 1 Android

Start day 07/01/2011 End day 01/31/2012

Phone 2 iPhone 4s OS 2 iOS

Start day 02/01/2012 End day none
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5.3.2 Definition of features

The goal of this chapter is to infer the phone preference of a subscriber. Here, we

consider the following features that may be useful for the inference.

Demographic properties. For a subscriber, we have two types of demographic

properties: age group and income level. We have four age groups: young, middle, middle

old and old aged 18-30, 31-45, 46-65 and >66, respectively. Their fractions are 17.8%,

43.8%, 29.5% and 8.6% of the whole population. We also have three income levels: low,

middle and high. Their percentages are 33.1%, 33.3% and 33.6%, respectively.

Previous phone preference. There are two related features: the used phone

denoted as PHprev, and the length of its life denoted as Len. The fractions of six types of

PHprev are Android: 42.5%, Cell: 39.7%, Blackberry: 14.8%, iOS: 2.1%, Palm 0.4% and

Windows 0.4%. Len is the number of months from the start day to the end day for the use

of PHprev. Its Probability Density Distribution (PDF) is shown in Figure 5.2. In the Table

5.1, PHprev is “Android” and its Len is 7 months. With these two features, we can study

the correlations between previous and current phones.

Features of social networks. We are also interested in the social influence

from friends on the phone preference. There are two kinds of friends: call friends and plan

friends. With the definitions of plan friends, we can define a plan neighborhood which is

a set containing all the plan friends. A plan phone PHplan is the phone that is used most

by those friends just before the switching date. For example, the subscriber 49 switches

phone on 02/01/2012 and his PHplan is the most popular phone used by his plan friend on

01/31/2012. We use the similar way to define a call neighborhood based on call friends and
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define PHcall based on a call neighborhood.

In terms of the number of subscribers on a plan, we can divide plans into two

categories: business plans containing more than 8 subscirbers and non-business plans having

equal or less than 8 subscribers. Subscribers in the business and non-business plans are

called business subscribers and non-business subscribers, respectively. As we see in

the Section 5.4, the business subscribers have different switching patterns from non-business

ones.

Features of communications. We also study the usefulness of features of com-

munications extracted from CDR-Mar for predicting the next phone. They are total call

frequency of a subscriber, his/her average talking duration, total number of short messages

(s)he sends and his/her total bytes of consumed data. However, they are not as significant

as those listed above under the statistical testing so we won’t discuss them further in the

rest of the chapter.

Limitation. The datset provider began to release iPhones from October 2011,

so it is too late for us to collect enough information related to iPhone-switching patterns.

Only 2.1% of subscribers had iPhone as the used phone while for most iPhone users, we

cannot know their next choices. The relatively small samples may cause biased results.

5.4 Observations and trends

First, we observe some fundemental statistics w.r.t when and what people switch.

Second, we discuss basic trends in phone popularity. For example, which phone brand is

more “sticky”? Third, we discuss how social influence affects phone switching.
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Table 5.2: Definitions of symbols

Symbos Definition

Age Age group

Income Income level

PHprev used phone

Dura the length of the life of PHprev

PHaccout phone used most by subscribers on the same plan

PHcall phone used most by 1-hop neighbors on the call graph

PHcurr current phone

Can your demographics tell your phone preference? We explore the corre-

lation between the demographics of a subscriber and his/her phone preference. We calculate

the conditional probability Prob(PHcurr|Age) that a subscriber uses a phone PHcurr given

his/her age group, do the similar experiment for income level and show results in Figure

5.1. First, Android is the top choice for all age groups and income levels. No matter which

group a subscriber belongs to, the probability of using Android keeps above 40%. Second,

for the young group, their probability of using iPhones is 2 times that of using cellphones.

The two numbers are about 30% and 15%. For the rich group, the probability of iPhones

is 3 times that of using cellphones and the two numbers change to 35% and 12%. The rich

group is more likely to use iPhones than the young group. Third, the probability of using

smartphones for subscribers who are both rich and young is 90% while the probability for

those who are poor and old is only 65%.
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Figure 5.1: The probability that a subscriber uses a phone PHcurr given (top) his/her age
group and (bottom) income level.

The rich switch phones less frequently than the poor. We plot the prob-

ability density distribution of the life of the used phone, which is Len, over all subscribers

in Figure 5.2. As we see, there are two peaks in the plot: one located at 12 months and

the other at 22 months. The second one is within our expectation as people are likely to

switch to another phone after they reach the end of a 2-year plan. We are more interested

in the appearance of the first peak. Here, we break down the distribution by respectively

plotting the versions over subscribers in various age groups and income levels. We find that

the plots for various income levels show the reason (See Figure 5.2 (bottom)). For the plot

from the poor people, the first peak is more pronounced than the second one but for the

curve from the rich people, the second one is as pronounced as the first one. One possible

reason could be that the poor subscribers tend to use short-term prepaid phones but the

rich ones may like to stably use the service under the contract of a plan.
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Figure 5.2: Probability Distribution Function of the length Len of the life of a used phone
PHprev over (top) all subscribers and (bottom) rich and poor subscribers.

The longer you use a phone, the more you stick to it? We explore the

correlation between the length of the life of the used phone Len and the probability you use

the same phone by calculating the probability Prob(PHcurr = PHprev|Len = l) in Figure

5.3.

The answer is no because the probability doesn’t show strictly positve relationships

as the Len increases. In Figure 5.3, the plot has two parts divided by a turning point at

2 years. Before the 2-year point, the plot keeps flat, showing that there is no obvious

relationship between the two variables. After the point, the plot rises as the duration

increases. We find that 80% of subscribers using a phone more than 2 years belong to

business subscribers. One possible reason could be that they need to use some specific

function of a phone or follow the company policy, so stick to that phone for a long time.

The switching patterns from previous to current phones. Is your previous

phone correlated to your next phone? In order to answer this question, we check the
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Figure 5.3: The probability that a subscriber uses the same phone PHcurr as the used one
PHprev given the length of the life of the used phone.

probability that a subscriber use a specific phone given the type of his/her latest used

phone, which is denoted as Prob(PHcurr|PHprev). The result is shown in Table 5.3.

First, Android phones are dominating as the probability Prob(PHcurr = Android|PHprev)

keeps about 45% no matter what the previous phone is. Second, iOS phones are the sec-

ond dominant phone. In particular, subscribers previously using the Palm and Blackberry

phones will equally select iOS and Android as the next phone choice. Third, smartphones

are sticky. 90% of smartphone users still choose smartphones. At the same time, 64%

cellphone users switch to smartphones.

How does social influence affect phone switching? We are interested in the

effect of social influence on the preference of a phone for a subscriber. In other words, we

want to see whether one follows the choice of friends when deciding which phone to select.

Here we answer this question by checking the influence from plan and call friends as defined

in the Section 5.4. Their effects are captured as the probabilities of PHplan = PHcurr and
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Table 5.3: Probability of switching from the used phone PHprev to the current phone PHcurr

. The first row and column represent PHcurr and PHprev.

iOS Android Blackberry Windows Palm Cell

iOS 0.26 0.53 0.11 0.05 0.01 0.08

Android 0.34 0.57 0.021 0.02 0.03 0.06

Blackberry 0.39 0.42 0.16 0.03 0.001 0.04

Windows 0.34 0.50 0.05 0.04 0.01 0.08

Palm 0.47 0.44 0.03 0.01 0.01 0.04

Cell 0.13 0.48 0.03 0.002 0.01 0.36

PHcall = PHcurr.

We first plot the average probability Prob(PHplan=PHcurr) over subscribers with

neighborhood sizes from 2 to 20. As seen in Figure 5.4, there is a strong positive correlation

between the probability and the size of a neighborhood when the size is more than 8. This

shows that a subscriber tends to follow his/her friends to use the same phone when (s)he

is on a business plan. Of all business subscribers, 75% use the same phone as their plan

phones. In contrast, on a non-business plan, he/she will not be affected by the influence of

his/her plan friends. We see the part of the plot with size ¡ 8 fluctuates and show no rising

trend. Only 50% non-business subscribers use the same phone as PHplan.

We also do the similar experiment for the probability

Prob(PHcall=PHcurr). However, we don’t observe the correlation pattern as shown previ-

ously and the whole plot is flat. We also reconstruct the neighborhood by filtering friends

whose call frequency is less than 5 times per month, but we still don’t see the similar rising
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plot as PHplan. Thus, we won’t further consider PHcall in the inference models.

5.5 Predicting phone switches

We attempt to infer the next phone to which a subscriber will switch based on

his age group, income level, previous phone use, the length of the life of the used phone

and the plan phone used by his/her plan friends. The task can be solved as a classification

task where the demographics, previous and plan phones are features and the current phone

is the outcome. We select two models for the classification: Bayesian Network (Baye)

and Logistic Regression (Logi). We use the former because Bayesian Network is able to

represent causal relationships among variables. For example, rich people are likely to use

smartphones. Moreover, previous work[56] also mentioned to use Bayesian Network to

predict the adoption of Information and Communication Technology. We use the latter

because logistic regression is widely used in the literature[55][54]. For the two models, there

are two steps to do the classification: first, given a group of features of a subscriber i, the

model produces a probability pij that the user i selects the phone j; second, select the phone

j with the maximum pij as the output.

Problem 1: inferring the phone switch of a single subscriber In the whole

population, subscribers who switch phones between January and March 2012 are used for the

training dataset and the rest are for the testing dataset. From our initial experimental result,

it is hard to reach good accuracy for predicting the next phone to which a subscriber will

switch no matter which algorithm is employed. The fraction of subscribers with inaccurate

phones is as high as 40%. We check the confusion matrix and find that the misclassifications
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Figure 5.4: Probabilities of (top) PHsocial=PHcurr and (bottom) PHplan=PHcurr for the
size of a neighborhood from 2 to 20.

from iOS to Android and vice versa contributes to the main part. The possible reason could

be that the functions of iOS and Android phones may be so close that it is hard to tell

them apart depending on the five features.

Problem 2: inferring phone switches of multiple subscribers We shift to

dealing with the problem for multiple subscribers. The reasons are that telecom operators

order multiple phones at once for its subscribers, and that the inaccurate prediction due to

iOS-to-Android and Android-to-iOS errors is anticipated to cancel each other out. Thus,

we attempt to solve the problem for multiple subscribers as follows: given a group of k

subscribers and their properties, how many various types of phones needs to be ordered by

inference? We use the same training and testing datasets as in the Problem 1.

Algorithm We still use bayesian network and logistic regression as the classifica-

tion models, but treat its output in a different way. Given the probability of phone choices

of k subscribers, we add up all the probabilities pij over the k subscribers for a specific
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phone j as the predicted number for the phone, which is denoted as NPj .

NPj =
k∑

i=1

pij

where j ∈ {iOS, Android, Plam, Blackberry, Windows, and cellphone}.

Intuitively, people can make use of the historical trend from previous data. Thus,

we employ a method called Histro as the baseline. Histro calculates the fraction of each

phone subscribers switch to from the training dataset, multiples it with the number of

subscribers from the testing dataset, and obtain the product as the predictedly ordering

number for that phone.

Evaluation We evaluate using two metrics for the accuracy of predictions. First,

we define a metric called Absolute Difference (AD), which means the difference between the

predicted number NPj for the phone j and its actual number denoted by Nj .

ADj = |Nj −NPj |, AD =
∑
j

ADj

Note that AD without j means the summation of ADs over six types of phones.

However, the cost of inaccurately predicting an iPhone is much higher than a

cellphone. Table 5.5 lists the cost of over-estimating and under-estimating six kinds of

phones and we see that the cost of ordering one more iPhone is 4 times that of an ordinary

cellphone. Such the cost is not considered by AD, so we propose the other metric called

Absolute Cost Difference (ACD). ACD takes the difference among phone costs into account

and use a weight, which is presented by COST , to consider the difference.
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ACDj = |Nj −NPj | × COSTj , ACD =
∑
j

ACDj

where COSTj is over-estimated cost O − COST when Nj > NPj . Otherwise, COSTj is

under-estimated cost U − COST .

The numbers in Table 5.5 are set by domain experts. For the over-estimating

cost O − COST , it is set according to the price of a phone. If the ordered phone cannot

consumed by a subscriber, the operator is not able to return it to a manufacturer. Thus,

the cost is roughly proportional to the price of a phone. For the under-estimating cost, it

is a constant. If the operator finds no phone for the demand of a subscriber, it can order it

from the manufacturer later on and the cost is proportional to the delivering cost, which is

set to a fixed value in this chapter.

Bayesian Network approach reduces Absolute Difference (AD) by 30%

compared with Histro. The Absolute Difference by Bayesian Network is around 120K

while the corresponding number by Histo is around 180K from Figure 5.4, showing that

Bayesian Network has better performance than Histro in terms of the aggregated result. In

Table 5.4, the ADs of Android and Cellphone by Bayesian Network are about 2 and 1.5

times lower than by Histro. However, AD of iOS by Bayesian Network is about 1.5 times

that by Histro.

Adjustment with a cost matrix The second problem wants to minimize the

absolute cost difference ACD because the telecom operator prefers saving more money rather

than just reducing the absolute difference. For example, mispredicting 2 cellphones might

cause less loss than mispredicting 1 iPhone. In order to meet this requirement, we construct
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Table 5.4: Result of predictions by Histro, Logistic regression and Bayesian network
with/without cost matrix. ↓ and ↑ mean under- and over-estimating.

iOS Android Blackberry Windows Palm Cell

Actual 419,297 909,296 93,368 6,454 6,940 384,942

Histro NP 459,712 959,943 84,973 6,554 4,732 304,383

Histro AD 40, 415 ↑ 50,647 ↑ 8, 395 ↓ 100 ↑ 2,208 ↓ 80,559 ↓

Logi NP 478,500 895, 812 87,800 2,644 3,312 351229

Logi AD 59,203 ↑ 13,484 ↓ 5,568 ↓ 3,810 ↓ 3,628 ↓ 33,713 ↓

Baye NP 479,900 895,937 87,583 2,747 3,268 350,862

Baye AD 60,603 ↑ 13,359 ↓ 5,785 ↓ 4,193 ↓ 3,186 ↓ 34,080 ↓

Baye+Mat NP 370,975 860,894 121,859 4,777 2,934 458,858

Baye+Mat AD 48,322 ↓ 48,402 ↓ 28,491 ↑ 2,163 ↓ 3,520 ↓ 73,916 ↑

Table 5.5: Under- and over-estimated costs of 6 types of phones

iOS Android Blackberry Windows Palm Cell

U − COST 10 10 10 10 10 10

O − COST 200 150 100 150 100 50
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Figure 5.5: The absolute difference (AD) and the absolute cost different (ACD) between
groundtruth and the prediction by Histro, Baye, Baye+Mat, and Logi.

a cost matrix with the definition as follows:

cij = O − COSTj/O − COSTi

If the O − COSTj > O − COSTi, the penalty cost cij is higher than vice versa

because inaccurately ordering a more expensive phone that cannot be consumed by a sub-

scriber means higher financial loss. With this matrix, we anticipate that the inaccurate

number of smartphones, especially iPhones, will be reduced.

Bayesian Network method with a cost matrix

(Baye+Mat) reduces the absolute cost difference by 50% compared with Histro.

We apply the cost matrix on the top of Bayesian Network and show the result in Table

5.4. Comparing with the output without the cost matrix, we get fewer inaccurate iOS

and Android phones but more cellphones. However, the cost of inaccurately predicting a

cellphone is much lower than a smartphone and the total of absolute cost differences is still
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reduced by 1/2 (See Figure 5.5).

Discussion The performance of Histro is typically worst among all the predic-

tion methods regarding both the absolute difference and the absolute cost difference. It

inaccurately predicts the most iOS, Android, Blackberry and Cell phones, but we can also

observe that Histro is better at predicting the number of Palm and Windows phones. In

contrast, Bayesian Network-related algorithms show better performance than Histro for all

the phones except the two. The classification model is biased towards the types of the

majority because of the imbalance among the numbers of different phones in the train-

ing process. As a result, it tends to give a higher probability to iOS than to Windows.

Compared with Bayesian Network, Logistic Regression is also a competitive candidate for

building the model in terms of both metrics, but the time of building its model is much

longer than that of training a Bayesian Network. We use a sample of 20,000 records for

training, the time of Bayesian Network provided by Weka is only 2 seconds while that of

Logistic Regression is 51 seconds.

5.6 Summary and Conclusions

In this chapter, we show a case study about phone preference on a dataset provided

by a telecom operator. Compared with previous work, our work put emphasis on: (1) study

the patterns of smartphone switches of subscribers; (2) how the patterns correlate with their

demographic properties and social influence from their friends; (3) use the real-world data

to design a Bayesian Network based algorithm to infer phones multiple subscribers switch

to. The ultimate goal of our work is help telecom operators forecast the phone inventory
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and effectively reduce the loss due to the misprediction.
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Chapter 6

Conclusion

The dissertation is a systematic effort to model and study the measurement of

multimodal communication networks as well as the inference of subscriber demographics by

the communication-related features emerging from those networks. First, I present various

measurements of how multimodal communications are used among people of different age

groups and income levels both in a city and in a company. Second, I propose three groups of

algorithms to predict their job titles, home locations/age groups/income levels, and phone

preferences, respectively.

With the experimental results in each chapter, I conclude with two suggestions.

First, the proper use of time slices and communication modes boosts the inference accuracy

significantly. In the dissertation, we consider three kinds of time slices: weekday, weekend,

and holiday, and two communication modes: calling and texting. With various times slices

and modes, I am able to construct graphs with differing potential for knowledge discovery.

For user-role extraction, the texting graph is generally superior to the call graph because
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managers have higher degree than ordinary employees in the texting graph than in the

calling graph. As a result, both are more distinguishable from one another via the texting

graph. For demographics inference, the weekday graph is superior to the night-weekend

graph at both inference of age group and income level. The reason is that calling on

weekday mornings is more likely to occur among colleagues than on nights or weekends,

and colleagues are more likely to be in the same age group or of the same income level.

Thus, I suggest identifying what kind of information people want to discover before the

construction of a graph and using proper time slices and communication modes to build a

graph suitable to the information sought.

Second, relying on the attributes of friends is a reliable method for inferring the

demographic properties of a subscriber. According to the results of this dissertation, the

accuracy of methods which use the properties of friends is higher than those using other

properties. In role extraction, the accuracy of HumanRank reaches 80%, while that of

Bayesian Network is only 70%. In demographics inference, the accuracy of MAJ reaches

80%, while that using personal preferences is only 50%. I also show how to utilize the

calling features to identify friends with the most reliable information when not all of said

friends’ information can be obtained. Thus, I suggest considering information of your

friends garnered from friends as a potential answer when predicting a certain property of a

subscriber.

I also list potential research directions regarding further work. Our call graphs are

incomplete because we are not aware of the existence of edges between external subscribers

who use other network carriers. Because of this, many graph features, like clustering co-
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efficient, cannot be applied in some cases: for example, in the chapter of demographics

inference. Assuming that we can turn the incomplete graph into a complete one, I am very

interested in how the structure of a subgraph is correlated with age groups of its involved

nodes and how the potential new patterns can further increase the inference accuracy. Addi-

tionally, I am interested in how to explore the dual-mode graph, where two edges, a call edge

and a text edge, may exist between two nodes, from the aspect of methods of measurement

and formalizations of related problems.
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