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ABSTRACT OF THE THESIS 

 

LQG Controller Design of the Mobile Inverted Pendulum 

 

by 

 

Zhu Zhuo 

 

Engineering Science (Mechanical Engineering) 

University of California, San Diego, 2017 

Mauricio de Oliveira, Co-Chair 

Thomas Bewley, Co-Chair 

 

This study aims at designing a controller that can stabilize a single inverted pendulum 

system using velocity feedback alone.  

A state-space model for the EduMIP inverted pendulum system is obtained through 

dynamic analysis using a Lagrangian method. System identification experiments are proposed 

and performed to identify the parameters of the model. Based on the identified model, an LQG 

controller, which is a combination of optimal estimation and optimal control, is designed and 

implemented that can successfully stabilize EduMIP. At last, few tests are carried out to 

evaluate the performance of the controller, showing how the proposed LQG controller 

outperforms classical controller in many aspects. 
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Chapter 1 

Introduction 

 
Mobile robots have been the focus of study and research over few decades. The two-

wheeled inverted pendulum robot is one of the most worth-mentioning configuration of mobile 

robots that receiving special attention. Due to its nonlinearity and intrinsically unstable 

dynamics property, a good controller is needed to keep the robot in upright position. Thus, two-

wheeled inverted pendulum robots are ideal platforms to demonstrate and test the performance 

of different control strategies.  

 

1.1        MIP 

MIP, short for mobile inverted pendulum, is a robotic platform that resembles an 

autonomous Segway-like vehicle with two independently-actuated wheels. Several MIP 

prototype designs are developed at the UCSD Coordinated Robotics Lab, EduMIP (Figure 1) 

is one of the simplest of these designs. The simple structure, and stable running property makes 

it a perfect platform for our research. 

 
Figure 1.  EduMIP
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We will introduce some important hardware of EduMIP and also the complementary filter 

algorithm in this section, which is used in IMU. 

 

1.1.1 BeagleBone Black and Robotics Cape 

Most small robotics projects in the educational space will have fairly minimal processing 

requirements, but will benefit greatly from having a wide variety of connectivity interfaces. 

This will allow a single embedded system to be used on different projects with unique 

requirements and functions. For this reason, we choose BeagleBone Black development board 

as it offers the power and functionality of a full Linux-based operating system with a small 

form factor that is well-suited for robotics projects. 

The expansion headers on BeagleBone allow for accessory boards called Capes to be 

stacked on top [1]. Capes allow developers to add sensors and hardware specific to their 

application. We are using a Robotics Cape for this project, which adds IMU measurement, 

quadrature encoder counting and DC motor control to EduMIP.  

 

1.1.2 IMU (MPU-9150) 

An inertial measurement unit, known as IMU, works by detecting the rate of acceleration 

using accelerometers, and detects changes in rotational attributes like pitch, roll and 

yaw using gyroscopes. It collects angular velocity and linear acceleration data and sends them 

to main processor. 

Attached on EduMIP is a MPU-9150 9-axis IMU, a popular sensor among developers. It 

combines a 3-axis gyroscope, a 3-axis accelerometer and magnetometers, which allow us to 

estimate the robot’s orientation in space, on the same silicon die. Furthermore, the MPU-9150 

contains an onboard digital motion processor (DMP). This microprocessor continuously runs 

digital low and high pass filters on the accelerometer and gyroscope signals respectfully in 

https://en.wikipedia.org/wiki/Accelerometer
https://en.wikipedia.org/wiki/Flight_dynamics
https://en.wikipedia.org/wiki/Flight_dynamics
https://en.wikipedia.org/wiki/Gyroscope
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addition to estimating orientation which can be read directly over an I2C bus and then 

interpreted as a quaternion vector. 

 

1.1.3 Encoder 

A rotary encoder, is an electromechanical device that converts the angular position or 

motion of a shaft or axle to an analog or digital code. There are two main types: absolute and 

incremental. The output of absolute encoders indicates the current position of the shaft, making 

them angle transducers. The output of incremental encoders provides information about 

the motion of the shaft, which is typically further processed elsewhere into information such as 

speed, distance and position.  

The encoders of MIP are quadrature encoders, which is a type of incremental encoders. 

They normally have at least two channel pulses, each of them will produce digital pulses when 

wheels are in motion. These pulses will follow a particular pattern that allows you to tell which 

direction the thing is moving, and by measuring the number of pulses per second, the angular 

speed can be derived. The encoder disks we use have 15 slots and therefore provide 60 counts 

per motor armature revolution [1]. 

 

1.1.4 Complementary filter 

The raw data of   can be obtained using accelerometer by calculating the relationship 

between two acceleration components of gravity. The raw data of   can be obtained directly 

using gyroscope. 

However, we are not able to get an accurate and smooth angle of the body directly from 

IMU, but manage to do this with the help of complementary filter. The basic idea behind 

complementary filter is to take slow moving signals from accelerometer and fast moving 

signals from a gyroscope and combine them. As accelerometer gives a good indicator of 

https://en.wikipedia.org/wiki/Electro-mechanical
https://en.wikipedia.org/wiki/Angle
https://en.wikipedia.org/wiki/Transducer
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orientation in static conditions. While gyroscope gives a good indicator of tilt in dynamic 

conditions. So it quite reasonable to pass the accelerometer signals through a low-pass filter 

and the gyroscope signals through a high-pass filter, then combine them to give the final rate . 

The key point here is that the coefficient of low-pass and high-pass filters add up to 1 at all 

frequencies [2], we firstly split 1 into two parts: 

 ( ) ( ) ( )
s

s s s
s s


  

 
 

 
 (1) 

Since 

 ( ) ( )s s s   (2) 

We therefore establish a relationship between   and   in s  domain: 

 
1

( ) ( ) ( )filtered s s s
s s


  

 
 

 
 (3) 

Choosing a proper value of parameter   can optimize the estimate result. 

 

1.2       Control Strategy 

Motion of MIP is under-actuated, which implies the number of inputs to the system is less 

than the number of degree of freedoms to be stabilized [3]. More specifically speaking, MIP is 

a single-input and multi-outputs (SIMO) system, which makes it hard to apply conventional 

approaches to control the system. In classical control theorem, the way to overcome this 

problem is to divide SIMO system into successive single-input and single-output (SISO) 

system, and then stabilize the desired degree of freedom separately (e.g. PID-PID). However, 

we can directly deal with this SIMO system using modern control schemes (e.g. LQR), which 

gives us a better understanding of stabilizing the whole system. 
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Being familiar with classic controller for MIP, which is a position feedback controller will 

be introduced in next section. We are seeking for a modern control strategy with velocity 

feedback. There are three advantages of velocity feedback control over position control: 

 

No need to know the balance offset 

The IMU is attached to the robotics cape. However, one thing worth noticed is that when 

EduMIP is balanced, the cape is not upright. In other words, the equilibrium MIP reaches is 

not 0  , but 0 offset   . It is necessary to measure the angle offset, in order to compensate 

the offset for the actual equilibrium.  

Velocity control has no offset problem, the actual equilibrium will always happened when 

the velocity of body goes to zero. Instead of measuring the offset by experiment, we can simply 

focus on the unchanged zero velocity equilibrium. 

 

Simpler controller 

Velocity control allow us to drop one state from state-space, it is now a third-order state-

space model rather than a four-order one. Since the LQG controller have the same order state-

space model compared to the plant, the reduction on plant also implies that the order of 

controller is reduced by one. 

It is often desirable to reduce the order of controller. On the one hand, higher order 

controllers may place many poles and zeros to achieve a good performance. However, a large 

number of poles and zeros may also affect other parts of frequency response of closed-loop 

system which may not be well modeled and lead to lack of robustness. On the other hand, a 

lower order controller is constrained to places less poles and zeros which tend to be focused on 
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shaping the important part of frequency response curve only. Reduced order controllers are 

also easier to implement.    

 

Better measurement 

The raw data of angle   is always not accurate unless there is no accelerations except 

gravity. The more extra accelerations there are, the worse measurement we will get. However, 

the raw data of   is good even when IMU moving fast. In order to balance the MIP, we do care 

about the situation that large extra accelerations happens, it is a better choice to use the 

measured velocity as feedback signals rather than measured angle. 

 

1.2.1 Classic Control 

The scope of classical control theory is limited to single-input and single-output (SISO) 

system design. The system analysis is carried out in time domain using differential equations, 

in complex-s domain with Laplace transform or in frequency domain by transforming from the 

complex-s domain. Due to easier physical implementation of classical controller designs as 

compared to systems designed using modern control theory, these controllers are preferred in 

most industrial applications. The most common controllers designed using classical control 

theory are PID controllers. 

In this section, we consider one input ( )V t (voltage) and two outputs of the system ( )t  

(angle of the body) and ( )t  (angle of the wheels) to demonstrate how to design a simply 

successive loop closure controller to stabilize the MIP.  

The transfer functions from voltage to two angles and two equilibriums of the system are 

given in section 3.3, which are: 
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  3 2

2

  3 2

74.1

34.7 128.4 1555.4

113.8 8418

( 34.7 128.4 1555.4)

V

V

s
TF

s s s

s
TF

s s s s












  




   

 

 1:  ( ) 0,  ( ) 0,  ( ) 0,  ( ) 0

 2 :  ( ) ,  ( ) 0,  ( ) 0,  ( ) 0

Equilibrium t t t V t

Equilibrium t t t V t

  

   

   

   
 

Since there is a zero-pole cancellation in the first transfer function, we are not able to 

stabilize the whole system at equilibrium 1 by closing loop from voltage to the angle of the 

body only. MIP will move at a constant speed in this situation, which means ( ) 0t  . Thus, 

it is necessary to close the second loop from voltage to the angle of the wheel. We come up 

with a successive-loop structure as Figure 2 shows: 

 
Figure 2.  Block diagram of classical control 

 

Inner loop 

We firstly close the loop from ( )V t  to ( )t , which is the inner loop of successive loops. 

By looking at the root locus plot, we know there is a zero-pole cancellation and we can’t 

stabilize the inner loop without placing an unstable pole in the controller. 
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By placing only an unstable pole at 26.5, and a gain of -26, we successively stabilized the 

loop from ( )V t  to ( )t . The controller is: 

 
26

26.5
K

s






 (4) 

Closed-loop root locus plot of ( )t : 

 
Figure 3.  Root locus plot of classical control 

 

Closed loop Nyquist plot also implies a good gain margin and phase margin of the inner 

loop controller: 



9 
 

   
 

 
Figure 4.  Nyquist plot of classical control 

 

Outer loop 

We then close the loop from ( )V t  to ( )t , which is the outer loop of successive loop. By 

looking at the open loop root locus plot, we can observe that choosing K  as a little gain is 

enough to stabilize ( )t . The controller we design is: 

 0.05K   (5) 

Rearranging the block diagram gives a better structure of the controller like Figure 5, we 

are able to stabilize the system with (4) and (5): 
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Figure 5.  Rearranged block diagram of classical control 

Essentially, this classic double-loop controller is trying to imitate the behavior of modern 

controller by tuning two gains for two feedback, then adding then to become one input to the 

system. The only difference is that classic method can’t determine multiple gains at the same 

time, it will divide the single-input and multi-output (SIMO) system into successive SISO 

systems, then determine gains separately. The problem of such a process is that the inherent 

relationships between these outputs to input will not be considered, and thus will lead to an 

unstable controller in our case.  

 

1.2.2 Modern Control 

Modern control theory is carried out strictly in the complex-s or the frequency domain, and 

can deal with multi-input and multi-output (MIMO) systems. This overcomes the limitations 

of classical control theory in more sophisticated design problems. In modern design, a system 

is represented as a set of first order differential equations defined using state variables. What is 

more, modern control theory can also deal with nonlinear system and time-variant systems. 

While the modern controller deal with all the outputs at the same time. By looking into the 

inherent relationships of the system, all the gains ( K  and K  in our case) can be determined 

together by certain rules as Figure 6, which may give us a stable controller. 
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Figure 6.  Block diagram of modern control 

The goal of this thesis is to design a well-performed LQG controller for EduMIP. In next 

chapter, we will establish a state-space model of the EduMIP, this is the first step to solving a 

control problem using modern control theory. 



 
 

12 
 

Chapter 2 

Modeling 

 
Before looking into control system of EduMiP, it is critical to get an accurate model that 

characterizes EduMiP reasonably.  An accurate model will help us design a controller fit for 

the system, thus makes it possible to implement the controller on EduMIP. 

Two assumptions are made here to idealize the model: 

1. Both body and wheels are considered as rigid body. 

2. No sliding between wheels and ground and thus no sliding friction. 

 

2.1 Equations of Motion 

We use Lagrangian method to obtain equations of motion for the system [4]. 

Simplify the MIP to Figure 7 below:  

 

Figure 7.  Simplified MIP model 
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Take the center of mass of wheels as origin of a static coordinate system, X and Y direction 

are given as shown.   and   are angles of body and wheels, and both are positive in counter-

clockwise direction. 

The translational velocity of wheels is  

  ( ,0)W Wc tv r    (6) 

Where:  

r  radius of wheels 

 ( )x t r t   translation displacement of wheels 

  ,0Wc x t  center of mass of wheels 

 

The translational velocity of body is  

 ( ( ) cos ( ) ( ), sin ( ) ( ))B Bv c r t l t t l t t            (7) 

Where: 

l  distance between Wc
 and Bc

 

( ( ) sin ( ), cos ( ))Bc x t l t l t  
 

center of mass of body 

 

The kinetic energy of system can be described as 

 2 2 2 21 1 1 1
2 2

2 2 2 2
B B W w B WK m v m v I I            (8) 

Where: 

Wm  mass of single wheel
 

Bm  mass of body
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rG  gearbox ratio 

mI  motor armature inertia 

BI  inertia of body 

2 2/ 2W W r mI m r G I    inertia of single wheel with gearbox 

 

The potential energy of system can be described as 

 cosBU m gl    (9) 

Lagragian, which is the difference between the kinetic and potential energy of the system 

is therefore: 

 L K U   (10) 

According to Lagrange equations of motion in Cartesian coordinates for a point mass 

subject to conservative forces, namely, 

 ( ) 0
i i

d L L

dt x x

 
 

 
 (11) 

Any non-conservative forces acting on the point mass would show up on the right hand 

side.  

So equation of motions are: 

 

( ) ( )

( ) ( )

d L L
t

dt

d L L
t

dt


 


 

 
  

 

 
 

 

 (12) 

Substitute equations (6) – (10) into (12), we have equation of motions: 
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2

2 2

( ) ( ) ( sin ( ) cos ( ) ( )) ( )

cos ( ) ( ) sin ( ) ( ) (2 ( 2 ) ) ( ) ( )

B B B

B B W B W

I m l t m l g t r t t t

m rl t t m rl t t I m m r t t

    

     

      

      
 (13) 

  is the torque provided by the motor, can be calculated as: 

 
( ) 2 ( )

/

r m

W m r

t G s u k

G

 

   

  

  


 (14) 

Where: 

( )V t
 motor voltage 

maxV
 

maximum voltage of motor 

max( ) /u V t V
 

normalized motor duty cycle 

s  motor Stall Torque 

k  motor Constant 

m  
motor armature speed 

W  
wheel speed 

 

Furthermore, we set up following substitution rules for simplicity: 

a  
22 ( 2 )W B WI m m r   

b  Bm rl  

c  
2

B BI m l  

d  Bm gl  

e  max2 /rG s V  

j  
22 rG k  
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Thus equation (13) is now: 

 
sin ( ) ( ) ( ) ( ) ( ) cos ( ) ( )

( ) cos ( ) ( ) ( ) ( ) ( )( sin ( ) ( ))

d t j t eV t j t c t b t t

j t b t t a t eV t t j b t t

     

      

     

      
 (15) 

2.2 Nonlinear Model 

Solve for ( )t  and ( )t  in equations (15), we have 

 

2 2

2 2

2 2

1
( ) ( sin ( ) ( ) cos ( ) ( ) ( )

cos ( )

cos ( ) ( ) cos ( ) sin ( ) ( ) ( ) cos ( ) ( ))

sec ( )
( ) ( sin ( ) ( ) sec ( ) ( )

sec ( )

t ad t ae V t be t V t aj t
ac b t

bj t t b t t t aj t bj t t

t
t bd t be V t ce t V t

b ac t

   


       


  



         


          

        
 

2

( )

sec ( ) ( ) tan ( ) ( ) ( ) sec ( ) ( ))

bj t

cj t t bac t t bj t cj t t



      



          

 (16) 

From equations (16), we have nonlinear model of MiP: 

 

2 2

2 2

2 2

1
( sin ( ) ( ) cos ( ) ( ) ( )

cos ( )

cos ( ) ( ) cos ( ) sin ( ) ( ) ( ) cos ( ) ( ))( )

sec ( )( )
( sin ( )

sec ( )( )

( )

ad t ae V t be t V t aj t
ac b t

bj t t b t t t aj t bj t tt

tt
bd t be

b ac tt

t

  


       








        


           
 
      
   
  
 

2

( ) sec ( ) ( )

( ) sec ( ) ( ) tan ( ) ( ) ( ) sec ( ) ( ))

( )

( )

V t ce t V t

bj t cj t t bac t t bj t cj t t

t

t



       





 
 
 
 
 
   
 
 
            
 
 
 
 

 (17) 

 

2.3 Linearized Model 

We choose four states, inputs and outputs of MiP as following: 

 

1

2

3

4

( ) ( )

( ) ( )

( ) ( )

( ) ( )

x t t

x t t

x t t

x t t









  
  
   
  
    

   

          
1

2

( ) ( )

( ) ( )

y t t

y t t





  
  

   
         1( )u t  = ( )V t  (18) 
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Equilibriums can be obtained by solving equations (15) when all angular speeds and 

accelerations are 0. 

 
 1:  ( ) 0,  ( ) 0,  ( ) 0,  ( ) 0

 2 :  ( ) ,  ( ) 0,  ( ) 0,  ( ) 0

Equilibrium t t t V t

Equilibrium t t t V t

  

   

   

   
 (19) 

There are two equilibriums of such an inverted pendulum system. Equilibrium 1 is an 

unstable equilibrium, which we are interested in for control. While equilibrium 2 is a stable 

equilibrium can be achieved without any control. 

Thus, we linearized equations (17) at equilibrium 1 with notation rules (18): 

 

2 2 2 2
1 1

2 2

2 2 2 2

3 3

4 4

( ) ( ) ( )
0

( ) ( )

( ) ( )( ) ( ) ( )
0

( ) ( )

1 0 0 0 0( ) ( )

0 1 0 0 0

a b j a b j ad a b e

x t x tb ac b ac b ac b ac

x t x tb c j b c j bd b c e

b ac b ac b ac b acx t x t

x t x t

     
              
      

                   
     
     
  
   

( )u t




(20) 

We will have system identified in next chapter to get a more accurate model in numerical 

values. However, in order to have an ideal of the structure of the system, we plug in all the data 

from Appendix A for now, which is provided by James Strawson: 

 

1 1

2 2

3 3

4 4

( ) ( )13.528 13.528 175.457 0 90.456

( ) ( )17.735 17.735 115.561 0 118.585
( )

( ) ( )1 0 0 0 0

( ) ( )0 1 0 0 0

x t x t

x t x t
u t

x t x t

x t x t

       
      

          
      
      

      

 (21) 

 

1

1 2

2 3

4

( )

( ) ( ) 0
( )

( ) ( ) 0

( )

1 0 0 0

0 1 0 0

x t

y t x t
u t

y t x t

x t

 
 

         

 
  
    





 

 (22) 

Equations (21) together with (22) are our linearized model.  
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Where  

13.528 13.528 175.457 0

17.735 17.735 115.561 0

1 0 0 0

0 1 0 0

A

 
 

  
 
 
 

   

90.456

118.585

0

0

B

 
 
 
 
 
 

 

1 0 0 0

0 1 0 0
C

 
 
 

       
0

0
D

 
 
 

  

Therefore, we are ready to check the controllability and observability of MIP model for 

further work. 

The controllable matrix 
oC  is of form: 

2 3[       ]oC B AB A B A B  

The observable matrix 
bO  is of form: 

2

3

b

C

CA
O

CA

CA

 
 
 
 
 
 

 

Using Matlab command ctrb(A,B) and obsv(A,C) we know both of matrixes are of full 

rank, which implies the system is controllable as well as observable. 

 

2.4 Reduced Linearized Model 

One thing we can observe from linearized model is the state 4 ( )x t  ( ( )t ) has no impact on 

any other states. It is also what happens in reality, MIP can balance up if the body is upright, 

no matter where the wheel is. What is more, 4 ( )x t  will not be used as an output in the velocity 

feedback. So it would be a good choice to reduce 4 ( )x t  from the four-state state-space model. 

After reduction, the state-space model is: 
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1 1

2 2

3 3

( ) 13.528 13.528 175.457 ( ) 90.456

( ) 17.735 17.735 115.561 ( ) 118.585 ( )

( ) 1 0 0 ( ) 0

x t x t

x t x t u t

x t x t

        
       

            
       
       

 (23) 

 

1

1

2

2

3

( )
1 0 0

0

( ) 0
( ) ( )

( ) 0
(

0
)

1

x t
y t

x t u t
y t

x t

 
    

      
    

 
 




 



 (24) 

Where 

13.528 13.528 175.457

17.735 17.735 115.561

1 0 0

A

 
 

   
 
 

   

90.456

118.585

0

B

 
 

  
 
 

 

1 0 0

0 1 0
C 

 
 
 

     
0

0
D

 
 
 

  

It is also easy to verify that this reduced-model is still controllable and observable. 

 



 
 

20 
 

Chapter 3 

System Identification 

 
System identification is a methodology for building mathematical models of dynamic 

systems using measurements of the system’s input and output signals. 

Since we can derive model of EduMIP from Lagranigian principles, but are not so sure 

about numerical values of its parameters. We can estimate the value of its parameters from 

experiment date, which is known as grey-box modeling approach [5], to ensure that we are 

working on the correct model. We would like to conduct 2 separate experiments, the body 

experiment (  Experiment) and the wheel experiment ( Experiment), to identify the real 

parameters of the system.  

 

3.1   Experiment 

The first experiment we can perform is constraining the movement of the wheels (fix the 

wheels by force) and design a chirp signal as input to collect data of body’s angular velocity. 

This experiment help us to identify parameters BI , k and s . 

Since we constrained the movement of two wheels, it is obvious that:  

( ) 0,   ( ) 0,   ( ) 0t t t      

So there is only one equation of motion left: 

 ( ) ( ) ( ) sin ( )eV t j t c t d t      (25) 

Linearized the model around the stable equilibrium since it was where we performed the 

test. Which gave us a reduced state-space model:
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0 1 0

( )u td j e

c c c

 

 

   
                       

   

 (26) 

This model describe the relationship between the voltage V  and angular velocity of the 

body .  Convert the state-space model to a transfer function from V  to : 

 
_

2
Model

e
s

cTF
j d

s s
c c







 

 (27) 

Plug in data from Appendix A, (27) is now: 

 
2_

38.93

5.822 125.2Model

s
TF

s s




 
 (28) 

The chirp signal properties are 1.85V as magnitude and start at 1 Hz, gradually increase 

logarithmically to 20 Hz in 30 seconds, and decreased back to 1 Hz logarithmically in 30 

seconds. We apply this chirp signal few times, part of the response is shown as figure 8: 

 

Figure 8.    Experiment response 
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Using the plot above, we are able to estimate transfer function from the voltage V  and 

angular velocity  given by the experiment. Constrained the estimation by setting the constant 

term of numerator to zero will help us get a transfer function in the same shape of (28): 

 
2_

34.81

6.432 99.54Exp

s
TF

s s




 
  (29) 

Which is close to transfer function (28). 

Plot both of them at the same time for comparison, as figure 9: 

 
Figure 9.    Experiment comparison 
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3.2   Experiment 

The second experiment we can perform is a free run test, we can place the back of MIP to 

the table and observe the wheels velocity. This experiment help us to identify parameters WI .  

One thing to mention, instead of consider 

22 ( 2 )W B Wa I m m r  
 

We now consider 

2 Wa I
 

Since the body is no longer moving and there is no translational velocity of wheels, thus 

no Bm  and Wm terms.  

Also: 

( ) 0,    ( ) 0t t    

So there is only one equation of motion (one state state-space model) left: 

  ( ) ( ) ( )
j e

t t u t
a a

     (30) 

This model describe the relationship between the voltage V  and angular velocity of wheels

 .  Convert the state-space model to a transfer function from V  to : 

 
_ Model

e

aTF
j

s
a






 (31) 

Plug in data from Appendix A, (31) is now: 

 
_

235.8

35.27Model

s
TF

s



 (32) 
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The setting of this experiment is shown as Figure 10: 

 
Figure 10.    Experiment setting 

The chirp signal properties are 1.85V as magnitude and start at 0.3 Hz, gradually increase 

logarithmically to 30 Hz in 30 seconds, and decreased back to 0.3 Hz logarithmically also in 

30 seconds. We apply this chirp signal few times, part of the response is shown as figure 11: 

 
Figure 11.    Experiment setting 
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Using the plot above, we are able to estimate transfer function from the voltage V  and 

angular velocity  given by the experiment. Constrained the estimation by setting the constant 

term of numerator to zero will help us get a transfer function in the same shape of (32): 

 
_

252.7

45.24Exp

s
TF

s



 (33) 

Which is close to transfer function (32). 

Plot both of them at the same time for comparison, as Figure 12: 

 
Figure 12.    Experiment comparison 
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3.3 Identified Model 

We firstly determine parameters that we want to identify, they are BI , k , s and WI . Other 

parameters are either easy to measure, such as Wm , or unnecessary to identify, like rG . Then 

we build equations from transfer function (27), (29), (31) and (33): 

2

2

max

2

2

2

max

2

2
     34.81

( )

2
              6.432

              99.54

                  252.7

                    45.24

B B

B B

B

B B

W

W

e Gr s

c V I m l

j Gr k

c I m l

m gld

c I m l

e Gr s

a I V

j Gr k

a I


 



 


 



 

 

 

Reversely substitute substitution rules showed in section 2.1 into equation above, we are 

able to solve for undetermined parameters as following expressions (though there are 5 

equations above, we can only solve for 4 unknowns, since they are not totally independent): 

2
-4

6

2

max

5

( / )
 =    =  5.91 10

/

( / )
  =                =  2.37 10

2 ( / )

( / )
  =          =  0.003375 

2 ( / )

( / )
 =            =  6.42 10

2( / ) ( / )

B B
B

B

B

B
W

m gl m l d c
I

d c

m gl j c
k

Gr d c

m glV e c
s

Gr d c

m gl e c
I

d c e a





 
















 

We can directly calculate the value of 4 unknown based on expressions, since Bm  and l

are all easy to measure and g ,Gr  and maxV  are all known to us. 
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After substituting these expressions and other known parameters into the full state-space 

model, we obtained the identified linearized state-space model: 

 

1 1

2 2

3 3

( ) 13.692 13.692 128.381 ( ) 74.101

( ) 21.023 21.023 83.514 ( ) 113.775 ( )

( ) 1 0 0 ( ) 0

x t x t

x t x t u t

x t x t

        
       

            
       
       

 (34) 

 
1

2

1

2

3

( )
( ) 1 0 0

( ) 0 1 0

0
( ) ( )

0
( )

x t

x t u t

x t

y t

y t

 
  

    
 

   
   
 

 


 (35) 

Where 

13.692 13.692 128.381

21.023 21.023 83.514

1 0 0

A

 
 

   
 
     

74.101

113.775

0

B

 
 

  
 
   

1 0 0

0 1 0
C 

 
 
                               

0

0
D

 
 
 



 

We can still verify that identified state-space model is not only controllable, but also 

observable.  

Bode plot of identified MIP is shown in Figure 13. 
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Figure 13.  Bode plot of identified MIP 

In addition, the transfer functions of plant can also be obtained: 

  3 2

74.1

34.7 128.4 1555.4
V

s
TF

s s s





  
 

2

  3 2

113.8 8418

( 34.7 128.4 1555.4)
V

s
TF

s s s s





   
 

2

3 2  

74.1

34.7 128.4 1555.4V

s
TF

s s s




  
 

2

3 2  

113.8 8418

34.7 128.4 1555.4V

s
TF

s s s




  
 

The first two transfer functions are used in section 1.2 for classic controller design, and it 

is also good to know poles of last two transfer function are -37.05, -5.42 and 7.75. 
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Chapter 4 

Controller Design 

 
In this section, we will firstly introduce some basic concepts of LQG controller, which is a 

LQR and a LQE [6]. Then the process of design a LQG controller is presented in few steps and 

the simulation closed-loop responses are also attached. 

 

4.1 Linear Quadratic Regulator (LQR) Design 

Linear Quadratic Regulator (LQR) problem is one fundamental problem of optimal control. 

For a Linear Time Invariant (LTI) system: 

 ( ) ( ) ( )x t Ax t Bu t   (36) 

Where x and u are the states and control. 

LQR essentially generated an automated way of finding appropriate feedback controller: 

 ( ) ( )u t Kx t  (37) 

Not only to stabilize the system (32), but also minimize a quadratic cost function, which of 

the form: 

 
0

[ ( ) ( ) ( ) ( )]T TJ x t Qx t u t Ru t dt


   (38) 

Where Q  and R  are weighting matrix. 

The gain is K  given as: 

 
1 TK R B X   (39)
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Where X is the solution to an Algebraic Riccati Equation (ARE) 

 
1 0T TA X XA XBR B X Q     (40) 

Some assumptions here are: 

1. 0, 0Q R   

2. ( , )A B  is stabilizable. 

Q   and R  are weighting matrix that penalize the states and control work, respectively. 

Tuning elements of  Q  will change performance of the states correspondingly. In the same 

way, we can tuning R  to determine the ability of control for each input. The relative ratio of 

Q  and R  elements will emphasize whether we care more about control or system performance.  

Generally speaking, weighting matrix differs based on different design goals and need 

some judgments to decide if “optimization” is reached. There is no obvious relationship can be 

observed between these two matrix and the behavior of the controller, though it does affect the 

behavior. So it is very important to understand how to tradeoff between performance and 

control, and choose nice weighting matrix in a LQR design. 

 

4.2 Linear Quadratic Estimator (LQE) Design 

In LQR problem, all the states are assumed to be available by sensor measuring and being 

ready to feedback. However, it is always not the case, the limit of sensors and budget won’t 

give us all states. Therefore, an estimator is needed to provide with reasonable estimation of all 

the states, one of the estimators that also perform an “optimal” procedure is called Kalman 

Filter. 

For a LTI system with noise: 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( )

y

z

x t Ax t Bw t

y t C x t v t

z t C x t

 

 



 (41) 

Where ( )w t  and ( )v t  are both Gaussian zero mean white noise with variance W and V . 

LQE essentially generated an automated way of finding appropriate estimation gain L  for: 

 

ˆ ˆ ˆ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( )

ˆˆ( ) ( )

y

z

x t Ax t L y t y t

y t C x t

z t C x t

  





 (42) 

Not only stabilize the state estimation errors, which leads to a stable estimator, but also 

minimize a quadratic cost function, which of the form: 

 ˆ ˆlim [( ( ) ( )) ( ( ) ( ))]T

t
J E z t z t z t z t


    (43) 

The gain L  is given as: 

 
1T

yL YC V    (44) 

Where Y is the solution to an Algebraic Riccati Equation (ARE): 

 
1 0T T

y yAY YA YC V C Y W     (45) 

One assumptions here is ( , )yA C  should be detectable. 

W  and V  are the process and measurement noise variance, respectively. Tuning W  and 

V  is also needed in order to achieve a high-performance estimate gain. Tuning elements of  V  

will change the weights of how estimated states depending on each output, while tuning W  

will change how much the estimation depending on outputs. However, it is worth-mentioning 
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that W  and V being close to what true variance guarantees only a good estimator, but not a 

good controller.  We will talk about this later in tuning LQG controller. 

Kalman filter is essentially a recursive estimator that implements states prediction, 

followed by a correction to produce estimations of unknown variables that tend to be more 

precise than those based on a single measurement alone.  

 

4.3 Linear Quadratic Gaussian (LQG) Controller Design 

The Linear Quadratic Gaussian (LQG) controller is simply the combination of a LQE with 

a LQR. The separation principle guarantees that they can be independently designed and 

computed [6]. 

So for the LTI system: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

u w

y

z

x t Ax t B u t B w t

y t C x t v t

z t C x t Du t

  

 

 

 (46) 

We can combine K  and L  obtained in equation (4) and (9) to design an observer-based 

controller: 

 

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( )

ˆ( ) ( )

u

y

x t Ax t B u t L y t y t

y t C x t

u t Kx t

   





 (47) 

Which stabilize the closed loop system and minimize the cost 

 lim [ ( ) ( )]T

t
J E z t z t


  (48) 

Here is a block diagram of closed-loop plant with LQG controller as Figure 14: 
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Figure 14.  Block diagram of LQG control 

 

4.3.1  Weighting Matrix Choice 

After many trials, we determined a set of weighting matrix: 

              

1 0 0

0 1 0

0 0 1

Q

 
 

  
 
 

         1R           4W           
0.01 0

0 0.1
V

 
  
 

 (49) 

The transfer function of controller calculated based on these matrix is: 

 

_

_

2199.26 ( 8.535) ( 50.264)

( 4.754 3.074 ) ( 4.754 3.074 ) ( 1769.02)

305.123 ( 1.875) ( 112.967)

( +4.754 3.074 ) ( +4.754 3.074 ) ( 1769.02)

controller

controller

s s
TF

s i s i s

s s
TF

s i s i s





   
 

      

   


    

 (50) 

All the poles of this controller are with a negative real part, which implies the controller 

we designed is a stable controller. This is one of the advantages that LQG controller possesses, 

by choosing appropriate weighting matrix we are able to get a stale controller. This stable 

controller allowed us to set the initial condition 0  to a large non-zero value, while the initial 

condition 0 of classical controller can’t exceed around 10 degrees. 
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Connect this controller to the system and simulate the close-loop response with initial 

condition 0 . 

 
Figure 15.    Response with LQG controller 

 
Figure 16.  Voltage Response with LQG controller 

 

According to the simulation result Figure 15 and 16, the maximum value of 0  could be 

balanced without exceeding maximum voltage is around 56 degrees. What’s more,   will 

converge to equilibrium in 2 seconds. 
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4.3.2  Controller Order Reduction  

We would like to discretize the controller at 100Hz, which is also the frequency that the 

MIP is running at. Though we obtained a well-performed controller in simulation, it would still 

be problematic in implementation due to the large poles and zeros. All the zeros and poles 

corresponding to a frequency over or close to 100Hz may mess up the discretization and result 

in a totally different discrete controller. So we removed the large poles and zeros (we have tried 

balanced truncation method but it was not suitable for our case since it messed up low 

frequency response). It wouldn’t be a problem for the system since the system barely response 

to a signal over 100Hz (see Figure 13), which can be observed from MIP’s Bode diagram. 

Poles we removed:  -1769.02 

Zeros we removed: -112.967 

The reduced controller is a second-order controller instead of a third-order controller: 

 

_ _

_ _

1.243 ( 8.535) ( 50.264)

( 4.754 3.074 ) ( 4.754 3.074 )

19.485 ( 1.875)

( 4.754 3.074 ) ( 4.754 3.074 )

controller reduced

controller reduced

s s
TF

s i s i

s
TF

s i s i





   
 

    

 


    

 (51) 

The comparison between (50) and (51) is shown in Figure 17 and 18: 

 

Figure 17.  Bode plot comparison of controllers (Magnitude) 
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Figure 18.  Bode plot comparison of controllers (Phase) 

 

Connect reduced controller (51) to the system and simulate the close-loop response with 

initial condition 0 . One thing good to know is the closed-loop system has 5 poles at -107.11, -

10.858+0.849i, -10.858-0.849i, -3.759+2.481i and -3.759+2.481i. 

 
Figure 19.    Response with reduced LQG controller 
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Figure 20.  Voltage Response with reduced LQG controller 

According to the simulation result Figure 19 and 20, the maximum value of 0  could be 

balanced without exceeding maximum voltage is around 59 degrees for reduced controller. 

What’s more,   will converge to equilibrium in 2 seconds. 

It is obvious that after the controller order reduction, the closed-loop performance is still 

as good as before, even a little increasing of the maximum 0 . So this is a successful order 

reduction, which almost keeps the closed-loop response unchanged. 

 

4.3.3  Discretized Controller  

Discretization concerns the process of transferring continuous models into discrete 

counterparts. This process is usually carried out as a first step toward making model suitable 

for numerical evaluation and implementation on digital computers. 

We will discretize the order reduced controller at 100Hz using zero order hold method, 

which generates an exact discretization in the time domain for staircase inputs. We can 

constructs the continuous signal back by holding each sample value as a constant over one 

sample period [7]. The state-space model of discretized controller is: 
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_ _

0.9129 0.0378 0.002835 0.0005967

0.0655 0.9933 0.001463 0.001286

380.821 322.448 1.24321 0

Discrete LQG reducedSS

 
 

   
  
   

In order to simulate the discrete performance, we discretized the system at 100 Hz, too. We 

have: 

_

0.89 0.1159 1.157 0.6274

0.1743 0.8222 0.6376 0.9621

0.0094 0.000613 1.006 0.00332

1 0 0 0

0 1 0 0

Discrete MIPSS

 
 

 
  
 
 
 
   

Connect this discretized reduced controller to the discretized system and simulate the close-

loop response with initial condition 0 . 

 
Figure 21.    Response with discretized LQG controller 
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Figure 22.  Voltage Response with discretized LQG controller 

According to the simulation result Figure 21 and 22, the maximum value of 0  could be 

balanced without exceeding maximum voltage is around 58 degrees for discretized reduced 

controller. Conversion time is still 2 seconds.
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Chapter 5 

Controller Implementation 

 
In this chapter, we briefly introduce how to implement the controller using Python and 

Jupyter Notebook. Then we conduct 4 tests to observe the performance of the MIP and also put 

some comments based on our test results. 

 

5.1 Setup for Python server 

We installed a Python 3.2.3 in the MIP for implementation use. Few steps help us to 

implement designed controller on the MIP, here are some brief instructions that can be followed 

to finish the setup. 

 

Step1: Get root access into MIP 

Keep the MIP and your device in the same network, SSH login the MIP 

(Replace /etc/network/interfaces with your Wifi connection setting file, and replace 

ip_address with your device IP): 

   vim /etc/network/interfaces 

   ssh root@ip_address 

 

Step2: Run the server on MIP 

Locate at the directory containing the server file, then start the server in MIP 

(Replace beaglebone/python with your directory, and replace ip_address with your device 

IP, Ts with your sampling frequency
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cd beaglebone/python 

python3 server.py –H ip_address –m mip3 –t Ts 

 

Step3: Run the Notebook 

First, start Notebook: 

   jupyter notebook 

 

Then import useful heading files and functions, construct control structure in Notebook by 

creating and connecting signals and filters, import designed controller in form of state-space 

model and modify the codes based on your requests, run the notebook. 

 

5.2 Implementation Tests and Results 

5.2.1 Balancing Test 1 (Start close to equilibrium) 

Balancing test staring near from equilibrium demonstrate the ability of the MIP to balance 

up and be stable. We conduct this test first since maintaining stable is the prerequisite for all 

further movements. 

We started the test with the controller on, kept the MIP upright and released it. Here are 

responses of some important parameters. 

Figure 23 is the   response. We can tell that MIP has a strong ability of keeping stable 

uprightly. We noticed that the mean value of theta is about -23 degrees (marked out as a yellow 

line), which is the angle offset when it is balanced that we have mentioned in section 1.2. What 

is more, an oscillation of  10 degrees from the mean value is observed. 
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Figure 23.    Response of balancing test 1 

 However, the response was quite noisy. Thus we got the response through a 

complementary filter as equation (3), with 2 as the value of  . Then we got Figure 24, filtered 

  Response. It is obvious that there were some oscillation periodically happened, a close look 

was desired as Figure 25 showed, filtered   Response from 2s to 4s. 

 

Figure 24.  Filtered  Response of balancing test 1 
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Figure 25.  Close look of filtered   Response of balancing test 1 

Figure 26 is the voltage response, which is the response of motor voltage applied. It turned 

out that we had plenty of voltage to do more than stabilizing, because the voltage is bound by 

 2 V and far from the limit  7.4 V. 

 

Figure 26.  Voltage Response of balancing test 1 
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5.2.2 Balancing Test 2 (Start away from equilibrium) 

Balancing test staring away from equilibrium demonstrate the ability of the MIP to balance 

up when it is not starting near the equilibrium. We conduct this test to see if the advantages that 

MIP can start from an unstable mode is true. We expected this the case for the modern controller 

since LQG controller we designed is a stable controller, therefore possible to correct the 

unstable initial conditions. 

We started the test with the controller on, kept the MIP inclined with a certain angle and 

released it at 0.8 second (Orange line). Here are responses of some important parameters. 

Figure 27 is the   response. We can tell that MIP start at almost 23 degrees away from the 

desired equilibrium. However, it converged the equilibrium really quick in less than 2 seconds 

and since then became the same situation as last test. Figure 28 was a close look at what 

happened in first 2.5 seconds, from 0.8s to 1.8s is the transition period from an unstable mode 

to the equilibrium. 

 

Figure 27.    Response of balancing test 2 
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Figure 28.  Close look of   Response of balancing test 2 

Figure 29 is the   response, which is the response of wheels angular velocity. According 

to our analysis, when the MIP tried to be upright from a certain angle, the wheels would rush 

to the same side of the direction of falling to reach a balance. In our case,   is 0 before 0.8 

second as we haven’t released it. The rush movement is obvious as a peak of wheels angular 

velocity appears since 0.8 second, which is way higher than normal stable velocity. 

 

Figure 29.    Response of balancing test 2 
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Figure 30 is the voltage response. The peaks of voltage, which is generated by a request of 

peak   velocity, is about 4.6 V. In other words, we can even inclined the MIP for more than 

23 degrees and finally balanced it up, because the maximum voltage we could apply is 7.4 V 

and yet not reached. 

 

Figure 30.  Voltage Response of balancing test 2 

 

5.2.3 Moving Test  

Moving test demonstrate the ability of the MIP to move forward and backward according 

to our command, so we can remote control the MIP rather than just balancing it. The idea of 

controlling moving is setting reference signal of   to a non-zero value, a positive value drives 

MIP moving forward and a negative value drives MIP moving backward. The absolute value 

of reference determines the moving speed. 

We started the test with the controller on, after the MIP is stabilized, we send our moving 

command out in Notebook. Here are responses of some important parameters. 
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Figure 31 is the   response, which is the wheel position response. There are three lines 

here in blue, green and red. They stand for the Phi information for left wheel, right wheel and 

the average of wheels, separately. It is reasonable that they assembled each other since they 

share the same movement when moving forward and backward. We can tell that MIP stabilized 

itself in the first 5 seconds. Then from 5s to 12s, our command was sent to the processor and 

MIP moved forward. Subsequently, it went backward from 16s to 21s. 

 

Figure 31.    Response of moving test 

Figure 32 is the   response, which is the response of wheels angular velocity. It is easy to 

observe that   is mostly positive from 5s to 12s, as it was moving forward. While mostly 

negative from 16s to 21s due to moving backward. 
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Figure 32.    Response of moving test 

 

5.2.4 Steering Test  

Steering test demonstrate the ability of the MIP to turn left and right in place according to 

our steering command. The idea of controlling steering is setting voltages of two motors into 

different values. The ratio of two voltages determines the steering speed. 

We started the test with the controller on, after the MIP is stabilized, we send our steering 

command out in Notebook. Here are responses of some important parameters. 

Figure 33 is the   response, which is the wheel position response. Blue for left wheel and 

red for the right. We can tell that MIP stabilized itself in the first 6 seconds. Then from 6s to 

18s, left wheel span forward and right wheel almost kept in place, which led to right turns in 

place. Then from 20s to 30s, MIP perform left turns and went back to initial states.   
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Figure 33.    Response of steering test 

Figure 34 is the   response of left wheel (blue line in Figure 33). Left wheel had positive 

speed from 6s to 18s, negative speed from 20s to 30s, while right wheel stay in place. 

 

Figure 34.  Left wheel   Response of steering test 
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Chapter 6 

Conclusion 

 
In this paper, we firstly extracted state-space model of an inverted pendulum system based 

on a Lagrangian method, two system identification experiments were followed to achieve the 

better accuracy of the model. Then we managed to design a second-order and stable LQG 

controller based on velocity control alone. After successfully implementing the controller on 

the robot EduMIP, it turned out that the closed-loop system is not only a stable robot that could 

balance itself, but also a stable robot that could move, steer and start with itself inclined. 
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Appendix A 

 
All the data are given by James Strawson. Please refer to: 

https://github.com/StrawsonDesign/EduMiP/blob/master/HW4%20Balancing%20EduMiP.pdf 

 

Symbol Parameter Value 

r  
Radius of wheels 

34mm  

l  Body center of mass to wheel axis 36mm  

Wm  Mass of a wheel 27g  

Bm  Mass of the body 263g  

rG  Gearbox ratio 35.57  

mI  Motor armature inertia 8 23.6 10 kg m   

BI  Body inertia 4 24 10 kg m   

maxV  Nominal battery voltage 7.4V  

s  Motor stall torque 
max0.003   Nm at V  

f  Motor free run speed 
max1760 /   rad s at V  

  

https://github.com/StrawsonDesign/EduMiP/blob/master/HW4%20Balancing%20EduMiP.pdf
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