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ABSTRACT OF THE DISSERTATION

Exploratory Phenomena in Program Synthesis

by

Michael Buchanan James

Doctor of Philosophy in Computer Science

University of California San Diego, 2024

Professor Nadia Polikarpova, Chair

Program synthesizers promise to save time for the programmer by writing parts of their

code for them, provided the programmer knows exactly what they want. For it to suggest that

code, the programmer must convey the nuances of their specification to the synthesizer. Is

there a place for program synthesizers when those nuances are unclear, and a programmer must

explore the design space of their problem? This dissertation argues that program synthesizers

can facilitate exploring for code, and that techniques to validate explored code are needed to

reduce cognitive effort.

To use a traditional synthesizer successfully, the programmer needs a deep understand-

ing of the problem. Firstly, a programmer must convert their intent into the specific language

xiv



their tool understands, which may not match how they think about their intent. Secondly, a pro-

grammer needs to know all the edge cases of their problem and how each one should behave. If

both of these cannot be met, then a traditional synthesizer will usually be more effort to use than

simply writing the desired program.

As modern, probabilistic synthesizers require less overall information to offer a sugges-

tion, they can fill a new role in the programming workflow: code exploration. A programmer no

longer needs complete understanding of their problem nor be able to communicate all nuances

to the tool. This new exploration domain presents new challenges, particularly one of validating

the code matches the often incomplete intent of the programmer. Validating code against intent

must be quicker or easier to justify a tool’s use in exploration to be useful. In this dissertation,

I show that both traditional and probabilistic program synthesizers can aid in this exploratory

process of programming, and that techniques to validate that explored code reduce the cognitive

effort.
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Introduction

Program synthesizers promise to save time for a programmer by writing parts of their

code for them. Presently, these tools work best when a programmer knows exactly what they

want. They must be able to convey the nuances of their specification to their tool, but these tools

typically only accept one type of input [46, 97, 2, 6, 44, 83]. Can program synthesizers still offer

assistance to a programmer when that specification is not clear?

Some times that specification cannot be conveyed to a program synthesizer because the

specification is too complex. These specification styles are highly specialized (e.g. logical con-

straints [44, 95, 109], specialized types [94, 53, 62], carefully constructed examples [1, 75, 84,

37, 71]), requiring an expert user to correctly formulate. Each has their own set of tradeoffs,

between expressiveness and simplicity. So, even if a programmer knows exactly what they want

to generate, there may be difficulty in expressing their intent in just one style.

Other times, a programmer does not have a clear picture of what exactly they need at all.

Synthesis is a search problem: but, without a destination pinpoint, classical synthesizers struggle

to offer useful suggestions. Insufficient specification often leads to long lists of trivial programs.

The situation with classical, search-based synthesizers make them well suited for problems like

optimization [92, 105].

Modern, probabilistic synthesizers require less overall information to offer a suggestion.

They operate simply off the past words typed, whether they are structured or not [19]. Those past

words do not need to form a complete specification, or even a complete thought. Such a freeform

1



input invites these model-based synthesizers into a new role in the programming workflow: code

exploration.

While exploring for code, a programmer no longer needs an a priori understanding of

their problem. Instead, they can offer what they know, and look for pieces of information that

may lead them to usable code. While exploring for code with the aid of a synthesizer, the

programmer must then consider one or more new pieces of code to determine whether or not it

fits their intent. This presents a new challenge, particularly of validating that the code matches

the often incomplete intent of the programmer. Validating the code from a synthesizer requires

some cognitive effort.

This exploratory phase of programming is not often associated with program synthe-

sis, yet, there is still a place for synthesizers in the workflow. To fit in a workflow, exploratory

program synthesizers will require affordances to easily navigate the code they generate. This dis-

sertation argues that program synthesizers can facilitate exploring for code, and that techniques

to validate explored code are needed to reduce cognitive effort.

Overview

Chapter 2: Human-Centric, Type-Directed Program Synthesis

This chapter presents a multi-modal program synthesizer for Haskell. This tool empow-

ers a programmer to use types, examples, or both to compose highly polymorphic library calls.

Combining these different search inputs allows a user to create their specification more ways

that make sense to them, helping to span the gulf of execution. This tool provides additional in-

formation on the generated calls to help a user understand and select the appropriate synthesized

code. We evaluated the utility of this synthesizer in comparison to a common Haskell developer

tool, marking the first user-study of a synthesizer. We find that programmers complete their

tasks faster and are able to solve more tasks in the given time with the aid of this tool. The study

2



solidifies that synthesizers are ready for broader usage, as they can compete with off-the-shelf

non-synthesizer tools.

Chapter 3: Program Recognition in Synthesis

This chapter identifies a core problem in the usability of program synthesizers. While

program synthesizers can offer many candidate snippets to fit a specification, how should a

user decide which snippet is correct for their use case? This chapter introduces the problem

of “program recognition” in the context of program synthesis, and argues it is distinct from

the well-researched topic of “Program Comprehension”. Reframing the needs of a programmer

from those of comprehension to those of mere recognition enables a more tailored experience in

program synthesis. Recognizing a program is equivalent to overcoming the gulf of evaluation.

Synthesizers can focus on providing enough detail to allow a user to find the correct program for

their needs, without necessarily deeply understanding the produced code.

Chapter 4: A Theory of Code-Generating Model Usage

This chapter explores how programmers interact with AI-powered program synthesizers.

This chapter presents a grounded theory analysis of how programmers use the Copilot[38] pro-

gramming assistant. By observing 20 participants, with a range of prior experience using the

assistant, we produce a bimodal theory of interactions. Programmers are either in an accelera-

tion mode where the tool is helping them put thought to code quickly; or, they are in exploration

mode wherein a programmer is unsure how to proceed and uses Copilot to explore options. The

theory we generate provides a range of possible opportunities for improving future AI assistants.

Chapter 5: Validating AI-generated programs with live programming

Throughout the findings in chapter 3, we find that programmers wanted to validate sug-

gestions from the assistant in their own case. In this chapter, my coauthors and I combine an

AI assistant with projection box [66] from live-programming. We show that we can reduce cog-

nitive burden with this technique combining both live-programming and large-language models.

This chapter demonstrates that validation techniques on explored code reduce cognitive effort.

3



Conclusion: Future Work

The conclusion outlines future work to assist programmers explore and validate sugges-

tions from a large-language model. chapter 3 identified that programmers spend significant time

exploring the design space of their problem with the aid of an AI-assistant. The cost of infer-

ring programs is currently high but there is much work to lower that cost [103]. With more

samples, we can present a programmer with a better understanding of the space of possibilities,

instead of just one concrete suggestion. We can use existing program analysis techniques to

group programs and present commonalities.
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Chapter 1

Human-Centric, Type-Directed Program

Synthesis

1.1 Introduction

Consider the task of implementing a function dedup that eliminates adjacent duplicate

elements from a list (e.g. dedup [1,1,2,2,1] = [1,2,1]). In a functional language

like Haskell, this task can be accomplished without explicit recursion, simply by using functions

from the standard library:

dedup xs = map head (group xs)

This solution first calls group on the input list to split it into clusters of adjacent equal elements

(e.g. group [1,1,2,2,1] = [[1,1], [2,2], [1]]), and then maps over the result

to extract the head of each cluster. This implementation is not only shorter than a recursive one,

but also more idiomatic. But how is the programmer to discover this solution?

The need for such discovery is particularly acute in functional languages, whose ex-

pressive types and higher-order functions make libraries extremely versatile and compositional.
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Figure 1.1: In HOOGLE+, the user can search for dedup using its type, one or more tests, or
both.

As a result, discovery is especially useful as many computations can be expressed by gluing

components from existing libraries. At the same time, discovery is especially difficult as li-

brary functions are very general and can be composed in myriad ways. Online help forums like

STACKOVERFLOW only contain solutions for common programming tasks, and are generally

less helpful outside of a handful of most popular programming languages. As an alternative,

Haskell programmers often turn to the HOOGLE API search engine [77] to search for library

functions by their type; but HOOGLE only helps if there is a single library function that does the

job, which is not the case for dedup where we must compose multiple functions into a snippet.

Our goal is to bridge this gap and build an API discovery tool for Haskell that helps programmers

find snippets like our implementation of dedup .

Type-Directed Component-Based Synthesis. The core technical challenge for API dis-

covery is how to efficiently search the space of all snippets when the API library has hundreds

or thousands of functions. Component-based program synthesis techniques [73, 47, 33, 46]

tackle this challenge using a type-directed approach. In particular, our prior work on synthesis

by type-guided abstraction refinement (TYGAR) [46] demonstrates how to efficiently perform

type-directed search in the presence of polymorphism and higher-order functions, which are

ubiquitous in functional languages. In this work we build upon the TYGAR search algorithm to

implement an API discovery tool we dub HOOGLE+.

Challenges. Although the core search algorithm behind HOOGLE+ is not new, turning
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this algorithm into into a practical API discovery tool required overcoming three important chal-

lenges.

1. Specification: The first challenge is that of specification: how should the programmer

communicate their intent to the synthesizer? In Haskell, types are a powerful and concise

way to specify program behavior thanks to parametric polymorphism, which significantly

restricts the space of possible implementations of a given type. Types are the preferred

mode of specification for HOOGLE users and moreover, TYGAR requires a type in order

to perform snippet search. The flip side of expressive types is that a Haskell beginner

might not immediately know the most appropriate type for the function they want to im-

plement. Consider dedup: its most general type is Eq a => [a] → [a]; this type

is polymorphic in the list element, but restricts these elements to be equatable, because

dedup has to compare them for equality. When types become non-trivial, it is more natu-

ral for a user to specify their intent using input-output tests. Based on these observations,

we design HOOGLE+ to allow three different modes of intent specification: only types,

only tests, or both (see Figure 1.1). To enable type-directed search when the user only pro-

vides tests, we develop an algorithm to infer types from the tests. Note that there might be

many types of different levels of generality that are consistent with the tests, so HOOGLE+

presents a set of likely type specifications to the user, as shown in Figure 1.2.

2. Elimination: Specifications are often ambiguous, especially when the user provides the

type signature alone. In this case TYGAR might return many irrelevant candidate pro-

grams. For example, searching for dedup by its type might generate programs like

\xs → [] (which always returns the empty list) or \xs → head [] (which al-

ways crashes by taking the head of an empty list). Intuitively, these programs are clearly

uninteresting, and we shouldn’t need additional user input to eliminate them from the

synthesis results. To address this challenge, we have developed an efficient heuristic for

identifying uninteresting candidates using property-based testing [23, 101].
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Figure 1.2: Candidate types for dedup inferred from the test "abaa" → "aba".

3. Comprehension: Finally, once the candidate programs have been generated: how should

the programmer decide which, if any, synthesis result solves their problem? To facilitate

comprehension of a candidate program, HOOGLE+ automatically generates several exam-

ples of its behavior as shown in Figure 1.3. Unfortunately, a naive exhaustive or random

generation yields many uninformative examples. We show how to address this challenge

by relying, once again, on property-based testing to generate inputs with certain desir-

able qualities, such as examples of success and failure and examples that differentiate this

candidate from the rest.

HOOGLE+. We have incorporated the three techniques described above together with

the TYGAR search algorithm into a web-based API discovery engine. Figure 1.1 illustrates

using HOOGLE+ for our running example: the programmer has specified the Haskell type signa-

ture for dedup and one example of its behavior. Figure 1.3 shows the list of candidate programs

returned by HOOGLE+ (with the correct solution at the top).

User study. Does synthesis-aided API discovery actually help programmers solve their

tasks compared to a more traditional workflow? We evaluate this question by conducting a
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Figure 1.3: Two candidate solutions for dedup . The behavior of each solution is illustrated
with both user-provided and auto-generated examples.

user study with 30 participants of varying levels of Haskell proficiency. The participants were

asked to solve various programming tasks (including dedup) either using HOOGLE+ or using

a popular code search workflow (HOOGLE together with an interpreter). The study shows that

HOOGLE+ enables programmers to solve tasks faster and increases their success rate in finding

a correct solution by more than 50%.

Contributions. In summary, this paper makes the following contributions:

1. HOOGLE+, the first practical API discovery tool for a functional language with higher-

order functions and polymorphic types; the tools accepts specifications in the form of

types, input-output tests, or both, and displays candidate snippets together with examples

of their behavior (section 1.2).

2. A new algorithm that infers likely type specifications from tests (section 1.4).

3. A new technique for automatically eliminating uninteresting synthesis results using

property-based testing (see subsection 1.5.1).
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4. A new technique for automatically generating examples of program behavior using

property-based testing (see subsection 1.5.2).

5. The first user study evaluating the usefulness of synthesis-aided API discovery in a func-

tional language (section 1.7).

1.2 Overview

We begin with an overview of the challenges to practical synthesis-aided API discovery

and show how HOOGLE+ overcomes these challenges. We postpone the description of the core

synthesis engine, type-guided abstraction refinement (TYGAR), to section 1.3.

1.2.1 Specification

Consider a user tasked with implementing our running example dedup , and assume

that the user has a test in mind: on input "abaa" the snippet should return "aba"1. In order

to make use of the TYGAR synthesis engine, however, the user also needs to provide a type

signature for dedup , which the engine uses to efficiently navigate the search space.

Problem. Our user study shows that Haskell beginners often do not know the most ap-

propriate type signature for the snippet that they are looking to implement (section 1.7). In

particular, typeclass constraints are particularly tricky for beginners. For example, the appropri-

ate type specification for dedup is Eq a => [a] → [a], where the constraint Eq a =>

allows using equality checks on a to remove the duplicates, but the need for this constraint is not

obvious from the task description. Consequently, the user might search using the overly general

type [a] → [a], which will prove fruitless (the dedup snippet does not check against this

type). Alternatively, the user might search an overly specific type, like [Char] → [Char],

which will yield too many results to be useful.
1In Haskell, a string is just a list of characters, so dedup can operate on strings.
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Solution: Types from Tests. We address the specification problem with a novel tech-

nique that automatically infers likely type specifications from tests. In our running example,

the user enters their intended test "abaa" → "aba" and leaves the type specification blank.

HOOGLE+ then presents the user with a list of up to 10 candidate types, as shown in Figure 1.2.

Notice that the correct type Eq a => [a] → [a] is listed in position 5. When reminded

of typeclass constraints explicitly, users can often figure out which constraints they need.

Inferring likely type specifications is a difficult problem: as we show in subsection 1.6.1,

there can be anywhere from a dozen to a few million types of different levels of generality

consistent with a given set of tests. To pick a few likely candidates, our inference algorithm

incorporates two new mechanisms: (1) a filtering mechanism eliminates candidate types that

cannot be inhabited by a meaningful program (e.g. the type [Char] → [a] is eliminated,

because any program of this type always returns the empty list) (2) a ranking mechanism that

prioritizes simple and general types. We describe our inference algorithm in detail in section 1.4

and evaluate it empirically in subsection 1.6.1.

1.2.2 Elimination

Now consider a scenario where a user is searching for dedup by only its type,

Eq a => [a] → [a].

Problem: Meaningless and Duplicate Results. Type-only specifications are often highly

ambiguous: although polymorphic type signatures help narrow down the search space, there

might still be too many programs that check against a given type. Fortunately, many of these

programs are clearly uninteresting, and can be eliminated without requiring additional input

from the user.

We have identified two main sources of uninteresting synthesis results. Meaning-

less programs are those that crash or diverge on every input. For example, any pro-

gram that contains the subexpression head [] is meaningless as it always crashes re-
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gardless of the input. The second source of uninteresting synthesis results are dupli-

cates, i.e. semantically equivalent programs. For example, one candidate solution for

dedup may be \xs → init (head (group xs)) and the following one could be

\xs → tail (head (group xs)). The two candidates syntactically differ in that they

take the prefix (init) and suffix (tail) of the result of head (group xs). However, they

are semantically equivalent as the input to init and tail is always a non-empty list of identi-

cal values, e.g. init [’a’, ’a’] and tail [’a’, ’a’] are both equal to [’a’]. Our

goal is to eliminate meaningless and duplicate programs from the output of HOOGLE+ automat-

ically.

Solution: Property-Based Testing. In principle, the problem of determining whether

a program is meaningful or whether two programs are equivalent is undecidable. In practice,

however, it turns out to be sufficient to test these properties on a finite set of inputs. To do so

efficiently, HOOGLE+ relies on the the SMALLCHECK property-based testing library [101].

Specifically, for each new candidate program p generated by the synthesis back-

end, HOOGLE+ invokes SMALLCHECK to test whether there exists some input where p

produces an output within a given timeout. If this check succeeds, then for each previ-

ously displayed candidate p′, HOOGLE+ asks SMALLCHECK to find a distinguishing in-

put [56] for p and p′, i.e. an input where they produce different outputs. For exam-

ple, assume that HOOGLE+ has displayed several results for dedup , including the pro-

gram p′ = \xs → init (head (group xs)), and the newly generated candidate p is

\xs → tail (head (group xs)). This candidate passes the meaningfulness check

(SMALLCHECK finds the input [0] where p returns []), but fails the uniqueness check: after

exhaustively searching all lists up to a given length and range of values, SMALLCHECK is un-

able to find an input where the output of p differs from the output of p′. Based on the failed

uniqueness check, HOOGLE+ eliminates p from the list of results presented to the user.

Haskell’s laziness presents a subtle challenge for test-based elimination: in Haskell, it
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is common practice to write functions that produce infinite data structures, and such functions

should be considered meaningful. At the same time, trying to print the output of such a function

or compare two infinite outputs would lead to non-termination. HOOGLE+ builds upon the

ChasingBottoms library [25] to ensure proper handling of infinite values.

1.2.3 Comprehension

HOOGLE+ displays a sequence of meaningful and unique candidates to the user, but

how is the user to know which result implements their requirements? While some experienced

programmers might be able to recall the behavior of the components well enough to mentally re-

construct the semantics of their composition, most users require further assistance to understand

how each candidate behaves. One way forward is to show the user input-output examples for

each candidate. However, there are two questions that must be addressed to facilitate example-

based comprehension.

Problem: Comprehension Conflicts. First, what kind of examples is the user looking

for? There is no “best” example for a candidate program as there are a range of different com-

prehension goals that a user might have for each candidate. They may try to differentiate that

candidate from other similar snippets or they might be trying to understand the functionality of

the candidate itself.

Solution: Multiple-Objective Witnesses. HOOGLE+ supports multiple comprehension

objectives by generating input-output examples that serve to witness different properties of the

candidate, namely: 1. Meaningfulness 2. Uniqueness 3. Functionality. In Figure 1.3, the

first candidate’s examples demonstrate these properties in order. The first example, with input-

output ("aab","ab"), repeats the test specification. The next example, ([],[]) witnesses

that this candidate is meaningful. The subsequent example ([0], [0]) serves a differentiating

objective: the same input produces different output on candidate program #2. The last example,

([1], [1]), demonstrates the functionality of the candidate program, more such examples are
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available on demand from the “More Examples” button. Note that in candidate program #2, the

input [] demonstrates that the candidate is a partial function.

Problem: Minimality vs Interactivity. Second, when should examples be shown to the

user? HOOGLE+ could wait until we have all candidates and then generate examples. On the

plus side, waiting would let us find fewer inputs (or even just one) to differentiate each candidate.

Unfortunately, the resulting lack of interactivity could drive users away from the tool altogether.

Solution: Laziness. Instead, we stream input-output examples with every candidate,

providing more examples to already-displayed candidates, which may be hidden from view until

the user clicks “More Examples” to avoid cluttering the UI. In the case of dedup , a user might

see a usage table as seen in Figure 1.3. This table shows inputs along with their output for that

candidate program. A user can edit the input for this usage and see the new corresponding output

with the “edit” button on the left. A user can input their own usage with the “New Usage” button

on the top left. Finally, a user can ask for more examples explicitly from the system with the

“More Examples” button.

1.3 Background

HOOGLE+ builds upon prior work from two sources. First, the core program synthesis

algorithm comes from our own prior work on type-guided abstraction refinement (TYGAR) [46].

That work developed a novel search technique but we did not focus on end-to-end usability of the

synthesizer. Second, we filter candidate programs with the help of exhaustive testing framework

SMALLCHECK [101].

1.3.1 Type-Guided Abstraction Refinement

In our prior work [46] we developed TYGAR, a component-based synthesis algorithm

that takes as input a Haskell type and a set of library functions, and returns a list of programs of
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the given type, composed from the library functions. Like prior work in component-based syn-

thesis [73, 47, 33], TYGAR reduces the synthesis task to graph search; the challenge, however,

is that in Haskell polymorphic components can infinitely explode the graph to search through.

The key insight to overcome that explosion is to build a graph over abstract types which repre-

sent a potentially unbounded set of concrete types. We showed how to use graph reachability

to search for candidate programs over those abstract types, and introduced a new algorithm that

uses proofs of untypeability of ill-typed candidates to iteratively refine the abstraction until a

well-typed result is found. TYGAR uses a relevant type system to ensure that every argument is

used at least once in a candidate program.

Although TYGAR was able to produce a stream of well-typed candidates, our own expe-

rience during its empirical evaluation identified several shortcomings that had to be fixed in order

to turn it into a practical API discovery tool. Firstly, for some type queries it returned too many

uninteresting (meaningless or repetitive) programs. Secondly, it required the user to describe

every programming task using its most general type, which can be challenging for beginners. Fi-

nally, it was often difficult to analyze synthesis results simply by looking at the generated code.

We address these three shortcomings in present work.

1.3.2 SmallCheck

SMALLCHECK is a property-based testing framework for Haskell [101]. Property-based

testing takes as input a property, i.e. a Boolean Haskell function with one or more arguments,

and executes this function on a set of input values in an attempt to find a counterexample, i.e.

an input where the property does not hold. While the original property-based testing framework

QUICKCHECK [23] uses random input generation, its successor SMALLCHECK generates inputs

exhaustively up to a user-provided constructor depth. As a result, SMALLCHECK always find

the smallest counter-example to a property.
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1.4 Type Inference from Tests

In this section, we detail our algorithm for inferring likely type specifications from tests.

In a simply-typed language this is a straightforward task, since any function the user might want

to synthesize has a unique, concrete type, which must coincide with the type of the test: for

example, if the test is "abaa"→ "aba", the intended type specification must be String →

String . In a language like Haskell, however, intended type specifications are often polymor-

phic, which poses two main challenges for type inference:

1. Reconciling multiple tests. Consider user input with two tests: "abaa"→ "aba" and

[1,1,1] → [1], whose concrete types are [Char]→ [Char] and [Int]→ [Int], re-

spectively. To reconcile these tests we must find a polymorphic type that can be instanti-

ated into either of the two concrete types: for example, [α]→ [α]. To tackle this challenge,

we build upon prior work on anti-unification [93, 99].

2. Generalizing from tests. Now consider user input with a single test [1,1,1] → [1].

The concrete type of this test is [Int]→ [Int], but this behavior can also be produced

by a function with a more general type, such as [Int]→ [α], [α]→ [Int], [α]→ [α],

or α→ β. It is not obvious which one of these types would make the best specification:

more general types reduce the search space and hence yield better synthesis results, but

generalize too much and you will miss the intended solution. To tackle this challenge we

propose a ranking heuristic to identify which generalized types are more likely to match

user intent.

In section 1.4.1–section 1.4.5 we formalize our base algorithm for a simplified setting,

where all tests have an unambiguous concrete type and the type system does not have type type

classes. The base algorithm is extended to deal with ambiguous tests in section 1.4.6 and type

classes in section 1.4.7.
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1.4.1 Preliminaries

We formalize our base type inference algorithm for a core language defined in fig. 1.4.

Types. The language is equipped with a standard prenex-polymorphic type system: types

T are either type variables, type constructor applications C T 2, or function types. Type variables

are denoted with lower-case Greek letters α,β, . . .. For lists, we use the familiar notation [T ] as

syntactic sugar for List T . All type variables are implicitly universally quantified at the top

level. A type T is concrete if is contains no type variables.

Type ordering. A substitution σ = [α1 7→ T1, . . . ,αn 7→ Tn] is a mapping from type vari-

ables to types that maps each αi to Ti and is the identity mapping elsewhere. We write σT to

denote the application of σ to type T , which is defined in a standard way. We say that type T

is more general than type T ′ (or alternatively, that T ′ is more specific than T ) written T ′ v T ,

iff there exists σ such that T ′ = σT . For example, [Int] v [α] v β. The relation v is a partial

order on types, and induces an equivalence relation T1 ≡ T2 ≜ T1 v T2∧T2 v T1 (equivalence up

to variable renaming).

We say type T ′ is a common generalization of a set of types Ti if ∀i.Ti v T ′. The least

common generalization (or join) of Ti always exists and is unique up to ≡, so, by slight abuse

of notation, we write it as a function t(Ti). For example, [Char] and [Int] have two common

generalizations, [α] and β, and [Char]t [Int] = [α], the more specific of the two.

Type checking. We omit the exact syntax of terms e, apart from the fact that they include

values v. Tests t are built from argument values and a result value. We also omit the definition

of typing environments Γ, which hold the types of data constructors and binders for λ− terms,

and term typing, since they are entirely standard; instead we assume access to a type checking

oracle Γ ` e :: T , which decides whether term e checks against type T in Γ and a type inference

oracle Γ ` e =⇒ T , which computes the most general type T such that Γ ` e :: T holds. Our

implementation uses GHC to implement both oracles.
2Throughout this section, we write X to denote a sequence of syntactic elements X .
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T ::= α |C T | T → T Types
σ ::= [α 7→ T ] Substitutions
e ::= v | . . . Terms
t ::= v | v→ t Tests

Γ ` e :: T Type checking
Γ ` e =⇒ T Type inference
Γ ` t ∈ T Type witnessing

Figure 1.4: Core language.

Input: Environment Γ, test suite ti
Output: Types Tk such that ∀i,k.Γ` ti ∈ Tk and

Tk are likely specification types

1: TESTTOTYPE(Γ, ti)
2: Γ ` ti =⇒ Ti

3: Tt := ANTIUNIFYALL(Ti)
4: G := {T | Tt v T ∧ INHABITED(T )}
5: return TOPK(G)

Figure 1.5: Type inference algorithm.

We extend type inference to tests; in particular, for a test with arguments we infer a

function type: Γ ` v→ t =⇒ T1→ T2 where Γ ` v =⇒ T1 and Γ ` t =⇒ T2. In this section we

assume that all inferred test types are concrete (we relax this restriction in section 1.4.6). We

say that a test t witnesses a type T in Γ (Γ ` t ∈ T ), if Γ ` t =⇒ T ′ and T ′ v T . The intuition is

that t demonstrates a possible behavior of a function of type T , if the test’s type is more specific

than T . For example, the test Γ ` [1,1,1] → [1] =⇒ [Int]→ [Int], witnesses the type

[α]→ [α].

1.4.2 From Tests to Types

Figure 1.5 presents an overview of our TESTTOTYPE inference algorithm. The algorithm

takes as input an environment Γ (the component library) and a test suite t, and returns a sequence

of likely type specifications T . Which properties need to hold of T ? Assume that the user’s

intended program is e∗ and its most general type is T ∗ (Γ ` e∗ =⇒ T ∗). Then T ∗ is the best

type specification for synthesizing e∗: although any T v T ∗ might yield the desired program

since Γ ` e∗ :: T necessarily holds, there might be many more programs e such that Γ ` e :: T

compared to Γ ` e :: T ∗, hence using the more specific type as the specification is likely to yield

many irrelevant results and slow down the synthesis. Of course, we do not have T ∗ (let alone e∗)

at our disposal, so informally, the goal of TESTTOTYPE is to produce a sequence T such that T ∗

is likely is occur early in this sequence.
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Towards this goal TESTTOTYPE proceeds in three steps. First, it uses the inference or-

acle to obtain the concrete types Ti of the tests. Next, it uses the function ANTIUNIFYALL to

compute Tt, the least common generalization of Ti. Then, it computes G, the set of all gener-

alizations of Tt that maybe be inhabited by relevant programs, as determined by the function

INHABITED. Note that each T ∈ G is witnessed by every test ti in the input test suite: this is

because Ti v Tt by the definition of least common generalization, and Tt v T . Finally, the algo-

rithm ranks the remaining types based on a heuristic TOPK. The remaining part of this section

will introduce each step in detail.

1.4.3 Anti-Unification

Figure 1.6 details the function ANTIUNIFYALL that computes the least common gener-

alization of a sequence of types, using anti-unification [93, 99]. This top-level function relies

on a pairwise anti-unification procedure ANTIUNIFY, which does the actual work. At a high

level, ANTIUNIFY compares the structure of two types, abstracting different substructures into

fresh type variables. This function takes as input two types and returns their join, and addition-

ally threads through an anti-substitution θ = [(T,T ) 7→ α]—a map from pairs of types to type

variables—which keeps track of the substructures that have already been abstracted.

Now, let us look at the ANTIUNIFY algorithm closely. Lines 18- 23 handle the interesting

case when the top-level structure of T1 and T2 is different. In particular, lines 20- 23 abstract

the two dissimilar types into a freshly created type variable α and add a new entry into the

anti-substitution, which maps the pair (T1,T2) to α. To find the least common generalization,

ANTIUNIFY does not always create a fresh variable when two types are different. If this pair

of types is found in θ (lines 18- 19), then it has already been abstracted into some type variable

α, so we simply reuse this variable. Other cases of ANTIUNIFY recursively descend into type

substructures, threading the anti-substitution through. For example, when anti-unifying [Int]→

[Int] with [Char]→ [Char], first the two argument types are anti-unified into the type [α] with
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Input: Sequence of concrete types Ti

Output: Tt = t(Ti)
1: ANTIUNIFYALL(T )
2: return T
3: ANTIUNIFYALL(T1;Ti)
4: T := ANTIUNIFYALL(Ti)
5: Tt,_ := ANTIUNIFY(T1,T, [])
6: return Tt

Input: Types T1,T2, anti-substitution θ
Output: Type T = T1tT2, anti-substitution θ

7: ANTIUNIFY(T1→ T ′1 ,T2→ T ′2 ,θ)
8: T,θ := ANTIUNIFY(T1,T2,θ)
9: T ′,θ := ANTIUNIFY(T ′1 ,T

′
2 ,θ)

10: return T → T ′,θ

11: ANTIUNIFY(C Ti,C T ′i ,θ)
12: for Ti,T ′i do
13: Ti,θ := ANTIUNIFY(Ti,T ′i ,θ)

14: return C Ti,θ

15: ANTIUNIFY(T1,T2,θ)
16: if T1 = T2 then
17: return T1,θ
18: else if θ[(T1,T2)] = α then
19: return α,θ
20: else
21: α := fresh type variable
22: θ := θ∪ [(T1,T2) 7→ α]
23: return α,θ

Figure 1.6: Anti-unification algorithm.

a fresh variable, and the mapping [(Int, Char) 7→ α] is recorded in θ; this mapping is reused

when anti-unifying the return types, in order to obtain the least common generalization [α]→ [α]

(rather than the more general [α]→ [β]).

1.4.4 Type Filtering

Although the least common generalization Tt computed by anti-unification reconciles

the types of all tests, we also want to include more general types into the final type inference

result. The challenge is that the set of all generalizations of Tt, {T | Tt v T}, can contain

thousands of types (see section 1.6), and we need to pick a few that are most likely to represent

the user intent. Luckily, many of these types are obviously uninteresting in the sense that they

can only be inhabited by meaningless programs (i.e. terms that ignore their arguments, or crash

/ diverge on all arguments). For example, the type Int→ α is uninteresting because there is no

way to construct a value of arbitrary type α, while the type α→ β→ β is uninteresting because

there is no way to use the first argument.

To filter out uninteresting types, we define a simple analysis that computes an over-
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approximation of the set of inhabited types: i.e. if the analysis says “no”, then the type can

only be inhibited by degenerate terms; if the analysis says “yes”, the type might still be unin-

habited depending on the component library. The function INHABITED in fig. 1.7 implements

this analysis. This function deems a type inhabited if its return type is reachable and each of its

argument types is relevant.

Return type reachability. A return type is unreachable if it contains type variables that

do not occur in the argument types (see function REACHABLE in fig. 1.7). Examples include

Int→ α and [Int]→ [α]. Although the latter is inhabited in the strict sense, note that all pro-

grams of this type must return the empty list regardless of the input; we consider such programs

degenerate.

Argument type relevancy. An argument type is irrelevant if it cannot be used to compute

a value of the return type (see function RELEVANT in fig. 1.7). There are two interesting cases:

type variables and functions. A type variable can be used in two different ways: (1) if it directly

occurs in the return type or (2) if it can be consumed by a higher-order argument, which is

itself relevant. For example, the sole argument in α→ α can be used directly, while the second

argument in (α→ β)→ [α]→ [β] can be consumed by its first argument, to eventually produce

the return type. In turn, an argument of a function type T → T ′ is relevant if T is reachable from

the rest of the arguments and T ′ is relevant. For example, the first argument of (α→ β)→ [α]→

[β] is relevant because α is reachable (from [α]) and β is relevant (it directly occurs in [β]).

1.4.5 Type Ranking

As a final step, the function TOPK returns the k highest ranked candidate types (in our

implementation k = 10). Our ranking approximates the likelihood that a candidate type is the

user’s intended type, conditioned on the examples provided. At a high level our strategy ap-

proximating that likelihood first picks the "simplest" types given the tests, then picks the most

general types. Our ranking assumes the user’s tests were just informative enough, that any type
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Input: Type T
Output: May T be inhabited?

1: INHABITED(T )
2: (A,R) := ARGSRET(T )
3: reach := REACHABLE(A,R)
4: rel :=

∧
T∈A RELEVANT(A,R,T )

5: return reach ∧ rel

1: ARGSRET(T → T ′)
2: (A,R) := ARGSRET(T ′)
3: return ({T}∪A,R)
4: ARGSRET(T )
5: return ({},T )

1: FUNTYPES(T → T ′)
2: return T → T ′

3: FUNTYPES(C T )
4: return

∪
FUNTYPES(T )

5: FUNTYPES(α)
6: return /0

Input: Argument types A, return type R
Output: Whether R can be computed from A

1: REACHABLE(A,R)
2: return

∪
TVARS(A)⊇ TVARS(R)

Input: Argument types A, return type R, type
T

Output: Whether T can be used to compute R
1: RELEVANT(A,R,α)
2: if α ∈ TVARS(R) then
3: return true
4: for Ta ∈ A, T ∈ FUNTYPES(Ta) do
5: (A′,R′) := ARGSRET(T)
6: if REACHABLE(A′,α) ∧
7: RELEVANT(A\Ta,R,T ) then
8: return true
9: return false

10: RELEVANT(A,R,T → T ′)
11: return REACHABLE(A,T ) ∧
12: RELEVANT(A∪{T ′},R,T ′)
13: RELEVANT(A,R,T )
14: return true

Figure 1.7: Type filtering algorithm.
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structures or similarities were intentional. The function is based on lexicographic ordering of

three simple heuristics.

Our first heuristic penalizes generalizations that abstract over a complex type: a func-

tion or a non-nullary constructor application. For example, consider possible generalizations of

[Int]→ [Int]. This heuristic penalizes abstracting this type into α→ α or α, because these

generalizations abstract over a list constructor and a function, respectively. The intuition is that

a user is unlikely to supply a complex value if it is not required to illustrate the behavior: e.g. it

is more natural to illustrate the identity function with the test 1→ 1 rather than [1,1]→ [1,1].

As an optimization, our implementation does not generate this kind of generalizations in the first

place, since in practice they never make it into top k. We make an exception for the type [Char]

and do not penalize abstracting it into α, because of the special string literal syntax, which makes

values of this type appear simple.

Our second heuristic is to prioritize types that generalize same substructures into the

same variable. Going back to the [Int]→ [Int] example, the generalization [α]→ [α] has

higher rank than [α]→ [Int] because the former abstracts both occurrences of Int into α.

We assume a-priori that simpler types, those with fewer distinct atomic types, are more likely

than complex types, with more atomic types, for reusable code snippets HOOGLE+ is capable

of producing. To implement this heuristic, we build an inverse substitution between the anti-

unification result Tt and the generalized type T , and penalize T proportionally to the size of

this substitution. In our example, the inverse substitution for [α]→ [α] is [Int 7→ α], whereas

for [α]→ [Int] it is [Int 7→ {α, Int}], so the former is ranked higher (note that we keep the

identity mapping Int 7→ Int in the substitution, unless all occurrences of Int were replaced).

Our third heuristic is to prioritize general types over specific types. In our example,

[α]→ [α] has higher rank than [Int]→ [Int] because their inverse substitutions have the same

size one, but the former is more general. This heuristic easily over-generalizes: in the absence

of the second heuristic, it prefers [α]→ [β] on our example. For this reason we give it the least
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priority.

1.4.6 Support for Ambiguously-Typed Tests

Our formalization so far assumed that each test ti has a unique concrete type Ti. Un-

fortunately, this is not always the case: Haskell values can have polymorphic types, and us-

ing such values inside tests presents a subtle issue. The simplest example of a polymorphic

value is the empty list; so, what is the type of the test []→ 0? The user could have intended

[α]→ Int (e.g. list length), [Int]→ Int (e.g. sum of the elements), or even [Char]→ Int

(e.g. number of spaces). Note that we cannot assume that the Tt type for this (singleton)

test suite is [α]→ Int with α interpreted as universally quantified, because this would pre-

clude the inference of the other two plausible type specifications. Polymorphic values are not

a corner case that can simply be ignored: values like [] and Nothing are common enough,

but things get even worse with higher-order tests, because many functions are naturally poly-

morphic. For example, consider the following test for the function applyNTimes from our

user study, which applies a function to some initial value n times (see section 1.7 for details):

(\x → x ++ x) → "s" → 2 → "ssss". Here the first argument has a polymor-

phic type [α]→ [α], and, perhaps counter-intuitively, the test does not actually constrain α to be

Char.

In order to support ambiguously-typed tests, we extend the syntax of types with a sep-

arate kind of type variables that we refer to as wildcards: T ::= . . . |?α. The wildcards are

introduced by the inference oracle for tests Γ ` t =⇒ T , when tests contain polymorphic values.

For example, we infer the type [?α]→ Int for []→ 0. Unlike regular type variables α, which

are implicitly universally quantified, a wildcard stands for a concrete type a user had in mind,

which is unknown to the synthesizer.

To accommodate for wildcards during type specification inference, we need to mod-

ify to the function ANTIUNIFY. The join of two types is now not a single type but a set
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Input: Types T1,T2, anti-substitution θ, dis-unification constraints Ω
Output: Set of types Ti such that Ti = T1tT2, and their respective anti-substitution θ, wildcard substitu-

tion ?σ, and dis-unification constraints Ω
1: ANTIUNIFY(T,T,θ,Ω)
2: return {T,θ, [],Ω}

3: ANTIUNIFY(T1→ T ′1 ,T2→ T ′2 ,θ,Ω)
4: T,θ,?σ,Ω← ANTIUNIFY(T1,T2,θ,Ω)
5: T ′,θ,?σ,Ω← ANTIUNIFY(?σT ′1 ,?σT ′2 ,θ,Ω)
6: return {T → T ′,θ,?σ,Ω}

7: ANTIUNIFY(C Ti,C T ′i ,θ,Ω)
8: for Ti,T ′i do
9: Ti,θ,?σ,Ω← ANTIUNIFY(?σTi,?σT ′i ,θ,Ω)

10: return {C Ti,θ,?σ,Ω}

11: ANTIUNIFY(?α,T2,θ,Ω)
12: R := ABSTRACT(?α,T2,θ,Ω)
13: ?σ := [?α 7→ T2]
14: return R∪{T2,?σθ,?σ,?σΩ | sat(?σΩ)}

15: ANTIUNIFY(T1,?α,θ,Ω)
16: . . . (symmetrical)

17: ANTIUNIFY(T1,T2,θ,Ω)
18: return ABSTRACT(T1,T2,θ,Ω)

Input: Types T1,T2, anti-substitution θ, dis-unification constraints Ω
Output: Type variables α and corresponding anti-sub θ, sub ?σ, new constraints Ω
19: ABSTRACT(T1,T2,θ,Ω)
20: α := fresh type variable
21: θ′ := θ∪ [(T1,T2) 7→ α]
22: Ω′ := Ω∪{(T1,T2) 6∼ (T ′1 ,T

′
2)] | [(T ′1 ,T ′2) 7→ α] ∈ θ}

23: R := {α,θ′, [],Ω′ | sat(Ω′)}

24: for [(T ′1 ,T
′

2) 7→ α] ∈ θ
25: s.t. ∃?σ =mgu((T ′1 ,T

′
2),(T1,T2))

26: and sat(?σΩ) do
27: R := R∪{α,?σθ,?σ,?σΩ}
28: return R

Figure 1.8: Anti-unification algorithm with wildcard type variables.
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of types, for each possible instantiation of the wildcard. For example, consider two tests

for the function applyNTimes: (\x → x ++ x) → "s" → 2 → "ssss" and

(\x → 0:x) → [1] → 3 → [0,0,0,1] whose types are, respectively, ([?α] →

[?α])→ [Char]→ Int→ [Char] and ([Int]→ [Int])→ [Int]→ Int→ [Int]. The

join of these two types is a pair of types ([β] → [β]) → [β] → Int → [β] and ([Int] →

[Int])→ [β]→ Int → [β]. The first result comes from instantiating ?α 7→ Char and the

second one from ?α 7→ Int; importantly, any other instantiation would lead to a type that is

more general than either of the two. After computing the join, the rest of the inference algorithm

proceeds by taking the union of all generalizations of each member of the join, and performs the

filtering and ranking as before.

Anti-Unification with Wildcards. Our algorithm for computing the join efficiently (with-

out enumerating infinitely many potential wildcard instantiations) is shown in fig. 1.8. There

are several differences between this algorithm and ANTIUNIFY from fig. 1.6. First, the algo-

rithm returns a set of anti-unification results, and uses Haskell-like monadic notation to compute

all combinations of results in lines 3–6 and 7–10. Second, each anti-unification result also in-

cludes a wildcard substitution ?σ, which maps wildcards to types, and a set of dis-unification

constraints Ω of the form T1 6∼ T2. These components record the decisions made about wildcard

instantiations in the current branch of the search.

The most interesting case of anti-unification is captured by the helper procedure AB-

STRACT, which abstracts two types with dissimilar top-level structure into an anti-unification

variable. Because the input types T1 and T2 might contain wildcards, ABSTRACT cannot decide

a-priori whether to create a fresh anti-unification variable or to reuse one of the variables already

in θ. Instead it tries all of these option in turn and discard those that conflict with the accumu-

lated dis-unification constraints Ω. Lines 20-23 create a fresh type variable, and add to Ω the

constraints that the input types T1,T2 must not unify with any existing key in θ; if the resulting

constraints Ω are unsatisfiable (i.e. contain a dis-unification of equal types), then this option
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is discarded. Lines 24–27 instead attempt to reuse an existing mapping [(T ′1,T
′

2) 7→ α] from θ;

the mapping is only considered if (T1,T2) unifies with the key (T ′1,T
′

2) (mgu stands for “most

general unifier”), and the result of this unification is consistent with the current Ω. Note that in

the absence of wildcards, ABSTRACT reduces exactly to the case of dissimilar types in fig. 1.6:

in this case, the pair (T1,T2) either occurs as a key in θ exactly or it does not; hence only one

set of dis-unification constraints computed in lines 22 and 26 can be satisfiable, and ABSTRACT

will always return exactly one result.

1.4.7 Support for Type Classes

Type classes are a popular feature of the Haskell type system [122], and we support them

by making another modification to ANTIUNIFY. When abstracting types T1 and T2 into a fresh

type variable, we compute the set of type classes these two types have in common and attach

a corresponding type class constraint to the resulting variable. For instance, consider the anti-

unification of [Int]→ [Int] and [Bool]→ [Bool]. When the first pair (Int, Bool) is anti-

unified, we check that both Int and Bool are instances of the type classes Eq and Ord. Hence,

we abstract them into constrained type variable (Eq α, Ord α)⇒ α; collecting constraints on

all variables, we compute the anti-unifier (Eq α, Ord α)⇒ [α]→ [α] for the top-level types.

1.5 Tests for Elimination and Comprehension

Next, we describe how we use the SMALLCHECK’s property-based testing [101] to elim-

inate undesirable candidates and produce examples that aid different comprehension goals.

1.5.1 Elimination

The elimination procedure takes as input a sequence P of candidate programs found by

the synthesizer and returns a subsequence P∗ ⊆ P that only contains meaningful and unique
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programs.

Meaningful Programs. A candidate program is meaningful if there exist an input value

on which the candidate terminates and produces an output value within some timeout. Formally,

we denote the output of a program p on an input tuple i as JpK(i), where JpK(i) =⊥ if p crashes

or diverges on i. We say that a program is meaningless if ∀i. JpK(i) = ⊥. For example, the

well-typed candidate \x → head [] is meaningless as it yields ⊥ regardless of the input x.

Testing Meaningfulness. We cannot test exactly whether an arbitrary program p is mean-

ingless for two reasons: first, the set of possible inputs can be infinite, and second, for a given

input we might need to wait an unbounded amount of time to determine whether a program ter-

minates. Instead we say that p is likely meaningless with respect to a finite set of inputs I and

timeout T if ∀i ∈ I. JpKT (i) =⊥, where JpKT denotes the result of executing p for at most time

T . HOOGLE+ tests whether a candidate is likely meaningless by invoking SMALLCHECK to

enumerate all the values of a given input type up to a given constructor depth, and then running

the candidate on the enumerated inputs to check if they successfully produce an output within a

given timeout. Thus, candidates like \x → head [] that yield ⊥ for all inputs are deemed

meaningless and eliminated. Because the check is approximate, HOOGLE+ might erroneously

eliminate a meaningful program if it requires large inputs to produce an output. Our empirical

evaluation shows (section 1.6), that this happens very rarely in practice.

Lazy Candidates Can be Meaningful. In a lazy language like Haskell, determining

whether a given program output JpKT (i) is⊥ is actually non-trivial. Generally, HOOGLE+ has to

force program evaluation, for example, by printing the output (i.e. converting it to string). While

doing so, however, HOOGLE+ has to take special care not to eliminate programs that return

infinite data structures. For example, consider the candidate \x → repeat x which returns

an infinite list of x values. This candidate should be deemed meaningful, since it is common

practice to produce infinite data structures that can be consumed lazily. Printing the output of

this program, however, leads to a non-terminating execution, and hence by default the program
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is deemed meaningless.

To overcome this challenge, we use a special function approxShow introduced

in [25], which prints an execution result only up to a finite given depth. If the result can

be partially printed, the program is deemed meaningful. In the example above we invoke

approxShow 3 (repeat 1) to print the result of repeat 1 up to depth 3, which yields

"[1,1,1,_". As this value is not ⊥, HOOGLE+ deems the candidate to be meaningful.

Unique Programs. We say that a candidate p is observationally equivalent to another

candidate p′, written p ≡ p′ if ∀i. JpK(i) = Jp′K(i), i.e. if p and p′ return the same results for

all inputs i. We say a candidate p is unique with respect to a set of candidates P′ if for each

p′ ∈ P′ we have p 6≡ p′, i.e. if for each p′ there exists some distinguishing input i such that

JpK(i) 6= Jp′K(i).
Testing Uniqueness. Just like meaningfulness, uniqueness is impossible to check exactly.

Instead, we say that p is a likely duplicate with respect to P′ and relative to an input set I and

timeout T , if ∃p′ ∈ P′.∀i ∈ I.JpKT (i) = Jp′KT (i), i.e. there exists a program p′ such that on any

input from I either both programs return the same value or they both fail (crash or execute longer

than T ).

HOOGLE+ presents the candidates to the user one-by-one, as soon as they are found. For

each new candidate p, HOOGLE+ uses SMALLCHECK to test whether it is a likely duplicate with

respect to the programs p1, . . . , pk that were previously shown to the user. Because the check is

approximate, HOOGLE+ might accidentally eliminate a unique program if the distinguishing

input required to differentiate it from every previous program is large; again, our study show

that this rarely happens in practice.

Examples of Unique Programs. Our uniqueness test yielded some interest-

ing results. Consider a queries applyNTimes :: (a → a) → Int → a → a

from our user study, which composes n copies of a given function and applies it

to an initial value. To our surprise, HOOGLE+ synthesized two candidate solutions,
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which at the first glance appeared equivalent: \f n x → (iterate f x) !! n and

\f n x → foldr ($) x (replicate n f). Closer examination revealed, that in

fact, the two terms above behave identically when n is non-negative, but when n is neg-

ative, the former solution crashes while the latter returns x. On the other hand, consider

the result found by the query applyPair :: (a → b, a) → b which applies the

first element in the pair to the second element. HOOGLE+ returned the expected solution

\p → (fst p) $ (snd p) but we found that the uniqueness test eliminated a seemingly

different solution, \p → uncurry id p. Upon closer examination, however, we found that

these two candidates indeed have the same behavior.

1.5.2 Comprehension

Often, the best way to understand a piece of code is to run it on some inputs, observe

the outputs and then build a mental model relating the two. However, to understand a new piece

of code, one does not typically run arbitrarily (randomly) chosen inputs. Instead, we can often

discern patterns from small, carefully chosen inputs, that may be crafted to demonstrate some

difference between the program under study and another candidate.

Examples for Comprehension. An example for a program p is a pair of input and output

values (i,o) where o = JpK(i). Motivated by the above observations, HOOGLE+ generates three

kinds of examples to comprehend the synthesized programs more easily, deeply, and rapidly.

1. Meaningfulness : HOOGLE+ determines that the program is meaningful by finding at

least one success example (isucc,osucc) where osucc 6= ⊥ If p is a partial function, then

in the course of determining meaningfulness HOOGLE+ may also have found a failure

example (i f ail,⊥). Both the success and failure examples are shown to the user to help

with comprehension.

2. Uniqueness : Additionally, HOOGLE+ only shows programs that are unique with respect
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to all previously shown candidates. This is established by a set of uniqueness examples

(i j,o j) that differentiate p from its predecessors P′, in that for each p′j ∈ P′, we have

o j 6= Jp jK(i j). Thus, each of these uniqueness examples are also shown to help the user

understand how the candidate p is different than the other p′j candidates.

3. Functionality : Finally, sometimes the user wants other examples that illustrate the func-

tionality of the candidate. Hence, HOOGLE+ generates a set of functionality examples

where each new input is different from all previously generated inputs.

1.6 Empirical Evaluation

In this section, we empirically evaluate the effectiveness of type inference from tests and

elimination.

Benchmarks. In all experiments, we use the component library and benchmark suite

used by [46]. Each of these benchmarks is a type-only query. We exclude one benchmark,

which contains the type ByteString , since it is impossible to provide a test value for this

type in HOOGLE+ (this type requires a special function call to convert from a string). To the

remaining set of queries we add the tasks from our user study (section 1.7), arriving at a total of

45 benchmarks.

1.6.1 Type Inference From Tests

We evaluate the quality of the type inference algorithm on two sets of inputs: tests written

by participants in our user study, and tests generated randomly by QUICKCHECK.

User-Provided Tests. Our first experiment evaluates the accuracy rate of type inference

algorithm on real user data. For this purpose, we consider the five user study tasks, for which

the correct type is defined in the study definition (see subsection 1.7.1). We collected 76 type
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inference queries for these tasks out of the logs of searches performed by users in the course of

the user study, after ruling out ill-formed searches (e.g., syntactically incorrect examples). We

ran the type inference algorithm on these queries. In 39 queries the correct answer is ranked

first, in 4 queries it is ranked second, and in one query it is ranked third. The median rank of all

queries is 1. For only 5 out of 76 queries the correct result does not appear in the top 10. This

shows that our algorithm infers correct types from user-provided tests.

Randomly Generated Tests. While HOOGLE+ effectively infers types for tasks from

our user study, this only accounts for 5 out of 45 benchmarks. Thus, we perform a second

experiment to determine whether our inference algorithm generalizes to other programming

tasks. Recall that each of our benchmarks is a type-only query. In our second experiment, we use

QUICKCHECK [23] to generate random input-output examples as follows. First, if the query has

type parameters, we randomly instantiate them using a fixed set of base types (e.g. Int, Char,

etc), to get a randomly generated monomorphic instantiation. Next, we invoke QUICKCHECK on

the instance to generate values for the inputs and outputs of the signature to get a concrete test for

the original type query. We evaluate our inference algorithm by running it on one, two, or three

randomly generate tests and measuring the rank at which the “correct” signature (i.e. original

type query) appears in the inference results. We report average results over six runs to reduce

the uncertainty of random example generation. The results of this experiment are summarized

in Figure 1.9 (Left).

Results. The heat map is sectioned by the number of type variables in benchmark queries,

and each cell of the heat map shows the percentage of benchmarks (of that number of type

variables) where the correct result appears at that rank. Cells with darker colors represent a

larger percentage.

For the most part, HOOGLE+ ranks the correct solution first or second, across the board.

The few exceptions are seen at the bottom right of the chart, in runs with four type variables

and only one test, making it hard to get the correct generalization from single concrete type.
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Within a given number of type variables, the rank of the correct type worsens as the number of

tests decreases. This is as expected as fewer tests and more type variables lead to a larger set of

possible generalizations, which makes it harder to identify the correct ones.

To confirm this intuition, we study the effect of the number of type variables and tests on

the number of generalization, before and after filtering. Figure 1.9 (Right) shows the minimum

and maximum numbers of generalizations as well as median ranks over six runs. As we can see,

the maximum value of type generalizations may reach hundreds of thousands or even millions

in the case of many type variables when few test inputs are provided. However, our inference

algorithm still produces the correct solution at a high rank: it has a median rank 1 or 2 in 12 out

of 15 cases.

The difference in pre- and post-filtering generalizations shows that our filtering algorithm

is highly effective, usually reducing the number of generalizations by at least an order of mag-

nitude. This drastically reduced search space is a big step toward selecting the correct program.

Of course, there is room for improvement as in a few cases (e.g. 3 type variables and 1 test) we

still fail to provide a good answer.

1.6.2 Elimination

Next, we evaluate our test-based technique for eliminating irrelevant program candidates

returned by TYGAR. Recall that test-based elimination can produce false negatives, i.e. er-

roneously eliminate a meaningful and unique program because it did not search large enough

inputs or did not wait long enough for the program to terminate. On the other hand, elimination

cannot produce false positives: if it deems a program meaningful and unique, this is always ac-

curate. In the rest of the section we evaluate both the importance of elimination (the number of

true negatives) and its recall (the proportion of false negatives).

Experimental setup. To evaluate the elimination strategy in HOOGLE+, we ran three

experiments on the 45 benchmarks in our suite:
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1. TYGAR-180: we ran TYGAR with a 180-second timeout per benchmark

2. HP-180: we ran HOOGLE+ with a 180-second timeout per benchmark

3. HP-360: we ran HOOGLE+ with a 360-second timeout per benchmark

We then manually labeled all meaningless results in TYGAR-180 and partitioned the rest into

semantic equivalence classes. Next, we compared results in HP-180 to our labeled set, expecting

one representative from each meaningful equivalence class to remain. We observed some differ-

ences between HP-180 and the labeled set; we refer to these mistakenly discarded programs as

loss due to misclassification. Finally, we compared results in HP-180 with those in HP-360, de-

tecting programs that are missing simply because they take too long to generate with elimination;

we refer to this as loss due to testing overhead. The results are shown in Figure 1.10.

The graph shows that the number of true negatives is often high, sometimes an order

of magnitude higher than the number of true positives. Hence we conclude that elimination

is important: without it, the user is likely to be overwhelmed with meaningless and redundant

programs when searching with a type-only specification.

Loss due to Misclassification. Programs lost by misclassification are programs where no

witness to their meaningfulness or uniqueness was found. When looking for a witness, we only

enumerate examples up to a certain constructor depth (in this experiment we used depth 3) within

a timeout of 4 seconds. When the witness is outside this range, HOOGLE+ will misclassify the

program as uninteresting.

Our results show that misclassification is infrequent. In benchmarks with relatively high

misclassification rates (e.g. flatten) it is caused by the complexity of input types, which in

turn requires large constructor depths to generate interesting inputs. For instance, two solutions

for the query flatten :: [[[a]]] → [a] are \xs → concat (init xs) and

\xs → concat (concat xs), with a distinguishing input xs = [[[]], [[0]]];

this input, however, lies at constructor depth 5, and hence is not generated.
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Loss due to Testing Overhead. It takes extra time for HOOGLE+ to test meaningful-

ness and uniqueness for each candidate, which in turn takes away from the time to perform

the TYGAR candidate search. This means TYGAR may find fewer results than before. Most

benchmarks have a testing overhead loss rate of no more than 10%.

We also carefully examined the benchmarks with high testing overhead loss rates (e.g.

takeNdropM), and found that they all have a large number of displayed candidates found by

the synthesizer. This means it takes more time to establish uniqueness for each new candidate

as we must find inputs that distinguish the candidate from each previously displayed one. This

delay in uniqueness check prevents the synthesizer from enumerating more candidates yielding

testing overhead losses.

Trade-off. There is a trade-off between misclassification rate and testing overhead: in-

creasing constructor depth and testing timeout makes test-based elimination more precise and

thus decreases loss due to misclassification; at the same time, this increases testing overhead and

the associated loss. We experimented with different timeouts and depth limits, and found that

changing these parameters had no significant effect on most benchmarks.

1.7 User Study

We conducted a user study that sought to answer questions about the utility and usability

of our tool. We focused on the following research questions:

• RQ1: Does synthesis help programmers solve program search tasks compared to traditional

methods? We believe that better performance on search tasks leads to greater productivity, as

many mundane programming tasks boil down to snippet search.

• RQ2: How do functional programmers express their intent in the synthesizer? What styles of

input do these programmers use to guide their search with a tool? Do they prefer to search

with types, tests, or a mix?
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Figure 1.10: Elimination results on the benchmark suite. For each benchmark we report the
number of true positives (interesting programs that are reported), true negatives (uninteresting
programs that are eliminated), and false negatives (programs that are mistakenly eliminated or
never generated due to testing overhead).

• RQ3: How do functional programmers interpret the results they receive from the synthesizer?

Users have several methods to understand a candidate presented to them. HOOGLE+ provides

documentation, automatically generated examples, user provided examples, and the code itself.

Out of this wealth of information, what did programmers find useful in understanding the

programs they are looking at and making decisions about candidate programs?

Choosing a control. In order to better understand the way Haskell programmers search

for code today, we performed an initial information-gathering survey on the way Haskell pro-

grammers search for code. We surveyed 151 people online. Of those respondents who use

Haskell in varied settings (47% industry, 48% academic, 54% open source are the top three) and

with different levels of experience (12% less than one year, 29% 1-6 years, and the remainder

over 7 years), 84 users listed HOOGLE as their first engine of choice and further 27 as their

second engine of choice for Haskell code. HOOGLE permits searching for a library function by

either a type signature or by its name. Of those who listed HOOGLE as one of their top choices,

121 listed searching by type and 107 listed searching by name as one of their preferred search
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modalities. The next most popular search engine, Google, was reported by only 37 users as their

their top choice. We therefore assess the utility of our method compared to the most frequently

used alternative, and choose searching with HOOGLE as our control.

1.7.1 Study Design

Recruitment. The Haskell community is scattered in small pockets around the world.

We planned our study to work remotely to sample from the broad community. We recruited 30

participants (6 female, 24 male) via Twitter, Reddit, university lab mailing lists, and mailing lists

devoted to functional programming or specifically Haskell. 22 participants were from academia

(11 different institutions) and 8 were from industry (7 different companies). We asked partici-

pants to self-identify with same experience classification from our exploratory survey, and did

not admit into the experiment users who have never used Haskell regularly. Of those categories,

we had 12 participants new to Haskell, 10 intermediate-level users, and 8 expert users. The

participants were paid for their time.

Task Selection. We selected our tasks to test different aspects of Haskell that program-

mers must keep in mind when searching for program snippets. We created two tasks that require

using a higher-order function, while the other two tasks do not need a function as an argument.

Their full description as provided to users can be found in Figure 1.11:

0. Training - concatNTimes :: Int → [a] → [a]. This program concatenates

its second argument n times to itself. This task was intended to be simple with no express

challenges.

Solution: \i xs → concat (replicate i xs)

1. Task A - firstJust :: a → [Maybe a] → a, gets the first Just from the

list with a fallback, default value. This task is challenging as it requires composing three
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uncommon components.

Solution: \def xs → fromMaybe def (listToMaybe (catMaybes xs))

2. Task B - dedup :: Eq a => [a] → [a], our running example removes adjacent

duplicates from its input. This task challenges participants to consider and produce a

typeclass constraint. Solution: \xs → map head (group xs)

3. Task C - applyNTimes :: (a → a) → Int → a → a, applies its func-

tion argument n times to its last argument. This task requires thinking about com-

bining higher-order functions. Solution: \f i x → (iterate f x) !! i or

\f n x → foldr ($) x (replicate n f)

4. Task D - inverseMap :: [a → b] → a → [b], applies each element of its

list of functions to its second argument. Like task C, this also requires considering

higher-order functions. Solution: \fs x → zipWith ($) fs (repeat x) or

\fs x → map ($ x) fs

Procedure. Each participant was asked to complete four short program search tasks,

listed above. Each of the four tasks had a high level, English-language description of the desired

result, along with one example to characterize the expected results of that program, as shown

in Figure 1.11. The first two tasks were completed under our control workflow, and the next

two tasks—under the treatment workflow with HOOGLE+. Each half of the study opened with

a training task to allow the participant some time to familiarize themselves with the workflow;

each half closed with a short questionnaire. Each task was time limited to 8 minutes to ensure

the whole study would fit within one hour.

Control. In the control segment of the experiment, users were provided with an online

GHCi session3 and the HOOGLE search engine, which they were permitted to search by name

3https://repl.it/languages/haskell
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Training
Description. Function concatNTimes takes two inputs, a natural number n and
a list xs. It concatenates xs n times to itself.
Example. concatNTimes 2 "abc" = "abcabc"

Task A

Description. Function firstJust takes two arguments: a list of Maybe a’s and
a default value. It returns the first element from the list that is a Just or the default,
if no such element exists.
Example. firstJust 0 [Nothing , Just 1] = 1

Task B
Description. Function dedupe takes one input, a list. It returns the list with any
adjacent duplicate values removed.
Example. dedupe "aaabbab" = "abab"

Task C

Description. Function applyNTimes takes three arguments: a one-argument
function f, a natural number n, and an initial value x. It applies f to x, n times,
setting up a pipeline of function applications.
Example. applyNTimes (\x → x ++ x) 3 "f-"
= "f-f-f-f-f-f-f-f-"

Task D

Description. Function inverseMap takes two inputs, a list of functions fs and
an input x. It applies each element of fs to x and returns a list of those results.
Example. inverseMap [(\x → x + 2), (\x → x * 2)] 5
= [7, 10]

Figure 1.11: The task names and descriptions provided to users in our study.
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or by type. The GHCi session was pre-seeded with all the same function and modules that

HOOGLE+ had at its disposal. Users were instructed to solve the task with a composition of

existing library functions.

The purpose of the interpreter was to compose the different components of the solution.

We therefore imposed several restrictions to focus users on program search: (1) Participants

could not invoke GHCi’s type informational features on library functions such as :t–which

prints the type of an expression– :i or :browse–which give further information on a type or

module; (2) they could not import any additional modules, and (3) they could only invoke GHCi

to execute a (partial) solution on an example input or to inquire about the type of their (partial)

solution. Additionally, users were not allowed to use control structures, recursion, or pattern

matching in their solution to ensure a component-based answer.

Users could follow any links on the HOOGLE website, but were forbidden from making

an open-internet search (e.g. Google or Stackoverflow). Participants were given a training task

to familiarize themselves with these interaction restrictions.

Treatment. Users were presented with our tool, as presented in section 1.2–they did not

have access to the GHCi or to HOOGLE. Users were trained with the same training task as in the

first half of the study.

Experiment groups. Every participant in our study executed the control setting, followed

by the treatment (within-subjects). In order to collect data on all tasks, we assigned users to one

of two groups, rotating which tasks are control tasks and which are treatment tasks. Note that

we did not additionally randomize the order of the tasks, since our control setting is similar to

users’ regular workflow, so there is no need to isolate knowledge transfer from it.

The tasks were grouped together: task group 1, task A and task C; and task group 2, task

B and task D. We grouped the tasks as A/C and B/D to ensure that each group would have one

higher-order query and one first-order query. The study groups are then:

1. Task group 1 in control, then task group 2 with HOOGLE+;
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(a) Task completion percentage.
Data labels are absolute com-
pletions.

(b) Task time averages (sec-
onds), including timeouts

(c) Task time averages (sec-
onds), without timed out ses-
sions

Figure 1.12: Comparison of time to complete, with and without participant timeouts. 1.12a
shows completion improvements. An asterisks next to a task indicates a statistically significant
change.

2. Task group 2 in control, then task group 1 with HOOGLE+.

Users were randomly assigned into one of the two study groups, while preserving an

equal distribution of experience between the groups. Each group had: 6 with less than 1 year, 5

with 1-6 years experience, and 4 with 7+ years experience.

1.7.2 Results

We present the results relevant to each research question separately. In the remainder of

this section, we set the threshold for statistical significance at p < 0.1.

RQ1: Does synthesis help programmers with program search tasks?

For each of the four tasks in a session we measured the time until the user completed the

task, and whether the task was completed or timed out (8 minutes). The results are shown in

Figure 1.12.

Completion rates. Of the 60 tasks attempted with each tool, 29 were completed with

HOOGLE and 44 with HOOGLE+, a 51% increase in completion rate with HOOGLE+. Fig-

ure 1.12a shows the breakdown by task.
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In a per-task breakdown, completion rates of users improved for tasks A, C, and D.

We evaluated the change in the number of completed sessions with a Fishers-Exact test, and

found the change to be statistically significant for the overall increase in completed sessions

with HOOGLE+ (p= .009), and for tasks A (p= .003), and D (p= .080). While more users com-

pleted task C with HOOGLE+ than in the control setting, this change is not statistically significant

(p= .5).

In task B there is virtually no association between the setting used and completions (p=

.715), and the low completion rate seems to be more influenced by the difficulty of producing

the typeclass constraint in the searched type.

Completion time. HOOGLE+ improved the average time to complete a task by 35 sec-

onds. Average times are shown in Figure 1.12b.

Since tasks vary in components and difficulty, we also examine the data per-task. The

improvement is preserved in tasks A, C, and D. We evaluated the change in time-to-complete

with a Mann-Whitney U-test, and found the change statistically significant for tasks A (p=.0003)

and C (p= .051), but neither the improvement in task D (p= .354) nor the 5 second increase in

task B (p= .460) are statistically significant. The tool overall enjoys statistical significance over

control (p= .004).

Additionally, we examined only the times to complete when the user did not time out,

shown in Figure 1.12c. This allow us to take a closer look at how much help was HOOGLE+

when it does help. While the aggregate difference is smaller, a mere 15s improvement, we

notice that in the individual tasks, differences are intensified. We also notice that for two tasks,

B and D, the trend has reversed itself: users who were helped by HOOGLE+ completed task B,

on average, a full minute faster, and task D almost a minute slower. Even still considering only

those who completed their task, we do not find these differences statistically significant in task

B (p= .165) or task D (p= .386). We observe similar significance for the remaining tasks (task

A: p= .0002, task C: p= .060, overall: p= .005).
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Figure 1.13: Median search modality across all four tasks, by experience level

We conjecture that task B required familiarity with typeclasses, so for those unfamiliar

with the feature, HOOGLE+ could not help them; and, those with that knowledge could fly.

Further, task D’s expected solution may have been obvious to some and could easily write it

out in control; yet, those in the treatment setting had to coax HOOGLE+ to generate the right

candidate with enough examples.

Correctness. We logged the final solutions presented if users did not time out. Between

both control and treatment, across 120 recorded tasks, and 73 total completions, only one par-

ticipant concluded with an incorrect solution, for task A, using HOOGLE+. While this falls

entirely within the margin of error, we do discuss the particulars of the session further in the

next subsection.

Overall, we see that HOOGLE+ greatly improves completion rates over the control set-

ting, as well as a modestly improving the time to result. Therefore we answer RQ1 in the

affirmative.

RQ2: How do functional programmers express their intent in the synthesizer?

We logged user searches made in the course of the experiment, and analyzed the style of

HOOGLE+ searches users made. HOOGLE+ permits 3 kinds of searches: (1) type-only search,

leaving the test part of the specification empty, (2) test-only search, then using a type that

HOOGLE+ suggested, and (3) type-and-test search. Users made a total of 115 searches across all

HOOGLE+ sessions, with users making on average a little fewer than 2 searches per task. Only
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22 searches were type-only, leaving 93 searches involving at least one test.

The style of search varied greater by experience level than by task. The breakdown of

these searches is shown in Figure 1.13. Experts relied on tests the least, making a median of

0.5 test-only searches across all tasks, while inexperienced Haskell users made a median of 2

test-only queries. Despite our pre-study survey discovering that searching HOOGLE by type was

the most popular way to query for a component, searching by type-only in our synthesis setting

was uniformly the least popular mode.

Test Provenance. Tests were an important part of how participants made their searches.

We note where these tests came from. Task descriptions included one ready-made test. Of the

tests used in searches, 46 were directly from the task; 63 were original to the participant (though

some were closely based on the task or what was on screen); only 2 tests came from examples

provided by HOOGLE+.

To answer RQ2: across the board, users searched by type the least during their HOOGLE+

sessions. While beginners preferred test-only searches significantly, tests were overwhelmingly

part of user searches. Additionally, users have a strong preference for providing their own

tests.

RQ3: How useful are HOOGLE+ features in interpreting results?

We asked users to fill out a questionnaire after completing the tasks to assess what parts

of HOOGLE+ they used and what they found most helpful. The ratings of HOOGLE+ features by

users who used them (i.e., did not mark “did not use” in the survey) appear in Figure 1.14.

In general, users found HOOGLE+ features to be helpful or very helpful. The only fea-

tures rated very unhelpful by any user were the documentation available when hovering on a

component and the type-only search, which, as seen earlier, was also the least used of all search

options. The users dissatisfied with the documentation liked the idea but indicated they wanted

a different experience around reading the documentation inline.
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Figure 1.14: Breakdown of feature perception, ordered from most used to least used.

The less-used features of HOOGLE+, editing and lifting a usage, were used by partic-

ipants who needed their functionality, so it is not surprising they also found them helpful. A

non-negligible number of users found auto-generated examples unhelpful, which we will dis-

cuss in the next subsection.

To answer RQ3, with the exception of the auto-generated examples, HOOGLE+ features

are useful to users in interpreting results.

1.7.3 Discussion

Overall effect on aid. Overall, the effect of HOOGLE+ on user performance was very

encouraging, and feedback from participants was positive. In fact, one user said they felt they

didn’t really solve the task–the tool did–and that it felt like cheating at programming!

The four different tasks tested in our experiment are varied and stress different parts of

a participant’s Haskell knowledge. Task B required knowing or picking a typeclass, and task A

involved lesser-known components in the Data.Maybe library. The control setting required

the participants to come up with intermediate types for function compositions, in order to search

the individual functions by type on HOOGLE. In our experience, about half of the participants

did not know what the intermediate types should be in a solution a priori.

We observed that the task either immediately made sense to participants or they struggled
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with it. In the data, we see a clear bimodal performance curve in both control and treatment,

between those who “got it” and those who timed out or almost timed out. Task D is the most

extreme example of this, causing the time to completion of those who finished the task in the

control setting to be extremely fast (e.g., one participant solved the task in under a minute, saying

they encountered a similar problem in their work). Still, more participants could solve task D

with HOOGLE+ than without, showing that its value is in the cases that don’t immediately click.

In tasks A and C the effect of using HOOGLE+ was most significant, both in completion

and in the change in times. We believe that these two tasks were particularly hard to break down

into intermediate types and component-searches and this played to our tool’s strengths. A basic

assumption of human-in-the-loop synthesis is often that the programmer is capable of helping

the synthesizer break down the task. It is possible that in a functional setting, this assumption

does not hold.

Barriers. We asked users about barriers to solving their tasks after both the control

portion and the treatment portion of the study.

After the control setting, several users expressed feeling daunted by the task of coming

up with the right intermediate types and searching for the right function that contains what they

need. This ties in to the significantly slower control times in the tasks A and C that require

uncommon components and complex, higher-order types, respectively.

Additionally, HOOGLE users had frustrations about the tool itself. Results often contain

cruft from domain specific libraries that are usually not the function or direction intended. One

user explicitly named as a barrier the need to browse a large set of results on a simple search.

Several users mentioned vaguely remembering the necessary function, and having to search

HOOGLE to recall the order of arguments or the precise name of the function, but HOOGLE

doesn’t permit searches by documentation.

The most frequent barrier to HOOGLE+ users were slow synthesis times. Specifically,

the lack of indication if a search that was taking long would yield results or wait and then return
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nothing. Additionally, users expressed the need for messaging suggesting actions to the user

when no results came up.

Several users mentioned difficulty in understanding what the candidate functions were

actually doing, because any example provided was only shown as an end-to-end execution. One

participant suggested drilling down into a candidate’s execution on an example would help.

These point to experience and design improvements that are needed for HOOGLE+ to

become an effective production tool, but are not insurmountable.

Search Style. In our observations, we found that participants would fall back to example-

only searches when they were at a loss for the right type (mostly with the most novice partici-

pants), or when they wanted to let the tool do more work for them. One participant made the

observation that, “the point of a tool is to take the thinking out”.

Task B is a particularly interesting case: only two participants searched with types-

alone, the fewest of any task. Perhaps most users could tell the function’s type signature

Eq a => [a] → [a] is very underspecified– that it says very little about what should hap-

pen to inputs– and so included at least one test with their search. This highlights the occasional

shortcomings of types as specifications, ones that are mitigated by allowing tests in the search

specification.

Auto-generated Examples. As shown in Figure 1.14, the auto-generated usage examples

for candidate programs were the HOOGLE+ feature users were least satisfied with. We observed

that this stemmed mainly from user expectation of usage examples did not entirely aligning

with the criteria for example generation (subsection 1.5.2). Specifically, users did not need

differentiation between the candidates as much as they wanted usages to explore the functionality

of the current program they are investigating.

Users who did try to understand the candidates via the generated examples wished for a

greater diversity of examples. Those who did ask for more examples tended to ask for many more

examples, 6.7 more, on average, with some clicking the button up to 17 times (between both
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tasks). This shows that these users were hoping for the system to help them better understand

their candidates.

This is perhaps best illustrated by the only incorrect result out of 60 HOOGLE+ tasks

performed. The user, a Haskell novice, made use of test-only searches but selected a type too

specific for the task. They then selected a candidate that appeared to fit the task description but

would crash on inputs they never tested. The user did investigate the candidate by asking for

more examples and editing existing ones; however, the user did not attempt any complex inputs.

This user’s experience demonstrates room for improvement in our example generation—better

aligning its goals with the needs of users, and producing a greater variety of examples.

1.7.4 Threats to Validity

We selected tasks and components to operate over several common, built-in libraries.

Most participants were familiar with many functions but had to limit themselves to the subset we

permitted in the control setting. This introduced “unintentional complexity” as one expert user

aptly put. We attempted to mitigate this with a training task in the control setting to familiarize

users with our restrictions.

We gave participants only 8 minutes to complete each task. This short time limit is

lab induced, and some participants reported a sort of test-anxiety that may have affected their

performance. Anecdotally, many participants were close to completing the task in both control

and experiment after timing out. Since the data is right-censored, times over eight minutes are

only known to be over eight minutes, which may make generalizing the results for more complex

tasks incorrect.
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1.8 Related Work

Component-based Synthesis. Modern IDEs support code-completion based on matching

common prefixes of names (e.g. completing Str into String), or by using the context to nar-

row the candidates to well-typed completions [90]. Type-based search engines like Hoogle [77]

generalize the above to find type isomorphisms [28] i.e. single components whose signature

match the query. In contrast, our goal is to find combinations of components that implement

some higher-level task. When the task is specified as a type, the problem of search reduces to

that of type inhabitation, i.e. finding terms that inhabit a given query type [116]. One approach to

type inhabitation is proof search [5, 80, 50], which can be difficult to scale up to large component

libraries. PROSPECTOR [73] introduces a scalable graph-based inhabitation algorithm where the

components are unary functions, SYPET [33] uses Petri-nets to generalize graph-based methods

to multiple argument functions, and TYGAR [46] shows how to further extend SYPET’s search

to polymorphic components using the idea of succinct type-abstractions introduced by INSYNTH

[47]. However, all of these require type-based queries which can be problematic for non-experts,

and do not consider the question of end-to-end usability.

User Interaction in Program Synthesis. Although program synthesis is supposed to

serve a user, few papers focus on the user’s role in the synthesis loop. [65] and [87] highlight

two models of iterative synthesis, the first driven by the synthesizer and the second by the user.

Our work is in a different setting: API discovery for functional languages.

Several domain-specific synthesizers [17, 30, 21] give end-users and data scientists ac-

cess to synthesis to automate some of their work. These tools were evaluated against users’

alternative workflow, but their users are not programmers, and the synthesis domain is far from

general. Unlike these, HOOGLE+ is a tool for (functional) programmers and allows users to

search for general Haskell code.

Filtering and ranking synthesis results. Ranking and returning multiple results are two
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common approach to handing ambiguous specifications in program synthesis; the two often—

but not always—go hand-in-hand. The FLASHX tool family [42, 96] uses a ranking function to

select a single, most likely program from programs that satisfy all user-provided examples, ex-

ploring both hand-crafted [42] and learned [106] ranking functions. Recent work on synthesizing

lenses [76] proposed a novel approach to semantic ranking based on information theory. Unlike

PBE tools that use ranking to select a single result, code completion tools [47, 97] typically

present a ranked list of results to the user, and most commonly rely on learned statistical models

and syntactic features. Like these tolls, HOOGLE+ offers the users several ranked candidates,

both of synthesis results and of inferred types.

Synthesizers also need to filter their results to discard irrelevant programs. SYPET [33]

uses Petri-nets to only return programs that use all available arguments. HOOGLE+ extends this

filtering: it filters TYGAR results after they are constructed, and uses more extensive criteria.

Test input generation. The extensive literature on automating testing focuses on finding

bugs in manually written code. Our key observation is that these ideas in general, and property-

based testing in particular, can be re-purposed for example-based elimination and comprehension

in program synthesis. HOOGLE+ uses the SMALLCHECK library [101] to filter its candidate

program list and to provide examples to demonstrate the semantics of synthesized programs.

Inferring Types from Examples. A key innovation of HOOGLE+ is to allow users to

specify their queries via tests that are then translated into types, enabling efficient search. Prior

work on the problem of inferring types from tests has a very different context: inferring type

annotations for dynamically typed languages. E.g., [22] infer types from run-time logs, [4]

instrument Ruby programs to track how each variable is used to then build a constraint system

that is solved to infer method types, and [10] show how to generalize execution-based guided

type-recovery to handle ad-hoc recursive datatypes as found in Clojure programs. All these

differ from our approach in several ways. First, the different setting: when discovering type

annotations, they have program execution traces to help guide type inference. Second, all infer
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monomorphic types, while our goal is to infer polymorphic signatures greatly narrowing the

synthesizer search space.

1.9 Conclusion

In this work we presented HOOGLE+, a component-based synthesizer for Haskell that

focuses on end-to-end usability of program synthesis. HOOGLE+ extends a core type-driven

synthesis engine TYGAR in three major ways. First, we present a novel mechanism to infer

likely polymorphic type signatures from tests, which helps beginners, who are not yet fully

comfortable with the Haskell type system. Second, we show how to leverage property-based

testing to eliminate meaningless and repetitive synthesis results, without asking the user for

additional input. Finally, we again rely on property-based testing to automatically generate

examples that demonstrate the behavior of synthesized programs.

To evaluate the usefulness of HOOGLE+ relative to a traditional code search workflow,

we conducted a user study with 30 participants, comparing their performance on solving simple

programming tasks with the HOOGLE search engine vs. HOOGLE+. We find that users equipped

with HOOGLE+ perform their search tasks faster are able to complete 50% more tasks.

The authors would like to thank the anonymous reviewers for their feedback on the

draft of this paper. This work was supported by the National Science Foundation under Grants

No. 1943623 and 1911149.

Chapter 1, in part, is a reprint of the material as it appears in the Proceedings of the ACM

on Programming Languages, Volume 4, Issue OOPSLA. Michael B. James, Zheng Guo, Ziteng

Wang, Shivani Doshi, Hila Peleg, Nadia Polikarpova. ACM 2020. The author was a principal

author and investigator on this work.
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Chapter 2

Program Snippet Recognition

2.1 Introduction

Program synthesizers are now fast enough to suggest several code snippets at once. Such

synthesizers now present a new problem to their users, they need to be able to recognize which

snippet best matches their specification, if there even is one. But how should synthesizers and

their related tooling aid a user in recognizing the snippet they actually want?

We call this setting program recognition. It is the general task of identifying a program

matching some specification. Programmers have likely previously encountered a recognition

task when searching Stackoverflow to determine if someone, somewhere on the internet has

had the same problem and also posted a solution. This task has become uniquely important to

modern program synthesizers whose selling points include being faster or safer than a human

writing the snippet alone. To add to their value, synthesizers need to consider this last-mile of

synthesis so both inputting the intent and choosing the right right snippet is easier than doing

the programming task without the synthesizer. We argue program recognition is distinct from

program comprehension, uniquely important to synthesis, and under-explored.

Program recognition in a synthesis context leaves many questions to answer. When do
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users reach for documentation, examples, or another tool to select a snippet? When users do

reach for examples and how do they use or generate them? Do programmers compare against

other snippets, and how? How much do users try to actually understand their chosen snippet?

Can we use existing tools from program comprehension to aid in recognition?

Prior work has touched on principles of program recognition, but none have made it

their principle concern. The H+ tool for Haskell shows several snippets and each snippet has

a handful of differentiating examples [?]. Zhang et al. allow a user to request examples to test

corner cases in regular expression synthesis [133]. To our knowledge, prior work assumes that

input-output examples are the best way to choose a result from a synthesizer, but this assumption

has not been empirically validated, nor this design space explored.

Contributions. The gap in the program synthesis literature is a question unasked and

unanswered: how does a users choose the most appropriate code snippet from multiple synthesis

results? In this paper we present the following:

• We introduce the problem of program recognition in synthesis.

• We pose research questions in this topic.

• We perform an exploratory study, observing what techniques programmers deploy to choose a

snippet from a synthesizer.

2.2 Motivating Example

Kelly is a functional programmer trying to write a small function in Haskell. Her function

mbIfTrue should return an optional value from the input based on the boolean argument. If

it is true, then return should exist otherwise it should be the empty-value. The function should

have the type Kelly asks her IDE’s synthesizer to complete the snippet given the type and it

provides 5 possible results, as mocked-up in Figure 2.1. Kelly wants to quickly figure out if any

54



Figure 2.1: The description on this task was, “Function test takes two inputs, a boolean value b
and an arbitrary value x. It returns an optional value, which contains x if and only if b is True”.
It included one test case, not shown. Modern Haskell IDEs infer top level types and show them
in light grey. Participants were asked to select all appropriate snippets. Only snippet 4 matches
this specification.

of the snippets accomplish her task or see that none do, to refine her specification (or write the

function herself). Current program synthesizers do not yet provide user support for this last-mile

of program synthesis: choosing the right snippet.

We envision a synthesizer augmented with tools to help a user like Kelly recognize the

snippet she needs. A synthesizer aware of common difficulties reading and choosing snippets

might provide information modern IDEs already surface like documentation and type informa-

tion. A recognition-aware synthesizer might also show some generated input-output tests; these

tests could show off different and useful properties of the snippets. Such a tool could allow

easy simultaneous execution of the snippets to compare outputs. Some users might care about

seeing intermediate values or intermediate type applications and their tool should support them.

Without better understanding the process of recognition, we cannot meaningfully improve the

snippet selection process in synthesizers.

2.3 Related Work

Program comprehension typically focuses on how a programmer understands an entire

software system or part of it [72]. Comprehension research has focused on how a program-

55



ming paradigm affects understanding [102]; how developers understand patches [115]; and more.

Recognition differs from comprehension: in recognition, a programmer’s goal might not be

complete understanding, but simply to choose something that works well-enough—or to better

understand their task.

Synthesizers that produce more than one result have vaguely pointed to this program

recognition problem. For example, H+, a type-directed synthesizer, can produce many snippets

and examples with each. The tool focused primarily about marrying types and/or examples as in-

put, and secondarily on example generation–without necessarily asking what kind of examples

a user would want to see (like in Chapter 1). Peleg and Polikarpova’s BESTER synthesis en-

gine provides multiple snippets and shows the user which examples a given snippet successfully

passes [86]. This engine helps bring the community closer towards a tighter human-synthesizer

interaction loop, but did not address how or why we might help users recognize the snippet they

want when it’s under their nose. WREX presents a data scientist readable Python that accom-

plishes a programming-by-example synthesis task [29]. WREX provides feedback, helping a

user see if the synthesized code accomplishes their data-wrangling task; however, it is limited to

Flashfill-like domains [43]. In more the tightly controlled domain of regular expressions, Zhang

et al. help a user select a synthesized regular expression matching their intent [133]. A user can

request more examples of a preferred style to aid in recognition.

All prior works assume that examples are the most efficient way to help a user with a

program recognition task. To develop better synthesizers with a holistic approach to program

recognition, we must validate or broaden this assumption.

2.4 Study Design

To determine how users recognize the snippet that matches their intent we ran an ex-

ploratory lab study. We recruited 4 participants to observe while they solved program recog-

56



nition tasks. In this think-aloud study, each participant was presented with a small function to

complete using any of the five program snippets provided to them. We wanted to get insight into

what a user’s process is to determine the best snippets for the given task.

Participants. We recruited participants with moderate experience with Haskell through

a recent conference on functional programming and a recruitment form posted to Twitter. We

recruited graduate students from two different institutions (P2, P3, P4) and one professional (P1).

Both P1 and P3 have 10 years of experience with Haskell, while P2 and P4 have 2 and 5 years

of experience, respectively.

Research Question. This need-finding study seeks to guide future work for synthesis

tooling in program recognition tasks and we had one primary question: What techniques do

programmers use to recognize the best snippet in a situation?

2.4.1 Setup

We provided each participant with a small Haskell repository so they could use their

preferred tooling on their own machine. Only P1 had tight Haskell integrations into their IDE

while P2, P3, and P4 needed to rely on Hoogle 1 and their REPL for types and documentation.

Participants were told they could use any resource they like to determine which snippets worked

best, including those on the web.

2.4.2 Tasks

Participants were given 5 tasks to complete. Each task contained a simple function to

implement using the program snippets provided. Each function had 5 possible snippets, with at

least one correct snippet per task. A task included an English-language description and one test

case. The test case was designed to be unhelpful, often accepting all or most snippets without

1A popular API search engine for Haskell. hoogle.haskell.org
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Name Type
mbIfTrue Bool → a → Maybe a
firstJust a → [Maybe a] → Maybe a
inverseMap [a → b] → a → [b]
dedup (Eq a) => [a] → [a]
applyNTimes (a → a) → a → Int → a

Figure 2.2: The functions participants were asked to implement using snippets provided to
them.

modification. Participants were told that there were zero or more possible solutions and they

were asked to identify all snippets matching the description.

The tasks stress different aspects of functional programming, especially in how users

would have to think about which snippets are appropriate (all shown in Figure 2.2). mbIfTrue

requires reasoning about monadic behavior, common in elegant Haskell code. firstJust

relied on oft-unused parts of the Data.Maybe module in the standard library, stressing how a

user reasons through unfamiliar components. inverseMap and applyNTimes forced a user

to reason through higher-order code snippets. dedup’s type is the least descriptive of the tasks:

the function’s type gives little insight into how the function must work unlike the others.

2.5 Observations

We observed our participants and gathered commonly used techniques.

2.5.1 Strategies

Each participant had a slightly different way of discovering the appropriate snippet for

the task. Although every participant used a process of elimination, either saying aloud that a

snippet was bad, commenting them out, or leaving a comment next to an eliminated candidate.

P1, P2, and P3 each used a multi-pass approach: after reading the specification, they went

through the snippets in order to reason through its type or its code. If a snippet was particularly
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challenging to understand, a participant would make a guess, note it, and move on to the other

snippets. On one such task, P3 said, “don’t love this monadic stuff” before adding a comment

“ew” to a highly polymorphic snippet and moving on. Only after eliminating several snippets

and presented with a choice would these participants more deeply inspect the remainder. Each

participant appeared to go through the snippets a different number of times: P4 went through the

snippets a single time per task, but in great detail; while P1 would go through three times. The

passes did not always cover the same things. P1 looked closely at the snippet types, P3 looked

at the provided test both to find snippets that clearly wrong and can be eliminated.

Examples. Use of examples varied wildly. In task 4, P2 relied on only documentation

to determine the correct snippet. Only after they declared their choice did they run the provided

test (which would have accepted any snippet). Other participants used examples heavily, often

in lieu of documentation. For example, P3 in tasks 1, 4, and 5, would look at the documentation

for a component, then run that component with their own input. P3 described the documentation

as being too long and that running the component was easier for them. This participant built his

understanding of subexpressions by running them.

All participants appeared to have some transition point when a snippet became too com-

plex to think about symbolically or with types, and had to think using examples. Two participants

at some point just ran all snippets for a task through the same example, pointing to the general

complexity of the snippets (task 1 and task 3).

P1 and P2 tended to run a test on all snippets under consideration at the same time. In

other tasks, P1 and P3 kept only one example and slowly changed it as they eliminated snippet

after snippet. The particular values used in the examples were never of particular interest beyond

being distinct (except where duplication was part of the spec, in task 4).

Types. Haskell programming is synonymous type-directed programming but the types

were a double-edged sword. Task 4 operates on lists and uses a equality typeclass constraint yet

no participant considered the typeclass. On the other hand, P1, P3, and P4 were confused by
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the name of task 3, inverseMap , but after considering its type, they each explained having an

insight into how they would expect the right snippet to work.

The highly polymorphic nature of Haskell comes with a mental cost. Every participant

was confused by a snippet using the identity function in place of function application in a higher

order function. Even an expert (P3) thought the snippet was ill-typed. Participants struggled to

understand how this snippet could typecheck. We believe that, like intermediate values, interme-

diate types and type applications could help recognition tasks with higher-order functions.

P1’s use of types was exceptional. This participant looked at snippets and the specifica-

tion to determine if they were relevantly typed (i.e. each argument must be used at least once),

and was able to eliminate errant snippets in task 1. P1 was the only participant whose IDE

presented all inferred and un-annotated types, making it easier to use this extra information.

Fixing snippets. Participants were inclined to modify snippets in primarily two different

ways. In the first way, some participants wanted to de-sugar partially applied functions into eta-

long form (P2, P4). This behavior only came up in higher-order snippets. The second way was

to fix an incorrect snippet to fit the specification. P1, P3, and P4 all suggested fixes for snippets

to make them correct, yet none of them claimed they would have come up with the same snippet

on their own.

2.5.2 Takeaways

All users in our study used some form of process of elimination, typically by marking

some candidates as out of consideration. Users would likely benefit from some way to main-

tain that state while reading through synthesized snippets. We believe that even in a functional

setting like in Haskell, examples are still useful in program recognition. Our study confirms

observations from Glassman’s work that it’s easier for users to modify things than to invent

new things [133], but in our case this applies both to programs and to examples. Users seem

to benefit from local information, for subexpressions, both at the level of values and the level
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of types. Lastly, since several participants saw ways to change snippets to fit the specification,

synthesizers may wish to embrace this interaction mode. Such an interaction model may allow a

program synthesizer to act more as program exploration tool, which will be especially useful in

a neurally-guided setting where the synthesizer may not possess a semantic understanding, but

can nonetheless guide a user to solving their task.

Acknowledgements. Chapter 2, in part, is a reprint of the material as it appears in the 12th

Annual Workshop at the Intersection of PL and HCI. Michael B. James and Nadia Polikarpova.

PLATEAU 2021. The author was a principal author and investigator on this work.
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Chapter 3

Grounded Understanding of LLMs for

Programming

3.1 Introduction

The dream of an “AI assistant” working alongside the programmer has captured our

imagination for several decades now, giving rise to a rich body of work from both the program-

ming languages [98, 75, 35, 79] and the machine learning [59, 128, 45] communities. Thanks

to recent breakthroughs in large language models (LLMs) [120, 68] this dream finally seems

within reach. OpenAI’s Codex model [20], which contains 12 billion model parameters and

is trained on 54 million software repositories on GitHub, is able to correctly solve 30–70% of

novel Python problems, while DeepMind’s AlphaCode [68] ranked in the top 54.3% among

5000 human programmers on the competitive programming platform Codeforces. With this im-

pressive performance, large code-generating models are quickly escaping research labs to power

industrial programming assistant tools, such as Github Copilot [38].

The growing adoption of these tools gives rise to questions about the nature of AI-assisted

programming: What kinds of tasks do programmers need assistance with? How do programmers
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prefer to communicate their intent to the tool? How do they validate the generated code to deter-

mine its correctness and how do they cope with errors? It is clear that the design of programming

assistants should be informed by the answers to these questions, yet research on these topics is

currently scarce. Specifically, we are aware of only one usability study of Copilot, by [117];

although their work makes several interesting observations about human behavior (which we

discuss in more detail in section 3.7), ultimately it has a narrow goal of measuring whether Copi-

lot helps programmers in solving stand-alone Python programming tasks. To complement this

study and to obtain more generalizable insights that can inform the design of future tools, our

work sets out to explore how programmers interact with Copilot in a broader setting.

Our contribution: grounded theory of Copilot-assisted programming. We approach this

goal using the toolbox of grounded theory (GT) [39], a qualitative research technique that has a

long history in social sciences, and has recently been adopted to study phenomena in software

engineering [110] and programming languages [70]. GT is designed to build an understanding

of a phenomenon from the ground up in a data-driven way. To this end, researchers start from

raw data (such as interview transcripts or videos capturing some behavior) and tag this data with

categories, which classify and explain the data; in GT parlance, this tagging process is called

qualitative coding. Coding and data collection must interleave: as the researcher gains a better

understanding of the phenomenon, they might design further experiments to collect more data;

and as more data is observed, the set of categories used for coding is refined.

In this paper, we present the first grounded theory of how users interact with an AI

programming assistant—specifically Github Copilot. To build this theory, we observed 20 par-

ticipants as they used Copilot to complete several programming tasks we designed. Some of the

tasks required contributing to an existing codebase, which we believe more faithfully mimics a re-

alistic software development setting; the tasks also spanned multiple programming languages—

Python, Rust, Haskell, and Java—in order to avoid language bias. We then iterated between

coding the participants’ interactions with Copilot, consolidating our observations into a theory,
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and adjusting the programming tasks to answer specific questions that came up. The study

method is described in detail in section 3.3.

Summary of findings. The main thesis of our theory (section 3.4) is that user interac-

tions with Copilot can be classified into two modes—acceleration and exploration—akin to the

two systems of thought in dual-process theories of cognition [14, 74], popularized by Daniel

Kahneman’s “Thinking, Fast and Slow” [58]. In acceleration mode, the programmer already

knows what they want to do next, and Copilot helps them get there quicker; interactions in this

mode are fast and do not break programmer’s flow. In exploration mode, the programmer is

not sure how to proceed and uses Copilot to explore their options or get a starting point for the

solution; interactions in this mode are slow and deliberate, and include explicit prompting and

more extensive validation.

Section 3.5 describes two kinds of further analysis of our theory. First, we performed a

quantitative analysis of the data collected during the study, comparing prompting and validation

behaviors across modes, and quantifying the factors that influence the relative prevalence of each

mode. Second, to reinforce our findings, we gathered additional data from five livestream videos

we found on YouTube and Twitch, and confirmed that the streamers’ behavior was consistent

with our theory.

Based on our theory, we provide design recommendations for future programming assis-

tants (section 3.6). For example, if the tool is aware that the programmer is currently in acceler-

ation mode, it could avoid breaking their flow by sticking with only short and high-confidence

code suggestions. On the other hand, to aid exploration, the IDE could provide better affor-

dances to compare and contrast alternative code suggestions, or simplify validation of generated

code via automated testing or live programming.
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3.2 Copilot-Assisted Programming, by Example

Copilot is a programming assistant released by Github in June 2021 [38], and since

integrated into several development environments, including Visual Studio Code, JetBrains and

Neovim. Copilot is powered by the OpenAI Codex family of models [20], which are derived by

fine-tuning GPT-3 [11] on publicly available Github repositories.

In the rest of this section, we present two concrete scenarios of users interacting with

Copilot, which are inspired by real interactions we observed in our study. The purpose of these

scenarios is twofold: first, to introduce Copilot’s UI and capabilities, and second, to illustrate the

two main interaction modes we discovered in the study.

3.2.1 Copilot as Intelligent Auto-Completion

Axel, a confident Python programmer, is solving an Advent of Code [125] task, which

takes as input a set of rules of the form AB => C, and computes the result of applying these

rules to a given input string. He begins by mentally breaking down the task into small, well-

defined subtasks, the first of which is to parse the rules from the input file into a dictionary. To

accomplish the first subtask, he starts writing a function parse_input (Figure 3.1). Although

Axel has a good idea of what the code of this function should look like, he thinks Copilot can

help him finish it faster and save him some keystrokes and mental effort of recalling API function

names. To provide some context for the tool, he adds a comment before the function definition,

explaining the format of the rules.

As Axel starts writing the function body, any time he pauses for a second, Copilot’s

grayed-out suggestion appears at the cursor. Figure 3.1 shows an example of an end-of-line

suggestion, which only completes the current line of code. In this case, Copilot suggests the

correct API function invocation to split the rule into its left- and right-hand sides. To come

up with this suggestion, Copilot relies on the context, i.e. some amount of source file content
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Figure 3.1: Copilot’s end-of-line suggestion appears at the cursor without explicit invocation.
The programmer can press <tab> to accept it.

preceding the cursor, which can include both code and natural language comments, as is the case

in our example.

Because the suggestion in Figure 3.1 is short and closely matches his expectations, Axel

only takes a fraction of a second to examine and accept it, without ever leaving his state of

flow. Throughout the implementation of parse_input, Axel might see a dozen of suggestions,

which he quickly accepts (by pressing <tab>) or rejects (by simply typing on). Some of them

are larger, multi-line suggestions, but Axel still seems to be able to dispatch them quickly by

looking for patterns, such as expected control flow and familiar function names. We liken this

kind of interaction with Copilot to the fast System 1 in dual-process theories of cognition [14],

which is characterized by quick, automatic, and heuristic decisions.

3.2.2 Copilot as an Exploration Tool

Emily is new to data science, and wants to visualize a dataset as a histogram. While she is

familiar with Python, she is not familiar with the plotting library matplotlib. As a result, she

does not know how to approach this task: not only which API functions to call, but also how to

decompose the problem and the right set of abstractions to use. Emily decides to use Copilot to

explore solutions.

Emily explicitly prompts Copilot with a natural-language comment, as shown in lines

12–13 of Figure 3.2. Moreover, since she wants to explore multiple options, she presses <ctrl>
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Figure 3.2: The user writes an explicit comment prompt (lines 12–13 on the left) and invokes
Copilot’s multi-suggestion pane by pressing <ctrl> + <enter>. The pane, shown on the
right, displays up to 10 unique suggestions, which reflect slightly different ways to make a
histogram with matplotlib.

+ <enter> to bring up the multi-suggestion pane, which displays up to 10 unique suggestions in

a separate pane (shown on the right of Figure 3.2). Emily carefully inspects the first three sugges-

tions; since all of them have similar structure and use common API calls, such as plt.hist, she

feels confident that Copilot understands her task well, and hence the suggestions can be trusted.

She copy-pastes the part of the first suggestion she likes best into her code; as a side-effect, she

gains some understanding of this part of the matplotlib API, including alternative ways to call

plt.hist. To double-check that the code does what she expects, Emily runs it and inspects the

generated histogram. This is an example of validation, a term we use broadly, to encompass any

behavior meant to increase user’s confidence that the generated code matches their intent.

When faced with an unfamiliar task, Emily was prepared to put deliberate effort into

writing the prompt, invoking the multi-suggestion pane, exploring multiple suggestions to select

a suitable snippet, and finally validating the generated code by running it. We liken this, second

kind of interaction with Copilot to the slow System 2, which is responsible for conscious thought

and careful, deliberate decision-making.

67



Table 3.1: Participants overview. PCU: Prior Copilot Usage. We show the language(s) used
on their task, their usage experience with their task language (Never, Occasional, Regular,
Professional), whether they had used Copilot prior to the study, their occupation, and what task
they worked on.

ID Language(s) Language Experience PCU Occupation Task
P1 Python Professional Yes Professor Chat Server
P2 Rust Professional No PhD Student Chat Client
P3 Rust Occasional No Professor Chat Client
P4 Python Occasional Yes Postdoc Chat Server
P5 Python Regular No Software Engineer Chat Client
P6 Rust Professional Yes PhD Student Chat Server
P7 Rust Professional No Software Engineer Chat Server
P8 Rust Professional No PhD Student Chat Server
P9 Rust1 Occasional No Undergraduate Student Benford’s law

P10 Python Occasional No Undergraduate Student Chat Client
P11 Rust+Python Professional + Professional Yes Cybersecurity Developer Benford’s law
P12 Rust+Python Professional + Occasional Yes Software Engineer Benford’s law
P13 Rust+Python Regular + Occasional Yes PhD Student Benford’s law
P14 Python Professional No PhD Student Advent of Code
P15 Python Professional Yes PhD Student Advent of Code
P16 Haskell Professional No PhD Student Advent of Code
P17 Rust Professional Yes Founder Advent of Code
P18 Java Occasional No PhD Student Advent of Code
P19 Python Occasional No PhD Student Advent of Code
P20 Haskell Occasional Yes PhD Student Advent of Code

3.3 Method

Participants. We developed our theory through a user study with 20 participants (15

from academia and 5 from industry). We recruited these participants through personal contacts,

Twitter, and Reddit. Nine of the participants had used Copilot to varying degrees prior to the

study. Participants were not paid, but those without access to Copilot were provided access to

the technical preview for continued use after the study concluded. Table 3.1 lists relevant infor-

mation about each participant. We asked each participant to select a statement best describing

their level of experience with possible target languages, with options ranging from “I have never

used Python”, to “I use Python professionally” (from least-to-most, used in Table 3.1: Never,

Occasional, Regular, and Professional). We screened out participants who had never used the

target language. We choose a qualitative self-assignment of experience as other common met-

1Participant did not have time to attempt Python section
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rics, such as years-of-experience, can be misleading. For example, a professor having used Rust

occasionally over eight years is arguably less experienced than as a software engineer using Rust

all day for a year.

User protocol. To study participants using Copilot, we gave them a programming task to

attempt with Copilot’s help. Over the course of an hour a participant was given a small training

task to familiarize them with Copilot’s various usage models (i.e. code completion, natural

language prompt, and the multi-suggestion pane). During the core task—about 20-40 minutes—

a participant was asked to talk through their interactions with Copilot. They were encouraged

to work Copilot into their usual workflow, but they were not required to use Copilot. After the

task, the interviewer asked them questions through a semi-structured interview; these questions

as well as the tasks are available in our supplementary package. The entire session was recorded

and transcribed to use as data in our grounded theory.

Grounded Theory Process. Grounded Theory (GT) takes qualitative data and produces

a theory in an iterative process, first pioneered by [39]. As opposed to evaluating fixed, a priori

hypotheses, a study using the GT methodology seeks to generate new hypotheses in an overar-

ching theory developed without prior theoretical knowledge on the topic. A researcher produces

this theory by constantly interleaving data collection and data analysis. GT has diversified into

three primary styles over the past half-century. We follow the framework laid out by Strauss and

Corbin [111], commonly called Straussian Grounded Theory [110]. We describe our process

below.

We began our study with the blank slate question: “How do programmers interact with

Copilot?” Our bimodal theory of acceleration and exploration was not yet formed. During each

session, we took notes to guide our semi-structured interview. After each session, we tagged

any portion of the recording relevant to Copilot with a note. We took into account what the

participant said, what they did, and their body language. For example, we initially tagged an

instance where P2 was carefully examining and highlighting part of a large Copilot suggestion
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as “validating sub-expression”. Tagging the data in this way is called (qualitative) coding; and

doing so without a set of predefined codes is called open coding in Straussian GT. The first two

authors coded the first two videos together, to agree on a coding style, but later data were coded

by one and discussed by both.

By the end of the eighth session, we began to see patterns emerging in our data. We

noticed two distinct patterns in our codes which eventually crystallized into our acceleration and

exploration modes. During this phase of analysis, we aggregated our codes to understand the

conditions when a participant would enter acceleration or exploration, and the strategies a par-

ticipant deployed in that mode. For example, we realized that if a programer can decompose a

problem, then they often ended up in acceleration (details in section 3.4.1). Once in this accel-

eration mode, programmers would validate a suggestion by a kind of visual “pattern matching”

(details in section 3.4.1). This process of aggregating and analyzing our codes form the axial

coding phase of GT.

After the eighth session, we created a new task to specifically test our emerging theory.

This process of testing aspects of a theory-in-progress is known in GT as theoretical sampling.

After gathering sufficient data on that third task, we created a fourth task to investigate one final

aspect of our theory (validation of Copilot’s suggestions). In the second half of the study, we

linked together our codes and notes into the final bimodal theory we present, in what Straussian

GT calls selective coding. At the 20th participant, we could fit all existing data into our theory

and no new data surprised us. Having reached this point of theoretical saturation, we concluded

our GT study.

Tasks. The list of all four tasks and their descriptions can be found in Table 3.2. The full

task templates we provided to participants are available in our replication package [7].

Our tasks evolved over the course of the study. We started with the “Chat Server” and

“Chat Client” pair of tasks, meant to emulate working on a complex project, with a shared library

and specialized APIs. These two initial tasks required contributing to an existing codebase
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we created, which implements a secure chat application. The first task, Chat Server, asked

participants to implement the server backend, focusing on its “business logic”. We provided most

of the networking code, and the participant’s task was to implement the log-in, chat, and chat-

command functionality (e.g. /quit to quit). The complementary task Chat Client focused on

the client side of the chat application. Here, we provided no networking code so the participant

had to figure out how to use the often unfamiliar socket API. We also required using a custom

cryptographic API we implemented, in order to ensure that some part of the API was unfamiliar

both to the participant and to Copilot.

To investigate the acceleration and exploration modes further, we created the “Benford’s

Law”2 task. This task had two parts, to separately investigate the acceleration and exploration

modes we found. In the first half, the participant implements an efficient Fibonacci sequence gen-

erator. We believed that all participants would be familiar with the algorithm, and hence would

accelerate through this half of the task, allowing us to more deeply characterize the acceleration

mode. In the second half, they plotted this sequence and another (1
2 ,

1
3 , ...,

1
180 as floats) using

matplotlib; this sub-task is used as the example in subsection 3.2.2. Our participants were not

confident users of the plotting library’s API, so they needed to turn to some external resource to

complete the task. This half stressed the code exploration part of our theory. In addition, our

Benford’s Law task asked participants to complete the first half in Rust and the second half in

Python. This division gave us within-participant information on how different languages impact

Copilot usage.

Our fourth task was a string manipulation problem inspired by the 2021 edition of Advent

of Code (this task is used as the example in subsection 3.2.1). We wanted to collect more data

about how programmers validate suggestions from Copilot, and this task was a good fit because

it comes with a test case and a very precise description, and also has two independent sub-tasks,

so it provided several options for checking solutions at different levels of granularity. The data

2Benford’s Law says that in natural-looking datasets, the leading digit of any datum is likely to be small. It is
useful as a signal for finding fraudulent data.
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Table 3.2: The four programming tasks used in our study and their descriptions. Task LOC
is the lines of code in the provided code and Solution LOC are the number of lines in our
canonical solutions.
Task Language(s) Description Task

LOC
Solution
LOC

Chat Server Python/Rust Implement core “business logic” of a chat
application, involving a small state ma-
chine.

253/369 61/83

Chat Client Python/Rust Implement networking code for a chat ap-
plication, using a custom cryptographic
API and standard but often unfamiliar
socket API.

262/368 52/84

Benford’s
Law

Rust & Python Use Rust to generate two sequences—the
Fibonacci sequence and reciprocals of se-
quential natural numbers; then plot these
sequences using Python’s matplotlib.

9 35

Advent of
Code

Python/Rust/
Haskell/Java

Implement a string manipulation task from
a programming competition.

2-18 29-41

we collected rounded out our hypotheses about validation (section 3.4.1, section 3.4.2).

3.4 Theory

Through our grounded theory analysis, we identified two main modes of developer inter-

actions with Copilot: acceleration and exploration. In acceleration mode, a programmer uses

Copilot to execute their planned code actions, by completing a logical unit of code or a comment.

Acceleration works within user’s sense of flow. For example, recall how in subsection 3.2.1 Axel

accepted Copilot’s suggestion of rule.split(" => "), knowing it was what he wanted to type

anyways. This is a characteristic example of acceleration, where Copilot was helping him pro-

gram faster.

In exploration mode, a programmer relies on Copilot to help them plan their code actions.

A programmer may use Copilot to assist with unfamiliar syntax, to look up the appropriate API,

or to discover the right algorithm. In subsection 3.2.2, when Emily was searching for the right

set of matplotlib calls, she was considering alternatives, gaining confidence in the API, and

simply trying to learn how to finish her task. All of these intentions are part of the exploration
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mode when using Copilot. We found that programmers alternate between these two modes as

they complete their task, fluidly switching from one mode to the other.

In this section, we systematize our observation of each mode: acceleration (subsec-

tion 3.4.1) and exploration (subsection 3.4.2). For each mode, we start with identifying the

conditions that lead the participant to end up in that mode, and then proceed to describe com-

mon strategies (i.e. behavioral patterns) we observed in that mode. Each numbered subsection

(e.g. section 3.4.1) is a hypothesis deriving from our top-level bimodal theory. Each named

paragraph heading is an aspect of that hypothesis.

3.4.1 Acceleration

Acceleration is characterized by the programmer being “in the zone” and actively “driv-

ing” the development, while occasionally relying on Copilot to complete their thought process.

A programmer will often accept a Copilot suggestion without much comment and keep on go-

ing without losing focus. In this interaction mode, programmers tend to think of Copilot as an

intelligent autocomplete that just needs to complete their line of thought. This idea was well put

by P13 who said:

“I think of Copilot as an intelligent autocomplete... I already have the line of code in mind

and I just want to see if it can do it, type it out faster than I can.”

P15 added to this, calling Copilot “more or less an advanced autocomplete”.

Programmers Use Acceleration after Decomposing the Task

We found that the main causal condition for a participant to end up in acceleration mode

is being able to decompose the programming task into microtasks. We define a microtask to

be a participant-defined task with a well-understood and well-defined job. For example, when

P16 was working on the Advent of Code task, they created two separate microtasks to parse the
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input and to compute the output. Because they understood these microtasks well, they wrote

a type signature and used descriptive names for each of them; as a result, Copilot was adept

at completing these microtasks for them. Another illustrative example is our Benford’s Law

task, which was explicitly designed to have a familiar and an unfamiliar subtask. In the first

subtask, participants were asked to implement a fast Fibonacci function. All four participants

were familiar with the Fibonacci sequence and knew how to make it efficient. As a result, all

of them were able to use Copilot to accelerate through this familiar microtask. P14 explicitly

noted:
“I think Copilot would be more helpful in cases where there are a lot of tedious subtasks

which requires less of thinking and more of just coding.”

We observed that language expertise or familiarity with Copilot seem to play less of

a role in determining whether a participant would engage in acceleration, compared to their

understanding of the algorithm for solving the task. For example, P4 was not very comfortable

with Python, but they knew what needed to be done in their task algorithmically, and so were

able to break it down into microtasks, leading to acceleration. That said, we do observe that

language experts and prior Copilot users spend a larger proportion of their total interaction time

in acceleration mode; we present quantitative data supporting this observation in section 3.5.

Programmers Focus on Small Logical Units

Participants who interacted with Copilot in acceleration mode would frequently ac-

cept end-of-line suggestions. These were often function calls or argument completions. For

example, when P1 wanted to send a message to a client connection object in the Chat

Client task, they typed client_conn.se and immediately accepted Copilot’s suggestion

client_conn.send_message(). This behavior was seen across all the four tasks when par-

ticipants were in acceleration mode. For a microtask of parsing file input, P15 wanted to spilt

the data based on spaces so they typed data = x. to which Copilot correctly suggested data
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= x.split("") for x in data. Participants would happily accept these end-of-line comple-

tions with reactions like “Yes that’s what I wanted!” and “Thank you Copilot!”

When a programmer is focused on a logical unit of code, they want suggestions only for

that unit. When they are writing a print statement, they prefer to get a suggestion to the end

of the statement. When writing a snippet to message all connected clients, they might instead

prefer an entire for loop, but not more. For example, at one point P8 was focused on a single

call to the startswith function, but Copilot suggested a large piece of code; P8 reacted with

“that’s way more than what I needed!” and went on to delete everything but the first line if

msg.startswith(’/’).

The size of a logical unit differs based on the language and context. In an imperative

language, this is most often a line of code. However, in a functional language like Haskell,

logical units appear to be smaller. P16 said that “in Haskell it just needs to suggest less. [It

should] give me the next function I’m going to compose and not the whole composition chain.”

Long Suggestions Break Flow

In acceleration mode, long, multi-line suggestions are at best dismissed out of hand and

at worst distract the programmer away from their flow.

Upon getting a 16-line suggestion and after just four seconds of review P6 uttered: “Oh

God, no. Absolutely not”. When P6 got other large suggestions, they would exclaim, “Stop it!”,

and continue to program as before. This participant also made use of the <esc> key binding to

actively dismiss a suggestion they did not care for.

On the other hand, many programmers felt “compelled to read the [suggested] code”

(P16) and noted that reading long suggestions would often break their flow. As P1 puts it:

“When I’m writing, I already have in mind the full line and it’s just a matter of transmitting

to my fingertips, and to the keyboard. But when I have those mid-line suggestions and those

suggestions are not just until the end of line, but actually a few more lines, that breaks my
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flow of typing. So instead of writing the full line, I have to stop, look at the code, think

whether I want this or not.”

This sentiment was echoed by multiple participants: P11 was “distracted by everything Copilot

was throwing at [them]”; P7 was “lost in the sauce” after analyzing a long suggestion; P17 felt

“discombobulated”, and others (P8, P11) made similar comments. P16 put it eloquently:

“I was about to write the code and I knew what I wanted to write. But now I’m sitting

here, seeing if somehow Copilot came up with something better than the person who’s been

writing Haskell for five years, I don’t know why am I giving it the time of day.”

Such distractions cause some programmers to give up on the tool entirely: P1, P6, and

P15 all had Copilot disabled prior to the study—having had access for several months—and they

all cited distractions from the always-on suggestions as a factor.

Programmers Validate Suggestions by “Pattern Matching”

In order to quickly recognize whether a suggestion is worthwhile, participants looked for

the presence of certain keywords or control structures. The keywords included function calls or

variable names that they expected should be part of the solution. P1 explicitly stated that the

presence or absence of certain keywords would determine whether the suggestion was worth

considering.

Most other programmers who commented on how they validated suggestions in acceler-

ation mode mentioned control structures (P4, P17, P19). P4, for instance, immediately rejected

an iterative suggestion because they strongly preferred a recursive implementation. On one oc-

casion, Copilot suggested code to P6 when they already had an idea of what shape that code

should take; they described their validation process in this instance as follows:

“I have a picture in mind and that picture ranges from syntactic or textual features—like a

literal shape in words—to semantic about the kind of methods that are being invoked, the
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order in which they should be invoked, and so on. When I see a suggestion, the closer that

suggestion is to the mental image I hold in my head, the more likely I am to trust it.”

These participants appear to first see and understand control-flow features before un-

derstanding data or logic flow features. This is consistent with previous findings dating back

to FORTRAN and COBOL programming [89], where programmers briefly shown small code

snippets could best answer questions about control flow compared to data- or logic-flow.

Programmers Are Reluctant to Accept or Repair Suggestions

Participants in acceleration mode end up quickly rejecting suggestions that don’t have the

right patterns. Suggestions that are almost-correct were accepted if a small repair was obvious

to the participant. P1 accepted a small inline suggestion which had a call to handshake()

function, checked if it existed, and since it did not, they made a minor modification, changing

the function name to do_dh_handshake(). The entire accept-validate-repair sequence seemed

to occur without interrupting their state of flow. P1, P4 would often accept similar-looking

function names but double check if they actually existed:

“Each time it uses something else from the context, I usually double check, like in this case

it was very similar so I could have been fooled, and each time this happens it reinforces the

need to check everything just to see if it has the proper names.”

Although programmers tend to dismiss code that does not match their expectations, some-

times Copilot’s suggestion makes them aware of a corner case they have not yet considered. P4

saw Copilot write an inequality check while working on the Chat Server task, and they said that

they “probably wouldn’t have remembered on their first run through to check that [clients] are

distinct”. Both P6 and P8, working in Rust on the Chat Server, noticed that Copilot used a partial

function .unwrap(). When asked about this, P8 said:
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“Copilot suggested code to handle it in one case and now I’m going to change it around to

handle the other case as well.”

3.4.2 Exploration

In the previous section we focused on the use of Copilot when the programmer has a

good idea for how to approach the task. But what if they do not? In that case they might use

Copilot to help them get started, suggest potentially useful structure and API calls, or explore

alternative solutions. All of these behaviors fit under what we call exploration mode. Exploration

is characterized by the programmer letting Copilot "drive", as opposed to acceleration, where the

programmer is the driver. In the rest of this section, we first describe the conditions that lead

programmers to enter exploration mode, and then we characterize the common behaviors in that

mode.

Programmers Explore when Faced with Novel Tasks or Unexpected Behavior

Recall that most often the programmer ended up in acceleration mode once they had

successfully decomposed the programming task into a sequence of steps (section 3.4.1); dually,

when the programmer was uncertain how to break down the task, they would often use Copilot

for code exploration. P4 said:

“Copilot feels useful for doing novel tasks that I don’t necessarily know how to do. It is

easier to jump in and get started with the task”.

Not knowing where to start was one of two primary ways we observed participants begin

an exploration phase of their study. The other way participants (P11, P13, P14) began exploration

was when they hit some code that does not work as expected, regardless of the code’s provenance.

They would try a variety of prompting and validation strategies to attempt to fix their bug.
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Programmers Explore when They Trust the Model

A participant’s level of confidence and excitement about code-generating models was

highly correlated with whether and to which extent they would engage in exploration. During

the training task, Copilot produced a large, correct suggestion for P18; they exclaimed, “I’m not

gonna be a developer, I’m gonna be a guy who comments!” This level of excitement was shared

among many of our participants early in the task, like P7 saying, “it’s so exciting to see it write

[code] for you!”. Those participants who were excited about Copilot would often let the tool

drive before even attempting to solve the task themselves.

Sometimes, such excessive enthusiasm would get in the way of actually completing a

task. For example, P10 made the least progress compared to others on the same task; in our

post-study interview, they admitted that they were, “a little too reliant on Copilot”:

“I was trying to get Copilot to do it for me, maybe I should have given smaller tasks to

Copilot and done the rest myself instead of depending entirely on Copilot.”

This overoptimism is characteristic of the misunderstanding users often have with pro-

gram synthesizers. P9 and P10 were both hitting the user-synthesizer gap, which separates what

the user expects a program synthesizer to be capable of, and what the synthesizer can actually

do [35].

Programmers Explicitly Prompt Copilot with Comments

Nearly every participant (P2, P3, P4, P5, P7, P8, P10, P11, P12, P13, P14, P17, P18,

P19, P20) wrote at least one natural language comment as a prompt to Copilot, specifically for

an exploratory task.

Programmers prefer comment prompts in exploration. Programmers felt that natural

language prompts in the form of comments offered a greater level of control than code prompts

(P17). P2 told us that, “writing a couple of lines [of comments] is a lot easier than writing code.”
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This feeling of being more in control was echoed by P5 who said:

“I think that the natural language prompt is more cohesive because it’s interruptive to be

typing out something and then for Copilot to guess what you’re thinking with that small

pseudocode. It’s nice to have a comment that you’ve written about your mental model and

then going to the next line and seeing what Copilot thinks of that.”

Programmers write more and different comments when using Copilot. Participants

seem to distinguish between comments made for themselves and Copilot. In the words of P6,

“The kind of comments I would write to Copilot are not the kind of comments I would use to

document my code.” P2, P3, P5, P12, and P19 all told us that the majority of their comments

were explicitly meant for Copilot. P7 was the sole exception: they wrote comments to jot down

their design ideas saying, “I’m writing this not so much to inform Copilot but just to organize

my own thoughts”; they added that being able to prompt Copilot using those comments was a

nice side effect.

Participants were willing to invest more time interacting with Copilot via comment

prompts in exploration mode. They would add detailed information in the comments in the

hope that Copilot would have enough context to generate good suggestions (P2, P3). They

would rewrite comments with more relevant information if the suggestions did not match their

expectations, engaging in a conversation with Copilot. P2 and P6 wished they had a “community

guide” (P2) on how to write comments so that Copilot could better understand their intent.

Further, in our interviews, multiple people described their usual commenting workflow

as post-hoc: they add comments after completing code. Hence, the participants were willing to

change their commenting workflow to get the benefits of Copilot.

Programmers frequently remove comments after completing an interaction with Copi-

lot. Many participants (P3, P4, P7, and P8) would repeatedly delete comments that were meant

for Copilot. P19 said that cleaning up comments written for Copilot is essential:
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“I wrote this comment to convert String to array just for Copilot, I would never leave this

here because it’s just obvious what it’s doing. [. . . ] These comments aren’t adding value to

the code. I think you also have to do like a comment cleanup after using Copilot.”

Programmers are Willing to Explore Multiple Suggestions

In exploration mode, we often saw participants spend significant time foraging through

Copilot’s suggestions in a way largely unseen during acceleration. This included using the multi-

suggestion pane, both for its primary intended purpose—selecting a single suggestion out of

many—and for more creative purposes, such as cherry-picking snippets from multiple sugges-

tions, API search, and gauging Copilot’s confidence in a code pattern.

Participants tend to use the multi-suggestion pane when faced with an exploratory task

(P2, P4, P5, P7, P10, P12–20). They would either write a comment prompt or a code prompt

before invoking the multi-suggestion pane. This enabled participants to explore alternate ways

to complete their task while also providing an explicit way to invoke Copilot. P10, P15, P19

preferred the multi-suggestion pane over getting suggestions inline in all cases. P15 said:

“I prefer multiple suggestions over inline because sometimes the first solution is not what I

want so if I have something to choose from, it makes my life easier.”

Some only occasionally got value from the multi-suggestion pane. P6 said that:

“If I think there’s a range of possible ways to do a task and I want Copilot to show me a

bunch of them I can see how this could be useful.”

Similar to P6, P14 and P17 preferred the multi-suggestion pane only while exploring

code as it showed them more options. Yet others turned to the multi-suggestion pane when

Copilot’s always-on suggestions failed to meet their needs.

Programmers cherry-pick code from multiple suggestions. Participants took part of

a solution from the multi-suggestion pane or combined code from different solutions in the
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pane. P2, P3, P4, P5, P18 often accepted only interesting sub-snippets from the multi-suggestion

pane. For example, P18 forgot the syntax for declaring a new Hashmap in Java, and while

Copilot suggested a bunch of formatting code around the suggestion, P18 only copied the line

that performed the declaration. P2 went ahead to combine interesting parts from more than one

suggestion stating:

“I mostly just do a deep dive on the first one it shows me, and if that differs from my expec-

tation, for example when it wasn’t directly invoking the handshake function, I specifically

look for other suggestions that are like the first one but do that other thing correctly.”

Programmers use the multi-suggestion pane in lieu of StackOverflow. When program-

mers do not know the immediate next steps in their workflow, they often write a comment to

Copilot and invoke the multi-suggestion pane. This workflow is similar to how programmers

already use online forums like StackOverflow: they are unsure about the implementation details

but they can describe their goal. In fact, P12 mentioned that they were mostly using the multi-

suggestion pane as a search engine during exploration. P4 often used Copilot for purely syntactic

searches, for example, to find the x in xs syntax in Python. P15 cemented this further:

“what would have been a StackOverflow search, Copilot pretty much gave that to me.”

Participants emphasized that the multi-suggestion pane helped them use unfamiliar APIs,

even if they did not gain a deep understanding of these APIs. P5 explains:

"It definitely helped me understand how best to use the API. I feel like my actual understand-

ing of [the socket or crypto library] is not better but I was able to use them effectively."

Programmers use the multi-suggestion pane to gauge Copilot’s confidence. Partici-

pants assigned a higher confidence to Copilot’s suggestions if a particular pattern or API call

appeared repeatedly in the multi-suggestion pane. Participants seemed to think that repetition

implied Copilot was more confident about the suggestion. For example, P5 consulted Copilot’s

multi-suggestion pane when they were trying to use the unfamiliar socket library in Python. Af-
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ter looking through several suggestions, and seeing that they all called the same method, they

accepted the first inline suggestion. When asked how confident they felt about it, P5 said:

“I’m pretty confident. I haven’t used this socket library, but it seems Copilot has seen this

pattern enough that, this is what I want.”

P4 had a similar experience but with Python syntax: they checked the multi-suggestion

pane to reach a sense of consensus with Copilot on how to use the del keyword in Python.

Programmers suffer from cognitive overload due to multi-suggestion pane. P1, P4, P6,

P7 and P13 did not like the multi-suggestion pane popping up in a separate window stating that

it added to their cognitive load. P4 said that they would prefer a modeless (inline) interaction,

and P6 stated:
“Seeing the code in context of where it’s going to be was way more valuable than seeing it

in a separate pane where I have to draw all these additional connections.”

P13 spent a considerable amount of time skimming and trying to differentiate the code

suggestions in the multi-suggestion pane, prompting them to make the following feature request:

“It might be nice if it could highlight what it’s doing or which parts are different, just some-

thing that gives me clues as to why I should pick one over the other.”

Programmers suffer from an anchoring bias when looking through multiple sugges-

tions. The anchoring bias influences behavior based on the first piece of information received.

We observed participants believe that suggestions were ranked and that the top suggestion must

be closest to their intent (P18). This was also evident through P2’s behavior who would inspect

the first suggestion more deeply then skim through the rest.

Programmers Validate Suggestions Explicitly

Programmers would validate Copilot’s suggestions more carefully in exploration mode

as compared to acceleration. Their validation strategies included code examination, code execu-
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tion (or testing), relying on IDE-integrated static analysis (e.g. a type checker), and looking up

documentation. We look at these techniques in detail.

Examination. Unlike acceleration mode, where participants quickly triage code sugges-

tions by "pattern matching", exploration mode is characterized by carefully examining the details

of Copilot-generated code. For example, P19 said that they would “always check [the code] line

by line”, and P5 mentioned that their role seemed to have shifted from being a programmer to

being a code reviewer: “It’s nice to have code to review instead of write”. Participants found it

important to cross-check Copilot’s suggestions just as they would do for code from an external

resource. When asked how much they trusted Copilot’s suggestions, P14 said:

“I consider it as a result I would obtain from a web search. It’s not official documentation,

it’s something that needs my examination...if it works it works”

Execution. Code execution was common—occurring in every task by at least one participant—

although not as common as examination. In case of the server and client task, participants P3

and P7 would frequently run their code by connecting the client to server and checking if it has

the expected behavior. For the Benford’s law task, P11 wrote test cases in Rust using assert_eq

to check whether the Fibonacci function suggested by Copilot was correct. All participants in

the Advent of Code task ran their code to check whether they parsed the input file correctly.

In addition to executing the entire program, some participants used a Read-Eval-Print-

Loop (REPL) as a scratchpad to validate code suggestions (P14, P16, P19). P16 used the Haskell

REPL throughout the study to validate the results of subtasks. Copilot suggested an adjacents

function that takes a string and pairs adjacent characters together. P16 validated the correctness

of this function by running it on toy input adjacents "helloworld".

Static analysis. In typed languages like Rust, the type checker or another static analyzer

frequently replaced validation by execution. For example, P17 did not run their code even once

for the Advent of Code task, despite the task being designed to encourage testing. They reasoned
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that the rust-analyzer3 tool—which compiles and reports type errors in the background—took

away the need to explicitly compile and execute the code.

“In Rust I don’t [explicitly] compile often just because I feel like the there’s a lot of the type

system and being able to reason about state better because mutability is demarcated a lot.

But if this were in Python, I would be checking a lot by running in a REPL.”

P7 thought it was “cool how you can see the suggestion and then rely on the type checker

to find the problems.” In general, most participants using statically typed languages relied on

IDE support to help them validate code. P6, P8 and P17 relied on Rust analyzer and P6 had this

to say:

“I rely on the Rust compiler to check that I’m not doing anything incorrect. The nice part

about being a statically typed language is you can catch all that at compile time so I just

rely on Rust analyzer to do most of the heavy lifting for me.”

Documentation. Lastly, consulting documentation was another common strategy to ex-

plicitly validate code from Copilot. As an example, P11 was trying to plot a histogram in

matplotlib, but was unsure of the correct arguments for the plt.hist function. They ac-

cepted a couple of Copilot’s suggestions but explicitly went to validate the suggested arguments

by reading the documentation within the IDE. Participant P17, who never executed their Rust

code, would instead hover over the variables and function names to access API documentation

within the IDE. Participants that did not have documentation built into their IDE would turn to

a web resource. For example, P14 accepted Copilot’s suggestion for parsing file input in the Ad-

vent of Code task, and then validated the functionality of splitlines by crosschecking with the

official Python documentation. P11 also used Google for crosschecking whether the Fibonacci

sequence suggested by Copilot was accurate.

3https://github.com/rust-lang/rust-analyzer
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Programmers Are Willing to Accept and Edit

Unlike acceleration mode, where participants were quick to dismiss a suggestion that

didn’t match their expectations, during exploration, they seemed to prefer deleting or editing

code rather than writing code from scratch. When a participant saw a segment of code that they

felt they were likely to need in the future, they would hang on to it (P2, P3, P4, P6, P8). P2 was

exploring code for one stage of writing a chat server when they saw code needed for a later stage

and said: “I’m keeping [that] for later”. During their exploration, they accepted a 40 line block

of code to add:
“Eh, I’m just going to accept this. It’s close enough to what I want that I can modify it.”

P3 said: “I wanna see what [Copilot] gives me, then I’ll edit them away”. Some participants

were able to complete most of their task by accepting a large block of code and then slowly

breaking it down. P7 accepted a large block of code early on and iteratively repaired it into the

code they needed. P5 had a similar experience and said, “It’s nice to have code to review instead

of write”.

Commonly, participants sought a suggestion from Copilot only to keep the control

structure. As a representative example, P8 was writing a message-handling function in Rust,

when Copilot produced a 15-line suggestion, containing a match statement and the logic of its

branches. After examination, P8 accepted the suggestion but quickly deleted the content of the

branches, retaining only the structure of the match. We saw this many times with P1, P2, P11,

P17, P18 as well. P17 said:

“If I’m in a mode where I want to rip apart a solution and use it as a template then I can look

at the multi-suggestion pane and select whichever suits my needs.”

Copilot-generated code is harder to debug. On the flip side, participants found it more

difficult to spot an error in code generated by Copilot. For example, P13 had to rely on Copilot

to interface with matplotlib; when they noticed undesired behavior in that code, they said:
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“I don’t see the error immediately and unfortunately because this is generated, I don’t under-

stand it as well as I feel like I would’ve if I had written it. I find reading code that I didn’t

write to be a lot more difficult than reading code that I did write, so if there’s any chance

that Copilot is going to get it wrong, I’d rather just get it wrong myself because at least that

way I understand what’s going on much better.”

We observed a similar effect with P9, who could not complete their task due to subtly incorrect

code suggested by Copilot. Copilot’s suggestion opened a file in read-only mode, causing the

program to fail when attempting to write. P9 was not able to understand and localize the error,

instead spending a long time trying to add more code to perform an unrelated file flush operation.

3.5 Additional Analysis

In this section, we first provide quantitative evidence to support the findings from our

grounded theory analysis. We then present the results of a qualitative analysis on five livestream

videos to provide additional evidence that further supports our theory.

3.5.1 Quantitative Analysis

At the end of our grounded theory analysis, we closed our codebook and re-coded all

videos with a fixed set of codes that emerged to be most noteworthy. Figure 3.3 represents

this codeline of the different activities we observed in each of the two interaction modes. The

activities include prompting strategies, validation strategies, and the outcomes of Copilot’s sug-

gestions i.e. whether the participant accepts, rejects, or edits the suggestion. We then performed

a quantitative analysis on this codeline to investigate the following questions:
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Figure 3.3: Timeline of observed activities in each interaction mode for the 20 study partic-
ipants. The qualitative codes include different prompting strategies, validation strategies and
outcomes of Copilot’s suggestions (accept, reject or repair)
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(a) Grouped by language expertise. (b) Grouped by prior Copilot usage.
Figure 3.4: Median time spent in acceleration vs exploration mode for different participant
groups.

(Q1) What factors influence the time spent in each of the two interaction modes?

(Q2) What are the prompting strategies used to invoke Copilot in the two interaction modes?

(Q3) How do the validation strategies differ across the two interaction modes and by task?

Time Spent in Interaction Modes

The total amount of study time spent by all participants interacting with Copilot in explo-

ration mode (248.6 minutes) is more than twice that in acceleration mode (104.7 minutes). This

is not surprising, since exploration is the “slow System 2” mode, where each interaction takes

longer. At the same time, the ratio of time spent in the two modes is not constant across par-

ticipants. Below, we investigate which factors influence this ratio, including language expertise,

prior Copilot usage, the nature of the task, and the programming language.

Language expertise. Figure 3.4a shows the median time spent in two modes split by

the participant’s language expertise. We can clearly see that professional participants with the

most language expertise spend more time accelerating than the other two groups. This is not
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Figure 3.5: Median time spent in acceleration
vs exploration mode, grouped by task.

Figure 3.6: Prevalence of prompting strategy
as percentage of total prompting time.

surprising, since they are more likely to already know how to solve the task in the given language.

Prior Copilot usage. We can see in Figure 3.4b that the total interaction time is roughly

the same for participants with and without prior Copilot usage. Given roughly the same overall

time, prior users spend less time exploring (and more time accelerating) than novice users. We

attribute this difference to the effect we observed in section 3.4.2, where novice users have higher

expectations of Copilot’s ability to solve high-level exploratory tasks.

Nature of Task. Figure 3.5 shows the median time spent in each mode grouped by task.

Both Chat Client and Benford’s Law prominently feature interaction with unfamiliar APIs; as a

result, all participants in these two tasks spent considerably more time in exploration, irrespective

of other varying factors such as language expertise and prior Copilot usage. Advent of Code was

more algorithmically challenging than the other tasks, and also involved the File I/O API, which

was somewhat unfamiliar to participants. Both of these factors pushed participants to explore

but there was more variance in the data than in Chat Client and Benford’s Law: for example,

P16, who figured out the algorithm early on, spent more time accelerating (15.8 minutes) than

exploring (3.4 minutes). Chat Server, on the other hand, involved simple business logic, so

participants leaned towards acceleration in this task.

Programming Language. We did not identify any noticeable differences in either total
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interaction time or ratio of acceleration to exploration between Python and Rust. For the other

two languages (Haskell and Java), we have too few data points to make any conclusions.

Prompting Strategies across Interaction Modes

Our codebook identifies four strategies participants use to invoke Copilot: code prompts,

context prompts, comment prompts, and the multi-suggestions pane. We can cluster the four

prompting strategies into two categories: unintentional prompting (subsection 3.2.1) and inten-

tional prompting (subsection 3.2.2). Unintentional prompting involves participants invoking

Copilot without explicitly meaning to. For example, with code prompts, the participant is often

simply writing code when Copilot pops up a suggestion to complete their partially written line of

code. Context prompts are those where Copilot generates suggestions even when the participant

is not actively writing code. From the language model perspective, these two kinds of prompts

are indistinguishable but we consider them distinct from the user interaction perspective. Inten-

tional prompting involves explicit intent from the participant. This can be in the form of writing a

natural-language comment intended for Copilot (section 3.4.2) or invoking the multi-suggestions

pane by pressing <ctrl> + <enter> (section 3.4.2).

Figure 3.6 shows the aggregate percentage of times the 20 participants invoked Copilot

using the four different prompting strategies. We notice that in acceleration mode, the most com-

monly used prompting strategy is code prompts (71.4%), with the other unintentional strategy,

context prompts, coming in second (15.2%). The multi-suggestions pane is rarely used, which

is consistent with our theory, since it would break the participant’s flow. In exploration mode,

participants intentionally prompt with comments a lot more than in acceleration mode (57.2% vs

13.1%). The percentage of multi-suggestion pane prompts also shoots up in exploration mode

as it provides a rich body of suggestions for participants to explore from.

91



(a) Aggregate time, split by interaction mode. (b) Median time, grouped by task.
Figure 3.7: Time spent in different validation strategies.

Validation Strategies across Interaction Modes and Tasks

Recall that section 3.4.2 identified four different validations strategies: examination, ex-

ecution, static analysis, and consulting the documentation. We measured the time participants

spent in each of these strategies, with the exception of static analysis, which runs automatically

in the background, so it was hard for us to determine precisely when a participant was “using”

its results.

Figure 3.7a shows the percentage of validation time spent in each strategy, split by in-

teraction mode. Predictably, participants spent more time reading documentation in exploration

mode than in acceleration mode, likely because exploration was commonly used when inter-

facing with unfamiliar APIs. A somewhat surprising result is that execution seems to be more

prevalent during acceleration. One reason for this is that during exploration the code is often

incomplete and cannot be executed. Another reason is simply that the remaining strategy, ex-

amination, takes up more time in absolute terms during exploration, as participants carefully

examine the code line by line as opposed to making quick decisions via “pattern matching”. We

conclude that in exploration mode, programmers use validation strategies that aid comprehen-

sion (careful examination, reading documentation), while in acceleration more, they focus on
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strategies that provide rapid feedback on code correctness (execution).

The nature of the task also has impact on the validation strategies, as shown in Fig-

ure 3.7b. The prevalence of complex and unfamiliar APIs in Chat Client both increases the

overall validation time for this task and favors exploratory validation, such as examination and

documentation. Interestingly, the task with most time spent in execution is Benford’s Law, and

not Advent of Code, which was explicitly designed to be easy to test (it came with a test case).

We conjecture that Benford’s Law was executed so often because it has visual output, which is

easy and exciting for programmers to inspect.

3.5.2 Qualitative Analysis of LiveStreams

We gathered additional evidence in the form of five livestream videos to support our

theory. We present our findings from a qualitative analysis of these videos in this section.

Data Collection

The livestream videos were taken from Youtube (S1, S2, S4) and Twitch (S3, S5), and

involved a developer using Copilot while constantly talking aloud to an audience. S1 and S2

had Copilot turned on to solve Advent of Code tasks in Haskell and C# respectively. S3, S4 and

S5 all did web-based programming tasks using Copilot in Javascript, Typescript, HTML, SCSS,

and other web languages. For example, S4’s task was to build a Go game in Angular. While S1,

S2 and S4 had well-defined tasks, S3 and S5 used Copilot for exploratory tasks, in fact, S3 even

asked their viewers to suggest random programming tasks for Copilot.

Qualitative Data Analysis

One of the authors coded all the livestream videos with the same closed codebook used

to re-code our participant videos in subsection 3.5.1. We present the results from our qualitative

analysis and draw parallels to our bimodal theory of acceleration and exploration.
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Acceleration Mode

We observed that when the task was relatively well-defined (S1, S4, S5), acceleration

mode was prevalent, consistent with our theory. All streamers used Copilot for end-of-line

completions in acceleration mode at least once, accompanied with comments like, “Yeah Copilot

knows what I’m trying to do!” In fact, S4 used Copilot only for end-of-line completions and said,

“I need to let the AI help more, I’m doing too much stuff myself.” Streamers would only focus

on small logical units, for instance, S2 accepted a long suggestion only to retain the structure

of a for loop and the condition within. S2 repeated this behavior when they just wanted to fill

in the parameters of a function so they ended up deleting everything in a suggestion except

the parameters. S1 often used end-of-line completions to complete type signatures in Haskell,

which would correspond to a logical unit. As observed in our theory, the streamers would reject

long suggestions that broke their flow (S1, S2, S4). S4 exclaimed, “Thank you, that’s not what

I want” when Copilot suggested an extremely long snippet while they were accelerating. In

addition, both S1 and S4 made only minor edits to suggestions accepted in acceleration mode,

whereas S1 made relatively major edits to suggestions in exploration.

Exploration Mode

S3 and S5, who worked on exploratory tasks, spent considerably more time in explo-

ration mode than in acceleration. Streamers were willing to write a lot of comments while in

exploration mode (S2, S3, S5). S5 tried to use Copilot to generate documentation and said, “as a

person who usually writes comments after writing code, Copilot might change the way I code”.

S3 had an interesting way of prompting Copilot: by writing unusually descriptive function names

instead of comments. S3 and S5 often used the multi-suggestion pane as a fallback option when

the inline suggestions did not meet their expectations. S3 expected the multiple suggestions to

be diverse and was sometimes disappointed when they were not. In addition to using the pane,

S5 also explored multiple suggestions inline by pressing tab. We did not observe this behavior
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in our main study, because neither we nor our participants were aware of this feature.

Validation Strategies

We observed the same validation behavior as seen in our theory in all the livestream

videos. After accepting a suggestion, S3 said, “Let’s just check if this part works” and S1 echoed,

“I think Copilot wrote that for me, let me just check”. S1 and S2 constantly validated their code

using the test inputs provided by the Advent of Code tasks and also used specific test inputs

for debugging code. All streamers spent considerable time in code examination as a validation

strategy both inline (S1, S2, S4, S5) and in the multi-suggestion pane (S3, S5). S2 and S3

referred to API documentation using web search to validate Copilot’s code while S4 resorted

to reading in-IDE API documentation as a form of validation. S3 and S4 whose tasks involved

building a website ran their webpage remotely as a validation strategy.

The blame game of who wrote the buggy code was also observed in the livestreams.

While debugging their code, S5 expressed this by saying, “not sure if they are my bugs or Copi-

lot’s bugs.” S3 had a bug that they were baffled by, turns out it was some residual code from

Copilot’s suggestion which they forgot to delete. S5 summed up Copilot’s behavior as being a

“mixed bag, when it understands what I want it feels like it’s reading my mind. Otherwise it pro-

duces random code.” Streamers were generally confident using Copilot for writing boilerplate,

repetitive code (S3, S4).

3.6 Recommendations

This section outlines recommendations for how programming assistants could be im-

proved in the future, We classify these suggestions into two categories: improving the way

programmers could provide input to a future tool, and improving the kinds of output the tool

could generate.
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3.6.1 Better Input

Control over the context. There was general confusion among participants about how

Copilot uses their code to provide suggestions. Some participants were unsure how much code

Copilot can take into context, for example, P8 theorized a hard limit to the input length: “I think

the README is too long and complicated for it to actually extract [helpful information]”. Other

participants (P8, P10, P15, P18) mentioned they were unsure about which pieces of informa-

tion Copilot had extracted about their local codebase. Specifically, there appeared to be a broad

misconception that commenting out code made it invisible to Copilot, despite those same partic-

ipants using comment prompts. P20 “assumed it wouldn’t be aware of code if [they] commented

it out”. We also observed participants (P2, P3, P4 P6) comment out code generated by Copilot

in an attempt to get it to generate an alternative suggestion.

Participants that were aware of Copilot’s sensitivity to context wanted to have more con-

trol over that context. Some participants wanted to give Copilot specific context: in describing

their work outside of the study, P15 mentioned poor suggestions from Copilot and wished they

could emphasize a subset of their code (i.e. niche libraries they imported), so they could feel

more confident that the suggestions were relevant to their code. Others, P4 and P12, wished

to query Copilot with a natural-language prompt without any code context, just as they would

query StackOverflow.

In order to achieve this control, participants wanted Copilot to provide dedicated syntax.

For example, P2 wanted Copilot to use a specific function, and tried to achieve this by “using

the function name in backquotes”. P18 asked: “Is there a way to prompt Copilot into suggesting

a data structure?” Finally, P4, when looking for examples of using the del operation in Python,

wanted to explicitly ask Copilot to show only “syntax examples”.

Based on these observations, future tools could give programmers ways to customize the

context. For example, a future tool could provide a scratchpad to isolate general, StackOverflow-

style prompts from the rest of the codebase. It could also provide expert prompt syntax, similar to
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advanced operators in Google search; for example, including :use plt.show() in a comment

prompt might restrict the assistant’s suggestions to only those snippets using the expression

plt.show(), like the work of [88]. Finally, programmers would likely appreciate a separate

type of comments that make code invisible to the tool.

Cross-language translation. P13 said that they were more familiar with Julia than the

task language (Python), and at some point they wrote some Julia code which Copilot then trans-

lated to Python. This type of interaction opens up the possibility of users giving prompts in

programming languages they are more familiar with. The task for Copilot then becomes a cross-

language translation task. It would be interesting to fine-tune Copilot for this particular task, by

training it on equivalence classes of syntactic constructs in different programming languages.

3.6.2 Better Output

Awareness of the interaction mode. Perhaps the most important outcome of our study

is the bimodal nature of programmers’ interactions with Copilot: they are either in an accel-

eration or exploration mode. We conjecture that the user experience could be improved if the

tool were aware of the current interaction mode and adjusted its behavior accordingly. In ac-

celeration mode, it should not break the programmer’s flow (P6 mentioned that they intention-

ally turned Copilot off because it disrupted their workflow). To this end, the tool should avoid

low-confidence suggestions—which are unlikely to be accepted—and long suggestions—which

distract the programmer.

Going beyond simply avoiding multi-line suggestions, the tool could be made more

aware of how the code is divided into logical units. As we mentioned in section 3.4.1, program-

mers in acceleration mode focus on a single logical unit of code at a time, which is often one

line, but can also be shorter (the next function call in Haskell) or longer (an entire loop). It would

be interesting to explore if we can make the scope of Copilot’s suggestions match the scope the

programmer’s current focus. Participants also mentioned that it would be helpful if Copilot gave
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suggestions more selectively as opposed to being always on. This could be achieved, e.g., by

reinforcement learning to obtain a policy for when Copilot should intervene, based on the local

context and programmer’s actions.

Exploring multiple suggestions. As we mentioned in section 3.4.2, in exploratory searches,

programmers commonly used the multi-suggestion pane, but also often got overwhelmed by the

results they saw there. Several participants had trouble identifying meaningful differences be-

tween the suggestions (P1, P4, P6, P7, P13). This observation motivates the need for a tool

that would help programmers explore a large space of suggestions, perhaps similarly to how

Overcode [40] supports exploring a space of student solutions to a programming assignment.

Suggestions with holes. Recall from section 3.4.2, that when programmers modify sug-

gestions, they often keep control-flow features and little else, as seen for P1, P2, P8, P11, P17,

and P18. Based on this observation, programmers would likely benefit from suggestions with

holes, where the tool only generates control structures, which users are likely to understand

quickly, leaving their bodies for the programmer to fill out (either by hand, or by giving more

targeted prompts to the tool). For example, P2 explicitly mentioned that “if [Copilot] gives me a

mostly filled out skeleton, I can be the one who fills out holes”. Recent work by [45] generated

holes in their suggestions where the underlying model had low confidence.

Low-confidence suggestions are not the only motivation for a hole: participants reported

feeling frustrated and distracted by large code snippets. When offered these large snippets, some

participants felt Copilot was forcing them to jump in to write code before coming up with a

high-level architectural design. P4 said:

“I wrote code as one might read code, rather than the way I might write it which is generally

top-down, where I will fill in the control structure and then I’ll do the little bits and pieces

after I build in the full control structure. It made me jump in to write code instead of the

normal way.”

P16 normally writes a high-level design first and then gets to function implementations—
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as the grounded theory from [70] describes of functional programmers. Other participants (P2,

P3, P4, P5, P7, P8) also felt Copilot forced significant change on their code authorship process.

Based on our observations, future tools should mind how large code blocks can break the user’s

natural development flow, instead offering code holes for users to fill in when ready.

Always-on validation. Several participants (P2, P14, P16) wished to have better tool sup-

port for validating suggestions. For example, P16 wanted to set up property-based testing [24]

to run automatically on Copilot suggestions. P14 wished they had projection boxes [66], a live

programming environment that constantly displays runtime values of relevant variables (usually

on a single test input). In the future, IDEs could couple code-generating models with some kind

of always-on validation, in order to make the process of evaluating code suggestions less taxing

for the developer.

3.7 Related Work

Usability of Copilot. The closest to our work is the study by [117], which also evaluates

Copilot. The main differences are: (1) their study is on stand-alone tasks, whereas ours includes

tasks that require contributing to an existing codebase; (2) their study is comparative and focuses

on the rate and time of task completion with and without Copilot’s help; (3) their study only used

Python, whereas we used several programming languages. In our study, we explicitly stepped

away from the common comparative setting, where participants are given well-defined stand-

alone tasks, and the goal is to collect quantitative data on how well and quickly they complete

the tasks, with and without the tool under evaluation. Instead, we chose more open-ended tasks

in the context of an existing codebase, which we believe is closer to the real-world use case.

Further, instead of skewing quantitative answers to predefined research questions, we chose the

grounded theory approach, with the general goal of finding patters in programmers’ behavior

when they interact with Copilot; we believe this approach is complementary to the quantitative
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studies. Finally, our usage of multiple languages enables inter-language comparisons and more

generalizable conclusions.

On the other hand, [117] also report several qualitative findings. Most of them agree with

ours, such as: that Copilot often provides a good starting point for programmers who do not know

how to approach the task, that programmers are generally willing to repair code suggestions,

but Copilot-generated code is harder to debug. There are also some differences; for example,

half of their participants (12/24) said they had trouble understanding and modifying Copilot-

generated code, whereas our participants did not seem to share this difficulty; this might be

because our study is with more experienced developers: only one participant in our study was

an undergraduate student, whereas 10/24 in their study were undergraduates.

Usability of other LLM tools. Beyond Copilot, [57] conducted a user study to analyse

the interaction of developers with a natural language to code tool called GenLine. GenLine is

similar to Copilot but involves explicitly invoking a command within a text editor. Similar to

our findings, developers in their study were willing to rewrite the natural language prompt to

clarify their intent and expressed the need for a syntax to communicate with the model more

clearly. However, their findings were mainly centered around prompting strategies whereas we

did a more comprehensive analysis of developer interactions with Copilot. Moreover, the tool

was not integrated in the participant’s daily workflow like in our study. In a similar vein, [129]

investigated the usefulness of an NL-to-code plugin previously developed by the same authors

[128]. They found no statistically significant difference in task completion times or correctness

scores when using the plugin, and the participants’ feedback about the plugin was neutral to

slightly positive. We conjecture, however, that these findings are not as relevant anymore, thanks

to recent breakthroughs in large language models, which significantly increased the quality of

generated code. In another related study, [126] interviewed IBM software engineers about their

experience with a neural machine translation tool for translating code between programming

languages. This study focuses on the engineers’ code validation strategies and future UI features
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that might help with this task, such as confidence highlighting and alternative translations; in

this sense, their study is complementary to our work, conducted in the context of a different task

(language-to-language translation).

[104] compiled observations from the above user studies and additionally gathered expe-

rience reports of programming assistants usage from Hacker News. The compiled observations

were similar to what we found—prompting is hard, validation is important, and programmers

use assistants for boilerplate, reusable code. There are a few other industrial-grade programming

assistants powered by statistical models, such as TabNine [112] and Kite [61], but we are not

aware of any research on their usability.

Usability of program synthesis tools. Another approach to code generation, is the more

traditional, search-based program synthesis. As program synthesis technology matures, it be-

comes increasingly common to evaluate the usability of synthesizers on human subjects. Many

of these usability studies are for domain-specific synthesizers targeting API navigation [54],

regular expressions [134, 132], web scraping [18], or data querying, wrangling, and visualiza-

tion [31, 123, 137]. These studies usually focus on measuring the tool’s effect on task com-

pletion rates and times, which is less relevant to our questions. The work on RESL [85] and

Snippy [35, 34] include user studies of general-purpose programming-by-example synthesizers

for JavaScript and Python. Although both also focus mainly on task completion times, they do

make some interesting qualitative observations. For example, [35] observe that one of the main

barriers to the usefulness of the synthesizer is the so-called user-synthesizer gap, i.e. the pro-

grammer’s overestimation of the synthesizer’s capabilities; we observed a similar phenomenon

in our study (see section 3.4.2), although it appears to be less prominent in LLM-based tools,

since their performance degrades more gradually with the complexity of the task.

[55] study how undergraduate students learned to use six different synthesizers—Copilot

among them—with different interaction modes. Not all of the themes they identify are applicable

to Copilot, but those that are, are corroborated and explored in more depth in our study. For
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example, they identify that novice participants would often accept then modify code. We support

and extend this (section 3.4.2), adding that this is characteristic of exploration mode, which

indeed occurs more commonly in novices.

Grounded Theory for software development. Grounded Theory (GT) has a relatively

long history in software-related fields, with its application to software engineering dating as far

back as 2004 [15]. [110] provide a survey and a critical evaluation of 93 GT studies in software

engineering. Recently, GT has also drawn interest in the programming languages community:

[70] study how statically-typed functional programmers write code, and deliver a set of guide-

lines meant for functional language tool-builders.

3.8 Limitations and Threats to Validity

Our participants worked on tasks of our design, as opposed to their own projects. If

they were working in a more familiar codebase and without the time pressure of a study, their

interactions could have been different. Moreover, our tasks focused only on code authorship, as

opposed to refactoring, testing, debugging, or other common aspects of software engineering.

We consider these beyond the scope of this study, although our participants did occasionally get

a chance to test or debug their code.

We recruited 20 participants, with a skew towards those in academia, hardly a represen-

tative sample of all programmers. Similarly, although we tried to diversify the type of tasks our

participants were solving and the programming languages they were using, other kinds of tasks

and languages could have lead to different interactions.

11 of our participants had not used Copilot before the study, and hence might not be

representative of regular users of the tool. We gave all participants a 5-minute training task so

they could familiarize themselves with Copilot, and yet we observed that first-time users were

sometimes over-reliant on Copilot, in a way that prior users were not. We chose to include
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new users in our study since the majority of programmers in the wild have never used a code-

generating model. Meanwhile, our participants who already had access to the tool may have

formed a usage pattern (or dis-uage pattern in the case of P6) based on poor experience early in

the technical preview, where its behavior may have been rapidly changing. Ideally, we would

have liked to observe programmer over a longer period of time, in order to study how their usage

patterns changed over time, but this was not feasible given the time constraints of the study.

Finally, the research on code-generating models is progressing very rapidly, and it is

possible that new technological breakthroughs will soon render our findings obsolete. That

would be a nice problem to have indeed!
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Chapter 4

Validating AI-Generated Code with Live

Programming

4.1 Introduction

Recent advances in large language models have given rise to AI-powered code sugges-

tion tools like GitHub Copilot [38], Amazon CodeWhisperer [3], and ChatGPT [81]. These AI

programming assistants are changing the face of software development, automating many of the

traditional programming tasks, but at the same time introducing new tasks into the developer’s

workflow—such as prompting the assistant and reviewing its suggestions [8, 78]. Development

environments have some catching up to do in order to provide adequate tool support for these

new tasks.

In this paper, we focus on the task of validating AI-generated code, i.e., deciding whether

it matches the programmer’s intent. Recent studies show that validation is a bottleneck for AI-

assisted programming: according to [78], it is the single most prevalent activity when using AI

code assistants, and other studies [117, 69, 124, 9] report programmers having trouble evaluat-

ing the correctness of AI-generated code. Faced with difficulties in validation, programmers tend
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to either under-rely on the assistant—i.e., lose trust in it—or to over-rely—i.e., blindly accept

its suggestions [126, 100, 119, 113]; the former can cause them to abandon the assistant alto-

gether [8], while the latter can introduce bugs and security vulnerabilities [91]. These findings

motivate the need for better validation support in AI-assisted programming environments.

This paper investigates the use of Live Programming (LP) [48, 121, 114] as a way to

support the validation of AI-generated code. LP environments, such as Projection Boxes [67],

visualize runtime values of a program in real-time without any extra effort on the part of the

programmer. We hypothesize that these environments are a good fit for the validation task, since

LP has been shown to encourage more frequent testing [12] and facilitate bug finding [136]

and program comprehension [27, 26, 13]. On the other hand, validation of AI-generated code

is a new and unexplored domain in program comprehension, which comes with its unique chal-

lenges, such as multiple AI suggestions for the programmer to choose from, and frequent context

switches between prompting, validation, and code authoring [78], which cause additional cog-

nitive load [124]. Hence, the application of LP to the validation setting warrants a separate

investigation.

To this end, we constructed a Python environment that combines an existing LP environ-

ment [67] with an AI assistant similar to Copilot’s multi-suggestion pane. Using this environ-

ment, we conducted a between-subjects experiment (N = 17) to evaluate how the availability of

LP affects users’ effectiveness and cognitive load in validating AI suggestions. Our study shows

that Live Programming facilitates validation through lowering the cost of inspecting runtime val-

ues; as a result, participants were more successful in evaluating the correctness of AI suggestions

and experienced lower cognitive load in certain types of tasks.
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4.2 Related Work

Validation of AI-Generated Code A rapidly growing body of work analyzes how users in-

teract with AI programming assistants. Studies show that programmers spend a significant pro-

portion of their time validating AI suggestions [8, 78, 9]. Moreover, a large-scale survey [69]

indicates that 23% of their respondents have trouble evaluating correctness of generated code,

which echoes the findings of lab studies [117, 8] and a need-finding study [124], where partici-

pants report difficulties understanding AI suggestions and express a desire for better validation

support. [8] and [69] find that programmers use an array of validation strategies, and the preva-

lence of each strategy is closely related to its time cost. Specifically, despite the help of execution

techniques built into the IDE for validating AI suggestions [113], execution is used less often

than quick manual inspection or type checking because it is more time-consuming [8, 69] and in-

terrupts programmers’ workflows [124]. The lack of validation support designed for AI-assisted

programming, as [124] identify, leads to a higher cognitive load in reviewing suggestions. The

high cost of validating AI suggestions, according to some studies [126, 100, 119], can lead to

both under-reliance—lack of trust—and over-reliance—uncritically accepting wrong code—on

the part of the programmer.

Comparatively fewer existing papers explore interface designs to support validation of

AI-generated code: [100] investigates a conversational assistant that allows programmers to ask

questions about the code, while [118] targets over-reliance by highlighting parts of generated

code that might need human intervention; our work is complementary to these efforts in that it

focuses on facilitating validation by execution.

Validation in Program Synthesis Another line of related work concerns the validation of code

generated by search-based (non-AI-powered) program synthesizers. Several synthesizers help

users validate generated code by proactively displaying its outputs [31, 134, 54] and intermediate

trace values [85], although none of them use a full-fledged LP environment. The only system
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we are aware of that combines LP and program synthesis is SNIPPY [36], but it uses LP to help

the user specify their intent rather than validate synthesized code.

Live Programming Live Programming (LP) provides immediate feedback on code edits, often

in the form of visualizations of the runtime state [48, 121, 114]. Some quantitative studies find

that programmers with LP find more bugs [136], fix bugs faster [63], and test a program more

often [12]. Others find no effect in knowledge gain [52] or efficiency in code understanding [13].

Still, qualitative evidence points to the helpfulness of LP for program comprehension [27, 26, 13]

and debugging [60, 52]. In contrast to these studies, which evaluate the effectiveness of LP

for comprehending and debugging human-written code, our work investigates its effectiveness

for validating AI-generated code, a setting that comes with a number of previously unexplored

challenges [78, 124].

4.3 LEAP: the Environment Used in the Study

To study how Live Programming affects the validation of AI-generated code, we imple-

mented LEAP (Live Exploration of AI-Generated Programs), a Python environment that com-

bines an AI assistant with LP. This section demonstrates LEAP via a usage example and discusses

its implementation.

Example Usage Naomi, a biologist, is analyzing some genome sequencing data using Python.

As part of her analysis, she needs to find the most common bigram (i.e., two-letter sequence)

in a DNA strand.1 To this end, she creates a function dominant_bigram (line 3 in Figure 4.1);

she has a general idea of what this function might look like, but she decides to use LEAP, an AI

assistant, to help translate her idea into code.

1This is one of the programming tasks from our user study, and each of Naomi’s interactions with LEAP has
been observed in some of our participants.
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Figure 4.1: LEAP is a Python environment that enables validating AI-generated code sugges-
tions via Live Programming.
(A) Users prompt the AI assistant via comments and/or code context. (B) The Suggestion
Panel shows the AI-generated suggestions. (C) Pressing a Preview button inserts the sugges-
tion into the editor. (D) Users can inspect the runtime behavior of the suggestion in Projection
Boxes [67], which are updated continuously as the user edits the code.

(A) Naomi adds a docstring (line 5), which conveys her intent in natural language, and

a test case (line 24), which will help her validate the code. With the cursor positioned at line 7,

she presses Ctrl and Enter to ask for suggestions.

(B) Within seconds, a panel opens on the right containing five code suggestions; Naomi

quickly skims through all of them. The overall shape of Suggestion 3 looks most similar to what

she has in mind: it first collects the counts of all bigrams into a dictionary, and then iterates

through the dictionary to pick a bigram with the maximum count.

(C) Naomi decides to try this suggestion, pressing its Preview button; LEAP inserts the

code into the editor and highlights it (lines 8-18).

(D) As soon as the suggestion is inserted, Projection Boxes [67] appear, showing runtime infor-

mation at each line in the program. Inspecting intermediate values helps Naomi understand what the code

is doing step by step. When she gets to line 18, she realizes that the dictionary actually has two dominant

bigrams with the same count, and the code returns the last one. She realizes this is not what she wants:
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instead, she wants to select the dominant bigram that comes first alphabetically (ag in this case).

One option Naomi has is to try other suggestions. She clicks on the Preview button for Sugges-

tion 2; LEAP then inserts Suggestion 2 into the editor, in place of the prior suggestion, and the Projection

Boxes update instantly to show its behavior. Naomi immediately notices that Suggestion 2 throws an

exception inside the second loop, so she abandons it and goes back to Suggestion 3, which got her closer

to her goal.

To fix Suggestion 3, Naomi realizes that she can accumulate all dominant bigrams in a list, sort the

list, and then return the first element. She does not remember the exact Python syntax for sorting a list, so

she tries different variations—including l = l.sort, l = l.sort(), l = sort(l), l = l.sorted(),

and so on. Fortunately, LEAP’s support for LP allows Naomi to get immediate feedback on the behavior

of each edit, so she iterates quickly to find one of the correct options: l = sorted(l). Note that Naomi’s

workflow for using Suggestion 3—validation, finding bugs, and fixing bugs—relies on full LP support,

and would not work in traditional environments like computational notebooks, which provide easy access

to the final output of a snippet but not the intermediate values or immediate feedback on edits.

Implementation To generate code suggestions, LEAP uses the text-davinci-003 model [82], the

largest publicly available code-generating model at the time of our study. To support live display of run-

time values (Figure 4.1(D)), we built LEAP on top of Projection Boxes, a state-of-the-art LP environment

for Python [67] capable of running in the browser. As the control condition for our study, we also created

a version of LEAP, where Projection Boxes are disabled, and instead the user can run the code explicitly

by clicking a Run button and see the output in a terminal-like Output Panel.

4.4 User Study

We conducted a between-subjects study to answer the following research questions:

RQ1) How does Live Programming affect over- and under-reliance in validating AI-generated code?

RQ2) How does Live Programming affect users’ validation strategies?

109



RQ3) How does Live Programming affect the cognitive load of validating AI-generated code?

Tasks Our study incorporates two categories of programming tasks, Fixed-Prompt and Open-Prompt

tasks.

In Fixed-Prompt tasks, we provide participants with a fixed set of five AI suggestions that are

intended to solve the entire problem. We curated the suggestions by querying Copilot [38] and LEAP with

slight variations of the prompt. Fixed-Prompt tasks isolate the effects of Live Programming on validation

behavior by controlling for the quality of suggestions. We created two Fixed-Prompt tasks, each with five

suggestions: (T1) Bigram: Find the most frequent bigram in a given string, resolving ties alphabetically

(same task in Section 4.3); (T2) Pandas: Given a pandas data frame with data on dogs of three size

categories (small, medium, and large), compute various statistics, imputing missing values with the mean

of the appropriate category. These tasks represent two distinct styles: Bigram is a purely algorithmic task,

while Pandas focuses on using a complex API. Pandas has two correct AI suggestions (out of five) while

Bigram has none, a realistic scenario that programmers encounter with imperfect models.

In Open-Prompt tasks, participants are free to invoke the AI assistant however they want. This

task design is less controlled than Fixed-Prompt, but more realistic, thus increasing ecological validity.

We used two Open-Prompt tasks: (T3) String Rewriting: parse a set of string transformation rules and

apply them five times to a string; (T4) Box Plot: given a pandas data frame containing 10 experiment

data records, create a matplotlib box plot of time values for each group, combined with a color-coded

scatter plot. Both tasks are more complex than the Fixed-Prompt tasks, and could not be solved with a

single interaction with the AI assistant.

Participants and Groups We recruited 17 participants; 5 self-identified as women, 10 as men, and

2 chose not to disclose. 6 were undergraduate students, 9 graduate students, and 2 professional engineers.

Participants self-reported experience levels with Python and AI assistants: 2 participants used Python

‘occasionally’, 8 ‘regularly’, and 7 ‘almost every day’; 7 participants declared they had ‘never’ used AI

assistants, and 8 used such tools ‘occasionally’.

There were two experimental groups: “LP” participants used LEAP with Projection Boxes, as
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described in Figure 4.1; “No-LP” participants used LEAP without Projection Boxes, instead executing

programs in a terminal-like Output Panel. Participants completed both Fixed-Prompt tasks and one Open-

Prompt task. We used block randomization [32] to assign participants to groups while evenly distributing

across task order and selection and balancing experience with Python and AI assistants across groups.

The LP group had 8 participants, and No-LP had 9.

Procedure and Data We conducted the study over Zoom as each participant used LEAP in their web

browser. Each session was recorded and included two Fixed-Prompt tasks (10 minutes per task), two post-

task surveys, one Open-Prompt task (untimed), one post-study survey, and a semi-structured interview. A

replication package2 shows the full details of our procedure, tasks, and data collection.

For quantitative analysis, we performed closed-coding on video recordings of study sessions to

determine each participant’s subjective assessment of their success on the task; we matched this data

against the objective correctness of their final code to establish whether they succeeded in accurately

validating AI suggestions. We also measured task duration—proportion of time Suggestion Panel (Fig-

ure 4.1(B)) was in focus—and participants’ cognitive load (via five NASA Task Load Index (TLX)

questions [49]). We used Mann-Whitney U tests to assess all differences except for validation success,

which we analyzed via Fisher’s exact tests.

In addition, we collected qualitative data from both Fixed-Prompt and Open-Prompt tasks. We

noted validation-related behavior and quotes, which we discussed in memoing meetings [16] after the

study. Through reflexive interpretation, we used category analysis [131] to assemble the qualitative data

into groups. We then revisited notes and recordings to iteratively construct high-level categories.

4.5 Results

4.5.1 RQ1: Over- and Under-reliance on AI Assistants

To investigate if Live Programming affects over- and under-reliance, we measured whether par-

ticipants successfully validated the AI suggestions in the Fixed-Prompt tasks, as described below. We

2http://bit.ly/leap-study-package
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also compared task completion times and participants’ confidence in their solutions (collected through

post-task surveys). However, neither result was significantly different between the two groups, so we do

not discuss them below.3

We found six instances of unsuccessful validation, all from the No-LP group. As described

in Section 4.4, we compared subjective and objective assessments of code correctness on the two Fixed-

Prompt tasks, which resulted in four outcomes: (1) Complete and Accurate, where the participant sub-

mitted a correct solution within the task time limit, (2) Complete and Inaccurate, where the participant

submitted an incorrect solution without recognizing the error, (3) Timeout after Validation, where the

participant formed an accurate understanding of the correctness of the suggestions but reached the time

limit before fixing the error in their chosen suggestion, and (4) Timeout during Validation, where the par-

ticipant reached the time limit before they had finished validating the suggestions. We consider (1) and

(3) to be instances of successful validation, (2) to be an instance of over-reliance on the AI suggestions,

and (3) to be an instance of under-reliance, as the participant did not successfully validate the suggestions

in the given time. As Figure 4.2 shows, we found three instances of over-reliance in the Bigram task

and three instances of under-reliance in the Pandas task, all from the No-LP group, though the overall

between-group difference was not significant (p = .206 for both tasks).

Participants with over-reliance did not inspect enough runtime behavior.

The three No-LP participants with over-reliance in Bigram (P5, P12, P15) made a similar mistake:

they accepted one of the mostly-correct suggestions (similar to Suggestion 3 in Section 4.3) and failed to

notice that ties were not resolved alphabetically. Among the three participants, P5 did not run their code

at all. P12 and P15 both tested only one suggestion on the given input and failed to notice the presence of

two bigrams of the same count (and the fact that other suggestions returned different results). In addition,

P15 cited “reading the comments on what it was doing” as a key factor for choosing the suggestion they

3In median times, the LP group completed the Pandas task faster by 35 seconds (p = .664,U = 31). For Bigram,
LP participants were slower by 3 minutes and 51 seconds (p = .583,U = 42), though this difference changes to
faster by 10 seconds if we exclude those who solved the task incorrectly. For Pandas, both groups had the median
ratings of confidence in correctness as “Agree” on seen inputs (p = .784,U = 30) and “Neutral” on unseen inputs
(p = .795,U = 33). For Bigram, the LP group had the median rating of confidence in correctness on seen inputs
as “Agree”, while the No-LP group had “Strongly Agree” (p = .097,U = 19.5). As for confidence in correctness
on unseen inputs, the median for the LP group was “Neutral”, and that for the No-LP group was “Agree” (p =
.201,U = 22.5).
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Figure 4.2: Success in validating AI suggestions across groups for Fixed-Prompt tasks. “Com-
pleted” means the participant submitted a solution they were satisfied with by the time limit,
and “Timeout” means they did not. We deem the validation successful if a participant either
submitted a solution that was correct (dark blue) or timed out when attempting to fix the cor-
rectly identified bugs in their chosen suggestion (light blue).

did. That suggestion began with a comment stating that it resolved ties alphabetically, but the following

code did not do so.

Participants with under-reliance lacked affordances for inspecting runtime behavior. The three

No-LP participants who under-relied on AI suggestions (P7, P9, P15) tried to use runtime values for

validation but struggled with doing so. P9 previewed and ran multiple suggestions but did not add any

print statements to the code, and so they could only see the output of one of the suggestions, which

ended in a print statement. P15 ran all suggestions and did add a print statement to each to inspect

the final return value, but the need to change the print statement and re-run each time made this process

difficult, and they lost track of which suggestions they considered the most promising, saying “I forgot

which ones looked decent.” Finally, P7’s strategy was to print the output of subexpressions from various

suggestions in order to understand their behavior and combine them into a single solution, but this was

time-consuming, so they did not finish.

4.5.2 RQ2: Validation Strategies

Our participants had access to two validation strategies: examination (reading the code) and exe-

cution (inspecting runtime values). The general pattern we observed was that participants first did some

amount of examination inside the Suggestion Panel—ranging from a quick glance to thorough reading—

and then proceeded to preview zero or more suggestions, performing further validation by execution

inside the editor. To this end, No-LP participants in most tasks ran the code and added print statements

for both final and intermediate values; LP participants in all tasks inspected both final and intermediate
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Figure 4.3: Percentage of time spent in the Suggestion Panel across the two groups for Fixed-
Prompt tasks.

runtime values in Projection Boxes (by moving the cursor from line to line to bring different boxes into

focus), and occasionally added print statements to see variables not shown by default. Below we discuss

notable examples of validation behavior, as well as differences between the two groups and across tasks.

LP participants spent less time reading the code. We use the time the Suggestion Panel was in

focus as a proxy for examination time; Figure 4.3 shows this time as a percentage of the total task duration.

The No-LP group spent more time in the Suggestion Panel compared to LP for both Fixed-Prompt tasks.

The difference is significant in the Pandas task (p = .02,U = 11,medianLP = 14.05%,medianNo−LP =

30.47%) but not in Bigram (p = .14,U = 20,medianLP = 24.70%,medianNo−LP = 36.57%). We also

collected this data for the Open-Prompt tasks, even if this data should be interpreted with caution due to

the unstructured nature of the tasks (e.g., different participants invoked the assistant different numbers of

times and got suggestions of different quality). The results are consistent with the Fixed-Prompt tasks—

i.e., No-LP participants spent more time in the Suggestion Panel—but the difference is not significant,

and the effect in Box Plot is very small (p = .14,U = 3.5,medianLP = 6.25%,medianNo−LP = 15.49% for

String Rewriting; p = .67,U = 6,medianLP = 8.10%,medianNo−LP = 8.70% for Box Plot).

Participants relied on runtime values more in API-heavy, one-off tasks. According to Fig-

ure 4.3, both groups spent more time examining the code in Bigram, while in Pandas they jumped to

execution more immediately (medianPandas = 16.96%,medianBigram = 31.67%, p = .04,U = 206). This

difference in validation strategies between the two tasks was also reflected in the interviews. For example,

P1 described their strategy for Pandas as follows: “I didn’t look too closely in the actual code, I was

just looking at the runtime values on the side.” Instead, in Bigram, participants cared more about the

code itself, preferring suggestions based on their expected algorithm, data structure, or style (e.g. P15
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“was really looking for the dictionary aspect”), with the most popular attribute being “short”/“readable”,

cited by 10 out of 17 participants. One explanation participants gave for the difference in behavior is that

Pandas is an API-heavy task, and when dealing with unfamiliar APIs, reading the code is just not very

helpful: “When it’s using more jargony stuff that doesn’t translate directly into words in your brain, then

seeing the preview makes it clearer” (P3). Another explanation they gave is that Pandas was perceived by

the participants as a one-off task, i.e., it only needed to work on the one specified input, whereas Bigram

was perceived as general, i.e., it needed to work on “any sort of string [. . . ] not only [. . . ] the specific

string that was tested” (P3); this was not explicit in the instructions, but in retrospect it is a reasonable

assumption, given the problem domains and structure of the starter code. On the other hand, some LP

participants conjectured that with more familiarity with Live Programming, they would rely on runtime

values more, even in tasks like Bigram: “If I were to use this tool again I would preview more immediately,

just because I think I was very focused on whether it produced how I would solve the problem vs. whether

it solved the problem correctly” (P4).

LP participants benefitted from visualizing intermediate values. We looked into the validation

strategies used in Bigram to identify the tie-resolution issue in AI suggestions (excluding P17 because they

wrote the code from scratch). In the input we provided, it was hard to identify the most common bigram

at a glance, which made it difficult to validate suggestions just by looking at the final result. Five out of

eight LP participants found the issue by inspecting intermediate values and noticing that multiple bigrams

in the input have the same count (the other three relied on custom test cases and code examination). In

the No-LP group, three out of eight participants failed to identify the issue and of the remaining five who

succeeded, only one (P6) relied on intermediate values to do so. In addition, multiple LP participants (P1,

P3, P4) mentioned the usefulness of intermediate values in the interview, especially for long suggestions.

P1 said: “Because it’s a block of text as a suggestion, having projection boxes is more important [. . . ]

my thought was ‘let me go line by line to see what is going on’.” In contrast, a No-LP participant (P9)

remarked that they “had to really look through the code and try to visualize it in [their] mind.”

LP participants used liveness features for validation and debugging. For validation, LP partici-

pants made use of full liveness, i.e., the ability to see the immediate effects of their edits. Five participants

in Pandas added auxiliary calculations to double-check the correctness of the final output, e.g., the mean
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Figure 4.4: NASA Task Load Index (TLX) results for the Fixed-Prompt tasks: Bigram on
the left, and Pandas on the right. Higher scores indicate higher cognitive load (in case of
Performance this means higher failure rate).

of specific cells in the input table, comparing it to the output table. When it comes to debugging, LP

participants made multiple rounds of trial and error guided by liveness. In fact, the example in Section 4.3

was inspired by P4’s debugging process in the Bigram task. Also, in Box Plot, P1 made many repeated

edits in an AI suggestion to tune the placement of a label, guided by error messages and incorrect outputs

to figure out the precise usage of an unfamiliar API call. In the interview, they noted: “I was definitely

using the projections [...] as I was editing the suggestions to see if my intended changes actually were

followed through.”

4.5.3 RQ3: Cognitive Load in Validation

LP participants experienced significantly lower cognitive load in the Pandas task but not the

Bigram task.. In Pandas, we found that LP participants experienced significantly lower cognitive load

in four out of five aspects of NASA-TLX [49]: mental demand (p = .039,U = 14.5), performance (p =

.048,U = 15.5), effort (p = .015,U = 11), and frustration (p = .0004,U = 0). We find no significant

differences in responses to the Bigram task, but LP participants reported slightly higher performance

measures (medianLP = 3,medianNo−LP = 2), which stand for higher failure rates.

No-LP participants found it hard to distinguish between the suggestions.. Participants from

both the No-LP (P9, P14, P17) and LP (P3, P16) groups commented on the utility of seeing multiple

suggestions at once: “[Seeing multiple suggestions] gave me different ways to look at the code and gave

me different ideas” (P9) and “multiple suggestions gave points of comparison that were useful” (P14).
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However, some No-LP participants (P6, P7, P15, P17) said they found the suggestions hard to distinguish.

They noted the difficulty of differentiating just by reading the code because “the suggestions [were] all

almost the same thing” (P7), and suggested that “the tool did not really help with choosing between

suggestions” (P15). In comparison, some in the LP group (P1, P16) commented that Projection Boxes

made selection easier; P1 said: “Being able to preview, edit, and look at the projection boxes before

accepting a snippet was very helpful when choosing between multiple suggestions.”

4.6 Discussion

Live Programming lowers the cost of validation by execution Although both LP and No-LP

participants had access to runtime values as a validation mechanism, those without LP needed to examine

the code to decide which values to print, add the print statements, run the code, and match each line in

the output to the corresponding line in the code. If they wanted to inspect a different suggestion, they had

to repeat this process from the start. Meanwhile, LP participants could simply click on the suggestion

to preview it and get immediate access to all the relevant runtime information, easily switching between

suggestions as necessary. In other words, LP lowers the cost—in terms of both time and mental effort—of

access to runtime values. As a result, we saw LP participants relied on runtime values more for validation,

as they spent less time examining the code in general—and significantly so for the Pandas task—and

more often used intermediate values to find bugs in Bigram (??). Our findings are consistent with prior

work [8, 69], which demonstrated that programmers more often use validation strategies with lower time

costs. Hence, by lowering the cost of access to runtime values, Live Programming promotes validation by

execution.

The lower cost of validation by execution prevents over- and under-reliance As discussed

in Section 4.5.1, we found six instances of unsuccessful validation in our study, all from the No-LP

group, over-relying on AI suggestions in the Bigram task, and under-relying in Pandas. We attribute these

failures to the high cost of validation by execution: those who over-relied on the suggestions did not

inspect the runtime behavior of the suggestions in enough detail, while those with under-reliance lacked
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the affordances to do so effectively, and so ran out of time before they could validate the suggestions. Our

results echo prior findings [119] that relate the cost of a validation strategy to its effectiveness in reducing

over-reliance on AI. We conclude that the lower cost of validation by execution in Live Programming

leads to more accurate judgments of the correctness of AI-generated code.

Validation strategies depend on the task Section 4.5.2 shows that participants overall spent sig-

nificantly more time examining the code in Bigram than in Pandas and also paid more attention to code

attributes in the former. Participants explained the difference in their validation strategies by two factors:

(1) Pandas contained unfamiliar API calls, the meaning of which they could not infer from the code alone;

and (2) they perceived Pandas as a one-off task, which only had to work on the given input. We conjecture

that (1) is partly due to our participants being LP novices: as they get more used to the environment, they

are likely to rely on previews more, even if they are not forced into it by an unfamiliar API (as P4 men-

tioned in Section 4.5.2). (2), though, is more fundamental: when dealing with a general task, correctness

is not all that matters; code quality becomes important as well, and LP does not help with that.

In Open-Prompt tasks, code examination was less prevalent in the overall task duration, because

in these tasks participants spent a significant amount of time on activities besides validation (e.g., decom-

posing the problem and crafting prompts). It might seem surprising, however, that we did not see any

difference in examination time between the two groups in Box Plot, which is an API-heavy, one-off task,

similar to Pandas. This might be because, in Box Plot, the cost of validation by execution was already

low for No-LP participants: this task did not require inspecting intermediate values, because the effects of

each line of code were reflected on the final plot in a compositional manner (i.e., it was easy to tell what

each line of code was doing just by looking at the final plot).

In conclusion, Live Programming does not completely eliminate the need for code examination

but reduces it in tasks amenable to validation by execution.

Live Programming lowers the cognitive load of validation by execution In Pandas, LP partic-

ipants experienced lower cognitive load in four out of five TLX categories (Section 4.5.3). This confirms

our hypotheses that LP lowers the cost of validation by execution, and that Pandas is a task amenable to
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such validation. More specifically, we conjecture that, by automating away the process of writing print

statements, LP reduces workflow interruptions, which were identified as one of the sources of increased

cognitive load in reviewing AI-generated code [124].

In Bigram, however, we did not observe a similar reduction in cognitive load; in fact, LP partic-

ipants reported higher cognitive load in the “performance” category (i.e., they perceived themselves as

less successful). Our interpretation is that the cognitive load in this task was dominated by debugging and

not validation, and whereas all participants in the LP group engaged in debugging, only two-thirds of the

No-LP group did so. Finally, the higher “performance” ratings from the LP group were from those who

ran out of time trying to fix the code, and hence were aware that they had failed. These findings show that

Live Programming by itself does not necessarily help with debugging a faulty suggestion. As we saw in

Section 4.5.2, it can be helpful when the user has a set of potential fixes in mind, which they can quickly

try out and get immediate feedback on. But when the user does not have potential fixes in mind, they need

to rely on other tools, such as searching the web or using chat-based AI assistants.

From these findings, we conclude that Live Programming lowers the cognitive load of validating

AI suggestions when the task is amenable to validation by execution.

4.7 Conclusion and Future Work

We investigated an application of Live Programming in the domain of AI-assisted programming,

finding that LP can reduce over- and under-reliance on AI-generated code by lowering the cost of valida-

tion by execution. Our study is necessarily limited in scope: we focused on self-contained tasks due to

LP’s limited support for complex programs [114, 67] and its need for small demonstrative inputs [107].

We hope that our findings inform future studies on code validation and motivate further research into

AI-LP integration. To that end, we highlight key opportunities below.

To offer liveness, LP places several burdens on the user. The user must provide a complete

executable program and a set of test cases, and then look through potentially large runtime traces for

the relevant information. AI may alleviate these burdens by filling in missing runtime values [108] for

incomplete programs, generating test cases [64, 127], and predicting the most relevant information to be
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displayed at each program point. Looking beyond the validation of newly generated code, there are also

opportunities for AI-LP integration for debugging and code repair [127]. In combination, AI-LP would

tighten the feedback loop of querying and repairing AI-generated code: users could validate code via LP,

request repair using the runtime information from LP [36], and further validate the repair in LP.

Chapter 4, in part, is a reprint of the material as it will appear in the Proceedings of the 2024 CHI

Conference on Human Factors and Computer Systems. Kasra Ferdowsi, Ruanqianqian (Lisa) Huang,

Michael B. James, Nadia Polikarpova, Sorin Lerner. ACM 2024. The author was a principal author and

investigator on this work.
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Conclusion

This dissertation has identified how program synthesizers can facilitate exploring for code, and

that techniques to validate explore code are needed to reduce cognitive effort. This dissertation is only the

first step on this path of research, with many possible paths in front of it. This conclusion highlights two

of these paths: mode detection and LLM-powered exploration.

Mode Detection

As identified in Chapter 3, programmers using tools like Github Copilot [38] tend to oscillate

between two different modes. At times they are being accelerated through their task, as their tool helps

them put thought to code quickly. At other times, a programmer needs to explore a variety of options

about their task, particularly when they are facing uncertainty. The way a programmer uses their code

suggestion tool varies depending on what mode they are in.

Some exploratory tools already exist to help a user investigate implementation options [40, 41, 51,

130, 135]. However, these existing exploration tools are clunky and separate from the IDE. Programmers

often quickly and fluidly switch between these two modes, making context switches highly distracting.

While acceleration happens within an IDE, exploration tools are outside of the IDE. Developers are less

likely to use a tool if it is not part of their IDE [72]. Whats more, a developer would need to actively

recognize that they are exploring and then actively choose to use a separate tool.

Programmers would benefit if their tool could identify when they are likely trying to explore for

code, and offer the opportunity to explore their design space. A number of different signals on their own,

or together, could offer a predictor for when a programmer is exhibiting any number of non-acceleration

behaviors. These other behaviors could be validating or exploring.
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Typing Speed. During the study in Chapter 3, we observed that programmers tended to type in

bursts. Typing quickly was often associated with being in acceleration mode. Meanwhile, those who

were typing slowly tended to be talking or thinking through their code process. So, there may be multiple

speeds at which a programmer types, and those different rates could be associated with different modes.

Repeated Edits. Much like how a writer will write and rewrite the same line to find the perfect

phrasing, a programmer will occasionally rewrite the same line or block to optimize on readability, run

time, or other factors. Repeated edits of the same line signal an opportunity to provide a range of sug-

gestions. That edit history can also inform suggestions, to show either overlap or to use deleted lines as

negative signals on suggestion content.

Pause Time. It is a common experience, to pause before writing a function call, as one tries to

recall the function name and its arguments. When a programmer knows the name and arguments, there

is little hesitation in writing down the function name and its arguments. So, a pause when a function or

method call could be expected (e.g. after a dot access (.) in python), could be a signal of uncertainty for

a function call. This uncertainty is an intervention opportunity to provide one or more suggestions.

Suggestion Accepts or Rejects. Programmers reject suggestions from Copilot or any code gen-

erating model for a number of reasons. Sometimes they are writing so quickly that a suggestion only

appears for a fraction of a second. Other times, a programmer will specifically reject a suggestion with

the escape button. signaling that the particular suggestion did not match their intention. This rejection

does not necessarily mean no suggestion could match their intent, and it could be an opportunity, paired

with a long pause to offer multiple alternatives.

Attention. When faced with an unknown in their code, some programmers turn their face away

from the cursor, looking elsewhere for a solution. Attention, either through eye focus location, or general

focus could be a useful signal. This signal could determine whether a programmer is in the middle of a

thought process or looking for help. Such a signal may be useful in determining what interaction mode a

user needs.

Any of these signals could be useful for determining an unobtrusive intervention opportunity.

Done correctly, a tool offering the right kind of advice at the right time would feel similar to how pro-

grammers feel that Copilot, “completes my thoughts”, as some have said.
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LLM Powered Code Exploration

Programmers do not always know exactly what they want to program, or how to go about writing

it. When already using an AI assistant to program, coders will use it to overcome uncertainty, as seen in

Chapter 3.

Currently, these assistants can provide up to 10 unique suggestions when asked. In their current

form of a list, these suggestions provide little useful information and cannot often help answer a program-

mer’s questions. These questions range from API usage to algorithmic to those of convention. A simple

list of similar looking programs does little to answer these kinds of questions and consumes significant

mental effort to eek that information out.

Suppose Ellen, a hobbyist programmer, is setting up a server at home to host her personal domain

home.ellen.com. She needs code that automatically updates the DNS record for her domain to point

to her dynamically assigned IP from her internet provider. She needs to use the Amazon AWS Route 534

service, with which she is not particularly familiar. Ellen uses an AI assistant to write part of her code

for her, accepting the first suggestion she gets. Her code does not work the first time and now Ellen must

debug code her AI assistant wrote for her.

Ellen’s code does not contain a critical domain name adjustment. She needed to update home.ellen.com.

(note the terminal dot). By chance the first suggestions did not provide this necessary terminal dot; how-

ever, if she looked through several suggestions she would have seen many suggestions add a ’.’ to

her domain name. Without a way to get an overview of suggestions, Ellen could not see this small but

necessary addition.

With a technique to provide an overview of suggestions, Ellen could learn common patterns, such

as this dot addition, as well as common API calls, along with alternatives. But what information would

be appropriate to surface to a user?

API names. It can be difficult to guess the correct API function call for a given task. Simply

seeing two suggestions (e.g. save() or save_record()), in text provides little signal for which may

be correct. A functional solution would likely appear in samples more frequently, so API name popularity

can provide a useful information scent. Notably, there may not be enough text to parse or typecheck the

4https://aws.amazon.com/route53/
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entire codeblock.

API arguments. The arguments and their required in a function are not always obvious, too. For

example, a programmer may know that to use the AWS APIs, they need to provide an access key and a

secret key, but the order of these is not always obvious. Showing common argument names across a distri-

bution will show that one more commonly occurs before the other–in effect demonstrating a convention

to the programmer.

Common subexpressions. Common subexpressions can highlight core nuggets of wisdom in the

model. Properly setting the IP of the domain name requires a ’.’ suffix. A novice may not realize that

in omitting this terminal dot, the record will be updated, but it will not work correctly. By seeing this

subexpression multiple times, or seeing the frequency of this addition, a programmer could quickly learn

something new about the API’s usage, helping them write better code in the future.

Grouping of approaches. There is often not just one way to solve a programming task. That

may be stringing together different sets of API calls to achieve the same end goal; or, using a recursive

algorithm on a competitive programming task rather than an iterative one. There are tradeoffs with any

implementation choice. To help a programmer explore the space of opportunities better, they need to

first be aware that they eve have choice to begin with. Highlighting those top-level different approaches

provides a set of starting places for those who may be stuck at the start of a task.

Highlight out-of-distribution information. In the same vein as highlighting those different ap-

proaches, is highlighting those less commonly selected approaches. Those less frequently sampled ap-

proaches may contain some valuable insight. For example, in completing this IP update task, a program-

mer may use any number of third party services to find their external IP. A majority of solutions call for

using a particular api.ipify.com website. Only a couple suggestions of 100 use the Amazon ordained

service for this task, ipcheck.amazonaws.com. A programmer way wish to reduce the number of

external dependencies, and not use the most common, or second-most common service. Instead, that

single suggestion with an Amazon provided url may provide more utility.

In conclusion, these two future directions of research, mode detection and LLM powered code

exploration, will aid programmers in more aspects of their workflow, powered by probabilistic suggestion

engines. Mode detection will improve how a tool works with its user, helping them explore when they
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need it. LLM powered code exploration will deepen those techniques, and will need validation alongside

it. This thesis has that both formal and probabilistic program synthesizers can aid in this exploratory

process of programming, and that techniques to validate that explored code reduce the cognitive effort.
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