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We employ the integrable structure of the Benjamin–Ono equation in order to

study its rough solutions. For rough data, our most useful tools are the Lax pair

formalism and, as in the inverse scattering transform, the structural information

embedded in solutions to the scattering equation. Using these, we prove that

Sobolev norms are conserved and locally smoothed for rough initial data. Using

the integrable structure, we construct a Hamiltonian that usefully approximates

the Benjamin–Ono Hamiltonian. With this we may provide a short new proof that

the Cauchy problem is well-posed in L2.
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1 Introduction

We study real-valued solutions to the Benjamin–Ono equation

d

dt
q = −Hq′′ + 2qq′ (BO)

on the line R and the circle R/Z, where the Hilbert transform H is defined in

either setting by

Ĥf(ξ) = −i sgn(ξ)f̂(ξ).

Benjamin [2] introduced this equation to model the propagation of long waves that

form at the interface of two fluids of differing densities. He observed (theoretically

and empirically) the existence of solitary wave solutions akin to those which were

well-attested for the Korteweg–de Vries (KdV) equation [16]. For KdV, these

soliton solutions can be explained in the framework of integrability: specifically,

an inverse scattering transform. Formally, Benjamin–Ono also admits an IST,

although making rigorous sense of the formalism is challenging even for smooth

solutions (see [28], [27]).

Killip and Vişan [14] exploit KdV’s IST apparatus to prove that the equation is

well-posed in the sharpest possible Sobolev space H−1. In particular, the existence

of infinitely many commuting flows associated to a sequence of conservation laws of

increasing regularity is used to construct a new commuting flow that makes sense

for rough data, analogous to the Taylor series expansion of a rational function

of negative degree using polynomials of increasing positive degree. Given the

similarities between KdV and BO, 1 it is reasonable to expect the same techniques

to apply to Benjamin–Ono. This is the line we pursue in this thesis.

1This relationship can be stated precisely. The Intermediate Long Wave equation (ILW)
models interface waves between two fluids of finite depth. Letting the depth paramater of the
ILW tend to infinity, one recovers BO; letting the depth parameter tend to 0, one recovers the
surface wave equation KdV. See [24] for a survey of this topic.

1



In section 2, we review the results of [25], where a one-parameter family of

conserved quantities α(κ) is constructed, which control the Hs norm of solutions

to (BO) for s > −1
2
, the critical regularity. This quantity is realized as the per-

turbation determinant associated to the Lax operator for the Benjamin–Ono IST

scheme. In section 3, we use the Jost solutions associated to the scattering prob-

lem to exhibit a conserved Hamiltonian Hκ with the property that Hκ ∝ ∂κα. We

prove that Hκ → HBO as κ→∞. In section 4 we use this equipment to provide a

short new proof that Benjamin–Ono is well-posed in the space of L2 initial data.

In section 5, we prove Kato-type local smoothing of one half degree for solutions

to (BO). Such a result that holds, not for the HBO Hamiltonian flow but for the

Hκ−HBO difference flow, is the missing ingredient in extending well-posedness on

the line down to the critical regularity s > −1
2
.

1.1 A Brief History

1.1.1 Integrability

(BO) is a Hamiltonian system; that is to say, it takes the form

qt =
∂

∂x

δ

δq
HBO

for the Hamiltonian energy

HBO =

∫
1

3
q3 − 1

2
qHq′dx.

A finite-dimensional Hamiltonian ODE on a symplectic manifold of dimension d

can be integrated—the initial value problem solved explicitly by quadrature—if

it admits d/2 indepdendent, Poisson-commuting conserved quantities (Liouville

integrabiliy; see [1], §49–50). However, for Hamiltonian PDE, integrability is an

ambiguous concept. (Of course, even in the case of ODE, there is some ambiguity
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about what we mean by an “explicit” solution when the resultant integrals may

not admit closed form solutions.) In analogy with the finite-dimensional case,

Liouvile integrability of PDE is sometimes interpreted to mean the construction of

infinitely many commuting independent conserved quantities. However, for PDE

this is not usually sufficient to explicitly solve the IVP.

It was out of the ambition to do just that the inverse scattering transform

(IST) was first realized for KdV on the line by researchers at the Princeton Plasma

Physics Laboratory [6]. Their discovery was of a certain subset of eigensolutions

and their eigenvalues, the scattering data, associated to the stationary Schrödinger

equation with potental q:

−vxx + qv = λv (1.1)

with the properties that

1. the potential q can be recovered from the scattering data by an explicit

integral (the inverse scattering problem (ISP)), and

2. if the potential q evolves according to the KdV equation, then (a minor

miracle) the induced evoluton of the scattering data is linear.

The scattering equation (1.1) can be solved explicitly, and the scattering data may

thereby be explicitly computed (the forward scattering problem (FSP)). Let S(t)

denote the scattering data arising from the time-dependent potential q(t). Then

the IST is defined by the following commutative square, in which each arrow is

soluble:
S(0) S(t)

u(0) u(t)

linear

ISPFSP

IST
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Benjamin–Ono is integrable on the line in that it admits an IST analogous to

the above. The IST was first described in [5] and simplified in the case of real

potentials in [12]. Our only object here is to see the essential elements of the IST

apparatus appear in their own context; therefore we will restrict our treatment

to the case of real solutions with
∫∞
−∞ u(x)dx 6= 0 for which the inverse scattering

problem is simplest. The scattering equation that plays the role of the Schrödinger

equation for (BO) is

ivx + λv = −(qv)+ (1.2)

where f+ denotes the restriction to positive frequencies on the Fourier side. In ad-

dition to this, it is convenient to consider an auxiliary inhomogeneous modification

of (1.2) which admits solutions with non-vanishing boundary data:

ivx + λ(v − 1) = −(qv)+. (2-a)

Notice that this scattering equation is a nonlocal differential equation, unlike in

the case of KdV. (This is not surprising, since the Hilbert transform which appears

in (BO) is itself is nonlocal.)

The scattering data consists in:

(i) The set of all bound-state solutions ψj, λj to (1.2) with λj < 0, ψk ∼ 1/x for

j = 1, . . . , J for J ∈ N ∪ {∞}

(ii) The Jost solutions M̄,N to (1.2) and M, N̄ to (2-a) when λ ≥ 0 with bound-

ary conditions

N(x, λ) −−−→
x→∞

eiλx, M̄(x, λ) −−−−→
x→−∞

eiλx,

N̄(x, λ) −−−→
x→∞

1, M(x, λ) −−−−→
x→−∞

1.
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(iii) The reflection coefficient β(λ) that satisfies for λ > 0

M(x, λ) = N̄(x, λ) + β(λ)N(x, λ)

and is given explicitly by

β(λ) = i

∫ ∞
−∞

q(y)M(y, λ)e−iλydy.

(iv) A set {γj}Jj=1 of parameters that relate the asymptotics of ψj to those of the

Jost solutions. I omit the precise definition except to say that if one knows

the ψj and any particular Jost solution from (ii) then these can be computed.

The potential q can be recovered from N and the ψj by

[q(x)]+ =
1

2πi

∫ ∞
0

β(λ)N(x, λ)dλ+ i
J∑
j=1

ψj(x). (1.3)

The inverse scattering problem consists therefore in recovering N and {ψj}. These

can be recovered together by solving a system of equations
(x+ γj)ψj(x) + i

∑
j 6=k

1

λj − λk
ψk(x)− 1

2πi

∫ ∞
0

β(λ)N(x, λ)dλ

λ− λj
= 1,

N(x, λ)e−iλx =
1

2π

∫ ∞
0

β(λ′)N(x, λ′)w(x;λ, λ′)
dλ′

λ′
−

J∑
j=1

ψj
λj
w(x;λ, λj)

(1.4)

where

w(x;λ, λ′) =
1

2π

∫ λ

0

β∗(`)e−i`xd`

`− λ′ − iε
.

The IST of [5] and [12] can be outlined as follows:

1. We begin with an initial profile u(x, 0).

2. We compute the {(ψj, λj, γj)}Jj=1,M(x;λ), β(λ) associated to (1.2), (2-a) at

time t = 0.

5



3. We propogate λ̇j = 0, γ̇j = 2λj, β̇(λ) = iλ2β(λ).

4. We solve (1.4) at time t to obtain N(λ), {ψj}.

5. We solve (1.3) at time t to recover [q(x, t)]+, which when q is real recovers

q = q+ + (q+)∗.

The regularity conditions required to carry out this scheme are not addressed

in [5], [12]. For sufficiently smooth and rapidly decaying potentials q, [28] proves

that the spectrum of the scattering operator is discrete and finite, justifying scat-

tering the exisence of scattering data (i); and [27] proves that the Jost solutions

N, M̄, N̄ ,M exist. This at least may satisfy us that the scattering data described

above exist when q(t) is for all time unimpeachably regular.

There is another interpretation of the IST that is relevant to this paper, the

Lax pair formalism. The essential elements of the Lax pair for Benjamin–Ono

appear in [21], [4], and it is described in the modern form by Wu [28]. Formally,

we define operators L, P in terms of a given potential q by

Lv = ivx + (qv)+

Pv = ivxx + 2
[
qxv + qvx − q+x v

]
+
.

The scattering data of the IST can be formulated in terms of the spectrum of the

operator L. If q = q(t) varies in time, then q solves (BO) if and only if

d

dt
L = [P,L]. (1.5)

It follows from (1.5) that
d

dt
Ln = [P,Ln]

and therefore
d

dt
trLn = tr[P,Ln] = 0.
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This gives rise to an infinite hierarchy of conservation laws for Benjamin–Ono

which Poisson commute (since they arise from powers of the same operator), and

hence to integrability in the naive sense. However, this is purely formal; the traces

above do not make sense. If we are uncowed by this, we may see that another

formal computation expands the resolvent function in a series:

R := (L+ κ)−1 =
1

κ

∞∑
`=0

κ−nLn

from which we can see that trR is, formally, a generating function for the formally

conserved quantities trLn. As we will see, this is an insight of which we can make

real use.

It follows also from (1.5) that if v solves the scattering equation

Lv + λv = 0

then

L̇v + Lv̇ + λv̇ = 0

PLv − LPv + Lv̇ + λv̇ = 0

−(L+ λ)Pv + (L+ λ)v̇ = 0

which implies, if L+λ is invertible (which, as we will see later, it is for λ sufficiently

large), that

v̇ = Pv. (1.6)

While the IST is purely a phenomenon of the line, the Lax pair makes just

as much sense on either the line or circle geometry. The Lax pair and its role in

generating a hierarchy of conservation laws are the crucial tool used in [7] to prove

that, on the circle, Benjamin–Ono is linearized by global Birkhoff coordinates,

and hence enjoys the classical integrable structure of ODE on finite-dimensional

symplectic manifolds.
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1.1.2 Well-posedness

The first studies of the Cauchy problem for (BO) on the line and the circle showed

that the equation is globally well-posed in the space of classical solutions C0
tH

3
x ∩

C1
tH

1
x (Iorio [11], Saut [23]). Note that a classical C0

tH
3
x solution to (BO) is

automatically also C1
tH

1
x. The first result to go below the classical regime appears

to be Ponce [22], who supplemented the classical commutator estimates with Kato

local smoothing and semilinear Strichartz estimates to obtain local well-posedness

in Hs for s = 3
2
. Koch and Tsvetkov [15] lowered the threshold to s = 5

2
by using

Littlewood-Paley theory to control the nonlinearity.

For many years the well-posedness theory for (BO) lagged behind that of similar

nonlinear equations such as the quadratic nonlinear Schrodinger equation

d

dt
q = ±iq′′ + |q|2.

The difficulty can be attributed to the presense of a complete derivative in the

nonlinearity of (BO) and the inadequate smoothing of the linearized equation.

Molinet, Saut, and Tzvetkov [20] proved that, as a result, the equation is not

semilinear in the sense that it cannot be solved by iteration and contraction map-

ping arguments in Hs must fail. Tao [26] circumvented this difficulty by appling a

Gauge transformation to the equation, eliminating the derivative in the most diffi-

cult frequency regimes. In this way local (and consequently global) well-posedness

was achieved in H1(R). This approach, together with the mean value theorem and

the use of Bourgain spaces, sufficed to prove LWP and GWP on H1/2(R) (Molinet

[17]).

The current state of the art was first reached by Ionescu and Kenig [10], who

used the Gauge transform of [26] to obtain local well-posedness in L2(R) via con-

traction mapping in a complicated modification of an Xs,b space. Molinet [18]
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obtained the same result in the periodic setting. Molinet and Pilod [19] provided

a simpler unified proof of well-posedness on both the line and the circle by using

Littlewood-Paley theory to control the nonlinearity. Ifrim and Tataru [9] provided

yet another proof of LWP in L2(R) which eliminated the need to work in compli-

cated functional spaces by augmenting the Gauge transform of [26] with a Shatah

type normal form correction.

The equation (BO) enjoys a scaling symmetry, to wit

q 7→ λq(λ2t, λx).

This symmetry leaves ‖q‖Ḣs invariant for s = −1
2
; as λ→ 0 the norm blows up for

s < −1
2
. This indicates that below the critical regularity s = −1

2
(BO) is ill-posed.

As far as well-posedness in the Sobolev space Hs, there remains a gap between the

best known results of s = 0 on the line and the scaling-critical regularity s = −1/2.

None of these approaches use the integrability of (BO) directly. The story

of the well-posedess of the Cauchy problem intersects the story of integrability

with Gerard, Kappeler, and Topalov [8], who use the global Birkhoff coordinates

constructed in [7] to prove well-posedness in Hs(T) for s down to the critical

exponent s = −1
2
.

In this thesis, I will indicate some ways of bringing the integrability theory for

(BO) on both the line and the circle to bear on PDE questions. Our approach is

motivated by recent work on the Korteweg–de Vries equation, to which Benjamin–

Ono is related as we have mentioned. Using the integrable structure of KdV and in

particular the Lax pair, Killip, Vişan, and Zhang [13] obtained conservation laws

which govern the Hs norm of the solution for s ≥ −1. These same conservation

laws were employed by Killip and Vişan [14] to obtain global well-posedness of

KdV in the space H−1.
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1.2 Notation

We write A . B to mean that A ≤ CB for an absolute constant C; if we wish to

specify that the value of C depends on further parameters a, b, . . . then we write

A .a,b,... B. We write A . Bγ± to mean that, for any ε > 0, A .ε B
γ±ε.

In this paper our conventions for the Fourier transform are

f̂(ξ) =
1√
2π

∫
R
e−ixξf(x)dx, f̌(x) =

1√
2π

∫
R
eixξf(ξ)dξ

for functions on the line and

f̂(ξ) =

∫ 1

0

e−ixξf(x)dx, f̌(x) =
∑
ξ∈2πZ

eixξf(ξ)

for functions on the circle.

We will occasionally use the Japanese bracket 〈x〉 :=
√

1 + |x|2, especially in

the context of the Sobolev norms defined by

‖f‖2Hs(R) =

∫
R
〈ξ〉2s|f̂(ξ)|2dξ, ‖f‖2Hs(R/Z) =

∑
k∈2πZ

〈ξ〉2s|f̂(ξ)|2

Let Hs
0(R/Z) denote the subspace of Hs(R/Z) functions with f̂(0) = 0, i.e. mean

zero. We write L2 for H0.

If f ∈ Hs(D) and g ∈ H−s(D), then the scalar product

〈f, g〉 =

∫
D

f(x)g(x)dx

converges and satisfies Plancherel’s theorem 〈f, g〉 = 〈f̂ , ĝ〉, which on the circle we

interpret as

〈f, g〉 = 〈f̂ , ĝ〉 :=
∑
ξ∈2πZ

f̂(ξ)ĝ(ξ).

We will have frequent need to represent the restriction of a function to positive

or to negative frequencies; which is to say projected orthogonally onto positive or

10



negative frequency space. Let C± define the Cauchy projections

(C±f)∧(ξ) = f̂(ξ)1(±ξ > 0).

We will often write C±f = f±.

2 The Perturbation Determinant

In this section, we reproduce the results of [25] for the sake of a complete treatment:

following the method of [13] to obtain low-regularity conservation laws for (BO).

Our principal result is the following:

Theorem. Let q be a classical solution to (BO) on the line or the circle and let

−1
2
< s < 0. Then

(1 + ‖q(0)‖
2

1+2s

Hs )s sup
t∈R
‖q(t)‖Hs .s,r ‖q(0)‖Hs .s,r (1 + ‖q(0)‖

2
(1+2s)2

Hs )−s inf
t∈R
‖q(t)‖Hs .

This will be proved as Theorem 2.6.

Let us review the method of [13] as it applies to our problem. The first thing

to note is that (BO) has a Lax pair. We will treat the formalism in more detail

here than in section 1.1.1, although our discussion is still formal. We follow [28]

in presenting the Lax pair as it decomposes along the Hardy spaces H± of L2

functions whose Fourier transforms are supported on positive and negative modes,

respectively. On the line,

L2(R) = H+(R)⊕H−(R).

On the circle we must be more careful, because the zero frequency mode contributes

positive mass. However, if we restrict to the space L2
0(R/Z) of mean-zero L2

functions, then

L2
0(R/Z) = H+(R/Z)⊕H−(R/Z).

11



Concordantly, for much of this section we will assume that all our solutions to

(BO) on the circle have mean 0. Because the (BO) flow preserves the mean of the

data (since its right hand side is a complete derivative), this amounts to requiring

the initial data to have mean 0. This assumption will be removed in the end by

way of the Galilei transformation (2.15).

The orthogonal Cauchy projections C± : L2(R)→ H±(R) and C± : L2
0(R/Z)→

H±(R/Z) are given by

C±f = 1
2
(f ± iHf).

Given a smooth, decaying function q(t, x), we define operators L±, P± by

L±(t) = ±C± 1
i
∇− C±q(t)C±,

P±(t) = ±1
i
C±∇2 + 2C±

(
(C±qx(t))− qx(t)− q(t)∇

)
C±

Because these operators leave H± (respectively) invariant, we are free to un-

derstand them to act on L2 or on H±. It was shown in [28] that q(t) (mean 0 if

on the circle) solves (BO) if and only if

d

dt
L± = [P±, L±].

Let us restrict our attention to the action on H+. Because of the above Lax pair,

the (BO) flow preserves all the spectral properties of L+(t). Thus, formally, we

expect the perturbation determinant (where the determinant is taken over H+)

det((κ+ L+(t))R0(κ) = det(id− C+q(t)C+R0(κ))

to be preserved in time if q solves (BO). Here

R0(κ) = C+(κ− i∇)−1C+

is defined by multiplication on the Fourier side by 1(0,∞)(ξ)(κ + ξ)−1. If κ > 0,

this is a positive definite operator on H+, and hence
√
R0 makes sense and the

12



symbol of
√
R0 is the square root of that of R0. Its inverse L0 = R−10 also makes

sense, albeit as an unbounded operator.

Taking a logarithm, we find

− log det((κ+ L+(t))R0(κ)) =
∞∑
`=1

1

`
tr
{(
C+q(t)C+R0(κ)

)`}
. (2.7)

It will be convenient to reformulate the above in terms of the operator

A(κ; q) :=
√
R0(κ)C+qC+

√
R0(κ) (2.8)

given on the Fourier side on R by

Â(κ; q)f(ξ) = 1(0,∞)(ξ)

∫ ∞
0

1√
κ+ ξ

q̂(ξ − η)
1√
κ+ η

f̂(η)dη

and on R/Z by

Â(κ; q)f(ξ) = 1{2π,4π,...}(ξ)
∑

η=2π,4π,...

1√
κ+ ξ

q̂(ξ − η)
1√
κ+ η

f̂(η).

A(κ; q) depends linearly on q and is self-adjoint when q is real. Cycling the trace,

we may rewrite (2.7) as
∞∑
`=1

1

`
tr{A(κ; q(t))`}.

This quantity almost makes sense; however, A(κ; q) is not a trace-class operator,

even if q is Schwartz. On the other hand, considered formally (and ignoring the

Cauchy projections),

tr{A(κ; q(t))} =

∫ ∞
0

1

κ+ ξ
dξ ·

∫
qdx =∞ ·

∫
qdx

ought to be preserved by the (BO) flow because
∫
qdx is. Thus we may have some

confidence in dropping the ` = 1 term to study the quantity

α(κ; q) :=
∞∑
`=2

1

`
tr{A(κ; q)`}.
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As we shall see, this series makes sense if q ∈ Hs for any s > −1
2

and κ is sufficiently

large.

The crux of the method is to show, as the foregoing discussion suggests, that

α(κ; q) is conserved by the (BO) flow (section 2.2) and that it controls the relevant

norm(s) of the solution (section 2.3). In our case and unlike in [13], the main term

of α(κ; q) is not commensurate with any Sobolev norm of q. Since the Hs norms

for s > −1
2

are strictly stronger than the norm controlled by α(κ; q), the main

theorem is recovered in section 2.3 from a kind of persistence of regularity.

2.1 Functional Preliminaries

Because our problem is translation-invariant, we may avoid any functional-analytic

subtleties by working entirely on the Fourier side. If T is a linear operator given

on the Fourier side by

T̂ϕ(ξ) =

∫
R
K(ξ, η)ϕ̂(η)dη

then we may define the Hilbert-Schmidt norm of T by

‖T‖2I2 =
x

R2

|K(ξ, η)|2dηdξ.

If ‖T‖I2 <∞, we say that T is a Hilbert-Schmidt operator and write T ∈ I2. If n ≥

2 and T1, . . . , Tn are Hilbert-Schmidt operators with Fourier kernels K1, . . . , Kn,

then we say T1 · · ·Tn is trace class and define the trace

tr{T1 · · ·Tn} =

∫
Rn
K1(ξ1, ξ2) · · ·Kn(ξn, ξ1)dξ1 · · · dξn,

which is finite by the Cauchy-Schwarz inequality. In this formulation, cycling the

trace amounts to an application of Fubini’s theorem.

By the Cauchy-Schwarz inequality, α(κ; q) is a sub-geometric series with a

common ratio . ‖A(q)‖I2 . The following lemma gives sufficient conditions for this
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series to converge and submit to term-by-term differentiation and ensures that

α(κ; q) is comparable to its first term.

Lemma 2.1. Let t 7→ A(t) define a C1 curve in I2. Suppose for some t0 we have

‖A(t0)‖I2 <
1

3
.

Then there is a closed interval I containing t0 on which the series

α(t) :=
∞∑
`=2

1

`
tr{A(t)`}

converges uniformly and defines a C1 function which can be differentiated term by

term:
d

dt
α(t) =

∞∑
`=2

tr{A(t)`−1
d

dt
A(t)}.

If A(t) is self-adjoint, then

1

3
‖A(t)‖2I2 ≤ α(t) ≤ 2

3
‖A(t)‖2I2 .

For a proof of this lemma, see [13], Lemma 1.5.

2.2 Conservation of the Perturbation Determinant

In light of Lemma 2.1, our first task is to understand ‖A(κ; q(t))‖I2 . Our next

result is most conveniently formulated in terms of the linear operator Tκ given by

the Fourier multiplier

T̂κf(ξ) =
log(2 + |ξ|/κ)√

κ2 + ξ2
f̂(ξ).

Theorem 2.2. If q ∈ Hs(R) or q ∈ Hs
0(R/Z) for −1

2
< s < 0, then for κ ≥ 1

‖A(κ; q)‖2I2 ∼ 〈q, Tκq〉 .s κ
−1−2s‖q‖2Hs .
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Proof. We first consider the case of the line. We compute

‖A(κ; q)‖2I2 =

∫
ξ≥0

∫
η≥0

(κ+ ξ)−1(κ+ η)−1|q̂(ξ − η)|2dηdξ

=

∫ ∞
−∞

∫
η≥max(0,−ξ)

(κ+ ξ + η)−1(κ+ η)−1|q̂(ξ)|2dηdξ

=

∫ ∞
0

1

ξ
log

(
1 +

ξ

κ

)
|q̂(ξ)|2dξ −

∫ 0

−∞

1

ξ
log

(
1− ξ

κ

)
|q̂(ξ)|2dξ

=

∫ ∞
−∞

log(1 + |ξ|
κ

)

|ξ|
|q̂(ξ)|2dξ

∼
∫ ∞
−∞

log(2 + |ξ|
κ

)√
κ2 + ξ2

|q̂(ξ)|2dξ

where the implicit constant in the last line is absolute. This proves the first

inequality. The second inequality follows from the fact that

log(2 + |ξ|/κ)(κ2 + ξ2)−1/2 .s κ
−1
(

1 +
( ξ
κ

)2)s
≤ κ−1−2s(1 + ξ2)s

for any −1
2
< s < 0, κ ≥ 1.

In the case q ∈ Hs
0(R/Z), a similar computation to the above may be repeated,

although the analogue of the third equality holds only within the bounds of mul-

tiplicative constants, rather than exactly.

Theorem 2.3. Let q be a C0
tH

3
x ∩C1

tH
1
x solution to (BO) on the line or the circle,

having mean 0 if on the circle. For any t ∈ R and s > −1
2
, there exists a constant

C = C(s) such that for all κ ≥ 1 + C‖q(t)‖
2

1+2s

Hs ,

d

dt
α(κ; q(t)) = 0.

Proof. We choose C large enough that Theorem 2.2 ensures that

‖A(κ; q(t))‖I2 <
1

3
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whenever κ ≥ 1+C‖q(t)‖
2

1+2s

Hs . We then apply Lemma 2.1 to conclude that α(κ; q)

converges on a neighborhood of t and

d

dt
α(k; q(t)) =

∞∑
`=2

tr
{
A(κ, q)`−1A(κ; qt)

}
=
∞∑
`=2

tr
{
A(κ; q)`−1A(κ;−Hq′′ + 2qq′)

}
.

By Theorem 2.2, A(κ; q) is a Hilbert-Schmidt operator, as is A(κ;−Hq′′ + 2qq′) if

q ∈ H3, so we may cycle a copy of A(κ; q) in the trace to obtain

d

dt
α(κ; q(t)) = −

∞∑
`=2

tr
{
A(κ; q)`−2A(κ;Hq′′)A(κ; q)

}
+

+
∞∑
`=2

tr
{
A(κ; q)`−1A(κ; 2qq′)

}
,

which we rearrange slightly to give a telescoping series:

d

dt
α(κ; q(t)) = − tr

{
A(κ; q)A(κ;Hq′′)

}
+

+
∞∑
`=2

[
2 tr

{
A(κ; q)`−1A(κ; qq′)

}
− tr

{
A(κ; q)`−1A(κ;Hq′′)A(κ; q)

}]
.

Evidently it suffices to show that

tr
{
A(κ; q)A(κ;Hq′′)

}
= 0 (2.9)

and

2 tr
{
A(κ; q)`−1A(κ; qq′)

}
= tr

{
A(κ; q)`−1A(κ;Hq′′)A(κ; q)

}
(2.10)

for all ` ≥ 2.

To see (2.9), we compute the trace directly on the line:

tr{A(κ; q)A(κ;Hq′′)}

= −
∫
ξ≥0

∫
η≥0

(k + ξ)−1q̂(ξ − η)(k + η)−1Ĥ(η − ξ)(η − ξ)2q̂(η − ξ)dηdξ

= −i
∫
ξ≥0

∫
η≥0

sgn(ξ − η)(ξ − η)2

(k + ξ)(k + η)
|q̂(ξ − η)|2dηdξ.
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This integral converges absolutely when q ∈ H2. The integrand is odd with respect

to ξ = η, so the integral evaluates to 0. The computation on the circle is similar.

To reduce the number of derivatives on q in the right hand side of (2.10), we

require a Leibniz rule for the derivative operator L0 = C+(κ − i∇)C+ = R−10 . If

f ∈ H2, we write

C+f
′C+ = iC+[C+(κ− i∇)C+, f ]C+ = iC+[R−10 , f ]C+

and so, commuting C+ and R0 as needed,

A(κ; q)A(κ; f ′)A(κ; q) = i
√
R0C+qC+R0C+[R−10 , f ]C+R0C+q

√
R0

= i
√
R0C+qC+

(
fR0 −R0f

)
C+qC+

√
R0

= i
√
R0C+qC+fC+

√
R0A(κ; q)

− iA(κ; q)
√
R0C+fC+qC+

√
R0.

Because L0 is an unbounded operator, the first equality above holds only on the

domain of L0, which is a dense subset of H+. However, A(κ; q) ∈ I2 and

√
R0C+fC+g

√
R0 ∈ I2

when f, g ∈ H2. This suffices to conclude

A(κ; q)A(κ; f ′)A(κ; q) = i
√
R0C+qC+fC+

√
R0A(κ; q)

− iA(κ; q)
√
R0C+fC+qC+

√
R0 (2.11)

with equality as operators on H+.

Now we show (2.10). We write

Hq′′ = 1
i
q′′+ − 1

i
q′′− = (1

i
q′+ − 1

i
q′−)′,
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where ϕ± denotes the projection of ϕ onto H±. Letting f = 1
i
q′+ − 1

i
q′− in (2.11) ,

we find

tr{A(κ; q)`−1A(κ;Hq′′)A(κ; q)}

= tr
{
A(κ; q)`−2

√
R0C+qC+q

′
+C+

√
R0A(κ; q)

}
− tr

{
A(κ; q)`−1

√
R0C+q

′
+C+qC+

√
R0

}
− tr

{
A(κ; q)`−2

√
R0C+qC+q

′
−C+

√
R0A(κ; q)

}
+ tr

{
A(κ; q)`−1

√
R0C+q

′
−C+qC+

√
R0

}
= tr

{
A(κ; q)`−1

√
R0C+qC+q

′
+C+

√
R0

}
− tr

{
A(κ; q)`−1

√
R0C+q

′
+C+qC+

√
R0

}
− tr

{
A(κ; q)`−1

√
R0C+qC+q

′
−C+

√
R0

}
+ tr

{
A(κ; q)`−1

√
R0C+q

′
−C+qC+

√
R0

}
=: A−B − C +D.

We pass to the penultimate line above by cycling a copy of A(κ; q) in two of the

trace terms. Adding and subtracting A+D yields

tr{A(κ; q)`−1A(κ;Hq′′)A(κ; q)} = 2(A+D)− A−B − C −D.

We exploit some identities of the Cauchy projections in order to simplify the

above expressions. If f ∈ L2(R) or f ∈ L2
0(R/Z), then C+f+C+ = f+C+ and

C+f−C+ = C+f−. Thus

A = tr
{
A(κ; q)`−1

√
R0C+qq

′
+C+

√
R0

}
, D = tr

{
A(κ; q)`−1

√
R0C+q

′
−qC+

√
R0

}
.

Applying the identity f+ + f− = f , we find

A+D = tr
{
A(κ; q)`−1A(κ; qq′)

}
.
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Thus to show (2.10) and complete the proof of the theorem, it suffices to show

A+B + C +D = 0. By the same identity, we may simplify

A+ C = tr
{
A(κ; q)`−1

√
R0C+qC+q

′C+

√
R0

}
and

B +D = tr
{
A(κ; q)`−1

√
R0C+q

′C+qC+

√
R0

}
.

When ` ≥ 3, we apply the Leibniz identity

iC+[R−10 , qC+q]C+ = C+q
′C+qC+ + C+qC+q

′C+

and cycle a copy of A(κ; q) in the trace to find A+B + C +D = tr{X}, where

X = iA(κ; q)`−2
√
R0C+[R−10 , qC+q]C+

√
R0A(κ; q)

= iA(κ; q)`−3
√
R0C+qC+qC+qC+

√
R0A(κ; q)

− iA(κ; q)`−2
√
R0C+qC+qC+qC+

√
R0.

Because
√
R0C+qC+qC+qC+

√
R0 ∈ I2, we may substitute this into the trace and

cycle a copy of A(κ; q) to obtain

A+B + C +D = tr{X} = 0.

In the case ` = 2, we do not have two copies of A(κ; q) to place around the

commutator, so we cannot apply the Leibniz rule as an operator identity. Instead
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we apply the same idea at the level of the integrals:

(A+ C) + (B +D)

=

∫
ξ≥0

∫
η≥0

∫
ν≥0

i(ν − ξ)
(κ+ ξ)(κ+ η)

q̂(ξ − η)q̂(η − ν)q̂(ν − ξ)dνdηdξ

+

∫
ξ≥0

∫
η≥0

∫
ν≥0

i(η − ν)

(κ+ ξ)(κ+ η)
q̂(ξ − η)q̂(η − ν)q̂(ν − ξ)dνdηdξ

=

∫
ξ≥0

∫
η≥0

∫
ν≥0

i(η − ξ)
(κ+ ξ)(κ+ η)

q̂(ξ − η)q̂(η − ν)q̂(ν − ξ)dνdηdξ

= i

∫
ξ≥0

∫
η≥0

∫
ν≥0

1

(κ+ ξ)
q̂(ξ − η)q̂(η − ν)q̂(ν − ξ)dνdηdξ

− i
∫
ξ≥0

∫
η≥0

∫
ν≥0

1

(κ+ η)
q̂(ξ − η)q̂(η − ν)q̂(ν − ξ)dνdηdξ.

The above integrals converge by Cauchy-Schwarz. Cycling the variables ξ 7→ ν 7→

η 7→ ξ in the second integral, we see that the two integrals in the last identity are

equal. This completes the proof.

Because α is comparable to its first term, as a corollary to this result we obtain

uniform in time control of ‖A(κ; q(t))‖I2 .

Corollary 2.4. Let s > −1
2

and let q be a C0
tH

3
x ∩ C1

tH
1
x solution to (BO) on

the line or the circle, having mean 0 if on the circle. Then there exists a constant

C = C(s) such that for all κ ≥ 1 + C‖q(0)‖
2

1+2s

Hs ,

sup
t∈R
‖A(κ; q(t))‖2I2 ≤ 2‖A(κ; q(0))‖2I2 <

1

9

and therefore, by Theorem 2.2,

〈q(t), Tκq(t)〉 . 〈q(0), Tκq(0)〉.

Proof. We may choose C sufficiently large that ‖A(κ; q(0))‖2I2 <
1
18

. By Lemma 2.1

and Theorem 2.3, there exists a neighborhood I of 0 on which

‖A(κ; q(t))‖2I2 ≤ 3α(κ; q(t)) = 3α(κ; q(0)) ≤ 2‖A(κ; q(0))‖2I2 <
1

9
. (2.12)
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Since ‖A(κ; q(t))‖I2 < 1
3
, Lemma 1.1 implies that (2.12) is an open condition, and

the corollary follows by a continuity argument.

2.3 Conservation of Norms

Because of the logarithmic factor, 〈q, Tκq〉 is not commensurate with any Hs norm

of q; it behaves like ‖q‖2
H−1/2 at frequencies . κ and like ‖ log(|∇|)〈∇〉−1/2q‖2L2 at

frequencies� κ. This difficulty is avoided if we “build” ‖q‖Hs for −1
2
< s < 0 one

frequency scale at a time, using the contribution of 〈q, Tκq〉 at the frequency scale

κ where it behaves like a pure Sobolev norm.

This is naturally expressed in terms of the Besov norms

‖f‖Bs,2r =

(
‖f̂(ξ)|‖rL2(|ξ|≤1) +

∑
N≥1

N rs‖f̂(ξ)‖rL2(N≤|ξ|<2N)

)1/r

where the sum is taken over dyadic N = 1, 2, 4, . . . and with the usual interpreta-

tion in the case r =∞. The following lemma (the analogue of Lemma 3.2 in [13])

relates this norm to (the leading term of) α(k; q).

Lemma 2.5. Fix −1
2
< s < 0, 1 ≤ r ≤ ∞, κ0 ≥ 1. For any H2 function f ,

‖f‖r
Bs,2r

.
∑
N∈2N

N rs
(
κ0N〈f, Tκ0Nf〉

)r/2
(2.13)

and ∑
N∈2N

N rs
(
κ0N〈f, Tκ0Nf〉

)r/2
.s κ

−rs
0 ‖f‖rBs,2r . (2.14)

Proof. The inequality (2.13) follows easily from the estimate

‖f̂(ξ)‖2L2(|ξ|≤N) ≤
2

log 2

∫
κ0N log(2 + |ξ|

κ0N
)√

κ20N
2 + ξ2

|f̂(ξ)|2dξ.
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To control the other direction, we decompose∫
κ0N log(2 + |ξ|

κ0N
)√

κ20N
2 + ξ2

|f̂(ξ)|2dξ

≤ log(3)‖f̂(ξ)‖2L2(|ξ|≤1) +
∑
M∈2N

κ0N log(2 + 2M
κ0N

)
√
κ0N2 +M2

‖f̂(ξ)‖2L2(M<|ξ|≤2M)

≤

(√
log(3)‖f̂(ξ)‖L2(|ξ|≤1)

+
∑
M∈2N

(
κ0N log(2 + 2M

κ0N
)√

κ20N
2 +M2

)1/2

‖f̂(ξ)‖L2(M<|ξ|≤2M)

)2

.

This shows that the left-hand side of (2.14) is bounded by∥∥∥∥∥√log(3)N s‖f̂(ξ)‖L2(|ξ|≤1)

+
∑
M∈2N

(
κ0N

1+2sM−2s log(2 + 2M
κ0N

)√
κ20N

2 +M2

)1/2

M s‖f̂(ξ)‖L2(M<|ξ|≤2M)

∥∥∥∥∥
r

`r(N∈2N)

which reduces our task to estimating the operator norm of a certain `r → `r matrix.

To do this, we apply Schur’s test. The row sums of this operator are bounded by

√
log(3)N s +

∑
M∈2N

(
κ0N

1+2sM−2s log(2 + 2M
κ0N

)√
κ20N

2 +M2

)1/2

.s 1 + κ−s0

uniformly in N , while the column sums are bounded by

∑
N∈2N

√
log(3)N s .s 1,

∑
N∈2N

(
κ0N

1+2sM−2s log(2 + 2M
κ0N

)√
κ20N

2 +M2

)1/2

.s κ
−s
0

uniformly in M . Note that to make these estimates we require the condition

−1
2
< s < 0. This proves (2.14).

Our main result now follows easily from the foregoing lemma and Corollary

2.4.
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Theorem 2.6. Let q be a C0
tH

3
x ∩C1

tH
1
x solution to (BO) on the line or the circle

and let −1
2
< s < 0, 1 ≤ r ≤ ∞. Then

(1 + ‖q(0)‖
2

1+2s

Bs,2r
)s sup

t∈R
‖q(t)‖Bs,2r .s,r ‖q(0)‖Bs,2r

and

‖q(0)‖Bs,2r .s,r (1 + ‖q(0)‖
2

(1+2s)2

Bs,2r
)−s inf

t∈R
‖q(t)‖Bs,2r .

The particular case of r = 2 is equivalent to the conservation of the Sobolev norm:

(1 + ‖q(0)‖
2

1+2s

Hs )s sup
t∈R
‖q(t)‖Hs .s ‖q(0)‖Hs .s (1 + ‖q(0)‖

2
(1+2s)2

Hs )−s inf
t∈R
‖q(t)‖Hs .

Proof. On the circle, we first assume that q has mean 0. By Hölder’s inequality,

we have an embedding Bs1,2
r ↪→ Bs2,2

2 = Hs2 for any s2 < s1. Let

κ0 = 1 + C‖q(0)‖
2

1+2s

Bs,2r
&s 1 + C‖q(0)‖

2
1+2s

Hs−

for a sufficiently large constant C, so that we may apply Corollary 2.4. Then, for

any time t, Lemma 2.5 implies

‖q(t)‖r
Bs,2r

.
∑
N∈2N

N rs
(
κ0N〈q(t), Tκ0Nq(t)〉

)r/2
.
∑
N∈2N

N rs
(
κ0N〈q(0), Tκ0Nq(0)〉

)r/2
.s κ

−rs
0 ‖q(0)‖r

Bs,2r

.s (1 + ‖q(0)‖
2

1+2s

Bs,2r
)−rs‖q(0)‖r

Bs,2r
.

This proves the first inequality. By time translation symmetry, we then also obtain

‖q(0)‖Bs,2r .s (1 + ‖q(t)‖
2

1+2s

Bs,2r
)−s‖q(t)‖Bs,2r

and applying the first inequality to the quantity in parentheses produces the second

inequality.
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To remove the mean zero assumption on the circle, we employ Galilean invari-

ance: if q solves (BO), then so does

q̃(t, x) = q(t, x+ 2µt) + µ. (2.15)

The estimate

‖q̃(t)‖2
Bs,2r (R/Z) ∼ ‖q(t)‖

2
Bs,2r (R/Z) + µ2

then implies the general theorem.

3 The Scattering Data

In section 1.1.1, we discussed the scattering data of the Fokas–Ablowitz IST for

Benjamin–Ono in a purely formal way. In this section we discuss those elements

of the theory that can withstand a rigorous treatment when the regularity of the

potential is low, and we use these to construct a well-behaved approximation Hκ

to the Benjamin–Ono Hamiltonian.

3.1 The Jostish functions

For κ > 0, let R0(κ) be the free resolvent as defined in section 2:

(R0(κ)f)∧(ξ) =
1

κ+ |ξ|
f̂(ξ).

We introduce the Jost-ish function m± = m±(x, κ; q) which solves for a given

potential function q

m± = 1 +R0(κ)(qm±)±,

which implies that m± solves a minor modification of (2-a):

∓im′± + κ(m− 1) = (qm±)±. (3.16)
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Formally, m± − 1 is given by the series

m± − 1 = R0q± +R0(qR0q±)± + · · · (3.17)

For q ∈ Hs, s > −1
2
, and for κ sufficiently large, this series converges in H1+s. The

proof relies on the easy fact that ‖R0f‖Hr .κ ‖f‖Hr−1 and the bilinear estimate

Lemma 3.1 (fR0g Lemma). Let σ, r, s ≥ 0 such that r + s − σ < 1
2
, σ ≥ r, and

r + s ≤ 1. Then

‖fR0g‖H−σ . ‖f‖H−r‖Rs
0g‖L2

Proof. We write

‖fR0g‖2H−σ =

∫ ∞
−∞
〈ξ〉−2σ

∣∣∣∣∫ ∞
−∞

1

|η|+ κ
f̂(ξ − η)ĝ(η)dη

∣∣∣∣2 dξ
and split the inner integral into two regimes. On one hand,∫ ∞

−∞
〈ξ〉−2σ

∣∣∣∣∫
|η|>2|ξ|

1

|η|+ κ
f̂(ξ − η)ĝ(η)dη

∣∣∣∣2 dξ
.
∫ ∞
−∞
〈ξ〉−2σ(κ+ |ξ|)−2+2r+2s ·

·
∣∣∣∣∫ ∞
−∞

(|ξ − η|+ κ)−rf̂(ξ − η)(|η|+ κ)−sĝ(η)dη

∣∣∣∣2 dξ
.
∫ ∞
−∞
〈ξ〉−2σ(κ+ |ξ|)−2+2r+2sdξ‖R|s|0 f‖2L2‖R|s|0 g‖2L2

. ‖〈ξ〉−1−σ+r+s‖22‖R
|r|
0 f‖2L2‖R|s|0 g‖2L2

which is acceptable if r + s− σ < 1
2
. We use r + s ≤ 1 to pass to the last line.
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On the other hand,(∫ ∞
−∞
〈ξ〉−2σ

∣∣∣∣∫
|η|<2|ξ|

1

|η|+ κ
f̂(ξ − η)ĝ(η)dη

∣∣∣∣2 dξ
)1/2

.
∫ ∞
−∞

1

κ+ |η|
|ĝ(η)|

(∫
2|ξ|>η

〈ξ〉−2σ|f̂(ξ − η)|2dξ
)1/2

dη

.
∫ ∞
−∞

1

κ+ |η|
〈η〉−σ+r|ĝ(η)|

(∫
2|ξ|>η

〈ξ − η〉−2r|f̂(ξ − η)|2dξ
)1/2

dη

. ‖f‖H−r‖Rs
0g‖L2‖〈η〉−1−σ+r+s‖2

which is acceptable if r+ s− σ < 1
2
. We use σ ≥ r to pass to the penultimate line

and s ≤ 1 to pass to the last line.

Let 0 < ε < 1
2
, s = −1

2
+ ε. Then Lemma 3.1 implies

‖fR0g‖Hs . κ−ε‖f‖Hs‖g‖Hs . (3.18)

Using (3.18), we see that

‖R0(qR0q+)+‖H1+s . ‖qR0q+‖Hs . κ−ε‖q‖2Hs ,

‖R0(qR0(qR0q+)+)+‖H1+s . ‖qR0(qR0q+)+‖Hs . κ−2ε‖q‖3Hs .

and so on. Therefore the right hand side of (3.17) is bounded in H1+s by

‖R0q+‖H1+s +
∞∑
n=2

(κ−ε‖q‖Hs)n ≤ 2‖q‖Hs . ‖q‖Hs

if we choose κ� 1 such that κ−ε‖q‖Hs < 1
2
.

3.2 The Approximate Hamiltonian Flow

For the sake of a cleaner notation, we will write m = m+ for the rest of this

paper. It was proved by Kaup and Matsuno [12] that
∫
q(m− 1)dx generates the
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conserved quantities of the Benjamin–Ono equation. Indeed, we may expand m

in a series in powers of κ:

m(x;κ) =
∞∑
n=0

κ−nmn(x)

and use the fact that m solves (3.16) to infer that

m0 = 1, mn+1 = im′n + (qmn)+.

So m1 = q+,m2 = iq′+ + (qq+)+, etc. Thus∫
q(m− 1)dx =

1

κ

∫
qq+dx+

1

κ2

∫
iqq′+ + q(qq+)+dx+O(κ−3)

=
1

2κ

∫
q2dx+

1

κ2

∫
−1

2
qHq′ +

1

3
q3dx+O(κ−3).

From this we see that

Hκ := κ2
∫
q(m− 1)dx− κ

2

∫
q2dx = HBO +O(κ−1).

We use the series expansion (3.17) of m± to compute

δ

δq

∫
q(m− 1)dx

=
δ

δq

∫
qR0q+ + qR0(qR0q+)+ + qR0(qR0(qR0q+)+)+ + · · · dx

= R0q+ +R0q− +R0(qR+q+)+ +R0q+R0q− +R0(qR0q−)− +

+R0(qR0(qR0q+)+)+ +R0q−R0(qR0q+)+ +R0(qR0q−)−R0q+ +

+R0(qR0(qR0q−)−)− + · · ·

= m+m− − 1.

The flow of q under the approximate Hamiltonian Hκ is

qs = ∇ δ

δq
Hκ = κ2(m+m−)′ − κq′. (3.19)

We expect qt − qs = oκ→∞(1).

The resulting Hamiltonian flow is well-posed:
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Theorem 3.2. Let δ > 0, κ,κ ≥ 1 and −1
2
< s ≤ 0. Let Bδ denote the δ-ball

in Hs. The Hκ flow is globally well-posed on Bδ and preserves α(κ). (It is also

well-posed when s > 0, but this requires a different proof and is not relevant to our

purposes.)

Proof. Global well-posedness follows from local well-posedness and conservation of

α(1). Local well-posedness is proved using Picard iteration applied to the integral

equation

q(t, x) = q(0, x− κt) +

∫ t

0

κ2m(x+ κ2(t− s);κ, q(s))n(x+ κ2(t− s);κ, q(s))ds

together with the estimate (shortly to be proved)

‖m(q)n(q)−m(q̃)n(q̃)‖Hs . ‖q − q̃‖Hs .

We will prove this for the quadratic terms of the series expansion of m,n, and it

will be evident that all the terms in the series can be handled by this method. By

applying Lemma 3.1, we have

κ2‖R0q+R0q− −R0q̃+R0q̃−‖Hs

. κ2‖R0q+R0(q − q̃)−‖Hs + κ2‖R0(q − q̃)+R0q̃−‖Hs

. κ2‖R0q‖Hs‖‖q − q̃‖Hs + κ2‖R0q̃‖Hs‖q − q̃‖Hs

. δκ‖q − q̃‖Hs .

and, similarly,

κ2‖R0(qR0q+)+ −R0(q̃R0q̃+)+‖Hs . κ‖qR0(q − q̃)+‖Hs + κ‖(q − q̃)R0q̃+‖Hs

. κδ‖q − q̃‖Hs .

We now turn our attention to the conservation of α. We see that α is conserved
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from the identity (3.20), from which it follows

d

ds

d

dκ
α = −1

κ

d

ds
Hκ

= −1

κ
{Hκ, Hκ} = 0

where here the Poisson bracket is

{F,G} =

∫
δ

δq
F

(
δ

δq
G

)′
dx.

Let q be any sufficiently regular data; say q ∈ H3. Then α is continuously dif-

ferentiable in s, κ by Lemma 2.1, so we may freely interchange the derivatives to

find that d
ds
α(q(x, s)) is constant in κ. As κ → ∞, α → 0, so we conclude that

d
ds
α = 0. Since we already have local well-posedness, global well-posedness extends

to general data, and the proof is complete.

3.3 Relation to α

We proved in Theorem 2.3 that

α(q;κ) :=
∞∑
`=2

1

`
tr{(

√
R0C+qC+

√
R0)

`}
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is conserved. We compute for n ≥ 2

1

n
tr{(

√
R0C+qC+

√
R0)

n}

=
1

n

∫
[0,∞)n

1

κ+ ξ1
q̂(ξ1 − ξ2) · · ·

1

κ+ ξn
q̂(ξn − ξ1)dξ1 · · · dξn

=

∫
0≤ξ1≤min(ξ2,...,ξn)

1

κ+ ξ1
q̂(ξ1 − ξ2) · · ·

1

κ+ ξn
q̂(ξn − ξ1)dξ1 · · · dξn

=

∫ ∞
0

1

κ+ ξ

∫
Rn−1

q̂(−(ζ1 + · · ·+ ζn)) ·

·
n∏
i=1

R̂+(κ+ ξ)(ζi + · · ·+ ζn)q̂(ζi)dζ1 · · · dζndξ

=

∫ ∞
κ

1

λ

∫
qR0(λ)(· · · qR0(λ)q+)+dxdλ.

Summing in n and recalling (3.17), we find

α(q;κ) =

∫ ∞
κ

1

λ

∫
q(x)(m− 1)(x;λ)dxdλ

or equivalently,

−κ d
dκ
α(q;κ) =

∫
q(m− 1)dx. (3.20)

Since α is conserved by (BO), it follows from the above and from Theorem 3.2

that

Proposition 3.3. The quantity∫
q(x, t)(m(x;κ, q)− 1)dx

is conserved in t by the Hamiltonian flows of HBO and Hκ.

4 A Short Proof that Benjamin–Ono is Well-Posed in L2(R)

The basic idea behind our proof is to prove that the Hκ flow converges in L2 to

the HBO flow; since the former is well-posed in L2, so must the latter be. Rather
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than prove L2 convergence directly, we will first show that both flows preserve

equicontinuity in L2, whereafter it suffices to prove that the flows converge in

some Hs space for s < 0 as small as is convenient. In this strategy we follow [14].

4.1 The higher-order terms

Recall that, when κ is sufficiently large, the scattering equation (1.2) yields a

convergent series expansion for its solution:

m(κ; q) =
∞∑
`=0

(R0(κ)C+q)
` · 1

where q is to be interpreted as the multiplication operator and the power indicates

operator composition. Because the resolvent operator R0 decays like κ−1, the terms

in this series are increasingly meager for large κ. In this section, we will repeatedly

discard those higher-order terms in this series which contribute negligibly to some

limit as κ→∞. We are justified in doing so by the following lemma.

We write

E(x;κ, n) = (R0C+q)
n · 1 ∈ L2

F (x;κ, n) = (R0C−q)
n · 1 ∈ L2

where q is to be interpreted as a multiplier operator and the exponent indicates

operator composition.

Lemma 4.1. The following decay estimates hold:

‖qE(κ, n)‖2 + ‖qF (κ, n)‖2 . κ−n/2‖q‖n+1
2 (4.21)

and

‖E(κ, n)‖2 + ‖F (κ, n)‖2 . κ−(n+1)/2‖q‖n2 (4.22)
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Proof. We treat E(κ, n) with no loss of generality. We have

‖qE(κ, n)‖2 = ‖q̂ ∗ E(κ, n)∧‖2

. ‖q‖2‖E(κ, n)∧‖1

. ‖q‖2‖
1

κ+ |ξ|
‖2‖qE(κ, n− 1)‖2

= κ−1/2‖q‖2‖qE(κ, n− 1)‖2,

from which (4.21) follows inductively.

(4.22) follows directly from (4.21):

‖E(q, n)‖2 . κ−1‖qE(q, n− 1)‖2 . κ−(n+1)/2‖q‖n2 .

Since
∫
q(m − 1)dx is conserved by the HBO, Hκ flows (Proposition 3.3) and

since, as we have already noted,
∫
q(m− 1)dx is a generating function for a hier-

archy of conserved quantities, it follows that the HBO and Hκ flows both conserve

this hierarchy. For example, the preceding estimate allows us to prove

Proposition 4.2. Let q solve either (BO) or (3.19). Then ‖q‖Ls is constant in

time.

Proof. Observe that

κ

∫
q(m− 1)dx = κ

∞∑
`=1

∫
qE(κ, `)dx

= κ

∫
qR0q+dx+ κ

∞∑
`=2

∫
qE(κ, `)dx.

If q ∈ L2, then as κ→∞.

κ

∫
qR0q+dx→

∫
qq+dx =

1

2

∫
q2dx.
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As for the higher order terms, according to Cauchy-Schwarz and (4.22), we have

κ

∞∑
`=2

∫
qE(κ, `)dx .

∞∑
`=2

‖q‖`+1
2 κ−(`−1)/2 → 0

for q ∈ L2 as κ→∞. In conclusion of the preceding,

κ

∫
q(m− 1)dx→ 1

2

∫
q2dx

as κ → ∞. Since κ
∫
q(m − 1)dx is conserved for any κ sufficiently large, so too

must its limit as κ→∞.

4.2 Equicontinuity

Definition 1. A subset Q of a metric space X is equicontinuous if

lim
h→0

sup
q∈Q
‖q − q(·+ h)‖X = 0. (4.23)

Proposition 4.3. Fix ε > 0. If Q is a bounded subset of L2(R), then Q is

equicontinuous if and only if

lim
κ→∞

sup
q∈Q

∫
|ξ|>κ
|q̂(ξ)|2dξ = 0 (4.24)

which is equivalent to

lim
κ→∞

sup
q∈Q
‖(R0|∇|)σq‖L2 = lim

κ→∞
sup
q∈Q

∫
|ξ|σ

(κ+ |ξ|)σ
|q̂(ξ|)|2dξ = 0 (4.25)

for any σ > 0.

Proof. Suppose Q ∈ {‖f‖L2 ≤ R}. Fix h ∈ R. Then

sup
f∈Q
‖f − f(·+ h)‖L2 = sup

f∈Q

∫
|eiξh − 1|2|f̂(ξ)|2dξ

. κ2h2 sup
f∈Q

∫
|f̂(ξ)|2dξ + sup

f∈Q

∫
|ξ|>κ
|f̂(ξ)|2dξ
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Taking h→ 0 and κ→∞ shows that (4.24) implies (4.23).

To prove the converse, we compute∫
κe−2κ|h|dh = 1,

∫
|eiξh − 1|2κe−2κ|h|dh =

2ξ2

ξ2 + 4κ2
& 1− 1[−κ,κ](ξ).

From these it follows that

sup
f∈Q

∫
|ξ|>κ
|f̂(ξ)|2dξ . sup

f∈Q

∫
|ξ|2

κ2 + |ξ|2
|f̂(ξ)|2dξ

. sup
f∈Q

∫ ∫
|eiξh − 1|2|f̂(ξ)|2κe−2κ|h|dhdξ

= sup
f∈Q

∫
‖f − f(·+ h)‖L2κe−2κhdh

. sup
f∈Q

sup
|h|<δ
‖f − f(·+ h)‖L2 +R

∫
|h|>δ

κe−2κ|h|dh

for any δ > 0. Letting δ → 0 and then κ→∞ proves that (4.23) implies (4.24) .

Finally, let us prove that (4.25) is equivalent to (4.24). We have∫
|ξ|>κ
|f̂(ξ)|2 ≤ 2σ

∫
|ξ|>κ

|ξ|σ

(κ+ |ξ|)σ
|f̂(ξ)|2dξ,

which proves the forward direction. Also,∫
|ξ|σ

(κ+ |ξ|)σ
|f̂(ξ)|2dξ . κ−σ/2

∫
|ξ|<
√
κ

|f̂(ξ)|2dξ +

∫
|ξ|>
√
κ

|f̂(ξ)|2dξ.

This proves the reverse direction.

Theorem 4.4. Let Q be equicontinuous and bounded in Hs, s ≤ 0. Then

Q∗ = {etJ∇(HBO−Hκ)q : q ∈ Q, t ∈ R, κ ≥ 1}

is also equicontinuous in Hs.
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Proof. Let us begin with the case s < 0, which we will use in Section 5. We

introduce a new notation: the operator 〈∇〉 defined on the Fourier side by

(〈∇〉f)∧(ξ) = 〈ξ〉f̂(ξ).

From the definition (4.23) we see immediately that a set Q is equicontinuous in

Hs, s < 0 if and only if the set {〈∇〉sq : q ∈ Q} is equicontinuous in L2; since Q∗

is bounded in HS according to Theorem 2.6, it then follows from Proposition 4.3

that it suffices to prove that

‖R|s|0 q‖L2 = ‖(R0〈∇〉)|s|〈∇〉sq‖L2 → 0

uniformly over q ∈ Q as κ→∞. This follows from the conservation of α and the

estimate

−
∫ ∞
κ

κ2(s+1) ∂α

∂κ
dκ
κ
∼s ‖Rs

0q‖L2 . (4.26)

Let us prove (4.26) by employing the identity

−κ∂α
∂κ

=

∫
q(m− 1)dx

and the series expansion of m to obtain:

−
∫ ∞
κ

κ2(s+1) ∂α

∂κ
dκ
κ

=

∫ ∞
κ

∫
κ2s+1q(m− 1)(κ; q)dx

dκ
κ

=

∫ ∞
κ

∫
κ2s+1qR0(κ)q+dx

dκ
κ

+
∞∑
`=2

∫ ∞
κ

∫
κ2s+1qE(κ; `)dx

dκ
κ
.

The ` ≥ 2 terms are negligible according to Lemma 4.1. To handle the main term,

we observe that ∫ ∞
κ

κ2s+1 1

κ + |ξ|
dκ
κ
∼s (κ+ |ξ|)2s. (4.27)

To see this, we compute∫ ∞
κ

κ2s+1 1

κ + |ξ|
dκ
κ

=

∫ ∞
κ

(κ + |ξ|)2s−1
(
κ + |ξ|

κ

)2|s|

dκ.
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This shows that the & direction of (4.27) is trivial. In the case κ ≥ |ξ|, the factor

(κ + |ξ|)/κ ≤ 2, which proves the . direction of (4.27). It remains only to show,

in the case κ < |ξ|, ∫ |ξ|
κ

κ2s+1 1

κ + |ξ|
dκ
κ

.
1

κ+ |ξ|

∫ |ξ|
0

κ2sdκ

=
|ξ|2s+1

κ+ |ξ|

. (κ+ |ξ|)2s.

This completes the proof of (4.27) and, by extension, the theorem in the case

s < 0.

(4.26) fails in the case s = 0 because it exhibits a logarithmic divergence.

Instead I will use the scattering equation (1.2) satisfied by m to introduce the

frequency multiplier that yields ‖(R0|∇|)1/2q‖L2 . Observe that

1

2
‖(R0|∇|)1/2q‖2L2 =

∫
q|∇x|R0q+dx

= κ

∫
qR0q+dx−

∫
qq+dx

= κ

∫
q(m− 1)dx− κ

∞∑
`=2

∫
q(R0C+)` · q −

∫
qq+dx

= −κ2∂α
∂κ
− 1

2

∫
q2dx− κ

∞∑
`=2

∫
qE(κ, `)

The first two terms appearing at the end of this chain of equalities are conserved.

The series vanishes uniformly as κ → ∞. Indeed, by Cauchy-Schwarz and (4.21)

we then find that

κ

∞∑
`=2

∫
qE(κ, `)dx . ‖q‖2

∞∑
`=2

‖qE(κ, `− 1)‖2

. ‖q‖2
∞∑
`=2

κ−`/2‖q‖`2

= κ−1
‖q‖32

1 + κ−1/2‖q‖2
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which vanishes as κ→∞, as promised. We have therefore shown that

1

2
‖|∇|1/2q‖2

H
−1/2
κ

= −κ2∂α
∂κ
− 1

2

∫
q2dx+ oκ→∞(1).

Since the explicit terms on the RHS are conserved by both the HBO and the Hκ

flows (Theorem 2.3, Proposition 4.2), it follows that for q evolving according to

either flow,

1

2
‖(R0|∇|)1/2q(t)‖2L2 =

1

2
‖(R0|∇|)1/2q(0)‖2L2 + o(1)

and the result follows.

As we mentioned in the introduction to this section, equicontinuity is useful to

us because it allows us to obtain convergence in L2 by proving convergence in a

weaker Sobolev norm. This is the content of the following lemma.

Lemma 4.5. Let s < 0 and Q an equicontinuous, uniformly bounded subset of L2.

If a sequence of functions fn ∈ Q converges to a limit f in Hs, then f ∈ L2 and

fn → f in L2.

Proof. We show that {fn} is a Cauchy sequence in L2. Observe that for any κ > 1:

‖fn− fm‖2Hs ≤ (1 +κ2)−s/2
∫
|ξ|≤κ
〈ξ〉2s|f̂n(ξ)− f̂m(ξ)|2dξ+

∫
|ξ|>κ
|f̂n(ξ)− f̂m(ξ)|2dξ.

If κ � 1 is chosen sufficiently large, then the second integral can be made negli-

gible by equicontinuity and (4.24). Then the first integral vanishes for n,m large

(relative to κ) by Hs-convergence of the fn.

4.3 Well-Posedness

In this subsection we give a short proof of
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Theorem 4.6. (BO) is well-posed in the class of L2(R) initial data on the line.

Proof. Let Q be equicontinuous and bounded by δ in L2. By Theorem 4.4,

{q∇(tHBO−sHκ) : q ∈ Q, t, s ≥ 0} is also equicontinuous and, by conservation of

the L2 norm, bounded by δ. Our first goal is to demonstrate that for σ < 0

sufficiently negative,

‖qt − qs‖Hσ = oκ→∞(1). (4.28)

For q ∈ C3, we have

qt − qs = −Hq′′ + 2qq′ − κ2(mn)′ + kq′

= −R0Hq
′′′ + 2qq′ − κ2(mn−R0q)

′.

The lone linear term is bounded by δκ−1 in Hσ for σ < −3. Let us next focus on

the quadratic terms. These are

2qq′ − κ2R0(qR0q+)′+ − κ2(R0q+R0q−)′ − κ2R0(qR0q−)′−

We can decompose (q2)′ = (qq+)′+ + (q+q−)′ + (qq−)′− and identify three terms to

control:

(qq+ − κ2R0(qR0q+))′+ + (q+q− − κ2R0q+R0q−)′ + (qq− − κ2R0(qR0q−))′−. (4.29)

The first and third of these can be handled in the same manner, to wit:

(qq+ − κ2R0(qR0q+))′+ = κR0H(qR0q+)′′+ + κR0(qR0Hq
′
+)′+ −R0(qR0q

′
+)′′+

= κR0H(qR0q+)′′+ −H(qR0q
′
+)′+.

By the fR0g lemma, Lemma 3.1, we have

‖κR0H(qR0q+)′′+‖Hσ . ‖H(qR0q+)+‖Hσ+2 . oκ→∞(1)‖q‖2Hs
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and

‖H(qR0q
′
+)′+‖Hσ . ‖qR0q

′
+‖Hσ+1 . oκ→∞(1)‖q‖Hs‖q′‖Hs−1 . oκ→0(1)‖q‖2Hs

as long as σ < 2s− 3
2

(which is entailed by our earlier condition σ < −3).

The middle term of (4.29) is also controlled by Lemma 3.1:

(q + q− − κ2R0q+R0q−)′ = κ(R0Hq
′
+R0q−)′ + κ(R0q+R0Hq

′
−)′ + (R0q

′
+R0q

′
−)′

and

‖κ(R0Hq
′
+R0q−)′‖Hσ . κ‖R0Hq

′
+R0q−‖Hσ+1

. κoκ→∞(1)‖R0Hq
′
+‖Hs−1‖q‖Hs

. oκ→∞(1)‖q‖2Hs

for s as above. Therefore, the quadratic terms are all acceptable.

Now we consider the higher-order terms. The general form of the error terms

is

κ2E(κ, n)F (κ,m)

where n+m ≥ 3. In the case m = 0, we may apply (4.21):

κ2‖E(κ, n)‖Hσ . κ‖qE(κ, n− 1)‖Hσ

= κ‖〈ξ〉σ q̂ ∗ E(κ, n− 1)∧‖2

. κ‖〈ξ〉σ‖2‖q̂ ∗ E(κ, n− 1)∧‖∞

. ‖q‖2‖qE(κ, n− 2)‖2

. κ1−n/2‖q‖n2

which vanishes as κ → ∞ since σ < −1
2

and n > 2. In the case n = 0 we obtain

the same vanishing result. In all other cases we see from (4.22) that

‖κ2E(κ, n)F (κ,m)‖Hσ . κ2‖〈ξ〉σ‖2‖E(κ, n)‖2‖F (κ,m)‖2 . κ1−(m+n)/2‖q‖m+n
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which is acceptable since σ < −1
2

and m+ n ≥ 3.

We have proven (4.28) for σ < −3.

Let Q be a bounded, equicontinuous subset of L2 and let {qn(0)} ⊂ Q ∩ H3.

Let qn(t) and qn(s) denote the HBO and Hκ Hamiltonian flows, respectively, of

qn(0). Suppose qn(0)→ q(0) in L2. Then for s, t ∈ [−T, T ], n,m ≥ K,

‖qn(t)− qm(t)‖Hσ . ‖qn(t)− qn(s)‖Hσ + ‖qn(s)− qm(s)‖L2 + ‖qm(s)− qm(t)‖L2

. 2 sup
q∈Q∗

∫ T

0

‖qt − qs‖L2 + sup
n,m≥K

‖qn(s)− qm(s)‖L2

= oκ→∞(1)T + oK→∞(1)

where we pass to the last line by (4.28) and the well-posedness of the flow in

s. We have proved that qn(t) converges to something in Hσ, and since Q∗ is

equicontinuous it follows from Lemma 4.5 that the sequence converges in L2 for

each t. This extends the Benjamin–Ono solution map to L2; we write q(t) =

limn→∞ qn(t). It follows from the above that the convergence is uniform on compact

regions of time and L2-continuous in the initial data.

The proof works just as well on the circle as on the line, though we have elected

to present the proof on the line only to avoid constant interruptions over notational

details (for example, the substitution of series for integrals on the Fourier side).

5 Local Smoothing

In the proof of Theorem 4.2 it can be seen that the higher-order terms (cubic or

greater in q) are ultimately controlled by κ−1/2‖q‖32. The estimates employed here

were quite crude; nevertheless, by trading the decay in κ that arises from R0 for a
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gain in regularity, the control of the higher-order terms extends without significant

modification to data q ∈ Hs for s > −1
6
. Well-posedness in this regime would be

a novel result.

The barrier lies in the quadratic terms H(qR0q
′
+)′+, H(qR0q

′
−)′−, (R0q

′
+R0q

′
−)′,

none of which are bounded a priori in any Hσ, no matter how small σ is, unless

q ∈ L2. This obstacle could be overcome by means of a local smoothing estimate for

the difference flow as in Propositions 4.6, 4.8 of [3]. Controlling the contribution

of the higher-order terms in order to obtain such an estimate is a formidable

challenge; however, a sufficiently heroic act of inequality-crunching would suffice

to push the frontier of well-posedness for Benjamin–Ono to s > −1
6

if not the

expected sharp result of s > −1
2
.

In this section we prove two local smoothing results for rough solutions s > −1
2

to the (BO) flow itself. While obtaining similar results for the Hκ flow is more

difficult, these represent partial progress toward that goal. The first result is

standard Kato–type local smoothing; the second is adapted to high frequency

scales |ξ| ∼ κ� 1.

5.1 The flow of the Jostish functions

Recall our Lax pair (restricted to the positive Hardy space H+)

L =
1

i
∇− C+q,

P =
1

i
∂xx − 2C+(q′ + q∇− q′+),

L̇ = [L, P ] if and only if q solves (BO).

Since m solves (3.16), which is equivalent to the “scattering equation”:

Lm = κ(m− 1),
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we expect its flow to be given by something like (1.6):

ṁ = Pm.

Let q ∈ Hs for some−1
2
< s < 0. OnH+, define the resolventR(κ) = (L+κ)−1,

which is given by the series (recalling the definition (2.8))

R(κ) =
∑
`=0

√
R0A(κ; q)`

√
R0,

which converges in L2 operator norm according to the estimate

‖A(κ; q)‖op ≤ ‖A(κ; q)‖I2 <
1

3

when κ� 1 is large according to Lemma 2.2. We can rewrite (3.16) in the form

m− 1 = Rq+. (5.30)

We observe

0 = R
d

dt
(LR)

= R[L, P ]R +RLṘ

= PR−RP + Ṙ

so Ṙ = [R,P ]. Taking the time derivative of both sides of (5.30), we find (in the

distributional sense)

ṁ = Ṙq+ +Rq̇+

= −PRq+ +R(Pq+ + q̇+)

= −P (m− 1), (5.31)

since

Pq+ = Hq′′+ − 2(q′q+ + qq′+ − q′+q+)+ = Hq′′+ − 2(q′q+ + q−q
′)+ = −q̇+,

again in the distributional sense.
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5.2 κ = 1 Local Smoothing

Theorem 5.1 (Local smoothing). Let q solve (BO). Then for any −1
2
< s ≤ 0,∫ 1

0

∫ 1

0

q2dxdt .‖q‖Hs 1.

Proof. Let f be a function such that f ′ is positive and Schwarz. Fix κ� 1 large

enough that m− 1 can be defined by series and satisfies (5.31). Note that∫
f(q(m− 1))+ . ‖f‖∞‖q‖Hs‖m− 1‖H−s . ‖f‖∞‖q‖Hs‖m− 1‖H1+s .f,‖q‖Hs 1.

We apply (3.16), (5.31) and compute

d

dt

∫
f(qm− 1))+dx

=
d

dt

∫
f [im′ + κm− κ− q]+ dx

=

∫
−f ′′′(m− 1)− 2if ′′q(m− 1) + iκf ′′(m− 1)− 2κf ′q(m− 1) + f ′′Hqdx

−
∫

2if ′q′+(m− 1)− 2κfq′+(m− 1)dx+

∫
f ′q2dx.

All the terms in the first integral are acceptable because f ′ is Schwartz. For

the second integral, we use Plancherel and the fact that q+ and m − 1 are each

supported on positive frequencies:

〈q′+(m− 1), f〉 =

∫ ∞
0

f̂(−ξ)
∫ ξ

0

i(ξ − η)q̂+(ξ − η)(m− 1)∧(η)dηdξ

.
∫ ∞
0

〈ξ〉1+|s||f̂(ξ)|
∫ ξ

0

〈ξ − η〉s|q̂+(ξ − η)|〈η〉1+s|(m− 1)∧(η)|dηdξ

.f ‖q+‖Hs‖m− 1‖2 . ‖q‖2Hs .
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by Cauchy-Schwarz and since f ′ is Schwartz. We therefore find that∫ 1

0

∫ 1

0

f ′q2dxdt =

=

∫ 1

0

f
(
q(t=1, x)(m− 1)(t=1, x)− q(0, x)(m− 1)(t=0, x)

)
dx+ C(‖q‖Hs)

.f,κ,‖q‖Hs 1.

Since f ′ is positive, fixing any large κ > 1 implies that∫ 1

0

∫ 1

0

q2dxdt .‖q‖Hs 1.

5.3 Local Smoothing Uniformly in κ

Theorem 5.2. Let q solve (BO) and −1
2
< s ≤ 0. Then,

lim
κ→∞

∫ 1

0

∫
|ξ|

κ+ |ξ|
|(ρq)∧(ξ)|2dξ = 0.

Proof. Let f be a primitive of a Schwarz function, i.e. f ′ Schwarz. Let κ be large

enough that the series defining m − 1 converges. By Theorem 4.4, {q(t) : 0 ≤

t ≤ 1} is equicontinuous in Hs(R). Therefore, ‖R0q‖H1+s = ‖R0〈ξ〉q‖Hs vanishes

uniformly as κ→∞. It follows that

sup
t
‖(m− 1)(κ; q(t))‖H1+s . sup

t
‖R0(κ)q+(t)‖H1+s +

∞∑
n=2

(κ−ε‖q‖Hs)n = oκ→∞(1)

A key identity is the commutator relation

fHg +Hfg = 2H(f+g+ + f−g−).
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Terms which resemble
∫
fg+h+dx or

∫
fg−h−dx are negligible and subsumed into

a running error total ,. We compute

d

dt

∫
fq(m− 1)dx =

∫
f
(
−Hq′′(m− 1) + 2qq′(m− 1)− qP (m− 1)

)
dx

=

∫
f
(
q′′H(m− 1)− qHm′′ + 2qq′(m− 1) + 2q(q(m− 1))′+

− 2qq′+(m− 1)
)
dx+ ,

=

∫
f
(

(qH(m− 1))′′ − 2q′Hm′ − 2qHm′′

+ 2q′−q(m− 1) + 2q(q(m− 1))′+dx
)

+ ,

= −
∫
f ′′qH(m− 1)dx+ 2

∫
f ′qHm′dx

+ 2

∫
f ′q−(q(m− 1))+dx+ ,.

The main term is the quadratic part of 2
∫
f ′qHm′dx. We dispose of the other

terms as follows:∫
f ′′qH(m− 1)dx . ‖f ′′‖L2‖qH(m− 1)‖L∞ .f ‖q‖Hs‖m− 1‖H1−s

vanishes uniformly in t, and∫
f ′q−(q(m− 1))+dx . ‖

√
f ′q‖L2‖

√
f ′q(m− 1)‖L2

. ‖
√
f ′q‖L2‖|∇|σ

√
f ′‖L∞‖q(m− 1)‖Hσ

.f ‖
√
f ′q‖L2‖q‖Hs‖m− 1‖H1−s

.f,‖q‖Hs ‖
√
f ′q‖L2oκ→∞(1)

vanishes uniformly in t after we integrate in time and apply κ = 1 local smoothing
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(Theorem 5.1). The higher-order terms obey∫
f ′qH(m−R0q+)′dx =

∞∑
`=2

∫
f ′qA(κ, `)dx

. ‖f ′q‖L2

∞∑
`=2

‖A(κ, `)‖L2

. ‖|∇|1/2f ′‖L∞‖q‖Hs

∞∑
`=2

κ−(`+1)/2‖q‖`2

.f ‖q‖2Hsκ−1/2

for κ sufficiently large. Finally, we consider the error term ,. Using the commu-

tator relation, we see

, =

∫
f(−Hq′′(m− 1)− q′′H(m− 1))dx+

+ 2

∫
f
(
q′−(q(m− 1))− + q+(q(m− 1))′+

)
dx

= 2

∫
f
(
−H(q′′+(m− 1)) + q′−(q(m− 1))− + q+(q(m− 1))′+

)
dx.

I will not treat each of these terms in detail, but they are acceptable because

of constructive interference between frequencies of the same sign2; the fact that

justifies this assertion is that for any α, β > 0:∫
fg+h+dx =

∫ ∞
0

f̂(−ξ)
∫ ξ

0

ĝ(ξ − η)ĥ(η)dηdξ

.
∫ ∞
0

〈ξ〉α+β|f̂(−ξ)|
∫ ξ

0

〈ξ − η〉α|ĝ(ξ − η)|〈η〉β|ĥ(η)|dηdξ

. ‖f‖Hα+β‖g‖H−α‖h‖H−β .

This together with the bilinear estimates we have used above suffices to prove:∫ 1

0

∫
f ′qR0Hq

′
+dxdt = o(1).

2Though they may not appear at first glance to be complete derivatives, same-frequency
products satisfy

∫
g+h+dx = 0, which may be a moral excuse for “shifting the derivatives onto

f” here.
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Taking the complex adjoint shows that the same identity holds with q+ replaced

by q− and hence by q: ∫ 1

0

∫
f ′qR0Hq

′dxdt = o(1).

We wish to rearrange the left hand side so that it is coercive of the local smoothing

norm. Let f be a primitive of ϕ2, where ϕ is smooth and supported on some

compact set. We observe that

ϕR0Hq
′ −R0H(ϕq)′ = κR0(ϕR0Hq

′)− κR0H(ϕR0q)
′

= −κR0(ϕ
′R0q)− 2iR0(ϕR0q

′
+)− + 2iR0(ϕR0q

′
−)+.

Thus, since C+ and C− are adjoint,∫
ϕ2qR0Hq

′dx =

∫
ϕqR0H(ϕq)′dx

+ κ

∫
2i(ϕq)−R0(ϕR0q

′
−)− 2i(ϕq)+R0(ϕR0q

′
+)− ϕqR0(ϕ

′R0q)dx.

The second integral is an error which decays as κ→∞; the first two terms because

of same-signed-frequency interactions and the smoothness of ϕ, and the third term

is trivial. We at last find, after applying Plancherel, that∫ T

0

∫
|ξ|

κ+ |ξ|
|(ρq)∧(ξ)|2dξ = oκ→∞(1).
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