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ABSTRACT OF THE THESIS 

 

Design and Analysis of Continuous High-Recovery  

RO Systems for Nitrate Removal in Disadvantaged  

Remote Communities 

by 

Abdullah B. Aleidan 

 

Master of Science in Chemical Engineering 

University of California, Los Angeles, 2019 

Professor Yoram Cohen, Chair 

 

Nitrate contamination of groundwater sources is a prominent issue in remote small 

communities that are residing in proximity of agricultural activities. Nitrate exposure through 

potable water consumption poses multiple human health risks and thus impaired community 

groundwater sources must be treated to ensure the availability of safe drinking water. In this 

regard, reverse osmosis (RO) water treatment can be integrated into existing community small 

water systems for effective nitrate removal and salinity reduction.  

RO membrane treatment offers a broad range of protection against multiple different 

contaminants, but high recovery operation is essential in order to reduce the challenge of 

managing the discharge from RO treatment. Accordingly, the present research provides a 

detailed investigation of the technical feasibility of  high recovery RO treatment utilizing steady 

state RO with partial concentrate recycle. Through extensive process simulations, and based on 
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water use patterns in three small communities in the California Salinas Valley, it was concluded 

that nitrate removal can be achieved to produce treated water at a nitrate level that is significantly 

below the regulatory maximum contamination level (MCL). The above treatment performance 

was possible via single and two pass RO treatment for the small remote communities considered 

in the present study, while enabling sufficient high recovery that would generate a residual 

stream that can be accommodated in the communities’ septic systems. The process configuration 

was optimized with respect to the number of RO elements and number of treatment passes. 

Detailed RO system design specifications were then developed, along with the design of 

treatment stages (pretreatment, RO module, and post-treatment) to meet the above-mentioned 

specifications. In addition, the correlation between nitrate passage and salt passage were 

explored for RO treatment of the source water in the study communities demonstrating that is 

may be feasible to predict the nitrate concentration in the permeate stream based on measurement 

of permeate salinity.  

RO process design specifications were derived on the basis of optimizing high recovery 

operation for permeate production capacity for each of the study sites ranging from 1,966 to 

5,600 gallons per day. System design was based on treatment of well water of nitrate level of 45 

– 389.7 mg/L as NO3
-, and salinity in the range of 564 – 1,927 mg/L as total dissolved solids 

(TDS). RO operation specifications under the production capacity were not to exceed average 

element recovery of 20%, and single-pass recovery of 15% per element. The daily concentrate 

stream discharge from the RO systems constituted about 4.9% - 12.5% of the community septic 

tank capacity for system treatment at 90% recovery operating at recycle ratios ranging from 0.67 

– 2.05. Post-treatment of the produced permeate was also considered using a limestone contactor 

to remineralize and pH stabilize the product water. 
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Chapter 1 

1. Introduction 

 

1.1 Motivation & Background 

Groundwater nitrate contamination is a prominent issue in numerous remote small 

communities, particularly communities near areas with continuous agricultural activity [1-2, 40]. 

Nitrate exposure through contaminated potable water consumption is known to have a number of 

chronic effects on human health, such as methemoglobinemia and gastric cancer [60]. Nitrate 

contamination in rural agricultural communities’ groundwater supply can be traced to multiple 

reasons, most notably poorly designed and self-improvised on-site septic systems that reside near 

the community’s water table [40], and/or agricultural overapplication of nutrients/fertilizers from 

nearby agricultural activities that lead to nutrient leakage into the water table [61]. Furthermore, 

remote communities find themselves facing a water crisis due to: the lack of nearby centralized 

potable water supply, suitable wastewater treatment, and the high cost associated with obtaining 

potable water from external sources. The challenge of water sourcing is leading rural 

disadvantaged communities to resort to pumping untreated high salinity groundwater (500 – 

3,000 ppm of Total Dissolved Solids) for domestic water use [1, 9]. This challenge is also 

leading disadvantaged communities to purchase purified bottled water for their potable water 

supply. In California, for example, more than 205 community water systems have been found 

(during 2002- 2010) to exceed the maximum nitrate contaminant level (MCL) of 45 mg/L as 

NO3
- for [9].  

The fate and transport of nitrogen in groundwater involves both nitrification of ammonia 

nitrogen under aerobic conditions and denitrification of nitrate under anaerobic conditions (Eqs. 

1-1, 1-2) [7, 8, 40]. In general, nitrate in community groundwater  results from decomposition of 
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nitrogen-bound complex organic molecules or organic matter (OM). Molecule-bound nitrogen 

(from fertilizers or wastewater) is converted to ammonia (NH3) by bacteria and fungi present in 

the soil and community septic system [7, 40]. Then, nitrite bacteria (Nitrosomonas) convert the 

ammonia to nitrite (NO2
-), which nitrate bacteria (Nitrobacter) then converts to nitrate (NO3

-) in 

aerobic environments (in the top aerated layer of the soil) [7, 8]. Denitrification occurs when 

certain denitrifying bacteria reduce nitrate to nitrogen gas (N2) under anaerobic conditions 

present both in community leach fields (in anaerobic microsites) and septic tanks. 

𝑁𝐻4
+ + 2𝑂2 

𝐴𝑒𝑟𝑜𝑏𝑖𝑐 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
→               𝑁𝑂3

− + 2𝐻 
+ + 𝐻2𝑂                                                            (1-1) 

2𝑁𝑂3
− + 𝑂𝑀

 𝐴𝑛𝑎𝑒𝑟𝑜𝑏𝑖𝑐 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
→                 𝑁2

 ↑ +𝐶𝑂2 + 𝐻2𝑂                                                         (1-2) 

Disadvantaged Communities (DACs) refers to the areas throughout California which 

most suffer from a combination of economic, health, and environmental burdens. These burdens 

include poverty, high unemployment, health conditions like asthma and heart disease, as well as 

air and water pollution, and hazardous wastes [76]. A single DAC populace varies in size from a 

dozen to several hundred occupants [15]. Oftentimes, these DACs do not have centralized water 

systems that are held up to EPA water quality standards [19], cannot sustainably manage their 

septic system output, or are not in reach of a municipal potable water and wastewater 

connections [11, 12, 76]. Conventionally, viable options for establishing a permanent safe 

drinking solution for small remote communities are: (a) search and drill for a new 

uncontaminated water source, (b) physical consolidation of water to the community from a 

neighboring community water system that has a clean (uncontaminated) and safe source of 

drinking water, or from nearby centralized treatment system connections [15, 21]. However, each 

of the above solutions offers challenges that are beyond the DACs’ financial and human resource 

capability. In addition to being costly, well drilling is not guaranteed to provide safe drinking 
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water with consistent targeted quality throughout its long-term operation. Whereas physical 

consolidation for the DACs in multiple cases may be a highly costly/infeasible option if the 

community is unable to find a nearby centralized municipal water system connection, or a 

neighboring community in its close proximity willing to share its water resource with the DAC 

[40]. 

1.2 Problem Statement 

Nitrate contamination of groundwater is particularly challenging to mitigate in small 

DACs that operate their own wells and distribution systems and are removed from centralized 

water supply and waste treatment infrastructure. This challenge forces DAC inhabitants to rely 

on untreated ground water with elevated salinity and nitrate levels as their domestic water 

source, and bottled water as their potable water source.  

Multiple treatment methods have been proposed for nitrate removal in remote 

communities (§2.1.3) including: ion-exchange (IX) [6], reverse osmosis (RO) membranes [12],  

electrodialysis (ED) [22], biological treatment [23], and chemical/electrochemical denitrification 

[24]. Such technologies (with the exception of RO membranes) have not been viable DAC 

treatments due to limitations based on process space/volume [23, 24], treatment process time 

(nitrate removal) [23], treatment extent (nitrate rejection) [14, 24, 40], capital cost [22, 23, 24], 

energy cost [14, 22], human resource requirements [21, 23, 24], and readiness for customization 

(unavailable) [40]. Ion-exchange treatment is only able to treat nitrate concentrations up to about 

twice the contamination levels (45 mg/L as NO3
-) allowed by the EPA, and requires complex 

resin regeneration [6, 19]. Biological denitrification requires intensive post-treatment [23] for 

bacteria removal and disinfection. The operational complexity, maintenance, and energy costs 
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associated with ED and chemical denitrification are beyond the capabilities of most DACs [22, 

23].  

Reverse osmosis (RO) membrane treatment offers multiple treatment advantages 

including: a broader range of protection against multiple different contaminants, excellent nitrate 

rejection (~96%) [12], low discharge volume output, the ability to treat high nitrate 

concentrations, and the capacity for customization to small-scale operations [40]. High recovery 

RO membrane water treatment feasibility was determined after considering community 

requirements and limitations discussed in detail within this study. 

RO system design for nitrate removal is achievable via single or two-pass treatment in the 

DACs. However, product water recovery in RO treatment may be limited depending on factors 

such as raw feed salinity and associated limitations of system physical components (with respect 

to maximum allowable operating pressure and flow rates, for example). Not adhering to these 

factors may cause membrane fouling/scaling and/or elevated water production costs [49, 59]. A 

remotely-controlled and community-centralized water treatment system is needed to treat the 

elevated nitrate groundwater levels, reduce groundwater salinity, and provide clean potable water 

to remote disadvantaged communities. The treatment system of concern would have to 

accommodate community product demand requirements, water quality standards, water storage 

requirements, and waste disposal limitations.  

1.3 Thesis Goal & Objectives 

The goal of this research is to arrive at a process design for a high recovery reverse osmosis 

(RO) water treatment system for nitrate removal and salinity reduction in remote disadvantaged 

communities (DACs). The study focuses on the design and feasibility assessment of RO systems 

to achieve the above goal. Accordingly, the objectives of the study were as follows: 
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1- Develop specifications for RO water treatment systems for selected DACs. 

2- Determine an overall RO water treatment strategy for meeting process design 

specifications that address product demand requirements, water quality standards, 

product water storage requirements, and waste disposal limitations. 

3- Assess DAC RO treatment system performance via RO System Design Simulations.  

4- Optimize process configurations for the RO systems with respect to number of RO 

elements, concentrate recycle ratio, and number of treatment passes.  

5- Evaluate the relationship between RO concentrate recycling and overall RO recovery, as 

well as the associated impact on nitrate and salt passage. 

6- Evaluate the correlation between nitrate concentration and total dissolved solids 

concentration in RO permeate. 

1.4 Approach 

The thesis work follows the flowchart presented in Fig. 1-1. Information acquired based on 

detailed community site characterization conducted by the UCLA Water Technology Research 

Center (UCLA WaTeR Center) was utilized as input to the design of an RO system for nitrate 

removal and salinity reduction. Initially, the UCLA WaTeR center conducted a survey on three 

north California (Salinas Valley region) study sites: Bluerock View Apartments, Santa Teresa 

Village, and Pryor Farms to quantify community water consumption patterns. In addition, source 

water quality was determined based on graph sampling in each site (Table 4-1A, Appendix A). 

Furthermore, a detailed description of the existing infrastructure was developed by the UCLA 

WaTeR Center to allow proper integration of the RO system design into the community 

(Appendix F).   
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The DAC RO water treatment approach consists of four parts: (1) integration of an 

overall RO treatment system with the existing community water system, (2) RO treatment 

system process design, design of treatment stages and process specifications, (3) RO module 

operation analysis, optimization of process specifications through RO and System Design 

Simulations, and (4) the development of a monitoring method for detecting permeate nitrate 

concentration.  

 The integration of the RO treatment into the DACs’ water systems requires information 

regarding study-site materials/characteristics such as: community water demand (§3.1.1), 

community septic tank capacity for handling treatment residuals (§3.1.2), and suitability of 

existing water systems for integration with RO treatment (§3.1.3). A process flow diagram of the 

suggested treatment system is then presented (§3.2), and its intended treatment strategy is 

discussed for each of the DACs mentioned in this study.  

 The design of the RO treatment process strategy includes defining RO process 

specifications (§4.1) and RO process system design (§4.2). RO design specifications are 

established through demonstration of feed water quality at each study DAC (§4.1.1), required 

permeate water flowrates based on product water demand (§4.1.2), and the capacity of each of 

the study DACs’ septic systems for handling RO concentrate stream at various operational 

conditions (§4.1.3). RO process design includes multiple system stages starting with a feed 

pretreatment stage, RO treatment unit stage, and a permeate post-treatment stage. The design of 

the RO pretreatment stage (§4.2.1) includes particulate removal through a prefilter system (300 – 

5 µm diameter), and membrane scale reduction through “fresh water flush” (or FWF) and an 

antiscalant (AS) revisor for optional AS dosing. The pretreatment stage is followed by the RO 

module stage design description (§4.2.2). The section mentioned above illustrates the process 
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flow diagram (PFD) of which the RO module would operate in partial concentrate recycle. A 

permeate post-treatment stage description is followed (§4.2.3). The post-treatment stage includes 

pH stabilization and mineral balancing through a remineralization bed. The post-treatment stage 

also offers optional permeate disinfection through disinfectant (chlorine) dosing if any microbial 

contamination is detected. The post-treatment stage also includes the addition of a residual 

storage tank that will collect RO process discharge (concentrate and FWF discharge) for 

community beneficial use (i.e. irrigation).  

RO module process design (§4.3) presents an analysis of RO module operation in 

meeting the goal of the study. RO module operation analysis begins with the evaluation of high 

recovery operation through partial concentrate recycle given the process specifications of the 

design (§4.3.1). The analysis of the above starts with investigating the volume of residual stream 

generated at different levels of product water recovery at each study site. The analysis then 

continues to investigate the flexibility of overall operational recovery (Y) as a function of the 

recycle ratio (R) for choice single-pass recovery (YSP) values applicable to the single-module 

partial concentrate recycle model. A methodology of RO element size selection is then followed 

(§4.3.2). The element size selection process is governed by a specified range of production 

flowrates for each site while not exceeding maximum recovery limit of 20% per element. Next, 

the number of elements in series is optimized (§4.3.3) through the use of RO System Design 

Software. The number of elements was established by optimizing average element recovery (Yi, 

not to exceed 20% per element) as a function of the single-pass recovery (YSP, not to exceed 

15% per element) throughout the specified range of permeate production. A second-pass 

integration was analyzed (§4.3.4) in the case which elevated feed nitrate concentrations were 

detected. A 2nd pass is proposed to when permeate nitrate concentrations were found to exceed  
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“Safe Point” limit of 25 mg/L as NO3
- during the single-pass routine operation. Lastly, an 

assessment of use of permeate conductivity as a surrogate for nitrate concentration (§4.3.5) was 

conducted. The method utilizes RO permeate conductivity as a surrogate for permeate nitrate 

concentration measurements through developing a correlation between salt passage and nitrate 

passage in the permeate.  

Finally, a general project flowchart is presented in Fig. 1-1, showing the overall path of 

research.  

DACs General 
Background Overview & 
RO Technology Review

RO Treatment System 
Integration Into Study 
DACs  Water Systems

RO Module Operation 
Analysis

RO Treatment System 
Process Design

RO Specifications

Treatment Stage Design 
(Pretreatment, RO 

Module, Post-
Treatment)

Partial Concentrate 
Recycle to Achieve High 

Recovery

Production Capacity & 
Element Selection 

 RO Module 
Configuration

Evaluation of Second-
Pass Operation 

Permeate Monitoring 
Assessment (Nitrate-

Salt Passage 
Correlation)

 

Figure 1-1: Overall research flowchart; Continuous High-Recovery RO Systems for Nitrate Removal in DACs.   
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Chapter 2 

2. Background and Literature Review 

 

2.1 Disadvantaged Communities Background 

Groundwater nitrate contamination is severe in many remote small communities, 

particularly adjacent to agricultural areas. These communities often lack centralized potable 

water supply and wastewater treatment and are dependent on groundwater for their drinking 

water supply. Nitrate contamination of community potable groundwater sources has been 

reported in various areas throughout the U.S. [1, 2]. In California, for example, more than 205 

community water systems have been found (during 2002- 2010) to exceed the maximum nitrate 

contaminant level (MCL) of 10 mg/L as N [9]. It has been reported that about 254,000 people in 

California’s Tulare Lake Basin and Salinas Valley are at risk due to nitrate contamination of 

their drinking water [10]. Disadvantaged community (DAC) groundwater nitrate contamination 

overview, water source options, and available nitrate removal technologies and treatment options 

are discussed in (section) §2.1.1, §2.1.2 & §2.1.3. 

2.1.1 Overview of Groundwater Nitrate Contamination in Remote Communities 

 Nitrate contamination of groundwater is particularly challenging to mitigate in small 

disadvantaged communities (DACs) who operate their own wells and distribution systems and 

are removed from centralized water supply and waste treatment infrastructure. Many of the 

affected DACs are in rural agricultural areas with low financial and human resources to mitigate 

their impaired water sources [11, 12]. In addition, rural communities that rely on local 

groundwater for their domestic supply of potable water utilize septic systems for handling their 

domestic wastewater (Fig. 2-1). Such communities vary in size from a dozen to several hundred 
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residents. In California, for example, water systems with fewer than 15 connections are known as 

State Small Water systems while those with a greater number of connections are classified as 

Community Water Systems [13]. Because permanent solutions require significant time to plan, 

permit and construct, California has provided funds for interim measure to DACs in California. 

These measures include various emergency subsidies for temporary replacement drinking water 

(e.g., bottled and trucked drinking water) [10, 14, 15]. 

 

Figure 2-1: Water system in small remote communities that are without centralized water treatment or 

water distribution system, and are not connected to municipal wastewater system. DACs often rely on 

local groundwater for their domestic supply of potable water. 

The choices for a permanent safe drinking solutions for small remote communities are to 

either: (a) search for a new clean (i.e., uncontaminated) water source (e.g., drilling a new well), 

or (b) physical consolidation and annexation of the community water system with a neighboring 

community water system that has a suitable source of drinking water or onsite treatment (in 

compliance with  Human Right to Water law, AB 685, Chapter 524) [9, 16]. 

Treatment of small communities impaired well water can be either at the point-of-use 

(POU; e.g., treatment at the immediate use location such as under the sink) or point of entry 

(POE) to residential units or treatment at the wellhead or other location(s) along the distribution 

system prior to delivery to the community residential units [19]. While there are multiple nitrate 

removal technologies available commercially, DAC water treatment requires technologies that 
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have low residual output and energy consumption footprint, are capable of producing self-

sufficient daily provision of potable water for small communities (~10-40 inhabitants), and 

require minimal human resources to manage and operate.  

2.1.2 Water Sourcing Options 

 The necessity of design, construction and deployment of centralized DAC water 

treatment systems arises from the lack of economically feasible local safe drinking water 

sources. The communities selected in the present study are unable to obtain water from 

neighboring communities because (i) DACs are too far from communities that have adequate 

safe source water supply, and (ii) significant capital is required for physical consolidation and 

water pricing is not under the community control [62].  

 Pipe extensions from nearby public water connections are not economically feasible for 

the targeted remote communities. As per a report released by the Sacramento Water District with 

respect to the development region of interest (Northern California), water pipeline installation 

capital costs are estimated to “range from $1.1 million to $4.0 million per mile” depending on 

desired pipe diameter [20]. Furthermore, other costs, including pumps that would convey water 

through the underpass, water meters to monitor and record water flow, and additional new pipes 

for infrastructure upgrades would additionally increase the overall cost. Moreover, the affected 

communities would have to abandon the use of their existing water wells, well pumps, and water 

tanks and begin to collaboratively pay water rates instead, which will likely be dictated by the 

state. Table 2-1A indicates monthly water rate estimates from the Cal Water website [21] for the 

Monterey Region (includes the Salinas Valley) based on recent community water consumption 

data (§3.1.1). It is important to note that water rates include a base water consumption cost plus a 

monthly water meter service charge. To determine the minimum possible monthly service 
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charge, as dictated by the California Water Service Company for the Monterey Region, the 

minimum size water meter (which corresponds to one 5/8 x 3/4 inch meter per household) was 

used. Table 2-1A illustrates the minimum monthly water service rate for the communities of 

concern [5, 21, 62], assuming one water meter is installed per household. 

Table 2-1A: Calculated1 water consumption monthly service rates for the three communities of 

interest located in the Monterey Region of Northern California2. 

Community 
A  

(Bluerock View 
Apartments) 

B  
(Santa Teresa 
Farms Park) 

C 
(Pryor Farms) 

Average monthly consumption 
(gallons per month)(a) 26,820 41,880 76,380 

Average water consumption 
service cost per site ($ per 
month)1 

$344.36 $401.87 $539.12 

Number of households(b)  
(service meters) (c)  

11 10 8 

Number of residents(b) 16 34 36 

(a) Data accumulated from water meters installed by the UCLA WaTeR Center at each study DAC.  

(b) By a previous report conducted by UCLA WaTeR Center; “Assessment of RO Treatment of Source Water for 

Nitrate Removal and Management of Residuals” [70]. 

(c) Thesis assumes one water meter is installed per household. 

 

2.1.2 Nitrate Removal Technology & Treatment Options 

 Due to the financial burdens associated with DACs consolidation with neighboring 

communities and outsourcing from a county water treatment system, it was deemed necessary to 

assess a local community centralized water treatment system. A single treatment system at the 

community wellhead (upstream of the distribution system) could be an effective solution (as 

discussed in the present work) as it can be established in one location with effective monitoring, 

operation and maintenance.  

                                                 
1 Water service rate = (average monthly consumption x base service rate + monthly meter service charge x # of 

households) 
2 Base service rate values were extracted from the schedule No. MOR-1-R for the year of 2017 over the Monterey 

Region Tariff Area. Information is extracted from Cal Water Website [21]. 
https://www.calwater.com/docs/rates/rates_tariffs/mor/20190101-Residential_Metered_Service_MOR.pdf 

https://www.calwater.com/docs/rates/rates_tariffs/mor/20190101-Residential_Metered_Service_MOR.pdf
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 Multiple methods are available for nitrate removal [8] from contaminated water sources 

such as ion-exchange (IX) [74], reverse osmosis (RO) membranes [12], electrodialysis [22], 

biological treatment [23], as well as chemical/electrochemical denitrification [24]. A summary of 

the advantages and disadvantages of each method is presented in Table 2-1B.  

 Biological [23, 27, 28] and chemical denitrification [29-31] technologies are traditionally 

effective for large-scale operations that are also known to generate low volumes of residuals. 

However, both technologies mentioned above require suitable post filtration/treatment for the 

removal of suspended and dissolved residuals/trace contaminants not removed via biological or 

chemical treatment. Furthermore, biofilm growth in biological treatment must be managed to 

ensure sustainable treatment during fluctuations in water demand. In addition to biological 

treatment limitations, chemical treatment requires precise process control that includes pH 

adjustment [26] and in some cases ammonium removal [30]. There is limited commercial 

experience with chemical and biological treatment; such technologies require frequent operator 

intervention (Table 2-1B), and are costly [21,22]. Such technologies are not feasible for small-

scale deployment and treatment in remote communities.  

 RO along with IX have been suggested by the EPA [71] and California State Code of 

Regulation §64447.2 [72] as best available technologies (BAT) for treatment of small 

communities’ water sources that are contaminated with nitrate. IX is most viable for nitrate 

removal in small water systems given its simplicity, effectiveness, selectivity, and high recovery 

[74, 35, 36]. However, IX is limited to treatment of water with up to twice the nitrate levels as 

the MCL of 45 mg/L as NO3
- [14], and requires prior softening treatment if the source water to 

be treated is of high hardness. Furthermore, it is important to note that IX bead/pellet 

regeneration requires a large amount of regeneration salts [36]. In addition to the complications 
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associated with resin regeneration (ie. residual management, resin disposal, residual DBP 

formation), exhaustion of the IX exchange bed may result in nitrate leakage, thus requiring 

adequate real-time monitoring of the product water stream to ensure safe product water.  

 Unlike IX and biological/chemical nitrate removal options, RO membrane water 

treatment is able to provide a broad range of protection against numerous different contaminants. 

Nitrate rejection by RO membranes of choice has been reported to be as high as ~96% [12, 37, 

38] which presents a suitable option for treating high levels of nitrate in most affected 

community groundwater sources. 

 RO system design for nitrate removal can be achieved via single or multiple stages or 

two-pass treatment [12]. RO product recovery is limited to various degrees depending on the raw 

feed salinity and scaling potential, in addition to limitations associated with physical system 

operating ranges (e.g. flow rate and pressure). Furthermore, a solution must be sought for the 

management of resulting residuals in the concentrate stream that is characterized with extreme 

levels of nitrate. Traditional waste disposal such as municipal sewer diversion, surface water 

discharge, off-site hauling via trucking or through pipe transportation, deep well injection, and 

evaporation ponds are infeasible for small communities given the high cost of disposal, footprint, 

and environmental impacts associated with said actions of disposal. In certain situations, RO 

residual stream may be blended with a nitrate-dilute water source for secondary (beneficial) use 

within the community (e.g. irrigation).   
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Table 2-1B: Comparison of Selected Nitrate Treatment Technologies [14]. 

 Ion Exchange/ 

Adsorption 

Low Pressure RO/ 

Nanofiltration 

Electrodialysis 

(ED/EDR) 

Biological 

Denitrification 

Chemical 

Denitrification 

Limitations Removal to waste stream Removal to waste stream 
Removal to waste 

stream 
Biological reduction Chemical Reduction 

Pretreatment Pre-filter, address scaling 
Pre-filter                                                                                  

4, mitigate mineral scaling 

Pre-filter, address 

hardness 

pH adjustment, 

nutrient/ substrate 

addition; anoxic 

conditions 

pH adjustment 

Post Treatment pH adjustment 
pH adjustment, 

remineralization 

pH adjustment, 

remineralization 

Filtration, 

disinfection, excess 

substrate removal 

pH adjustment, 

iron/ammonia control 

Residuals High Salinity Brine Concentrate Concentrate Sludge/Biosolids Media/Sludge 

Start/Stop Fast/Fast Fast/Fast Fast/Fast Slow initially Fast/Fast 

Water Recovery 97%-99.9% 75-95% Up to 95% Nearly 100% 
Limited field 

experience 

Barrier 

protection 
No Yes No No No 

Advantages 

Selective (e.g. nitrate, 

arsenic); co-removal of 

some contaminants; high 

recovery (~100%); low 

residual volume; low 

complexity 

Multiple contaminants 

removal; salinity 

reduction; recovery well 

above 90% in some cases; 

low to moderate 

complexity 

Multiple 

contaminants 

removal; salinity 

reduction; less 

prone to silica 

scaling; high 

recovery 

Low residuals 

volume; co-removal 

of some 

contaminants 

Low residuals volume, 

co-removal of some 

contaminants 

Disadvantages 

High chemical use (salt); 

fouling; high salinity brine 

waste; potential nitrate 

peaking; potential DBP 

formation from resin 

residuals; resin disposal; 

complex resin 

regeneration 

Moderate energy demand; 

fouling; concentrate waste 

disposal. 

Moderate energy 

demand; fouling; 

concentrate 

disposal; high 

operational 

complexity and 

maintenance 

Substrate/ nutrient 

addition; complex, 

sensitivity to env. 

conditions; potential 

nitrite formation; 

significant post-

treatment  

Inconsistent nitrate 

removal; potential 

nitrite and ammonia 

formation; pH and 

temp. dependence; 

possible need for iron 

removal 
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2.2 Reverse Osmosis 

 Reverse Osmosis (RO) membrane separation is reported to be amongst the most efficient 

separation methods available [4, 51]. In water treatment, RO membrane technology is utilized to 

separate solutes, such as dissolved solids, inorganics, and a wide range of organics (high 

rejection of organics with molecular weights higher than 100 g/mol [51]). The separation process 

is conducted through passing feed so to provide water to permeate through the membrane, while 

rejecting the solute. The rejected brine (or concentrate) exits the process as discharge. RO 

principles and guidelines, concentration polarization, high recovery desalination, recovery 

limitations, and membrane elements are discussed in §2.2.1, §2.2.2, §2.2.3, §2.2.4, and §2.2.5 

respectively.  

2.2.1 Reverse Osmosis Principles & Guidelines 

 Reverse osmosis (RO) is a separation process in which pressure is applied to a feed 

solution in a channel having a semipermeable membrane that allows the permeation of the 

solvent to produce a permeate stream, and a reject stream (i.e. retentate or concentrate) [3]. For 

example, RO in water desalting utilizes membranes that are permeable to water but impermeable 

to salt [4]. In the RO process, the applied pressure, P, must be greater than the solution’s osmotic 

pressure, π (non-zero permeate flux). Osmotic pressure, π (psi), for dilute solutions can be 

characterized by the van’t Hoff equation in which, i, is the can’t Hoff factor, Csol (
𝑚𝑜𝑙

𝐿
), is the 

solute concentration, R (1.206 
𝐿∙𝑝𝑠𝑖

𝑚𝑜𝑙∙𝐾
), is the ideal gas constant, and T(K), being the temperature. 

Osmotic pressure can be defined as: 

π = iCsolRT           (2-1) 
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Membrane water permeability, Lp (
𝐿

𝑚2∙ℎ∙𝑝𝑠𝑖
), is a measure of the RO membrane’s ability in 

allowing the passage of water through the membrane and into the permeate stream. Membrane 

permeability is a variable that defines the flux through the membrane, Jw (
𝐿

𝑚2∙ℎ
), where the flux is 

a function of the permeability times the net driving pressure defined as:  

 Jw = Lp(∆P-σ∙∆π)         (2-2) 

 

with ∆P (psi) being the feed side and permeate side pressure deficit, σ being the salt reflection 

coefficient which is assumed to be unity (~1) for RO membranes, and the feed side and permeate 

side osmotic pressure difference ∆π (psi). 

 The intrinsic salt rejection, Rs, is a measure of the membrane’s ability to avert salt from 

passing through the membrane into the permeate stream. The intrinsic salt rejection by an RO 

membrane can be defined as: 

 Rs = 1 −
𝐶𝑝

𝐶𝑚
          (2-3) 

with Cp being the solute concentration in the permeate stream, and Cm being the solute 

concentration in the feed stream. The observed salt rejection is, R0, is defined as:  

 R0 = 1 −
𝐶𝑝

𝐶𝑏
          (2-4) 

In which Cb is the bulk salt concentration of the membrane feed side.  

The overall RO recovery, Y, is a measure of the volumetric flow of permeate, Qp 

(Gallons per day, GPD), recovered relative to the feed flow, Qf0 (GPD), defined by: 

Y = 
𝑄𝑝

𝑄𝑓0
 = 1 − 

𝑄𝐶

𝑄𝑓0
         (2-5) 

Where QC is the retentate or concentrate flow rates.  
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 RO separation processes traditionally operate in a cross-flow scheme where the saline 

feed water enters the membrane feed channel at high pressure and flows tangentially along the 

membrane surface and then exits the membrane channel as retentate of high solute concentration, 

while the high operating pressure of the operation induces water permeation through the 

membrane. Fig. 2-2A.  

 

 

Figure 2-2A: General schematic of cross-flow RO membrane process. 

When treating large volumes of feed water, spiral-wound membrane modules are often used 

because of their large ratio of membrane surface area to membrane volume. Spiral-wound 

modules consist of many alternating layers of RO membrane sheets, and mesh spacer sheets 

wrapped around a central channel, all of which are encased within a rigid plastic shell. The 

spacer sheets (spacers) provide the channels through which feed and permeate water can flow. 

Most large-scale RO desalination plants use a multistage arrangement of spiral-wound modules 

connected in series with each stage containing modules in parallel as needed based on the 

expected flows. As permeate separation from the feed is achieved, the retentate volume 

decreases; often requiring fewer modules in parallel in the second stage (and the following stages 

Impermeable Wall

Porous Support

RO Membrane Surface

Feed Retentate

Permeate
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if applicable) in order to maintain the required crossflow velocity [51]. Typical two-stage RO 

desalination illustration is presented in Figure 2-2B.  

1st Stage RO

(Multiple Modules)

2nd Stage RO

(Single Module)
Pump

Product Water

Retentate

Inlet Port
(RO Feed From 

Pretreatment)

 

Figure 2-2B: Typical two-stage (2:1) RO desalination illustration. Pretreatment: the process in which large 

particulates and debris that could damage or foul the RO membranes are removed from the RO feed.  

2.2.2 Concentration Polarization  

 Concentration Polarization is commonly known as the phenomena in which salt ions 

accumulate near and at the membrane surface due to the separation of solute from solvent, which 

in turn increases the solute concentration at the membrane surface and vicinity. The 

concentration polarization (CP) modulus is defined as the concentration increase at the 

membrane surface relative to the bulk and is often approximated by the film model [51]:  

  C.P.  = 
𝐶𝑚

𝐶𝑏
= 1 − 𝑅𝑜 + 𝑅𝑜𝑒𝑥𝑝(

𝐽𝑤

𝑘
)      (2-6) 

where Cm and Cb are the solute concentrations at the membrane surface and the concentration in 

the bulk, respectively, Ro is the observed salt rejection, Jw is the permeate flux, and k is the solute 

feed-side mass transfer coefficient.  

The extent of concentration polarization gradually increases as the feed progresses along 

the membrane channel towards the exist region which in turn leads to a gradual increase in 

concentration and osmotic pressure at the membrane surface along the channel. As a result, the 



- 20 - 

 

effective net driving pressure (i.e. Jw = Lp(∆P-σ∙∆π)) for permeation decreases and thus the 

permeate flux also decreases towards the exit region as illustrated in Fig. 2-3: 

 

Figure 2-3: Illustration of cross-flow in RO channel depicting the formation of a concentration boundary layer that 

increases with increasing x. 

 

2.2.3 High Recovery Desalination  

Conventionally, elevated permeate recovery (50% and higher) in brackish water can be 

achieved through numerous system configurations, but most notably through utilizing systems 

that have multiple stages in the series configuration (Fig. 2-2); or through one-module systems 

with multi-element operation in series (Fig. 2-4) and/or in the mode of partial concentrate 

recycling.  

In RO operation where high production capacity is targeted, high recovery desalination is 

achieved through the multi-stage model. In a multi-stage process the number of stages defines 

how many pressure vessels in series the feed will pass through until it exits the system and is 

discharged as concentrate. Each stage consists of multiple pressure vessel-containing modules in 

parallel, where a single pressure vessel may contain up to 6-element in series (in the case of 

brackish water) [51]. RO plants employ a number of parallel modules per stage to increase the 
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production capacity, whereas the number of stages in series dictates the extent of recovery 

desired by the plant. Table 2-2A illustrates the range of achievable overall system recovery (Y) 

and the number of stages, pressure vessels, and elements needed to achieve said recovery range.  

 

 

Table 2-2A: RO system recovery range for brackish water RO desalination as a function of 

number of stages containing single pressure vessels, and of number of elements (20% recovery 

per element limit) in series contained in said pressure vessels. (Adapted from [51]) 

System recovery (%) Number of stages (6-element 

vessels) 

Number of elements in 

series 

40 - 60 1 6 

70 - 80 2 12 

85 - 90 3 18 

 

In regard to RO systems that are designed for low-capacity production (domestic 

systems, ~1,000-10,000 GPD [51]), it is recommended [51] to use a system that employs the use 

of a concentrate recycle stream into the RO feed stream in order to increase the overall 

operational recovery. Operating low capacity RO processes at high recovery can be achieved in 

single module systems (Fig. 2-4).  
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Figure 2-4: Typical single module (multi-element) high-recovery RO desalination with recycle illustration. 



- 22 - 

 

High recovery in single-module systems can be achieved through employing a recycle stream 

operating at a design recycle ratio (Eq. 2-7). The module consists of a pressure vessel with up to 

eight membrane elements connected in series [51]. The module’s permeate (exit) port collects 

the permeate from all the elements’ product tubes continuously through RO operation. The RO 

concentrate leaves the RO concentrate outlet port at a pressure less than that of the feed inlet, 

controlled by the concentrate pressure regulator valve. The concentrate flowrate (QC in Fig. 2-5) 

flowing out the module and into the residual waste stream which is regulated by the concentrate 

flow control valve. The system recovery (Y) is dictated by the concentrate flow control valve and 

must not exceed the design set value. In single-module multi-element systems, concentrate 

recycle is required to achieve recommended single-pass recovery (YSP) [51]. To achieve high 

system recovery (50% and higher), part of the concentrate stream resulting from RO separation 

is recycled and added to the suction side of the high-pressure RO pump at the indicated mixing 

point (MP) on Fig. 2-4 which increases the feed flow to the module.  

It is important to note that in RO operation with partial concentrate recycle into the feed 

stream increases the feed bulk solute concentration as well as the solute concentration at the 

membrane-surface. Conventional scale control strategies (feed filtration, use of antiscalant, pH 

adjustment, and operating below the critical scaling threshold) can partly alleviate RO limitations 

places by membrane mineral scaling; allowing RO desalination of brackish water up to a 

moderate recovery range of 60-85% [49, 50]. 

The previously mentioned recycle ratio (Eq. 2-7), and the single-pass product recovery 

[75] through the membrane array (Eq. 2-8) can be defined as: 

Recycle Ratio, RRatio =
𝑄𝑅

𝑄0
        (2-7) 

Single-Pass Recovery, YSP =
𝑄𝑃

𝑄𝐹
     (2-8) 
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where QR, Q0, and QF are the recycle stream, the raw feed stream, and the feed to the membrane 

stream flowrates (GPD) respectively. Furthermore, upon conducting a material balance about the 

mixing point (MP on Fig. 2-4); the concentrate recycle stream flowrate (QR), with respect to the 

overall and the single pass water recoveries (Y and YSP), can be written as: 

  QR =
𝑄𝑃

𝑌𝑆𝑃
−
𝑄𝑃

𝑌
        (2-9) 

 

The above equation can be rearranged to yield the overall recovery, Y, which produces: 

  Y = YSP (1 + RRatio)       (2-10) 

  

2.2.4 Recovery Limitations 

Total recovery is limited fundamentally due to: i) decrease the effective net driving 

pressure for permeation with rising recovery and ii) mineral salt scaling [59]. As the retentate 

increases in concentration with high recovery, so does the effect of concentration polarization, 

and so does the reduction of the effective pressure driving force available for producing the 

required flux of water through the membrane. Recovery is ultimately limited by the available 

pumping power and/or maximum operating pressure of the vessels used in a specific process. 

Therefore, the theoretical highest achievable recovery corresponds to that at the moment when 

the osmotic pressure resulting from the retentate concentration accumulation approaches the 

pressure vessels’ highest operating pressure. The above is theorized with the assumption that 

negative process effects such as scaling, fouling, swelling, or scratching of the elements used in 

the process are mitigated properly. When the osmotic pressure surpasses the allowable 

operational pressure set by the RO elements & pressure vessels of use; the flux of water through 

the membrane will decrease. This inefficiency in operation reduces permeate flows, and can lead 
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to membrane scaling and fouling if prolonged. Conventionally, operating the system at high 

pressures (near the pressure vessel’s maximum allowable pressure) has proven to have high 

utility and maintenance costs [51].  

Whereas in regard to mineral salt scaling, it can be defined as the process of which 

sparingly soluble salts crystallize on RO membranes effectively causing the decrease of permeate 

flow through the membrane. Crystallization can occur in both the bulk solution (homogenous) 

and/or on the membrane surface (heterogeneous). Crystallization occurs when the saturation of a 

sparingly soluble salt is exceeded. A measurement of the degree to which the saturation is exceed 

for a given salt is known as the saturation index (SI) to which its defined as: 

Saturation Index, SI =
𝐼𝐴𝑃

𝐾𝑠𝑝
       (2-11) 

in which IAP is the ion activity product, and Ksp is the solubility product of said salt. Once 

scaling is found to occur periodically in an RO process (e.g. high CP modulus number), the use 

of antiscalants is then advised. Some mineral salts (such as calcite) are generally soluble upon 

decreasing the pH of the feed through acid dosing (HCl, H2SO4) [49], whereas others (example: 

gypsum and brite) are pH insensitive and their scaling cannot easily be managed by pH 

adjustment and would require the use of antiscalant if the saturation index is exceeded in routine 

operation [59].  

 Additional factors that may lead to recovery limitations is biofouling. Biofouling occurs 

when microorganisms (such as bacteria or algae) attach to and grow on the membrane surface, 

which leads to reduced membrane surface area resulting in an overall decrease in water 

permeation.  

2.2.5 RO Membranes 
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 RO membranes are thin film composites of an aromatic polyamide active layer (~200 nm 

thick) supported by a porous polysulfone layer (~60 μm) which in itself is supported by a non-

woven fabric layer underneath (~150 μm) as shown in Fig. 2-5 [59]. The aromatic polyamide 

thin film is where the separation occurs, whereas the two other layers are present to provide 

structural support without impeding solvent permeation through the membrane.  

 

Figure 2-5: Cross section of a typical RO membrane showing layered structure. 

 The aromatic polyamide thin film is a nonporous, dense film of which permeants are 

transported through by diffusion under the driving force of a pressure gradient created by the 

feed pump. The separation of various components of a solvent-solute mixture is directly related 

to their relative transport rate within the membrane, a rate that is determined by the component’s 

diffusivity and solubility in the membrane [49, 59].  

  

Porous polysulfone support  

Aromatic polyamide thin film  

Non-woven fabric  
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Chapter 3 

3. Community RO System Integration 

3.1 Case Study: Remote Communities in Salinas Valley  

Three remote disadvantaged communities (DACs) in the Salinas Valley, located in 

northern California, have been chosen to be study sites for the Distributed Drinking Water 

Treatment Systems Project by the UCLA Water Technology Research (WaTeR) Center. These 

communities are given the names Bluerock Apartments, Santa Teresa Park, and Pryor Farms. 

The locations of these DACs are shown in Fig. E-1. It is proposed to install high recovery RO 

groundwater treatment systems for nitrate removal and thus a detailed evaluation was undertaken 

to determine the specifications and feasibility of deploying such treatment system in the above 

communities. The source water of the communities was found to have nitrate ion concentration 

in excess of the MCL of 45 mg/L as NO3
- (Appendix A).   

In order to design feasible water treatment systems that meet the DACs’ needs, the 

DACs’ water consumption data was assessed and detailed information was compiled regarding 

the DACs’ existing septic tank volumes, and water systems [40]. Detailed information provided 

in the following subsections (§3.1.1, §3.1.2 & §3.1.3) expand thoroughly on important 

community characteristics such as community water demand, community septic tank limitations, 

and existing water systems to be integrated into the design.  

3.1.1 Community Water Demand 

 In order to determine water use patterns in the study communities, smart (wireless) water 

meters were installed in each of the communities. The water use data was transmitted to a remote 

server and analyzed over a two-year period. Table 3-1A illustrates a summary of water 

consumption data collected from water meters installed by the UCLA WaTeR Center at the study 
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communities. Water consumption peaks significantly above average water consumption were 

encountered. It was found that maximum water demand fluctuations happened primarily during 

the months of July and August (~40-130% increase in consumption).  

Table 3-1A: Summary of daily water consumption data in the study communities [40]. 

 

3.1.2 Septic Tank Limitations 

 Remote disadvantaged communities (DACs) that are not connected to a centralized 

municipal sewer system utilize septic systems for wastewater removal and storage. Community 

septic systems direct community wastewater to a septic tank located underground [40], as 

illustrated by Fig. 2-1. A septic tank is generally recommended to be of a volume such that a 

hydraulic retention (Eq. 3-1) of 1-3 days is recommended to insure sufficient anerobic digestion, 

and sedimentation of Organic Matter (OM), or sludge, into the bottom of the tank [40, 42]. In 

addition, the septic tank has to be sized to accommodate the incoming community wastewater. 

 τ = Vtank/Qwaste          (3-1)  

The community septic tank volumes were reported to be 4,500, 5,000, and 5,000 gallons for 

Bluerock, Santa Teresa, and Pryor Farms respectively. 

3.1.3 Existing Water Systems & Topography 

Community Population
Number of 

Households

Average Water 

Consumption 

(Gal/Day)

Average Water 

Consumption Per 

Person 

(Gal/Person/Day)

Average Water 

Consumption Per 

Household 

(Gal/household/day)

Maximum Water 

Consumption 

(Gal/Day)

Bluerock View 

Apartments
16 11 894 55.88 81.27 1,996

Santa Teresa 

Farms
34 10 1,396 41.06 139.60 2,826

Pryor Farms 36 8 2,546 70.72 318.25 3,594
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 The three Northern California (Salinas Valley region) pilot DACs have been self-reliant 

in extracting their non-potable water capacity from their local wells. The existing water systems 

in Bluerock, Santa Teresa, and Pryor Farms serve 16, 34, and 36 inhabitants respectively. 

Submerged well pumps in all site wells serve to extract water that is then fed the communities’ 

service tanks (feed and/or pressure tanks, site-dependent). Each site contains a water distribution 

system for water delivery to the community. Schematic illustrations of existing on-site water 

systems layouts for the three DACs are provided in Appendix E, Figures E-1A to E-1C.  

Table 3-1B: Current water system components in operation at all DAC study sites.  

Community Blue Rock View Apartments Santa Teresa Park Farms Pryor Farms 

Number of inhabitants 
(households) 

16 (11) 34 (10) 36 (8) 

Well Pump Location Submerged Submerged (off-site) Submerged 

Pressure Tank Volume 
(Gal) 

4,000  4,000 4,000 

Septic Tank Volume 
(Gal) 

4,500 5,000 5,000 

Additional on-site 
equipment 

Ion-exchange system 
Pressure tank 

Pressure tank  
centrifugal pump 
Atmospheric pressure-
feed tank (5,000 Gal) 

Pressure tank  

  

3.2 Overall RO Treatment System Integration (Process Flow Diagram) 

The water treatment system design of the three Salinas Valley study DACs (Bluerock 

View Apartments, Santa Teresa Farms Park, and Pryor Farms) has multiple design objectives to 

achieve (§1.3). The treatment system is to operate at a high recovery and of a small residual 

footprint, and integrate with the existing water systems, and to continuously monitor water 

quality. A wellhead water treatment is to be conducted whereby the treatment system is to 

include the following stages: pretreatment, RO membrane module, residual management, and 

post-treatment. An overall system Process Flow Diagram (PFD) is shown in Fig. 3-1. The 
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diagram’s equipment tables, Tables F-1 to F-3 are provided in Appendix F; showing all system 

components and their operational stream parameters and specifications.  
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Figure 3-1: Proposed continuous high-recovery RO system for nitrate removal in Disadvantaged Remote Communities (DACs) Process Flow Diagram (WS-01, Worksheet-01) to be 

implemented in all study remote communities. The system design includes pretreatment, RO treatment, residual management, and post-treatment & distribution.  

(Legend: PI-i = pressure indicator, PT-i = pressure transmitter, PS-i = pressure switch, CT-i = conductivity transmitter, FT-i = flow transmitter, TT-i = temperature transmitter,  NS-i = nitrate 

sensor, LLS-i = low-level switch, HLS-i = high-level switch, MV-i = manual valve, AV-i = automated valve, CV-i = check valve, AG-i = air gap valve, SP-i = sampling valve, P-i = 

centrifugal pump, MP-i = metering pump, VFD-i = variable frequency drive, T-i = Tank, F-i = filter. xx-Fi = pretreatment system component, xx-Di = post-treatment & distribution system 

component, xx-Ri = residual management system component) 
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The communities’ existing submerged well pumps (P F01) will act as the system feed 

pump in the feed section of the design, where water will be drawn by the existing well pump and 

delivered to the feed tank (T-1) through a screen filter. The well pump is automated to turn on 

when the low-level switch (LLS F01) located in the feed tank is activated. The pump will 

continue to operate until the high-level switch (HLS F01) located on the same tank is activated. 

The water from the feed tank will then be pumped through a series of pretreatment filters through 

a low-power transfer pump (P 01). The pretreatment filters will consist of 10, 5, and 1 μm mesh 

cartridge filters that will remove suspended particles in the feed flow. It is noted that two 

external connection ports (MV 02 & MV 03) are to be established before the cartridge filter 

series. The two ports (MV 02 & MV 03) are meant to work as a connection that allows for future 

installation of new pretreatment components that will be used as tools to eliminated targeted 

dissolved solids that may risk the RO membrane integrity (e.g. green sand filter to remove 

dissolved iron in the feed).  

After the cartridge filter series (F-1), the feed line is to have provisions for optional 

antiscalant injection (R-1) that will be used to limit membrane scaling and fouling. The feed is 

then pumped into the RO unit via a Variable Frequency Drive (VFD) RO feed pump (P 02) that 

will provide sufficient feed flow for the RO. The separation process begins after the RO feed 

stream, resulting from mixing the raw feed stream with the recycle stream prior to the RO feed 

pump, enters the RO unit membrane element. The RO retentate exits the RO vessels and is 

redirected through two actuated pressure-reducing valves (AV 02 & AV 03) to an entry point 

before the RO feed pump (P 02) at a design recycle flow rate, whereas the remaining concentrate 

is directed to a residual storage tank (T-4) for beneficial use (e.g. agricultural application), and 

storage.  
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The permeate of the RO proceeds to a lime remineralization bed (RB-1) for 

mineralization and pH stabilization, before entering the potable water tank (T-2) for storage. The 

permeate is to be monitored for salinity and nitrate concentration. Online nitrate monitoring of 

the permeate is carried out using an online nitrate concentration transmitter (NS 01). Water is 

directed from the potable water tank (T-3) to the community pressure (bladder) water tank (T-3) 

using a small pressurizing pump (P D01). It is noted that the water is available from the bladder 

tank pump (P D01) unless dictated otherwise by pressure setpoint set by a pressure sensor (PS 

D01) located on the bladder tank (T-3), or a setpoint dictated by a low-level switch (LLS D01) 

located in the potable water tank (T-2). The line before the bladder tank pump (P D01) contains 

an entry port (MV D03) to when disinfectant injection is needed. Water from the bladder tank 

(T-3) is then set for distribution and consumption.  

 Residual storage tank (T-4) includes entry ports from the RO permeate line (actuated by 

AV 04) and from the bladder tank (T-3) in post-treatment & distribution (actuated by MV D04). 

The residual tank (T-4) has an overflow exit port leading to the community septic tank. The 

residual tank is to be utilized for beneficial use, and as a storage tank for excess residual volume 

as a buffer for the community septic tank.  
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Chapter 4 

4. Process Design & Analysis 

4.1 RO Process Design Specifications    

In order to fully optimize the operation of RO treatment at the Disadvantaged 

Communities (DACs) of interest, site-specific design specifications were considered. The 

specifications dictated by the design are developed from understanding: 1) the effect of the site-

specific water quality profiles on RO unit operational integrity, 2) the need of the systems 

production capacity to meet the communities’ water demand guidelines (plus a safety factor) 

while maintaining element integrity through high recovery operation, and 3) the need of the RO 

residual product to meet the communities’ septic system capacity, and the extent of high 

recovery operation in optimizing said septic capacity. RO process design specifications are to be 

simulated through RO System Design Software (CSMPro5 and OLI Studio) for further analysis 

in the following chapter (Results & Discussion).  

4.1.1 Feed Water Quality 

 Community well water profile identification is essential for the design of the overall RO 

process. Water quality has to be reviewed from an RO system pretreatment viewpoint in order to 

remove any suspended particles in the stream (which will be thoroughly discussed in §4.2.1), as 

well as reviewed from an RO unit feed viewpoint in order to limit element scaling, determine the 

number of treatment passes, etc. 

 The RO unit feed analysis is done at the raw feed of the unit, as well as at the feed to the 

membrane (after the recycle stream mix point). The water profile of the source well is usually the 

same as that of the raw feed, unless ion-targeting pretreatment methods are used. The water 

quality profile at the source well is of the same quality profile at the raw feed of the RO unit 

subsection of the design (with the exception of iron ion concentration, which will be discussed in 
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§4.2.1; pretreatment). Table 4-1A display water quality profile summaries of the three DACs’ 

source wells sampled through 3 years of monitoring3 (2015-2018). Complete water quality 

reports collected by the UCLA WaTeR Center for all sites are found in Appendix A. 

Concentrations and saturation indices near the membrane surface (post recycle mix-point, and 

true feed to the RO unit) are element rejection-dependent and would have to be produced 

through experimentation at the community, or through RO System Design Software (CSMPro5 

and OLI Studio).  

Table 4-1A: Summary of water quality profiles for the three DACs of concern. 

    Well Source Water   

  Unit 

Bluerock 

View  

Santa 

Teresa 

Pryor Farms 

(Well "L") 

Pryor Farms 

(Well "6"*) 

EPA 

MCL** 

Turbidity NTU 0.15 0.82 0.15 ND - 

Total dissolved solids 

(TDS) 
mg/L 1126 - 1500 554 - 594 1091 - 1927.1 1160 500 

pH   7.3 7.6 7.4 7.5 6.5-8.5 

Nitrate  mg/L as ion 121.95 - 182.7 45 - 46 97 - 389.7 101.7 45 

Sodium mg/L 174 78 115 128 - 

Calcium mg/L 193 62 245 137 -  

Chloride mg/L 217 154 134 125 250 

Sulfate mg/L as ion 326 67 357 353 250 

Iron μg/L ND 777 35 ND 300 

Lead*** μg/L ND ND ND ND 0 

Copper*** μg/L 75.1 21.8 624 624 1000 

Arsenic μg/L 2 2 1 2 10 

Alkalinity 
mg/L as 

CaCO3 
348 112 244 256 - 

Coliform, E. Coli 

(Quantitray) 
MPN/100mL <1 <1 26 <1 1 

Total organic carbon 

(TOC) 
mg/L 1.7 0.5 1.1 0.7 - 

SIcalcite   4.33 0.84 4.76 3.36 - 

SIGypsum   0.11 0.01 0.09 0.07 - 

 
(*) The Pryor Farms site has two operational wells for groundwater pumping: well "L" and well "6". Due 

to recently-elevated nitrate concentration in well "L" (389.7 mg/L as NO3
-), the UCLA WaTeR Center has 

                                                 
3 Data is based on grab sampling analysis provided by Monterey Bay Analytical Services (MBAS) and Dellavalle 

Laboratory, Inc. Certain concentrations indicate a range of values which were taken from 9/22/2015 to 9/15/2018 

from all communities.  
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proposed starting RO operation at well "6" instead; (**) based on the National Primary and Secondary 

Drinking Water Regulations required by the EPA [13]; (***) indicates sampled collected from kitchen tap 

water based on the “Lead and Copper Rule” [86]. 

 All the DACs of concern display elevated levels of nitrate and salinity concentrations in 

their source wells that exceed the Maximum Contamination Levels (MCLs) allowable by the 

EPA [19], with certain sites exceeding the allowable MCL for nitrate by approximately 8 times 

(Pryor Farms). Additional analytes have exceeded the MCLs such as Sulfate in Bluerock and 

Pryor Farms, and Iron in Santa Teresa. It is important to note that Tap Water Analysis conducted 

by the UCLA WaTeR Center has shown no lead or copper trace contaminants, resulting in the 

conclusion that the integrity of the distribution system piping within the communities is 

uncompromised.  

 In regard to the saturation indices calculated at the water source using OLI Studio; calcite 

crystallization is to be expected even at low recoveries, whereas gypsum may be present at high 

recoveries. It is important to note that calcite formation in RO processes can be addressed by 

lowering the pH of the feed, whereas gypsum formation would require the use of antiscalants 

[49, 59]. 

4.1.2 Product Water Demand   

 Community water demand was explored through installing water meters at all community 

water wells for community consumption monitoring. Table 3-1A (§3.1.1) indicates most recent 

(2018) water consumption data collected from the study communities (DACs). The production 

capacity for all communities was designed to limit continuous operation of RO module to avoid 

excessive startup and shutdown of the RO system which can lead to accelerated equipment wear 

and tear, while maintaining an apt storage capacity for emergency shutdowns in the system. The 

design equation for the permeate production capacity in all DACs of concern was developed to 

be: 
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Design Production Capacity, QP (GPD) = 2.2 ∙ (Average Water Demand) (Eq. 4-1) 

 

Which translates to double the average daily demand per community plus an 11% safety factor. 

Assuming that the average daily consumption trend persists: the system aims to operate at steady 

state for a maximum of 12 hours a day to cover the community daily demand through design 

production capacity. It is important to note, that during the months of May to August each year, 

Maximum Water Consumption trends are noticed. Maximum water demand in the DACs of 

concern usually reaches double the average water demand throughout the year. To account for 

such discrepancy, a range of production capacities has been considered in all communities to 

ensure that the study DACs do not face water shortages or result to continuously operating the 

RO unit (California, Title 22 CCR §64554, New and Existing Source Capacity, [65]). 

 The determining of the design production capacity allows for element-type choice based 

on operational range of fluxes dictated by the type of water being treated by the membrane, 

surface area of the membrane, and the cross-flow velocity produced during operation.  It is 

recommended that brackish water RO desalination processes adhere to flux ranges of 12-17 gfd 

(membrane manufacturer technical manual attached in Appendix H). A commercially available 

membrane of high nitrate rejection (96%) was chosen (CSM RE4040-BE) based on the required 

production capacity of each community at high recovery operation. The operational range of 

cross-flow velocity is to be kept at 0-0.57 m/s [52, 64]. In order to achieve RO operation at 90% 

recovery, the design concentrate recycle ratio (QR/QF) would be within the range of 0.69 to 1.98.  

Table 4-1B indicates the range, and limitations, of which process design specifications for RO 

systems are to be targeted for each community for nitrate removal and salinity reduction. 
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Whereas Table 4-1C indicates RO operation specifications for each distinct community based on 

their design production capacity.  

 

Table 4-1B: Overall specification ranges and limits for RO Systems for Nitrate Removal and 

Salinity Reduction for DACs.  

RO System Specification 
Desired Range for RO System 

Specification in All DACs 

Production to average demand ratio(a) 2.2 

Recovery (%) 90 

Flux (gfd) 12 - 17 

Cross-flow velocity range (m/s) 0 - 0.57 

Maximum single element recovery (%) 20 

Targeted permeate nitrate concentration limit(b) (mg/L as ion) 25 

Targeted permeate TDS(c) concentration (mg/L) 150 

Maximum operating pressure (PSI) 350 

(a) In accordance with equation 4-1. 

(b) Nitrate permeate concentration limit is less than the EPA MCL of 45 mg/L as NO3
- to account for 

any future nitrate concentration increase in the community source wells. 

(c) TDS = Total Dissolved Solids 

 

Furthermore, the targeted permeate nitrate concentration resulting from RO treatment is less 

than 25 mg/L as NO3
- to account for any future spikes in source well water nitrate 

concentrations due to high nitrate leaching into said well or other circumstances. Whereas the 

targeted permeate total dissolved solids (salinity) concentration after desalination is less than 

150 mg/L, mimicking tap water concentrations [66]. Any increase in design permeate quality 

range for nitrate concentration requires the implementation of a second pass within the RO unit 

for further separation.  
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Table 4-1C: RO operation specifications for each DAC at the design permeate flow operation 

(routine operation) at 90% recovery using element type RE-4040BE. 

  Study Disadvantaged Communities 

RO System Specification 
Bluerock View Santa Teresa Pryor Farms 

Feed flow (GPD) 2,185.30  3,412.20   6,223.56  

Design permeate flow (GPD) 1,966.80  3,071.00   5,601.20  

Flux (gfd) 11.57 12.04 16.47 

Residual waste (GPD) 218.50 341.20 622.36 

Cross-flow velocity (m/s) 0.13 0.21 0.38 

Recycle ratio 1.98 1.27 0.69 

Single-pass recovery (per element, %) 15.10 13.23 13.98 

Number of elements 2 3 4 

Element recovery (%) 16.45 15.51 18.52 

Average daily demand (GPD) 894 1,396 2,546 

Maximum daily demand (GPD) 1,996 2,826 3,997 

Product Water Storage Tank (Gallons) 2,000 3,000 4,000 

 

4.1.3 Capacity for Waste Disposal   

 The expected level of RO residuals to be expected will depend on the level of product 

water recovery during routine operation. It is integral to reduce the volume of residuals resulting 

from high recovery RO separation in order to reduce the residual volume entering the community 

septic tank. Increased volumes of high nitrate concentration residual into the septic tank will 

result in high nitrate loading into the leach fields nearby as discussed in §3.1.2. Given that the 

design recovery is to be at 90%, the RO separation is expected to have minimal residual volume 

with respect to the overall septic tank volume (volume percent) ranging from 4.86 to 12.45% per 

day as summarized by Table 4-1D. 
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Table 4-1D: Summary of residuals volume generated for treatment of feed water at 90% 

recovery for the design production capacity at each study DAC. 

  Study Disadvantaged Communities 

  Blue Rock View Apartments Santa Teresa Farms Park Pryor Farms 

Design Production Capacity 

(GPD) 
1,966.80 3,071 5,601.20 

Target Water Recovery (%) 90 90 90 

Volume of Feed Intake (GPD) 2,185.33 3,412.22 6,223.56 

Volume of Residual (GPD) 218.53 341.22 622.36 

Percent of Residual Volume (to 

Septic Tank, per day) 
4.86% 6.82% 12.45% 

Septic Tank Capacity 4,500 5,000 5,000 

 

Furthermore, the implementation of a residual tank (tank T-4 in Fig. 3-1) will 

furthermore reduce the effect of said septic tank overflowing by utilizing the RO residuals (with 

an option for water blending) in secondary communal use (e.g. irrigation, cleaning, etc.). The 

beneficial use tank (residual storage tank, T-4) will employ an overflow valve that will direct any 

increase in tank (T-4) capacity to the community septic tank, which will only experience the 

above reported (Table 4-1D) septic tank volume increase percentages when the beneficiary use 

tank (T-4) has not been used for a prolonged period of time (6-9 days). It is important to note that 

the residual storage tank is set at a capacity of 4,000 gallons.  

4.2 RO Process System Design 

 Following the design specifications presented in the previous section, the RO system 

strategy design is to be configured. The system design strategy begins with optimizing the RO 

feed through pretreatment which will first employ a large mesh screen filter for large object 

removal (gravel, large OM, etc.). The pretreatment continues through cartridge filters for 

particulate removal (silt, clay, etc.), while employing a connection for additional filter 

installation (green sand) which is aimed for targeted species removal (iron) in specific 
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communities to reduce the impact of the feed on the RO module. Furthermore, upon optimizing 

feed composition for RO treatment; the RO module design is followed by the determination of 

the number of elements for RO module operation at each community, and the number of passes 

intended for said operation in order to achieve the targeted permeate nitrate concentration limit 

(safe point) found in Table 4-1C.  

 Product quality (nitrate concentration) monitoring is done with the installation of a 

permeate nitrate transmitter that would online-transmit and record nitrate levels to a remote 

supervisory system at UCLA (WaTeR Center). However, given the high cost of said sensors, a 

method of utilizing permeate salinity levels (TDS concentrations measured through conductivity 

sensors) into projecting nitrate levels by establishing a site-specific salt-nitrate correlation using 

RO System Design Software (CSMPro5 and OLI Studio). The permeate is also designed to 

undergo sufficient post-treatment that aims to stabilize its pH levels through remineralization bed 

contact, and maintain potable water integrity from contamination through optional disinfection 

that is designed to maintain a disinfectant (chlorine) dose through community water network 

distribution.  

4.2.1 Pretreatment  

 The standard pretreatment section of the strategy design (Fig. 4-2A) is designed to 

remove suspended particulates in the RO feed. The pretreatment section is composed of a large-

mesh screen filter (300μm) which is designed to remove gravel and sand from entering the feed 

tank (T-1) to eliminate any threat to system pumps and equipment. The feed tank (T-1) is to be 

followed by a set of three cartridge filters ranging in mesh-size from 10 to 5 to 1μm aimed to 

remove suspended particles such as clay, silt, and any organic matter (OM) pumped from the 

feed tank.  
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 A specialized pretreatment filtration addition is an available option for communities that 

require targeted-species removal prior to RO module operation, as a connection for additional 

pretreatment components is included in all DAC community designs. Santa Teresa Farms water 

quality data (summarized in Table 4-1A) reports an iron concentration of 0.7 mg/L, which 

exceeds the EPA’s MCL of 0.3 mg/L. Although RO separation is capable of iron removal and 

meeting the EPA guidelines, studies show that dissolved iron in brackish water is directly 

proportional to calcium sulfate (gypsum) crystallization. Therefore, in order to limit gypsum 

scaling potential; dissolved iron at Santa Teresa RO feed must be minimalized before contacting 

the RO elements. It is important to note that water quality test results do not specify which type 

of iron is present in Santa Teresa’s water sample (particulate iron, or dissolved iron). It is 

hypothesized that particulate iron is prevalent species due to the high turbidity or the Santa 

Teresa water sample, and the place of sample collection (the bottom of the community’s feed 

tank). However, the optional addition of a green sand filter prior to the standard set of cartridge 

filters is found to be apt for ferrous iron removal (dissolved iron) for concentrations up to 0.5 

mg/L with continuous injection of oxidant upstream, or periodic re-activation of the bed [6]. 

Furthermore, if the prevalent species found in the feed stream is ferric iron (particulate); it can be 

removed using the previously mentioned cartridge filters without the need of green sand filters.  

 Due to the values of saturation indices reported in Table 4-1A, mineral scaling of the 

membrane is an issue that must be targeted during pretreatment. It is hypothesized that effective 

membrane cleaning can be achieved by periodic “Fresh Water Flush” (Appendix B, Mode: 

Fresh Water Flush) at the acidic pH of the RO permeate (i.e., prior to pH adjustment via post-

treatment) which can serve to solubilize and avoid buildup of foulant or mineral scale layer on 

the RO membrane [34]. The RO membrane module will be periodically cleaned via “Fresh 
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Water Flush” (once a day) as dictated by the local and/or remote supervisory. RO membrane 

Fresh Water Flush will be implemented through actuation of the RO feed pump (P 02) and use of 

a three-way valve (AV 01) to direct the product water flow from the product water storage tank 

(T-2) directly to the RO membrane module. Furthermore, in the event of high scale accumulation 

on the RO membrane, a compact antiscalant (R-1, optional) reservoir and metering pump (MP 

01) are controlled by the local and/or remote supervisory to discharge a suitable acid/antiscalant 

dose to negate previously mentioned scale accumulation.  
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4.2.2 RO Module Process Flow Diagram (PFD) 

 The flow to the RO unit (Fig. 4-2B) will be dictated by a Variable Frequency Drive 

(VFD 01) RO pump (P 02) under the action of the onsite control system that will ensure 

operational guidelines and community requirements are met. Before entering the RO, an 

antiscalant (AS) dosing port is to be placed after the three-way valve where an optional AS 

dosing reservoir (R-1) will supply a predetermined AS dose to the RO feed system through a 

metering pump (MP 01). The AS will serve as a backup option for reducing scale build-up on 

RO membranes surface if the previously mentioned fresh water flush is determined to be 

insufficient for restoring membrane permeability, and the saturation levels of sparingly soluble 

mineral salts (e.g. calcium carbonate and calcium sulfate) in the feed are exceeded. Furthermore, 

antiscalant dosing will shutoff upon reaching desired saturation levels, upon RO system 

shutdown, and upon triggering AS metering pump high-level concentration setpoint sampled at 

the feed. Multiple sensors/transmitters (pressure, conductivity, flow) are present prior to the VFD 

RO pump (P 02) which will relay important feed parameters (pressure, conductivity, and flow) to 

the online monitoring system.  
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Upon entering the RO module, community brackish water will be treated under high recovery 

(90%) where the concentrate will be pass through a depressurizing automated needle valve (AV 

02) that will recalibrate the recycle stream’s pressure to the same level as that of the stream prior 

to entering the VFD RO pump (P 02). The now depressurized concentrate stream will enter a 

split where it will be partially redirected back to the RO feed at a recycle flow rate within the 

design parameters to achieve desired recovery, and the remaining concentrate flow will be 

depressurized to atmospheric conditions for residual tank (T-4) storage at Outlet Port OP-3. It is 

noted that another pressure transmitter is present at the concentrate outlet of the RO unit to be 

recorded locally and transmitted to a remote supervisory server at UCLA WaTeR Center.  

The RO permeate line has multiple water quality sensors/transmitters that will record and report 

the quality of permeate stream. Nitrate sensor (NS 01), conductivity transmitter (CT 02), flow 

transmitter (FT 03), temperature transmitter (TT 01), and pressure transmitter (PT 04) will 

ensure that nitrate concentration (mg/L as NO3-), TDS (mg/L), flow (GPD or GPM), 

temperature (F), and pressure (PSI) levels are within design and regulatory guidelines. The 

permeate stream nitrate sensor (NS 01) is an online spectroscopic sensor that will report nitrate 

data in the permeate during commissioning which will allow us to calculate nitrate passage and 

corollate it to salt passage (from conductivity correlation) in order to eliminate the continuous 

use of said nitrate sensor which will extend the component’s life cycle. The permeate stream 

continues until reaching a remotely-controlled three-way automated valve (AV 04) that regulates 

whether the permeate will flow to remineralization bed (RB-1) and post-treatment, or to the 

residual storage tank depending on the desired mode of operation. A check valve (CV 01) is 

installed prior to the three-way valve (AV 04) to ensure no backflow into the RO is possible 

from either outlet.  
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4.2.3 RO Product Post-Treatment 

The system design strategy in regard to the permeate post-treatment section (shown in 

Figure 4-2C) is a to provide the treatment system with post-treatment that allows for permeate 

mineral balancing and pH stabilization, as well as guarantees safe potable water delivery to the 

community through disinfectant-dosing when needed. The need for pH adjustment and 

mineralization is a result of RO ion separation from the solution; where the lack of ions reduces 

the alkalinity of the permeate (and pH reduction to around 6.5) which leads to potential metal-

pipe leaching into the permeate during distribution if left unattended. In addition, ultra-pure 

permeate has been known to leave a strange taste due to its relatively high acidity that leads it to 

form carbolic acids upon reacting with the atmosphere. Furthermore, provision in the system (i.e. 

with needed connections as in the case for the green sand filter connection in the pretreatment 

section) are added for the installation of a disinfection system that consists of a chlorine reservoir 

(R-2), and a chlorine metering pump (MP 02).  

 The adjustment of the product water pH and mineral composition is done through the 

utilization of a remineralization bed (specifically a limestone contractor, RB-1). The 

alkalization/remineralization limestone bed was used due to its commercial availability, its ease 

of installation, and most importantly its ability to address both the need for increasing alkalinity 

and remineralizing the permeate at the same time in comparison to other technologies of interest 

[40]. The benefits of using a calcium carbonate (CaCO3) in the form of limestone pellets in a bed 

contractor are: the simple dissolution of calcium and carbonate into the permeate and providing 

apt remineralization; limestone dissolution simultaneously increase alkalinity, calcium hardness 

and pH in RO permeate, as well as decreasing the product water corrosivity; its non-hazardous 

material and operation that can be done autonomously from human contact and would only need 
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replacement of the bed once its been consumed; the low capital cost and maintenance cost in 

comparison to liquid chemical addition (base) [67]. It is noted that alkalinity values of less than 

40 mg/L as CaCO3 in the RO permeate would have to be treated through a limestone bed until 

passing the water quality alkalinity criteria of 40 mg/L as CaCO3 [19].  

Disinfection of the product water is warranted if any microbial contamination is detected 

through sampling the distribution system or the potable water tank (T-2). Upon detection, a 

chemical storage tank (R-2) will be filled with chlorine disinfectant (Cl2) in order to eliminate 

any microbial presence in the distribution network. The injection of chlorine into the distribution 

system is done through a metering pump (MP 02) into the product water directed into the 

pressure tank (T-3). The metering pump will be interlocked with the pressure tank feed pump (P 

D01) in order to provide a consistent feed flow rate in proportion to the water flow under all 

operating conditions. The presence of disinfectant in the system is aimed to provide the 

commonly recommended chlorine residual level of 0.4-0.6 mg/L near the injection point [68, 

69].  
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Figure 4-2C: Post-treatment & Distribution section Process Flow Diagram (WS-03, Worksheet-03) for the remote communities project. 
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4.3 Analysis of RO Module Process Design  

 In continuation to the optimization the DAC RO treatment system, an analysis of the RO 

module process design is conducted. The module process design analysis begins with an analysis 

of partial concentrate recycle in terms of meeting community septic system capacity, and 

financial limitations. The RO module design continues into the choice of element size suitable 

for treatment is analyzed on the basis of meeting design production capacity in comparison to 

other commercially available elements. In addition, the determinization of said element operation 

is achieved through optimizing the configuration and number of elements in operation in regard 

to meeting previously mentioned process specifications (§4.1). Furthermore, the need for second 

pass operation is evaluated in the case that permeate quality limit (25 mg/L as NO3
-) proves to be 

difficult to meet through the designed RO single-pass treatment due to elevated feed 

concentrations. And finally, the need for nitrate monitoring is assessed through the utilization of 

commercially available, and financially viable, permeate conductivity transmitters as surrogates 

for salt-nitrate correlation in the permeate.  

4.3.1 Evaluation of Partial Concentrate Recycle to Achieve High Recovery 

Partial concentrate recycle via single module operation was chosen as the design basis for 

high recovery operation on the study DACs due to its small footprint in regard to community 

system discharge, and due to its compactness in size and low capital cost in comparison to 

commercially available high recovery options. High recovery operation in study DACs has been 

established as a design necessity in previous sections (§3.1.2, §4.1.3) in order to address the 

community septic tank’s limited capacity (volume) summarized in Table 3-1B (§3.1.3), where a 

design objective was to reduce the amount of RO discharge into said septic tanks to minimize 
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nitrate loading into the leach fields. Figure 4-3A summarizes the volume of waste generated 

with respect to the operational recovery for each study DAC at their respected design flowrates.  

 

Figure 4-3A: Volume of residual stream generated at different levels of product water recovery 

for production of drinking water at the design production capacity, Qp, at each study DAC. 

 

High recovery operation (higher than 50%) can be achieved through numerous system 

configurations, but most notably through utilizing systems that have multiple stages in the series 

configuration (Fig. 2-2); or through one-module systems (Fig. 2-4) that utilize concentrate 

recycling and multi-element operation in series. Multi-stage RO operation is able to achieve the 

targeted high recovery of 90% through utilizing multiple pressure vessels in series that the feed 

passes through until it exits the system and is discharged as concentrate. Each stage consists of 

parallel RO modules that contain multiple pressure vessels in series, where a single pressure 

vessel contains up to 6-element in series (in the case of brackish water) [51]. The number of 

stages in series dictates the extent of recovery desired, therefore the number of stages is a 

function of the overall system recover (Y). Table 2-2A (§3.1.3) shows that in order to reach both 
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the design goal of high recovery operation and design objective of minimal RO discharge into 

the septic tank; the multi-stage RO system would have to employ a total of 3 stages containing 6 

pressure vessels each. 18 pressure vessels containing 1-8 elements each would cause both an 

overproduction dilemma that the community would not be able to mitigate, as well as an 

inflation in capital cost (and utility cost) for such limited usability (community potable water 

production). It is important to note that large scale installment of multiple RO modules would 

require additional efforts in infrastructure development that may surpass the viable on-site 

treatment space allowed within the confines of the community.  

Employing singe-module with partial concentrate recycle, on the other hand, has the 

customization ability to meet both the community potable water needs and septic tank limitation, 

as well as present an optimal capital cost for small communities ($50,000-$80,000) [40]. The 

single-module RO system would also be stored in a small 10’ x 10’ shed with a concrete slab, or 

a 20’ x 20’ x 8’ metal container; posing little to no inconvenience to the community.  

High recovery in single-module systems can be achieved through employing a recycle 

stream operating at a design recycle ratio (RRatio = QR/Qo).  The module consists of a pressure 

vessel with up to eight membrane elements connected in series [51]. The concentrate of the first 

element becomes the feed to the second, and so on. The module’s product port collects the 

permeate from all the elements’ product tubes continuously through RO operation. The RO 

concentrate leaves the RO concentrate outlet port at essentially the feed pressure, controlled by 

the concentrate pressure regulator valve. Part of the concentrate stream resulting from RO 

separation is recycled and added to the suction side of the high-pressure RO pump at the 

indicated mixing point (MP) on Fig. 2-4 which increases the feed flow to the module, and 

achieve recommended single-pass recovery (YSP) [51].  
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 Singe-module operation through partial concentrate recycle can be utilized in reaching 

the high recovery of interest (90%) through essentially varying the recycle ratio and the number 

of elements depending on the targeted specifications. The range of flexibility in terms of varying 

the recycle ratio and the single-pass recovery (essentially the number of elements employed) in 

achieving high recovery operation is summarized in Fig. 4-3B. 

 

Figure 4-2B: The flexibility of overall operational recovery (Y) as a function of the recycle ratio 

(R) for choice single-pass recovery (YSP) values applicable to the Single-Module Partial 

Concentrate Recycle model adapted for this study. 

 

 The single-pass recovery and the number of elements optimization is discussed 

thoroughly in §4.4.3; Determination of RO Elements Configuration to Meet Process 

Specifications, as they are interchangeable functions of each other, and of desired range of 

production per study community. 
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 The RO element size selection method is based on a specified range of production that 

covers the design flow rate for routine operation, as well as covers the design range of 

production in the case of increased community demand (Maximum Daily Demand) for each 

study community (Table 4-3A). The design production capacity is to be operated up to the 

maximum recovery limit per element value of 20% (Eq. 4-2). Given that the source water to be 

treated is brackish/well water which would be operated at the above-mentioned specifications in 

terms of production range and element recover; a commercially available 4” diameter element 

(RE-4040BE) was chosen to be the design membrane of operation.  

Table 4-3A: The desired design range of production (GPD) and the design permeate flowrate 

(GPD) for the study DACs 

  
               Study DAC 

  

Bluerock View 

Apartments 

Santa Teresa Farms 

Park 
Pryor Farms 

Range of production (GPD) 1,900 - 4,200 2,700 - 4,100 5,450 - 5,800 

Design production capacity 

(GPD) 
1,966.80 3,071 5,601.20 

 

 The element size dictates the operational production capacity of the RO system (product 

and discharge), the quality of the product produced, and the frequency of membrane cleaning to 

reduce fouling. Table 4-3B indicate the choices of commercially available membranes for RO 

high recovery operation [51].  
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Table 4-3B: A summary of comparisons of three element size operation in well water conditions 

with regards to their feasible operational flowrates[51]. 

Feed Source 
  Well Water/Softened 

Water 
  

Max recovery per element (%) 20 

Max. permeate flowrate per element 

(GPD) 
2.5" Diameter 710 

4" Diameter 2,100 

8" Diameter 7,400 

Max. Feed flowrate per element 

(GPD) 
2.5" Diameter 8,200 

4" Diameter 25,920 

8" Diameter 89,280 

Max. Concentrate flowrate per 

element (GPD) 
2.5" Diameter 1,440 

4" Diameter 5760 

8" Diameter 22400 

 

From the above table, it is found that a 4” element is optimal for the range of production 

intended in this study with a maximum permeate flowrate per element of 2,100 GPD. It was 

found (§4.4.3) that operating 2 to 4 4” elements in within the design specifications would 

feasibly produce the desired production capacity, whereas it is infeasible to operate a 2.5” in a 

single array operation; where it would require two-array operation to meet the upper limit of the 

production capacity of 5,800 GPD, with a total number of 16 elements in series. The opposite is 

true with the larger-diameter 8” element where the production capability of said element exceeds 

the community demand and would violate the goal and objectives of the design, even with single 

element operation.  

 In regard to operating the element within the flux specifications of the design (12-17 gfd) 

the only feasible membrane surface area for the desired production range can be found in both 

the 4” and 2.5” elements. For the 2.5” element, even with disregarding the increased capital and 

utility costs associated with inflated number of elements in multi-array operation; the large flux 

value facing the first element in operation would increase concentration polarization and the 

susceptibility for scaling to the point of requiring a large frequency of chemical cleaning 
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(antiscalant) that the design is clearly trying to minimize. Whereas in regard to the larger element 

of concern (8”), the low flux operation associated with operating within the production range 

would be inconsistent with the flux range previously specified; resulting in lower-quality 

permeate.  

4.3.3 Determination of RO Elements Configuration to Meet Process Specifications 

The determination of the number of elements in series to be used for each site module 

was done through initially setting the range of production (GPD) for each study DAC. Given that 

the communities have fluctuations in their water consumption trends; a range of production 

capacities was covered (±250 GPD from the design production flow for each site, or double the 

maximum daily demand) that will meet community demand throughout the year, particularly 

during the months of May-August which portray the maximum daily demand (reported in Table 

4-1C). Upon setting the range of production, it is integral to operate within the flux ranges of 12-

18 gfd as not following the flux range (overfluxing/underfluxing) results in multiple problems 

such as low-quality permeate (high nitrate concentration), increased surface scaling, decrease in 

element lifespan, etc. The total single pass recovery is then calculated (Eq. 4-2) given an overall 

recovery, Y, of 90% and the reported recycle ratios in Table 4-1C.  

Overall Recovery, Y = YSP (1 + RRatio)     (Eq. 4-2) 

Upon finding the single pass recovery, YSP, the number of elements is then found by rearranging 

Eq. 4-2, and setting the maximum element recovery, Yi, at 20%: 

 Average element recovery, Yi = 1 − (1 − 𝑌𝑆𝑃)
1

𝑛    (Eq. 4-3) 

Both the average element recovery and the total number of elements, n, were optimized using 

RO System Design Software (CSMPro5) to cover the initially stated range of operational 
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production capacities through flux range consistency assurance and permeate quality simulations 

monitoring. 

 

 Table 4-3C: DAC site-specific projected range of production at 90% recovery based on number 

of elements in series employed. 

  Study DAC, Number of Elements 

  Bluerock, 2E Bluerock, 3E Santa Teresa, 3E Pryor Farms, 4E 

Range of production* (GPD) 1,900 - 2,400 2,400 - 4,200 2,700 - 4,100 5,450 - 5,800 

Range of operational flux** (gfd) 11.18 - 14.12 9.41 - 16.47 10.59 - 16.08 15.74 - 17.06 

Total single-pass recovery (%) 29.5 - 34.4 34.4 - 46.7 36.9 - 46.2 55.3 - 56.7 

Element recovery at the upper 

limit(***) (%) 
19 18.9 18.7 18.9 

(*)Design production capacity is 1,966.8, 3,071, and 5,601.2 GPD for Bluerock, Santa Teresa, and Pryor 

Farms respectively; (**) membrane used: RE-4040BE with SA of 85 ft2; (***) Average element recovery is 

optimized using CSMPro5.  

Most study DACs (with the exception of Bluerock View) site module configurations would 

require a constant number of RO elements throughout the period of operation to adhere to the 

specified range of production, and the process specifications mentioned in Tables 4-1B and 4-

1C. In the event where the site-specific design flow is shown to be at operation near the element 

recovery limit of 20%; the RO module configuration is to add another pressure vessel for an 

extra single element in series so that an increase in flow is enabled when needed, without 

surpassing the element recovery limit which increases concentration polarization (C.P.) and 

therefore the chance of element scaling. In the case of Bluerock View, it is projected that 

operating the design flowrate should be manageable by the RO module throughout the periods of 

operation. However, in the event of increased potable water consumption (such as the case with 

reported Maximum Daily Demand values) where the community would require operating the RO 

at double the current capacity; the Bluerock RO module would have to result to 3 elements-in-
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series operation through the employment of an extra pressure vessel containing said third 

element. 

4.3.4 Evaluation of the Need to Integrate Second-Pass Operation 

In the cases of which a study site is presented to the supervisory monitoring operator with 

a large spike of nitrate contamination in their source water wells (such as the case in Pryor Farms 

Well “L”) that the community is unable to mitigate with the design RO setup, or is unable to 

redirect the feed of the RO system towards another well that’s within the proximity; a second-

pass RO configuration is to be implemented to optimize the overall nitrate rejection and therefore 

the quality of the permeate.  

Upon conducting a mass balance calculation based on the given feed nitrate concentration 

of 389 mg/L as Nitrate, the design operation flowrates, and the two observed membrane rejection 

values of 98% and 96% (reportingly CSMPro5 simulation nitrate rejection value and element 

technical manual-reported nitrate rejection value); it was found that the permeate nitrate 

concentration from single-pass operation would exceed the design-specified (Table 4-1C) 

permeate nitrate concentration limit of 25 mg/L as NO3
-. It was confirmed through using 

CSMPro5 that the permeate water quality of a single-pass operation at that well (well “L”) would 

also be less than the targeted nitrate permeate concentration limit (safe point) of 25 mg/L as NO3
-

. Therefore, a second-pass option for nitrate removal in Pryor Farms well “L” was designed to 

produce potable water with permeate quality less than the limit mentioned above. Table 4-3D 

correlates to the design specifications set for 2nd pass operation according to the methodology 

discussed in the previous sections of this chapter.  
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Table 4-3D: Overall specification ranges and limits for Two-Pass RO System for Nitrate 

Removal and Salinity Reduction for DACs that experience elevated spikes in their feed water 

nitrate concentration. 

Two-Pass RO System Specification 
Desired Range for RO System 

Specification 

Feasible range of production (GPD) 5,000 - 5,800 

1st pass recovery (%) 90 

2nd pass recovery (%) 50 

Overall recovery (%) > 85% 

Flux (gfd) 13 - 17 

Number of elements in 1st pass 6 

Number of elements in 2nd pass 4 

Cross-flow velocity range (m/s) 0 - 0.57 

Single element recovery (%) 15 - 20 

Permeate nitrate concentration limit (mg/L as ion) 25 

Permeate TDS concentration limit (mg/L) 150 

Maximum operating pressure per module (PSI) 350 

 

A second-pass configuration would require a second RO module with its own high 

pressure VFD pump, as well as an increase in the total number of elements used as illustrated in 

Fig 4-3C. The 2nd RO module’s feed stream consists of half the amount of the 1st pass’ permeate, 

where the remaining half of the 1st pass permeate is blended with the permeate resulting from the 

2nd pass. The blending of the permeate streams of the two passes poses to increase the mineral 

composition of the final product water to reduce the extent of remineralization followed 

downstream. It is important to note that since the 2nd pass feed consists of the 1st pass permeate; 

there would be no need of disposing of concentrate, as working 50% 2nd pass recovery poses to 

only double the concentration of the 1st pass low salinity permeate. Instead, the concentrate is 

redirected towards the feed of the 1st pass (before the VFD pump, P 02) to blend with the higher 

salinity source water feed. as a result, the only residual management required for the Two-Pass 
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configuration would be for the 1st pass (operating at 90%) retentate which has a flowrate equal to 

10% of the feed flowrate.  

It is important to note that since the elevated nitrate concentrations were discovered in the 

Pryor Farms community well; the RO system integration was relocated to operate at on-site well 

displaying reduced levels of nitrate (101.7 mg/L as NO3
-), well “6”, in order to optimize the 

capital and operation cost associated with said integration and operation of the community RO 

system. 
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Figure 4-3C: Two-pass configuration Process Flow Diagram (PFD) for partial-recycle high recovery RO water treatment system 

option for consideration at communities that exhibit elevated spikes of nitrate concentration in their well water feed source. 
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4.3.5 An Assessment of Use of Permeate Conductivity as a Surrogate for Nitrate 

Concentration  

 Nitrate concentration monitoring in the RO permeate stream is a design objective of this 

study in order to maintain safe community drinking water standards throughout RO system 

operation. Conventionally, nitrate monitoring is done through either periodic sampling of the 

product, or through installing an in-line nitrate concentration transmitter/sensor. Given the 

remote location of the study communities; periodic sampling of the product is deemed infeasible 

due to the lack of on-site and nearby technical support. Nitrate sensors on the other hand are 

proven to be costly to purchase and maintain/replace ($800 minimum per sensor) [70]. As a 

result of the above, it was hypothesized that financially-feasible conductivity transmitters/sensors 

[71] can be utilized as a surrogate for nitrate concentration measurement through the 

establishment of salt-nitrate concentration correlation in the permeate.  

 The approach of devising a relationship between salt and nitrate concentrations in the 

permeate is initiated through the establishment of a site-specific CSMPro5 (OLI-reconciled) salt 

passage-nitrate passage correlation for all sites to include multiple operational recoveries (50%, 

70%, and 90%), with each recovery setting covering an operational flux range of 10-15 gfd and 

three different nitrate feed concentrations. The resulting salt passage-nitrate passage correlation 

is estimated to cover the possible operating conditions at each site, with the assumption that site 

water salinity profile (with the exception of nitrate) remains unchanged.  
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Table 4-3E: The design range of specifications in terms of conducting the multi-recovery, multi-

flux, and multi-nitrate concentration salt passage-nitrate passage correlation simulations using 

CSMpro5. 

Recovery range of operation (%) 50, 70, 90 

Flux range (gfd) 10 to 15 

  Study DAC 

 Bluerock View Santa Teresa Park Pryor Farms 

Simulated feed nitrate 

concentration range (mg/L as NO3
-) 

100, 180, 260 20, 60, 100 100, 200, 400 

Current feed nitrate concertation 

(mg/L as NO3
-) 

121.95 - 182.7 45 - 46 101.7 (389*) 

(*) corresponds to the previous intended well of operation at Pryor Farms, well “L”, which has 

been since replaced by nearby on-site well “6” due to its stable nitrate concentration profile and 

lower feed nitrate concentration of 101.7 mg/L as NO3
-. 

 

Said correlation can be used in estimating the nitrate concentration at the permeate side from 

evaluating the corresponding TDS value at said stream. Site-specific TDS values can correspond 

to a certain conductivity (mS/cm), depending the DAC water profile, through establishing a site-

specific conductivity-TDS correlation at an increasing range of concentrations with OLI Studio. 

The conductivity-TDS relationship could be implemented in future RO treatment integration into 

community source wells to indicate the TDS value of the permeate side given a certain 

conductivity reading (mS/cm), which in its turn can be used in estimating the approximate nitrate 

concentration in said stream; leading to minimizing the use of the on-stream nitrate sensor. 
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Chapter 5 

5. Results & Discussion 

This chapter details the simulation results for the RO system based on declared design 

range of operation (§5.1), analysis results of operational element number variation (Bluerock 

View) in RO operation (§5.2), the results of evaluating the allowable feed nitrate concentration 

until reaching the EPA MCL of 45 mg/L as NO3
- and the element “safe point” limit until 

reaching the nitrate permeate concentration limit of 25 mg/L as NO3
- (§5.3), the simulation 

results of the two-pass RO module configuration (Pryor Farms Well “L”) (§5.4), and finally, the 

correlation of nitrate passage with respect to salt passage covering multiple operational 

recoveries, fluxes, and feed nitrate concentrations at each DAC site (§5.5).  

The procedure for conducting CSMPro5 simulations, with OLI Studio Reconciliation, is 

summarized in Appendix C, and a fundamental Mass Balance analysis to determine the 

feasibility and accuracy of the simulation results is attached in Appendix G.  

5.1 RO System Simulation Results Based on Design Range of Operation    

 The determination of the RO treatment system performance was conducted through the 

use of RO System Design Simulations done via CSMPro5 and reconciled with OLI Studio. The 

simulation guidelines were set within the range of specifications mentioned in Tables 4-1B & 4-

1C in order to determine the design feasibility of implementing RO treatment modules in the 

three study DAC communities (Bluerock View Apartments, Santa Teresa Park, and Pryor 

Farms). Table 5-1A summarizes the range of results of the simulations conducted at the 

previously mentioned range of specifications for each site.  
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Table 5-1A: Simulation results summary for the three study DACs of concern based on the design range of specifications. 

  Study DAC 

  Bluerock View Santa Teresa Park Pryor Farms (Well 6)* Pryor Farms (Well L) 

Feed flowrate (GPD) 2111.1 - 4666.7 3000.0 - 4555.6 5944.4 - 6444.4 5944.4 - 6444.4 

Number of elements in series 2 - 3 3 4 4 

Permeate flowrate (GPD) 1900.0 - 4200.0 2700.0 - 4100.0 5350.0 - 5800.0 5350.0 - 5800.0 

Concentrate flowrate (GPD) 211.1 - 466.7 300.0 - 455.6 594.4 - 644.4 594.4 - 644.4 

Permeate flux (gfd) 11.18 - 16.47 10.59 - 16.08 15.74 - 17.06 15.74 - 17.06 

Recovery (%) 90 90 90 90 

Recycle Ratio 2.05 - 0.93 1.44 - 0.95 0.73 - 0.67 0.73 - 0.67 

Cross-flow velocity (m/s) 0.13 - 0.28 0.18 - 0.28 0.36 - 0.39 0.36 - 0.39 

Average single-pass recovery 15.15 13.84 13.24 13.24 

Feed salt concentration (mg/L) 1446.27 561.09 1257 1618.85 

Feed nitrate concentration (mg/L as NO3
-) 180 45 101.7 389.7 

Permeate salt concentration (mg/L) 118.18 - 71.06 45.38 - 27.92 53.62 - 48.83 81.56 - 73.90 

Permeate nitrate concentration (mg/L as NO3
-) 27.02 - 16.03 6.69 - 4.06 8.61 - 7.78 33.18 - 30.09 

Intrinsic salt rejection (%) 91.83 - 95.09 91.91 - 95.02 95.73 - 96.15 94.96 - 95.44 

Intrinsic nitrate rejection (%) 85.00 - 91.09 85.13 - 90.98 91.48 - 92.30 91.49 - 92.28 

Permeate pH 6.43 - 6.21 6.51 - 6.30 6.19 - 6.15 6.19 - 6.15 

Feed pressure (PSIG) 201.71 – 239.9 128.9 - 153.0 190.2 - 195.0 219.4 - 223.4 

Concentrate pressure (PSIG) 199.2 – 238.2 126.2 - 149.7 185.0 - 189.4 214.3 - 218.0 

* Well 6 is the new designated well of operation in Pryor Farms due to the elevated levels of nitrate (389.7 mg/L as NO3
-) in the old source water well 

(Well "L"). 
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The range of permeate flowrates for each study site covers both the design flow rate (Eq. 4-1) 

and the maximum daily demand (Table 4-1C), while producing a permeate with nitrate 

concentration of approximately equal to or less than 25 mg/L as NO3
- with respect to all 

designated source wells of operation. In the case of Bluerock View operating at the lower limit 

of the range of investigated permeate flowrates (19000 GPD); the nitrate concentration in the 

permeate exceeds the specified “safe point” limit of 25 mg/L as NO3
- by a small margin. 

However, given that the flux value at said lower limit does not fall within the recommended 

range of operational flux values of 12-17 gfd; flowrates that fall below the specified range of flux 

will not be operated. In the case of which the flowrate falls below said range of flux; the 

permeate flowrate will be increased until it falls within the specified flux range, as well as 

produces a permeate nitrate concentration below the “safe point” limit of 25 mg/L as NO3
-. This 

approach results in lowering the time of operation for the RO until reaching the desired volume 

of potable water produced, in increasing the quality of the permeate due to the relatively stable 

salt rejection of the membrane with respect to the rapid increase in permeate flow, as well as in 

reducing the possibility of scaling associated with operating outside the recommended flux 

range. Figure 5-1A illustrates the simulated nitrate permeate concentration as a function of 

operable permeate fluxes for the study DACs of concern in their design element configuration 

with the exception of Bluerock View, which the design configuration of 2E does not entirely 

cover the recommended range of flux (12-17) as it can only achieve a flux value of ~ 14 gfd 

before reaching the recommended single element recovery limit of 20%. Further operation at that 

configuration (2E) beyond the recommended single element recovery limit will result in elevated 

scaling potential. A comparison between the two Bluerock operational element configurations 
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(2E & 3E) will be discussed thoroughly in the next section (§5.2). Simulation generated data 

corresponding to Fig. 5-1A is attached in Appendix D. 

 

Figure 5-1A: simulated nitrate permeate concentration as a function of operable permeate fluxes for the study 

DACs of concern. 

Furthermore, the resulting cross-flow velocity from evaluating the feed flow contacting the CSM 

RE4040-BE membrane was found to fall within the previously specified (Table 4-1B) range of 

0.00 – 0.57 m/s, as the values were found to fall between 0.13-0.28, 0.18-0.28, 0.36-0.39 m/s for 

Bluerock, Santa Teresa, and Pryor Farms respectively. The permeate pH falls slightly below the 

lower limit of the allowable range of pH set by the EPA (6.5-8.5), therefore; remineralization is 

justified and warranted to avoid metal leaching from distribution system piping. The range of 

operational feed and concentrate pressures were found to fall below the maximum specified 

operating pressure of 300 PSIG for all study site systems.  
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 It was determined in the design section 4.3.3 that the Bluerock view DAC would require 

alternating the number of elements-in-series in operation from 2 to 3 to accommodate the design 

range of production which aims to meet the average consumption demand as well as the 

maximum consumption demand in said DAC. Table 5.2A Summarizes the range of results of the 

simulations conducted at both 2 and 3-element operation at Bluerock View and the impact it 

displays on meeting the nitrate concentration in the permeate design limit.  

Table 5-2A: Simulation results summary for the element number variation (2 & 3) at Bluerock 

View study DAC based on the design range of specifications. 

  Study DAC 

  Bluerock View, 2E Bluerock View, 3E 

Feed flowrate (GPD) 2111.1 - 2666.7 2666.7 - 4666.7 

Number of elements 2 3 

Permeate flowrate (GPD) 1900.0 - 2400.0 2400.0 - 4200.0 

Concentrate flowrate (GPD) 211.1 - 266.7 266.7 - 466.7 

Permeate flux (gfd) 11.18 - 14.12 9.41 - 16.47 

Recovery (%) 90 90 

Recycle Ratio 2.05 - 1.62 1.62 - 0.93 

Cross-flow velocity (m/s) 0.13 - 0.16 0.16 - 0.28 

Average single pass recovery 15.97 13.5 

Feed salt concentration (mg/L) 1446.27 1446.27 

Feed nitrate concentration (mg/L as NO3
-) 180 180 

Permeate salt concentration (mg/L) 118.18 - 96.11 132.49 - 71.06 

Permeate nitrate concentration (mg/L as NO3
-) 27.02 - 21.98 30.23 - 16.03 

Intrinsic salt rejection (%) 91.83 - 93.35 90.84 - 95.09 

Intrinsic nitrate rejection (%) 85.00 - 87.78 83.20 - 91.10 

Permeate pH 6.43 - 6.34 6.48 - 6.21 

Feed pressure (PSIG) 227.4 - 239.9 201.71 - 216.9 

Concentrate pressure (PSIG) 225.9 - 238.2 199.2 - 213.6 

  

Given that the Bluerock View community water production capacity was set to 1966 GPD, this 

capacity was about twice the average annual daily demand (894 GPD) plus an 11% safety factor. 

The RO system can produce the above average consumption demand in approximately 11 hours 
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operation. The resulting permeate nitrate concentration is slightly above the design permeate 

concentration limit of 25 mg/L as NO3
-, at 26.20 mg/L as NO3

- operating at 1966.8 GPD and 

11.57 gfd. The quality of the permeate can be improved by operating the RO at higher permeate 

flux settings, which in its turn reduces the time of RO system operation in terms of meeting the 

design production capacity mentioned above.  

 Bluerock View DAC has a maximum daily demand (noticed during the months May-

August) of ~2,000 GPD. As a result, it is expected that the two-element in series configuration 

would have to operate continuously throughout the day in order to meet the maximum daily 

demand as the RO system with its two-element configuration could only produce up to 2,400 

GPD before reaching element recovery limit of 20% and consequently prompting increased 

scaling potential. Therefore, the production capacity of the RO system would be increased by 

implementing a third element in a separate pressure vessel that would only be utilized if the 

community potable water reserves were noticed to be diminishing at a deficit with regard to the 

community demand. The implementation of a third element increases the production capacity’s 

upper limit to 4,200 GPD (2.1 times that maximum daily demand observed in 2018, Table 4-1B) 

which offers flexibility in terms of producing potable water throughout the year. Fig. 5-2A 

compares the projected ranges of permeate production (flow and flux) for both 2-element (2E) 

and 3-element (3E) in series operation at Bluerock View.  

 It is noticed from the RO System Design Simulation results data (Appendix D) for the 3-

elements-in-series configuration in Bluerock View that operating said configuration in lower 

permeate flux settings (less than 11.76 gfd) would yield permeate nitrate concentrations larger 

than 25 mg/L as NO3
-; as a result, the operation of the three element RO would have to fall 
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within the specified flux range of 12-17 gfd to guarantee the production of potable water up to 

the design-specified water quality standards.  

 

Figure 5-2A: RO water production capacity (GPD) as a function of permeate flux for the 2 & 3-

element-in-series  (2E & 3E respectively) configuration for the Bluerock View RO treatment 

system. The 2E configuration covers the Bluerock design production capacity of 1966 GPD 

(covering 2.2 times the yearly averaged demand) with an upper range limit of 2,400 GPD. The 

3E configuration covers the extent of treatment if it is desired for the system to produce more 

than 2,400 GPD (Bluerock has a summer-time Maximum Daily Demand of ~2,000 GPD) up to 

an upper range limit of 4,200 GPD. 

5.3 Element Breaking Point & Safe Point Limits    

 The element breaking point can be defined as the point of which the RO system begins 

producing permeate of nitrate concentration above the EPA MCL limit of 45 mg/L as NO3
-. 

Estimating the element breaking point was conducted through conducting CSMPro5 simulations 

based on the design RO treatment specifications (Tables 4-1A & B) with the design production 

capacity for each site, while increasing the nitrate concentration (with adequate ion reconciliation 
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the treatment system. Table 5-3A summarizes the results from conducting the RO system 

treatment breaking point simulations conducted for the three study sites (Bluerock, Santa Teresa, 

Pryor Farms) at their design production capacity and design specifications.  

Table 5-3A: Simulation results of routine (design) operation extent of treatment before reaching 

the EPA nitrate MCL in the permeate (45 mg/L as NO3
-). 

  Study DAC (Number of elements in series) 

  

Bluerock View 

(2E) 

Santa Teresa Farms 

(3E) 

Pryor Farms 

(4E) 

Design permeate flowrate (GPD) 1966.8 3071.2 5601.2 

Current source well nitrate concentration 

(mg/L as NO3
-) 

180 45 101.7 

Maximum allowable feed nitrate 

concentration until reaching EPA MCL 

(mg/L as NO3
-) 

310 360 575 

Resulting permeate nitrate concentration 

(mg/L as NO3
-) 

45.29 45.27 45.14 

 

During the routine (design) RO system operation, Table 5-3A shows that Bluerock View system 

design is capable of treating feed nitrate concentrations of up to 310 mg/L as NO3
- until reaching 

the maximum extent of treatment and producing a permeate with nitrate concentration of 45.29 

mg/L as NO3
-. Furthermore, Table 5-3A shows that for the two remaining DACs, Santa Teresa 

and Pryor Farms, the extent of treatment under routine (design) operation is capable of treating 

feed nitrate concentrations of up to 360 and 575 mg/L as NO3
- for Santa Teresa and Pryor Farms 

(well “6”) respectively before reaching a permeate nitrate concentration of 45.27 and 45.14 mg/L 

as NO3
- respectively. Figures 5-3A to B illustrate the permeate nitrate concentration as a 

function of feed nitrate concentrate during routine operation (check Table 4-1B for 

specifications) for each study DAC until reaching the maximum allowable nitrate MCL (45 

mg/L as NO3
-).  
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Figure 5-3A: Bluerock View Apartments DAC extent of treatment simulations trendline under 

routine operation (2E) at 1966.8 GPD production capacity. 

 

Figure 5-3B: Santa Teresa Park Farms DAC extent of treatment simulations trendline under 

routine operation (3E) at 3071.2 GPD production capacity. 
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Figure 5-3C: Pryor Farms DAC well “6” extent of treatment simulations trendline under routine 

operation (4E) at 5601.2 GPD production capacity. 

 In addition to exploring maximum allowable nitrate level in the feed, each DAC was 

simulated under a pre-specified range of production capacities (Table 4-3A) while varying the 

feed nitrate concentration (with suitable ion neutralization using OLI Studio) until reaching the 

maximum design permeate nitrate concentration limit of 25 mg/L as NO3
-. The above mentioned 

permeate nitrate concentration of 25 mg/L was simulated to explore the maximum allowable 

nitrate concentration in the feed source water at different production capacities before reaching 

the above mentioned “safe point”. Table 5-3B summarizes the results from conducting the RO 

system treatment “safe point” simulations conducted for the three study sites (Bluerock, Santa 

Teresa, Pryor Farms) at a pre-specified range of production capacities (found in Table 4-3A).  
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Table 5-3B: “Safe Point” (Perm. Conc. of 25 mg/L as NO3
-) at design range of production 

capacity simulation results summary. 

  Study DAC (Number of elements) 

  

Bluerock View 

(2E) 

Santa Teresa Park 

(3E) 

Pryor Farms 

Well “6” (4E) 

Production capacity range 

(GPD) 

1,900 - 2,400 2,700 - 4,100 5,350 - 5,800 

Corresponding allowable feed 

nitrate concentration range 

(mg/L as NO3
-) 

167 - 205 171 - 279 304 - 334 

Resulting permeate nitrate 

concentration (mg/L as NO3
-) 

25 ± 0.07 25 ± 0.05 25 ± 0.06 

 

Bluerock View Apartments DAC RO system is found to be capable of producing a permeate 

with nitrate concentration of 25 mg/L as NO3
- or less within a production range of 1,900 – 2,400 

GPD (2-element operation), provided that the corresponding feed nitrate concentration range is 

167 – 205 mg/L as NO3
- respectively. Santa Teresa Park Farms DAC RO system is able to 

produce permeate with nitrate concentration of 25 mg/L as NO3
- or less within a production 

range of 2,700 – 4,100 GPD (3-element operation), provided that the corresponding feed nitrate 

concentration range is 171 – 279 mg/L as NO3
- respectively. Finally, Pryor Farms well “6” RO 

system is capable of producing RO permeate with nitrate concentration of 25 mg/L as NO3
- or 

less within a production range of 5,350 – 5,800 GPD (4-element operation), provided that the 

corresponding feed nitrate concentration range is 304 – 334 mg/L as NO3
- respectively. 

5.4 Two-Pass Configuration Operation Results    

 The Two-Pass configuration (Fig. 4-3C) is within the list of optional installations at any 

site, and it is prompted only when a certain site is found to be producing a permeate with nitrate 

concentration exceeding the “Safe Point” limit of 25 mg/L as NO3
- throughout the range of 

design production capacities (Table 4-3A). Pryor Farms well “L” single-pass simulation results, 
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as summarized in Table 5-1A, meets the criteria mentioned above and as result; has been 

considered for potential two-pass operation. RO System Design for two-pass configuration based 

on the design specifications listed in Table 4-3D demonstrated capability for producing permeate 

of nitrate level below the maximum set level (Safe Point) of 25 mg/L as NO3
-. RO System 

Design Simulation results for each pass using the two-pass configuration at Pryor Farms well 

“L” (389.7 mg/L nitrate feed concentration) are summarized in Table 5-4A. Two-pass system 

production results are summarized in Table 5-4B.  
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Table 5-4A: RO System Simulation results for each pass for a two-pass RO configuration for water treatment at Pryor Farms well “L” 

(389.7 mg/L nitrate feed concentration).  

1st Pass 2nd Pass 

Feed flowrate (GPD)* 8400 - 9730 1st Pass Permeate to 2nd Pass Permeate Blending (GPD)  2520 - 2920 

Number of elements 6 Feed flowrate (GPD) 5040 - 5840 

Permeate flowrate (GPD) 7560 - 8760 Number of elements 4 

Concentrate flowrate (GPD) 840 - 973 Permeate flowrate (GPD) 2520 - 2920 

Permeate flux (gfd) 14.82 - 17.18 Concentrate flowrate (GPD)*** 2520 - 2920 

Recovery (%) 90 Permeate flux (gfd) 7.41 - 8.95 

Average single pass recovery (%) 10.17 Recovery (%) 50 

Recycle Ratio 0.51 - 0.45 Average single pass recovery (%) 12.52 

Cross-flow velocity (m/s) 0.46 - 0.53 Cross-flow velocity (m/s) 0.31 - 0.35 

Source feed salt concentration (mg/L)** 1618.9 Feed salt concentration (mg/L) 51.72 - 42.72 

Source feed nitrate concentration (mg/L as NO3
-)** 389.7 Feed nitrate concentration (mg/L as NO3

-) 21.93 - 18.13 

Permeate salt concentration (mg/L) 51.72 - 42.72 Permeate salt concentration (mg/L) 1.38 - 1.01 

Permeate nitrate concentration (mg/L as NO3
-) 21.93 - 18.13 Permeate nitrate concentration (mg/L as NO3

-) 0.76 - 0.55 

Intrinsic salt rejection (%) 96.80 - 97.36 Intrinsic salt rejection (%) 97.64 - 97.33 

Intrinsic nitrate rejection (%) 94.37 - 95.34 Intrinsic nitrate rejection (%) 96.96 - 96.53 

Permeate pH 6.03 - 5.95 Permeate pH 4.49 - 4.35 

Feed pressure (PSIG) 163.88 - 174.90 Feed pressure (PSIG) 47.16 - 54.9 

Concentrate pressure (PSIG) 153.72 - 163.30 Concentrate pressure (PSIG) 45.46 - 52.7 

* RO 1st pass feed flowrate = source water raw feed flowrate + 2nd pass concentrate flowrate. Feed flowrate values are reported before 1st pass recycle mix point.  

** Source well water quality values at Pryor Farms well “L”. 

*** 2nd pass concentrate is redirected to join 1st pass feed prior to 1st pass recycle mix point.  
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Table 5-4B: Two-pass RO module configuration system simulation results for Pryor Farms well 

"L" (389.7 mg/L nitrate feed concentration). 

Overall Two-Pass System Output 

Range of permeate production (GPD) 5040 - 5840 

Overall recovery (%)  90 

Total number of elements  10 

Post blending permeate salt concentration (mg/L)* 26.55 - 21.85 

Post blending permeate nitrate concentration (mg/L as NO3
-)* 11.35 - 9.34 

Range of RO system residual output (GPD)**  840 - 973 

* Blending of 1st pass and 2nd pass permeate streams. 

** Pryor Farms DAC septic tank volume = 5,000 gallons. 

  

Process simulations for two-pass configuration for water treatment at Pryor Farms 

indicate that it is possible to treat high nitrate levels (~400 mg/L as NO3
-) through utilization of a 

1st pass operating at 90%, and a 2nd pass at 50% recovery with complete concentrate recycle back 

to the 1st pass. The final RO potable water product (post permeate blending) nitrate concentration 

ranges between 11.35 – 9.34 depending on the projected range of production. The above nitrate 

concentration is well below the design “Safe Point” limit of 25 mg/L as NO3
-. The RO system 

residual output range of the two-pass configuration is slightly above the range resulting from 

single pass operation of 594.4 - 644.4 GPD (Table 5-1A), at 840 – 973 GPD. It is feasible to address the 

increase in residual output by following routine design operation as it only consists of ~ 16.8 – 19.5% 

volume of the current Pryor Farms septic tank, and about 9.3 – 10.8% volume of the combined residual 

storage tank (T-4, Fig. 3-1) and septic tank volumes (4,000 and 5,000 GPD respectively). Fig. 5-4A 

illustrates the simulated nitrate permeate concentration as a function of operable permeate 
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flowrate for the Pryor Farms well “L” study case.  

 

Figure 5-4A: simulated nitrate permeate concentration as a function of operable permeate flowrate for the Pryor 

Farms well “L” study case. 

An alternative TO system design for water treatment at Pryor well “L” (~400 mg/L as 

NO3
-) for producing a permeate with nitrate concentration below  the “Safe Point” limit of 25 

mg/L as NO3
- is possible through 6 elements operation for  1st Pass configuration shown in Table 

5-4A. The resulting configuration would require less hours of operation for the RO system to 

produce the design volume of potable water for Pryor Farms (5600 GPD), as it produces 7,560 – 

8,760 GPD. However, the 6-element operation is producing permeate of nitrate levels ranging 

21.93 – 18.13 mg/L as NO3
- which is close to the “Safe Point” limit of 25 mg/L as NO3

-. Given 

that the well under consideration in this case (well “L”) has been experiencing increased 

concentrations of nitrate throughout a short period of time (389.7 mg/L in 2017 from 97 mg/L in 

2015, Appendix A); the above mentioned 6-element single pass treatment operation is under the 

risk of being insufficient in meeting the “Safe Point” limit if the nitrate increasing trend 
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continues in the mentioned site well, and would yet again need an increase in element number to 

produce better quality permeate. Upon increasing the number of elements; the operational flux 

would have to be increased in order to maintain the permeate quality, which in turn yields higher 

system residual volume output. As a result, resulting to a two-pass configuration is thought to 

yield more reliable product quality over large range of nitrate feed concentrations, as well as 

having a lower system residual volume output than the single-stage with increased element-count 

operation alternative.                                                                                                                                                                            

Fig. 5-4B illustrates the extent of treatment for a two-pass configuration at Pryor Farms well “L” 

before reaching the EPA MCL of 45 mg/L as NO3
-. 

 

Figure 5-4B: Pryor Farms DAC well "L" extent of treatment simulations trendline under two-

pass configuration operation (10E) at 5,600 GPD production capacity. 

 The two-pass configuration at Pryor Farms well “L is able to treat feed nitrate 

concentrations at 90% recovery of up to 1,600 mg/L as NO3
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well of treatment to the nearby on-site well “6” (101.7 mg/L as NO3
- feed concentration) that can 

be effectively treated with a single-stage RO configuration.  

5.5 Correlation of RO Nitrate Passage with to Salt Passage 

 In order to monitor for RO performance degradation, one can monitor the permeate 

salinity as a surrogate for the passage of nitrate. However, such an approach requires one to 

determine if there is a correlation between salt passage and nitrate passage. Accordingly, process 

simulations were carried out. A site-specific simulated nitrate passage-salt passage correlation 

was generated for all sites to include multiple operational recoveries (50, 70, and 90%), covering 

operational flux range 10-15 gfd, and three different site-specific nitrate concentrations. Figures 

5-5A to C illustrate the simulated site-specific nitrate passage-salt passage correlation plots at 

90% recoveries for Bluerock View Apartments, Santa Teresa Park, and Pryor Farms DACs 

respectively. Additional figures covering 50% and 70% recovery operations can be found in 

Appendix D.  
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Figure 5-5A: Salt passage-nitrate passage correlation of different feed nitrate concentrations (100, 180, and 260 mg/L as NO3
-) at 90% recovery. 

Isoflux lines are indicated by the color black, followed by their coefficient of determination value. Nitrate levels in the well water for water treatment at 

Bluerock apartments were 180 mg/L as NO3
-. 
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Figure 5-5B: Salt passage-nitrate passage correlation of different feed nitrate concentrations (20, 60, and 100 mg/L as NO3
-) at 90% 

recovery. Isoflux lines are indicated by the color black, followed by their coefficient of determination value. Nitrate levels in the well 

water for water treatment at Santa Teresa Park were 45 mg/L as NO3
-. 
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Figure 5-5C: Salt passage-nitrate passage correlation of different feed nitrate concentrations (100, 200, and 400 mg/L as NO3
-) at 

90% recovery. Isoflux lines are indicated by the color black, followed by their coefficient of determination value. Nitrate levels in the 

well water for water treatment at Pryor Farms were 101.7 mg/L as NO3
-.
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 The previous figures allow for the calculation of nitrate passage based on the 

corresponding reported value of salt passage in the DACs RO system permeate. Therefore, Salt 

(Total Dissolved Solids or TDS) concentration (mg/L) in the permeate must be translated from 

onsite conductivity values (mS/cm) collected via the permeate site conductivity transmitter (CT 

02 in Fig. 3-1A). A TDS (mg/L) as a function of conductivity (mS/cm) was established using 

OLI Studio simulations of site-specific water profiles at a wide range of salt concentrations 

(~1000 iterations). The OLI TDS-Conductivity correlation shown in Figure 5-5D is generated 

from running a water composition concentration survey via OLI studio. The survey concentrates 

the feed water within user-indicated iterations (1000 points were used in this approach) with each 

iteration generating both TDS and conductivity result point at a value-increasing notion for both 

due to concentration increase of sample. Upon collecting all OLI survey results; a DAC-specific 

TDS-Conductivity correlation is generated based on the survey results. Figure 5-5D illustrates 

the TDS concentration (mg/L) of the Bluerock View DACs as a function of conductivity 

(mS/cm). Additional site-specific TDS-conductivity correlations can be found in Appendix D.  

 

Figure 5-5D: TDS concentration (mg/L) of the Bluerock View DACs as a function of conductivity (mS/cm) using 

OLI studio. 
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Chapter 6 

6. Summary and Conclusion 

 

 A process and system design were developed and analyzed for the integration of 

continuous and high recovery RO treatment system into Disadvantaged Remote Communities 

(DACs) for the intent of nitrate removal and salinity reduction. The feasibility of the DAC RO 

system was assessed via analysis of the system’s capability in meeting community potable water 

needs, as well as meeting community septic system limitations through partial concentrate 

recycle to achieve high recovery operation (90% recovery).  

1- RO process design specifications were derived on the basis of optimizing continuous 

high recovery operation in producing design permeate capacity ranging from 1966 – 

5600 GPD via RO module treatment of brackish water with feed nitrate 

concentrations ranging at 45 – 389.7 mg/L as NO3
-, and salinity concentrations 

ranging at 564 – 1927.1 mg/L as total dissolved solids (TDS). 

2- RO system design specifications were derived on the basis of reducing the RO 

system’s septic system footprint; producing system concentrate consisting of 4.86 – 

12.45% of the total septic tank capacity per day through partial concentrate recycle to 

achieve high recovery operation (90% recovery).  

3-  System pretreatment design was developed to remove suspended particles in the RO 

feed ranging from 300 - 5μm in diameter through multiple filter mediums. Antiscalant 

reservoir and dosing pump are added in the event that the fresh water flush method is 

unable to consistently mitigate scale accumulation on the RO membrane. Optional 

connections to the pretreatment section were considered for the addition of future 

specialized filtration options (i.e. green sand filters).  
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4- RO system post-treatment design was developed to stabilize RO permeate pH (6 – 

6.5) through a remineralization bed to improve taste, and reduce susceptibility for 

pipe corrosion. Optional disinfection reservoir and metering pump were added to the 

post-treatment section design to ensure a constant dose of 0.2 mg/L of chlorine 

disinfectant is present if needed. 

5- RO treatment operation for the above range of permeate production at high recovery 

(90%) was found feasible through the utilization of 2-4 elements in series (RE-

4040BE) while operating below the maximum recommended average element 

recovery value of 20% per element. The above-mentioned design treatment operation 

is operated under an average single-pass recovery range of 13.05 – 15.15%.  

6- RO System Design simulations (CSMPro5 and OLI Studio) indicate that it is feasible 

to produce potable water at the above-mentioned production ranges with permeate 

nitrate concentrations less than the design-specified “Safe Point” limit of 25 mg/L as 

NO3
- at all study DACs of concern.  

7- Two-pass operation was deemed feasible in the event that high spikes of nitrate 

concentration were noticed in the community source well that would lead to RO 

operation permeate nitrate concentration higher than 25 mg/L as NO3
- when operated 

at the recommended design flux range of 12-17 gfd. 

8- A site-specific correlation between permeate conductivity and permeate nitrate 

concentration was found for the study DACs via CSMPro5 and OLI RO System 

Design software simulations that reduces the frequency of use of cost-heavy permeate 

nitrate transmitters/sensors. 
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In order to optimize the operation of the high recovery RO treatment system for 

nitrate removal in disadvantaged communities; it is critical to establish a remote (and on-

site) supervisory system that would receive and record the data transmitted by the 

different on-stream transmitters to maintain safe and continuous operation. In addition, 

system design simulation results presented in this study would have to be verified 

through site-specific field operation of the system (i.e. during system commissioning 

period). It is important to monitor RO membrane scaling during routine operation to 

determine the effect of fresh water flush operation mode on scale detergence, and 

whether antiscalants are required.  

It is imperative to construct a permeate conductivity (mS/cm) and permeate total 

dissolved solids (mg/L as ion) correlation via OLI Studio upon start-up of field operation 

at any site of operation, and to verify the correlation with lab-measured water quality 

results that show both values (conductivity and TDS) in order to establish a TDS 

reference for the permeate from conductivity readings. Upon establishing and verifying 

the above conductivity-TDS correlation, a similar approach should be followed with 

nitrate measurements at the permeate to establish a nitrate correlation that could be paired 

with TDS concentration at the permeate as discussed in §4.3.5 & §5.5.  
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Appendices  

Appendix A: Water Quality Results 

 

Table A-1: Bluerock View Apartments WQR (9/22/2015 – 9/15/2018). 

Analyte (Unit) Result MCL Date measured 

Alkalinity (mg/L as CaCO3) 348  

9/22/2015 

Aluminum (µg/L) ND 1000 

Arsenic (µg/L) 2 10 

Asbestos (mF/L) ND 7 

Barium (µg/L) 45 1000 

Beryllium (µg/L) ND 4 

Bicarbonate (mg/L as HCO3-) 425  

Boron (mg/L) 0.33  

Bromide (mg/L) 0.7  

Cadmium (µg/L) ND 5 

Calcium (mg/L) 193  

Carbonate (mg/L as CaCo3) ND  

Chloride (mg/L) 217 250 

Chromium VI (µg/L) 1.7  

Chromium, Total (µg/L) 12 50 

Coliform, E. Coli (MPN/100mL) ND 1 

Coliform, E. Coli (MPN/100mL) ND 1 9/15/2018 

Coliform, Total (MPN/100mL) ND 1 9/22/2015 

Coliform, Total (MPN/100mL) ND 1 9/15/2018 

Color (Color units) ND 15 
9/22/2015 

Copper (µg/L) ND 1300 

Copper (µg/L) 75.1 1300 9/15/2018 

Cyanide (µg/L) ND 200 

9/22/2015 

Fluoride (mg/L) 0.2 2 

Hardness (mg/L as CaCO3) 787  

Hydroxide (mg/L) ND  

Iron (µg/L) ND 300 

Iron (µg/L) 26 300 9/15/2018 

Lead (µg/L) ND 5 9/22/2015 

Lead (µg/L) ND 5 9/15/2018 
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Magnesium (mg/L) 74  

9/22/2015 

Manganese (µg/L) ND 50 

Mercury (µg/L) ND 2 

Nickel (µg/L) ND 100 

Nitrate (mg/L as NO3) 287 45 

Nitrate (mg/L as NO3) 180 45 8/17/2017 

Nitrate (mg/L as NO3) (TAP)* 40.95 45 9/15/2018 

Nitrite (mg/L as NO2-N) 0.2 1 

9/22/2015 

Odor Threshold at 60 C 3 3 

Perchlorate (µg/L) 2.1  

pH 7.3  

Potassium (mg/L) 6.2  

Selenium (µg/L) 23 50 

Sodium (mg/L) 174  

E-cond (mS/cm) 2.29 0.9 

Sulfate (mg/L) 326 250 

TOC (mg/L) 1.7  

Total Diss. Solids (mg/L) 1500 500 

Total Diss. Solids (mg/L) 1126 500 9/15/2018 

Turbidity (NTU) 0.15 5 9/22/2015 

Turbidity (NTU) ND 5 9/15/2018 

Zinc (µg/L) ND 50000 9/22/2015 

* TAP = sample collected from community kitchen tap.  

Table A-2: Santa Teresa Farms WQR (9/22/2015 – 9/15/2018). 

Analyte (Unit) Result MCL Date measured 

Alkalinity (mg/L as CaCO3) 112  

9/22/2015 

Aluminum (µg/L) 501 1000 

Arsenic (µg/L) 2 10 

Asbestos (mF/L) ND 7 

Barium (µg/L) 162 1000 

Beryllium (µg/L) ND 4 

Bicarbonate (mg/L as HCO3-) 137  

Boron (mg/L) 0.09  

Bromide (mg/L) 0.4  

Cadmium (µg/L) ND 5 

Calcium (mg/L) 62  

Carbonate (mg/L as CaCo3) ND  

Chloride (mg/L) 154 250 
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Chromium VI (µg/L) 2.2  

Chromium, Total (µg/L) 5 50 

Coliform, E. Coli (MPN/100mL) ND 1 

Coliform, E. Coli (MPN/100mL) ND 1 9/15/2018 

Coliform, Total (MPN/100mL) ND 1 9/22/2015 

Coliform, Total (MPN/100mL) ND 1 9/15/2018 

Color (Color units) 8 15 
9/22/2015 

Copper (µg/L) ND 1300 

Copper (µg/L) 21.8 1300 9/15/2018 

Cyanide (µg/L) ND 200 

9/22/2015 

Fluoride (mg/L) ND 2 

Hardness (mg/L as CaCO3) 245  

Hydroxide (mg/L) ND  

Iron (µg/L) 777 300 

Iron (µg/L) 13 300 9/15/2018 

Lead (µg/L) ND 5 9/22/2015 

Lead (µg/L) ND 5 9/15/2018 

Magnesium (mg/L) 22  

9/22/2015 

Manganese (µg/L) ND 50 

Mercury (µg/L) ND 2 

Nickel (µg/L) ND 100 

Nitrate (mg/L as NO3)  46 45 

Nitrate (mg/L as NO3)  50 45 8/17/2017 

Nitrate (mg/L as NO3) (TAP)* 45 45 9/15/2018 

Nitrite (mg/L as NO2-N) 0.2 1 

9/22/2015 

Odor Threshold at 60 C 2 3 

Perchlorate (µg/L)  ND  

pH 7.4  

Potassium (mg/L) 4.4  

Selenium (µg/L) 2 50 

Sodium (mg/L) 78  

E-cond (mS/cm) 0.93 0.9 

Sulfate (mg/L) 67 250 

TOC (mg/L) 0.5  

Total Diss. Solids (mg/L) 554 500 

Total Diss. Solids (mg/L) 556 500 9/15/2018 

Turbidity (NTU) 3.2 5 9/22/2015 

Turbidity (NTU) 0.12 5 9/15/2018 

Zinc (µg/L) ND 50000 9/22/2015 

* TAP = sample collected from community kitchen tap.  
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Table A-3A: Pryor Farms Well “L” (decommissioned from operation) WQR (9/22/2015 – 

9/15/2018). 

Analyte (Unit) Result MCL Date measured 

Alkalinity (mg/L as CaCO3) 244   9/22/2015 

Alkalinity (mg/L as CaCO3) 304   10/9/2017 

Aluminum (µg/L) ND 1000 

9/22/2015 

Arsenic (µg/L) 1 10 

Asbestos (mF/L) ND 7 

Barium (µg/L) 44 1000 

Beryllium (µg/L) ND 4 

Bicarbonate (mg/L as HCO3-) 298   

Boron (mg/L) 0.25   

Bromide (mg/L) 0.4   

Cadmium (µg/L) ND 5 

Calcium (mg/L) 143   

Calcium (mg/L) 245   10/9/2017 

Carbonate (mg/L as CaCo3) ND   
9/22/2015 

Chloride (mg/L) 134 250 

Chloride (mg/L) 204 250 10/9/2017 

Chromium VI (µg/L) 2.6   

9/22/2015 Chromium, Total (µg/L) 11 50 

Coliform, E. Coli (MPN/100mL) ND 1 

Coliform, E. Coli (MPN/100mL) ND 1 9/15/2018 

Coliform, Total (MPN/100mL) 26 1 9/22/2015 

Coliform, Total (MPN/100mL) Present 1 9/15/2018 

Color (Color units) ND 15 
9/22/2015 

Copper (µg/L) ND 1300 

Copper (µg/L) 624 1300 9/15/2018 

Cyanide (µg/L) ND 200 

9/22/2015 

Fluoride (mg/L) 0.3 2 

Hardness (mg/L as CaCO3) 617   

Hydroxide (mg/L) ND   

Iron (µg/L) 35 300 

Iron (µg/L) 31 300 9/15/2018 

Lead (µg/L) 1.11 5 9/22/2015 

Lead (µg/L) ND 5 9/15/2018 

Magnesium (mg/L) 63   9/22/2015 

Magnesium (mg/L) 123   10/9/2017 

Manganese (µg/L) ND 50 

9/22/2015 Mercury (µg/L) ND 2 

Nickel (µg/L) 58 100 
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Nitrate (mg/L as NO3)  97 45 

Nitrate (mg/L as NO3)  389.7 45 10/9/2017 

Nitrate (mg/L as NO3) (TAP)* 366.75 45 9/15/2018 

Nitrite (mg/L as NO2-N) 0.3 1 

9/22/2015 

Odor Threshold at 60 C 2 3 

Perchlorate (µg/L)  ND   

pH 7.6   

Potassium (mg/L) 3.7   

Potassium (mg/L) 5.1   10/9/2017 

Selenium (µg/L) 6 50 
9/22/2015 

Sodium (mg/L) 114   

Sodium (mg/L) 193   10/9/2017 

E-cond (mS/cm) 1.63 0.9 
9/22/2015 

Sulfate (mg/L) 357 250 

Sulfate (mg/L) 589 250 10/9/2017 

TOC (mg/L) 1.1   
9/22/2015 

Total Diss. Solids (mg/L) 1091 500 

Total Diss. Solids (mg/L) 1927.1 500 10/9/2017 

Turbidity (NTU) 0.15 5 9/22/2015 

Turbidity (NTU) 0.06 5 9/15/2018 

Zinc (µg/L) 94 50000 9/22/2015 

* TAP = sample collected from community kitchen tap.  

 

Table A-3B: Pryor Farms Well “6” WQR (10/8/2018). 

Analyte (Unit) Result MCL Date measured 

Alkalinity (mg/L as CaCO3) 257   

10/8/2018 

Aluminum (µg/L) ND 1000 

Arsenic (µg/L) 2 10 

Asbestos (mF/L) ND 7 

Barium (µg/L) 22.3 1000 

Beryllium (µg/L) ND 4 

Bicarbonate (mg/L as HCO3-) 314   

Boron (mg/L) ND   

Bromide (mg/L) 0.4   

Cadmium (µg/L) ND 5 

Calcium (mg/L) 137   

Carbonate (mg/L as CaCo3) ND   

Chloride (mg/L) 125 250 

Chromium VI (µg/L) ND   

Chromium, Total (µg/L) 8.3 50 

Coliform, E. Coli (MPN/100mL) ND 1 
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Coliform, Total (MPN/100mL) ND 1 

Color (Color units) ND 15 

Copper (µg/L) ND 1300 

Cyanide (µg/L) ND 200 

Fluoride (mg/L) 0.2 2 

Hardness (mg/L as CaCO3) 625   

Hydroxide (mg/L) ND   

Iron (µg/L) ND 300 

Lead (µg/L) ND 5 

Magnesium (mg/L) 69   

Mercury (µg/L) ND 2 

Nickel (µg/L) ND 100 

Nitrate (mg/L as NO3)  101.7 45 

Nitrite (mg/L as NO2-N) ND 1 

Odor Threshold at 60 C ND 3 

Perchlorate (µg/L)  ND   

pH 7.5   

Potassium (mg/L) 4   

Selenium (µg/L) 7 50 

Sodium (mg/L) 128   

E-cond (mS/cm) 1.61 0.9 

Sulfate (mg/L) 353 250 

TOC (mg/L) ND   

Total Diss. Solids (mg/L) 1160 500 

Turbidity (NTU) ND 5 

Zinc (µg/L) ND 50000 
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Appendix B: Modes of Operation 
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Figure B-1: Process Flow Diagram (PFD) for the Routine Operation mode of operation in the RO Systems for Nitrate Removal in Disadvantaged  

Remote Communities in the Salinas Valley project. Stream color-code is presented at the bottom left corner.  



- 95 - 

 

Large Mesh 

Feed Filter

P F01
Existing Well Pump

S
IT

E
 W

E
L

L

T-1

Feed Tank

(5,000 GAL)

LLS
F01

MV
F02

MV
F01

PI
F01

HLS
F01

SP 01

A

Feed 
Pretreatment 

(Optional)

F-1
Cartridge Filters

PT
01

CT
01

FT
01

P 02
RO Pump

3 HP

P-1002

M 01
RO Vessels

PT
03

PT
04

PT
02

MV 
02

MV 01

MV 
03

AV 01

AV 
03AV 

02

FT
02

C
T

02
FT03

TT
01

N
S

01

MP 01

R-1R-1

Antiscalant Dosing
(Optional)

MV 05

RB-1

Remineralization

Bed

1
mm

5
mm

10
mm

P 01
Feed Pump

1 HP

A

AV 04

CV 
01

VFD
01

T-4

Residual Storage

Tank 

(Beneficial Use)

UNDERGROUND

To Leach Field

Wastewater Discharge 

from Homes

Community Septic 

Tank

Community Septic 
Tank

AG 
01

MV R02

Outlet Port  
OP-R1

(Non-potable 
Water Port, e.g. 

Irrigation)

Inlet Port  
IP-R4

(From Source 
Water Well)

FT
R01

T-2

Potable Water Tank

(6,000 GAL)

MV D01MV D02
P D01

Bladder Tank Pump

MP 02

R-1R-2

Disinfectant Dosing

MV 
D03

T-3
Pressure
(Bladder)

Water TankMV D04Outlet Port
OP-D1

(To Water 
Distribution

Network)

FT
D01

PI
D01

PS
D01

LLS
D01

LT
D01

Closed

Open

Municipal Discharge

Raw Feed

Signal Line
No Flow

Permeate

Disinfectant

Brine (Different Concentrations)

UCLA – Salinas RO Project

Fresh Water Flush Mode

SHEET#WS-B02
 

Figure B-2: Process Flow Diagram (PFD) for the Fresh Water Flush mode of operation in the RO Systems for Nitrate Removal in Disadvantaged  

Remote Communities in the Salinas Valley project. Stream color-code is presented at the bottom left corner.  
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Figure B-3: Process Flow Diagram (PFD) for the Consumable Replacement mode of operation in the RO Systems for Nitrate Removal in Disadvantaged  

Remote Communities in the Salinas Valley project. Stream color-code is presented at the bottom left corner.  
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Figure B-4: Process Flow Diagram (PFD) for the Drain/Flush mode of operation in the RO Systems for Nitrate Removal in Disadvantaged  

Remote Communities in the Salinas Valley project. Stream color-code is presented at the bottom left corner.  
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Figure B-5: Process Flow Diagram (PFD) for the Emergency Shutdown (Non-Potable Use) mode of operation in the RO Systems for Nitrate Removal in 

Disadvantaged Remote Communities in the Salinas Valley project. Stream color-code is presented at the bottom left corner.  



99 

 

The following are a list of modes of operation that will be implemented in the Salinas Valley 

Continuous High-Recovery RO Systems for Nitrate Removal in Disadvantaged Remote 

Communities project: 

1- Routine operation  

2- Fresh water flush operation 

3- Consumable replacement operation 

4- Commissioning period operation 

5- Emergency shutdown (non-potable use) operation 

Diagrams for previous moves of operation can be found in Appendix B (Figures Fig.B-1 to B-

5). 

 In addition, a summary list of design valve positioning during different modes of 

operation is found in Table 3-2. 

Fresh Water Flush Operation 

 Periodic cleaning of membrane elements is to be carried via fresh water flush operation to 

about scale build-up and element fouling. The system feed pump (P 01), and the RO pump (P 02) 

are to be shut, and automated valve AV 01 is to be remotely re-configured to allow permeate 

water flow from the potable water tank (T-2) upon the activation of RO pump P 02. Upon 

activating P 02, fresh water will be drawn from T-2 and the RO unit membranes will be 

“flushed” with the flushing water being recycled, and ultimately disposed of into the residual 

storage tank which will drive the concentration of TDS inside the tank to decrease. With little to 

no water being produced into the permeate stream; it is deemed that the permeate stream is out of 

service, and its flow directed into the residual storage tank via the remotely-controlled valve AV 

04. Driving the TDS concentration into the residual storage tank (T-4) will provide a wider range 
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of beneficial use to its contents (e.g. cattle replenishment). Fresh water flush operational diagram 

can be found in Appendix B, Fig. B-2. 

Emergency Shutdown (Non-Potable Use) Operation 

 Emergency shutdown procedures will be discussed expansively in Section 3.1.5, 

Operation & Maintenance Skeleton. However, in the event that one of the following conditions 

occur: 

1- Power outage 

2- Line disruption 

3- System component failure that may obstruct overall system and site safe operation  

4- Physical destruction to system components due to invasive anthropogenic behavior or 

natural disasters 

5- Contamination outbreak 

Then all system components will be remotely (and manually) taken offline. If preliminary 

diagnostics suggest that system repair may take time more than that of what the community’s 

potable water reserves (T-2) permit, then a system bypass will be triggered. Untreated brakish 

water from the community well will bypass the now-offline RO system and continue to 

community distribution network. Brackish water will be drawn directly from the feed tank (T-1) 

through manual valve MV F01 (while shutting down MV F02, and everything beyond) and into 

manual valve MV D02. Water will be pumped by the bladder tank pump (P D01); activating the 

system’s bypass line. Disinfectant dosing (R-1) will not take place in this process due to the 

condition that the water is in, and the hazard of forming trihalomethanes (THMs) with any 

organic matter that might be present in the system. After system repair, the system will proceed 
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into Drain/Flush operational mode (Section 3.1.4.4). Emergency Shutdown (Non-Potable Use) 

event operational diagram can be found in Appendix B, Fig. B-5. 

 

Table B-14: valve positions for all modes of operation included in the water treatment system 

design5. 

 

 

 

 

 

 

 

 

 

  

                                                 
4 Valve positioning for each operational valve and operational PFDs are indicated in Appendix B: Figures B-1 to B-

5. FWF = Fresh Water Flush, Con. = Consumable. 
5 Automated valve orientation is read clockwise: West/North/East/South. O = Open, X = Closed, SO = Semi Open 

and Automated by Analog Input components (sensors), NA = Not Applicable.  

Valves Location Routine FWF Con. Replacement Drain/Flush Emergency

MV F01 Maitnance/Bypass X X X X O

MV F02 RO Feed O O X O X

MV 01 RO Feed O O X O X

MV 02 RO Feed X X X X X

MV 03 RO Feed X X X X X

MV 05 Antiscalant Dosing X X X X X

MV D01 Post Treatment O O O O X

MV D02 Post Treatment O/X/O/NA O/X/O/NA O/X/O/NA O/X/O/NA O/O/X/NA

MV D03 Disinfectant Dosing O O O X X

MV D04 Post Treatment O/NA/O/X O/NA/O/X O/NA/O/X X/NA/O/O O/NA/O/X

MV R01 Residual Management X X X X X

MV R02 Residual Management O O O O X

AV 01 RO Feed O/NA/O/X X/NA/O/O X O/NA/O/X X

AV 02 RO Concentrate SO SO X SO X

AV 03 RO Residual SO SO X SO X

AV 04 RO Permeate O/NA/O/X X/NA/O/O X O/NA/O/X X

Operation



102 

 

Appendix C: Simulation Software Procedure 

 CSMPro5 is an RO Membrane System Design Software developed by Toray Chemical 

Korea Inc. The design software is programmed to offer a comprehensive simulation for an RO 

treatment process, and cost analysis based on water composition and operational parameter 

(permeate flow, recovery, recycle flow, membrane type, number of membranes, etc.) input by 

the user.  

CSMPro5 is considered to be a viable tool in RO separation software analysis. CSMPro5 

start-up page requires the user to define the water source as either Well Water, Surface Water, 

Sea Water or multiple other options that program-defined by their SDI (Silt Density Index) 

which applies a pre-built thermodynamic model to the simulation (e.g. Well Water SDI<3). The 

approach of predetermining the water’s SDI allows the software to determine the fouling 

capacity of CSM membranes under high-pressure operation through plugging the input 

concentrations of metal ions into the preset thermodynamic model to calculate the resulting SDI 

of scaling-susceptible salts at the membrane surface. 

Upon inputting mandatory (e.g. ion concentrations) and optional (e.g. Turbidity, TOC, 

pH) values into the water profile the user then can allocate design flow values into the program 

through the System tab. Within the System tab, the program requires the following steps 

associated with process specification definition before starting the simulation:  

1- Define permeate flowrate (GPD) 

2- Define recovery (%) 

3- Define number of arrays  

4- CSM Membrane Model  

The user then inputs optional parameters based on the desired process: 

5- Array to Array Recycle 
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6- Recycle Flow (GPD) 

7- Permeate Blending (check box for more options) 

 The user then clicks Results, where the software will then initiate the simulation based of 

the specifications defined by the user. The Results section of the software is divided into three 

sections: 

- Results scan: a detailed spreadsheet showing data associated with all process 

stream compositions and water quality reports, as well as basic RO process 

outputs (e.g. rejection, operating pressure, operating temperature) for the 

specific operation. 

- Diagram: a simplified process flow diagram that shows the overall single-pass 

recovery in addition to a supporting table that shows all stream flowrates 

(GPD), TDS concentrations (mg/L), and pressure values (PSIG). 

- Cost: calculates the cost associated with operating the process based membrane 

price ($/ea), vessel price ($/ea), and project life.  

 



104 

 

Appendix D: Simulation Supplementary Data/Results 

Study DACs Site simulation (CSMPro5) results based on projected range of production: 

Table D-1A: Bluerock View Apartments 2-element operation results. 

 

 

 

 

 

 

Feed Flow (GPD) 2111.11 2166.67 2185.33 2222.22 2277.78 2333.33 2388.89 2444.44 2500.00 2666.67 2666.67 2666.67 

Permeate Flow (GPD) 1900.00 1950.00 1966.80 2000.00 2050.00 2100.00 2150.00 2200.00 2250.00 2300.00 2350.00 2400.00 

Recovery % 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 

Permeate Flux (gfd) 11.18 11.47 11.57 11.76 12.06 12.35 12.65 12.94 13.24 13.53 13.82 14.12 

Recycle Ratio 2.05 1.99 1.98 1.94 1.90 1.85 1.81 1.77 1.73 1.62 1.62 1.62 

Area (Ft2) 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 

Rejection (%) 91.83 92.02 92.08 92.19 92.36 92.52 92.68 92.82 92.97 93.10 93.23 93.35 

NO3 Permeate Conc. (mg NO3/L) 27.02 26.40 26.20 25.81 25.26 24.72 24.21 23.73 23.26 22.82 22.39 21.98 

TDS Permeate Conc. (mg/L) 118.18 115.48 114.61 112.92 110.47 108.14 105.91 103.78 101.74 99.78 97.91 96.11 

pH 6.43 6.42 6.42 6.41 6.40 6.39 6.39 6.38 6.37 6.36 6.35 6.34 

# of Elements 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

NO3 Initial (mg/L) 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 

TDS Initial (mg/L) 1446.27 1446.27 1446.27 1446.27 1446.27 1446.27 1446.27 1446.27 1446.27 1446.27 1446.27 1446.27 

Nitrate Passage 0.15 0.15 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.12 0.12 

Salt Passage 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 

Feed Press. (PSIG) 227.39 228.00 228.20 228.60 229.40 230.10 230.90 231.80 232.70 235.57 237.70 239.90 

Conc. Pressure (PSIG) 225.86 226.50 226.70 227.00 227.80 228.50 229.30 230.20 231.00 233.90 236.00 238.20 

units GPD                       

Avg Demand 894                       

Design Flow (2*Av*1.1) 1966.8                       
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Table D-1B: Bluerock View Apartments 3-element operation results. 

Feed Flow (GPD) 2666.67 2888.89 3111.11 3333.33 3555.56 3777.78 4000.00 4222.22 4444.44 4666.67 

Permeate Flow (GPD) 2400.00 2600.00 2800.00 3000.00 3200.00 3400.00 3600.00 3800.00 4000.00 4200.00 

Recovery % 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 

Permeate Flux (gfd) 9.41 10.20 10.98 11.76 12.55 13.33 14.12 14.90 15.69 16.47 

Recycle Ratio 1.62 1.50 1.39 1.30 1.22 1.14 1.08 1.02 0.97 0.93 

Area (Ft2) 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 

Rejection (%) 90.84 91.47 92.10 92.73 93.29 93.37 94.12 94.52 94.80 95.09 

NO3 Permeate Conc. (mg NO3/L) 30.23 28.15 26.02 23.86 21.97 20.52 19.22 17.88 16.97 16.03 

TDS Permeate Conc. (mg/L) 132.49 123.35 114.24 105.14 97.09 90.74 85.06 79.25 75.21 71.06 

pH 6.48 6.45 6.42 6.38 6.35 6.32 6.29 6.26 6.24 6.21 

# of Elements 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

NO3 Initial (mg/L) 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 180.00 

TDS Initial (mg/L) 1386.85 1386.85 1386.85 1386.85 1386.85 1386.85 1386.85 1386.85 1386.85 1386.85 

Nitrate Passage 0.17 0.16 0.14 0.13 0.12 0.11 0.11 0.10 0.09 0.09 

Salt Passage 0.10 0.09 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 

Feed Press. (PSIG) 201.71 203.90 206.40 206.60 207.30 209.20 209.90 211.90 214.00 216.90 

Conc. Pressure (PSIG) 199.20 201.30 203.70 203.90 204.50 206.30 206.90 208.80 210.80 213.60 

units GPD                   

Avg Demand 894                   

Design Flow (2*Av*1.1) 1966.8                   
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Table D-1C: Santa Teresa Farms Park 3-element operation results. 

Feed Flow (GPD) 3000.00 3222.22 3412.22 3666.67 3888.89 4111.11 4333.33 4555.56 

Permeate Flow (GPD) 2700.00 2900.00 3071.00 3300.00 3500.00 3700.00 3900.00 4100.00 

Recovery % 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 

Permeate Flux (gfd) 10.59 11.37 12.04 12.94 13.73 14.51 15.29 16.08 

Recycle Ratio 1.44 1.34 1.27 1.18 1.11 1.05 1.00 0.95 

Area (Ft2) 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 

Rejection (%) 91.91 92.58 93.06 93.60 94.05 94.37 94.71 95.02 

NO3 Permeate Conc. (mg NO3/L) 6.69 6.11 5.70 5.24 4.86 4.60 4.32 4.06 

TDS Permeate Conc. (mg/L) 45.38 41.62 38.95 35.90 33.37 31.57 29.66 27.92 

pH 6.51 6.47 6.44 6.41 6.38 6.35 6.33 6.30 

# of Elements 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

NO3 Initial (mg/L) 45.00 45.00 45.00 45.00 45.00 45.00 45.00 45.00 

TDS Initial (mg/L) 561.09 561.09 561.09 561.09 561.09 561.09 561.09 561.09 

Nitrate Passage 0.15 0.14 0.13 0.12 0.11 0.10 0.10 0.09 

Salt Passage 0.08 0.07 0.07 0.06 0.06 0.06 0.05 0.05 

Feed Press. (PSIG) 128.90 131.70 134.40 138.25 141.54 145.60 149.29 153.00 

Conc. Pressure (PSIG) 126.24 129.00 131.50 135.30 138.50 142.50 156.06 149.70 

units GPD               

Avg Demand 1396               

Design Flow (2*Av*1.1) 3071.2               
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Table D-1D: Pryor Farms well “6” single pass 4-element operation results. 

Feed Flow (GPD) 5944.44 6000.00 6055.56 6111.11 6166.67 6222.22 6277.78 6333.33 6388.89 6444.44 

Permeate Flow (GPD) 5350.00 5400.00 5450.00 5500.00 5550.00 5600.00 5650.00 5700.00 5750.00 5800.00 

Recovery % 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 

Permeate Flux (gfd) 15.74 15.88 16.03 16.18 16.32 16.47 16.62 16.76 16.91 17.06 

Recycle Raio 0.73 0.72 0.71 0.71 0.70 0.69 0.69 0.68 0.68 0.67 

Area (Ft2) 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 85.00 

Rejection (%) 95.73 95.78 95.82 95.89 95.93 95.95 96.01 96.05 96.09 96.15 

NO3 Permeate Conc. (mg NO3/L) 8.61 8.52 8.43 8.30 8.22 8.14 8.06 7.98 7.92 7.78 

TDS Permeate Conc. (mg/L) 53.62 53.06 52.52 51.70 51.18 50.66 50.15 49.65 49.16 48.83 

pH 6.19 6.19 6.18 6.17 6.17 6.17 6.16 6.16 6.15 6.15 

# of Elements 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 

NO3 Initial (mg/L) 101.70 101.70 101.70 101.70 101.70 101.70 101.70 101.70 101.70 101.70 

TDS Initial (mg/L) 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 1257.00 

Nitrate Passage 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

Salt Passage 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

Feed Press. (PSIG) 190.20 190.84 191.50 191.65 192.30 192.90 193.55 194.20 194.83 194.95 

Conc. Pressure (PSIG) 185.00 185.60 186.20 186.35 187.00 187.50 188.20 188.80 189.36 189.44 

units GPD                   

Avg Demand 2546                   

Peak Demand 3997                   

Design Flow (2*Av*1.1) 5601.2                   
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Table D-1E: Pryor Farms well “L” (decommissioned from operation) two-pass, 10-element operation results. 

1ST PASS 

Raw Feed (GPD) 5880 5997 6113 6230 6347 6463 6580 6697 6813 

Feed Flow (GPD) 8400 8567 8733 8900 9067 9233 9400 9567 9733 

1st Pass Permeate Flow (GPD)  7560 7710 7860 8010 8160 8310 8460 8610 8760 

1st Pass Permeate Flux (gfd) 14.82 15.12 15.41 15.71 16.00 16.29 16.59 16.88 17.18 

1st Pass Recycle Ratio 0.51 0.50 0.49 0.49 0.48 0.47 0.46 0.45 0.44 

Permeate Blending (GPD) 2520 2570 2620 2670 2720 2770 2820 2870 2920 

1st Pass Rejection (%) 96.6 96.7 96.78 96.85 96.93 97 97.06 97.13 97.19 

NO3 permeate conc (mg NO3/L) 21.93 21.3 20.79 20.3 19.83 19.38 18.95 18.53 18.13 

TDS permeate conc (mg/L) 51.72 50.22 49 47.85 46.75 45.68 44.66 43.67 42.72 

pH 6.03 6.02 6.01 6 5.99 5.98 5.97 5.96 5.95 

1st Feed Press. (PSIG) 163.88 165 166.34 167.7 169.1 170.6 172 173.5 174.9 

1st Conc. Press. (PSIG) 153.72 154.6 155.81 157 158.3 159.5 160.8 162 163.3 

2ND PASS 

2nd Pass Permeate Flow (GPD)  2520 2570 2620 2670 2720 2770 2820 2870 2920 

2nd Pass Permeate Flux (gfd) 7.41 7.56 7.71 7.85 8.00 8.15 8.29 8.44 8.59 

2nd Pass Recycle Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2nd Pass Rejection (%) 97.3 97.37 97.41 97.45 97.5 97.53 97.56 97.6 97.64 

NO3 permeate conc (mg NO3/L) 0.76 0.73 0.7 0.67 0.64 0.61 0.59 0.57 0.55 

TDS permeate conc (mg/L) 1.38 1.32 1.27 1.22 1.17 1.13 1.09 1.05 1.01 

pH 4.49 4.47 4.45 4.43 4.41 4.4 4.38 4.36 4.35 

2nd Feed Press. (PSIG) 47.16 48.12 49.1 50.1 51 52 52.9 53.9 54.9 

2nd Conc. Press. (PSIG) 45.46 46.4 47.27 48.2 49.1 50 50.9 51.8 52.7 

POST-BLENDING WATER 

NO3 permeate conc (mg NO3/L) 11.345 11.015 10.745 10.485 10.235 9.995 9.77 9.55 9.34 

TDS permeate conc (mg/L) 26.55 25.77 25.135 24.535 23.96 23.405 22.875 22.36 21.865 

Permeate Production Flow (GPD) 5040 5140 5240 5340 5440 5540 5640 5740 5840 
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Table D-1F: Pryor Farms well “L” (decommissioned from operation) two-pass, 10-element operation results continuation. 

 

Avg demand (GPD) 2520 

Peak demand (GPD) 3594 

Design Production Flow (GPD) 5440 

Overall recovery  90.00 

TDS Initial (mg/L) 1520 

NO₃⁻ Initial (mg/L) 389.7 

1ST PASS ELEMENT COUNT  

6  

2ND PASS ELEMENT COUNT  

4  

MEMBRANE TYPE  

CSM RE4040-BE  

MEMBRANE AREA (Ft²)  

85  

 

 

 

 

 

 

 

 

 



110 

 

Study DACs Site maximum allowable feed concentration simulation (CSMPro5) results until reaching EPA MCL (45 mg/L 

as NO3
-) based on design production capacity: 

Table D-2A-B: Bluerock View Apartments (left) and Santa Teresa Farms Park (right) maximum allowable nitrate feed concentration 

(mg/L as NO3
-) simulation results at design capacity of 1966 GPD (2-E) & 3070 GPD (3-E) respectively before producing a permeate 

with the EPA MCL for nitrate (45 mg/L as NO3
-) 

Feed nitrate conc. (mg/L as 
NO3

-) 
Permeate nitrate conc (mg/L 

as NO3
-) 

30 4.35 

50 7.26 

70 10.16 

90 13.07 

110 15.99 

130 18.9 

150 21.82 

170 24.75 

190 27.67 

210 30.6 

230 33.53 

250 36.51 

270 39.41 

290 42.35 

310 45.29 

 

 

 

 

 

Feed nitrate conc. (mg/L as 
NO3

-) 
Permeate nitrate conc (mg/L 

as NO3
-) 

30 3.79 

60 7.59 

90 11.36 

120 15.14 

150 18.9 

180 22.66 

210 26.69 

240 30.48 

270 34.25 

300 38 

330 41.75 

360 45.29 
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Table D-2C: Pryor Farms well “6” maximum allowable nitrate feed concentration (mg/L as NO3
-) simulation results at design 

capacity of 5600 GPD (3-E) before producing a permeate with the EPA MCL for nitrate (45 mg/L as NO3
-). 

Feed nitrate conc. (mg/L as 
NO3

-) 
Permeate nitrate conc (mg/L 

as NO3
-) 

20 1.6 

60 4.79 

100 8 

140 11.2 

180 14.44 

220 17.68 

260 20.92 

300 24.09 

340 27.33 

380 30.59 

420 33.85 

460 37.12 

500 40.4 

540 43.55 

580 46.23 
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Study DACs Site maximum allowable feed concentration simulation (CSMPro5) results until reaching “Safe Point” limit of 

25 mg/L as NO3
- in the permeate based on design range of production: 

Table D-3A: Bluerock View Apartments DAC maximum allowable nitrate feed concentration (mg/L as NO3
-) simulation results at 

design range of production (1,900 – 2,400 GPD) before producing a permeate with the design “Safe Point” limit for nitrate (20  mg/L 

as NO3
-). 

Feed nitrate conc. 
(mg/L as NO3

-) 
Permeate nitrate conc 

(mg/L as NO3
-) 

Permeate flowrate (GPD) 

135 20.14 1900 

138 20.12 1950 

141 20.1 2000 

144 20.08 2050 

147 20.06 2100 

150 20.05 2150 

153 20.04 2200 

156 20.03 2250 

159 20.02 2300 

162 20.02 2350 

165 20.02 2400 
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Table D-3B: Santa Teresa Farms Park DAC maximum allowable nitrate feed concentration (mg/L as NO3
-) simulation results at 

design range of production (2,700 – 4,100 GPD) before producing a permeate with the design “Safe Point” limit for nitrate (20  mg/L 

as NO3
-) 

Feed nitrate conc. 
(mg/L as NO3

-) 
Permeate nitrate conc 

(mg/L as NO3
-) 

Permeate flowrate (GPD) 

136 20.01 2700 

147 19.96 2900 

161 20.03 3100 

172 20.01 3300 

184 20 3500 

198 20.01 3700 

209 20.05 3900 

222 20.07 4100 

 

Table D-3C: Pryor Farms DAC well “6” maximum allowable nitrate feed concentration (mg/L as NO3
-) simulation results at design 

range of production (5,350 – 5,800GPD) before producing a permeate with the design “Safe Point” limit for nitrate (20  mg/L as NO3
-) 

Feed nitrate conc. 
(mg/L as NO3

-) 
Permeate nitrate conc 

(mg/L as NO3
-) 

Permeate flowrate (GPD) 

237 20.05 5350 

240 20.01 5400 

242.5 19.98 5450 

245 20.02 5500 

247.5 20.07 5550 

250 20.11 5600 

252.5 20.08 5650 

255 19.94 5700 

258 19.98 5750 

261 20.02 5800 
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Study DACs Site nitrate-salt passage correlation simulation (CSMPro5) results  

 

Table D-4A: Data for the Bluerock View Apartments DAC simulations at recovery settings of 50, 70, and 90%, feed NO3 

concentrations of 100, 180, 260 mg/L as NO3
-, and flux range of operation of 10-15 gfd 

10 gfd 1700GPD         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 100 180 260 100 180 260 100 180 260 

TDS Feed (mg/L) 1467.82 1577.5 1687.18 1467.82 1577.5 1687.18 1467.82 1577.5 1687.18 

Flux 10 10 10 10 10 10 10 10 10 

NO3 In perm. (mg/L) 16.44 29.4 42.19 5.46 9.83 14.21 3.21 5.79 8.37 

TDS In perm. (mg/L) 124.38 138.97 153.37 41.41 46.6 51.79 24.32 27.38 30.45 

NO3 Passage 0.1644 0.163333 0.162269 0.0546 0.054611 0.054654 0.0321 0.032167 0.032192 

Salt Passage 0.084738 0.088095 0.090903 0.028212 0.02954 0.030696 0.016569 0.017357 0.018048 

          

          

          

          

11 gfd 1870GPD         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 100 180 260 100 180 260 100 180 260 

TDS Feed (mg/L) 1467.82 1577.5 1687.18 1467.82 1577.5 1687.18 1467.82 1577.5 1687.18 

Flux 11 11 11 11 11 11 11 11 11 

NO3 In perm. (mg/L) 15.1 27.02 38.78 4.96 8.87 12.8 2.91 5.25 7.59 

TDS In perm. (mg/L) 114.25 127.7 140.98 37.62 41.97 46.66 22.05 24.83 27.61 

NO3 Passage 0.151 0.150111 0.149154 0.0496 0.049278 0.049231 0.0291 0.029167 0.029192 

Salt Passage 0.077837 0.080951 0.08356 0.02563 0.026605 0.027656 0.015022 0.01574 0.016365 
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12 gfd 2040GPD         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 100 180 260 100 180 260 100 180 260 

TDS Feed (mg/L) 1467.82 1577.5 1687.18 1467.82 1577.5 1687.18 1467.82 1577.5 1687.18 

Flux 12 12 12 12 12 12 12 12 12 

NO3 In perm. (mg/L) 13.98 25.01 35.92 4.51 8.12 11.74 2.66 4.8 6.94 

TDS In perm. (mg/L) 105.74 118.22 130.56 34.17 38.47 42.77 20.16 22.7 25.24 

NO3 Passage 0.1398 0.138944 0.138154 0.0451 0.045111 0.045154 0.0266 0.026667 0.026692 

Salt Passage 0.072039 0.074941 0.077384 0.023279 0.024387 0.02535 0.013735 0.01439 0.01496 

 

 

13 gfd 2210GPD         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 100 180 260 100 180 260 100 180 260 

TDS Feed (mg/L) 1467.82 1577.5 1687.18 1467.82 1577.5 1687.18 1467.82 1577.5 1687.18 

Flux 13 13 13 13 13 13 13 13 13 

NO3 In perm. (mg/L) 13.02 23.31 33.48 4.12 7.42 10.74 2.45 4.42 6.39 

TDS In perm. (mg/L) 98.49 110.15 121.68 31.25 35.18 39.12 18.56 20.89 23.23 

NO3 Passage 0.1302 0.1295 0.128769 0.0412 0.041222 0.041308 0.0245 0.024556 0.024577 

Salt Passage 0.0671 0.069826 0.07212 0.02129 0.022301 0.023187 0.012645 0.013242 0.013769 

          

          

          

          

14 gfd 2380GPD         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 100 180 260 100 180 260 100 180 260 

TDS Feed (mg/L) 1467.82 1577.5 1687.18 1467.82 1577.5 1687.18 1467.82 1577.5 1687.18 

Flux 14 14 14 14 14 14 14 14 14 
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NO3 In perm. (mg/L) 12.2 21.84 31.37 3.82 6.88 9.95 2.27 4.1 5.93 

TDS In perm. (mg/L) 92.25 103.2 114.03 28.94 32.59 36.24 17.18 19.34 21.51 

NO3 Passage 0.122 0.121333 0.120654 0.0382 0.038222 0.038269 0.0227 0.022778 0.022808 

Salt Passage 0.062848 0.06542 0.067586 0.019716 0.020659 0.02148 0.011704 0.01226 0.012749 

          

          

          

          

15 gfd 2550GPD         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 100 180 260 100 180 260 100 180 260 

TDS Feed (mg/L) 1467.82 1577.5 1687.18 1467.82 1577.5 1687.18 1467.82 1577.5 1687.18 

Flux 15 15 15 15 15 15 15 15 15 

NO3 In perm. (mg/L) 11.48 20.56 29.54 3.55 6.41 9.27 2.11 3.81 5.51 

TDS In perm. (mg/L) 86.82 97.14 107.36 26.94 30.33 33.74 15.99 18 20.02 

NO3 Passage 0.1148 0.114222 0.113615 0.0355 0.035611 0.035654 0.0211 0.021167 0.021192 

Salt Passage 0.059149 0.061578 0.063633 0.018354 0.019227 0.019998 0.010894 0.01141 0.011866 

 

 

 

 

 

 

 

 

 

 

 

 

Table D-4B: Data for the Santa Teresa Farms DAC simulations at recovery settings of 50, 70, and 90%, feed NO3 concentrations of 

20, 60, 100 mg/L as NO3
-, and flux range of operation of 10-15 gfd 
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10 gfd 2550GPD         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 20 60 100 20 60 100 20 60 100 

TDS Feed (mg/L) 539.27 594.1 648.95 539.27 594.1 648.95 539.27 594.1 648.95 

Flux 10 10 10 10 10 10 10 10 10 

NO3 In perm. (mg/L) 3.18 9.51 15.81 1 3.01 5.03 0.6 1.81 3.02 

TDS In perm. (mg/L) 44.67 52.04 59.37 14.1 16.49 18.89 8.41 9.83 11.26 

NO3 Passage 0.159 0.1585 0.1581 0.05 0.050167 0.0503 0.03 0.030167 0.0302 

Salt Passage 0.082834 0.087595 0.091486 0.026146 0.027756 0.029109 0.015595 0.016546 0.017351 

          

          

          

          

11 gfd 2805GPD         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 20 60 100 20 60 100 20 60 100 

TDS Feed (mg/L) 539.27 594.1 648.95 539.27 594.1 648.95 539.27 594.1 648.95 

Flux 11 11 11 11 11 11 11 11 11 

NO3 In perm. (mg/L) 2.83 8.48 14.11 0.91 2.74 4.57 0.54 1.63 2.73 

TDS In perm. (mg/L) 39.98 46.58 53.15 12.74 14.91 17 7.61 8.9 10.19 

NO3 Passage 0.1415 0.141333 0.1411 0.0455 0.045667 0.0457 0.027 0.027167 0.0273 

Salt Passage 0.074137 0.078404 0.081902 0.023625 0.025097 0.026196 0.014112 0.014981 0.015702 

          

          

          

          

12 gfd 3060GPD         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 20 60 100 20 60 100 20 60 100 

TDS Feed (mg/L) 539.27 594.1 648.95 539.27 594.1 648.95 539.27 594.1 648.95 

Flux 12 12 12 12 12 12 12 12 12 
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NO3 In perm. (mg/L) 2.54 7.61 12.68 0.83 2.48 4.13 0.49 1.49 2.49 

TDS In perm. (mg/L) 35.98 42.03 47.89 11.61 13.56 15.44 6.91 8.12 9.3 

NO3 Passage 0.127 0.126833 0.1268 0.0415 0.041333 0.0413 0.0245 0.024833 0.0249 

Salt Passage 0.06672 0.070746 0.073796 0.021529 0.022824 0.023792 0.012814 0.013668 0.014331 

 

 

 

13 gfd 4420         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 100 200 400 100 200 400 100 200 400 

TDS Feed (mg/L) 1249.48 1349.49 1540.5 1249.48 1349.49 1540.5 1249.48 1349.49 1540.5 

Flux 13 13 13 13 13 13 13 13 13 

NO3 In perm. (mg/L) 10.52 21.07 42.37 3.58 7.13 14.29 2.21 4.42 8.86 

TDS In perm. (mg/L) 65.1 75.73 97.26 21.75 25.2 32.41 13.35 15.58 20.04 

NO3 Passage 0.1052 0.10535 0.105925 0.0358 0.03565 0.035725 0.0221 0.0221 0.02215 

Salt Passage 0.052102 0.056117 0.063135 0.017407 0.018674 0.021039 0.010684 0.011545 0.013009 

Feed Pressure 178.57 186.02 201.12 119.39 121.92 127.45 110.45 112.38 116.25 

Concentrate Pressure 174.02 181.48 196.61 113.09 115.62 121.16 100.72 102.65 106.52 

          

          

14 gfd 4760         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 100 200 400 100 200 400 100 200 400 

TDS Feed (mg/L) 1249.48 1349.49 1540.5 1249.48 1349.49 1540.5 1249.48 1349.49 1540.5 

Flux 14 14 14 14 14 14 14 14 14 

NO3 In perm. (mg/L) 9.7 19.26 38.77 3.3 6.57 13.18 2.04 4.09 8.19 

TDS In perm. (mg/L) 59.96 69.17 88.98 20.04 23.22 29.87 12.34 14.39 18.51 

NO3 Passage 0.097 0.0963 0.096925 0.033 0.03285 0.03295 0.0204 0.02045 0.020475 

Salt Passage 0.047988 0.051256 0.05776 0.016039 0.017207 0.01939 0.009876 0.010663 0.012016 

Feed Pressure 182.35 188.79 203.53 125.06 127.53 132.93 116.72 118.61 122.4 

Concentrate Pressure 177.57 184.02 198.8 118.36 120.83 126.24 106.22 108.11 111.91 
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15 gfd 5100         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 100 200 400 100 200 400 100 200 400 

TDS Feed (mg/L) 1249.48 1349.49 1540.5 1249.48 1349.49 1540.5 1249.48 1349.49 1540.5 

Flux 15 15 15 15 15 15 15 15 15 

NO3 In perm. (mg/L) 8.89 17.82 35.93 3.06 6.13 12.22 1.9 3.8 7.61 

TDS In perm. (mg/L) 54.9 63.96 82.41 18.56 21.66 27.68 11.46 13.37 17.2 

NO3 Passage 0.0889 0.0891 0.089825 0.0306 0.03065 0.03055 0.019 0.019 0.019025 

Salt Passage 0.043938 0.047396 0.053496 0.014854 0.016051 0.017968 0.009172 0.009907 0.011165 
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Table D-4C: Data for the Pryor Farms DAC simulations at recovery settings of 50, 70, and 90%, feed NO3 concentrations of 100, 

200, and 400 mg/L as NO3
-, and flux range of operation of 10-15 gfd 

 

10 gfd 3400GPD         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 100 200 400 100 200 400 100 200 400 

TDS Feed (mg/L) 1227.68 1364.78 1638.99 1227.68 1364.78 1638.99 1227.68 1364.78 1638.99 

Flux 10 10 10 10 10 10 10 10 10 

NO3 In perm. (mg/L) 14.4 28.94 58.2 4.76 9.47 19.02 2.92 5.84 11.72 

TDS In perm. (mg/L) 87.26 104.62 139.17 28.5 33.94 45.3 17.35 20.83 27.81 

NO3 Passage 0.144 0.1447 0.1455 0.0476 0.04735 0.04755 0.0292 0.0292 0.0293 

Salt Passage 0.071077 0.076657 0.084912 0.023215 0.024868 0.027639 0.014132 0.015263 0.016968 

          

          

          

          

11 gfd 3740GPD         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 100 200 400 100 200 400 100 200 400 

TDS Feed (mg/L) 1227.68 1364.78 1638.99 1227.68 1364.78 1638.99 1227.68 1364.78 1638.99 

Flux 11 11 11 11 11 11 11 11 11 

NO3 In perm. (mg/L) 12.86 25.83 52.11 4.3 8.55 17.16 2.63 5.28 10.59 

TDS In perm. (mg/L) 78.1 93.57 124.92 25.68 30.59 40.84 15.67 18.81 25.12 

NO3 Passage 0.1286 0.12915 0.130275 0.0430 0.04275 0.0429 0.0263 0.0264 0.026475 

Salt Passage 0.063616 0.068561 0.076218 0.020918 0.022414 0.024918 0.012764 0.013782 0.015327 

          

          

          

          

12 gfd 4080GPD         

Recovery (%) 90 90 90 70 70 70 50 50 50 
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NO3 Feed (mg/L) 100 200 400 100 200 400 100 200 400 

TDS Feed (mg/L) 1227.68 1364.78 1638.99 1227.68 1364.78 1638.99 1227.68 1364.78 1638.99 

Flux 12 12 12 12 12 12 12 12 12 

NO3 In perm. (mg/L) 11.6 23.2 46.53 3.91 7.78 15.61 2.4 4.81 9.66 

TDS In perm. (mg/L) 70.5 84.14 111.85 23.33 27.81 37.14 14.28 17.15 22.9 

NO3 Passage 0.116 0.116 0.116325 0.0391 0.0389 0.039025 0.024 0.02405 0.02415 

Salt Passage 0.057425 0.061651 0.068243 0.019003 0.020377 0.02266 0.011632 0.012566 0.013972 

 

 

13 gfd 4420GPD         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 100 200 400 100 200 400 100 200 400 

TDS Feed (mg/L) 1227.68 1364.78 1638.99 1227.68 1364.78 1638.99 1227.68 1364.78 1638.99 

Flux 13 13 13 13 13 13 13 13 13 

NO3 In perm. (mg/L) 10.56 21.2 42.54 3.58 7.13 14.31 2.21 4.42 8.87 

TDS In perm. (mg/L) 64.22 76.95 102.26 21.36 25.47 34.01 13.11 15.74 21.02 

NO3 Passage 0.1056 0.106 0.10635 0.0358 0.03565 0.035775 0.0221 0.0221 0.022175 

Salt Passage 0.05231 0.056383 0.062392 0.017399 0.018662 0.020751 0.010679 0.011533 0.012825 

          

          

          

          

14 gfd 4760GPD         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 100 200 400 100 200 400 100 200 400 

TDS Feed (mg/L) 1227.68 1364.78 1638.99 1227.68 1364.78 1638.99 1227.68 1364.78 1638.99 

Flux 14 14 14 14 14 14 14 14 14 

NO3 In perm. (mg/L) 9.63 19.44 39.11 3.3 6.57 13.19 2.04 4.09 8.2 

TDS In perm. (mg/L) 58.52 70.56 93.99 19.68 23.47 31.35 12.12 14.55 19.42 

NO3 Passage 0.0963 0.0972 0.097775 0.033 0.03285 0.032975 0.0204 0.02045 0.0205 

Salt Passage 0.047667 0.051701 0.057346 0.01603 0.017197 0.019128 0.009872 0.010661 0.011849 
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15 gfd 5100GPD         

Recovery (%) 90 90 90 70 70 70 50 50 50 

NO3 Feed (mg/L) 100 200 400 100 200 400 100 200 400 

TDS Feed (mg/L) 1227.68 1364.78 1638.99 1227.68 1364.78 1638.99 1227.68 1364.78 1638.99 

Flux 15 15 15 15 15 15 15 15 15 

NO3 In perm. (mg/L) 8.88 17.82 36.1 3.06 6.12 12.23 1.9 3.8 7.62 

TDS In perm. (mg/L) 53.92 65.07 86.81 18.23 21.89 29.05 11.26 13.51 18.04 

NO3 Passage 0.0888 0.0891 0.09025 0.0306 0.0306 0.030575 0.019 0.019 0.01905 

Salt Passage 0.04392 0.047678 0.052966 0.014849 0.016039 0.017724 0.009172 0.009899 0.011007 
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Study DACs Site nitrate-salt passage correlation simulation (CSMPro5) figures for 50 & 70% recovery operation (90% 

operation is found in section 5.5)  

 

 
Figure D-4A: Blue Rock View Apartments site-specific salt passage-nitrate passage correlation of different feed nitrate 

concentrations (100, 180, and 260 mg/L as NO3
-) simulated at 50% recovery operation. Isoflux lines are indicated by the color black, 

followed by their coefficient of determination value. Current nitrate levels measured at the ground water well are 180 mg/L as NO3
-. 
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Figure D-4B: Blue Rock View Apartments site-specific salt passage-nitrate passage correlation of different feed nitrate 

concentrations (100, 180, and 260 mg/L as NO3-) simulated at 70% recovery operation. Isoflux lines are indicated by the color black, 

followed by their coefficient of determination value. Current nitrate levels measured at the ground water well are 180 mg/L as NO3
-. 
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Figure D-4C: Santa Teresa Farms Park site-specific salt passage-nitrate passage correlation of different feed nitrate concentrations 

(20, 60, and 100 mg/L as NO3-) simulated at 50% recovery operation. Isoflux lines are indicated by the color black, followed by their 

coefficient of determination value. Current nitrate levels measured at the ground water well are 45 mg/L as NO3
-. 
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Figure D-4D: Santa Teresa Farms Park site-specific salt passage-nitrate passage correlation of different feed nitrate concentrations 

(20, 60, and 100 mg/L as NO3-) simulated at 70% recovery operation. Isoflux lines are indicated by the color black, followed by their 

coefficient of determination value. Current nitrate levels measured at the ground water well are 45 mg/L as NO3
-. 
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Figure D-4E: Pryor Farms well “6” site-specific salt passage-nitrate passage correlation of different feed nitrate concentrations (100, 

200, and 400 mg/L as NO3-) simulated at 50% recovery operation. Isoflux lines are indicated by the color black, followed by their 

coefficient of determination value. Current nitrate levels measured at the ground water well are 101.7 mg/L as NO3
-. 
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Figure D-4F: Pryor Farms well “6” site-specific salt passage-nitrate passage correlation of different feed nitrate concentrations (100, 

200, and 400 mg/L as NO3-) simulated at 70% recovery operation. Isoflux lines are indicated by the color black, followed by their 

coefficient of determination value. Current nitrate levels measured at the ground water well are 101.7 mg/L as NO3
-. 
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Appendix E: Site Topography & Information 

 

Figure E-1: Topography and location indication of the three research sites in the Salinas Valley. 
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Figure E-1A: Schematic illustration of the existing water system layout in Blue Rock View Apartments (Note: 

community sanitary wastewater is discharged to a 4,500 gallons septic tank located 112 ft Southeast of the pressure 

tank.). 

 

 

Figure E-1B: Schematic illustration of the existing water system layout in Santa Teresa Park Farms  (Note: 

Community sanitary wastewater is discharged to two 2,500 gallons septic tanks located 170 ft (52 m) west and 330 

ft (100 m) northwest of the pressure tank, respectively. Well pump station (inset) is located 1,250 ft (381 m) west of 

the pressure tank. The length of the fenced area is 21 ft long and 31 ft wide. The water distribution site has a 

concrete slab flooring with an area of 90 ft2).  
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Figure E-1C: Schematic illustration of the existing water system layout in Pryor Farms (Note: Community sanitary 

wastewater is discharged to a 5,000 gallons septic tank located 220 ft (67 m) southeast of the pressure tank). 
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Sensors Location Operating Pressure (Min-Max, PSI) Temperature (Min-Max, F) Average TDS (mg/L)

PI F01 Pretreatment 15-60 50-120 1300-1500

FT 01 RO Feed 60-100 50-120 1300-1500

PT 01 RO Feed 60-100 50-120 1300-1500

PT 02 RO Feed 60-100 50-120 1300-1500

CT 01 RO Feed 60-100 50-120 1300-1500

PT 03 RO Concentrate 200-300 50-150 15,000-17,000

FT 02 RO Recycle 60-100 50-150 15,000-17,000

FM-3 RO Permeate 15-30 50-150 40-100

PT 04 RO Permeate 15-30 50-150 40-100

NS 01 RO Permeate 15-30 50-150 40-100

TT 01 RO Permeate 15-30 50-150 40-100

CT 02 RO Permeate 15-30 50-150 40-100

PI D01 Post treatment 50-60 50-150 100-300

FT D01 Post treatment 50-60 50-150 100-300

FT R01 Residual Management 15-60 50-150 100-3000

HLS F01 Feed Tank 15 50-120 1300-1500

LLS F01 Feed Tank 15 50-120 1300-1500

LT D01 Potable Water Tank 15 50-120 100-300

LLS D01 Potable Water Tank 15 50-120 100-300

PS D01 Pressure Tank 50-60 50-120 100-300

Appendix F: System Component Information 

Table F-1: List of sensors with indication of location & operating conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table F-2: List of pumps with indication of location & operating conditions. 

 
 

 

Pumps Location Operating Pressure (Min-Max, PSI) Temperature (Min-Max, F) Average TDS (mg/L)

P F01 Submerged Well Pump 15-60 50-100 1300-1500

P 01 Cartridge Filter Pump 60-100 50-100 1300-1500

MP 01 AS Metering Pump 60-100 50-100 NA

P 02 RO Feed Pump 200-300 50-120 10,000-15,000

P D01 Storage/Distribution 

Pump

50-60 50-100 100-1500

MP 02 Chlorine Pump 50-60 50-100 NA
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Table F-3: List of valves with indication of location & operating conditions. 

 

Valves Actuation Location Operating Pressure (Min-Max, PSI)Temperature (Min-Max, F) Average TDS (mg/L)

MV F01 Manual Maitnance/Bypass 15-30 50-100 1300-1500

MV F02 Manual RO Feed 15-30 50-100 1300-1500

MV 01 Manual RO Feed 15-60 50-100 1300-1500

MV 02 Manual RO Feed 15-60 50-100 1300-1500

MV 03 Manual RO Feed 15-60 50-100 1300-1500

MV 05 Manual Antiscalant Dosing 15-60 50-100 NA

MV D01 Manual Post Treatment 15-30 50-100 100-300

MV D02 Manual Post Treatment 15-30 50-100 100-1500

MV D03 Manual Disinfectant Dosing 15-30 50-100 NA

MV D04 Manual Post Treatment 50-60 50-100 100-1500

MV R01 Manual Residual Management 15-30 50-120 1500-15,000

MV R02 Manual Residual Management 15-30 50-120 1500-15,000

AV 01 Automated RO Feed 15-60 50-120 100-1500

AV 02 Automated RO Concentrate 200-300 50-120 15,000-17,000

AV 03 Automated RO Residual 15-30 50-120 15,000-17,000

AV 04 Automated RO Permeate 15-30 50-120 40-100

CV 01 Manual RO Permeate 15-30 50-120 40-100

AG 01 Manual Residual Management 15-30 50-120 1500-15,000
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RO Technical Manual: 

Table F-4: RO membrane of choice (RE4040-BE) technical manual summary (adapted from 

[75]). 

M
em

b
ra

n
e 

ty
p

e 

d
es

c
ri

p
ti

o
n

  

Membrane name RE4040-BE 

Membrane type 
Thin Film 

Composite 

Membrane material  Polyamide(PA) 

Element configuration Spiral-Wound 

G
en

er
a

l 

sp
ec

if
ic

a
ti

o
n

s Permeate flowrate (GPD) 2,400.0 

Nominal salt (%) 99.7 

Effective membrane area (ft2) 85.0 

O
p

er
a
ti

n
g
 l

im
it

s 

Max. operating pressure (PSI) 600.0 

Max. feed flowrate (GPD) 25920.0 

Min. concentrate flowrate (GPD) 5760.0 

Max. operating temperature (F) 113.0 

Operating pH range 2.0-11.0 

Max. turbidity (NTU) 1.0 

Max. SDI  5.0 

Max. chlorine concentration (mg/L) <0.1 

D
es

ig
n

 

g
u

id
el

in
es

 

fo
r 

v
a
ri

o
u

s 

w
a
te

r 

so
u

rc
es

 

Surface water, SDI < 5 (gfd) 12.0-16.0 

Surface water, SDI < 3 (gfd) 13.0-17.0 

Well water, SDI < 3 (gfd) 13.0-17.0 

RO permeate, SDI < 1 (gfd) 21.0-30.0 

S
a

tu
ra

ti
o
n

 

li
m

it
s 

(u
si

n
g
 

a
n

ti
sc

a
la

n
ts

) 

CaSO4 (%) 230.0 

SrSO4 (%) 800.0 

BaSO4 (%) 6000.0 

SiO2 (%) 100.0 
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Appendix G: Mass Balance Simulation Analysis 

 In the effort of establishing certainty in the simulation’s (CSMPro5 with OLI studio 

reconciliation) result approximation, a comparison between the RO System Design simulations 

result and a steady-state material mass balance around the RO module were conducted. The 

procedure of conducting the above comparison is as follows: 

1- Conduct a simulation using CSMPro5 software on multiple DACs of concern while 

following the previously adopted design specifications (Tables 4-1B & 4-1C) and note 

down the following parameters: 

• Raw feed flowrate (Qo, GPD)  

• Module feed flowrate (Qf, GPD) 

• Permeate flowrate (Qp, GPD) 

• Concentrate flowrate (Qc, GPD) 

• Recycle flowrate (QR, GPD) 

• Discharge flowrate (QD, GPD) 

• Raw feed salt concentration (C0, 

mg/L) 

• Module feed salt concentration (Cf, mg/L) 

• Permeate salt concentration (Cp, mg/L) 

• Concentrate/Recycle/Discharge salt 

concentration (Cc, mg/L) 

• Observed salt rejection (Rs, %) 

• Intrinsic salt rejection (R, %) 

• Single-pass recovery (%) 

2- Conduct a material mass balance around the RO module (depicted in Fig. G-1A)     

 

Figure G-1A: illustrative RO process schematic showing stream labels and information 
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3- Upon setting the overall recovery, Y, to 90%; the single-pass recovery resulting from 

multiple simulations within the production range per site mentioned in specifications 

Table 4-1C is averaged to produce a single-pass recovery, YSP, which is used in the mass 

balance calculations. The parameters Q0, C0, and Qp are set according to the site-specific 

process specifications.  

4- Upon calculating an average single-pass recovery, 𝑌𝑆𝑃̅̅ ̅̅ , the resulting recycle ratio, Rratio, is 

then calculated as: 

𝑅𝑟𝑎𝑡𝑖𝑜 = 
Y

YSP̅̅ ̅̅ ̅ 
− 1         (G-1) 

 

5- The material balance’s observed rejection value, Rs, is set equal to that of the CSMPro5 

simulation (Rs = Rs-CSMP). 

6- The recycle flowrate is then calculated via 𝑄𝑅 = 𝑅𝑟𝑎𝑡𝑖𝑜 ∗  𝑄0 to reduce the number of 

unknowns in the mass balance configured around the RO recycle mix point before the 

feed pump: 

QfCf – QRCC - Q0C0 = 0      (G-2) 

And: 

  Q0 + QR = Qf        (G-3) 

7- Similarly to Eq. G-2, a steady-state mass balance around the overall RO system yields: 

QfCf - QCCC - QpCp = 0      (G-4A) 

Q0C0 – QDCC - QpCp = 0      (G-4B) 

8- Given the definitions for the single-pass water recovery for a single element or membrane 

train (YSP = Qp/Qf) and observed rejection (Rs = 1- Cp/Cf), Eq. G-4A can be re-written as: 

1

1−𝑅𝑠
−
(1−�̅�𝑆𝑃)𝐶𝐶

𝐶𝐶
− �̅�𝑆𝑃 = 0                         (G-5) 
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9- Similarly, Eq. G-4B can be re-written as: 

𝐶0

𝐶𝑝
−
(1−𝑌)𝐶𝐶

𝐶𝑝
− 𝑌 = 0        (G-6) 

 With overall recovery, Y = Qp/Q0. 

10- Combining Eqns. G-5 & G-6 yields: 

𝐶𝐶

𝐶0
=

1−�̅�𝑆𝑃(1−𝑅𝑠)

1−𝑅𝑠∙𝑌− �̅�𝑆𝑃(1−𝑅𝑠)
        (G-7) 

Of which the concentrate salt concentration (CC, mg/L) is found and used in Eq. G-2 to 

find the membrane feed salt concentration (Cf, mg/L)*. 

11- Upon finding the feed salt concentration from Eq. G-2, the permeate salt concentration 

(Cp, mg/L) is then calculated from the simulation-produced observed salt rejection value 

(Rs = 1- Cp/Cf). 

12- An identical process is done with respect to nitrate concentration to establish certainty in 

the simulation’s result approximation in terms of nitrate removal.  

Tables G-2A to G-4A indicate a salt removal (TDS, mg/L) comparison results between 

CSMPro5 (OLI studio-reconciled) simulation results and that of a steady-state mass balance  

calculation conducted around the RO module. Tables G-2B to G-4B indicate similar approach to 

the above with respect to nitrate removal (NO3
-, mg/L as NO3

-). The site-examples selected for 

this correlation are summarized in Table G-1.  

 

 

 

 

 

                                                 
* The feed to the membrane concentration (Cf, mg/L) is assumed to be the concentration at the membrane surface. 
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Table G-1: Site examples and associated key specifications defined for the comparison between 

simulation-originated results and results obtained from a steady-state mass balance calculation 

around the RO module for the sites of concern. 

  DAC example site 

  

Bluerock View 

Apartments (A) 

Bluerock View 

Apartments (B) 

Santa Teresa 

Farms Park  

Range of permeate production 

(GPD) 
2,400 - 3,100 2,400 - 3,100 2,700 - 4,100 

Average single-pass recovery 

per element (%) 
11.63 11.63 13.24 

Number of elements in 

operation 
3 3 3 

Initial TDS concentration 

(mg/L) 
1665.36 1593.64 561.19 

Initial nitrate concentration 

(mg/L) 
287 120 45 
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Table G-1A: simulation (CSMPro5) and mass balance comparison results in terms of salt 

concentration in the permeate for the Bluerock View Apartments (A) site example 

Salt   

  Simulation (CSMPro5) Mass Balance  (Using Simulation rejection) 

Q0 2666.67 2666.67 

C0 1665.36 1665.36 

Qf 6966.67 6874.82 

Cf 11799.32 10289.96 

Qp 2400.00 2400.00 

Cp 114.00 99.81 

Qc 4566.65 4474.82 

Qr 4300.00 4208.15 

Qd 266.65 266.67 

Cc 17913.78 15755.29 

      

R ratio 1.61 1.58 

Rs (observed) 0.99 0.99 

R  0.93 0.94 

Ysp 0.34 0.35 

Y 0.90 0.90 

Deviation of simulation permeate 

concentration from calculation (%) 
14.21 

 

Table G-2B: simulation (CSMPro5) and mass balance comparison results in terms of nitrate 

concentration in the permeate for the Bluerock View Apartments (A) site example 

Nitrate   

  

Simulation 

(CSMPro5) 
Mass Balance  (Using Simulation rejection) 

Q0 2666.67 2666.67 

C0 287.00 287.00 

Qf 6966.67 6874.82 

Cf 2023.12 1707.57 

Qp 2400.00 2400.00 

Cp 34.52 29.14 

Qc 4566.65 4474.82 

Qr 4300.00 4208.15 

Qd 266.65 266.67 

Cc 3063.68 2607.78 

      

R ratio 1.61 1.58 

Rs 0.98 0.98 
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R  0.88 0.90 

Ysp 0.34 0.35 

Y 0.90 0.90 

Deviation of simulation permeate 

concentration from calculation 

(%) 

18.48 

 

Table G-3A: simulation (CSMPro5) and mass balance comparison results in terms of salt 

concentration in the permeate for the Bluerock View Apartments (B) site example 

Salt   

  Simulation (CSMPro5) Mass Balance  (Using Simulation rejection) 

Q0 2666.67 2666.67 

C0 1593.64 1593.64 

Qf 6966.67 6874.82 

Cf 11249.64 9892.90 

Qp 2400.00 2400.00 

Cp 99.10 87.15 

Qc 4566.65 4474.82 

Qr 4300.00 4208.15 

Qd 266.65 266.67 

Cc 17084.25 15152.07 

      

R ratio 1.61 1.58 

Rs 0.99 0.99 

R  0.94 0.95 

Ysp 0.34 0.35 

Y 0.90 0.90 

Deviation of simulation permeate 

concentration from calculation (%) 
13.71 

 

Table G-3B: simulation (CSMPro5) and mass balance comparison results in terms of nitrate 

concentration in the permeate for the Bluerock View Apartments (B) site example 

Nitrate   

  

Simulation 

(CSMPro5) 
Mass Balance  (Using Simulation rejection) 

Q0 2666.67 2666.67 

C0 120.00 120.00 

Qf 6966.67 6874.82 

Cf 842.31 713.98 

Qp 2400.00 2400.00 

Cp 14.37 12.18 
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Qc 4566.65 4474.82 

Qr 4300.00 4208.15 

Qd 266.65 266.67 

Cc 1275.53 1090.37 

      

R ratio 1.61 1.58 

Rs 0.98 0.98 

R  0.88 0.90 

Ysp 0.34 0.35 

Y 0.90 0.90 

Deviation of simulation permeate 

concentration from calculation 

(%) 17.97 

 

Table G-4A: simulation (CSMPro5) and mass balance comparison results in terms of salt 

concentration in the permeate for the Santa Teresa Farms Park site example. 

Salt   

  Simulation (CSMPro5) Mass Balance results (Using CSMPro5 rejection) 

Q0 3412.22 3412.22 

C0 561.19 561.19 

Qf 7732.22 8250.41 

Cf 3623.41 3333.87 

Qp 3071.00 3071.00 

Cp 38.95 35.84 

Qc 4661.22 5179.41 

Qr 4320.00 4838.19 

Qd 341.22 341.22 

Cc 5985.01 5289.36 

      

R ratio 1.27 1.42 

Rs 0.99 0.99 

R  0.93 0.94 

Ysp 0.40 0.37 

Y 0.90 0.90 

Deviation of simulation permeate 

concentration from calculation (%) 
8.68 
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Table G-4B: simulation (CSMPro5) and mass balance comparison results in terms of nitrate 

concentration in the permeate for the Santa Teresa Farms Park site example. 

Nitrate   

  

Simulation 

(CSMPro5) 
Mass Balance results (Using CSMPro5 rejection) 

Q0 3412.22 3412.22 

C0 45.00 45.00 

Qf 7732.22 8250.41 

Cf 284.66 255.50 

Qp 3071.00 3071.00 

Cp 5.70 5.12 

Qc 4661.22 5179.41 

Qr 4320.00 4838.19 

Qd 341.22 341.22 

Cc 468.45 403.96 

      

R ratio 1.27 1.42 

Rs 0.98 0.98 

R  0.87 0.89 

Ysp 0.40 0.37 

Y 0.90 0.90 

Deviation of simulation permeate 

concentration from calculation 

(%) 

11.41 

 

 From the results presented above, it is summarized that the range of simulation results 

deviation from results originating from mass balance calculations in terms of salt concentration 

in the permeate (TDS, mg/L) is between 8.68 – 14.21% that increases with increasing initial 

concentration (C0). In addition, nitrate concentration in permeate exhibits slightly larger 

deviation range of 11.41 – 18.48% that also increases with increasing initial concentration (CNO3-

0). It is evident that the simulation results are an approximate result originating from a set of 

equations based on a mass balance, and the that the results are of negligible difference with a 

max deviance from mass balance calculations of 18.48%.  
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