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Abstract

Analysis, Modeling, and Control of Dynamic Processes in Networks

by

Victor Amelkin

Dynamic network processes have surrounded people for millennia. Information spread

through social networks, alliance formation in financial and organizational networks, heat dif-

fusion through material networks, and distributed synchronization in robotic networks are just

a few examples. Network processes are studies along three dimensions: analysis of network

processes through the data produced by them; designing complex plausible, yet, tractable math-

ematical models for network processes; and designing control mechanisms that would guide

network processes towards desirable evolution patterns. This thesis advances the frontier of

knowledge about network processes along each of these three dimensions, emphasizing appli-

cations to social networks.

The first part of the thesis is dedicated to the design of a method for model-driven analysis

of a polar opinion formation process in social networks. The core of the method is a distance

measure quantifying the likelihood of a social network’s transitioning between different states

with respect to a chosen opinion dynamics model characterizing expected evolution of the

network’s state. I describe how to design such a distance measure relying upon the classical

transportation problem, compute it in linear time, and use it in applications.

In the second part of the thesis, I focus on designing a model for polar opinion formation

in social networks, and define a class of non-linear models that capture the dependence of the

users’ opinion formation behavior upon the opinions themselves. The obtained models are con-

nected to socio-psychological theories, and their behavior is theoretically analyzed employing

tools from non-smooth analysis and a generalization of LaSalle Invariance Principle.
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The third part of the thesis targets the problem of defense against social control. While

the existing socio-psychological theories as well as influence maximization techniques expose

the opinion formation process in social networks to external attacks, I propose an algorithm

that nullifies the effect of such attacks by strategically recommending a small number of new

edges to the network’s users. The optimization problem underlying the algorithm is NP-hard,

and I provide a pseudo-linear time heuristic—drawing upon the theory of Markov chains—that

solves the problem approximately and performs well in experiments.
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Chapter 1

Introduction

In the world we live in, objects rarely exist and function in isolation, yet, they typically are con-

nected to and interact with others. The fundamental mathematical concept that captures this

relational nature of the world is that of a graph or, as we also call it, a network. We deal with

a multitude of networks every day, from using our metabolic and neural networks to properly

function as biological organisms, to navigating through online social networks communicating

with family and friends, to our financial institutions’ making decisions upon strategic partner-

ship and competing with their international peers. Due to the deep embeddedness of networks

into our lives, it is natural to expect that an individual scientific discipline would arise, aiming

at understanding and improving our interconnected world. Today, we call this discipline net-

work science [1], that has recently emerged as an independent discipline, having amalgamated

the parts of numerous well-established fields—such as graph theory, statistical physics, com-

puter science, game theory, control theory, behavioral economics, biology and neuroscience,

sociology and social psychology—viewing the world through the abstraction of graphs.

The field of network science has two major sub-fields: the well-established static network

science that studies networks not changing in time; and a much younger dynamic network

science that deals with the networks whose structure and “content” evolve. In what follows, we
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will briefly review both above mentioned subfields, delineate the location of network process

studies in the field, and describe this thesis’ contributions to it.

1.1 Static Network Science

Historically, graph theory can be considered the foundation of static network science, with

Euler’s Seven Bridges of Königsberg [2] being one of the earliest problems that epitomizes the

nature of this subfield: we analyze basic network primitives—nodes, edges, paths and cycles,

and, more generally, subgraphs—to make a qualitative or quantitative conclusion about the

nature of a network or a group of such. The analysis of static networks typically involves

node and edge centrality [3, 4, 5, 6, 7, 8, 9, 10] and clustering [11, 12, 13] properties, as well

as reachability considerations when dealing with paths. Below, we review more advanced

branches of static network science.

Dissecting Networks: A natural sequel to studying network paths is the investigation of how

to optimally split network nodes being guided by the network’s structure. This is typically

referred to as clustering, having the graph cut optimization problem [14, Sec. A 2.2] at its

core. While the problem of optimal cut search has a combinatorial nature, it has a beautiful

connection to spectral graph theory [15], which, among other things, provides techniques for

approximating optimal cuts relying on eigenvalues and eigenvectors of certain matrices asso-

ciated with the network [16, 17, 18, 19]. Two applications closely related to clustering are

community detection [20, 21] and outlier detection [22].

Pattern Mining: Another common problem is, given a static network, to search it for struc-

tural patterns satisfying some desirable properties. For example, such patterns may structurally

resemble a prototype network indicating a structural anomaly [23], or we may be interested in
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the most frequent subgraph search [24, 25].

Extremal Problems on Networks: This subfield includes topics from extremal graph theory,

concerned with either establishing existence, counting, or designing networks with desirable

properties. Turán theorem [26] and matrix-tree (Kirchhoff’s) theorem are two examples of

extremal graph theory results. Additionally, we are often interested in the discovery of such

extremal properties or substructures of a given network as shortest paths [27, 28, 29, 30] and

optimal network flows [31, 32, 33].

Analysis of Network Sets and Sequences: More generally, we may be provided with a set

or a series of networks—being unaware of their origin—and aim at performing analyses in a

space comprised of these networks. For example, having abstracted chemical compounds as

networks, we may be interested in classifying them into safe and unsafe for use in drug compo-

sition. Similarly, we may want to cluster sets of networks; design predictive models where each

sample in a supervised learning task is a network; detect anomalies in and extrapolate time se-

ries of networks; and search through and index network databases. Two groups of methods of

crucial importance for this subfield are graph matching and graph embedding methods, which

target assessing similarity between networks and mapping networks into vector spaces, respec-

tively [34, 35, 36, 37, 38].

Extension to Temporal Networks: Very recently, some of the problems that have tradi-

tionally been studied in the context of static networks started to be translated to the case of

dynamic networks. These include the recent works on temporal pattern mining [39], temporal

graph cuts [40], and temporal centrality measures [41, 42, 43].
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1.2 Dynamic Network Science

Dynamic network science has evolved over the past 60 years from the early works on ran-

dom graphs and cellular automata to complex models for brain, socio-economic, financial, and

technological networks. The dynamic network science has two natural constituents, focusing

on the evolution of either network structure or both the structure and the nodes’ states.

Dynamic Network Formation: The fundamental questions in dynamic network formation

are how networks are formed, and, given the local laws of network structure formation, what

global phenomena the network formation process leads to. One type of results within this

category are the random graph models—commonly studies in statistical physics and complex

networks communities—with notable examples of Erdős-Rènyi [44], Barabási-Albert [45], and

Watts-Strogatz [12] models. Another type of results here are the models of strategic network

formation, that deal with systems comprised of intelligent agents making decisions, driven

by a combination of long- and short-term local and system-wide utility maximization goals.

A representative set of examples is provided by Jackson [46, Ch. 6]. Such results are often

encountered in economics, game theory, multi-agent systems, and control. While some random

graph models also assume agent “interaction”—such as the preferential attachment mechanism

underlying Barabási-Albert model—in strategic network formation, the interaction between

agents usually reflects some sophisticated socio-economic, physical, or biological laws.

Dynamic Processes in Networks: At the apex of dynamic network science are the studies of

dynamic processes occurring in networks [47]. As before, the network’s structure can evolve,

but, most importantly, the nodes of the network change their states based on the states of other

nodes, guided by the network structure. Network processes can be as simple as John Con-

way’s Game of Life [48], and as fundamental as heat diffusing through a complex material.

However, this subfield is mostly dealing with higher-level processes of crucial importance to

4



Introduction Chapter 1

the well-being of the human society, such as information spread through communication net-

works, opinion formation in social networks, bio-chemical processes in metabolic and neural

networks, virus spread through contact networks, car traffic flow through road networks, failure

spread in economic and power networks, as well as coordination in technological networks.

In what follows, we outline the structure of the field of dynamic network processes, and

describe how this thesis—having network processes at its core—contributes to the field.

1.3 Network Processes: Analysis, Modeling, Control

Network processes have surrounded people for thousands of years. Heat diffusing through

a complex material, warriors coordinating on the battlefield, commodities spreading through

a network of merchants, people passing rumors via word of mouth, innovations proliferating

through an organizational network—whenever we see a system of interacting entities, we deal

with a network process. This thesis is biased towards the processes occurring in social net-

works, as such processes have a drastic impact upon people’s social well-being. Recently, with

the emergence of massive-scale online social networks, as well as collaboration platforms and

tools, studying network processes has become feasible and important as never before.

The central theme of this thesis is analysis, modeling, and control of dynamic processes in

networks, with an emphasis on social networks. In this section, we delineate the scope of the

inter-disciplinary field of dynamic network processes along three facets:

1. Analysis—creation of scalable methods for model-driven analysis of observed network

processes.

2. Modeling—design and theoretical analysis of plausible complex, yet tractable models

for network processes based on the knowledge about the process’ domains.
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3. Control—development of theories and the accompanying scalable algorithms to guide

network processes for optimizing and/or safeguarding their performance.

Below, we discuss each of the above mentioned aspects of network process studies, and

summarize this thesis’ contribution along each of them.

Analysis: Many network processes can be at least partially observed, and we may be inter-

ested in making some qualitative or quantitative conclusions about the process’ evolution based

on these observations. For example, given a power grid, and having measured electric current

flow through a subset of edges at multiple time points, we may want to detect and spatially

localize failures in the grid. As another example, having observed how opinions of users of

a social network evolve over time, we may want to either detect when the opinions evolve

anomalously—such as being a result of a viral marketing campaign—or predict how opinions

of the users will evolve in the future. It is important to notice that both above cases require our

analysis to be model-driven, that is, our conclusions regarding the process’ evolution must be

derived with respect to an underlying model that describes the process’ expected behavior.

Chapter 2 of this thesis is dedicated to the design of one such model-driven method for

the analysis of opinion evolution in social networks. While designed with an eye on applica-

tions to social networks, our results generally extend to other domains where processes can be

described by probabilistic models of the same type as the models for opinion dynamics.

Modeling: Scientists have been modeling complex processes for centuries. For example,

one of the classical physical models—the heat flow equation ẋ = α∆x having a straightforward

discrete-space analog ẋ = −αLx, with L being the network’s Laplacian—was formulated by

Fourier more than 200 years ago. Since then, the need for modeling has diffused from physi-

cal systems to social, economic, biological, and technological systems, yet, the complexity of

the network models from these new domains is much higher, proportionally to the complexity
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of the considered systems, such as the human society or the brain. In this thesis, under the

category of network process modeling, we subsume the works targeting design and analysis

of non-linear models for network processes that would simultaneously be rich enough to cap-

ture the complexity of the underlying domains, and tractable, allowing derivation of analytic

insights into the nature of the network processes.

Chapter 3 of this thesis is dedicated to the design of a general non-linear model capturing

complex dynamics of polar opinion formation in social networks. This model is a non-linear

version of Laplacian flow, and besides capturing opinion formation behavior, is also connected

to the process of non-linear heat flow. In addition to constructing this general model and its

several specialized versions connected to existing socio-psychological theories, we describe an

approach towards the analysis of such non-linear models that can be reused for the design of

other complex models from non-social domains.

Control: Having acquired understanding of a network process through its modeling and anal-

ysis, the next natural step is to control that process, aiming at either optimization of that pro-

cess’ performance or maintenance of the latter in the face of endogenous or exogenous attacks

or shocks incurred by the process. The notion of control is hardly new, and has been actively

studied as of 19’th century by applied mathematicians and physicists. Nowadays, control the-

ory is a well-established field, interwoven into the related engineering disciplines typically

dealing with physical or technological networks. More recently, mechanism design theory

emerged within the fields of economics and game theory, targeting optimization of processes

in economic and financial networks. Further, traditional methods of control theory are now

being adapted to studying processes in biological networks.

In Chapter 4 of this thesis, we reflect upon the notion of control applicably to social sys-

tems, and design one mechanism that can efficiently nullify exogenous attacks upon the process

of user opinion formation in social networks via strategic network augmentation, making that
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process uncontrollable. Our theoretical and algorithmic insights contribute to the emergence

of social control theory within the general area of network process control.

Having outlined the central subject studied in this thesis, in the following section, we pro-

vide an overview of the present thesis.

1.4 Overview of the Present Work

This thesis consists of three major parts, contributing to the analysis, modeling, and control

dimensions of network process studies, respectively.

Analysis: In Chapter 2, we design a general scalable method to estimate the likelihood of

network process’ transitioning between states in the context of opinion dynamics in social net-

works. This method—a distance measure for network process states termed Social Network

Distance (SND)—computes the (log-)likelihood of the most likely transition between two ob-

served user opinion distributions under an opinion dynamics process in a large online social

network. SND reduces the state transition likelihood definition to that of a transportation prob-

lem or, alternatively, a well-known Earth Mover’s Distance. The latter, roughly, computes the

“cost” of optimal way to reshape one (opinion) distribution into another one, where the el-

ementary transform—in the edit distance sense—is the transportation of an opinion between

two users along the pathways defined by the social network and the chosen opinion dynamics

model. While the direct solution of the obtained transportation problem would have super-

cubic time-complexity, SND exploits the special structure of the transportation problem and

effectively uses a combination of radix-Fibonacci heap-based Dijkstra algorithm and bi-push

minimum-cost network flow algorithm for unbalanced bipartite graphs, resulting in SND’s

computability in time linear in the network size. In experiments with Twitter data, SND has

shown to be effective at detecting controversial events—such as the introduction of “Oba-
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macare” in the US in 2010 —that are known to have polarized the US society. SND has also

shown to be effective at predicting future opinions of a subset of network users.

Modeling: One fundamental model of opinion formation—stemming from Festinger’s social

comparison and cognitive dissonance theories—is DeGroot model stating that members of a

social network—whose adjacency matrix’ entries reflect the relative amounts of inter-personal

trust—form their opinions via weighted averaging with the opinions of their network neigh-

bors. One limitation of this model is that every person manifests the same opinion adoption

behavior, while in reality people have different receptiveness to persuasion. Within the realm of

linear models, this drawback is resolved by Friedkin-Johnsen model that allows the network’s

members to have different (though, constant) degrees of “stubbornness”.

In Chapter 3, we propose a general non-linear opinion formation model, having incorpo-

rated dynamic opinion-dependent susceptibility to persuasion into the opinion formation pro-

cess1. This model is particularly suitable for the case of polar opinions, when people’s shifting

towards opinion extremes makes them less or more receptive to opinion change. For example,

a person shifting towards the Republican ideology is harder to persuade to invert her or his po-

litical stance. Alternatively, in a society with strong social norms, people holding conservative

opinions following the norms are harder to persuade, while extreme opinions are volatile. The

main theoretical question here is how the user opinions will evolve in a long term. We have

answered this question for our general non-linear model and its multiple specialized versions,

having brought up the tools from non-smooth analysis, and used them together with min-max

Lyapunov functions and the suitable version of LaSalle Invariance Principle. One qualitative

finding of this analysis states that, as long as a user is at least to some extent susceptible to

persuasion, that specific extent does not affect the long-term opinion adoption behavior of that
1The origins of the idea that susceptibility to persuasion is a function of the held opinion can be traced back

at least to Abelson’s 1964 work “Mathematical models of the distribution of attitudes under controversy” [49],
and has been periodically revisited since then by Friedkin and others. However, a theoretically analyzed network
model had been absent prior to our work.
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user. Another finding is an analytic expression for the asymptotic user opinion distribution—

dependent upon the structure of the network as well as the placement of “extremists” in it, yet

independent of the initial opinions of susceptible users.

Control: Since the process of opinion formation is inherently a network process, it is lucra-

tive for marketing and political technologists to tap into online social networks and shift the

public opinion distribution towards business-imposed objectives. One widely studied method

of affecting—or controlling—opinion formation is influence maximization, where the goal is

to strategically influence the opinions of select—desirably, influential—users, so that they ef-

ficiently distribute these “right” opinions through the network. The society would, however,

benefit from safeguarding the opinion formation process from such external control.

To that end, in Chapter 4, we propose a novel problem of disabling external influence upon

the opinion distribution in a social network, as well as an efficient method to solve it. We

assume that the specific target for the attack is the so-called asymptotic consensus value—

the sum of user opinions weighted by these users’ eigenvector centralities. This value is the

asymptotic limit for user opinions in DeGroot model, or, more generally, a value to which

the opinions of all network users are attracted. We assume that the adversary maximizes the

asymptotic consensus value by altering the opinions of some users. We, then, state DIVER—an

NP-hard problem of disabling such external influence attempts via strategically recommending

a limited number of edges to the network’s users. Relying on the theory of Markov chains,

we provide perturbation analysis that shows how eigenvector centrality and, hence, DIVER’s

objective function change in response to an edge’s addition to the network. The latter leads

to a pseudo-linear-time heuristic for DIVER, that relies on efficient estimation of mean first

passage times in a Markov chain.
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Chapter 2

Model-Driven Analysis of Polar Opinion

Dynamics in Social Networks

In this chapter, we design methods for model-driven analysis of the observed process of opinion

dynamics in a social network—the process of crucial importance in today’s life. One type of the

desirable analyses we aim to enable is predicting users’ political preference. For such analysis,

it is particularly important to be able to analyze the dynamics of competing polar opinions—

such as pro-Democrat vs. pro-Republican—since opinion polarization is natural for the domain

of politics. While observing the evolution of polar opinions in a social network over time, can

we tell when the network evolved abnormally? Furthermore, can we predict how the opinions

of the users will change in the future? To answer such questions, it is insufficient to study

individual user behavior, since opinions can spread beyond users’ ego-networks. Instead, we

need to consider the opinion dynamics of all users simultaneously and capture the connection

between the individuals’ behavior and the global evolution pattern of the social network.

The key result of this chapter, that enables answering the above stated questions, is the

Social Network Distance (SND)—a distance measure that quantifies the likelihood of evolu-

tion of one snapshot of a social network into another snapshot under a chosen model of polar
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opinion dynamics. SND has a rich semantics of a transportation problem, yet, is computable

in time linear in the number of users and, as such, is applicable to the analysis of large-scale

online social networks. In our experiments with synthetic and Twitter data, we demonstrate the

utility of our distance measure for anomalous event detection. It achieves a true positive rate

of 0.83, twice as high as that of alternatives. When used for opinion prediction in Twitter data,

SND’s accuracy is 75.6%, which is 7.5% higher than that of the next best method.

The chapter is organized as follows. In Section 2.1 we motivate and informally define

the problem. Section 2.2 provides necessary preliminaries, followed by the review of existing

distance measures in Section 2.3. The next Section 2.4 is dedicated to the design of the core

concept of this chapter—the Social Distance Measure (SND), with the following Section 2.5’s

targeting generalization of the Earth Mover’s Distance (EMD)—being at the core of SND—to

make it fit the comparison of states of a social network. In Section 2.6, we provide a pseudo-

linear method for computation of SND. After experimental results in Section 2.7, we discuss

limitations 2.8 of SND. We conclude with a discussion and a summary of the results of this

chapter in Section 2.9, and point out potential directions for future research in Section 2.10.

2.1 Introduction

Analysis of opinion formation in the society plays an important role in today’s life. Busi-

nesses are interested in advertising their products in social networks relying on viral marketing.

Political strategists are interested in predicting an election outcome based on the observed sen-

timent change of a sample of voters. Mass media and security analysts may be interested in a

timely discovery of anomalies based on how a social network “behaves”. Thus, it is important

to enable modeling and prediction of user opinion evolution in a social network.

How can we quantify the change in opinions of users with respect to their expected behavior

in a social network? How can we predict how the opinions of individual users will evolve in the
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future? Having observed the evolution of user opinions over time, can we tell when the opinions

evolved abnormally? To answer such questions, we need a distance measure for the comparison

of states of a social network that explicitly models user opinion evolution, incorporating both

the distribution of user opinions at two time instances and the network structure that defines

the pathways for opinion dissemination. In this chapter, we design such a distance measure

and employ it for anomaly detection and opinion prediction.

While the dynamics of a social network can be characterized by evolution of both the

network’s structure and user opinions, in this chapter we focus on the latter. We assume that

there are two polar opinions in the network, positive and negative1. Users having no or an

unknown opinion are termed neutral, while those expressing opinion—active. A network state

is comprised of the opinions of all network users at a given time. Polar opinions compete in

that users are less willing to spread opinions different from their own, yet, are more eager to

spread “friendly” opinions. Such competition may arise when the notions the opinions relate

to, such as political parties or smartphone brands, are inherently competing.

Having observed the behavior of social network users over time and quantified their opin-

ions, we obtain a time series of network states. Its analysis—whether anomaly detection or

extrapolation—is, however, problematic, as network states do not naturally belong to any vec-

tor space, and the numerous existing time series analysis techniques cannot be readily applied.

Our approach is to treat network states as members of a metric space induced by a distance mea-

sure governed by both the network’s structure and user opinions. We propose a semantically

and mathematically appealing, as well as efficiently computable distance measure Social Net-

work Distance (SND) for the social network states containing polar opinions and demonstrate

its utility in two applications. First, we detect which network states in a series are anoma-

lous with respect to the expected opinion evolution, where the latter is determined by a chosen

model of polar opinion dynamics. Second, we predict unknown opinions of individual users in

1Our results can be straightforwardly generalized to the case of any finite discrete polar opinion scale.
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a partially observed network state based on the historical dynamics of other users’ opinions.

In this chapter, we make the following specific contributions:

• We propose SND—the first distance measure suitable for the comparison of social net-

work states containing polar opinions under a chosen model of opinion dynamics.

• We develop a scalable method for exact computation of SND in time linear in the num-

ber of users in the network. This is achieved via exploiting the special structure of

the transportation problem underlying SND and the use of advanced shortest path and

minimum-cost network flow algorithms.

• We demonstrate the utility of SND in two application with both synthetic and Twitter

data. Using SND for anomaly detection, we achieve a true positive rate of 0.83, twice as

high as that of alternatives. When used for user opinion in Twitter data, SND’s prediction

accuracy is 75.6%, which is 7.5% higher than that of the next best method.

2.2 Preliminaries

Prior to designing our distance measure, we provide preliminaries upon which the sub-

sequent design will rely. The summary of notation for this chapter is provided in Table 2.1.

2.2.1 Network and Network States

We are given a social network G(V,E), where V (|V | = n) is the set of nodes (users) and

E is the set of edges (social ties). At each point in time, each user holds a quantified opinion

on the chosen topic of interest. In this chapter, we will quantify the opinions on a discrete

scale {+1,0,−1}2, with 0 standing for neutrality, and +1 and −1 corresponding to two polar
2There is a great body of research on the methods for opinion quantification based on user-generated content,

including [50, 51]. Our focus is, however, on the analysis of how opinions spread, rather than their quantification.
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1 vector of all ones
0 vector of all zeros
⊗ Kronecker product

diag(v) diagonal matrix with vector v as the main diagonal
G(V,E) network with nodes V (|V |= n) and edges E (|V |= m)

X ,X(t) ∈ {+1,0,−1}n network state (at time t) comprised of all users’ opinions
Iv
P set of users holding opinion v in network state P

Pi j(P,v) likelihood of user j acquiring opinion v from user i in network state P
n∆ number of users who changed opinion between two network states

Table 2.1: Summary of notation used in the design of Social Network Distance

alternatives, such as the Democrats vs. the Republicans or iOS vs Android. Note, however, that

the results we obtain in Section 2.4-2.6 also hold for a more general case of any finite discrete

opinion scale. The opinions of all users at time t comprise network state G(t) ∈ {+1,0,−1}n.

2.2.2 User Opinions and Their Dynamics

We assume that the dynamics of user opinions is governed by a chosen in advance opinion

dynamics model M that provides Pi j(P,v)—the likelihood of user j adopting opinion Pi = v ∈

{+1,−1} of user i in network state P. Below, we provide three example definitions of Pi j(P,v)

for three different opinion dynamics models.

Independent Cascade Model: For the version of the Independent Cascade model [52] sup-

porting multiple opinion values, Pi j(P,v) is defined as follows

PIC
i j (P,v) =



0 if d j({i})> d j(I+1
P ∪ I−1

P ),

1 else if Pi = v and Pj = v,

max(0,pi j−ε)

∑
i∈act(P, j)

pi j
else if Pi = v and Pj = 0,

ε otherwise,
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where Iv
P is a set of users holding opinion v in network state P, puv is an edge activation prob-

ability [53], d j(I) is the length of the shortest path from users I to user j, act(P, j) = {k | k ∈

I+1
P ∪ I−1

P and d j({k}) = d j(I+1
P ∪ I−1

P )} is the set of users active in network state P closest to

user j, and ε is a negligible likelihood of an “impossible” event.

In the original model, ε = 0, that is, neutral users cannot spread positive or negative opin-

ions to others, and active users neither drop their opinions nor spread opinions opposite to their

own. That, however, would lead to the distances between many network states to be +∞ since

the opinion evolution may follow the assumed opinion dynamics model not exactly. In or-

der to obviate this issue, we aim to—instead of just declaring two network states qualitatively

unreachable—to always quantify the distance between them, and, thus, assign some negligible

probabilities ε to the events that original opinion dynamics models posit as impossible.

Linear Threshold Model: For the version of Linear Threshold model [54] supporting mul-

tiple opinion values, Pi j(P,v) is defined as

PLT
i j (P,v) =



0 if i /∈ Nin(P, j),

1 else if Pi = v∧Pj = j,

(1−ε)ωi j
∑

k∈Nin(P, j)
ωk j

else if Pi = v and Pj = 0 and ∑
k∈Nin(P, j)

ωk j ≥ θ j,

ε otherwise,

where ωi j is an edge weight reflecting relative influence of i upon j, θi is user i’s opinion

switching threshold, Nin(P, j) is the set of j’s in-neighbors active in network state P, and ε has

the same semantics of a negligible likelihood of an “impossible” event as in the earlier case of

the Independent Cascade model.
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Basic Model: Besides the given above definitions of Pi j(P,v) for two well-established mod-

els, we also provide a definition for a simpler intuitive model that will be used in our experi-

ments. According to this model, Pi j(P,v), translated into log-likelihoods, are defined as

− logPi j(P,v) =


cadverse if Pi =−v or Pj =−v,

cneutral else if Pi = 0,

c f riendly else if Pi = v and Pj 6=−v,

(2.1)

where cadverse, cneutral , c f riendly ∈ R+ are constant log-likelihoods of adopting adverse, neutral,

or friendly opinion (relatively to opinion v), respectively. Thus, the basic model assumes that

users willingly spread opinions similar to their own (c f riendly is small), are unwilling to spread

adverse opinions (cadverse is large), with the behavior of neutral users being somewhere in-

between (c f riendly < cneutral < cadverse).

2.2.3 Earth Mover’s Distance

At the core of our approach towards analyzing observed opinion dynamics is the com-

putation of distances between network states P,Q ∈ {+1,0,−1}n using a distance measure,

whose semantics will be similar to that of one well-studied distance measure—Earth Mover’s

Distance (EMD) [55]. Originally defined as an edit-distance for histograms (which, in our

case, can be seen simply as n-dimensional non-negative vectors), EMD computes the cost of

an optimal transformation of one histogram into another, where an elementary edit operation

is transportation of a unit of mass from one histogram bin to another bin. The costs of these

elementary transforms are collectively referred to as the ground distance.

Formally, EMD between two histograms P ∈ R+n and Q ∈ R+m (that, in our case, will

be derived from network states) over ground distance D ∈ R+n×m (that, in our case, will be
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defined based on the distances between users in the network and the likelihoods of the opinions

spreading between them) is the solution to the problem of optimal mass transportation from

suppliers {Pi} to consumers {Q j} with respect to transportation costs {Di j}:

EMD(P,Q,D) =
n

∑
i=1

m

∑
j=1

Di j f̂i j
/ n

∑
i=1

m

∑
j=1

f̂i j, (2.2)

{ f̂i j}= argmin
{ fi j}

n

∑
i=1

m

∑
j=1

fi jDi j,
n

∑
i=1

m

∑
j=1

fi j = min
{ n

∑
i=1

Pi,
m

∑
j=1

Q j

}
,

fi j ≥ 0,
m

∑
j=1

fi j ≤ Pi,
n

∑
i=1

fi j ≤ Q j, (1≤ i≤ n,1≤ j ≤ m),

where { f̂i j}n×m is an optimal solution or transportation plan.

In addition to having the semantics that will suit our distance measure design goals, EMD

is metric, as the following theorem states.

Theorem 1 (Metricity of EMD [55]). If all network states (network states) under comparison

have equal total masses, and the underlying ground distance is metric, then EMD is metric.

Metricity of EMD will allow our own EMD-based distance measure to also be metric,

which—in addition to making a distance measure “natural”—can be exploited to improve prac-

tical performance of distance measure-based algorithms in applications [56].

2.3 Related Work

Given our distance measure-driven approach towards analysis of the network process of

opinion dynamics, the body of works directly related to ours describes various distance mea-

sures. In this section, we review some representative distance measures and point out why

none of them is suitable for the model-aware analysis of the process of polar opinion dynam-

ics, which necessitates the design of our Social Network Distance in Section 2.4.
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There is a large number of existing distance measures used in finite-dimensional vector

spaces, including `p, Hamming, Canberra, Cosine, Kullback-Leibler, and Quadratic Form [57]

distances. However, none of them are suitable for the comparison of social network states,

since these distance measures either compare opinion vectors coordinate-wise, thereby, not

capturing user interaction in the network, or in the case of Quadratic Form distance, capture

the user interaction in a very limited way, being unaware of the underlying process that causes

the difference between two user opinion distributions.

Existing graph-oriented distance measures are also unsuitable for comparing network states

with polar opinions. The first type of such distance measures is graph isomorphism-based

distance measures, such as largest common subgraph [58]. They are node state-oblivious, and,

hence are not applicable to the comparison of network states. Another type of graph distance

measures is Graph Edit Distance (GED)-based distance measures [59] that define the distance

between two networks as the cost of an optimal sequence of node or edge insertions, deletions,

and substitutions, transforming one network into another. GED can be node state-aware, but its

value is not interpretable from the opinion dynamics point of view, and even its approximate

computation takes cubic time (a single computation of GED on a 10k-node network on our

hardware takes about a month). DELTACON [60] is a scalable graph-oriented distance measure,

yet, it quantifies the networks’ structural difference, while we focus on node states.

A third class of distance measures includes iterative distance measures [61, 62, 63, 64],

which express similarity of the nodes of two networks recursively, use a fix-point iteration

to compute node similarities, and, then, aggregate node similarities to obtain the similarity

of two networks. These share the problem of GED—they do not capture the way competing

opinions spread in the network. The same drawback is shared by the related diffusion-based

distance measures [65, 66, 67], that compare network states by quantifying how differently

a heat diffusion process proceeds in the network when the network states defined the initial

temperatures of the nodes.
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The last class includes feature-based distance measures [68, 69, 70], which compare either

the distributions of local node properties (e.g., degree, clustering coefficient) or the spectra of

two networks. Despite their efficient computability, such distance measures do not fit the com-

parison of network states with polar opinions. The spectral distance measures are inadequate

because they do not deal with node states directly3, while other feature-based distance mea-

sures only deal with summaries based on opinion of each kind, thus, being unable to capture

competition of polar opinions.

2.4 Social Network Distance

The central problem we address in this chapter is as follows:

Problem. Given two network states P,Q ∈ {+1,0,−1}n and assuming that the dynamics of

user opinions is governed by model M , define and compute the distance between network

states P and Q reflecting how likely either of these network states has evolved into another

under model M .

According to the problem definition above, if network state Q has evolved from network

state P closely following model M , then the resulting distance should be small; if, however,

either network states P and Q are unrelated, or they are related, but the opinions evolved fol-

lowing a model very different from M , then the distance should be large. Next, we will, first,

translate the above defined problem into the formal language of probability, and, after that,

address the question of making the obtained formalization tractable.

Let us put X(t) to be the state of the network at time t, and X(1, . . . ,k) = X(1), . . . ,X(k) to

be a network state evolution path—a sequence of states over which the network evolved from

3Even if node states are artificially encoded into a network’s structure, there is still a possibility for two
structurally different networks to be isospectral, that is, to have identical spectra and, hence, a zero spectral
distance.
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time t = 1 to time t = k. Then, the likelihood of X(1, . . . ,k) is defined as

P{X(1, . . . ,k)}=
k

∏
t=2

P{X(t) | X(t−1)}.

Using this notation, a perfect distance measure can be defined as

dM (P,Q) = ∑
k≥2

∑
X(1,...,k)

X(1)=P,X(k)=Q

P{X(1, . . . ,k)}. (2.3)

According to its definition, dM (P,Q) measures the likelihood of user opinions evolving from

state X(1)=P to state X(k)=Q along all possible network state evolution paths—as illustrated

in Figure 2.1—where the opinion change likelihoods are determined by model M .

+

+

-

-

+

Figure 2.1: dM (P,Q) accumulates likelihoods of all possible network state evolution paths.
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Despite the attractive semantics of dM , its computation is clearly unfeasible, as the number

of possible evolution paths between two network states is exponential in the number of nodes.

To come up with a tractable alternative, we simplify dM by making several assumptions.

Assumption 1 (Maximum-likelihood opinion evolution). Opinions evolve along to the most

likely network state evolution path.

According to Assumption 1—standard for maximum likelihood estimation methods—we

will not care about every possible network state evolution path, instead, focusing on the most

likely one. Under this Assumption dM simplifies to d(1) as follows:

d(1)(P,Q) = max
k≥2

max
X(1,...,k)

X(1)=P,X(k)=Q

P{X(1, . . . ,k)}. (2.4)

To further simplify the obtained distance measure, we will target the term being maximized

in (2.4), and make another assumption.

Assumption 2 (Independent Markovian opinion acquisition). Users acquire opinions asyn-

chronously, independently of other users’ opinion acquisition, relying only on the opinions of

network users at the previous time.

According to this assumption, opinions of different users evolve at individual time scales

(in contrast to synchronous opinion evolution, where all users simultaneously update their opin-

ions), and depend only on the previously observed opinions of other users. This assumption

simplifies distance measure d(1) into d(2) as follows.

d(2)(P,Q) = max
k≥2

max
X(1,...,k)

X(1)=P,X(k)=Q

n

∏
i=1

k

∏
t=2

P{Xi(t) | X(t−1)} (2.5)

Now, to make the maximization task in (2.5) tractable, we will make one more assumption.
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Assumption 3 (Opinion source uniqueness). An opinion is adopted by a user from a single

most likely source.

This assumption—previously used by Gomez-Rodriguez et al. [71] in the context of cas-

cade inference—is natural in those cases when obtaining knowledge immediately causes or is

equivalent to opinion acquisition, such as in the case of learning an incriminating piece of news

about a politician. In these situations, a contact with a single information source is sufficient to

acquire opinion, and contacting additional sources would not solidify that opinion even further.

If we put f ji ∈ [0,1] to be the likelihood of user j being the source for opinion acquisition

by user i, d(2) simplifies under Assumption 3 into d(3) as follows:

d(3)(P,Q) = ∏
v∈{+1,−1}

max
{ f ji}

∏
i∈Iv

Q

∑
j∈Iv

P

f jiP
{

j infects i with opinion v along the most likely
evolution path P = X(1),X(2), . . . ,X(·) = Q

}
, (2.6)

∑
j

f ji = |Qi|, ∑
i

f ji ∈ Z+,

where Iv
P is the set of users holding opinion v in network state P. Here, f ji can alternatively be

viewed collectively as a probabilistic mapping between opinion sources and destinations. The

obtained distance measure (2.6) is equivalent to the following expressed using log-likelihoods

d(4)(P,Q) = ∑
v∈{+1,−1}

min
{ f ji}

∑
i∈Iv

Q

∑
j∈Iv

P

f ji

(
− logP

{
j infects i with opinion v along the most likely

evolution scenario P = X(1),X(2), . . . ,X(·) = Q

})
= ∑

v∈{+1,−1}
min
{ f ji}

∑
i∈Iv

Q

∑
j∈Iv

P

f jiD ji(P,v), (2.7)

∑
j

f ji = |Qi|, ∑
i

f ji ∈ Z+. (2.8)

In the expression above, D ji(P,v) ∈ R+n×n is the log-likelihood (or cost) of opinion v’s spread-

ing from user j to user i along the most likely path through the network in state P. Provided that

for each pair of nodes j and i, the chosen opinion dynamics model M defines the likelihood
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P ji(P,v) of opinion v spreading through edge ( j, i) in network state P—as per (2.1)—D ji(P,v)

is defined as the length of the shortest path from node j to node i in the network whose structure

is identical to that of the network that P is defined over, and whose edge ( j, i) is weighted with

− logPi j(P,v).

Finally, if we relax f ji ∈ [0,1] in (2.7) to be arbitrary non-negative reals, the obtained

distance measure (2.7)-(2.8) almost exactly matches Earth Mover’s Distance (EMD) described

in detail in Section 2.2.3:

EMD(P,Q,D) =
n

∑
i=1

m

∑
j=1

Di j f̂i j
/ n

∑
i=1

m

∑
j=1

f̂i j,

{ f̂i j}= argmin
{ fi j}

n

∑
i=1

m

∑
j=1

fi jDi j,
n

∑
i=1

m

∑
j=1

fi j = min
{ n

∑
i=1

Pi,
m

∑
j=1

Q j

}
,

fi j ≥ 0,
m

∑
j=1

fi j ≤ Pi,
n

∑
i=1

fi j ≤ Q j, (1≤ i≤ n,1≤ j ≤ m).

Besides the difference in the the normalization factor ∑i, j f̂i j, EMD imposes an extra constraint

upon the sum of fi j, requiring ∑ fi j =min{∑i Pi,∑ j Q j}. For us, it would roughly mean that the

number of active users—holding opinions +1 and −1—in both network states P and Q should

be equal. The latter, however, does not hold in practice—as shown in Figure 2.2—as already

active users may be unwilling to become neutral, and even more active users may appear while

information spreads through the network.

This difference will disappear when we replace EMD with its generalization EMD? in

Section 2.5.

Based on the obtained expression (2.7) and expression (2.2) for EMD, we can define the

nonsymmetric version of our Social Network Distance as follows

SNDnonsym(P,Q) = ∑
v∈{+1,−1}

EMD(Pv,Qv,D(P,v)),
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Figure 2.2: Growth of the number of active users—holding non-neutral opinions with respect
to topic “Obama”—in a sample of Twitter network over time.

where Pv (Qv) is a network state P (Q) in which all the users holding opinions different from

v are considered neutral, and ground distance D(P,v) consists of log-likelihoods as defined

in (2.7). The defined above SNDnonsym(P,Q) is suitable for the comparison of time-ordered

network states—when we know that network state P preceded network state Q in time. How-

ever, we would like to be able to compare arbitrary unordered network states. This may be

important for such applications as nearest neighbor network state search, where nearest neigh-

bor candidate network states may either precede or succeed in time the target network state. To

that end, instead of building upon dM (P,Q), we will be interested in
√

dM (P,Q) ·dM (Q,P),

and, having repeated all the simplifications with the obtained expression, define our Social

Distance Measure as follows.

Definition 1 (Social Network Distance (SND)).

SND(P,Q) =
1
2 ∑

v∈{+1,−1}

[
EMD(Pv,Qv,D(P,v))+EMD(Qv,Pv,D(Q,v))

]
, (2.9)

where EMD is a version of Earth Mover’s Distance. Notice that SND is a linear combination

of multiple instances of EMD, so the following theorem trivially holds.
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Since SND in the definition above is a linear combination of multiple instances of EMD, it

is metric provided that the underlying EMD is such.

Theorem 2 (Metricity of SND). SND is metric as long as the underlying EMD is metric.

To summarize, we have defined Social Network Distance (SND)—a distance measure that

approximates the (log-)likelihood of a network state’s most-likely transition into another net-

work state. As we have mentioned earlier, SND was defined via EMD ignoring the normal-

ization factor in the definition (2.2) of EMD as well as the difference in the constraints be-

tween (2.2) and (2.8). In the following Section 2.5, we will generalize EMD to address both

these issues, and use its generalization EMD? in definition (2.9) of SND.

2.5 Generalized Earth Mover’s Distance

2.5.1 Why Do We Need a New Earth Mover’s Distance?

Our distance measure SND defined in the previous Section 2.4 uses an EMD, such as

the original Earth Mover’s Distance [55], as a building block. Unfortunately, the original

EMD cannot adequately compare network states P and Q having different total masses, that

is, network states with ∑Pi 6= ∑Q j—it ignores the mass mismatch |∑Pi−∑Q j|. Applicably

to states of a social network, that limitation is particularly pronounced, as, usually, subsequent

network states have more active users and, hence, a larger total mass than preceding network

states.

There are several versions of EMD that address the original EMD’s neglect for network

state mass mismatch. One of them, namely, ÊMD [72] augments EMD with an additive mass
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mismatch penalty as

ÊMD(P,Q,D) = EMD(P,Q,D)min

{
n

∑
i=1

Pi,
n

∑
j=1

Q j

}
+αmax

i, j
{Di j}

∣∣∣∣∣ n

∑
i=1

Pi−
n

∑
j=1

Q j

∣∣∣∣∣ ,
where α is a constant parameter. Term αmaxi, j {Di j}|∑Pi−∑Q j| represents the mass mis-

match penalty that depends only on the magnitude of the mass mismatch and the maximum

ground distance, thereby, being unable to capture the fine details of the network’s structure that

D can depend upon. This is, however, inadequate for the comparison of the states of a social

network, because the network’s behavior depends not only on the number of new activations,

but as importantly on where in the network these new activations occur.

Another Earth Mover’s Distance version EMDα [73] extends each network state with an ex-

tra node—the bank node—whose value is chosen to equalize the network states’ total masses.

An example of such an extension is shown in Figure 2.3.

P
1

P
2

P
3

γ γ

γ

Q
1

Q
2

Q
3

γ γ

γ

Figure 2.3: Network states P and Q defined over the same network are extended with bank
nodes, whose values are chosen, so that the total masses of the extended network states P̃
and Q̃ are equal. The ground distances D̃bank,i = D̃i,bank = γ from and to the bank node are
uniformly defined based on the largest ground distance between the initially present nodes.
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Formally, EMDα is defined as follows.

P = [P1, . . . ,Pn], Q = [Q1, . . . ,Qn],

Pbank =
n

∑
j=1

Q j, P̃ = [P1, . . . ,Pn,Pbank] ,

Qbank =
n

∑
i=1

Pi, Q̃ = [Q1, . . . ,Qn,Qbank] ,

D̃ =


Dn×n

|

αmax
i, j
{Di j}

|

— αmax
i, j
{Di j}— 0


,

EMDα(P,Q) = EMD(P̃, Q̃, D̃) ·

(
n

∑
i=1

Pi +
n

∑
j=1

Q j

)
.

Despite the syntactic differences between EMDα and ÊMD, the following Theorem 3 estab-

lishes that they are actually numerically equivalent.

Theorem 3. If ground distance D ∈ Rn×n is metric, and α≥ 1
2 , so that both EMDα and ÊMD

are metric [73, 72], then ∀P,Q ∈ R+n : EMDα(P,Q,D) = ÊMD(P,Q,D).

Proof. Without loss of generality, let us assume that ∑Pi≤∑Q j, and use the following notation

∆ = ∆(P,Q) =
∣∣∣ n

∑
i=1

Pi−
n

∑
j=1

Q j

∣∣∣, γ = αmax
i, j
{Di j},

so that the expression for ÊMD gets rewritten as

ÊMD(P,Q) = EMD(P,Q)min
{ n

∑
i=1

Pi,
n

∑
j=1

Q j

}
+ γ∆.

Our aim is to show that EMDα has exactly the same expression as ÊMD as long as they
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both are metric. To do so, let is consider how a unit of mass can be transported from network

state P to network state Q, both extended with a bank node, as per the definition of EMDα.

OR

Figure 2.4: Two qualitatively different ways to transport a unit of mass from extended
network state P̃ = [P1, . . . ,Pn,k + ∆] to extended network state Q̃ = [Q1, . . . ,Qn,k], where
∑Pi ≤ ∑Q j. Dashed arrows represent the flow of mass. The bank node is attached to every
node of each network state. k = ∑Pi, so that the total masses of two extended network states
are equal.

As shown in Figure 2.4, there are two qualitatively different alternatives for moving a unit

of mass from regular (non-bank) node i of network state P̃: a unit of mass can be moved either

to a regular node j or to the bank node of Q̃.

In the first case, the total transportation cost of a unit of mass is exactly the ground distance

D̃i j = Di j between regular nodes i and j.

In the second case, the immediate cost of transportation to the bank node is D̃i,bank = γ .

However, because we have routed mass from a regular node to the bank node, there exists a

regular node s in Q̃ having a “mass deficit” that has to be fulfilled from the bank node of P̃.

Thus, if we move a unit of mass from a regular node of P̃ to the bank node of Q̃, there is an

additional incurred cost γ of moving an additional unit of mass from the bank node of P̃ to

some regular node of Q̃. Hence, the total cost of transportation of a unit of mass in the second
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case is

γ + γ = 2αmax
i, j

Di j ≥ (since α≥ 0.5)≥max
i, j

Di j.

Thus, from the point of view of optimal mass transportation, it may never be preferable to

move a unit of mass from a regular node to the bank node if there is an option to transport mass

from a regular node to another regular node. Consequently, an optimal solution to the EMDα’s

transportation problem can be decomposed as follows.

EMDα(P,Q,D) = EMD(P̃, Q̃, D̃)

(
n

∑
i=1

Pi +
n

∑
j=1

Q j

)
= min
{ fi j}

n+1

∑
i, j=1

fi jD̃i j = (let b = n+1)

= min
{ fi j}

[ n

∑
i, j=1

fi jD̃i j︸ ︷︷ ︸
regular nodes

to regular nodes

+
n

∑
i=1

fibD̃ib︸ ︷︷ ︸
regular nodes
to bank node

+
n

∑
j=1

fb jD̃b j︸ ︷︷ ︸
bank node to
regular nodes

+ fbbD̃bb︸ ︷︷ ︸
bank node

to bank node

]

= min
{ fi j}

[ n

∑
i, j=1

fi jDi j + γ

n

∑
j=1

fb j︸ ︷︷ ︸
∆

]
= min
{ fi j}

[ n

∑
i, j=1

fi jDi j + γ∆

]

= min
{ fi j}

[ n

∑
i, j=1

fi jDi j

]
+ γ∆ = EMD(P,Q,D)×min

{
∑Pi,∑Q j

}
+ γ∆

= ÊMD(P,Q,D).

An additional useful observation, formalized below as Corollary 1—that will subsequently

show instrumental in the proof of Theorem 4—is that a particular value of k does not mat-

ter for EMDα, since in every optimal solution of its underlying transportation problem, any

amount of mass exceeding ∆ in the bank node of the lighter network state is transported at cost

D̃bank,bank = 0 to the bank node of the heavier network state.

Corollary 1. For network states P = [P1, . . . ,Pn] and Q = [Q1, . . . ,Qn], and ground distance D,

30



Model-Driven Analysis of Polar Opinion Dynamics in Social Networks Chapter 2

if ∑Pi = ∑Q j and D is metric, then for all k ≥ 0 ∈ R+, the following holds.

EMD


[P,k], [Q,k],


D

|

ω

|

— ω — 0




= EMD(P,Q,D),

where [X ,k] is network state X extended with a single bank node with value k and a uniformly

defined ground distance ω ≥ 1
2 maxi, j Di, j to/from the regular nodes of X.

Informally, Corollary 1 states that, for any two network states of equal total mass, we can

increase their total masses by an arbitrary value without affecting the EMD between them.

2.5.2 Generalized Earth Mover’s Distance

In this section, in response to the inadequacy of the standard EMD for the purpose of

social network state comparison, discussed in the previous section, we propose EMD?—a new

version of Earth Mover’s Distance, building upon EMDα’s idea of augmenting network states

to even their masses. However, unlike its predecessor, EMD? extends network states with

multiple local bank nodes—as shown in Figure 2.5—and distributes the total mass mismatch

over all of them, thereby, relating the mass mismatch penalty to the structure of the network,

while achieving the total mass equality of the two network states under comparison.

Figure 2.5: A network state [P1, . . . ,P4,P(1), . . . ,P(4)] extended with local bank nodes P(i).
The undirected edges to and from the bank nodes—displayed dashed—are weighted with
ground distances γ1, . . . ,γ4, respectively.
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Prior to formalizing EMD?, let us, first, better understand its advantage over the existing

EMDs as well as its fitness to the analysis of opinion evolution.

L R

Figure 2.6: Three network states defined over the same two-cluster network.

Consider the example in Figure 2.6. There are three network states defined over the same

network, which has two pronounced clusters L and R connected by three bridge edges. The

distribution of mass over cluster L is identical in all three states Gi, while cluster R is empty

in G1 and has some differently distributed mass in G2 and G3. In G2 the extra mass has been

“propagated” from cluster L to cluster R through the bridges, while in G3 the same amount

of extra mass has been randomly distributed over cluster R. Thus, if we assume that G2 and

G3 have “evolved” from G1 through a (not completely random) network process of mass dif-

fusion, then G2 should intuitively be closer to G1 than G3 is. However, only EMD? captures

this intuition as EMD?(G1,G2) < EMD?(G1,G3), while for EMDα and ÊMD, G2 and G3 are

equidistant from G1, and for the original EMD, both G2 and G3 are identical to G1.

We will now turn from the intuition for the formal definition of different components of

EMD? and, eventually, EMD? itself. The extension of network state P ∈ Rn with local bank

nodes requires definition of the ground distances γi to/from the bank nodes as well as the banks’

values P(i).

Bank node ground distances γi: In the extreme case, when γi = 0, in the transportation

problem underlying EMD?, the mass is transported to/from the banks at a zero cost, which
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would result in EMD?’s ignorance of the network state mass mismatch ∆, making it similar to

the original EMD up to normalization by ∆. If, on the other hand, γi is much larger than the

ground distances between regular (non-bank) nodes, then the value of EMD? will be dominated

by the effect of the network state mass mismatch, hiding the impact of the actually present

mass. Thus, γi should be chosen of the same order as the ground distances Di j between regular

nodes, with the particular values of γi being empirically learned.

Bank node values P(i): The values of the added bank nodes should be determined based upon

two ideas. Firstly, the value of a bank node should intuitively be proportional to the total mass

of the node the bank is attached to, thereby, preserving the relative distribution of mass over

the network. Secondly, the values of all the bank nodes should be such, that the two network

states under comparison have equal total masses. The following definition of value P(i) of a

bank node connected to the i’th node of network state P in the context of comparing network

states P = [P1, . . . ,Pn] and Q = [Q1, . . . ,Qn] incorporates both above mentioned requirements.

P(i) =


Pi
/ (

∑
n
j=1 Q j−∑

n
j=1 Pj

)
, if ∑Q j > ∑Pj,

0, otherwise.

Next, we formally define EMD?. Suppose we are given two network states P = [P1, . . . ,Pn]

and Q = [Q1, . . . ,Qn] defined over a network G = 〈V,E〉 with ground distance Dn×n. Network

states P and Q are extended with bank nodes, with P(i) and Q(i) being the values of the bank

nodes attached to the i’th regular node of P and Q, respectively. Ground distances to/from the

bank nodes are defined, collectively, as γ = [γ1, . . . ,γn]
ᵀ.

Then, EMD? is defined as follows.
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Definition 2 (Generalized Earth Mover’s Distance (EMD?)).

EMD?(P,Q) = EMD(P̃, Q̃, D̃)max
{
∑Pi,∑Q j

}
, (2.10)

P̃ =
[
P,P(1), . . . ,P(n)

]
, Q̃ =

[
Q,Q(1), . . . ,Q(n)],

D̃ =

 D D+1n⊗ γᵀ

D+1
ᵀ
n⊗ γ D+1n⊗ γᵀ+1

ᵀ
n⊗ γ−2diag(γ)

 ,
where P(i) is the value of the i’th bank node that P is extended with (same for Q), 1n ∈ Rn×1

is a vector of all ones, diag(v) is a diagonal matrix with the elements of vector v on its main

diagonal, and ⊗ is Kronecker product.

Metricity of EMD?, which can be exploited to improve practical performance of distance-

based search in applications [56], is established in the following Theorem 4.

Theorem 4. Given a finite set H of network states and metric ground distance D, EMD?

defined over D is metric on H ×H .

Proof. Let us define M = maxX∈H ∑k Xk < ∞. Next, we define an auxiliary distance measure

EMD′ as follows.

EMD′(P,Q,D) = EMD(P′,Q′,D′),

P′ =[P̃,M−∑ P̃i], Q′ = [Q̃,M−∑ Q̃ j],

D′ =


D̃

|

max
i, j
{D̃i j}/2

|

— max
i, j
{D̃i j}/2 — 0


,
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where P̃, Q̃, and D̃ are the extended network states, and the extended ground distance, respec-

tively, as defined by EMD?. From the definition of EMD? (2.10), it follows that ∑ P̃i = ∑ Q̃i

and, hence M−∑ P̃i = M−∑ Q̃i = k. Thus, since ∑P′i = ∑Q′i = M, D is metric, and k ≥ 0,

from Corollary 1 with P = P̃, Q = Q̃, D = D̃, and ω = 1
2 max

i, j
D̃i j, we have

EMD′(P, Q,D) = EMD(P′,Q′,D′) = (from Corollary 1) = EMD(P̃, Q̃, D̃) =

= (from definition (2.10) of EMD?) =
EMD?(P,Q,D)

max
{

∑Pi,∑Q j
} .

Thus, EMD? is metric iff EMD′ is metric. The latter’s metricity, according to Theorem 1,

requires equality of total masses of all network states and metricity of the ground distance.

From the definition of EMD′, it is clear that all network states P′ and Q′ supplied to EMD

by EMD′ have the same total mass M. As to metricity of the ground distance, the identity of

indiscernibles and symmetry straightforwardly follow from the corresponding properties of the

original ground distance D and our choice of the ground distances to/from the bank nodes to be

non-negative and symmetric. The triangle inequality trivially holds as network state extension

does not introduce any new triangles. Hence, by Theorem 1, EMD′ and, consequently, EMD?

is metric.

Having generalized Earth Mover’s Distance, so that it can handle comparison of social

network states, we will now be using EMD? as our Earth Mover’s Distance of choice in the

definition (2.9) of Social Network Distance.

We have finished the design of SND and its components, and are now concerned with

SND’s efficient computation.

35



Model-Driven Analysis of Polar Opinion Dynamics in Social Networks Chapter 2

2.6 Efficient Computation of Social Network Distance

While we have designed SND (2.9), its computation is non-trivial. Since SND is a linear

combination of multiple instances of EMD?, its computation involves:

• Computing the ground distance D(G(t),v) based on the structure of the underlying net-

work G = 〈V,E〉 (|V |= n, |E|= m) and the opinions of the users in network state G(t).

• Computing EMD?, when the network states and the ground distance are provided.

Computing the ground distance D implies computing shortest paths in a network with edge

weights − logPi j(P,v). Direct all-to-all shortest path computation using Dijkstra’s algorithm

would incur time cost O(n2 logn) for sparse G. Computing EMD? is algorithmically equiv-

alent to computing EMD, and, since the latter is formulated as a solution to a transportation

problem, it can be computed either using a general-purpose linear solver, such as Karmarkar’s

algorithm [74], or a solver that exploits the special structure of the transportation problem, such

as the transportation simplex algorithm [75]. The time complexity of both these algorithms,

however, is supercubic in n. Thus, the exact computation of SND using existing techniques

is prohibitively expensive at the scale of real-world online social networks. Furthermore, the

existing approximations of EMD are either inapplicable to the comparison of network states de-

rived from a social network’s states, since they drastically simplify the ground distance [76, 77],

or are effective only for some graphs, such as trees, structurally not characteristic of social net-

works [78]. Nevertheless, in what follows, we propose a method to compute SND exactly and

in time linear in n under the following two realistic assumptions.

Assumption 1: The number n∆ of users who change their opinions between two network states

under comparison is significantly smaller than the total number n of users in the network.

Assumption 2: The log-likelihoods − logPi j(P,v) of opinion spread—being the edge weights

in the network in which ground distances are defined as lengths of shortest paths—are positive
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integers bounded from above by constant U �+∞ ∈ Z+.

Assumption 1 is reasonable in most applications the network states under comparison are

not very far apart in time and, hence, n∆� n; Assumption 2 is reasonable, because most of the

log-likelihoods are large reals, and rounding them would not introduce a large error.

We will now use the above stated assumptions to design an efficient algorithm for SND.

Since, according to its definition (2.9), SND’s computation involves computation of four in-

stances of EMD?, we will actually be dealing with efficient computation of EMD? on the inputs

supplied by SND. Our method for efficient computation of SND requires the following two

lemmas.

Lemma 1. For any two network states P ∈ Rn and Q ∈ Rn, and ground distance D ∈ Rn×n, if

Pi = Qi = 0, then the removal of i’th elements from P, Q, as well as i’th row and column from

D does not affect the value of EMD?(P,Q,D).

Lemma 1 is straightforward, since zero-value Pi and Qi do not supply or consume any

mass in the underlying transportation problem, and, hence, do not affect the cost of the optimal

transportation plan. While Lemma 1 allows removing redundant suppliers and consumers from

the underlying transportation problem, the following Lemma 2 allows to transform the network

states, without affecting the value of EMD?, exposing the redundant suppliers and consumers

for removal.

Lemma 2 (Network State Reduction). Given two arbitrary network states P,Q ∈ Rn and a

ground distance D ∈ Rn×n, if D is semimetric4, then for any i ∈ {1, . . . ,n},

EMD?(P,Q,D) = EMD?([P1, . . . ,Pi−1,Pi−min{Pi,Qi},Pi+1, . . . ,Pn],

[Q1, . . . ,Qi−1,Qi−min{Pi,Qi},Qi+1, . . . ,Qn],D).

4A semimetric is a metric with the symmetry requirement dropped.
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Proof. First, we will show that there is always an optimal plan fi j in the problem of optimal

mass transportation from P̃ to Q̃ over D̃ such that ∀1≤ i≤ n : fii = min{P̃i, Q̃i}= M, and, then,

use such a plan to argue about the value of EMD?.

Consider an arbitrary optimal transportation plan f̂i j, and assume that ∃i ∈ [1;n] : δ =

M− f̂ii > 0. We will now use f̂ to construct another optimal transportation plan f †
i j such that

f †
ii = M. Initially, we put f † = f̂ and, then, re-route mass flows in f † to eventually achieve the

desired value of f †
ii .

Since, initially, f †
ii < M, the remaining at least δ units of mass should be distributed by P̃i

and consumed by Q̃i to/from other consumers/suppliers. Among those, let us pick the ones that

supply/consume the least amount of mass to Q̃i and from P̃i, respectively: ` = argmin j 6=i f †
ji,

and r = argmin j 6=i f †
i j. Without loss of generality, let us assume that f †

`i ≤ f †
ir and denote ∆ =

min{ f †
`i,δ}. Now, we will re-route ∆ units of mass in f † as follows:

f †
`i← f †

`i−∆, f †
`r← f †

`r +∆, f †
ir← f †

ir−∆, f †
ii ← f †

ii +∆.

The above performed mass flow re-routing scheme is illustrated in Figure 2.7.

...

...

Figure 2.7: Re-routing of mass flow to convert an optimal transportation plan f̂ into plan f †.

The updated transportation plan is legal, as the total amount of mass supplied or consumed by
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each node has not changed. The total cost of f † has been updated as follows

newcost( f †)← cost( f †)−∆D̃`i−∆D̃ir +∆D̃ii +∆D̃`r =

=
(
since D and, hence, D̃ is semimetric, D̃ii = 0

)
= cost( f †)−∆(D̃`i + D̃ir− D̃`r)

≤
(
since D̃ is semimetric, D̃`i + D̃ir ≥ D̃`r

)
≤ cost( f †).

Since the cost of the obtained legal plan f † cannot be strictly less than the cost of an optimal

plan f̂ , the performed update of f † has not changed its cost, and the updated f † is still an

optimal plan. The described above re-routing procedure is repeatedly performed on f † until f †
ii

reaches M = min{P̃i, Q̃i}.

Finally, to see why the statement of the lemma holds, we observe that the value of EMD? is

the cost of any optimal transportation plan, and the cost of f † in particular. However, the cost

of f † does not depend on f †
ii , since, due to semimetricity of D̃, mass f †

ii gets transported at cost

D̃ii = 0. Thus, M can be subtracted from P̃i, Q̃i, and f †
ii , without affecting the total cost of f †.

The solution of the latter modified transportation problem, however, is exactly

EMD?([P1, . . . ,Pi−1,Pi−M,Pi+1, . . . ,Pn], [Q1, . . . ,Qi−1,Qi−M,Qi+1, . . . ,Qn],D).

We will, now, state the main result for the efficient computation of SND as Theorem 5,

whose constructive proof provides the algorithm for SND’s computation.

Theorem 5. Under Assumptions 1 and 2, SND between network states P = [P1, . . . ,Pn] and

Q = [Q1, . . . ,Qn] defined over network G = 〈V,E〉, (|V |= n, |E|= m) can be exactly computed

in time

T = O(n∆(m+n
√

logU +n2
∆ log(n∆nU))).
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Proof. Throughout this proof, we will use notation P+ = P(+1) to denote a network state where

users holding negative opinions are considered neutral, and D(P,+) = D(P,+1) to denote the

ground distance for the spread of opinion +1 through the network in state P, as well as the

similar notation P− and D(P,−) for negative opinions.

We will focus on the efficient computation of the first summand EMD?(P+,Q+,D(P,+))

in definition (2.9) of SND(P,Q,D), as computation of three other summands is algorithmically

equivalent and takes the same time.

For the analysis of the computation of EMD?(P+,Q+,D(P,+)), let us assume, without

loss of generality, that ∑
n
i=1 P+

i ≥ ∑
n
j=1 Q+

j . As per (2.10), EMD?(P+,Q+,D(P,+)) is the

solution of a transportation problem with suppliers P̃+ = [P+
1 , . . . ,P+

n ,01×n], consumers Q̃+ =

[Q+
1 , . . . ,Q

+
n ,Q

+(1), . . . ,Q+(n)], and ground distance D̃(P,+).

Now, we can apply Lemmas 1 and 2 to reduce the size of the obtained transportation

problem. From Assumption 2, D̃(P,+) is semimetric. Non-negativity and identity of indis-

cernibles straightforwardly follow from Assumption 2 and the definition of the length of a

shortest path. Subadditivity follows from the shortest path problem’s optimal substructure.

Thus, we can apply Lemma 2 to each pair P̃+
i , Q̃+

i of corresponding suppliers and consumers,

and due to Assumption 1, a large number (n− n∆) of them have equal values. As a result,

many suppliers and consumers become empty. Then, due to Lemma 1, all the obtained empty

nodes can be disregarded. If we put Mi = min{P+
i ,Q+

i }, then the reduced transportation prob-

lem is defined for suppliers [P+
i1 −Mi1, . . . ,P

+
in∆
−Min∆

] and consumers [Q+
j1−M j1, . . . ,Q

+
jn∆
−

M jn∆
,Q+(1), . . . ,Q+(n)], and ground distance D̃(P,+) that contains only the rows and columns

corresponding to the remaining suppliers and consumers. The remaining suppliers and non-

bank consumers correspond to the users who have different opinion in P+ and Q+, and the

number of such users, due to Assumption 1, is at most n∆. The bank nodes Q+(1), . . . ,Q+(n),
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however, do not get affected by Lemma 2 in Q̃+ (since only the banks of the lighter network

state P can have non-zero mass) and hence are not removed, yet, they are removed from P̃+

due to Lemma 1. Thus, we have an unbalanced transportation problem, where the number n∆

of suppliers is much less than the number n+n∆ of consumers.

Now, in order to compute EMD?(P+,Q+,D(P,+)), we need to compute D̃(P,+) and to

actually solve the obtained transportation problem.

Due to the structure of the reduced transportation problem, we need to compute only a small

part of D̃(P,+). Since there are at most n∆ suppliers, we need to solve at most n∆ instances

of single-source shortest path problem (SSSP) with at most n∆+n destinations. Since, due to

Assumption 2, edge costs in the network are integer and bounded by U , each SSSP instance

can be solved using Dijkstra’s algorithm based on a combination of a radix and a Fibonacci

heaps [30] in time

Tsssp = O(m+n log
√

U).

(Notice, that if we assumed ∑
n
i=1 P+

i ≤ ∑
n
j=1 Q+

j , and the reduced P̃+ contained n∆+n nodes,

we would not need to run n∆+ n SSSP instances. Instead, we would invert the edges in the

network and compute the shortest paths in reverse, still solving only n∆ SSSP instances.)

Next, we approach the solution of the reduced transportation problem with known ground

distances. This problem can be viewed as a minimum-cost network flow problem in an un-

balanced bipartite graph, where the number of consumers is much greater than the number of

suppliers or vice versa. Since, due to Assumption 2, edge costs are integers bounded by U , our

minimum-cost flow problem can be solved using Goldberg-Tarjan’s algorithm [79] augmented

with the two-edge push rule of Ahuja et al. [80] in time

Ttransp = O(n∆m+n3
∆ log(n∆max

i, j
D̃(P,+)i j)).
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Since no shortest path has more than (n− 1) edge, and the edge costs are bounded by U , the

expression for time simplifies to

Ttransp = O(n∆m+n3
∆ log(n∆nU)).

Thus, the total time for computing EMD(P+,Q+,D(P,+)) and, consequently, SND(P,Q,D) is

T = O(n∆Tsssp +Ttransp) = O(n∆(m+n log
√

U +n2
∆ log(n∆nU))).

Theorem 5 immediately entails the following corollary.

Corollary 2. If the social network is sparse, that is m = O(n), and the number n∆ of users who

changed their opinions is bounded, then SND is computable in time O(n).

2.7 Experimental Results

In this section, we report experimental results, demonstrating the utility of SND in applica-

tions in comparison to other distance measures. We also evaluate scalability of our implemen-

tation of SND.

2.7.1 Experimental Setup

Twitter Data: Our Twitter dataset is based on the crawled data of [81], and includes 48M

tweets sent over 6 years. From these tweets, we select those sent between May-2008 and

August-2011, containing hashtags related to the political topics—such as “Obama”, “GOP”,

“Palin”, “Romney”—popular in the US during these years, and connect users in a network

based on their follower-followee relationship. As a result, we obtain a network of 10k users
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tweeting about politics, each having an average of 130 neighbors in the network. Within each

quarter, we quantify the sentiment of each tweet as described in [82] using the sentiment clas-

sification approach of [51]. Then, we find the users who posted at least as many as 10% of the

average number of per-user tweets posted within the quarter, and label them as active. Other

users are assumed to be neutral, and their opinions for the quarter are set to 0. An active user’s

opinion is set to +1 (−1) if he or she has posted at least 4 times more positive (negative) than

negative (positive) tweets within the quarter, assuming that such a skew in the tweets’ senti-

ment is enough to identify whether the user likes or dislikes the topic. Otherwise—if an active

user has posted enough of both positive and negative tweets—this user’s opinion is set to 0,

that is, such user is considered neutral. As soon as we have quantified the quarterly opinion of

each user, the opinions of all the users comprise that quarter’s network state.

Synthetic Data: We also perform experiments on synthetic scale-free networks of sizes |V |

from 10k to 200k and scale-free exponents from −2.9 to −2.1. To generate the first network

state, a number of initial adopters are chosen uniformly at random, and approximately equal

numbers of them adopt opinions +1 and −1. Each subsequent network state G(t + 1) is ran-

domly generated from the preceding network state G(t) as follows. A number of G(t)’s neutral

users get a chance to be activated. Each of them adopts an opinion from her neighbors with

probability Pnbr and a random opinion with a smaller probability Pext . If a user is to adopt an

opinion from the neighbors, which opinion to adopt is decided in a probabilistic voting fashion

based on the numbers of active in-neighbors of each kind. This generative model is a version of

Independent Cascade model [52], where edges in a neighborhood are activated simultaneously

with probability Pnbr, and external influence Pext is allowed.

Distance Measures: In our experiments, SND does not make any assumptions regarding the

above described generative process of opinion evolution in synthetic data, and assumes the

simple model (2.1), whose parameter cadverse, cneutral , and c f riendly values are learned from
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how well SND performs in applications, and, as a result, are set, respectively, to 1000, 40, and

5 for anomaly detection experiments, and to 100, 20, and 5 in opinion prediction experiments.

SND is compared with the following distance measures.

• hamming(P,Q). Hamming distance is a representative of `p-like distance measures per-

forming basic coordinate-wise comparison.

• quad-form(P,Q,L) =
√

(P−Q)L(P−Q)ᵀ. Quadratic-Form Distance [57] based on the

Laplacian matrix L [83] of the network. It combines the differences of opinions of the

corresponding users based on the network’s structure.

• walk-dist(P,Q)= 1
n‖con(P)−con(Q)‖1. Compares vectors con(P)= [con(P1), . . . ,con(Pn)]

of users’ “contention”, where con(Pi) is the amount by which the i’th user’s opinion de-

viates from the opinion of this user’s average active in-neighbor. Thus, walk-dist sum-

marizes how different the network’s users are from their respective neighbors.

2.7.2 Detecting Anomalous Network States

Synthetic Data: In a series G(1), . . . ,G(t), . . . of network states, we want to detect which

transitions in the series are anomalous, that is, when opinions change unexpectedly deviating

from their established evolution pattern. In particular, we are interested in those anomalies that

are hard to detect by observing simple summaries of social network states, such as the number

of newly activated users. To simulate such anomalies with synthetic data, we change the values

of Pnbr and Pext—controlling the process of opinion evolution from one network state to the

other—preserving their sum, thereby, affecting which users get activated, yet, maintaining the

same activation rate.

To detect anomalies, in a series of network states, we compute the distances between adja-

cent states, normalize these distances by the number of active users, and rescale the obtained
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values to fit range [0,1]. Then, spikes in the resulting distance series are considered anomalies.

A qualitative analysis of anomaly detection on synthetic data is presented in Figure 2.8.
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Figure 2.8: Anomaly detection on synthetic data. |V | = 20k, scale-free exponent γ = −2.3.
A series of 40 network states is generated using Pnbr = 0.12 and Pext = 0.01 for normal and
Pnbr = 0.08 and Pext = 0.05 for anomalous network states’ generation, respectively. The three
simulated anomalies are displayed as solid vertical lines.

For each simulated anomaly, SND produces a well noticeable spike, reacting to the quali-

tative change in the opinion dynamics process, while other distance measures do not recognize

such anomalies. (The additional experiment exposing this difference in sensitivity of SND vs.

simpler distance measures is provided in Section 2.7.4.)

In order to quantify the performance of the competing distance measures at detecting sim-

ulated anomalies, we create a simple anomaly score St = (dt − dt−1)+ (dt − dt+1), where dt

is the value of a given distance measure at time t normalized by the number of users active at

time t and rescaled. We rank the network state transitions for each compared distance mea-

sure by St in decreasing order and compute true and false positive rates for increasing ranks.

The corresponding ROC curves are displayed in Figure 2.9. SND’s accuracy dominates that

of competing distance measures throughout the spectrum of false positive rates. Particularly,

for false positive rates up to 0.3, SND achieves a true positive rate of 0.83, while the next best

distance measure (hamming) achieves only 0.4.
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Figure 2.9: ROC curves comparing the quality of anomaly detection by different distance
measures in a series of 300 network states over synthetic network with |V | = 30k and
scale-free exponent γ = −2.3. The network states are generated using Pnbr = 0.08 and
Pext = 0.001 for normal and Pnbr = 0.07 and Pext = 0.011 for anomalous instances.

Twitter Data: To obtain the ground truth for anomaly detection on our Twitter dataset, we

collect “search interest” data from Google Trends5 and cross-check this data with American

Presidents6 log of political events in the US. The anomaly detection results for topic “Obama”

are shown in Figure 2.10.

We can distinguish two types of events based on SND’s behavior relatively to that of other

distance measures. One type is the polarizing events when SND noticeably disagrees with the

other distance measures. For example, during quarters 05’09-11’09, the Economic Stimulus

Bill had a highly polarized response in the House of Representatives7, with no Republican

voting in its favor. Another such anomaly takes place during quarters 02’10-08’10, when the

Affordable Care Act (“Obama Care”) was introduced, and which was and still remains a very

controversial topic based on the House vote distribution8 and the analysis from socialmen-

tion.com9.
5http://www.google.com/trends/explore
6http://www.american-presidents-history.com
7http://www.nytimes.com/2009/01/29/us/politics/29obama.html
8http://www.healthreformvotes.org/congress/roll-call-votes/h165-111.2010
9http://socialmention.com/search?q=obama+care
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Figure 2.10: Anomaly detection on Twitter data (May’08-Aug’11). The distance series are
accompanied by the curve showing Google Trends’ scaled interest in topic “Obama”. Net-
work states detected to be anomalous by at least one distance measure are displayed as solid
vertical lines.

The other events are those where SND agrees with the other distance measures. Three

examples are (a) “election”, (b) “Tax plan”, and (c) “bin Laden” (even though, all distance

measures noticeably increase their value during the last quarter, we do not mark this quarter as

anomalous, since we do not have the distance values for the next quarter.)

The (a) election of Barack Obama as the President of the US, extensively covered by the

news media, had likely been accompanied by a very noticeable change in the rate of new

user activation, so, as expected, both SND and simpler distance measures sensitive to the user

activation rate successfully detect this anomaly. However, the (b) Obama’s tax cut extension

and (c) bin Laden’s assassination—not flagged as anomalies by SND—were not polarizing, as

the tax cut had received large support in the Senate from both Democrats and Republicans10,

while bin Laden’s assassination has probably evoked the same type of sentiment on Twitter

across the US.
10http://tinyurl.com/wiki-obama-tax-relief-2010
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2.7.3 Predicting User Opinions

Our distance measure-based method for predicting opinions of select users in a partially

observed network state—illustrated in Figure 2.11—is as follows.

candidate
network states

incomplete current
network state

complete current
network state

(to be predicted)

Figure 2.11: Distance measure-based user opinion prediction. Network states G(t) reside
in the network state space. The series of distances 〈. . . ,d−3,d−2,d−1〉 between past network
states . . . ,G(−4),G(−3),G(−2),G(−1) adjacent in time is extrapolated to estimate the dis-
tance d∗ to the true current network state Ĝ(0) to be predicted. We, then, search for the
assignment of opinions to target users in G(0) to make the distance from G(−1) to the ob-
tained network state G∗(0) as close to d∗ as possible.

Given a series of states 〈. . . ,d−3,d−2,d−1〉 of a social network, we want to predict the

unknown opinions of a specified set of users in the true current network state Ĝ(0) based on

the observed recent G(−t) t = 1,2, . . . and the incomplete (partially known) current G(0) net-

work states. Such situation may arise either if the target users keep their profiles private or

simply have not yet generated enough content in the current quarter to reliably quantify their

opinions. We assume that over the recent time period—corresponding to the observed net-

work states—the opinions in the network evolved “smoothly”, so that the observed network

states carry enough information to complete the partially known current network state. Un-

der this assumption, and having chosen a distance measure dist, we compute the distances
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d−t = dist(G(−t− 1),G(−t)) between adjacent past network states, then, extrapolate the ob-

tained series of distances via linear 4-point11 least squares fitting to estimate the expected

distance d∗ from the most recent G(−1) to the yet not fully known true current network state

Ĝ(0). Then, we search for the assignment of opinions to the target users in the partially known

current network state G(0)—resulting in a candidate network state G∗(0)—that would make

the distance dist(G(−1),G∗(0)) from the most recent to the candidate network state as close

to the estimate d∗ as possible.

While there may be multiple candidate network states G∗(0) whose distances are close to

d∗—the network states in Figure 2.11 close to the sphere of radius d∗ centered at G(−1)—

due to the spatially-sensitive nature of network state comparison that SND provides, the set of

such candidate network states will be rather small, and the opinions of the target users in these

network states will be close to the true target user opinions in Ĝ(0).

We have used two methods for the search of the best opinion assignment. The first method

is a randomized search with uniformly randomly chosen opinions, and the number of random

opinion assignments (100 in our experiments) being considerably lower than the total number

of possible assignments (1M+ in our experiments). The second method was greedy hill climb-

ing, the results for which are not reported, performing no better than the randomized search.

In each experiment, we uniformly randomly select 20 active users—with roughly equal

representation of positive and negative opinions—in the current network state, predict their

opinions and measure the prediction accuracy. We repeat this procedure 10 times, each time

targeting a different set of users, and report means and standard deviations of the obtained

prediction accuracies.

The predictions are made using the above distance measure-based method with SND as

well as other distance measures. To put the prediction performance of these methods in context,

11We have experimented with different numbers of points used with least squares. Using less than 4 points
resulted in a poor opinion prediction performance, while using more than 4 points did not improve the performance
much.
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we include in the comparison several non-distance measure-based opinion prediction methods.

• icc-simulation, ltc-simulation [84] simulate the model—Independent Cascade or Linear

Threshold with uniformly randomly chosen thresholds, respectively—until convergence

multiple times (from 10 to 500, in our experiments) and use the modes of the target users’

opinion as the prediction. In our experiments, the simulation starts with the most recent

completely known network state G−1, and proceeds until 99.99% of users get active. The

edge activation probabilities Pedge are selected uniformly, with Pedge ranging from 0.001

to 0.01. The results for the best Pedge are reported.

• icc-max-likelihood, ltc-max-likelihood are max-likelihood-based methods similar to the

method of Saito et al. [85]. Like SND-based opinion prediction, this method gener-

ates uniformly random opinion assignments, computes the likelihood of each resulting

network state and uses the most likely one for the prediction. The opinion adoption like-

lihoods are computed as described in Section 2.2.2, with all edges assumed to be active,

and ε = 0.01.

• community-lp [86, IV.B] detects communities in the network via label propagation and,

then, predicts user opinions based on these users’ membership in the discovered com-

munities. This method does not rely on any opinion dynamics model, and only assumes

that users likely connect with other likeminded users.

We experiment with both synthetic and Twitter data. For synthetic data, we generate a scale-

free network with n = 10,000 users and scale-free exponent γ = −2.5. A series of network

states is generated using the same version of Independent Cascade model as was used in

anomaly detection experiments, with probabilities of opinion adoption from the neighbors Pnbr

and from the external source Pext ranging between 0.001 and 0.2. The number of initially active

users is set to 800.
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User Opinion Prediction Accuracy, %

Method
Synthetic Data Twitter Data

µ σ µ σ

SND 74.33 2.65 75.63 5.60
hamming 68.44 12.34 68.13 5.80
quad-form 66.67 13.58 67.50 9.63
walk-dist 56.22 15.35 31.88 9.98

icc-simulation[84] 76.25 9.54 59.38 4.17
ltc-simulation[84] 67.50 11.65 58.75 5.18
icc-max-likelihood[85] 67.41 7.03 57.50 8.02
ltc-max-likelihood[85] 57.50 8.45 55.63 11.78
community-lp[86] 65.25 9.43 56.87 8.43

Table 2.2: Means µ and standard deviations σ of user opinion prediction accuracies.

The opinion prediction results are summarized in Table 2.2. There are four important

observations:

(a) Among the distance-based methods, SND always performs best on both synthetic and

Twitter data, with the mean prediction accuracy of 74-75% and a consistently low standard

deviation. This suggests that SND captures more opinion dynamics-specific information than

other distance measures, and should be preferred, particularly, when such simple statistics as

the rate of new user activation are uninformative.

(b) Among the non-distance measure-based methods, icc-simulation’s prediction accuracy

on synthetic data is 76.25%, the best result, comparable to 74.33% accuracy of SND. Such

good performance of icc-simulation on synthetic data is unsurprising, as its predictions rely on

the Independent Cascade model, a version of which produced the synthetic data. On Twitter

data, however, icc-simulation’s accuracy is 59.38%, compared to 75.63% accuracy of SND.

(c) Methods icc-max-likelihood and ltc-max-likelihood perform worse than SND, as they

base prediction on the opinions of the closest active neighbors, while SND is looking for the

most likely opinion propagation through potentially long paths in the network.
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(d) SND-based method outperforms community-lp based on community detection via label

propagation. In our experiments, community-lp’s prediction accuracy is 57-65%, while this

method’s authors report the accuracy of 95% for their data [86]. The likely cause of such a

discrepancy is a very high level of homophily in their data (the reasons of which were discussed

in [87]), while in our less homophilous data, community-lp performs worse by capturing only

users’ reachability by the opinions of each kind, whereas SND performs better by looking for

the most likely opinion propagation scenario.

2.7.4 Sensitivity to Opinion Dynamics Models

In the anomaly detection and user opinion prediction experiments, performance of SND

stemmed from its being spatially-sensitive to the changes in the user opinion distribution, and

promptly reacting to qualitative changes in the underlying opinion spread process. In this sec-

tion, we conduct an experiment confirming that sensitivity of SND. We show the effectiveness

of SND in detecting qualitative changes in the user opinions’ evolution under an advanced opin-

ion dynamics model, that cannot be spotted by the distance measures performing coordinate-

wise comparison. To that end, we generate a number of pairs 〈G(1),G(2)〉 of network states

adjacent in time (G(2) is generated from G(1)) over a synthetic scale-free network. Some of

these pairs correspond to normal transitions, while others correspond to anomalous transitions

in the network’s evolution. For the normal transitions, G(2) is generated from G(1) using the

Independent Cascade model [52]. For the anomalous transitions, most new user activations

in G(2) happen randomly, independently of the network’s structure. We study the distances

assigned to normal and anomalous network state transitions by SND and `1, and plot them as

functions of the number n∆ of users whose opinions change over each network state transition.

The results are shown in Figure 2.12.

We see that SND clearly separates anomalous transitions from normal ones, while `1 cannot
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Figure 2.12: SND and `1 distances between network states of normal (ICC) and anomalous
(random) transitions.

discern anomalous network state transitions, as `1’s value is mostly determined by n∆, which

is representative of the distance measures performing coordinate-wise comparison.

2.7.5 Scalability of Social Network Distance

We have implemented12 SND in MATLAB and C++. We use the minimum-cost network

flow solver CS2 [88] that implements Goldberg-Tarjan’s algorithm [79], but, unlike it is pre-

scribed by Theorem 5, does not use the two-edge push rule of Ahuja et al. [80]. Additionally,

for computing shortest paths, our implementation of Dijkstra’s algorithm uses a priority queue

based on a binary heap, rather than a combination of a Fibonacci and a radix heaps [30]. As a

result, our implementation of SND scales slightly worse than linearly—as guaranteed by The-

orem 5—but still very well to be applicable to real-world social networks. Figure 2.13 shows

how our implementation of SND scales with respect to the number n of users in the network

in comparison to a direct computation of SND using CPLEX’ linear solver [89]. Our imple-

mentation’s scalability with respect to the number n∆ of users holding different opinions in two

network states under comparison is shown in Figure 2.14.

12http://cs.ucsb.edu/~victor/pub/snd/
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Figure 2.14: Time for computing SND
using our method, with the network size
fixed at n = 20k, and the number n∆ of
users who changed their opinions grow-
ing up to 10k.

2.8 Limitations

Despite the demonstrated effectiveness and efficiency of SND, there are scenarios in which

its use is either prohibitively or unnecessarily expensive.

• When SND is Overly Expensive: One reason to choose a simpler distance measure, such

as `p, over SND is the latter’s computational cost. While it is asymptotically linear

in the number n of nodes, its cost can potentially be too high in practice for networks

having 100M+ nodes. In such networks, a single computation of SND can take several

days. If it is nonetheless desirable to use SND on such a large network, one can partition

that network into clusters of tractable size and perform the SND-based analysis on each

individual cluster.

• When SND is Superfluous: Using SND may be superfluous if the changes in the rate of

new user activation reveal enough information for the target application. For example,
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the user activation rate alone is clearly enough to detect a presidential election day. For

detection of such “anomalies”, a distance measure as simple as Hamming distance may

suffice.

2.9 Conclusion

In this chapter, we focused on the design of a method for the analysis of the observed

process of polar opinion dynamics in a social network. More specifically, we proposed So-

cial Network Distance (SND)—the first distance measure for comparing the states of a social

network containing polar opinions. Our distance measure quantifies how likely one state of a

social network has evolved into another state under a given model of opinion dynamics. Despite

the high computational complexity of the transportation problem underlying SND, we propose

a linear-time algorithm for its exact computation, making SND applicable to real-world on-

line social networks. We demonstrate the usefulness of SND in detecting anomalous network

states and predicting user opinions, where SND-based methods consistently outperform com-

petitors. Our anomaly detection method achieves a true positive rate (TPR) of 0.83 when the

false positive rate (FPR) is 0.3, while the next best method’s TPR is only 0.4 at the same FPR.

The accuracy of SND-based method for user opinion prediction in Twitter data is 75.63%,

which is 7.5% higher than that of the next best method. We also show that, unlike the distance

measures performing coordinate-wise comparison, SND can detect qualitative changes in the

network’s evolution pattern. SND is a powerful alternative to simpler distance measures, and

is effective when such summaries of network users’ behavior as the number of active users are

uninformative, and a deeper insight into the opinion dynamics process is required.
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2.10 Future Research

Among the directions for future research are the following.

• New applications: Since SND is, effectively, the first distance measure designed specif-

ically for the comparison of states of a social network containing competing opinions,

one potential future research direction is using SND in other applications operating in a

metric space setting, such as network state classification, clustering, and search.

• Combining macro-level distance measure-based and user-level analysis: It may be lu-

crative to combine SND with non-distance measure-based methods. For example, in the

method of Conover et al. [86] that predicts opinions based on the content of the users’

tweets, the objective function can be augmented with an SND-based term, thereby, per-

forming opinion fitting at both the micro-level of each user and the macro-level of the

entire network.

• Design of a distance measure for both structural and opinion changes: Finally, it may be

fruitful to design a distance measure that would capture changes in both the opinions of

the users and the structure of the social network simultaneously. Such a distance measure

would be more computationally complex than SND, but would result in a more accurate

analysis when the network structure changes a lot from network state to network state.
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Chapter 3

Non-Linear Models for Polar Opinion

Dynamics in Social Networks

For decades, scientists have studied opinion formation in social networks, where information

travels via word of mouth, with the particularly interesting case’s being that of polar opinions

and their competition in the network. The central problem addressed in this chapter is to design

and analyze a general model that would capture how polar opinions evolve in the real world.

We propose a general non-linear model of polar opinion dynamics, rooted in several the-

ories of sociology and social psychology. The model’s key distinguishing trait is that, unlike

in the existing linear models, such as DeGroot and Friedkin-Johnsen models, an individual’s

susceptibility to persuasion is a function of his or her current opinion. For example, a person

holding a neutral opinion may be rather malleable, while “extremists” may be strongly com-

mitted to their current beliefs. The same model can be seen as a model of non-linear heat flow

in a network-structured material. We also study three specializations of our general model,

whose susceptibility functions correspond to different socio-psychological theories.

We provide a comprehensive theoretical analysis of our non-linear models’ behavior using

several tools from non-smooth analysis of dynamical systems. To study convergence, we use
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non-smooth max-min Lyapunov functions together with the generalized Invariance Principle.

For our general model, we derive a sufficient condition for the convergence to consensus. For

the specialized models, we provide a full theoretical analysis of their convergence—whether

to consensus or disagreement. The obtained results are rather general and easily apply to the

analysis of other non-linear models defined over directed networks, with Lyapunov functions

constructed out of convex components.

This chapter is organized as follows. Having motivated our work in Section 3.1, we review

existing related opinion dynamics models in Section 3.2. Then, in Section 3.3, we define our

models of polar opinion dynamics. Section 3.4 provides preliminaries from non-smooth anal-

ysis necessary for the convergence analysis of our models in Section 3.5. We complement our

theoretical analysis of the models’ behavior with simulation results, provided in Section 3.6.

Finally, we conclude the chapter with a discussion of our results in Section 3.7.

3.1 Introduction

Studying the evolution of opinions of a group of people—the agents—connected in a di-

rected social network, we assume that the objective means for opinion evaluation are limited,

and the agents evaluate their opinions by comparison with the opinions of others [90]. Thus,

the process of opinion formation in a group is a network process, where each agent’s opinion

changes due to the agent’s interaction with his or her neighbors in the network.

In particular, we focus on polar opinions, which describe either degrees of proclivity toward

one of two competing alternatives (e.g., Democrats vs. Republicans or iOS vs. Android) or

an attitude—from extreme unfavorable to neutral to extreme favorable—toward a single issue

(e.g., using nuclear power as an energy source). We will use the terms opinion and attitude

interchangeably, and refer to them both as an agent’s state. Our emphasis on polar opinions will

manifest itself in that the agents in our non-linear models will change their opinion-adoption
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behavior as their opinions shift toward one or another pole of the opinion spectrum.

In what follows, we will review the main components of an opinion dynamics model and

connect them with the existing theories of sociology and social psychology, preparing a foun-

dation upon which our models will be constructed.

Opinion formation via weighted averaging: The most basic network model of opinion dy-

namics is the weighted averaging model of DeGroot [91] (whose continuous-time version was

studied earlier by Abelson [49]):

x(t +1) =Wx(t),

where t is time, x(t) is a vector of agent states, and W is the row-stochastic adjacency matrix

of the social network, with Wi j indicating the relative extent to which agent j influences the

opinion of agent i, or, alternatively, the relative share of x j(t) in xi(t + 1). According to this

model, each agent forms his or her opinion as a weighted average of all the opinions available

in the agent’s out-neighborhood in the network.

The appeal of DeGroot model stems from its consistency with such theories of social psy-

chology as social comparison theory [90], cognitive dissonance theory [92], and balance the-

ory [93, 94], whose unifying idea is that the agents act to achieve balance with other group

members or, alternatively, to relieve psychological discomfort from their disagreement with

others. However, one limitation of DeGroot model is that the agents’ “behavior” does not

change depending on the agent, its current state—opinion or attitude—and the issue at hand.

Models with susceptibility to persuasion: At the very least, the strength of an agent’s at-

tachment to his or her opinion depends on the extent to which the issue is important to that

agent and is representative of his or her values. Such a dimension of the strength of attitude—a
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function of the agent and the issue—has arisen in multiple studies under the names of em-

beddedness [95], ego preoccupation and ego involvement [96, 97], among others. Friedkin-

Johnsen model [98] addresses the limitation of DeGroot model by allowing the agents to have

different susceptibilities to persuasion:

x(t +1) = AWx(t)+(I−A)x(0),

where t, x(t) and W are defined as before, I is the identity matrix, and A is a constant di-

agonal matrix whose diagonal element Aii describes the extent to which agent i’s opinion is

affected by the opinions of other agents as opposed to his or her own initial opinion. The diag-

onal elements of matrix (I−A) are usually referred to as the agents’ degrees of stubbornness.

Friedkin-Johnsen model improves upon DeGroot model not only in terms of the model’s inter-

pretation, but also in terms of the model’s behavior—while the typical asymptotic behavior of

DeGroot model in a “well-connected” social network is the convergence to consensus, in case

of Friedkin-Johnsen model, agents usually disagree. The latter behavior usually occurs in the

real world [99].

State-dependent susceptibility in linear models: The “state-oblivious” definition of the

agents’ constant susceptibilities to persuasion of Friedkin-Johnsen model does not capture an-

other component of the agents’ strength of conviction, known in social psychology as commit-

ment [95, 96, 100] or certainty [97], which is determined by each agent’s attitude toward the

issue. The dependency of susceptibility to persuasion on the agents’ beliefs has been studied

in the context of Friedkin-Johnsen model [101], where the asymptotic behavior of the model

was empirically evaluated under several definitions of susceptibility A(x(0)) as a function of

the initial opinions x(0) of the agents.

Among the existing theories of social psychology, there is no agreement upon a single
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correct definition of susceptibility A based on the agents’ beliefs. One factor that has arisen

in multiple studies as closely related to the strength of conviction is the attitude extremity or

polarity [102, 103, 95, 104, 105, 106]. The conclusion that can be drawn from these works is

that extreme opinions are more resistant to change, possibly, due to the preferential evaluation

of attitude-congruent information by the agents holding extreme opinions. Alternatively, social

comparison theory [90] suggests that, when the majority of the agents hold a certain, say,

neutral, opinion, establishing a social norm, then the agents with opinions close to that norm

have relatively weaker tendencies to change their positions, while the extreme opinions are

unstable.

Existence of multiple alternative theories regarding the factors determining the strength of

the agents’ commitment to their opinions is not surprising, particularly, because these factors

have been shown to be domain-specific [95]. Hence, it is rational to either study the opinion

formation process under the most general definition of the strength of the agents’ attitudes or

to use multiple definitions of the attitude strength based on the existing socio-psychological

theories. In this chapter, we will study both the most general definition of agent susceptibility

as well as several specialized definitions consistent with different socio-psychological theories.

State-dependent susceptibility in non-linear models: The definition of susceptibility A as

a function of the initial state x(0) is beneficial in that it does not take away the model’s lin-

earity and, hence, allows application of the existing linear-algebraic techniques to the formal

analysis of the model’s asymptotic behavior. However, definition of A as a function of the

current state x(t), while would make the model non-linear, has at least two advantages. For

one thing, the definition A = A(x(t)) may be more appropriate when the evolution of opinions

is studied at a large time scale, as in the case when a group of people is working on a year-

long project, and hardly anyone remembers what their opinions were a year ago. For another

thing, and more importantly, in several existing studies [107, 108, 109], the agents’ attitudes
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are posited to be “constructed on demand”, and, in particular, according to the potentiated

recruitment model [107], the strength of attitude is an emergent property of the process of atti-

tude construction occurring when the attitude is recruited. Thus, in our models, we adopt the

definitions of agent susceptibility dependent on the agents’ current states.

Contributions: We propose novel non-linear models of polar opinion dynamics and formally

analyze their behavior. Our specific contributions are as follows.

• Novel Models: We propose a general non-linear model of polar opinion dynamics, where

the agents’ susceptibilities to persuasion are general functions of the agents’ current be-

liefs. Additionally, we propose three specialized instances of the general model, having

different definitions of agent susceptibility A(x(t)) corresponding to different theories of

social psychology. The proposed models are novel in that they capture more traits of the

opinion formation process than the existing models, and manifest a behavior unobserved

in their linear counterparts—we can generally observe either the agents’ convergence to

consensus or their persistent disagreement, depending on the agents’ initial beliefs x(0).

• Analysis of the General Model: For our general model of polar opinion dynamics we

prove a contraction property of its trajectories, and provide a sufficient condition for the

convergence to consensus. That sufficient condition is rather general and, roughly, states

that convergence to consensus takes place if the agents non-responsive to persuasion

have identical states. The latter entails that, quite naturally, a disagreement among the

agents may arise only if there are multiple agents having different beliefs and unwilling

to change them.

• Analysis of the Specialized Models: We provide a comprehensive theoretical analysis

of the asymptotic behavior of our specialized models, characterizing all their states of

equilibrium—corresponding to either the states of consensus or disagreement—through
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the analysis of certain partitions of the network, and prove each model’s convergence.

For the cases when a model converges to a state of disagreement, we provide an explicit

expression for that limiting state, which depends on the network’s structure as well as the

beliefs and locations of the agents non-responsive to persuasion, yet, does not depend on

the initial beliefs of the susceptible agents.

• Novel Analysis of Convergence: The standard tools for the analysis of convergence

of non-linear continuous-time models, such as Lyapunov’s Second Method [110] and

(Barabashin-Krasovskiy-)LaSalle Invariance Principle [111, 112], require existence of a

smooth Lyapunov function, which may not and, sometimes, provenly does not exist [113]

for a model defined over a directed network. In this chapter, we use max-min non-smooth

Lyapunov functions along with several existing non-smooth analysis techniques to prove

convergence of our non-linear models. While such Lyapunov functions have appeared in

existing literature, to the best of our knowledge, we are the first to provide a full formal

analysis of convergence of a continuous-time non-linear system defined over a directed

network using such functions together with the generalized Invariance Principle.

3.2 Related Work

The numerous existing opinion dynamics models can be roughly divided into two groups:

analytic and algorithmic.

3.2.1 Analytic Models

Analytic models are represented as systems of difference or differential equations

x(t +1) =W (x(t), t)x(t) or dx/dt = ẋ =W (x(t), t)x
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and describe a process of agent interaction usually targeting a certain form of agreement among

the agents. These models mainly differ in the extra properties of the agent interaction process

besides the agents’ effort toward reaching agreement. All our models proposed in this chapter

belong to this group.

Analytic models have long been studied by sociologists, starting with the early works of

French [114] and Harary [115]. Nowadays, the basic formulation of the weighted averaging

process is usually referred to as DeGroot model [91]. A variation of DeGroot model with some

agents’ states kept constant has been studied by Pirani and Sundaram [116]. An improvement

upon DeGroot model was proposed by Friedkin and Johnsen [98], who enabled the agents to

have individual levels of susceptibility to persuasion by other agents. Variations of Friedkin-

Johnsen model have been studied in a context of a group’s discussing a sequence of issues [117,

118]. The question of the dependence of A upon the agents’ beliefs has been empirically studied

by Friedkin in [101]. A variation of Friedkin-Johnsen model with time-dependent A(t) and its

connection to the underlying notion of dissonance minimization was discussed in work [119]

by Groeber et al. A Friedkin-Johnsen-type model with stubborn agents has been studied as a

local interaction game by Ghaderi et al. [120].

Another type of analytic models—close in spirit to our models—are the models with state-

dependent agent interaction, W (x), and, in particular, the bounded confidence models [121,

122], whose key idea is that only the agents with close enough states can interact. The two

popular representatives of such models are Hegselmann-Krause (HK) [123] model and the

model of Deffuant et al. [124]. Some convergence results for HK model have been proven

by Blondel et al. [125] and MirTabatabaei and Bullo [126]. Sufficient convergence conditions

for a more general model with state-dependent agent interaction, that includes HK model as a

special case, have been studied by Lorenz [127].

A special subtype of bounded confidence models are those that allow for stubbornness,

leadership, antagonism, or zealotry, and whose behavior has been investigated through sim-
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ulation. In particular, in [128], Deffuant et al. study the behavior of Deffuant’s model with

smooth confidence bounds in the presence of stubborn agents. Kurmyshev et al. [129] extend

Deffuant’s model with two types of agents characterized by “friendly” and “antagonistic” in-

teraction, respectively. Jalili [130] has studied the effect of the choice of the subset of stubborn

leaders as well as a particular network structure upon the bounded confidence model’s con-

vergence rate. Sobkowicz [131] has considered the “Deffuant model with emotions”, where

different opinions have varying resilience to change. In particular, the author considered the

cases when the extreme opinions are more resilient to change than the neutral opinions, as well

as the case of an asymmetric dependency of the opinion resilience on the opinion value. These

opinion resilience mechanisms are similar to some of those we use in our specialized models

in Section 3.3. Chen et al. [132] investigated how stubborn leaders can attract followers in the

context of a bounded confidence model that incorporates the leaders’ reputation, stubbornness,

appeal, as well as the extremity of their opinions. Finally, Tucci et al. [133] have studied the

bounded confidence model with stubborn leaders and investigated the effect of the number of

leaders on the opinion dynamics profile.

Similar analytic models are studied in the control systems and robotics communities, in

the context of multi-agent coordination problems [134, 135]. The models with time-varying

topology W (t) of the network have been studied in [136, 137, 113, 138]; the models for signed

networks, allowing for agents’ friendly and antagonistic interaction, have been studied in [139,

140]; the models with randomized agent interaction have been studied in [141, 142].

The final class of analytic models are the models considered in the context of the naming

game. Specifically, Waagen et al. [143] design a naming game model with discrete opinions

and zealots—who do not change their opinion—and study the effect of the number of zealots

on the opinion dynamics of the entire population.
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3.2.2 Algorithmic Models

Algorithmic models for opinion dynamics are usually defined as probabilistic or determin-

istic combinatorial algorithms describing how the agents update their states. These models

usually operate with discrete agent states and in discrete time. A notable difference of algorith-

mic models from their analytic counterparts is that algorithmic models are usually data-driven,

that is, such models are usually to be fit to data, whereas the analytic models are “prescrip-

tive”. One model in this group is the Independent Cascade Model [144], where the agents get

“activated” with an opinion by their neighbors in a probabilistic fashion. The basic version of

this model uses binary opinions—indicating presence or absence of an opinion—and is usually

used in the context of the influence maximization problem [145]. A version of the Indepen-

dent Cascade Model for the case of multiple competing opinions has been proposed in [52];

a version with asynchronous communications has been studied in [146]. A related, yet more

general model, allowing for competing opinions, is the switching-selection model of [147].

Two other types of algorithmic models are the Voter model [148, 149, 150, 151] and the

Linear Threshold model [152, 153], where in the former model, each agent is activated in a

probabilistic fashion based on the number of active agents in the neighborhood, and in the latter

model, agents become active as soon as the number of active neighbors surpasses a constant

threshold. Versions of the Linear Threshold model for the case of competing opinions have

been studied in [54]. The extensions of the discrete-opinion Voter model with stubborn agents

have been considered in works [154, 155, 151], where the authors studied the models’ long-

run behavior as well as the problem of influence maximization. Finally, there are Bayesian

algorithmic models [156], whose agent state updates are based on the Bayes rule.
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3.3 Models for Polar Opinion Dynamics

3.3.1 General Model

We define the general model of polar opinion dynamics as follows:

ẋ =−A(x)Lx. (3.1)

where x(t) ∈ [−1,1]n represents the agents’ states, A(x(t)) ∈ diag([0,1]n) is a diagonal matrix

whose diagonal elements are the agents’ state-dependent and possibly different susceptibility

functions locally Lipschitz in [−1,1]n, L = I−W is the network’s Laplacian matrix, and W ∈

[0,1]n×n is the row-stochastic adjacency matrix of the directed network, with its edge weight

Wi j measuring the amount of relative influence of agent j upon agent i.

The mathematical interpretation of the above defined model is as follows. In (3.1), the

negative Laplacian −L, when applied to x(t), measures how much, on (weighted) average, the

agent’s state is smaller than the states of the agents in its out-neighborhood Nout(i) = { j | j 6=

i∧Wi j > 0}

(−Lx)i = ∑
j∈Nout(i)

wi j(x j− xi).

When (−Lx)i > 0 and agent i is open to persuasion, that is, Aii(x) > 0, then ẋi > 0, and xi

grows, “following” its out-neighbors. Conversely, if (−Lx)i < 0, the state of an open agent i

decreases. If either an agent’s state is in balance with the states of its out-neighbors, or the

agent is closed to persuasion, that is, Aii(x) = 0, then this agent’s state does not change.

Model (3.1) can also be thought of as a non-linear generalization of the heat diffusion

model ẋ = α∆x, where the negative Laplacian −L of (3.1) corresponds to the finite-difference

approximation of the continuous-space Laplace operator ∆, and the rate A(x) at which the state
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of the model evolves may be thought of as the temperature-dependent thermal diffusivity—a

naturally occurring phenomenon [157].

The general model for polar opinion dynamics ẋ = −A(x)Lx consists of two conceptual

components: the averaging component −Lx drives the agents towards agreement, while the

susceptibility component A(x) impedes this convergence process. The averaging component

is based on such theories of social psychology as social comparison theory [90], cognitive

dissonance theory [92], and balance theory [93, 94], whose unifying idea is that the agents

act to achieve balance with other group members. The general idea of agents’ susceptibility

or stubbornness to persuasion comes from the socio-psychological studies of the strength of

attachment to one’s opinion [95, 96, 97]. The dependency of the agents’ susceptibility A(x) on

their current beliefs agrees with the socio-psychological studies [107, 108, 109], that posit that

the agents’ attitudes are “constructed on demand”.

3.3.2 Specialized Models

In addition to the general model (3.1), we will consider three specialized models, each

with a different definition of state-dependent susceptibility A(x(t)), having different socio-

psychological interpretations.

(i) Model with Stubborn Extremists: The first specialized model draws from the socio-

psychological studies [102, 103, 95, 104, 105, 106] of the attitude extremity as being a ma-

jor factor defining the strength of conviction, and whose definition of agent susceptibility

A(x) = (I− diag(x)2) assumes that extreme opinions are more resistant to change than neu-

tral opinions:

ẋ =−(I−diag(x)2)Lx. (3.2)

This model is appropriate when the extreme opinions compete in that an agent’s strong prefer-
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ence of one extreme implies this agent’s likely rejection of the opposite extreme. For example,

this may be the case when agents’ states describe the degrees of support for one of the two

major political parties in the US—inveterate Republicans or Democrats are unlikely to change

their political affiliation, while neutral voters can be successfully attracted toward one or an-

other pole of the opinion spectrum.

(ii) Model with Stubborn Positives: The second specialized model is a variation of the

model with stubborn extremists with the asymmetric susceptibility function A(x) = 1
2(I −

diag(x)), where the agents only at one end of the opinion spectrum are stubborn:

ẋ =−1
2(I−diag(x))Lx. (3.3)

This definition—inspired by the “Stubborn Left” and “Stubborn Right” susceptibility functions

of Friedkin [101]—fits those cases when the agents at one, say, negative extreme of the opinion

spectrum have no reason to reject the alternative opinion, while the agents having the opposite,

positive, opinion have an incentive to maintain their position. For example, the opinion may

describe the degree of liking for one of two smartphone brands, where opinion−1 corresponds

to the neutrally marketed brand, while opinion +1 corresponds to the brand that is aggressively

marketed not just as the best, but also as the only viable option.

(iii) Model with Stubborn Neutrals: Finally, in our third specialized model, drawing from

the social comparison theory [90] and the studies of social norms [101], we defined agent

susceptibility as A(x) = diag(x)2, assuming that the neutral opinions are resilient to change,

while the extreme opinions are unstable, thereby, making this model the opposite of the model

with stubborn extremists:

ẋ =−diag(x)2Lx. (3.4)
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This model assumes that the neutral opinion 0 correspond to a social norm, and the agents may

not feel comfortable deviating from it and going against what is acceptable in their society.

Stating our specialized models, we have provided three particular definitions of the agents’

susceptibility A(x). While these definitions agree with several well-established socio-psychological

theories, the latter theories do not provide any specifics about the particular mathematical form

of A(x), besides giving a general idea of its behavior. In our definitions, we use low-degree

polynomials, making sure A(x) fits the socio-psychological theories and, at the same time, is

simple enough to allow a clear analysis. Similarly, quadratic polynomials were used by Tay-

lor [158] who extended Abelson’s linear models [49] with “variable resistance”. Alternatively,

Friedkin in his recent study [101], when defining the constant susceptibility A(x(0)) of the

agents based on their initial beliefs, used functions of similar “shape”, yet, expressed them

using exponential functions.

Nevertheless, despite this lack of a single correct mathematical form for each version of

A(x), the convergence results we obtain in the next Section 3.5 are derived independently of

a particular mathematical form of A(x), only relying on the zeros of A(x) as well as our abil-

ity to analytically compute them. Thus, while we will further provide our analysis for the

specialized models using the particular susceptibility functions defined above, this analysis is

easy to adapt to other susceptibility functions behaving similarly, yet, possibly, having different

mathematical form.

3.4 Preliminaries from Non-smooth Analysis

Prior to analyzing our models for polar opinion dynamics defined in the previous Sec-

tion 3.3, we will, first, introduce necessary preliminaries. More specifically, we review several

tools from non-smooth analysis that prove useful when dealing with non-smooth Lyapunov

functions in the proofs of convergence in the analysis of our models in Section 3.5.
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Definition 3 (Locally Lipschitz function [159, p.9]). Function V : Rn→ Rm is locally Lipschitz

on D⊆ Rn, if for each x∈D, there exists a constant K(x)≥ 0∈ R, such that for all y in a small-

enough ball B(x,ε) of radius ε centered at x,

‖V (x)−V (y)‖ ≤ K(x)‖x− y‖.

Definition 4 (Regular function [159, pp.39–40]). Given V : Rn→ R, as well as its right direc-

tional derivative at x ∈ Rn in the direction of d ∈ Rn

V ′(x;d) = lim
h→+0

V (x+hd)−V (x)
h

,

and its generalized directional derivative at x in the direction of d

V ◦(x;d) = lim
δ→+0
ε→+0

sup
y∈B(x,δ )
h∈[0,ε)

V (y+hd)−V (y)
h

,

if, for all directions d ∈ Rn, V ′(x;d) exists, and V ′(x;d) =V ◦(x;d), then V is regular at x. If V

is convex or/and continuously-differentiable, then it is regular.1

Definition 5 ((Clarke) Generalized gradient [159]). Let V : Rn→ R be locally Lipschitz, and

ΩV be the set of points where V fails to be differentiable. Then, the generalized gradient of V

is defined as follows

∂V (x) = co
{

lim
i→∞

∇V (xi) | xi→ x,xi /∈ Z∪ΩV

}
,

where co{·} is the convex hull, and Z is any set of Lebesgue measure zero. Thus, the gener-

alized gradient of V at x is the convex hull of all gradient values around and approaching x

where V is differentiable.
1It is a sufficient condition for regularity, not included in the original definition of a regular function in [159].
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Theorem 6 (Properties of generalized gradient [160]). Let V1,V2 : Rn→ R be locally Lipschitz

and regular at x ∈ Rn, a,b ∈ [0,∞)⊂ R. Then,

(i) [scaling rule] ∂ (a ·V1)(x) = a ·∂V1(x) and (a ·V1) is locally Lipschitz and regular at x.

(ii) [sum rule] ∂ (a ·V1 +b ·V2)(x) = a∂V1(x)+b∂V2(x), and a ·V1 +b ·V2 is locally Lipschitz

and regular at x. The sum of sets in the expression above is understood in the sense of A+B =

{a+b | a ∈ A,b ∈ B}.

(iii) [max-min functions] Let Vk : Rn→ R, k ∈ {1, . . . ,m} < ∞ be locally Lipschitz at x ∈ Rn,

and

Vmax(y), max{Vk(y) | k ∈ {1, . . . ,m}},

Vmin(y), min{Vk(y) | k ∈ {1, . . . ,m}}.

Also, let

Imax(x) = {i |Vi(x) =Vmax(x)},

Imin(x) = {i |Vi(x) =Vmin(x)}.

Then,

- Vmax and Vmin are locally Lipschitz at x.

- If Vi is regular at x for each i ∈ Imax(x), then

∂Vmax(x) = co∪{∂Vi(x) | i ∈ Imax(x)}

and Vmax is regular at x.
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- If −Vi is regular at x for each i ∈ Imin(x), then

∂Vmin(x) = co∪{∂Vi(x) | i ∈ Imin(x)}

and −Vmin is regular at x.

The following theorem is as a corollary of Theorem 6.

Theorem 7 (Generalized gradients of max-min functions). Consider functions

Vmax(x) = max(x), V−min(x) =−min(x), Vmax-min(x) =Vmax(x)+V−min(x),

where x ∈ S⊆ [−1,1]n. Also, let N = S∩{α1 | α ∈ [−1,1]}, and define Imax(x) and Imin(x) as

in Theorem 6, and Imid(x) = {1, . . . ,n}\ Imax(x)\ Imin(x). Then,

∂Vmax(x) = {Pᵀ[αᵀ,0ᵀ]ᵀ},

∂V−min(x) = {Pᵀ[−βᵀ,0ᵀ]ᵀ},

∂Vmax-min(x) =


{Pᵀ[αᵀ,−βᵀ,0ᵀ]ᵀ}, if x ∈ S\N,

{Pᵀ(α−β)}, if x ∈ N,

where α and β are vectors whose elements comprise coefficients of convex combinations

(αi,β j ≥ 0, ∑iαi = ∑ jβ j = 1), αi correspond to the agents from Imax(x), β j correspond to

the agents from Imin(x), 0k correspond to the agents from Imid(x), and permutation matrices Pᵀ

restore the original order of {xi}.

Proof. Notice that both Vmax(x) = max(x) and Vmin(x) = min(x) can been viewed as, respec-

tively, the maximum and the minimum of a finite number of functions Vi(x) = xi, i∈ {1, . . . ,n}.

Since each Vi(x) is continuously-differentiable and, thus, locally Lipschitz and, due to Defini-
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tion 4, regular on S, Theorem 6 allows us to apply the rule (iii) for computing the generalized

gradient for max-min functions, followed by the application of the (i) scaling and (ii) sum rules.

The statement of the theorem, then, follows immediately.

Definition 6 (Set-valued Lie derivative [161, 160]). For a locally Lipschitz V : Rn → R and

system ẋ = f (x), the set-valued Lie derivative L̃ fV (x) of V along the trajectories of the system

is defined as L̃ fV (x) = {a ∈ R | ∀ξ ∈ ∂V (x) : 〈ξ , f (x)〉= a}.

The following theorem is an analog of the generalized Invariance Principle [161, 160],

specialized for the case of a continuous vector field, while the original was stated for differential

inclusions.

Theorem 8 (Invariance Principle [161, 160]). If

(i) V : Rn→ R is locally Lipschitz and regular,

(ii) S⊂ Rn is compact and forward invariant with respect to ẋ = f (x), and

(iii) maxL̃ fV (x) ≤ 0 for each x ∈ S, then all solutions x(t) : [0,∞)→ Rn starting in S

converge to the largest invariant subset M of S∩ {x ∈ Rn | 0 ∈ L̃ fV (x)}, where {· · ·} is set

closure. If M is finite, then the limit of each solution x(0) ∈ S exists and is an element of M.

3.5 Analysis of the Models

In this section, we will analyze well-posedness, equilibrium points, and the asymptotic

behavior of our models. The convergence proofs will rely on several notions from non-smooth

analysis reviewed in the previous Section 3.4.
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3.5.1 Well-posedness

In order for our general model ẋ = −A(x)Lx to be well-posed, its solutions must exist, be

unique, and must never escape the state space [−1,1]n. These properties of the solutions are

stated in the following theorem and its corollary.

Theorem 9 (Well-posedness of the general model). If x(0)∈ [−1,1]n, and the evolution of x(t)

is governed by the general model of polar opinion dynamics ẋ =−A(x)Lx, then x(t) ∈ [−1,1]n

for any t ≥ 0.

Since Theorem 9 is a standard result in control theory, we omit its proof and only mention

that its validity immediately follows from the general contraction Lemma 5.

Corollary (Existence, uniqueness, smoothness of solutions). The general model of polar opin-

ion dynamics ẋ =−A(x)Lx, x(0) ∈ [−1,1]n, has a unique continuously-differentiable solution

x(t) defined for all t > 0.

Proof. We will use Theorem 3.3 of [162], according to which, if f (x) is locally Lipschitz in x

in the entire compact [−1,1]n, and each solution x(t) of (3.1) lies entirely in [−1,1]n, then (3.1)

has a unique solution defined for all t > 0. The latter property of the solutions comes from the

proven above Theorem 9, and what remains is to show that f (x) is locally Lipschitz in x at each

point of [−1,1]n.

From the definition (3.1) of the general model, A(x) is locally Lipschitz in x at each point of

[−1,1]n, that is, for all x ∈ [−1,1]n, there is K(x)≥ 0 ∈ R, such that for all y in a small enough

ball B(x,ε) of radius ε centered at x, we have

‖A(x)−A(y)‖ ≤ K(x)‖x− y‖. (3.5)
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In order to obtain a similar inequality for f (x), we proceed as follows, having defined matrix

norm ‖ · ‖ to be an operator norm corresponding to `2 vector norm.

‖ f (x)− f (y)‖= ‖A(x)Lx−A(y)Ly‖

= ‖A(x)Lx−A(y)Lx+A(y)Lx−A(y)Ly‖

= ‖(A(x)−A(y))Lx+A(y)L(x− y)‖

≤ ‖A(x)−A(y)‖ · ‖Lx‖+‖A(y)‖ · ‖L‖ · ‖x− y‖

≤ K(x)‖x− y‖ · ‖L‖ · ‖x‖+‖A(y)‖ · ‖L‖ · ‖x− y‖

= ‖L‖(K(x)‖x‖+‖A(y)‖) · ‖x− y‖= R(x)‖x− y‖.

In the obtained expression for R(x), ‖L‖ < ∞ is a norm of a finite matrix, K(x) is a Lipschitz

constant of A(x), ‖x‖= ‖x‖2≤
√

n<∞ in [−1,1]n, and ‖A(y)‖<∞ as A(x) is locally Lipschitz

and, hence, bounded in a compact [−1,1]n. Thus, R(x) is a Lipschitz constant for f (x), and,

hence, f (x) is locally Lipschitz in x at each x ∈ [−1,1]n.

As to the smoothness of x(t), since A(x) is locally Lipschitz, then f (x) is continuous, and,

hence, x(t) is continuously-differentiable.

3.5.2 Equilibrium Points

Prior to studying the equilibrium points of our models, we will prove a basic lemma.

Lemma 3 (Properties of some network partitions). Let W ∈ Rn×n be a row-stochastic adja-

cency matrix of a strongly connected network G(W ). If G(W )’s nodes are partitioned into two

non-empty sets {1, . . . ,n} = I1 ∪ I2, I1 ∩ I2 = ∅, and P is any permutation matrix such that
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nodes I1 precede nodes I2 in

PWPᵀ =


I1 I2

I1 W11 W12

I2 W21 W22

,
then both (I −W11) and (I −W22) are invertible, and both (I −W11)

−1W121 = 1 and (I −

W22)
−1W211= 1.

Proof. Since G(W ) is strongly connected, W is irreducible. Consequently, since both I1 and I2

and non-empty, W11 is substochastic, so there exists ` ∈ I1, such that

∑
j∈I1

(W11)` j < 1. (∗)

Notice that ∑ j∈I1 (W11)
k
i j can be interpreted as the likelihood of a k-hop random walk on G(W )

to start at node i and end at any node of I1, so (∗) implies that there is a positive likelihood for a

1-hop random walk starting at ` to escape I1. If we define d(i, j) to be the length—in hops—of

the shortest path from node i to node j in G(W ), and dmax(`) = maxi∈I1 d(i, `), then

∀k > dmax(`) ∀i ∈ I1 : ∑
j∈I1

(W11)
k
i j < 1,

since for each i ∈ I1, there is at least one k-hop walk passing through `, and, as a result, there

is a positive likelihood of any such walk’s escaping I1. Hence, for all k > dmax(`), W k
11 is

convergent, and its spectral radius ρ(W k
11)< 1, which immediately entails ρ(W11)< 1. Hence,

for the spectrum of (I−W11), we have σ(I−W11)⊂ (0,2). Thus, (I−W11) is non-singular and,
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as such, invertible. Consequently, matrix (I−W11)
−1W12 is well-defined, and its row-sums are

(I−W11)
−1W121= (since W is row-stochastic)

= (I−W11)
−1(1−W111) = (I−W11)

−1(I−W11)1= 1.

Applying the same reasoning to blocks W22 and W21 in place of blocks W11 and W12, we obtain

the existence of (I−W22)
−1, and equality (I−W22)

−1W211= 1.

Theorem 10 (Equilibrium points). Suppose the network’s adjacency matrix W is row-stochastic,

and network G(W ) is strongly connected. Then, the following holds.

1) The equilibrium points of the stubborn positives model ẋ = −1
2(I− diag(x))Lx and the

stubborn neutrals model ẋ =−diag(x)2Lx are

x∗ = α1n, α ∈ [−1,1].

2) Consider an arbitrary agent set partition {1, . . . ,n} = I1∪ I2, I1∩ I2 = ∅, 2 ≤ |I1| ≤ n,

and an arbitrary permutation matrix P such that the agents are ordered as

PWPᵀ =


I1 I2

I1 W11 W12

I2 W21 W22

, Px =

I1 x1

I2 x2

.
Then, the equilibrium points of the stubborn extremists model ẋ =−(I−diag(x)2)Lx are

x∗ = α1n, α ∈ [−1,1], and x∗ = Pᵀ[x∗1
ᵀ,x∗2

ᵀ]ᵀ,
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where

x∗1 ∈ {−1,1}|I1| \{−1|I1|,1|I1|},

x∗2 =


(I−W22)

−1W21x∗1, if I2 6=∅,

[ ]0×1, if I2 =∅.

Proof. 1) First, let us deal with the model with stubborn positives

ẋ = f (x) =−1
2(I−diag(x))Lx.

It is easy to see that x∗ =α1, α∈ [−1,1] are equilibrium points of the system. Now, let us look

for equilibrium points corresponding to the states of disagreement. Consider such a candidate

point x ∈ [−1,1]n, x 6= α1, n > 1. Since x 6= α1, there exists agent i ∈ {1, . . . ,n}, such that

xi = min(x)< 1, and exists agent j ∈ {1, . . . ,n} such that x j > xi and Wi j > 0. Because xi < 1,

Aii(x) = 1
2(1− xi)> 0; due to the existence of such agent j, (Lx)i 6= 0. As a result, ( f (x))i 6= 0

and, thus, x is not a point of equilibrium. Hence, x∗ = α1 are the only points of equilibrium of

the model with stubborn positives.

In the remainder of the proof, we will consider different partitions {1, . . . ,n} = I1 ∪ I2,

I1 ∩ I2 = ∅ of the agent set, and P being any permutation matrix such that agents I1 precede

agents I2 in PWPᵀ and Px. For readability, for each partition I1 ∪ I2, we will omit P in the

expressions for W and x, and will apply the right agent ordering later.

Let us proceed to the model with stubborn neutrals

ẋ =−diag(x)2Lx.

A candidate equilibrium point x is defined with respect to an agent set partition {1, . . . ,n} =
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I1∪ I2, I1∩ I2 =∅, 0≤ |I1| ≤ n as follows: xi = 0 if i ∈ I1; and |xi|> 0 if i ∈ I2. If I1 =∅, then

f (x) = 0⇔ Lx = 0⇔ x∗ = α1, where α ∈ [−1,1]. If I2 =∅, then, clearly, x∗ = 0. Finally, if

both I1 and I2 are non-empty, then, w.l.o.g., assuming that agents I1 precede agents I2, f (x) =

0⇔ (I−W22)x2 = 0. However, from Lemma 3, we know that (I−W22) is invertible. Hence,

the obtained equation has only the trivial solution x2 = 0, and the corresponding equilibrium

point is x∗ = 0. We have proven that the equilibrium points of the model with stubborn neutrals

are x∗ = α1, α ∈ [−1,1].

2) For the model with stubborn extremists

ẋ =−(I−diag(x)2)Lx,

we define candidate equilibrium points with respect to partition {1, . . . ,n}= I1∪ I2, I1∩ I2 =∅,

0≤ |I1| ≤ n as follows: |xi|= 1 if i∈ I1; and |xi|< 1 if i∈ I2. If I1 =∅, then f (x) = 0⇔ Lx= 0,

and, thus, x∗ = α1, α ∈ [−1,1]. If I2 =∅, then x∗ ∈ {−1,1}n. If both I1 and I2 are non-empty,

then, again, assuming that agents I1 precede agents I2 in W and x, equation f (x) = 0 is rewritten

as

(I−diag(x2)
2)

[
−W21 (I−W22)

] x1

x2

= 0

⇔ (since |x2|< 1)⇔ (I−W22)x2 =W21x1.

From Lemma 3, we know that (I−W22) is invertible. Thus, x2 = (I−W22)
−1W21x1. Among the

x = [xᵀ1 ,x
ᵀ
2 ]
ᵀ satisfying the obtained equation, we would like to separate those corresponding to

consensus and those corresponding to disagreement. If x1 = 1, then, again from Lemma 3, we

derive x2 = 1, and x∗ = 1. Similarly, if x1 =−1, then x∗ =−1. Notice, that all the equilibrium

points discovered so far correspond to consensus and are independent of matrix P.
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Finally, if x1 ∈ {−1,1}|I1| \{1,−1} (which implies |I1| ≥ 2), and, hence, the agents neces-

sarily disagree, then x2 = (I−W22)
−1W21x1, and the corresponding equilibrium points, under

the partition-defined agent order P, are x∗ = Pᵀ
[

xᵀ1 xᵀ2

]ᵀ
.

3.5.3 Convergence Analysis

Having studied the equilibrium points of our specialized models, we will now study these

models’ convergence. We will, first, establish sufficient conditions for convergence to con-

sensus of the general model of polar opinion dynamics and, then, use this result to prove

convergence of the three specialized models.

In the proofs of convergence, we will need establishing forward invariance of certain sub-

sets of the state space with respect to a model at hand. To that end, we will need the following

lemma, being an immediate consequence of the solution uniqueness stated in the Corollary of

Theorem 9.

Lemma 4 (Agent subset invariance). If x(t) ∈ [−1,1]n evolves according to one of the special-

ized models

ẋ =−1
2(I−diag(x))Lx, (3.3)

ẋ =−diag(x)2Lx, (3.4)

ẋ =−(I−diag(x)2)Lx, (3.2)

and the agents are partitioned into Iclosed(t) = {i | Aii(x(t)) = 0} and Iopen(t) = {i | Aii(x(t))>

0}, then, for all t ≥ 0, Iclosed(t) = Iclosed(0) = Iclosed and Iopen(t) = Iopen(0) = Iopen.

The following lemma will be instrumental in proving forward invariance of subsets of the

state space as well as in the construction of Lyapunov functions in the convergence proofs.

Lemma 5 (General contraction lemma). Suppose that W is a row-stochastic adjacency matrix
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of the network, and agent states x(t) ∈ [−1,1]n evolve according to the general model of polar

opinion dynamics

ẋ = f (x) =−A(x)Lx. (3.1)

Then, Vmax(x) = max(x) is non-increasing and Vmin(x) = min(x) is non-decreasing along the

trajectories of (3.1).

Proof. Let us consider Vmax(x) = max(x) and define Imax(x) = {i | xi = max(x)}. According to

Lemma 2.2 of Lin et al. [163], the upper Dini derivative of Vmax along the trajectories of (3.1)

is defined as

D+
f Vmax(x) = max

i∈Imax(x(t))
ẋi(t) = max

i∈Imax(x(t))
Aii(x(t))︸ ︷︷ ︸
∈[0,1]

∑
j∈Nout(i)

wi j(x j− xi︸ ︷︷ ︸
≤0

)≤ 0.

Hence, Vmax is non-increasing along the trajectories of (3.1). The proof for Vmin is similar and,

hence, is omitted.

We have laid out all the necessary preliminaries, and are ready to prove convergence of our

models. In the following theorem, we will establish a sufficient condition for the convergence

to consensus of the general model of polar opinion dynamics.

Theorem 11 (General convergence to consensus). Suppose that W is a row-stochastic adja-

cency matrix of a strongly connected network G(W ), and agent states x(t) ∈ [−1,1]n evolve

according to the general model of polar opinion dynamics

ẋ = f (x) =−A(x)Lx, (3.1)

with the agents’ having potentially different susceptibility functions Aii(x). Let S⊆ [−1,1]n be
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a non-empty compact set, forward invariant with respect to system (3.1), and

N = S ∩ {α1 | α ∈ [−1,1]}

be its non-empty subset of consensus states. Further, assume that in S, the agents’ susceptibility

functions Aii(x) agree upon their zeros in that

∀x ∈ S ∀i, j ∈ {1, . . . ,n} : Aii(x) = A j j(x) = 0→ xi = x j.

Then, all trajectories x(t) of (3.1) starting in S converge to N as t→ ∞.

Proof. We will prove convergence using the Invariance Principle given as Theorem 8 in Sec-

tion 3.4. To apply it, we will, first, need to find a suitable Lyapunov function for system (3.1).

Consider the following Lyapunov function candidate

Vmax-min(x) = max(x)−min(x).

While it immediately follows from the general contraction Lemma 5 that Vmax-min(x) is non-

increasing along the trajectories of system (3.1), in order to prove convergence to a set, we

need a more detailed analysis that would distinguish the cases when Vmax-min(x) decreases and

when it does not change along the system’s trajectories.

From Theorem 7, it follows that

∂Vmax-min(x) =


{Pᵀ[αᵀ,−βᵀ,0ᵀ]ᵀ}, if x ∈ S\N,

{Pᵀ(α−β)}, if x ∈ N,

where convex combination coefficients αi correspond to the agents in Imax(x) = {i | xi =

max(x)}, convex combination coefficients βi correspond to the agents in Imin(x) = {i | xi =
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min(x)}, 0 correspond to the rest of the agents Imid(x) = {1, . . . ,n}\ Imax(x)\ Imin(x), and per-

mutation matrix Pᵀ restores the original agent order.

Now, for each ξ ∈ ∂Vmax-min(x), we are interested in the values of inner products 〈ξ , f (x)〉,

which, according to Definition 6, comprise the set-valued Lie derivative

L̃ fVmax-min(x) = {a ∈ R | ∀ξ ∈ ∂Vmax-min(x) : 〈ξ , f (x)〉= a}

of Vmax-min(x) at x along the trajectories of system (3.1). Our immediate goal is to understand

when maxL̃ fVmax-min(x) is negative and when it is zero, depending on the chosen x ∈ S.

If x ∈ N, that is, x = α1 for some α ∈ [−1,1], then f (x) = −A(x)Lx = −A(x)α(L1) = 0

and, thus, ∀ξ ∈ ∂Vmax-min(x) : 〈ξ , f (x)〉= 0, so L̃ fVmax-min(x) = {0}.

If x ∈ S \N, then let us investigate the possible values of 〈ξ , f (x)〉, w.l.o.g., dropping P in

the expression for ξ , for readability, and using the same agent order in f (x) as in ξ :

〈ξ , f (x)〉=−ξ
ᵀA(x)Lx

=−


α

−β

0


ᵀ

Amax(x) 0 0

0 Amin(x) 0

0 0 Amid(x)




(I−W11) −W12 −W13

−W21 (I−W22) −W23

−W31 −W32 (I−W33)




xmax

xmin

xmid


=−

(
αᵀAmax(x)(xmax− [W11W12W13]x)+βᵀAmin(x)([W21W22W23]x− xmin)

)
,

where xmax, xmin, and xmid are the states of the agents from Imax(x), Imin(x), and Imid(x),

respectively; Amax(x), Amin(x), and Amid(x) are the diagonal matrices of susceptibilities of the

agents from these three agent subsets; and adjacency matrix W is partitioned ordering the

agents as Imax(x), Imin(x), Imid(x).

Since x ∈ S \N, then x 6= α1 and max(x) > min(x). Hence, from the assumption of the

theorem about the agreement of Aii(x) upon zeros, it follows that at least one of the inequalities
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diag(Amax(x))> 0 and diag(Amin(x))> 0 holds. Let us assume, for now, that diag(Amax(x))>

0 and focus on the first term αᵀAmax(x)(xmax− [W11W12W13]x) of the obtained expression for

〈ξ , f (x)〉.

Due to row-stochasticity of W and strong connectivity of G(W ), for equality (xmax −

[W11W12W13]x)i = 0 to hold, all out-neighbors of agent i ∈ Imax(x) in G(W ) must also be

from Imax(x). If there are no such agents i, then xmax − [W11W12W13]x > 0. Additionally,

since α is comprised of a convex combination’s coefficients, and diag(Amax(x)) > 0, then at

least one element of αᵀAmax(x) is positive. Hence, αᵀAmax(x)(xmax− [W11W12W13]x)> 0, and

maxL̃ fVmax-min(x)< 0.

If there is an agent i ∈ Imax(x) with its entire out-neighborhood consisting of the mem-

bers of Imax(x), then (xmax− [W11W12W13]x)i = 0. However, xmax− [W11W12W13]x 6= 0, as the

opposite would be possible either if agents Imax(x) were disconnected from the rest of the net-

work (which is impossible due to the network’s strong connectivity assumption), or x was a

consensus state (which is impossible, as such states are absent from S \N). Thus, there is

j ∈ Imax(x) such that (xmax− [W11W12W13]x) j = δ > 0. Now, however, if we put α1 = ei and

α2 = (ei + e j)/2, with ek being the k’th element of the standard basis, we will have

α
ᵀ
1Amax(x)(xmax− [W11W12W13]x) = 0,

α
ᵀ
2Amax(x)(xmax− [W11W12W13]x) = δ/2(Amax(x)) j j > 0.

Consequently, for a given x ∈ S \ N, term αᵀAmax(x)(xmax − [W11W12W13]x) takes at least

two different values, depending on the choice of α. It can be analogously shown that, if

diag(Amin(x)) > 0, then βᵀAmin(x)([W21W22W23]x− xmin) also takes at least two different val-

ues, for different β. Hence, since α and β can be chosen independently, and at least one of

the terms αᵀAmax(x) and βᵀAmin(x) is not 0, we conclude that, if x ∈ S\N, and there are some
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agents in Imax(x) whose entire out-neighborhood is also in Imax(x), then

∃ξ1 6= ξ2 : 〈ξ1, f (x)〉 6= 〈ξ2, f (x)〉,

which entails L̃ fVmax-min(x) =∅ and, by convention, maxL̃ fVmax-min(x) = max∅=−∞ < 0.

To summarize, we have so far shown that, if x ∈ S \N, then maxL̃ fVmax-min(x) < 0, and,

if x ∈ N, then L̃ fVmax-min(x) = {0}. Additionally, it immediately follows from Theorem 6

that Vmax-min(x) is Lipschitz and regular on S. Thus, Vmax-min(x) is a Lyapunov function for

system (3.1).

Finally, we notice that, by assumption, S is compact and forward invariant with respect

to system (3.1). Additionally, N, in which 0 ∈ L̃ fVmax-min(x), is forward invariant with re-

spect to system (3.1)—as it entirely consists of equilibrium points—and, clearly, is the largest

closed subset of itself. These two facts, taken together with the existence of Lyapunov func-

tion Vmax-min(x), allow us to conclude that, by Invariance Principle, all trajectories x(t) of

system (3.1) starting in S converge to N as t→ ∞.

Having proven a sufficient condition for the convergence to consensus of the general model,

we will proceed with a comprehensive analysis of convergence for the three specialized models,

starting with the model with stubborn positives.

Theorem 12 (Convergence—Stubborn Positives). Suppose that W is a row-stochastic adja-

cency matrix of a strongly connected network, and x(t) evolves according to the model with

stubborn positives

ẋ = f (x) =−A(x)Lx, A(x) = 1
2(I−diag(x)). (3.3)

Then,
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- if x(0)< 1, then lim
t→∞

x(t) = α1, α ∈ [−1,1);

- if exists i such that xi(0) = 1, then lim
t→∞

x(t) = 1.

In other words, in the absence of the agents initially having extreme states, x(t) converges to

some consensus state α1, α< 1, and if there is at least one agent initially holding the extreme

state of 1, then all agents approach that state as t→ ∞.

Proof. Since the convergence behavior of model (3.3) varies across the state space, let us,

first, partition the latter and, then, prove convergence in each part individually. Consider the

following state space partition, illustrated with Figure 3.1:

[−1,1]n = lim
ε→+0

S0(ε)∪S1,

S0(ε) = [−1,1−ε]n,

S1 = {Pᵀx | x ∈∪n
k=1 {1}

k× [−1,1)n−k},

where N0(ε) = {α1 | α ∈ [−1,1−ε]} and N1 = {1} are the sets of consensus states in S0(ε)

and S1, respectively, convergence to which is expected.

Figure 3.1: Convergence behavior of the model with stubborn positives in two dimensions,
as well as the partition of the state space. Several trajectories representative of the model’s
behavior are displayed as solid arrows.
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(i) Convergence from S0(ε) to N0(ε): We will prove convergence using the general con-

vergence Theorem 11, with S = S0(ε) and N = N0(ε). To apply the theorem, we need to

prove the agreement upon zeros of the susceptibility functions Aii(x) and forward invariance

of S0(ε). (Theorem 11 also requires both S and N to be non-empty, and S to be compact.

However, whenever we use Theorem 11, non-emptiness trivially follows from the definition of

these sets, and compactness of S immediately follows from Heine-Borel theorem, as we always

choose S⊆ Rn, n < ∞ to be both bounded and closed. Thus, we will further omit the discussion

of these two statements about S and N from our proofs.)

Firstly, as A(x) = 1
2(I− diag(x)) and, thus, Aii(x) = 1

2(1− xi), it is clear that, if Aii(x) =

A j j(x) = 0, then xi = x j = 1, which proves the zero-agreement property

∀i, j ∈ 1, . . . ,n : Aii(x) = A j j(x) = 0→ xi = x j.

In order to prove forward invariance of S0(ε) with respect to system (3.3), we notice that,

according to contraction Lemma 5, Vmax(x) = max(x) is non-increasing along the trajectories

of system (3.3), and, at the same time, from the well-posedness Theorem 9, we know that

min(x)≥−1 for all x ∈ [−1,1]n. Consequently, all the trajectories of the system starting inside

cube S0(ε) remain in it as t→ ∞.

Now, by invoking the general convergence Theorem 11, we conclude that all trajectories of

system (3.3) starting in S0(ε) converge to N0(ε) as t→ ∞.

(ii) Convergence from S1 to N1: The agreement upon zeros property of Aii(x) has already

been proven above. As to forward invariance of S1 with respect to system (3.3), it follows

immediately from Lemma 4 about the invariance of the closed agent subset. Thus, by the

general convergence Theorem 11, all trajectories of system (3.3) starting in S1 converge to N1

as t→ ∞.
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Theorem 13 (Convergence—Stubborn Neutrals). Suppose that W is a row-stochastic adja-

cency matrix of a strongly connected network, and x(t) evolves according to the model with

stubborn neutrals

ẋ = f (x) =−A(x)Lx, A(x) = diag(x)2. (3.4)

Then,

- if x(0)> 0, then lim
t→∞

x(t) = α1, α ∈ (0,1];

- if x(0)< 0, then lim
t→∞

x(t) = α1, α ∈ [−1,0);

- otherwise, lim
t→∞

x(t) = 0.

In other words, if the initial states of all agents are positive, then x(t) converges to an element-

wise positive consensus state; if the initial states are all negative, then the convergence is to a

negative consensus; finally, if either there are some closed agents, or some open agents’ states

have opposite signs, then x(t) converges to 0 as t→ ∞.

Proof. Let us, first, partition the state space—as shown in Figure 3.2—and, then, prove con-

vergence for each part individually.

[−1,1]n = S0∪ lim
ε→+0

S−(ε)∪ lim
ε→+0

S+(ε),

S−(ε) = [−1,−ε]n, N−(ε) = {α1 | α ∈ [−1,−ε]},

S+(ε) = [ε,1]n, N+(ε) = {α1 | α ∈ [ε,1]},

S0 = {x ∈ [−1,1]n |
n

∏
i=1

xi = 0∨∃i, j : sgn(xix j) =−1},

N0 = {0},

where we expect convergence from S−(ε), S+(ε), and S0 to N−(ε), N+(ε), and N0, respec-

89



Non-Linear Models for Polar Opinion Dynamics in Social Networks Chapter 3

Figure 3.2: Convergence behavior of the model with stubborn neutrals in two dimensions,
as well as the partition of the state space. Several trajectories representative of the model’s
behavior are shown as solid arrows.

tively.

(i) Convergence from S−(ε) to N−(ε): We will prove convergence using the general con-

vergence Theorem 11, which requires that we prove the agreement upon zeros of functions

Aii(x) and forward invariance of S−(ε).

Since A(x) = diag(x)2 and Aii(x) = x2
i , it is clear that Aii(x) = 0⇔ xi = 0, thus, proving the

zero-agreement property

∀i, j ∈ 1, . . . ,n : Aii(x) = A j j(x) = 0→ xi = x j.

Forward invariance of S−(ε) immediately follows from the facts that Vmax(x) is non-increasing

along the trajectories of the system due to the general contraction Lemma 5, and max(x)≥−1

follows from the well-posedness Theorem 9.

We, now, can invoke the general convergence Theorem 11 and conclude that all trajectories
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of (3.4) starting in S−(ε) converge to N−(ε) as t→ ∞.

(ii) Convergence from S+(ε) to N+(ε): The proof is identical to the proof for the case of

S−(ε) and N−(ε) and, as such, is omitted.

(iii) Convergence from S0 to N0: The agreement of Aii(x) upon zeros has already been

proven in part (i). As to forward invariance of S0, there are two qualitatively different ways a

trajectory of the system can leave one of the mixed-sign orthants that S0 consists of: either a

trajectory leaves cube [−1,1]n or it escapes into either the positive or the negative orthant. The

former is impossible due to the well-posedness Theorem 9, which states that the trajectories

cannot leave the state space [−1,1]n. The latter is also impossible, because, in order for a

continuous trajectory x(t) to leave from a mixed-sign to the negative or the positive orthant,

the closed agent subset Iclosed(x) has to change when a trajectory passes a mixed-sign orthant’s

boundary, which would contradict the agent subset invariance Lemma 4. Thus, by the general

convergence Theorem 11, all trajectories of (3.4) starting in S0 converge to N0 as t→ ∞.

Theorem 14 (Convergence—Stubborn Extremists). Suppose that W is a row-stochastic ma-

trix of a strongly-connected network, and state x(t) is governed by the model with stubborn

extremists

ẋ =−A(x)Lx, A(x) = (I−diag(x)2). (3.2)

Further, assume that the agent set is partitioned as

Iopen = {i | Aii(x(0))> 0}, Iclosed = {i | Aii(x(0)) = 0}.

Then, the following holds:

- If Iclosed = ∅, then lim
t→∞

x(t) = α1, for some α ∈ (−1,1), that is, if there are no closed

agents, then the system converges to a consensus.
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- If Iclosed 6= ∅, yet, ∀i, j ∈ Iclosed : xi = x j = α ∈ {−1,1}, then lim
t→∞

x(t) = α1. In other

words, if there are some closed agents, all of whom agree on the state α, then the system

converges to that consensus value.

- If Iclosed 6=∅, ∃i, j ∈ Iclosed : xi 6= x j, and a permutation matrix P structures the adjacency

matrix W of the network so that the closed agents Iclosed precede the open agents Iopen in

PWPᵀ, then lim
t→∞

x(t) = x∗ = Pᵀ[x∗1
ᵀ,x∗2

ᵀ]ᵀ, where x∗1 are the initial states of the closed agents,

and x∗2 = (I−W22)
−1W21x∗1 if |Iopen|> 0 and x∗2 = [ ]0×1 otherwise. In other words, if there are

multiple closed agents disagreeing on the state, then the system converges to the defined above

state x∗ of disagreement.

Proof. As the behavior of the system varies across the state space—as illustrated in Fig-

ure 3.3—let us, first, partition the latter and, then, prove convergence for each part individually.

[−1,1]n = lim
ε→+0

S0(ε)∪ lim
ε→+0

S−(ε)∪ lim
ε→+0

S+(ε)
⋃

|Imax∪Imin|≥2

S∗(Imax, Imin),

S0(ε) = [−1+ε,1−ε]n,

S−(ε) = {Px | x ∈ ∪n
k=1{−1}k× [−1,1−ε]n−k},

S+(ε) = {Px | x ∈ ∪n
k=1{ 1}k× [−1+ε,1]n−k},

S∗(Imax, Imin) = {x | i ∈ Imax↔ xi = 1∧ i ∈ Imin↔ xi =−1}.

Above, S0(ε) corresponds to the interior of the state space, comprised of the states without

extremist agents; S−(ε) and S+(ε) correspond to the parts of the state space’s surface where

all extremist agents are either in state −1 or in state 1, respectively; and S∗(Imax, Imin) (|Imax∪

Imin| ≥ 2) are the “edges” in which there are necessarily multiple extremist agents having

different opinions. Now, we will study convergence of system (3.2) inside each of the above

defined parts of the state space.
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Figure 3.3: Convergence behavior of the model with stubborn extremists in three dimensions.
A few representative trajectories are displayed as solid arrows; the solid diagonal correspond
to the consensus equilibrium states of the system; the circles correspond to the disagreement
equilibrium states; the corners are the states of disagreement where all agents are closed,
while in the states in the interior of the cube’s edges, some agents remain open (depending on
the location of closed agents in the network, some edges may have no such internal points of
equilibrium, like in the case of edge [-1,-1,1]-[-1,1,1]).

(i) Convergence in S0(ε) (see Figure 3.4): From the general contraction Lemma 5, it

follows that S0(ε) is forward invariant with respect to (3.2). Additionally, inside S0(ε), the

agents cannot hold extreme opinions, so Aii(x) > 0. Thus, it immediately follows from the

general convergence Theorem 11 that all trajectories of system (3.2) starting in S0(ε) converge

to the latter’s subset of consensus states, that is, N0(ε) = {α1 | α ∈ [−1+ε,1−ε]}, as t→∞.

(ii) Convergence in S−(ε) (see Figure 3.5): Forward invariance of S−(ε) follows from the

general contraction Lemma 5.
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Figure 3.4: Convergence of the model with stubborn extremists in S0(ε).

Figure 3.5: Convergence of the model with stubborn extremists in S−(ε).

Additionally, since the states of S−(ε) can only have extremists in state −1, then Aii(x) =

0⇔ xi = −1, and, hence the zero-agreement property ∀i, j ∈ 1, . . . ,n : Aii(x) = A j j(x) = 0→

xi = x j holds in S−(ε). Thus, by Theorem 11, all trajectories of system (3.2) starting in S−(ε)

converge to N−(ε) = S−(ε)∩{α1 | α ∈ [−1,1]}= {−1} as t→ ∞.
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(iii) Convergence in S+(ε): The case is identical to the case of S−(ε), with the extreme

state 1 replacing the extreme state −1, and the set to which convergence is expected to occur

being N+(ε) = {1}.

(iv) Convergence in S∗(Imax, Imin) (see Figure 3.6): In this case, the general convergence

Theorem 11 is not applicable, as we expect convergence to a state x∗ = Pᵀ[x∗1
ᵀ,x∗2

ᵀ]ᵀ of dis-

agreement, with x∗1 corresponding to the initial states of the closed agents of Iclosed = Imax ∪

Imin = {i | |xi| = 1}, x∗2 = (I −W22)
−1W21x∗1, and the adjacency matrix W being structured

according to the partition Iclosed , Iopen.

Figure 3.6: Convergence of the model with stubborn extremists in S∗(Imax, Imin).

Notice, that if either |Imin∪ Imax| = n, or if the open agents can be reached only from the

extremists in one state, then |x∗| = 1, that is, the states of all the agents may asymptotically

become extreme.

First, we will construct a Lyapunov function out of max-min functions, then, re-use it to

prove invariance and, eventually, convergence to a state of disagreement using the Invariance
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Principle.

Consider function V∗max(x) = max(x− x∗), where x∗ is the state of disagreement defined

above. From Theorem 7, it follows that

∂V∗max(x) = {Pᵀ[αᵀ,0ᵀ]ᵀ},

where α, consisting of the coefficients of a convex combination, correspond to the agents of

I∗max(x) = {i | (x− x∗)i = max(x− x∗)}, 0 correspond to the rest of the agents, and Pᵀ is

a permutation matrix restoring the original agent order. Now, for any x ∈ S∗(Imax, Imin) and

ξ ∈ ∂V∗max(x), up to reordering of the agents, we will have

〈ξ , f (x)〉=−αᵀA∗max(x)(x∗max− [W11,W12]x), (3.6)

where A∗max(x) are the susceptibilities of the agents of I∗max(x), and the adjacency matrix is

structured according to the agent set partition I∗max(x), {1, . . . ,n} \ I∗max(x). Our immediate

goal is to determine the sign of the obtained expression (3.6). To that end, consider factor

(x∗max− [W11,W12]x), letting x∗∗max be the part of x∗ corresponding to the agents of I∗max(x)

x∗max− [W11,W12]x = x∗max−x∗∗max + x∗∗max︸ ︷︷ ︸
0

−[W11,W12](x−x∗+ x∗︸ ︷︷ ︸
0

)

= (x∗max− x∗∗max)− [W11,W12](x− x∗)+(x∗∗max− [W11,W12]x∗)︸ ︷︷ ︸
0

= (x− x∗)∗max− [W11,W12](x− x∗).

It is clear from the definition of I∗max(x) that (x− x∗)∗max− [W11,W12](x− x∗)≥ 0 and, hence

〈ξ , f (x)〉 ≤ 0. Furthermore, we can apply the argument from the proof of the general con-

vergence Theorem 11, to establish that when there is an agent i such that ((x− x∗)∗max−
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[W11,W12](x− x∗))i = 0, we can vary α to make 〈ξ , f (x)〉 take different values for the same x.

Thus, we can conclude that L̃ fV∗max(x) = {0} when |x| = 1 (as ξ = 0) or when x = x∗, and

maxL̃ fV∗max(x)< 0 for the other x ∈ S∗(Imax, Imin).

We can repeat the same reasoning to establish that, for V−∗min = −min(x− x∗) it holds

that L̃ fV−∗min(x) = {0} when |x| = 1 or x = x∗, and maxL̃ fV−∗min(x) < 0 for the rest of

x ∈ S∗(Imax, Imin).

Our reasoning about V∗max(x) and V−∗min(x) allow us to conclude that function

V∗max−min(x) =V∗max(x)+V−∗min(x) = max(x− x∗)−min(x− x∗)

is a Lyapunov function for system (3.2), as required by the Invariance Principle. Addition-

ally, S∗(Imax, Imin) is forward invariant, which immediately follows from the agent subset in-

variance Lemma 4. Thus, by Invariance Principle, all trajectories of system (3.2) starting in

S∗(Imax, Imin) converge to set

N∗(Imax, Imin) = {x | |x|= 1}∪{x∗},

in which 0 ∈ L̃ fV∗max−min(x). What remains to show is what element of N∗(Imax, Imin) the

system converges to.

Clearly, if all the agents are initially closed, that is, |x(0)| = 1, then limt→∞ x(t) = x(0),

which follows from the agent subset invariance Lemma 4. Now, assume that |x(0)| 6= 1. In

such a case, a trajectory cannot approach any element of {x | |x| = 1} (except, possibly, x∗ in

the case when the open agents are only reachable by the closed agents having the same state,

and, as a result, |x∗| = 1), as, generally, approaching one of these states would violate at least
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one of the above proven inequalities

maxL̃ fV∗max(x) = maxL̃ f max(x− x∗)≤ 0,

maxL̃ fV−∗min(x) = maxL̃ f (−min(x− x∗))≤ 0.

Hence, if |x(0)| 6= 1, then the trajectories of (3.2) converge to x∗ as t→ ∞.

3.6 Simulation Results

In addition to the theoretical results of Section 3.5, we report simulation results for each of

the proposed models over two synthetic and one real-world networks: Erdős-Rény (|V |= 200,

|E|= 10326, Pedge = .25), Scale-Free (|V |= 200, |E|= 944, γ =−2.3), and Zachary’s Karate

Club [164] (|V | = 34, |E| = 156). The edge weights were selected uniformly at random. For

each network and each model, we consider several qualitatively different cases of a randomly

chosen initial state x(0). We run simulation either until convergence, or, if convergence is slow,

long enough, so that the fact of convergence and the limiting state both become evident. We

display evolution of each component of the solution. The figures are shown on Page 104.

3.7 Discussion

In this section, we summarize and interpret the results obtained in the Chapter, as well as

assess where they fit in and how contribute to the existing body of research.

New models: We have defined the general model of polar opinion dynamics

ẋ =−A(x)Lx, (3.1)
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that, depending on a specific form of the susceptibility functions on the main diagonal of A(x),

has interpretation in terms of one of the socio-psychological theories. Model (3.1) can be

viewed as a non-linear analog of Abelson [49], DeGroot [91], and Friedkin-Johnsen [98] mod-

els, with the dependence of the agents’ susceptibilities A(x) to persuasion upon their current

opinions being the key distinguishing trait of our model. Mathematically, model (3.1) is also

related to the class of bounded confidence models [131, 121, 122, 123, 124], in which the

opinion-adoption behavior of the agents also depends on the agent’s current beliefs, yet, this

dependence is based upon the socio-psychological principles different from ours. A notable

exception is the work of Sobkowicz [131], in which, the author uses the opinion resilience

mechanisms similar to the ones we use in our models with stubborn positives and stubborn

extremists.

Behavior of the general model: For the general model (3.1), in Theorem 11, we have pro-

vided a sufficient condition for the convergence to consensus. Roughly speaking, a trajectory

starting inside a forward invariant set approaches a state of consensus if all closed agents have

similar states, that is, Aii(x)=A j j(x)= 0→ xi = x j. From the sociological perspective, it means

that, as long as all the ultimately stubborn agents in the network agree upon their states, the

agents will eventually agree, as there is no force that would drive the system to disagreement.

The observed behavior is different from Friedkin-Johnsen model in that, in our model, the pres-

ence of non-fully open agents, having Aii(x) < 1, does not immediately lead to an asymptotic

disagreement. The obtained sufficient condition for convergence to consensus, compared to its

analogs derived in [127, 125], is better interpretable from the sociological point of view, and is

not more restrictive.
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Behavior of the specialized models: In addition to the general model, we have considered

three specialized models

ẋ =−1
2(I−diag(x))Lx, (stubborn positives)

ẋ =−diag(x)2Lx, (stubborn neutrals)

ẋ =−(I−diag(x)2)Lx. (stubborn extremists)

The behavior of these models, studied in Theorems 12, 13, 14, can be summarized as follows.

Convergence to consensus (closed agents absent): If there are no closed agents in the net-

work, that is, if A(x(0))> 0, and, as a result, every agent is at least to some degree susceptible

to persuasion, then the system converges to a state of consensus, as shown for the example of

the model with stubborn positives in Figure 3.7.

Figure 3.7: Phase portrait: convergence to consensus of the model with stubborn positives in
the absence of closed agents.

In the absence of closed agents, the particular consensus value is known only for the model

with stubborn neutrals when the agents with both positive and negative states are present—in

this case, the system converges to 0.
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This behavior is not surprising—when term A(x) of the vector field −A(x)Lx does not

prevent any agent from changing its state, the negative Laplacian expectedly drives the state

toward a consensus. Thus, if there are no ultimately stubborn agents, then the group will

asymptotically reach an agreement.

Convergence to consensus (closed agents present): In the presence of closed agents all of

whom agree on their state α ∈ [−1,1], the system converges to consensus α1. In other words,

if the ultimately stubborn agents are present and share the same opinion, they will persuade the

rest of the group to adopt that opinion. A representative example of such behavior is given in

Figure 3.8, for the model with stubborn neutrals.

Figure 3.8: Phase portrait: convergence to consensus of the model with stubborn neutrals
when closed agents are present.

A natural conclusion is that the only force that can counteract the persuasion efforts of the

ultimately stubborn agents agreeing on an opinion is the ultimately stubborn agents having a

different opinion.

101



Non-Linear Models for Polar Opinion Dynamics in Social Networks Chapter 3

Figure 3.9: Phase portrait: asymptotic behavior of the model with stubborn extremists.
Strictly inside the state space, trajectories converge to a consensus. On the surface of the
state space, when all closed agents have the same state α, trajectories converge to that con-
sensus state α1. In the presence of multiple closed agents holding different opinions, the
system converges to a state of disagreement (such states are displayed as solid circles).

Convergence to disagreement: Finally, in the presence of multiple closed agents holding

different opinions, which is possible only for the model with stubborn extremists, the system

converges to a state of disagreement. Figure 3.9 shows a full range of qualitatively differ-

ent asymptotic behaviors of the model with stubborn extremists. If, in addition to the closed

agents holding different opinions, there are some open agents in the network, then the closed

agents will persuade the open agents to adopt a combination of their opinions. In this case,

the particular limiting state to which the system will converge will depend on the structure of

the network and the locations and states of the closed agents, yet, not on the initial opinions of

the open agents. (A similar behavior has also been observed in the context of the Voter model

with stubborn agents [155, Sec. 4]). It is particularly interesting that the opinions of the open
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agents in the latter limiting state have a rather simple expression (I−W22)
−1W21x∗1, given in

Theorem 14, where W22 is the block of the adjacency matrix corresponding to the cluster of the

open agents, W21 is the block responsible for the influence of the closed agents upon the open

agents, and x∗1 are the closed agents’ (initial) states.

Model analysis: The bulk of our theoretical analysis of the models’ behavior is comprised

of the proofs of convergence. The standard tools for the analysis of convergence of non-linear

models, such as LaSalle Invariance Principle, require existence of a smooth Lyapunov function,

with quadratic functions being a popular choice. The latter, however, may be hard and, some-

times, provenly impossible [113] to find for a model defined over a general directed network.

In this chapter, we show, using several existing tools from non-smooth analysis, how to apply

non-smooth max-min functions to prove convergence of our models. Such Lyapunov functions

have been considered in the literature [113, 165], however, this work is the first to provide a

full formal analysis of such functions used along with the generalized Invariance Principle.

Due to the generality of the non-smooth analysis tools we have used, our analysis can be easily

adapted to other non-linear models defined over directed networks, with Lyapunov functions

constructed out of convex components.
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Chapter 4

Defense Against Social Control via

Link Recommendation

Existing socio-psychological studies show that the process of opinion formation is inherently

a network process, and user opinions in a social network are attracted to a certain average be-

lief of the entire network. One simple and intuitive incarnation of this notion of the opinion

attractor is the average πᵀx of user opinions xi weighted by the users’ eigenvector centralities

πi. This value is also known as the asymptotic consensus value due to its being the asymptotic

limit to which user opinions converge under DeGroot opinion formation model. It is clear that

the opinion attractor is a lucrative target for control, as altering it essentially changes the aver-

age belief in the network. Since any potentially malicious control of the opinion distribution

in a social network is undesirable, it is important to design methods to prevent external attacks

upon the asymptotic consensus value.

This chapter is dedicated to the design of one mechanism to defend a network against so-

cial control. We assume that there is an adversary that aims to maliciously change the asymp-

totic consensus value by altering the opinions of some users in the network. We, then, state

DIVER—an NP-hard problem of disabling such external attacks upon the user opinion distri-
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bution via strategically altering the network’s eigenvector centrality by the means of recom-

mending a limited number of links to the network’s users. Relying on the theory of Markov

chains, we provide perturbation analysis that shows how eigencentrality and, hence, DIVER’s

objective function change in response to an edge’s addition to the network. The latter leads to

the design of a pseudo-linear-time heuristic for DIVER, relying on efficient estimation of mean

first passage times in a Markov chain. We confirm our theoretical and algorithmic findings, and

study effectiveness and efficiency of our heuristic in experiments with synthetic and real-world

networks.

This chapter is organized as follows. We, first, motivate the problem in Section 4.1, and,

having defined preliminaries in Section 4.2, formally state our problem and prove its hardness

in Section 4.3. In Section 4.4, we review related work on analytic and combinatorial opti-

mization of network topology as well as centrality perturbation. Our main result on optimal

strategic link recommendation is developed in Section 4.5. We buttress our theoretical findings

with experiments on synthetic and real-world networks in Section 4.6, and conclude with the

discussion of our results and future work in Sections 4.7 and 4.8, respectively.

4.1 Introduction

It is well-known that in the absence of the objective means for opinion evaluation, people

tend to evaluate their opinions by comparison with the opinions of others. Thus, social net-

works impact the opinion formation process in the society. It is clearly desirable that this pro-

cess is natural and fair, with good ideas emerging and spreading, and bad ideas declining and

disappearing. However, viral marketing experts may be interested in affecting the opinion for-

mation process with the goal of driving the opinion distribution to a certain business-imposed

objective. One popular way of affecting—or controlling—opinion formation is influence max-

imization, whose central idea is to affect the opinions of some network users with the goal
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of maximizing the subsequent spread of “right” opinions from these users throughout the net-

work, or, more generally, shifting the opinion distribution towards a desired state. Naturally,

the society would benefit from a mechanism preventing such potentially malicious interven-

tions into the opinion formation process in social networks. This chapter is dedicated to the

design of one such mechanism—a link recommendation algorithm that disables the effect of

the attempts to control the opinion distribution in a social network.

The notion central to our work is that of the average opinion of a social network, that

characterizes the entire network’s general belief. For example, it can measure to what ex-

tent, on average, network users prefer one smartphone brand over the other. Based on the

well-established socio-psychological theories, such as Festinger’s social comparison [90] and

cognitive dissonance [92] theories, the opinions of users in the network are attracted towards

the average opinion. However, the basic arithmetic average would not suffice, as the opinions

of more “central” users—such as celebrities—are expected to contribute more to the entire

network’s belief.

In order to formalize the notion of the average opinion, we recall DeGroot opinion forma-

tion model [91] rooted in the above mentioned socio-psychological theories:

x(t +1) =Wx(t),

x(t) ∈ [0,1]n, W ∈ [0,1]n×n, W1= 1,

where x(t) ∈ [0,1]n is a vector of quantified opinions of all users at time t, and W ∈ [0,1]n×n is

a row-stochastic interpersonal appraisal matrix—playing the role of the adjacency matrix of a

directed social network—whose element wi j quantifies the relative extent to which user i values

the opinion of user j (see Figure 4.1a). According to this model, users form their opinions via

weighted averaging of their own opinions with those of their neighbors in the network. Its

well-known that, under DeGroot model, in a “well-connected” network, the opinions of all
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users approach the same value—the asymptotic consensus value

lim
t→∞

xi(t) = 〈π,x(0)〉= π
ᵀx(0) = ∑

j∈V
π jx j(0),

being the sum of the users’ initial opinions x j(0), weighted by the users’ eigenvector centralities

π j. While in real-world situations, and contrary to what DeGroot model prescribes, people

do not always arrive at the same opinion, the opinions’ attraction to the (weighted) average

opinion is exactly what socio-psychological theories postulate. Thus, we adopt the asymptotic

consensus value 〈π,x〉 as the formalization of the notion of the network’s average opinion,

dropping the time notation for readability.
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Figure 4.1: DIVER’s definition by example. The adversary influences user opinions, x→ x̃,
increasing the asymptotic consensus value 〈π,x〉 → 〈π, x̃〉. The network responds by adding
edges, reducing the asymptotic consensus value 〈π̃, x̃〉, driving it back to original 〈π,x〉.

Since the asymptotic consensus value plays the role of an opinion attractor, it is a lucrative

target for influence. We assume that there is an external adversary whose goal is, without loss

of generality, to maximize the asymptotic consensus value 〈π,x〉. To that end, the adversary

influences some users in the network, changing the opinion distribution x→ x̃ and, thus, the

108



Defense Against Social Control via Link Recommendation Chapter 4

asymptotic consensus value 〈π,x〉→ 〈π, x̃〉, as illustrated in Figure 4.1b. Our goal is to respond

to this attack, and restore the asymptotic consensus value to its original state 〈π,x〉. We, how-

ever, cannot directly influence user opinions; the only legitimate opinion control tool available

to us is edge recommendation. We add a limited number of edges, thereby, changing eigencen-

tralities π→ π̃ and restoring the original asymptotic consensus value, 〈π, x̃〉 → 〈π̃, x̃〉 ≈ 〈π,x〉,

as illustrated in Figure 4.1c.

Our central goal in this chapter is to design a scalable algorithm that—under the above

described attack upon the opinion distribution—would identify the edges whose addition to

the social network would efficiently drive the altered asymptotic consensus value back to its

state prior to the attack, nullifying the attack’s impact. Our specific contributions are:

• We define DIVER—a new problem of disabling external influence in a social network

via edge recommendation—and prove its NP-hardness.

• We provide a novel perturbation analysis, establishing how the network’s eigencentrality

vector changes in response to edge addition to the network. This analysis leads to the

definition of an edge score fπ(i, j) quantifying the potential impact of the addition of

directed edge (i, j) to the network upon DIVER’s objective.

• We show how to estimate edge scores fπ in pseudo-constant time in networks with

skewed eigenvector centrality distribution, such as scale-free networks.

• We provide a pseudo-linear-time heuristic for DIVER relying on edge scores fπ , and

demonstrate its effectiveness and efficiency in experiments with synthetic and real-world

networks.
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4.2 Preliminaries

We are given a sparse directed strongly connected aperiodic social network G(V,E), |V |=

n, |E|= O(n), having row-stochastic adjacency matrix W ∈ [0,1]n×n, W1= 1—also known as

the interpersonal appraisal matrix—whose entry wi j ∈ [0,1] reflects the relative extent to which

user i takes into account the opinion of user j while forming his or her opinion. Aperiodicity

can be replaced by the requirement of the network’s having at least one self-loop with a non-

zero weight [167], which translates into a natural requirement of having at least one user who

does not completely disregard his or her own opinion in the process of new opinion formation.

The average belief of the network—or, alternatively, the value to which the opinions of

the users are being attracted—is represented by the asymptotic consensus value 〈π,x〉, where

x ∈ [0,1]n are opinions of the users, and π ∈ Rn
+, ‖π‖1 = 1 is the `1-normalized dominant left

eigenvector of W . From its definition, π is also the vector of eigencentralities of the network’s

nodes, and can also be viewed as the vector of no-teleportation PageRank scores, or the sta-

tionary distribution of the ergodic Markov chain with state transition matrix W . Due to the

latter, we may refer to W as a Markov chain, and rely upon the following characteristic of W if

viewed as a chain.

Definition 7 (Mean First Passage Time). The mean first passage time (MFPT) mi j from state i

to state j of a Markov chain is the expected number of steps it takes the chain started in state i

to pass through state j. mii is the mean first return time (MFRT) to state i.

The following Theorems 15 and 16 immediately follow from Theorems 4.4.4 and 4.4.5

of Kemeny and Snell [168], respectively, with the regularity of Markov chain in [168] being

translated into our aperiodicity and strong connectivity of the chain’s network.

Theorem 15 (Connection Between MFRT and π). For any state i of Markov chain W with an

aperiodic strongly connected network, mii = 1/πi.
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Theorem 16 (MFPT One-Hop Conditioning). For any states i and j of Markov chain W with

an aperiodic strongly connected network, mi j = 1+∑k 6= j wikmk j.

We summarize our notation in Table 4.1.

1 vector of all ones
diag(v) diagonal matrix with vector v at the main diagonal

ei i’th column of the identity matrix
x (x̃) user opinions (user opinions altered by the adversary)
W network’s row-stochastic adjacency matrix
W̃ altered network’ row-stochastic adjacency matrix
θi j weight of added directed edge (i, j)
Pi j acceptance probability of added directed edge (i, j)

π (π̃) `1-normalized left dominant eigenvector of W (of W̃ )
mi j mean first passage time from i to j in chain W

Table 4.1: Summary of notation.

4.3 Problem’s Statement and Hardness

Given a directed social network, at each point in time, we can observe its users’ opin-

ions. We assume that at some point the external adversary makes an influence maximization

attempt by targeting several users and changing their opinions, with the goal of, without loss

of generality, maximizing the asymptotic consensus value 〈π,x〉. We assume no knowledge

of which users have been attacked, relying only on our ability to detect such attacks using

existing methods that range from the anomalous event detection in a scalar time series of aver-

age opinion values [169], to tracking whether the current cumulative changes in user opinions

follow a pattern prescribed by the solution to an influence maximization problem, to network

sensing for outbreak detection [170], to opinion dynamics model-driven anomaly detection

techniques [171] from Section 2.7 of Chapter 2 of this thesis.

Having detected an external influence attempt, we are given the opinion distribution x ∈

[0,1]n preceding the attack as well as the externally altered opinion distribution x̃ ∈ [0,1]n. As
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a result of the attack, the original asymptotic consensus value 〈π,x〉 has changed to 〈π, x̃〉.

Our goal is to add a limited number k of edges to the network and, thereby, change π in

such a way, that the resulting asymptotic consensus value 〈π̃, x̃〉 is as close as possible to its

state 〈π,x〉 before the attack. Formally, the problem of disabling external influence via edge

recommendation is defined as follows:

DIVER(W,k,x, x̃) = argminW̃ |〈π̃(W̃ ), x̃〉−〈π,x〉|, (4.1)

where the perturbed row-stochastic adjacency matrix W̃ differs from W by k new edges whose

weights θi j we cannot control—since they correspond to interpersonal appraisals that users

choose themselves—yet, can estimate using existing techniques [53], and, hence, assume the

knowledge of.

Notice that, after new edge addition to a user’s out-neighborhood, the existing edges are

proportionally downweighted, and W̃ is kept row-stochastic. For k = 1, after addition of di-

rected edge (r,c) with weight θrc, the perturbed adjacency matrix W̃ is defined as follows

W̃ =W −θrc diag(er)W +θrcereᵀc . (4.2)

The same single-edge perturbation is illustrated in Figure 4.2.

r c

j
1

j
2

Figure 4.2: Perturbation of a network with a single edge (r,c) with weight θrc. Existing
edges are downweighted, maintaining row-stochasticity of the adjacency matrix.

We, first, focus on deterministic edge addition and provide a straightforward extension of

our results with edge acceptance probabilities in Section 4.5.6.
112



Defense Against Social Control via Link Recommendation Chapter 4

DIVER’s complexity comes along two dimensions—searching for the best edge subset

delivering the minimum of the objective, and assessing the impact of a given subset of edges

upon the objective. While the latter can be done in polynomial time, the edge subset search

cannot and is the root cause of NP-hardness. In the following Theorem 17, we establish that,

even for the case of undirected networks, DIVER(W,k,x, x̃) is NP-hard.

Theorem 17 (Hardness of DIVER). DIVER(W,k,x, x̃) is NP-hard for undirected networks.

Proof. In the proof, we will show that

DIVER(W,k,x, x̃) = argminW̃ |〈π̃(W̃ ), x̃〉−〈π,x〉|

applied to a certain simple undirected network can be used as a solver for the classic NP-

complete subset sum problem. For readability, we will abuse notation and assume that the

value of DIVER(W,k,x, x̃) is the minimum value itself, rather than the corresponding argmin.

The remainder of the proof will consist of four parts.

1) Subset sum problems: The subset sum problem SSP({zi},s) is a classic NP-complete

problem of deciding whether a given finite set {zi} ⊂ Zn of integers has a non-empty subset

with a predefined sum s∈ Z. (SSP appears on Karp’s list of NP-complete problems [172, p.95]

under the name KNAPSACK). A related problem is the problem kSSP01({zi},k,s) of deciding

whether, among a finite number of bounded reals zi ∈ [0,1], there is a non-empty subset of k
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elements summing up to a given value s ∈ [0,1]. Reduction SSP ∝ kSSP01 is as follows:

SSP({zi},s) =
∨n

k=1
kSSP01({z′′i },k,s′′),

z′i = zi +L ∈ Z+, s′ = s+ kL ∈ Z+,

L = |min{0,min{s,minzi}}|

z′′i = z′i/M ∈ [0,1], s′′i = (s+ kL)/M ∈ [0,1],

M = max{s′,maxz′i}.

2) Undirected uniformly weighted networks and their eigenvector centrality: Let W01 ∈

{0,1}n×n be the binary adjacency matrix of an undirected network, d = W011 be a vector of

node degrees, and D = diag(d). Further, let W = D−1W01. We say that W is the adjacency

matrix of an undirected uniformly weighted network, since all the edges within the same neigh-

borhood are weighted equally. Notice that W is row-stochastic, as

W1= D−1W011= D−1d = 1.

Since dᵀW = dᵀD−1W01 = 1ᵀW01 = dᵀ, vector π = d/‖d‖1 = d/(2|E|) = d/(2m) is the

`1-normalized dominant left eigenvector–or, eigenvector centrality—of W . If the underlying

unweighted network W01 is perturbed with k undirected edges (i, j)∈ S, |S|= k, then the eigen-

vector centrality of the corresponding weighted network becomes

π̃ =
1

2(m+ k)

(
d +∑(i, j)∈S(ei + e j)

)
=

1
m+ k

(
mπ +∑(i, j)∈S(ei + e j)/2

)
, (4.3)

where ei is the i’th column of the identity matrix.

3) DIVER in undirected uniformly weighted networks: If network W is undirected uni-

formly weighted and, thus, defined by its binary adjacency matrix W01, then DIVER’s objective
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function over such W can be rewritten as follows:

f (W̃01) = |〈π̃, x̃〉−〈π,x〉|= (from (4.3)) =

=

∣∣∣∣∣ m
m+ k

〈π, x̃〉+ 1
2(m+ k)

〈 ∑
(i, j)∈S

(ei + e j), x̃〉−〈π,x〉

∣∣∣∣∣
=

1
m+ k

∣∣∣∣∣〈 ∑
(i, j)∈S

(ei + e j), x̃/2〉−〈π,(m+ k)x−mx̃〉

∣∣∣∣∣
= a(k)

∣∣∣∣∣〈 ∑
(i, j)∈S

(ei + e j), x̃/2〉−b(k,x, x̃)

∣∣∣∣∣ ,
where a(k) = (m+ k)−1 and b(k,x, x̃) = 〈π,(m+ k)x−mx̃〉. Since k, and, consequently, a(k)

are constant, minimization of f (W̃01) is equivalent to minimization of

f ′(W̃01) =

∣∣∣∣∣〈 ∑
(i, j)∈S

(ei + e j), x̃/2〉−b(k,x, x̃)

∣∣∣∣∣ . (4.4)

4) Reduction kSSP01 ∝ DIVER: Suppose we are given an instance kSSP01(z,k,s), with

z∈ [0,1]n, k∈N, and s∈ [0,1]. In what follows, we will show that the solution to kSSP01(z,k,s)

is obtained by checking whether

min
W̃ KC

DIVER
(

W KC,k,
s1+m(z⊗12)

m+ k
,z⊗12

)
= 0, (4.5)

where W KC is the adjacency matrix of an undirected uniformly weighted 2n-clique from which

edges C = {(2i− 1,2i) | i = 1, . . . ,n} have been removed—with an example provided in Fig-

ure 4.3—W̃ KC is W KC perturbed with k edges S = {(2i−1,2i)} ⊆C, 1 = 12n, and ⊗ is Kro-

necker product.

It is easy to show that the proposed input to DIVER is indeed legal: W KC is row-stochastic

matrix of a uniformly weighted undirected strongly connected aperiodic network; and x̃ =

z⊗12 and x = s1+m(z⊗12)
m+k are legal vectors of altered and original user opinions, respectively.
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Figure 4.3: Network W KC for n= 3; absent edges C are displayed dashed. Node states z⊗12,
used in the reduction, are displayed next to the nodes.

Let us show what DIVER transforms into under the proposed input of (4.5). First, we

notice that, for b(k,x, x̃) = 〈π,(m+ k)x−mx̃〉 of (4.4), the following holds

b
(

k,
s1+mx̃
m+ k

, x̃
)
= 〈π,s1+mx̃−mx̃〉= s〈π,1〉= s.

Then, DIVER’s objective (4.4) under input (4.5) will look as

f ′(W̃ KC) =

∣∣∣∣∣
〈

∑
(i, j)∈S

(ei + e j),
z⊗12

2

〉
− s

∣∣∣∣∣=
∣∣∣∣∣ n

∑
`=1

y`z`− s

∣∣∣∣∣ ,
where y` are edge decision variables

y` =


1, if (2`−1,2`) ∈ S,

0, otherwise.

Thus, solving DIVER via minimizing f ′(W̃ KC), we look for a subset of {z`} of size k summing

up to s, which is exactly what kSSP01 is after, so kSSP01 ∝ DIVER.

Parts 1) and 4) of the proof together establish the reduction chain SSP ∝ kSSP01 ∝ DIVER,

so DIVER is NP-hard.

DIVER’s hardness is exacerbated by the fact that standard approximation techniques [173]

are not applicable, as DIVER’s objective function is not submodular.
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4.4 Related Work

While DIVER is a new problem, there is a range of problems—in extremal network design

as well as in the perturbation analysis of centrality measures and stationary distributions of

Markov chains—related to ours either in the nature of the optimized objective or that of the

methods and analyses involved. In this section, we survey several groups of these works.

4.4.1 Analytic Optimization of Network Topology

Here, we review network design problems, where a network’s topology is altered to opti-

mize some analytic property of that network.

Algebraic Connectivity: Ghosh and Boyd [174] studied the problem of maximizing the al-

gebraic connectivity—the second smallest eigenvalue λ2 of the Laplacian—of an undirected

unweighted network via edge addition. The authors use convex relaxation to formulate the

problem as a semidefinite program (SDP), which is feasible to solve for small networks. They

also provide a greedy perturbation heuristic that picks edges (i, j) based on the largest value

of (vi−v j)
2—the squared difference of the Fiedler vector’s components corresponding to each

edge’s ends. The authors show that, in case of simple λ2, value (vi− v j)
2 gives the first-order

approximation of the increase in λ2 if edge (i, j) is added to the network. The authors also

derive bounds on algebraic connectivity under single-edge perturbation. More recently, this

approach has been employed by Yu et al. [175] for the design of an edge selection heuristic

that the authors have augmented with an extra objective—neighborhood overlap-based user

similarity (which likely correlates with edge acceptance likelihood).

Spectral Radius: Van Mieghem et al. [176] study the problem of minimizing the spectral

radius of an undirected network via edge or node removal. They prove NP-hardness of the
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problem, and show that the edge selection heuristic that picks edges (i, j) with the largest scores

viv j—where v is the dominant eigenvector—performs well in practice. More recently, Saha et

al. [177] addressed the same spectral radius minimization problem and designed a walk-based

algorithm, relying on the link between the sum of powers of eigenvalues of a network and the

number of closed walks in it, and provided approximation guarantees for it. Zhang et al. [178]

studied spectral radius minimization for directed networks under SIR model, and provided an

SDP/LP-based solution, having high polynomial time complexity.

Eigenvalues and Their Functions: Tong et al. [179] target optimization of the diffusion

rate—expressed as the largest eigenvalue of the adjacency matrix—through a directed strongly

connected unweighted (see [180] for the weighted case) network via edge addition or removal.

Similarly to [176], the authors use first-order perturbation theory to assess the effect of deleting

k edges λmax− λ̃max = ∑uiv j/〈u,v〉+O(k), where u and v are the left and right dominant

eigenvectors of the adjacency matrix, respectively. This analysis inspires an edge selection

heuristic, with the quality of edge (i, j) being defined as uiv j, similarly to viv j edge score

of [176]. Le et al. [181] extend this result to the networks with small eigengaps. Chan et

al. [182] target optimization of natural connectivity—a network robustness measure defined,

roughly, as an average of exponentiated eigenvalues of the adjacency matrix—of an undirected

network via altering its topology. For edge addition, they focus on the edges between high-

centrality nodes.

Other Objectives: The SDP-based approach of Ghosh and Boyd [183] has been applied by

the same authors to minimization of the total effective resistance of an undirected electric net-

work via edge weight selection. Arrigo and Benzi [184] address the problem of optimizing the

total communicability—the sum of the entries in the exponential of the adjacency matrix—in

an undirected connected network via edge addition and removal. The authors use edge se-
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lection heuristics, favoring edges between the nodes having high eigenvector centrality (for

edge addition) or edges between the nodes having a large sum of their degrees (for edge re-

moval). Garimella et al. [185] study an edge recommendation problem targeting reduction of

polarization in a directed unweighted network, where polarization is measured via a random

walk-based score. The edges are created between users “holding opposing views”. Similarly

to [182, 184], the authors use an edge-selection heuristic that favors edges between high-degree

nodes.

4.4.2 Combinatorial Optimization of Network Topology

These works address network design problems whose objectives or methods are of com-

binatorial nature. A large portion of these works are dedicated to direct information spread

optimization in combinatorial opinion dynamics models, in contrast to indirectly optimizing

some analytic feature of the network, such as the spectral radius of its adjacency matrix, ex-

pected to facilitate or hinder information propagation.

Information Spread: Chaoji et al. [186] look at a problem of maximizing the size of the ac-

tivated user set under the Independent Cascade-like opinion dynamics model in an undirected

network via edge addition. The authors prove NP-hardness of the problem, apply continuous

relaxation to gain submodularity of the objective, and design a greedy cubic-time approxima-

tion algorithm for the relaxed problem. Kuhlman et al. [187] focus on general threshold-based

propagation models, and address the problem of minimizing the contagion spread via edge

deletion in a directed weighted network. The authors prove inapproximability of the problem,

and design a spread simulation-based heuristic, that proves to be effective in experiments. The

work of Khalil et al. [188] is dedicated to facilitating or hindering the spread of information

under Linear Threshold (LT) model via edge addition or deletion in a directed weighted net-

work. The authors design an influence objective function and prove its supermodularity. The
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latter property used together with sampling of LT process realizations allows for the design of

an efficient linear-time algorithm for target edge selection.

Shortest Paths and Optimal Network Flows: Phillips [189] studied the problem of mini-

mizing a combinatorial maximum flow / minimum cut in a network. Each capacitated edge has

a destruction cost, and the adversary needs to select a subset of edges to destroy, constrained

by the total edge destruction budget. The authors prove NP-hardness of the problem, and de-

sign an FPTAS for the case of a planar network. Israeli and Wood [190] conduct a study of

an NP-hard problem of maximizing a single s-t shortest path via edge removal in a directed

network, formulated as a mixed-integer program (MIP). Due to the prohibitive time complexity

of a direct solution of a MIP problem, the authors propose several decomposition techniques

to accelerate the computation under some assumptions on the edge removal delays. Papage-

lis et al. [191] address the problem of minimizing the average all-pairs shortest path length in

a connected undirected network via edge addition, and propose a greedy algorithm and two

heuristics. Their most efficient algorithm has a quadratic time complexity. Ishakian et al. [192]

define a general path-counting centrality measure and study a problem of maximizing the cen-

trality of a given node via edge addition in a DAG. The authors use a quadratic-time greedy

strategy for picking edges providing the largest marginal increase of the objective. Parotsidis et

al. [193] study minimization of the sum of lengths of the shortest paths from a target node to all

other nodes via link recommendation to the target node in an undirected network. The problem

is proven to be NP-hard, and an efficient approximation algorithm is designed, employing sub-

modularity of the objective. A related problem of minimizing the maximal shortest path length

has been previously addressed by Perumal et al. [194]; another related problem of maximizing

the coverage centrality—the number of unique node pairs whose shortest paths pass through a

given node—is addressed by Medya et al. [195].
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4.4.3 Centrality Perturbation and Manipulation

These works study either how eigenvector centrality, or PageRank, or the stationary distri-

bution of a Markov chain changes when a network’s structure is perturbed, or how to strategi-

cally manipulate centrality by altering the network.

Strategic Centrality Manipulation: Avrachenkov and Litvak [196] analyze to what extent

a node can improve its PageRank by creating new out-edges. The authors derive equalities

that result in a conclusion that the PageRank of a web-page cannot be considerably improved

by restructuring its out-neighborhood. The authors also derive an optimal linking strategy,

stating that it is optimal for a web-page to have only one outgoing edge pointing to a web-page

with the shortest mean first passage time back to the original page. Similar conclusions can

be drawn for eigenvector centrality in an arbitrarily weighted network using Theorem 18 from

Section 4.5.2 of this thesis. De Kerchove et al. [197] generalize the results of Avrachenkov and

Litvak [196], studying maximization of the sum of PageRanks of a subset of nodes via adding

outgoing edges to them. Csáji et al. [198] study the problem of optimizing the PageRank of

a given node via directed edge addition. The authors formulate the optimization problem as

a Markov decision process and propose a (generally, not scalable) polynomial-time algorithm

for it.

Centrality Perturbation Analysis: Cho and Meyer [199] provide coarse bounds of type

|πi− π̃i|/πi≤‖E‖∞ maxi6= j mi j/2 for the stationary distribution of a generally perturbed Markov

chain, where E is an additive perturbation of the state transition matrix. Chien et al. [200] pro-

vide an efficient algorithm for incremental computation of PageRank over an evolving edge-

perturbed graph, with the analysis’ drawing upon the theory of Markov chains. The key idea of

their algorithm is to contract the network and localize its part where the nodes are likely to have

changed their PageRank scores under the perturbation. Langville and Meyer [201] provide ex-
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act equalities for the change in the stationary distribution of a perturbed Markov chain using

group inverses. They address the problem of updating the stationary distribution under multi-

row perturbation via exact and approximate aggregation, similarly to what Chien et al. [200]

did for PageRank. Hunter [202] addresses the same problem of establishing equalities for the

change in the stationary distribution, yet, provides an answer that does not involve group in-

verses and, instead, uses mean first passage times in a Markov chain; our perturbation analysis

in Section 4.5.2 builds upon this result. Como and Fagnani [203] provide an upper bound on

the perturbation of the stationary distribution of a Markov chain in terms of the mixing time

of the chain as well as the entrance time to and the escape likelihood from the states with per-

turbed out-neighborhoods. Bahmani et al. [204] address the problem of updating PageRank

algorithmically. The proposed node probing-based algorithms provide a close estimate of the

network’s PageRank vector by crawling a small portion of the network. More recently, Li et

al. [205] and Chen and Tong [206] addressed a general problem of updating eigenpairs of an

evolving network. Chen and Tong provide a linear-time algorithm for tracking top eigenpairs.

4.5 Strategic Edge Addition to the Network

Since, due to Theorem 17, DIVER optimization problem

DIVER(W,k,x, x̃) = argminW̃ |〈π̃(W̃ ), x̃〉−〈π,x〉|, (4.1)

is NP-hard, we need to design a heuristic for it. Our general approach—formalized later in

Section 4.5.5—is as follows. We will assess candidate edges with respect to how much their

addition to the network can decrease term 〈π̃, x̃〉 of (4.1), and then iteratively add the most

promising edges to the network until we are satisfied with the value of DIVER’s objective.

Thus, our foremost concerns now are: the selection of a small number of candidate edges
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to assess, and the subsequent assessment of the potential impact of these edges’ addition to

the network upon the network’s eigenvector centrality. These concerns are addressed in the

following two sections.

4.5.1 Selection of Candidate Edge Source Nodes

The above described general approach involves assessing candidate edges individually.

However, the number of absent edges in a sparse network is O(n2), and inspecting all of them

is unfeasible for large networks. Hence, we will focus on a small number of candidate edges,

outgoing from nsrc� n network nodes. This implies that a small number of nodes are being

the sources for most—or, at least, a large number of—“good” candidate edges. Intuitively, the

nodes having the largest (eigenvector) centrality should be those edge sources; the changes in

their out-neighborhoods should have the largest impact upon the centrality distribution in the

network, as Figure 4.4 suggests. This intuition will find formal support in Corollary 3 in the

following Section 4.5.2.
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Figure 4.4: Dependence of the asymptotic consensus value’s reduction
fπ(r,c) = 〈π, x̃〉 − 〈π̃, x̃〉 after addition of edge (r,c), θrc = const to a scale-free net-
work (n = 100,γ = −2.5) upon the eigenvector centrality πr of the edge’s source node.
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Thus, to make sure that addition of candidate edges to the network has a large impact—

either very positive or very negative—upon the asymptotic consensus value, we can limit our-

selves to considering only candidate edges outgoing from high-centrality nodes. Fortunately,

the number of such nodes in real-world social networks is indeed small, and most nodes are at

the periphery, which justifies our choice of nsrc� n.

4.5.2 Eigencentrality Under Single-Edge Perturbation

In order to tackle DIVER (4.1), we need to understand how the addition of a single edge

w̃rc = θrc ∈ (0,1] from node r to node c changes the network’s eigenvector centrality π →

π̃ . We assume that edge (r,c) is originally absent—wrc = 0—and use the same single-edge

perturbation model

W̃ =W −θrc diag(er)W +θrcereᵀc . (4.2)

In our subsequent perturbation analysis, we will make the following Assumption 4.

Assumption 4 (Rational Selfishness). Users are rationally selfish in that for any user i, ∀ j 6=

i : wii > wi j. Thus, each user trusts his or her own opinion more than the opinion of any other

individual user.

The following Theorem 18 states how the eigencentrality vector changes under a single-

edge perturbation (4.2).

Theorem 18 (Single-Edge Perturbation). Under Assumption 4, for a single-edge perturba-

tion (4.2) of a strongly connected aperiodic network with adjacency matrix W, the network’s

eigenvector centrality changes as

π̃ j = π j

[
1−

θrc(mc j(1−δ{ j,c})−mr j +1)
mrr +θrc(mcr−mrr +1)

]
, (4.6)
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where mi j is the mean first passage time from state i to j of Markov chain W, and δ is Kronecker

delta. In particular,

π̃r = 1/[mrr +θrc(mcr−mrr +1)]. (4.7)

The proof will rely on the following Theorem 19 due to Hunter [202], provided for refer-

ence below.

Theorem 19 ([202, Theorem 4.4]). Let multiple perturbations occur in r’th row of W. Let

εi = W̃ri −Wri; additionally, let the minimal negative perturbation happen at state a, with

εa = −m = min{ε j | 1≤ j ≤ n}; and the maximal positive perturbation occur at state b with

εb =M =max{ε j | 1≤ j ≤ n}. Also, let P be the set of positive perturbation indices, excluding

b, and N be the set of negative perturbation indices, excluding a. Then,

π j− π̃ j =



πaπ̃r[Mmba + ∑
k∈P∪N

εkmka] if j = a,

πbπ̃r[−mmab + ∑
k∈P∪N

εkmkb] if j = b,

π jπ̃r[−mma j +Mmb j + ∑
k∈P∪N

k 6= j

εkmk j] if j 6= a,b.

Proof (Theorem 18). Let us apply Theorem 19 to our case of a single-edge perturbation (4.2).

We are adding edge (r,c) with weight θrc to the network. Due to the form (4.2) of our single-

edge perturbation, the only positive perturbation occurs at the added edge’s destination node c,

so b = c, εc = M = θrc, and P =∅. For all the other out-neighbors i of the new edge’s source

node r, the corresponding perturbations εi = −θrcwri are negative. Due to Assumption 4,

∀i 6= r : wrr > wri, so the minimal negative perturbation occurs at i = r, and, thus, a = r and

εa =−m =−θrcwrr.
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Let us first show the validity of (4.6) in case of j = r, that is, (4.7). According to Theo-

rem 19,

πr− π̃r = πrπ̃r

[
θrcmcr + ∑

k∈P∪N
(−θrcwrk)mkr

]
= (as wrc = 0) = θrcπrπ̃r

[
mcr−∑

k 6=r
wrkmkr

]
.

Using the one-hop conditioning Theorem 16, the obtained expression can be written as

πr− π̃r = θrcπrπ̃r [mcr−mrr +1]

⇔ π̃r = πr/(1+θrcπr[mcr−mrr +1]).

Dividing the numerator and denominator in the right-hand side of the obtained expression by

πr > 0—where positivity comes from Perron-Frobenius theorem—and using equality 1/πr =

mrr (from Theorem 15), we obtain (4.7).

Let us similarly deal with the case j 6= r,c. From Theorem 19,

π j− π̃ j = π jπ̃r

−θrcwrrmr j +θrcmc j + ∑
k∈P∪N

k 6= j

(−θrcwrk)mk j


= θrcπ jπ̃r

[
mc j−wrrmr j− ∑

k 6=r,c, j
wrkmk j

]

= (as wrc = 0) = θrcπ jπ̃r

[
mc j−∑

k 6= j
wrkmk j

]

⇔ (from Theorem 16)⇔ π̃ j = π j[1−θrcπ̃r(mc j−mr j +1)].

Substituting (4.7) in the obtained expression, we get (4.6) for j 6= c. The proof for j = c is

similar and, thus, is omitted.
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The following Corollary 3—justifying Section 4.4’s focus on top-centrality edge source

nodes—immediately follows from equation (4.6) of Theorem 18 used with Theorem 15.

Corollary 3. Under perturbation (4.2) of the network with a single edge (r,c), θrc > 0, it holds

that limπr→0 π̃ = π , and, thus, limπr→0 fπ(r,c) = limπr→0 (〈π, x̃〉−〈π̃, x̃〉) = 0.

4.5.3 Asymptotic Consensus Value Under Single-Edge Perturbation

To solve DIVER, we are interested in adding candidate edges that would result in a large

reduction fπ(r,c) = 〈π, x̃〉−〈π̃, x̃〉 of the asymptotic consensus value. While Theorem 18 states

how different components of the eigencentrality vector change under a single-edge perturba-

tion (4.2), the following Theorem 20 is concerned with the effect of such perturbation upon

the value of fπ(r,c). The proof of the theorem is immediately obtained by substituting (4.6) of

Theorem 18 into fπ(r,c) = 〈π− π̃, x̃〉.

Theorem 20. Under the rational selfishness Assumption 4, for a single-edge perturbation (4.2)

of W, the asymptotic consensus value 〈π, x̃〉 decreases as follows:

fπ(r,c) = 〈π, x̃〉−〈π̃, x̃〉= θrc

n
∑
j=1

π j(mc j · (1−δ{ j,c})−mr j +1)x̃ j

mrr +θrc(mrc−mrr +1)
. (4.8)

Essentially, Theorem 20 provides us with an edge score fπ(r,c), whose use for candidate

edge selection comprises our heuristic for DIVER. Unfortunately, fπ ’s computation is rather

challenging, and is addressed in the following section.
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4.5.4 Efficient Computation of Candidate Edge Scores

Computation of candidate edge scores fπ is challenging for two reasons. Firstly, expres-

sion (4.8) involves summation over all n network nodes. Since there are O(nsrcn) candidate

edges—with nsrc� n sources and n destinations—it would result in at least a quadratic-time

heuristic for DIVER that would not scale. Secondly, expression (4.8) involves mean first pas-

sage times, whose direct computation is very expensive. We address both these challenges

separately below.

Focus on a Small Number of Nodes: Our first concern is that expression (4.8) for fπ con-

tains summation over all n nodes. Intuitively, not all network nodes contribute equally to the

value of (4.8). Indeed, in networks with skewed eigencentrality distribution, such as scale-free

networks, fπ is largely determined by the top-centrality nodes. This is illustrated in Figure 4.5,

that shows the relationship between the exactly computed fπ and its approximations, with dif-

ferent numbers of scale-free network nodes being used in fπ ’s computation. We can see that,
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Figure 4.5: Comparison of exact and approximate candidate edge scores fπ in a scale-free
network (n = 100,γ =−2.5).

even when we use only 10% of nodes, the relative order of fπ for different candidate edges is
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close to the original, and it is still easy to identify candidate edges (r,c) with the largest values

of fπ(r,c).

Thus, to efficiently compute fπ(r,c), we will use only those j in (4.8) corresponding to a

constant number, e.g. nsrc, of top-centrality nodes in the network, in addition to j ∈ {r,c}.

Efficient Computation of Mean First Passage Times: In the previous section, we have

considerably simplified computation of fπ(r,c) by leaving only O(nsrc) summands in expres-

sion (4.8). Now, our concern is to actually find values of the mean first passage times mi j

remaining in (4.8).

The classic method for exact MFPT computation [168, Theorem 4.4.7] involves computing

the fundamental matrix Z = (I−W +1πᵀ)−1 of Markov chain W , and defines MFPTs as

M = {mi j}= (I−Z +11ᵀ diag(Z))diag−1(π).

Computation of the fundamental matrix involves a cubic-time matrix inversion and would not

scale. In [207], Hunter surveys alternative methods for MFPT computation, but all of them

share the same high complexity. Most importantly, however, all existing methods target com-

putation of all O(n2) MFPTs between all the nodes in the network.

Let us notice that expression (4.8) for fπ uses MFPTs either from or to high-centrality

nodes: r are top-centrality according to Section 4.5.1; j are top-centrality according to Sec-

tion 4.5.4. There are nsrcn� n2 such MFPTs, where nsrc is the number of candidate edge

source nodes r.

We propose to estimate the MFPTs between a small number of nodes by performing a finite

random walk over the network and tracking first passage times between the nodes. The walk

starts at an arbitrary node and proceeds for a predefined number of steps following the transition

probabilities defined by the adjacency matrix W , viewed here as the state transition matrix of
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a Markov chain. While performing the walk, we accumulate the passage times between nsrc

candidate edge sources and n candidate edge destinations, and compute the means when the

walk is complete. This approach towards MFPT estimation is similar to the k-Step Markov

Approach that White and Smyth [208, Section 6.4] used for estimation of their MFPT-based

relative importance of network nodes.

The key questions here are whether the proposed method will produce good estimates of

MFPTs to/from high-centrality nodes and, if so, how long the random walk should be. We

answer these two questions via empirical analysis.

The first insight is that MFPTs to and from high-centrality nodes converge very fast, since

the walk visits such nodes most often. This is illustrated in Figure 4.6, according to which the

error of MFPT estimates mi j noticeably varies with the walk’s length when both i and j are

low-centrality, and is uniformly low if at least one of i and j is high-centrality.
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Figure 4.6: Root mean square error of MFPT estimates in a scale-free network
(n = 100,γ =−2.5) using walks of different length.

The latter insight echoes the result of Avrachenkov et al. [209], who show that PageRank of

high-centrality nodes estimated via Monte Carlo simulation converge very fast.
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Figure 4.7: Dependency of the length of a random walk—used for estimating MFPTs to and
from top-centrality nodes—on the size and density of the scale-free network.

Now, we empirically study the question of how long the random walk should be to obtain

sufficiently good estimates of MFPTs to and from top-centrality nodes in a scale-free network.

The results are reported in Figure 4.7, that shows how many steps a random walk should per-

form in order for 5% of MFPTs to and from top 5% high-centrality nodes to converge within

5% of their true values, while the network’s size n and scale-free exponent γ vary. For each

pair (n,γ), 100 networks are generated, and the mean walk lengths are reported. The results are

reported for 3 specific scale-free exponents, γ ∈ {−2.9,−2.5,−2.1}. The length of the random

walk does not depend on the scale-free exponent, and depends upon the network’s size n as

(0.197n−2.248) ·104. This result allows to make the following statement.

Proposition 1 (Random Walk Length). In scale-free networks, the length of a random walk

sufficient for convergence of O(n) MFPTs to and from O(1) top-centrality nodes is O(n) (in

contrast to O(n3) cost of the direct computation of all MFPTs via the fundamental matrix

method).
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4.5.5 Solving DIVER

In this section, we gather all our results, formally state a heuristic for solving DIVER, and

analyze its complexity.

Algorithm 1 Heuristic for DIVER
Input: W—row-stochastic irreducible aperiodic sparse interpersonal appraisal matrix; k—

number of new edges to add; nsrc—maximal number of new edges’ sources.
Output: sequence (r1,c1),(r2,c2), . . . of new edges to add

1: Compute eigenvector centrality π

2: Define candidate edge source nodes:
R← nsrc top-centrality nodes in the network

3: Estimate MFPTs {mi j} to and from each r ∈ R
4: for r ∈ R, c ∈ {1, . . . ,n} do
5: Estimate fπ(r,c) using O(nsrc) top-centrality nodes
6: end for
7: S← candidate edges (r,c) having top-k scores fπ(r,c)
8: return S

Theorem 21. Time-complexity of Algorithm 1 is O(n(gap(W )+ n2
src)+ nsrc lognsrc + k logk),

where gap(W ) is the number of matrix-vector multiplications the power method uses to com-

pute the dominant left eigenvector of W.

Proof. In step 1 of Algorithm 1, we compute the dominant left eigenvector π of W using the

power method, performing gap(W ) matrix-vector multiplications, each of which has a linear

time complexity for sparse W . Thus, this step’s complexity is T1 = O(gap(W )n). The cost of

selecting top nsrc elements out of n at Step 2 is T2 = O(n+nsrc log(nsrc)). In step 3, following

Section 5.5.2 and, in particular, Proposition 5.1, we estimate MFPTs via a O(n)-long finite

random walk, so this step’s cost is T3 = O(n). At steps 4-6, we compute nsrcn edge scores

fπ . Following the method of Section 5.5.1, each fπ(r,c) is computed in time O(nsrc), bringing

time complexity of steps 4-6 to T4−6 = O(n2
srcn). Finally, selection of top k out of nsrcn items at

step 7 is performed in time T7 = O(nsrcn+ k logk). If we collect the expressions for T1, . . . ,T7,

we get T = O(n(gap(W )+n2
src)+nsrc lognsrc + k logk).
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In Theorem 21, the number gap(W ) of iterations it takes the power method to converge

depends on W ’s spectral gap λ2/λ1, but, in practice, gap(W ) usually can be assumed to be a

reasonably small constant [209]. Thus, assuming that gap(W ) is bounded, as well as noticing

that we choose both nsrc and k to be small, that is, nsrc� n and k� n, it immediately follows

from Theorem 21 that Algorithm 1 is computable in time O(n).

4.5.6 Probabilistic Edge Addition

Our theory and algorithms described so far straightforwardly extend to the case of proba-

bilistic edge recommendation. Let us assume candidate edge (r,c) is accepted with probability

Prc ∈ [0,1]1. Then, due to linearity of the inner product operation, the probabilistic version

f P
π (r,c) of the edge score fπ(r,c) = 〈π− π̃, x̃〉 is

f P
π (r,c) = Prc〈π− π̃, x̃〉+(1−Prc)〈π−π, x̃〉= Prc fπ(r,c),

and Algorithm 1 (lines 5, 7) changes in that it computes f P
π (r,c) instead of fπ(r,c) using the

same procedure from Section 4.5.4. We can further change Algorithm 1 (line 2) to select

edge sources not just based on their eigencentrality πi, but rather based on the value of the

product πi max j Pi j, thereby, avoiding recommending new edges to “celebrity nodes” having

max j Pi j ≈ 0. Notice that the above proposed alternations do not affect Algorithm 1’s time

complexity.

4.6 Experimental Results

In this section, we experimentally study Algorithm 1’s performance on synthetic and real-

world networks. We start with an experimental setup, and, then, study the performance of our
1Prc can be estimated based on the present links and the history of their creation. Alternatively, we can choose

Prc ∈ {0,1} ourselves, solving a problem where only a subset of candidate edges is available for recommendation.
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heuristic, as well as its effectiveness, efficiency, and robustness to network noise.

4.6.1 Experimental Setup

Networks: We have experimented with three synthetic and three real-world networks:

• SF(n,γ): a scale-free network with n nodes and scale-free exponent γ , built using a

greedy generator that constructs a directed graph trying to match a given degree distri-

bution2.

• BA(n,mlinks): a Barabási-Albert network [45] on n nodes with seed SF(0.01n,−2.5) and

mlink edges created per node / iteration.

• ER(n,Pedge): an Erdős–Rényi network [44] with the edge probability Pedge, being an ex-

ample of a “non-scale-free-like” network, on which our heuristic and baselines perform

poorly.

• Karate: Zachary’s Karate Club network [164].

• Facebook: a 4k-node part of Facebook graph [210].

• Epinions: a 32k-node part of the mutual trust network epinions.com [211].

The characteristics of these networks are summarized in Table 4.2, where Sπ and Kπ are

skewness and kurtosis, respectively, of the unweighted network’s eigencentrality distribution,

and Sd and Kd are the same metrics of the same network’s total (in- plus out-) degree distribu-

tion.

All the networks except Facebook are directed. If the original network was not strongly

connected, we replace it with its largest strongly connected component. We also add all self-

loops—since each user in our case is supposed to have some amount of trust in her or his

2EvaluateGraphCreateRandomGraph.cpp of Complex Networks Package.
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Network |V | |E| Sπ Sd Kπ Kd
SF(1024,−2.5) 1024 3.9k 5.30 9.37 54.88 134.56

BA(1024,3) 1024 7.9k 7.51 7.46 103.34 84.26
ER(1024,0.25) 1024 261k 0.04 0.10 2.95 3.01

Karate 34 190 1.09 2.00 3.24 6.30
Facebook 4039 181k 4.24 4.52 19.67 57.56
Epinions 32k 476k 9.87 9.02 130.01 160.64

Table 4.2: Networks used in experiments with DIVER.

own opinion—and draw edge weights uniformly at random, while maintaining self-weight

dominance—as per Assumption 4—and rescaling the weights in each out-neighborhood to

make sure the resulting adjacency matrix is row-stochastic.

Opinions and Attack Upon Them: The opinions x before the attack are drawn uniformly at

random from [0,1]n. Then, to create x̃, kbribed = 0.1n (5 for Karate network) nodes are selected

uniformly at random, and their opinions change to 1, while the opinions of other users stay

intact.

Methods: We experiment with several versions of our heuristic, as well as two baselines.

• DIVER: uses Algorithm 1 with fπ being computed using all rather than O(1) top-

centrality nodes, and estimates MFPTs using the procedure of Section 4.5.4. The heuris-

tic adds k edges at a time, improving the distribution of eigencentralities π̃ either until the

asymptotic consensus value 〈π̃, x̃〉 gets close enough to its original state 〈π,x〉, or a max-

imum of kmax new edges is reached. The number nsrc of top-centrality nodes considered

in computation is 20 for synthetic, 10 for Karate, 40 for Facebook, and 200 for Epinions

networks. This version of Algorithm 1 has quadratic time complexity, and represents

“the best case” behavior of DIVER heuristic.

• DIVER( fπ ∼ X%), X ∈ {10,20,30}: similar to DIVER above, except that Algorithm 1

estimates fπ using only a fraction X of all the nodes. The time complexity of these
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methods is pseudo-linear, as per Theorem 21, and lower values of X correspond to a

higher computational efficiency, yet, to a lower effectiveness (more new edges are spent

to recover the original asymptotic consensus value).

• BASE(rnd): the worst-case baseline, that selects new edges uniformly at random.

• BASE(θrc(πr−πc)(x̃r− x̃c)): this baseline attempts to effectively reduce the asymptotic

consensus value 〈π, x̃〉 by adding heavy-weight edges from higher-centrality nodes r

having larger opinion values to lower-centrality nodes c having lower opinion values,

thereby, reducing the contribution of πrx̃r and increasing that of πcx̃c to the value of

〈π, x̃〉. This baseline—similarly to DIVER—ranks only the candidate edges outgoing

from nsrc top-centrality nodes, and, hence, is computable in pseudo-linear time (“pseudo”

since it uses π). Conceptually, this baseline is “weaker” than DIVER in that it relies only

on absolute node importance, while DIVER exploits relative node importance to assess

candidate edges.

Evaluation: For all these methods, we assess their performance based on how many candi-

date edges a method uses to recover the asymptotic consensus value.

4.6.2 Solving DIVER

In this section, we solve DIVER using the previously described networks and methods. All

these methods add k = 10 edges at a time, improving the distribution of eigencentralities π̃

either until the asymptotic consensus value 〈π̃, x̃〉 gets close enough to its original state 〈π,x〉,

or a maximum of kmax = 200 new edges is reached. The results are displayed in Figure 4.8.

We can see that our heuristic works well on all scale-free-like networks, disabling attacks

by adding 20-60 candidate edges. In case of ER network, the quality of all absent edges is

uniformly low, which naturally leads to all the methods’ performing uniformly poorly. For
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Figure 4.8: Solving DIVER over synthetic and real-world networks.

the case of Karate network—which, similarly to ER network, has rather low skewness and

kurtosis of eigencentrality and degree distributions as per Table 4.2—performance of DIVER

heuristic degrades rather fast with the number of nodes used in computation of fπ ; for example,

using 30% of nodes to compute fπ , it takes DIVER( fπ ∼ 30%) twice as many new edges as

DIVER to restore the asymptotic consensus value. We also notice that baseline BASE(θrc(πr−
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πc)(x̃r− x̃c)) performs well only on BA network, and underperforms on all the other networks.

The latter is expected, as, unlike DIVER, this baseline uses only the information about absolute

node importance for candidate edge assessment.

4.6.3 DIVER’s Effectiveness and Efficiency

In the previous section, we observed that performance of DIVER( fπ ∼ X%) deteriorates

when X gets small. Here, we illustrate the impact of lower X upon the heuristic’s effectiveness.

Figure 4.9 shows the quality fπ of each candidate edge of SF(256,−2.5) with nsrc = 20, as

well as the quality of edges selected by DIVER( fπ ∼ 20%) over multiple iterations. While due
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candidate edge
added edge

Figure 4.9: Quality of candidate edges added by DIVER( fπ ∼ 20%) to SF(256,−2.5).

to the approximate computation of fπ , some poor-quality edges are selected—a few of which

actually drive the asymptotic consensus value up—most of the selected candidate edges are

high-quality.

Figure 4.10 shows how the heuristic’s performance improves when we throw in more nodes

into the computation of fπ .

Figure 4.11 shows the actual time it takes to perform a single evaluation of DIVER( fπ ∼
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Figure 4.10: Dependence of DIVER( fπ ∼ X%) performance on X over SF(256,−2.5).

100%nsrc
n ) adding k = 10 edges to SF(1024,−2.5) using an Intel i7-5930K CPU. The heuristic
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Figure 4.11: Time for a single evaluation of our heuristic DIVER( fπ ∼ const), adding k = 10 edges.

scales linearly, as per Theorem 21. However, if we extrapolate, a single evaluation of DIVER

on a 100M-node network would take around 18 days. Thus, to make the method practical

for such massive networks, we can improve its performance even further by considering only

some of n nodes as destinations for the candidate edges; for example, we can consider only the

destination nodes 2 hops away from the source nodes, increasing the acceptance likelihood of

the recommended edges.
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4.6.4 DIVER’s Robustness to Network Noise

We have studied what happens to performance of DIVER( fπ ∼ 100%) when we do not

know the exact weights of the edges in the network. We have run DIVER over SF(1024,−2.5)

network when edge weights are known exactly as well as when they deviate from their true

values by up to 1% and up to 10%, respectively. The results are reported in Figure 4.12.
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Figure 4.12: Performance of DIVER( fπ ∼ 100%) over SF(1024,−2.5) with exact and noisy
edge weights.

We observe that DIVER’s performance expectedly worsens when we perturb the network,

but still remains acceptable.

4.7 Conclusion

In this chapter, we defined DIVER—a new problem of strategically recommending edges

in a social network to disable the effect of malicious external influence upon user opinions.

Having shown that this problem is NP-hard, we focused on designing a heuristic for it. To that

end, relying on the theory of Markov chains, we have provided a perturbation analysis, for-

mally answering the question of how the network nodes’ eigencentralities and, thus, DIVER’s
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objective change when an edge is added to the network. This analysis led to the definition of

candidate edge scores that quantify the potential impact of candidate edges, allowing to add

them to the network in a greedy fashion. We also provided insights into how to compute these

edge scores in scale-free-like networks in pseudo-constant time, which resulted in a pseudo-

linear-time heuristic for DIVER. One of these insights is related to efficient estimation of mean

first passage times in Markov chains. We confirmed our theoretical and algorithmic findings in

experiments with synthetic and real-world networks. Our results are rather general, and can be

applied to other problems of strategic eigencentrality manipulation.

4.8 Future Work

This chapter opens many avenues for potential future research, including the following.

• DIVER targets optimization of the scalar asymptotic consensus value, being the sum of

the user opinions weighted by the corresponding users’ eigenvector centralities. It may

be fruitful to generalize DIVER to the optimization of the whole asymptotic opinion

distribution, rather than its scalar summary.

• For the purposes of efficiently computing potential impact of candidate edge addition, we

have studied the question of how to efficiently estimate mean first passage times to/from

top-centrality states in a Markov chain. While our answer to the latter question was based

on an empirical study on scale-free networks, providing formal convergence bounds for

MFPT estimation would benefit many scientific areas dealing with Markov processes.

• Finally, while DIVER was proposed as a method to defend a social network against

social control, it clearly can be used as an influence tool. Thus, it is important to study

the ways to identify whether an edge recommendation process in a social network targets

strategic change of the opinion distribution, as well as identify the goal of that process.
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Conclusion

In this thesis, we outline the scope of the emerging cross-discipline of dynamic processes in

networks, and make contributions to the development of that field along the three dimensions

of analysis, modeling, and control. In terms of analysis, relying upon combinatorial network

algorithms, we devise a general method to analyze an observed process of polar opinion for-

mation in social networks, with applications to anomaly detection in and extrapolation of a

series of the process’ states. With respect to modeling, we design a class of non-linear models

capturing complex polar opinion formation behavior in social networks as well as connected to

such physical processes as non-linear heat diffusion, and provide a general approach towards

theoretical analysis of such models’ behavior relying on the dynamical systems theory and non-

smooth analysis. Finally, we address the problem of fighting social control via strategically

augmenting social networks, building upon the theory of Markov chains, with our theoretical

and algorithmic results’ generally contributing to the area of the networked control of Markov

processes.

This thesis opens up a number of avenues for future research, particularly, in dealing with

processes in socio-economic networks.
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5.1 Open Problems in Network Process Analysis

Below, we provide two general problems dealing with the analysis of observed network

processes.

Predicting Future Evolution of Network Process: One open problem within the scope of

the general network process analysis framework is that of the efficient network process state

series extrapolation. Consider a situation when, having observed a network process’ dynamics,

we need to predict how it will evolve in the near future. For example, having observed how

the political opinions of a social network’s users have evolved in the past, we want to predict

how these opinions will change at the time of the upcoming elections. In other words, we want

to predict the future state of a network process based on a series of its past states. While the

method developed in Chapter 2 of this thesis can estimate the likelihood of a specific change in

a network process’ state, here we are faced with the need to search for the most plausible future

state of the process. One approach is to extrapolate the series of distances between the adjacent

past states of the process to estimate the expected distance to the process’ future state, and,

then, among all future state candidates take as the prediction the state the distance to which

is closest to the made distance estimate. In Chapter 2, we demonstrated that this distance-

based search works for predicting partially observed future states of a network process, but its

fundamental bottleneck is the need to enumerate a possibly exponential number of future state

candidates. To solve the problem of the efficient exploration of the state space of a network

process, we need to utilize the domain knowledge about the structure of this state space, and

exploit semi-metricity of the underlying distance measure, aiming at drastically reducing the

size of the fraction of the state space that we actually need to traverse.

Combinatorial Network Process Identification: Above, we have advocated the model-

based network process analysis approach, having assumed that we have a model for an ob-
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served network process. In many cases, we may indeed have a reliable model for the process,

as in the case with the network version of the heat equation for the process of heat diffusion in

a material network, or Kuramoto model for the process of neuronal synchronization between

pairs of neurons in a brain network. However, we may have a process whose nature and, hence,

model are unclear, or a process for which there are many alternative models and it is not ob-

vious which model fits the process best. Having observed the evolution of a network process,

the key question here is what is the (best) model for a given process. While there are methods

for identification of non-linear dynamical systems, there are no such methods for combinato-

rial processes, such as those characterized by combinatorial models of information diffusion

through a social network. An extension of a network process identification problem is a prob-

lem of disentangling a mixture of processes occurring in the same network simultaneously.

Clearly, there is a need for the development of new theories and algorithms that would enable

combinatorial network process identification.

5.2 Open Problems in Network Process Modeling

The future of network process modeling research has two primary directions: design of

new fundamental modeling tools and accompanying theoretical and algorithmic techniques;

and design of models for specific network processes from various domains of human life.

Simpler Invariance Principle for Non-smooth Lyapunov Functions: One potential de-

velopment of the fundamentals of network process modeling is the extension of the classical

(Barabashin-Krasovskiy-)LaSalle Invariance Principle [111, 112]. The standard version of the

principle allows to analyze convergence of non-linear dynamical systems, and, similarly to

Lyapunov’s Second Method [110], requires existence of a smooth Lyapunov function, also

known as the energy function, whose behavior along the trajectories of the system allows mak-
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ing conclusions about the behavior of the system itself. Finding Lyapunov functions can be

rather difficult for systems defined over directed networks (see [212] for a representative re-

sult). We addressed the latter issue in Chapter 3 by resorting to the tools from non-smooth

analysis. However, the way we exploit the generalized gradient and Lie derivative, and, more

specifically, our treatment of the cases when the set-valued Lie derivative is an empty set in our

convergence theorems suggests that the statement of LaSalle’s Theorem can be generalized and

used with non-smooth Lyapunov functions without the need to resort to non-smooth analysis.

New Non-linear Models for Socio-Economic Network Processes: There are great many

opportunities for the design of non-linear models for a variety of processes, especially those

occurring in social and economic networks. One direction for prospective research is the design

of sociologically plausible opinion dynamics models where social ties evolve in time based on

the users’ positions in the society. For example, a rising politician’s opinion can gain weight

even outside of his or her network neighborhood solely due to that person’s gaining social

power. This idea has been explored in the past in the context of DeGroot–Friedkin model for the

evolution of social influence networks proposed by Jia et al. [117], and recently revisited by Ye

et al. [213]. This model allows the social tie weights to occasionally change based on the users’

evolving centrality, but, since centrality is a global measure, the agents are assumed to observe

the entire network. One may want to design a non-linear DeGroot-type opinion formation

model, where (i) all social ties in the network continuously evolve based upon the agents’ social

positions; and (ii) the agents weight their social ties based on locally available information—

the states and social positions of either immediate neighbors of those about whom one can

learn by interacting with neighbors. Such a model would be useful for applications to large-

scale online social networks, which are inherently incomplete, and where users make decisions

based on a small observed part of the network.
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Additional promising research directions for network processes modeling include tractable

generalization of Heider-Cartwright-Harary structural balance theory [94, 93] to incomplete

social networks, and the design of opinion formation models in complex hierarchical networks,

where opinion formation is governed by different laws at different network scales. The latter

research may potentially borrow some ideas from multi-layer network theory [214], as well as

some ideas from physics, such as the notion of the renormalization group [215].

5.3 Open Problems in Network Process Control

Control Theory for Social, Economic, and Biological Systems: The classic control theory

is a well-established field, providing us with the fundamental tools for mathematically char-

acterizing systems, typically, by the means of differential or difference equations, analyzing

their behavior, and designing controllers for them. It is, however, not as well understood yet

how to control biological and economic systems, while the topic of social control—studied for

decades in sociology and political science—hardly has any mathematical or algorithmic foun-

dation. Development of the social control theory is critical today, as online social networks

have permeated many areas of our lives, exerting implicit influence upon our day-to-day de-

cision making. However, traditional control theory is not immediately transferrable to social

systems. For example, controllability—defined as a system’s ability to be stirred to any state by

a controller—is meaningless in the context of systems comprised of humans, as in any socium

there are states unreachable by the controller. The latter calls for quantification of controllabil-

ity suitable for social systems—that could reflect, for example, the amount of “effort” it would

take the controller to stir the system to a desired state—and, more generally, for the creation of

a theoretical framework for studying social control and, more importantly, defending against

it.
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Additional research direction in network process control is the design of collaboration in-

centives and constraints to optimize performance of collaboration and financial networks—

which is closely aligned with the ongoing research in the field of mechanism design—as well

as the design of mechanisms to control biological systems, such as brain networks, to fight

disease.

5.4 Future of Network Process Research

As the world becomes more interlinked, the network processes will clearly remain in the

spotlight. Rapid development of online social network and economic institutions as well as

improvement of our understanding of naturally occurring network processes on one side, and

evolution of theoretical techniques on the other side allow the studies of network processes

to enter a qualitatively new stage. The network process research—conducted along the three

facets of analysis, modeling, and control—involves design, theoretical analysis, and optimiza-

tion of domain-specific plausible models, as well as the development of practical scalable al-

gorithms to make these models work in real-world applications. This research agenda requires

bridging domain-specific areas, such as social psychology and behavioral economics, biol-

ogy, neuroscience, and robotics, as well as the fundamental fields of combinatorial algorithm

design, game theory and mechanism design, machine learning, linear algebra, and dynamical

systems theory. This thesis, touching upon some of these fields, contributes to and brings closer

the formation of the analysis, modeling, and control of dynamic processes in networks as an

independent cross-discipline.
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