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ABSTRACT OF THE DISSERTATION

Enhancing Accessible Communication:

Assistive AR System in Bridging the Deaf and Hearing Divide

by

Yunqi Guo

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Songwu Lu, Chair

Communication barriers between deaf and hearing individuals have led to difficulties in

various real-world scenarios, including emergencies, online meetings, and daily interactions.

Mobile and Augmented Reality (AR) systems hold promises for offering low-cost solutions for

accessible communication. This dissertation aims to bridge the gap between sign language

and other oral language users by leveraging assistive Augmented Reality (AR) glasses for

everyday wear. We seek to address the full spectrum issues of sign capture, recognition, and

language translation on AR glasses and mobile devices.

Our approach first prioritizes the most urgent setting, emergency communication, before

extending to more general settings such as daily, online, and learning interactions. We

employ domain-specific models derived from sign language with three main components:

1) Capturing sign gestures on a mobile-glass setup using sign parameters; 2) Recognizing

signs with lightweight models based on sign parameter correlations and constraints; and 3)

Providing general bidirectional ASL-English translation using ASL grammar and word order

correlation.
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In collaboration with ASL users, our evaluation results demonstrate that, starting from

emergency communication scenarios, our domain-oriented models substantially reduce la-

tency by one to two orders of magnitude compared to previous solutions, while maintaining

accurate translations. Furthermore, the developed mobile and AR platforms enable sign

language interactions across various settings, such as daily in-person communication, virtual

communication, and sign language learning, thereby extending the system’s applicability.

Our research offers an innovative approach to promote accessible communication, foster-

ing social inclusion, and minimizing communication-related inequalities between deaf and

hearing individuals.
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CHAPTER 1

Introduction

As we initiate this dissertation, we confront an immediate and pressing issue: the commu-

nication barrier between the deaf and the hearing. Globally, there are more than 70 million

deaf people [Nat23]. Despite the advancements in communication technologies, a holistic

solution to effectively bridge this chasm remains challenging. Communication between sign

language and vocal language is challenging because of the lack of interpreters and translation

tools [Inc21]. Existing approaches are often found lacking in accessibility and operational

capabilities. With the advent of AI algorithms that can interpret hand and body gestures,

a new era of communication is within reach. Our research centers on the emerging field of

Assistive Augmented Reality (AR) systems and their potential to interpret sign language

with human-like comprehension.

At the core of our exploration lies the pioneering theory put forth by William Stokoe [STO60],

which revolutionized our understanding of sign language. Stokoe’s theory asserts that sign

languages are legitimate languages with distinct syntax and morphology, as opposed to being

merely gesture-based systems. This fundamental principle has served as our guiding light

in leveraging linguistic research on American Sign Language (ASL) to advance the field of

automatic sign recognition with mobile/AR systems. Through our efforts, we aim to unlock

unprecedented possibilities for enhancing accessibility and communication.

This dissertation’s central premise is that the divide between the deaf and hearing com-

munities can potentially narrow through well-conceived, systematic solutions. Our first focus

is on high-stakes situations such as emergency services. Our research reveals that transla-
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tion can be effectively accomplished by classifying signs into specific parameter categories.

This understanding, coupled with the recognition that ASL has its own unique syntax, al-

beit different from English, allowed us to extend our focus beyond emergency scenarios and

into more generalized communication settings by converting ASL dictionaries into machine-

readable formats.

Recognizing the dynamic and evolving nature of all languages, including ASL, we empha-

size the need for continuous learning and interaction with sign language users. Therefore,

we are presenting a design to generalize the assistive system for use in a wider range of

cases. We are also developing AnySign, which is a platform that provides ASL interaction

capabilities, collects signs, offers full sentence translation, and includes interactive features.

With AnySign, we hope to move one step closer to achieving truly inclusive communication.

1.1 Challenges in Bridging the Deaf and Hearing Divide

As we delve deeper into the task of connecting the deaf and hearing communities, we en-

counter two substantial obstacles that require our attention and inventive solutions.

Visual Modality in Sign Language Representation The first major obstacle lies in

the scarcity of data. This scarcity is primarily attributed to the absence of a universally

acknowledged written form of sign language. The lack of written records has led to an

increased reliance on video-based documentation for sign language, a resource that only

recently became widely accessible with the advent of online video platforms such as YouTube.

When placed side by side with textual and audio data, the resources available for learning,

recognition, and translation systems for sign language are noticeably sparse. This deficit of

data is not a mere inconvenience but a formidable roadblock that impacts several dimensions

of sign language understanding and machine learning.

Firstly, data scarcity directly constrains our capacity to train robust, high-performing

sign recognition models. Without a rich and diverse data set, these models might struggle to
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understand and accurately interpret the complexities and nuances of sign language. Secondly,

the lack of substantial data sets also limits our ability to provide comprehensive sentence-level

translation for sign language. Lastly, this data deficiency makes it challenging to generate

correct sign production, particularly given the unique syntax features of sign language.

This lack of data presents a multifaceted problem, making the quest for effective com-

munication between the Deaf and hearing communities more challenging.

Constraints in Sign Language Capture and Representation The second hurdle

relates to the technological limitations in capturing and representing sign language in an

accessible and user-friendly manner. Given the visual-gestural nature of sign language,

which involves hand gestures, facial expressions, and body postures, its effective capture and

production necessitate advanced interaction with visual content.

A variety of advanced technologies and specialized equipment, such as sensory gloves [OL11,

MK02], RGB-D cameras [JVH19, AGR14], and RF devices [GGM20], have been explored

for sign language capture. However, these solutions often face practicality issues. Their lim-

ited availability and potential incompatibility with routine scenarios hinder their widespread

adoption and diminish their practical impact.

Additionally, rendering sign language requires delivering clear and discernible visual con-

tent. Presently, we are faced with a shortage of solutions that can seamlessly present sign

language without causing distraction or hindrance to users.

The majority of sign languages, including American Sign Language (ASL), British Sign

Language (BSL), and other national or regional sign languages, predominantly rely on in-

person communication. This approach is largely due to the visual-spatial characteristics of

sign languages, where the three-dimensional space, handshapes, movements, and orientations

collectively convey meaning. As a result, the teaching and learning of sign languages have

been primarily conducted in person, which allows learners to accurately perceive and practice

these visual and spatial aspects.
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1.2 Our Contribution

This thesis focuses on the critical issue of communication barriers faced by the Deaf commu-

nity in our interconnected society. Factors like lack of accessibility, insufficient support for

sign languages, and a dearth of efficient translation resources compound these challenges.

Our work endeavors to tackle these issues by presenting Assistive AR as a novel solution for

bridging the gap between the Deaf and hearing communities. We propose a variety of unique

tools and platforms including Sign-to-911 for emergency situations, a general sign language

translation attamp, and AnySign, a comprehensive cross-device platform. Utilizing AR as a

cutting-edge tool for communication, our goal is to offer solutions that are robust, accessible,

and efficient. The primary contributions of this thesis are as follows:

Sign-to-911: A Lifesaver for Sign Language Users in Emergency Situations We

underscore the critical need for accessible sign language support, particularly in life-threatening

situations where swift and accurate communication is of utmost importance. In addressing

the shortcomings of existing systems, we present Sign-to-911, an innovative, lightweight

system designed to bridge the ASL-English communication gap during emergencies. By in-

tegrating AI/ML models with specific ASL linguistic domain knowledge, Sign-to-911 reduces

model complexity while ensuring high translation accuracy and speed. Rigorous testing and

evaluations validate its effectiveness and ability to handle high-stakes, rapid communica-

tion. Importantly, the system operates on mobile and wearable devices without the need for

cloud/edge support, offering accessibility under any circumstance. Sign-to-911 represents

a significant stride in emergency communication for the ASL user community, meeting an

immediate and crucial need.

AnySign: A Comprehensive Cross-device Platform for Enhanced Accessibility

We introduce AnySign, a platform designed to improve ASL accessibility by addressing the

unique communication challenges faced by the Deaf community. AnySign integrates the Sign

Dictionary, English to ASL Translator, and Teach-Me-Sign modules to form a comprehensive
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ASL corpus, offering a robust solution for effective ASL communication. A highlight of

the platform is SignChat, a chatbot that merges ASL and AI, enabling an unprecedented

mode of ASL human-machine interaction. AnySign, therefore, signifies a significant step

towards surmounting the challenges of ASL communication and holds promise for future

advancements in this domain.

In addition to the above contributions, mindful of the potential privacy and security con-

cerns inherent in machine learning models deployed on wearable/IoT devices, we also propose

a safeguarding solution, MORSE. This solution is designed to ensure privacy protection by

leveraging a sampling approach that prevents personal or private models from being exposed

to cloud platforms. Notably, this protection is achieved without compromising the function-

ality and trainability of the models. By doing so, we address a critical aspect of machine

learning applications in assistive technology, striking a balance between user privacy and the

need for data to drive innovation. This approach underscores our commitment to ethical

and responsible technology development, ensuring that our solutions not only provide utility

and accessibility but also respect and protect the privacy of the users.

1.3 Organization of the Dissertation

The structure of this dissertation is as follows: Chapter 2 provides a comprehensive back-

ground on our research context, with a particular focus on the d/Deaf community, sign lan-

guage, and existing assistive communication solutions. In Chapter 3, we outline our research

objectives and the methodology we employed. Chapter 4 presents Sign-to-911, a solution

targeting the first need - emergency communication for the Deaf community. Subsequently,

we broaden our approach to encompass general communication scenarios by introducing the

design with dictionary-based translation in Chapter 5, and AnySign, a platform implemented

for extending sign language accessibility in Chapter 6. In Chapter 7, we detail MORSE, a

mechanism for protecting privacy in machine learning models deployed on wearable and IoT
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devices. Finally, we conclude the dissertation in Chapter 8 with discussions on potential

future works.
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CHAPTER 2

Background

This chapter introduces the background of the deaf community and sign language commu-

nication solutions. We first delve into the cultural dynamics within the d/Deaf community,

emphasizing the pivotal role of sign language and the importance of enhancing sign language

accessibility. Then, we examine state-of-the-art technologies to bridge the communication

gap between the deaf and hearing, including sign language recognition, production, and as-

sistive AR technologies. Significant challenges remain despite strides made. The chapter

concludes by exploring the ongoing issues faced by the d/Deaf community, highlighting the

urgent need for innovation in creating effective, user-centric technological solutions.

2.1 d/Deaf Community and Sign Language

2.1.1 Distinguishing ‘deaf’ and ‘Deaf’

‘Deaf’ with an uppercase ‘D’ and ‘deaf’ with a lowercase ‘d’ signify different contexts within

the spectrum of auditory variation. The term ‘Deaf’ with a capital ‘D’ embodies a cultural

identity, referring to individuals who are part of the Deaf community and culture. These

individuals frequently use sign language as their primary means of communication, and

they share a communal history and set of experiences. Conversely, ‘deaf’ with a lowercase

‘d’ is a medical term used to categorize anyone with severe hearing variation, regardless

of their identification with the Deaf community or culture. These individuals may rely

on various communication methods, such as spoken language, written language, or sign
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language, influenced by their personal experiences and circumstances. By distinguishing

between ‘Deaf’ and ‘deaf,’ this work aims to respect both cultural identity and clinical

perspectives, ensuring a comprehensive and respectful exploration within these communities.

The Deaf community constitutes a cultural and linguistic collective of Deaf individuals,

unified by common norms, values, and traditions, predominantly centered on the use of sign

language for communication [PH88, Lan05]. This cultural identity transcends the audiolog-

ical status indicated by the lowercase ‘d’ in ‘deaf’ [SD74]. Far from being a mere extension

of hearing culture, Deaf culture constitutes a distinct entity characterized by a rich heritage,

art, storytelling, and humor, profoundly shaped by common experiences and a shared visual

language [Lad03].

Building on this cultural foundation, the Deaf community is closely interwoven through

robust social connections. These connections are not born out of shared disability but rather

shared language and cultural background [MNS03]. A multitude of institutions and events

serve as social hubs, including Deaf clubs, schools for the Deaf, and Deaf sporting events.

These gatherings offer a space where sign language is the primary method of communication,

reinforcing cultural identity and a sense of community.

Despite this shared sense of identity, the Deaf community is marked by significant lin-

guistic diversity [Luc01]. It’s crucial to note that there isn’t a single universal sign language.

Instead, various sign languages exist around the globe, each with its unique grammar, syntax,

and lexicon, reflective of the cultural nuances of the regions they originate from [SM02].

2.1.2 Sign Language and Its Roles

Sign language is not a simplified, gestural version of a spoken language but rather a full,

complex, and natural language in its own right. Like any spoken language, it has its own

grammar, syntax, and lexicon [STO60].

One prevalent sign language used globally is American Sign Language (ASL). ASL, like
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other sign languages, comprises five primary parameters: handshape, movement, location,

palm orientation, and non-manual signals [Bat78]. Each parameter adds a layer of meaning

to the signs and the overall linguistic structure, contributing to the richness and complexity

of the language.

Furthermore, the grammatical structure of ASL differs significantly from English. While

English primarily adheres to a subject-verb-object (SVO) sentence structure, ASL commonly

follows a topic-comment structure. Consider, for example, the English sentence “I like ice

cream.” In ASL, this would typically be signed as “ICE-CREAM I LIKE,” with the topic

(ice cream) presented first, followed by the comment (I like) [NKM00].

The role of sign language extends far beyond simple communication; it is a critical com-

ponent of deaf education, community interaction, and identity formation. In education,

sign language offers a more intuitive and engaging way for deaf children to learn, leading to

improved academic outcomes [May07]. Moreover, sign language serves as a cornerstone for

community interactions within the d/Deaf communities, facilitating social connection and

mutual understanding [Pad16]. Lastly, sign language plays a key role in Deaf identity for-

mation, with many deaf individuals viewing sign language use as a source of cultural pride

and identity.

2.1.3 The Imperative of Sign Language Accessibility

The significance of sign language cannot be overstated, particularly when it comes to edu-

cation and employment for deaf individuals. Deaf education has seen an extensive debate

between oralism (focusing on spoken language) and manualism (focusing on sign language),

with current trends favoring bilingual-bicultural education where both sign language and

spoken language are taught. Moreover, mainstreaming, or the practice of placing Deaf stu-

dents in regular classrooms, further underscores the need for sign language accessibility, as

the majority of these classrooms are often structured around spoken language [Che21].
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In the realm of employment, deaf individuals continue to face significant challenges,

including lower employment rates and limited job opportunities compared to their hear-

ing counterparts [Pun16]. Sign language proficiency often plays a vital role in the career

prospects of deaf individuals, enabling them to communicate effectively in the workplace

and access equal opportunities.

The importance of sign language accessibility extends beyond the confines of education

and employment; it is a fundamental human right. Legislation such as the Americans with

Disabilities Act in the U.S. and the UN Convention on the Rights of Persons with Disabil-

ities underscores the rights of deaf individuals to access communication in their preferred

language [Dep20]. Such legislation, in theory, guarantees accessibility, including communica-

tion access (e.g., interpreters, captioning) and physical access (e.g., alerting devices), thereby

facilitating the inclusion of deaf individuals in all aspects of life.

Despite these legal protections, however, significant gaps persist in policy enforcement

and accessibility, particularly regarding access to healthcare and emergency services. These

ongoing issues underline the dire need for more robust, efficient, and accessible sign language

resources and strengthen the argument for technology such as Assistive AR, which has the

potential to bridge these gaps and foster greater inclusion.

2.2 Breaking the Communication Barrier: State of the Arts

This section explores recent developments in sign language recognition and translation, pro-

duction, and assistive AR technologies, all critical components in bridging the communication

gap between the deaf and hearing communities.

Sign Language Recognition and Translation Sign language recognition has witnessed

a surge of research interest over recent years. Existing solutions generally fall into two cate-

gories: vision-based and sensor-based approaches. Vision-based approaches like I3D [LRY20],

10



SAM-SLR [JSW21], and DeepASL [FCZ17] use cameras to capture and analyze signing

motion, while sensor-based methods exploit various devices such as gloves [AZZ18], smart

watches [HLZ19], earphones [JGZ21], and EMG sensors [ZJW22]. Both approaches typically

employ deep-learning-based models, such as Recurrent Neural Networks (RNNs) and their

variants, for sign recognition.

However, these existing solutions share several limitations. Primarily, the complexity of

deep-learning models restricts the size of the vocabulary set they can recognize—often around

100 signs. Moreover, they have difficulty with sentence-level translations for American Sign

Language (ASL). Some offer no sentence-level translation [LRY20, JSW21], while others rely

on complex temporal model training on extensive sentence corpora [FCZ17, AZZ18, HLZ19,

JGZ21, ZJW22].

Sign Language Production When it comes to sign language production, several applica-

tions have been developed, such as HandTalk [han23] and Sign Language Translator [Sig23a].

Despite their efforts, these apps often struggle to produce sign language with the correct

grammar order. They also tend to cover a limited number of signs and depend on cloud-

s/edges for sign production [Viv23, ASL23]. Some even require substantial GPU processing

power for rendering and generation [SCH20, SHB20, SCB20].

Assistive AR The advent and advancement of AR and VR technologies in recent years

have catalyzed transformative changes across various sectors, with one of the most promis-

ing areas being assistive technologies for individuals with disabilities [Dic21]. Innovations

in this space have yielded solutions such as navigational aids for people with visual im-

pairments [ZBB18, BH20], and tools that employ AR for enhanced social and emotional

learning [VOI23]. The capacity of AR to provide an immersive, interactive, and customiz-

able user experience makes it uniquely suited for applications that aim to bridge gaps in

accessibility.
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Despite the significant strides taken in the AR field, there remains untapped potential in

leveraging these technologies to support sign language communication. As AR technologies

continue to mature and become more integrated into daily life, they present a promising

avenue to address the communication barriers faced by the d/Deaf community. The inte-

gration of AR with sign language communication not only represents a novel application of

this burgeoning technology, but also has the potential to revolutionize the way the d/Deaf

and hearing communities interact, thus creating more inclusive environments.

In summary, while progress has been made in various domains related to sign language

recognition, translation, production, and assistive technologies, there remain substantial

challenges to be addressed in enhancing accessibility and facilitating effective communication

between the d/Deaf and hearing communities.

2.3 Challenges in Sign Language Accessibility and Technology

Despite advancements in technology, the d/Deaf community continues to face prevalent

communication challenges. A crucial issue is the general public’s lack of understanding and

awareness of sign language. This gap in knowledge can lead to exclusion and discrimination,

limiting opportunities for deaf individuals to interact and engage effectively with the wider

society. Additionally, access to sign language interpreters remains inadequate. The limited

availability and high cost of professional interpreting services often pose substantial barriers,

making routine tasks such as medical appointments, educational events, or even casual social

interactions challenging for deaf individuals. Barriers also persist in accessing digital content,

given that much of the online content lacks proper sign language interpretation or closed

captioning, leading to an information gap.

While technology has the potential to address these challenges, it has yet to fully bridge

this divide. The development of reliable, easy-to-use tools for sign language translation and

interpretation is still a work in progress, with many current solutions falling short in terms
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of accuracy, comprehensiveness, and usability. As such, there is an urgent need for continued

research and innovation in this domain, with a particular emphasis on developing technologies

that are not only functional but also align with the specific needs and preferences of the Deaf

community. Advances in areas such as machine learning, natural language processing, and

augmented reality provide promising avenues for this work, with the potential to significantly

enhance communication accessibility and inclusivity for deaf people.
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CHAPTER 3

Overview

The communication divide between Deaf and hearing individuals presents a compelling chal-

lenge in computer science, underscored by the acute lack of widely accessible and effective

solutions. This research is dedicated to filling this gap, concentrating on the development

of practical, accessible technologies specifically crafted to dismantle the communication bar-

rier. Leveraging inclusivity as a cornerstone, this endeavor strives to significantly contribute

to a more connected society by fostering seamless interactions between Deaf and hearing

communities.

3.1 Research Objectives

The core objectives of this research are anchored in three distinct, yet interconnected, tech-

nical advancements aimed at enhancing Deaf-hearing communication:

Sign-to-911: This initiative addresses a critical issue—the need for swift, accurate sign-

oral language communication during emergencies. The objective is to create an accessible,

real-time translation mechanism that enables effective sign language communication during

high-stake situations.

AnySign: This component of the research extends beyond emergency scenarios to the

broader context of daily communication. AnySign’s goal is to build an open, inclusive

platform that facilitates learning, interaction, and accessibility in sign language. Its design

promotes a more general application, offering users the ability to engage more fully in various
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social and professional contexts.

MORSE: Acknowledging the increasing prevalence and utility of wearable and IoT devices

in our society, MORSE aims to deliver a solution for model privacy protection. The objective

is to safeguard user privacy by mitigating the risk of exposing personal data when using cloud

services, while preserving the functionality and trainability of the models.

Each of these objectives addresses a unique aspect of the communication barrier. To-

gether, they form a holistic approach to bridging the Deaf-hearing communication gap.

3.2 Methodology: Towards Practical and Accessible Solutions

Our research methodology involves a domain-oriented approach that underscores sign lan-

guage recognition, translation, and production. During our study, we have fostered collab-

orations with the Deaf community and linguistic experts specializing in ASL. Such interac-

tions have been instrumental in gaining valuable insights into the challenges faced by the

community and the practical solutions that can be widely accepted by potential users.

Our focus has been on delivering accessible solutions that seamlessly integrate into every-

day life. With this objective, we have chosen assistive AR glasses as our primary hardware

setting, an everyday wearable that aligns with our vision of accessibility. The chosen hard-

ware has several advantages:

1. The glasses function as a standalone device, reducing the need to connect to other

devices such as smartphones, thus facilitating ease of use.

2. Equipped with sensors and a display, the glasses provide a means to capture signs

and project translated information, thereby serving as an efficient tool for bridging the

communication gap.

Our research remains committed to achieving bidirectional communication, acknowledg-

ing the fact that the communication barrier is a two-way issue. Consequently, all our pro-
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posed techniques aim to not only translate sign language for the hearing, but also to convey

oral language information to Deaf users, thereby realizing a holistic communication environ-

ment.

3.3 Roadmap

The remainder of this dissertation is structured as follows: Chapter 4 introduces Sign-to-911,

a solution developed for enhancing emergency communication between the Deaf and hear-

ing communities. We discuss its design, implementation, and effectiveness in this chapter.

Chapter 5 and Chapter 6 extends our efforts to general communication scenarios, where we

introduce AnySign, a comprehensive platform aiming to democratize sign language usage

and increase its accessibility. Lastly, Chapter 7 presents MORSE, a mechanism we designed

for privacy protection in machine learning models used on wearable devices and IoT systems.

This chapter elaborates on the technical details of this private model protection method.
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CHAPTER 4

Sign-to-911: Emergency Call Service for Sign

Language Users with Assistive AR

In the United States and parts of Canada, American Sign Language (ASL) is the primary

means of communication for individuals with hearing disabilities, encompassing an estimated

500,000 to 2 million users [MYB06]. ASL is unique; as a visual language, it depends on

the intricate movements and formations of the hands to express thoughts and ideas. This

distinctive aspect of ASL presents both challenges and opportunities, particularly when it

comes to translating ASL into English or other languages, such as in critical emergency

situations like 911 calls. Through our survey of 54 ASL users, we discovered that the current

options for 911 services—either typing messages to a 911 operator or using a video relay

service—are deemed inconvenient and not readily accessible.

In this chapter, we set out to address an essential question within the ASL community:

Can we construct a compact mobile system solution capable of translating ASL into English,

operating on wearable devices and smartphones, without the need for cloud or edge support?

If possible, this would facilitate real-time, direct emergency call service between an ASL user

and a 911 operator, each using their preferred languages. Although recent advancements

in AI, vision, and machine learning may be beneficial, they must be adapted to operate on

mobile and wearable devices without causing excessive delay or overprocessing. Unfortu-

nately, this restriction eliminates most deep learning-based proposals [LRY20, JSW21], as

they cannot run on mobile devices without incurring excessive delay and processing.

We present a solution that deviates from the typical deep learning paradigm and focuses
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on designing a lightweight system, Sign-to-911, which facilitates swift ASL to English trans-

lation. This system utilizes a pair of assistive Augmented Reality (AR) glasses in tandem

with a smartphone. The AR glasses capture live videos of the user’s sign motions during an

emergency 911 call, forwarding the video frames to the smartphone via Bluetooth for sign

recognition and sentence translation. The translated English texts are then vocalized and

relayed to the 911 operator, while voice responses from the operator are converted back into

ASL sentences, displayed as sign animations by a 3D avatar on the AR glasses.

Sign-to-911 capitalizes on traditional AI/ML models, offering simplicity and fewer model

parameters, significantly reducing the complexity compared to recent deep learning models

for ASL sign recognition. By treating ASL signs not as random hand gestures, but rather

structured motion patterns following the syntax rules of ASL, we significantly simplify the

design. Leveraging recent algorithms from graphics, vision, natural language processing

(NLP), and AI/ML, we strive to achieve fast and accurate recognition and rendering at both

the sign level and sentence granularity.

This chapter details the implementation of Sign-to-911 on standard AR glasses and An-

droid phones, presenting an affordable, accessible solution that recognizes a broader spectrum

of distinct signs and supports fingerspelling, a necessity in emergency situations. Our eval-

uation with six ASL signers demonstrates encouraging results, with our models achieving

impressive accuracy rates and an average end-to-end latency of 0.55 seconds for 550 signs,

a significant improvement over running prior proposals directly on smartphones [JSW21].

This chapter further elaborates on the details of the Sign-to-911 system, signifying a pivotal

step toward bridging the communication gap for the ASL community.

This chapter presents our expedient and efficient solution, Sign-to-911, aimed at facili-

tating immediate ASL-English communication in emergency situations using assistive AR.

In §4.1, we explore the challenges present in emergency communication for the deaf and

hard-of-hearing communities. We present an overview of our solution in §4.2. The specifics

of Sign-to-911’s innovative design are thoroughly discussed in §4.3.1 and §4.4. We delve into
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the implementation process in §4.5 and assess its effectiveness in §4.6 examines the potential

pathways for deploying Sign-to-911 within existing emergency communication frameworks.

In §4.7, we discuss the signing variants and the compatibility of our solution on different

hardware and use cases. We review relevant works in the field in §4.8 and summarize the

chapter in §4.9.

4.1 Emergency Calls for Deaf People

911 provides emergency call service in the US. While offering multi-language support (e.g.,

English/Spanish, etc.), the current 911 system does not supply an efficient communication

channel for ASL users to communicate with 911 operators. This is largely due to the gap

between ASL and other spoken languages; ASL is a visual communication language that

requires runtime viewing for correct interpretation.

To bridge the gap, sign language users conventionally use two alternative schemes to make

their emergency calls: text-based communication or relay services. Text-based communica-

tion services, such as real-time-text (RTT) and teletypewriter (TTY), transcribe voice to

text and allow ASL users to input text during a call. Text-to-911 allows individuals to send

text messages to emergency services. However, these services are not applicable to many

deaf individuals since not every sign language user has the same level of proficiency in a

written language (say, English).

The other approach is to use relay services, such as video relay service (VRS), during

a call. The user streams video to an interpreter who translates the sign language or into

a voice message for the 911 operator. However, this approach requires high-speed network

for video calls, which may be unavailable during emergencies. Moreover, the interpreter

shortage makes this approach difficult to scale [The22].

User Survey. We conduct a survey to learn about the 911 call experience for ASL users.

We collect responses from 54 volunteers in the ASL community via anonymous online ASL
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Figure 4.1: Emergency call survey for ASL users

forums. Participation are open to all community members without any material/financial

incentive. As shown in Figure 4.1, among the participants, 37.0% are deaf, 61.1% are hard

of hearing, and 1.8% are children of deaf adults (CODA). The survey shows that 96.3% of

them have experienced difficulties communicating with an emergency call operator, mainly

because TTY or VRS services are not readily accessible. Individuals who can speak but are

deaf or hard of hearing often have to repeat their addresses and situations until the requested

help arrives due to a lack of feedback. On the other hand, those who cannot speak are unable

to make 911 voice calls. Furthermore, 72.2% of the participants prefer to communicate in

ASL during emergency calls, since ASL is their primary language in daily life.

Goals. The survey result motivates us to devise an effective solution for the ASL commu-

nity to make emergency calls. Specifically, the solution should have the following features:

(1) Accurate bi-directional translation: it must support accurate, two-way communications

between the signer and a 911 operator: ASL signs-to-spoken English and spoken English to

ASL signs. (2) Fast translation: the bi-directional translation must be fast enough to ensure

liveness and interactiveness of the call conversation [MZB21]. (3) Ease to use and carry:

the solution should be easy to use and carry with the signers, since a significant portion of

emergency situations arise on the road, or at remote or not readily-accessible locations. (4)

Operation in the absence of high-speed Internet access: we do not assume infrastructure sup-

port for real-time video transfers and interpretation of ASL, except for a conventional voice

call service. This is a common scenario for emergencies in remote or not readily accessible
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regions.

Limitation of Current Machine Translations for ASL Signers. The current machine-

based solutions for ASL signers, either software-centric or hardware-based, cannot meet all

goals and well serve the emergency call scenarios. The fundamental problem is that, ASL

is a visual language for communication in nature, and any translation scheme must capture

and recognize each sign (or fingerspelling) in an accurate and timely fashion.

Existing software solutions, such as SL-GCN [JSW21] and I3D [LRY20], heavily rely on

computer vision techniques. Therefore, they require high-end GPUs for fast processing, thus

unsuitable for signers without access to cloud/edge services. Network communications with

cloud/edge servers may incur long latency and compromise call interactiveness.

The proposed hardware solutions, such as gloves [ZCL20] and smartwatches [HLZ19],

capture and recognize signs with sensors and hardware processing. However, they are deemed

impractical for everyday wear and lack the necessary resolution to fully capture sign features.

Moreover, they only provide uni-directional communication, which does not fit the two-way

communication between the caller and the 911 operator.
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4.2 System Overview

We now describe Sign-to-911, a lightweight solution that possesses all four features and

provides emergency call services between ASL signers and 911 operators.

The system components and workflow for Sign-to-911 are shown in Figure 4.2. In Sign-to-

911, the signer wears an assistive pair of Augmented Reality (AR) glasses, which interact with

his/her smartphone. With a click on the 911 icon on the glasses, the user makes an emergency

call, which is initiated through his/her smartphone. The smartphone subsequently works

with the AR glasses for sign-to-English translation. The translated spoken English will be

sent to the 911 operator via the established 911 call. The voice response from the operator

will be translated to ASL signs, which are further rendered on the AR glasses. It thus offers

bidirectional call communication between the ASL signer and a 911 operator.

We select the AR glasses (illustrated in Figure 4.2), rather than other wearable hardware

(e.g., gloves or smartwatches), for ASL signers. They have a lightweight design and non-

distractive displays, and limited on-glass processing capability, thus allowing users to wear

them like sunglasses or normal eyeglasses. They typically have a built-in camera, a color

display, a gyroscope sensor, and a speaker (for music listening), as well as a Bluetooth

interface that readily connects to nearby smartphones at speed up to 150KB/s [Tra23]. The

assistive glasses keep a signer’s hands free for signing, while allowing him/her to see the

operator’s responses in ASL sign animations on the display. Moreover, assistive AR glasses

of this type are quite affordable, with current prices ranging from 350 USD [INM23] to 1300

USD [Vuz23].

Our wearable system takes a software-centric approach. We thus design two pipelines to

enable two-way communications: ASL-to-English and English-to-ASL (Figure 4.2). On the

ASL-to-English translation, we capture each ASL sign by exploiting the sign parameters and

simple machine-learning models. These parameters also provide a standard description of the

signs. We thus enable fast recognition of signs based on the ASL domain structures. Once
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signs are recognized, we leverage the emergency call context and syntax model to convert

sign sequences to English sentences. On the English-to-ASL translation, we first translate

each English sentence to the corresponding ASL gloss with the syntax model. We then

produce the ASL sentence using the basic language unit: phoneme. We further compress

phonemes leveraging kinematic correlations, in order to feed the ASL streaming into the

low-rate Bluetooth connectivity. Finally, the glasses decompress the phoneme stream and

render the ASL signs and sentences in front of the user’s eyes.

Given the glass-smartphone setup and simple workflow for each user, we address two

key challenges with novel domain-driven designs to enable ASL-to-English translation and

English-to-ASL production.

Accurate and Fast Sign Translation. A primary challenge in our Sign-to-911 scheme

is to capture and recognize each ASL sign without relying on edge/cloud infrastructures.

Sign language is a natural, visual language that is conveyed through a sequence of gestures.

We thus have to use machine learning models that can analyze a substantial number of sign

features in a timely fashion. This may in turn increase model complexity further. Note

that the used models must be processed on mobile and wearable devices in our system

setting. Consequently, it remains difficult to develop and operate a lightweight solution that

translates sign language with high fidelity at runtime. To address this issue, we depart from

the popular paradigm of deep-learning based models. Instead, we propose a novel method

that exploits sign parameters derived from linguistics and extensive domain knowledge in

ASL. Our method enables us to capture sign gestures efficiently and ensure accurate and

fast recognition.

Efficient Sign Production from English. Many ASL users consider ASL to be their

primary language. However, producing ASL signs from English sentences and rendering

them on AR glasses can be challenging. Each sign involves the coordinated actions of fingers,

palms, and arms. Moreover, the AR glasses do not have enough processing capability, and

the Bluetooth connectivity between the glasses and the smartphone cannot transfer and
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render each produced sign gesture on time. Our proposed solution utilizes the phonetic

parameters of ASL to generate accurate signs. We further leverage kinematic correlations

for efficient sign compression. Consequently, we achieve high-fidelity ASL production on

smartphones and accurate rendering on glasses.

4.3 ASL-to-English Translation

Our first task is to provide swift and accurate translation of ASL into English during a 911

call given the glass-mobile setting. Figure 4.3 shows the three main steps. First, we capture

the sign parameters for recognition (§4.3.1). Second, we leverage ASL domain knowledge to

perform fast sign recognition with the parameters (§4.3.2). We further construct coherent

sentences from the sign sequences and translate them into English (§4.3.3). Our lightweight

translation pipeline works with limited capabilities of smartphones and AR glasses.

Our approach differs from all prior proposals [FCZ17, LRY20, JSW21]. To recognize

signs from visual information, the conventional approach treats signs as a spatial-temporal

sequence of hand movements and uses computer vision techniques for sign recognition. How-

ever, these methods often result in large, complex models that require significant compu-

tational resources for both feature extraction and recognition. For example, I3D [LRY20]

uses video as its input and requires 4.8GB GPU memory. SL-GCN [JSW21] takes skeleton

sequences as input but still requires 16 million parameters and 5 seconds to recognize one

sign with a powerful GPU. Consequently, these models are not suitable for this setting.

4.3.1 Capturing Sign Parameters

We devise a novel scheme to effectively extract sign parameters from the video frames cap-

turing the signer’s gestures by the AR glasses. Our approach is based on the premise that

ASL is a visual, yet natural language with linguistic features similar to those found in any

spoken language. Like the consonants and vowels used in spoken languages, ASL signs follow
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a set of decomposable patterns and rules (i.e., sign factors). Such factors set the foundation

for differentiating signs from arbitrary human gestures. By identifying and analyzing these

patterns, we can effectively capture and interpret ASL, conceptually similar to how a spoken

language is transcribed and analyzed.

Linguistic factors for ASL signs In general, ASL signs are classified into one-handed

and two-handed signs. It further uses four main linguistic factors to define a sign: handshape,

palm direction, location, and hand movement [TGB10]1. The handshape describes the con-

figuration a hand assumes when making a sign. The ASL dictionary lists 40 handshapes to

organize signs [TGB10] (see Figure 4.4 for illustrative examples). Palm orientation indicates

the orientation on how the palm of a hand is turned. It has six choices (up, down, left, right,

front, or back) in ASL. The location specifies where a sign is formed. It is expressed with

respect to close body areas when a sign is performed (say, “in front of face,” “near right ear,”

“right cheek,” etc.). Movement specifies the direction and trajectory of how a sign moves in

space. It also includes repetition, motion magnitude, and speed.

Note that hand movements are not arbitrary in ASL, either. They exhibit three patterns

[Cou14]: (1) based on the movement directions, signs can be classified as static (a.k.a.

fingerspell), unidirectional and repeated signs; (2) for two-handed signs, both hands may

move or only the dominant hand moves; (3) if both hands move, the movement pattern can

be classified as symmetric, parallel, or alternating (Figure 4.5).

In summary, from the ASL linguistic standpoint, each sign can be well specified using the

above four main factors. Furthermore, each linguistic factor only assumes a limited number

of choices for defining a sign.

Issues with direct utilization of ASL linguistic parameters However, we cannot

directly use the above four sign factors to capture and recognize a sign. There is a nontrivial

gap between the factors used by linguistic studies and those sign parameters that ML-based

1Nonessential parameters, such as body and facial expressions, provide additional information such as
tone.
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Figure 4.3: ASL-to-English Pipeline

schemes may use to capture and recognize signs.

First, the 40 handshapes are well defined by the ASL dictionary [TGB10]. However,

most proposed systems cannot obtain such handshape information directly. Instead, they

only have access to the visual information obtained through the sequence of images or video

frames when a signer makes a sign (say, through the AR glasses in our case). Second, location

(with respect to close body parts, e.g., “below right shoulder”) is an important linguistic

factor to define a sign in ASL. This is also deemed to be difficult in reality, since sensors

(such as AR glasses) cannot capture the full view of the signer’s body. Therefore, they

cannot learn the relative positioning of body parts versus hand sign. In fact, we are unaware

of any prior scheme that uses the location factor in ASL to classify a sign.

We thus have to design a set of sign parameters for our ML schemes, while leveraging the

ASL linguistic factors. Such parameters must be readily obtained on mobile devices without

intensive processing, and enable fast parameter extraction and sign recognition.

Sign Parameters for ML. In order to facilitate accurate recognition and translation

of ASL using machine learning algorithms, we have identified four essential types of sign

parameters. These parameters are specifically designed to be independent of the signer’s

body shape and hand size, ensuring robustness and consistency across different signers. By

incorporating these sign parameters into our ML models, we aim to enhance the accuracy

and reliability of ASL-English translation. Table 4.1 presents a comprehensive overview of

the four sign parameters that are crucial for our ML algorithms. Each of these parameters

captures unique aspects of ASL signs, enabling our system to accurately recognize and

interpret the intended meaning of signs. Let us now delve into the details of each of these
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A Open A B Open B Bent B …
Figure 4.4: Basic handshapes from glass view (40 in total)

parameters:

1. Hand number: This parameter is represented as a two-dimensional vector that denotes

the probability of a sign being performed with one hand or two hands. By analyzing the

hand configuration, our ML algorithms can discern whether a sign is executed using a

single hand or both hands

2. Handshape: The handshape parameter captures the sequential variation of hand con-

figurations over time. At each time step, the handshape is represented by probabilities

associated with 40 basic ASL handshapes (Figure4.4).

3. Wrist trajectory: Capturing the trajectory of the wrist is essential for accurate sign

recognition and translation. The wrist’s coordinates (x, y, z) are tracked over time t, uti-

lizing hand detection and depth estimation techniques that account for the signer’s hand

size. This parameter provides valuable information about the movement and positioning

of the wrist.

4. Palm orientation sequence: The palm’s orientation is a vital aspect of ASL signs,

as it conveys important linguistic and grammatical information. The palm orientation

sequence parameter captures the variation of the palm’s orientation (α, β, γ) over time t.

These four parameters provide an ML-friendly representation of signs. We next explain

how to extract these parameters on the glass-mobile setting.
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Parameter Meaning Dimension #
Hand number One-handed or two-handed 2
Handshape Handshape sequence over time 40 × 2 × t
Wrist trajectory Wrist position over time 3 × 2 × t
Palm orientation seq. Palm direction over time 3 × 2 × t

Table 4.1: Sign Parameters

Sign Parameter Extraction. We extract the above sign parameters from the video

frames captured by the AR glasses. The extraction procedure has three steps: skeleton

extraction, segmentation, and adaptive extraction.

Skeleton Extraction. Extracting 3D hand skeletons from video frames is commonly sup-

ported by mobile libraries [Med23] on smartphones. However, on-glasses processing can

only achieve 3 FPS, much lower than the natural signing speed. We thus offload processing

to the signer’s smartphone to extract hand skeletons. Since the signer wears the AR glasses

as (s)he makes a sign, one new issue arises: head movements affect skeleton positioning in

the camera view. We leverage the gyroscope data to address this issue. With such data

being further streamed from the glasses to the phone, the signer’s hands can be calibrated

relative to a fixed position, thus reducing the impact of head movements.

Segmentation. The captured wrist trajectory sequences need to be segmented into signs.

We exploit the idle states of the hands in segmentation. Prior ASL study [Cou14] shows

that, pause and neutral position are critical to identifying pacing between sequential signs.

Specifically, the signer may pause after the current sign, before transitioning to the next

sign. Alternatively, the signer’s hands may return to a neutral position (i.e., where the

hands remain relaxed, typically at the waist level in front of the body [TGB10]), before

starting the next. We thus use the pause time and the hand’s neutral position to detect the

borderline of sequential signs. The sign parameters are then ready for final extraction.

Adaptive Extraction. The hand number and movement can be directly extracted from

the hand skeletons. Palm orientation can be computed from the normal vector of the palm

plane. The extraction of handshape from each frame is more involved. We first calculate
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Figure 4.5: Sign Categories and Examples

the angles of finger joints [ZBV20] to minimize the impact of different hand sizes among

signers. We then match joint rotations with the 40 base ASL handshapes using a multilayer

perceptron classifier[HTF09], which assumes a hidden layer of size 64. Since each hand may

contain one or two handshapes during the sign [Fri76], we further merge the handshape

sequence to four vectors (two for each hand-start and end). This merging process helps to

reduce recognition errors that may occur with individual frames.

To further optimize processing at the smartphone, we design an adaptive handshape

extraction scheme. Our approach involves taking different sample rates on dominant and

non-dominant hands for handshape recognition. In ASL, the dominant and non-dominant

hands have different impacts on sign meaning. The non-dominant hand typically undergoes

fewer changes in position and shape than the dominant one, thus requiring lower sample rate.

A signer may set his/her dominant hand via configurations; the default dominant hand is

the right hand. This adaptive extraction further reduces processing time by about 25%.

4.3.2 Sign Recognition from Parameters

The signer’s gestures are thus converted into a sequence of sign parameters. The next task

is to perform sign recognition from such parameters. Note that our recognition must classify

word signs from fingerspelling-based terms.

We take a two-step approach. We first categorize a sign candidate into one of a few cate-
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gories. We then compare the similarity of the collected sign parameters with all signs in the

category. This two-level, hierarchical recognition scheme scales better than flat recognition,

where parameters of a new sign are directly compared with all candidate signs (i.e., hun-

dreds or thousands of signs). It reduces processing complexity and enables fast recognition

on mobile devices.

Sign Categorization. As shown in Figure 4.5(a), signs are first classified along five

dimensions: (1) Hand number: signs are first classified into 1-handed and 2-handed with

the hand number parameter; (2) Direction: using wrist trajectory, signs are classified into

unidirectional, repeated, and static. Note that, the static sign (a.k.a. fingerspell) denotes

a single letter in ASL; a corresponding fingerspelling module (to be elaborated next) is

triggered for further recognition; (3) Non-dominant hand behavior: we further decide whether

the non-dominant hand is dynamic or static, by using the wrist trajectory of this hand; (4)

Handshape: the handshapes of both hands are further identified based on the 40 candidate

handshape set; (5) Patterns: signs are finally classified by movement patterns mandated by

ASL: symmetric, parallel, and alternate. The movement patterns are extracted by combing

the wrist trajectory and palm orientation sequences. Figure 4.5(b) shows a few examples

of different sign categories. The above categorization can be readily obtained from the sign

parameters during the training phase, and stored in a reference sign database.

Our evaluation shows that, the above step could reduce the search space by an order of

magnitude. The sign category enables us to recognize signs accurately, even when there are

slight variations in sign parameters due to differences in signing habits and speeds.

Recognition of Word Signs. We next use a fast dynamic time warping algorithm [SC07]

to match the captured hand trajectory with those candidate signs in the same category, and

sort out the Top-k candidates based on the weighted similarity of all sign parameters. The

weights are learned with a linear regression algorithm to suppress noises. Our evaluation

reveals a promising outcome: when k is set to 5, 96.5% of signs are accurately identified,

demonstrating a high degree of top-5 accuracy. The accuracy can be further improved using
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context information (§4.3.3). This inclusion of contextual factors allows the system to better

understand the overall meaning of the sentence, leading to a more precise sign selection.

Recognition of Fingerspelling-based Terms. We exploit two distinctive features of

fingerspelling to classify such terms from word signs in ASL. Fingerspelling uses a single

hand and does not move the wrist position. Moreover, the whole word, but not individual

letters, must be fully expressed with fingerspelling [SDK18].

Our recognition module for fingerspelling thus works in two steps. Each letter is rec-

ognized from each frame using palm orientation and handshape. Multiple letters are then

merged into a word. Since ASL fingerspelling uses wrist movement to indicate repeated

letters in the word (e.g., Z-O-O), we apply wrist movement checker to decide the repeated

letters. We further call the English spell checker [Son23] to minimize misrecognition. Our

system is designed to trigger fingerspelling recognition under two situations: (1) during a

conversation, such as when a user needs to sign a name, and (2) when the system fails to

recognize a sign. In the first case, fingerspelling recognition is initiated by placing the domi-

nant hand in a fixed position in front of the glasses. For the second case, the system utilizes

confidence scores to detect uncertain recognition and allows the user to correct signs using

fingerspelling.

4.3.3 Sentence Translation

Given the recognized ASL signs, we next translate them into an English sentence. We

address two issues in the translation. First, ASL follows its own grammar. The grammar

differences arise in two main aspects: different word order and simplified structure. For the

basic English word order of subject-verb-object (SVO), it often shows up as subject-object-

verb (OSV) in ASL. For example, the sentence “I need an ambulance” in English SVO order

is translated into “AMBULANCE I NEED” in ASL. Moreover, ASL adopts a simplified

structure. For instance, ASL does not have “be verbs” (i.e., am/is/are). ASL also does not

use separate signs for articles (a/an/the). To solve the grammar issue, we have devised a
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Figure 4.6: Grammar Mapping

English: I donate blood every three months.
ASL: EVERY THREE MONTHS BLOOD I DONATE.
English: The bank near my house was robbed two times.
ASL: TWICE BANK NEAR MY HOUSE ROB.
English: My house has a good security system.
ASL: GOOD SECURITY SYSTEM MY HOUSE HAS.

Figure 4.7: English-ASL parallel corpus

grammar translation model that converts ASL sign sequences into an English sentence. The

model works even though signers may have different signing habits in terms of word order.

The second issue is that ASL signs may appear as homophones, which assume identical sign

parameters but convey different meanings [Hom23]. To address this issue, we disambiguate

such signs using context information on the usage scenario. A context model is used to

identify the correct sign out of multiple choices in the given context.

Grammar Translation. For grammar translation, we build an ASL syntax model to

provide mappings between the ASL grammar orders and the corresponding English grammar

orders, such as the “OSV↔SVO.” To train the model, we extract the ASL syntax order and

map it to the English syntax order using a parallel corpus, which includes the ASL-English

translations. During grammar translation, our model first parses the sign sequence and

identifies the best alignment of its syntax order. For example, as shown in Figure 4.6, the

incoming signs “AMBULANCE I NEED” are mapped to the order “OSV.” The model then

maps it to the English grammar order “SVO.” Second, it fills missing elements in ASL, such

as the “be verbs” and articles. If no exact match is found in the known ASL order, the most

similar order matching the incoming sign sequence will be applied. This can be done by

matching the subtree structures [BKL09].
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Our syntax model is trained using a public parallel corpus from the authoritative ASL

resource Signing Savvy [Sig23b]. The dataset contains 1233 translations between ASL gloss

sequences and their corresponding English sentences. Figure 4.7 shows some example sen-

tences. We thus have learned 209 mappings between ASL and English. This process results in

an accurate and efficient translation that produces grammatically correct English sentences

from ASL sign sequences.

Leveraging Context Information. Our system further leverages 911 context infor-

mation from the real-life emergency call conversations to refine the translation, as well as

recognition of uncertain signs. We construct our context model using the following process:

(1) classify the 911 conversations into five emergency types based on the answers to the

type of emergency, (2) track questions asked by the 911 operator, and (3) create a context

model using the tuple of [Topic, Question, Response]. The weights of sign candidates are

then adjusted based on each tuple value. For example, if the question is on the color of the

victim’s clothes, the context model selects color-related words in the recognized candidates

as the final response. By incorporating contextual information into our recognition and

translation, we improve the system accuracy. This becomes important in cases where signs

are ambiguous or unclear.

After the translation, the resulting English sentence is streamed to the glasses via Blue-

tooth. The AR glasses generate corresponding voice message, which is fed in by the ongoing

call at the smartphone and sent to the 911 operator.

4.3.4 Miscellaneous Issues

We next discuss miscellaneous issues on Sign-to-911 design.

Compound Signs. In ASL, a compound sign combining two or more individual signs

can be used to convey a single meaning. For instance, the parents sign is a compound

one, by combining the signs for mother and father. By breaking down into their individ-
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ual components, we can efficiently handle such compound signs without increasing design

complexity.

Voice/Text Interface. Most smartphones do not allow generating voices for phone calls

directly from a mobile application due to security concerns. We thus send the translated En-

glish from the phone to the glasses. The AR glasses use their local text-to-speech to produce

the voice, which is output to the speaker on the glasses. The glasses further play sounds

to let the operator know that the user is signing. This way, the signer communicates with

the 911 operator. Furthermore, we provide text captions for both the signer and operator’s

messages, which are displayed on the AR glasses for enhanced clarity and understanding.

Extreme Case Handling. In the extreme case the signer cannot make signs (e.g.,

got the hands/arm hurt in an accident), our system generates an automated, on-the-spot

description. If no sign is detected after a 911 call, the glasses produce a voice message

containing essential information, including name, age, and location, as well as surrounding

objects/buildings learned from object recognition. This offers a critical lifeline for deaf or

hard-of-hearing individuals during emergencies.

4.4 English to ASL Production

During an emergency call, an ASL signer also needs to comprehend voice responses from the

911 operator. Current speech recognition schemes [Cep] can readily convert the operator’s

voices into English texts. However, directly presenting such texts may hinder usability, as
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many ASL users primarily communicate through the sign language rather than in English.

To address this challenge, we construct an English-to-ASL pipeline (Figure 4.8). The pipeline

generates signs from the operator’s responses, animates the produced signs using a 3D avatar,

and renders them on the AR glasses. This ensures that signers can directly understand the

responses via signs, resulting in more effective call conversations.

There are two intuitive approaches to animate ASL signs on the glasses: one is to perform

ASL translation and rendering at the smartphone, and stream the resulting animation video

to the glasses; the other is to perform text-to-ASL translation and sign animation production

on the glasses. However, neither of the two is desirable. The first approach incurs long delay

due to encoding/decoding latency and prolonged transfer of video frames over the low-rate

Bluetooth connectivity between the glasses and the phone. Whereas the second approach is

too heavy to be operated on AR glasses with limited processing capacity and power budget.

We take a novel approach to lightweight production of ASL sign animations on AR

glasses. To this end, we exploit the well-accepted MOVE-HOLD model [LJ89] to describe

the temporal units of signs, and achieve a higher degree of compression for sign animation.

Specifically, a HOLD state records a static gesture, while a MOVE state captures the

transition between two HOLD states. An ASL sign can be reconstructed using one to five

HOLD states (ASL phonemes). Each phoneme effectively takes a snapshot of all involved

sign parameters at the time instant for a HOLD state. It can be acquired by taking snapshots

from the sign parameters discussed in §4.3.1. These phonemes serve as “key frames” during

sign production.

Consequently, we design a three-step pipeline for ASL production based on phonemes

(see Figure 4.8). The pipeline converts the incoming voice messages to phonemes on the

smartphone, and streams the generated phonemes to the glasses for on-glass animation. The

core of our pipeline is a module that produces ASL signs using phoneme sequences and

compresses phonemes with kinematic correlations. Our scheme enables high-fidelity transfer

of ASL signs via low-rate wireless connectivity (as low as 3.8KB/s).
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English-to-Sign. In the first step, incoming voices are converted to English sentences

using the speech-to-text conversion module on the smartphone. We then translate the En-

glish text to ASL gloss (i.e., word sign) sequences. Note that ASL and English have different

word orders. To ensure correctness of the produced gloss order, we reuse the syntax model

in §4.3.3 and convert English sentences to corresponding gloss sequences. We match the

English syntax order and ASL order, while dropping “be verbs” and articles. For example,

the English sentence “What is your emergency” is translated as “YOUR EMERGENCY

WHAT.” Finally, we convert the gloss sequence to sign animations. Note that, each gloss

must be matched by a sign of the same word type, since a gloss may assume multiple word

types. For example, “SECOND” can be either an adjective or a noun, denoted with different

sign gestures. Moreover, our animation database contains all frequently used signs. In case a

gloss does not match any sign in the database, we create the fingerspelling animations from

individual letters of the word.

Sign Production with Phoneme Sequences. We use the phoneme sequences to visu-

ally produce each recognized gloss. Direct usage of sign parameters of §4.3 does not yield an

efficient method for producing a sign. This is because sign parameters record complete hand

skeleton movements over time. Transmitting this entire skeleton sequence to the glasses

36



results in prolonged latency. In contrast, phonemes offer a more concise way to convey

visual information for a sign. Phonemes follow the MOVE-HOLD model [LJ89], which in-

cludes HOLD states. A phoneme captures a static snapshot of the sign parameters at a

particular timestamp. To capture these HOLD states, we first use body and hand recog-

nition algorithms [BGR20, ZBV20] to extract the 3D skeleton sequence from sign language

videos [LRY20]. We then identify HOLD states in the sequence based on movement speed

and direction, which are verified by human experts to ensure accuracy. With these phonemes

at HOLD states, our sign rendering uses spherical interpolation algorithms [Pen98] to ap-

proximate the MOVE state between two HOLD states.

Compression with Kinematic Correlations. We further compress phonemes by lever-

aging kinematic correlations. Note that, hand joint movements must comply with human

kinematic constraints [ES03]. For instance, a single flexor tendon can control the flexion of

multiple joints, such as the dip joint and pip joint [MI94]. With the kinematic constraints,

each hand could be represented with a subset of 10 out of the full 15 hand joints. The

degree of freedom of each joint rotation could also be reduced from 3 to 2 or 1 (depending

on specific finger joints). We build a kinematic encoder/decoder with a Linear Regression

(LR) algorithm. Only 10 joints and corresponding reduced rotations need to be transmitted

during rendering. The remaining joints and rotations are inferred from the LR at the glasses.

Our approach retains production accuracy under the limited bandwidth.

Figure 4.9 illustrates the construction and usage of the ASL phoneme database for

phoneme streaming. We first extract and compress the HOLD states of each sign using

the kinematic encoder, which is then stored in a local database at the smartphone. During

translation, the phone looks up each gloss in the phoneme database and streams its com-

pressed version to glasses. The AR glasses decode the body/hand movements with the LR

and produce sign motion sequences by interpolating the phonemes of HOLD states [Pen98].

Finally, the glasses render the signs with a local 3D avatar in real time. The approach reduces

the required bandwidth by 50x compared with directly streaming hand skeleton sequences,
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ensuring both low latency and high fidelity.

4.5 System Implementation

The implementation of Sign-to-911 is in software only. It operates as apps on the phone and

the AR glasses, respectively. The main components are shown in Figure 4.10.

Application on AR glasses. The application on glasses runs as an Android app on An-

droid Go Edition [And23b], a lightweight Android on assistive AR glasses. The app includes

2824 lines of Java and 1149 lines of Kotlin. For ASL-to-English, the app acquires real-time

camera views and gyroscope data with Android APIs [And23a, And23d]. The glasses record

camera views into H.264 videos at 15 FPS, which are later decoded by the smartphone

for sign translation. Both encoding and decoding use Android MediaCodec [And23c]. For

ASL reproduction, the glasses receive encoded ASL phonemes through the communication

manager, and reproduce signs using a reproduction module. This module loads a 3D avatar

from local files produced by Mixamo [Wik22]. To reduce rendering overhead, we downsize

the texture and decimate polygons to create an avatar with 66 bones, 132 joints, and 28,106

triangles baked as a 2.4MB file in .glb format. The reproduction module animates this avatar

with skeleton transformation and renders it with Google Filament [Goo22].

The AR glass uses a Communication Manager module (550 lines of Java) to enable

glass-phone data communications. We use Bluetooth RFCOMM [ANO01] for reliable data
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transfer. We have designed packet abstraction on top of the RFCOMM stream. The ab-

straction has two types of packets: control and data. Control packets coordinate between

the AR glasses and the phone during 911 call initiation or termination. Data packets may

carry three types of information: video frames, gyroscope data, and ASL phonemes. This

communication manager is also reused by the smartphone app.

Smartphone App. We have developed an Android application for smartphones. This

app has 4304 lines of Java and 2076 lines of Python code. The communication manager

receives ASL-to-English data from the glasses and streams English-to-ASL phonemes. We

use Android-MediaPipe [Med23] to capture the skeleton and run it on mobile GPU. Our

translation module performs bi-directional translations between ASL and English. It is

implemented with Andronix [And], thus allowing Python code and libraries to run on phones

with similar performance as native apps. To build our recognition and translation modules,

we utilize scikit-learn [PVG11] for machine learning, and NLTK [BKL09] for natural language

processing in Python. Both the reference sign database and the phoneme database are

embedded and preloaded in the app.

Moreover, we have implemented a 911 interface to make emergency calls. To capture

the audio stream from a phone call, system permission is typically required due to Android

privilege management [Man]. To bypass this roadblock, we bound our mobile app with an

Android accessibility service [Acc], thus enabling us to capture the audio stream through

the VOICE RECOGNITION audio source. Our app thus runs continuously as long as the

service is activated, and provides swift response upon emergencies. The captured audio

stream is processed by speech recognition using VOSK library [Cep]. For ASL-to-English,

we call Android’s built-in text-to-speech engine [And23e] to generate English voices from the

text.

Communication Core We chose the Bluetooth RFCOMM [ANO01] as the baseline

communication protocol between the AR glasses and the smartphone. RFCOMM provides

reliable data transmissions, which guarantees the delivery of bi-directional translation results.
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However, it is also stream-based. To segment different video frames or translation results and

to process them independently, we added the abstraction of packets on top of the RFCOMM

stream. Packets are categorized into control packets and data packets. Control packets

are used for coordination between the AR glasses and the mobile phone when a 911 call is

initiated or terminated. A data packet encapsulates data of any one of the three types: a

single video frame, a series of ASL animations, and a translated English sentence. We also

implemented an automatic and constant connection between the glasses and the mobile app.

After they are paired and connected for the first time, either device’s MAC address is saved

in the permanent storage of the other. Then if either app is closed and restarted, the MAC

address of the other can be retrieved to re-establish the connection.

To facilitate the streaming of the camera preview from AR glasses to mobile phones, it is

necessary to encode the raw video stream input into a more compact format to accommodate

the Bluetooth bandwidth limitations. In our preliminary experiment, we observed that the

stable bandwidth of Bluetooth typically reaches 150 KB/s under daily conditions. Hence, we

have opted to utilize Android’s MediaCodec for encoding the camera-captured video stream,

specifically in the YUV420SP format, into the widely supported H.264 format. We have set

the frame rate to 15 frames per second and an I-frame interval of 1 per second.

Based on our experimental findings, the average encoded frame size amounts to a mere

5 KB. Consequently, the streaming process necessitates only 75 KB/s of bandwidth. On the

mobile side, we have employed MediaCodec once again, this time for decoding the received

H.264 video stream back to the default NV12 format. Furthermore, we have transformed

the underlying bit arrangement to match the NV21 format and subsequently passed the

resulting byte array to the hand recognition model.

By employing this streamlined approach to encoding and decoding video streams, we

ensure efficient utilization of the Bluetooth bandwidth while maintaining the necessary video

quality for accurate hand recognition and subsequent processing on the mobile device.
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911 Call Interface According to [Man], unless the app is able to acquire system permis-

sions, the audio stream of a phone call cannot be captured directly. Therefore, we bound the

mobile app with an accessibility service of Android [Acc], through which the audio stream

could be captured through the VOICE RECOGNITION audio source. Moreover, after bind-

ing with an accessibility service, the app keeps running as long as the service is turned on,

corroborating the idea of constant connection. After the audio stream bytes are captured,

they are used for speech recognition through the VOSK library [Cep]. On the AR glasses,

after the English texts translated from ASL are sent back, we use the default text-to-speech

engine to generate voices from them.

4.6 Evaluation

We next evaluate Sign-to-911 on commodity smartphones and assistive AR glasses. We

first introduce our evaluation methodology. We describe our model training results and

assess both ASL translation and production. We further conduct a user study on signer’s

experiences.

4.6.1 Methodology

Experimental Setup We evaluate Sign-to-911 on off-the-shelf AR glasses and smart-

phones, as shown in Figure 7.5. Specifically, we use INMO AIR [INM23] assistive AR glasses

running Android 10 Go. The glasses are equipped with a quad-core Cortex-A53 processor
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Figure 4.12: Glass Application

(1.4GHz), 2 GB RAM, and 32 GB flash memory. The smartphone, OnePlus 10 Pro 5G, runs

Android 12 with a Qualcomm SM8450 Snapdragon 8 Gen 1 processor, 8GB RAM, and 256G

storage. We further use an Eversame USB Digital Tester to gauge power consumption.

Glass-view Sign Traces. Our ASL-to-English model training requires: 1) ASL video

and gyroscope data captured from the AR glasses; 2) the sign sequences and correspond-

ing English text translations. However, there are no such public traces to the best of our

knowledge. Consequently, we decide to collect our own glass-view ASL traces.

As our solution is designed for emergency call situations, we use two text-based 911

content sources to generate glass-view traces. The first from Montgomery County [CHI]

contains over 600K emergency call records, each of which offers a summary report for the

911 call. The second is the 911 response template from Eugene Police Department [Dep]. It

contains 46 questions covering 4 emergency scenarios (medical, fire, police, and hybrid). 911

operators use it to quickly understand the situation by asking appropriate questions.

We invite signers to drive ASL conversations in these two datasets. To ensure accurate

representation of natural signing habits and experiences, we select a group of six signers in

our study. This group includes two native ASL signers, an ASL linguistic expert, and three

ASL students with over two years of signing experiences. The signers sign the sentences,

and their signing motions and gyroscope readings are collected by two types of devices: AR

glasses [INM23] and a head-mounted action camera [Ins23]. We label the collected data with
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the sign sequences and corresponding English sentences.

The above collection process results in three glass-view ASL datasets, covering 249 GB of

video traces and more than 11.5-hour user-signing actions. Dataset-1 (D1) logs 478 distinct

ASL word signs using the first source [CHI] to cover the 911-related sign words. Dataset-2

(D2) is built from the 911 response template [Dep]. For each question, multiple answers are

generated to cover various real-world scenarios. In total, we generate 180 Q&As, which use

202 distinct ASL signs. All questions and answers are validated by signers.

D1 and D2 together cover more than 550 distinct word signs used in 911 emergency calls.

In addition to word signs, the remaining contents, e.g., names, addresses, and numbers, are

recorded with fingerspelling motions. We use D1+D2 (i.e., the superset by merging D1 and

D2) to train the sign recognition model. We further use D2 to evaluate the grammar/syntax

model in the 911 settings.

We construct Dataset-3 (D3) to evaluate our overall system. D3 contains detailed 911

call conversations, both real ones and machine-generated ones. We download 4 real-life 911

call recordings [Ope20b, Ope20a] and translate these conversations into ASL. Furthermore,

we use ChatGPT-3.5 [Ope22] to generate 30 artificial conversations with 150 Q&As for

emergency calls on three topics (medical, fire, and police). All conversation contents are

verified by our signers. To our knowledge, we have produced the largest glass-view ASL

dataset to date.

Phoneme Database for ASL Production. Different from the glass-view sign traces,

the phoneme database requires front views of signs, just the opposite to the glass views. We

construct this database by extracting phonemes from the public ASL video datasets [LRY20].

For each sign, we label its HOLD-state frames, extract phonemes, and compress them using

kinematic correlations. Our database covers 3100 signs, larger than those provided by ASL

directory [TGB10] and linguistic study [SCC21a]. We collect more compound signs, while

prior efforts [TGB10, SCC21a] did not. The words not covered by these signs are expressed
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through fingerspelling.

Ethical Considerations. This research was approved by the Institutional Review Board

of a large public university. We provided information sheets to all the participants, and their

confidentiality and privacy were ensured. The user study followed ethical guidelines outlined

by our institute; the ethical conduct of the study was in accordance with the principles

of research ethics. Moreover, the used glass-view camera captured the sign motions view

without any facial features of a signer. Furthermore, no actual 911 calls were made during

this study. In summary, our research was carried out in an ethical and responsible manner.

4.6.2 Component Evaluation

In this section, we evaluate three main components of Sign-to-911: sign recognition model,

grammar/syntax model, and English-to-ASL production.

Sign Recognition Model. We use the combined datasets of D1 and D2 to train the

sign recognition model. The combined dataset D1+D2 is split into training (80%) and test

subsets (20%). We evaluate our model training using 5-fold cross-validation on the training

subset. The training yields an average accuracy of 91.72%, with a standard deviation of

1.27% over the training subset.

We compare the accuracy with two state-of-the-art recognition models, I3D [LRY20] and

SL-GCN [JSW21]. Both take the image view as input. For fair comparisons, these two

models are also trained with the same training data subset as ours.

Model Accuracy (%)
I3D 82.03

SL-GCN 89.06
w/o-cat. 85.72

Sign-to-911 88.53
Table 4.2: Sign Recog. Acc.

The accuracy results are shown in Table 4.2. It is clear our model has comparable

44



accuracy in sign recognition as the SL-GCN model, but higher accuracy than the I3D model.

The root cause analysis shows that, the inaccuracy of our model largely stems from those

signs that are prone to sliding to the view boundary or outside the camera frame. For

example, the signs for the words BROWN and RED are close to the face, thus being on

the view boundary. Consequently, the hand-tracking algorithm fails to accurately detect the

skeleton for both signs. Minor adjustments to the camera view angle of the AR glasses may

solve the problem.

Note that, we only compare our model with the vision-based solutions. Other sensor-

based schemes are trained and tested using spatial-temporal sensory data, and cannot be

trained using our visual datasets. Moreover, they have only tried with small datasets of

50-100 signs [FCZ17, HLZ19], while our model covers about 550 distinct signs (4.5× im-

provements).

Syntax Model. We train our syntax model using the public dataset [Sig23b] with the

approach described in §4.3.3. To evaluate the quality of syntax translation, we use D2 that

has both English and ASL conversations. We evaluate the syntax model for both ASL-

to-English and English-to-ASL translations, using the word accuracy metric (i.e., WAcc

[Koe09]). In ASL-to-English translation, we convert the gloss sequences using the syntax

model, and compare them with the corresponding English sentence. In English-to-ASL

translation, we convert the English text to the gloss sequence, and compare the obtained

gloss sequence with the ground-truth one.

The evaluation results show that, the WAcc for our ASL-to-English translation is 93.96%,

and the WAcc for English-to-ASL is 95.60%. The errors in ASL-to-English translation were

primarily due to difficulties in filling in articles (a/the), while the errors in English-to-ASL

translation were due to differences in word order in ASL, which did not affect the meaning

of the translation. Overall, our syntax model shows high accuracy in mutual translations

between ASL and English.
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ASL Production. We compare the quality of ASL production based on video streaming

and that using our glass-based animation. Figure 4.13 shows the visual effects produced

under 10KB/s video, 30KB/s video, and our on-glass production. The video-based pro-

duction results in poor video quality, making it difficult to recognize signs. In contrast,

phoneme streaming and on-glass production achieve high-fidelity production with low-rate,

mobile-glass communication.

10KB/s 30KB/s Ours
Figure 4.13: Visual Quality

To quantify the consumed bandwidth, we compare three streaming methods: full skeleton

sequence streaming, phoneme streaming with/without kinematic compression. Experiments

show that, phoneme streaming consumes the least bandwidth by transmitting only the es-

sential HOLD states. Full skeleton sequence streaming uses 78.6KB/s bandwidth, while

phoneme streaming without kinematic compression only consumes 11.2KB/s. With kine-

matic compression, the used bandwidth is reduced by 20.7× to merely 3.8KB/s.

ASL Animation Quality. We assess the quality of ASL animations by examining their

recognizability, the accuracy of their parameters, and the hand distance between the human

signer and the avatar. Firstly, our research survey reveals that all participants successfully

identified the sign animation sentences in D3, despite their individual preferences for certain

signing variants. Secondly, a comparison of the sign parameters with the ground truth reveals

that a significant 95% were accurately represented in the animation, according to expert

feedback. Finally, the average difference in hand position between the generated signs and
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the reference human signs (ground truth) is less than 4cm. This discrepancy largely resulted

from variances in body shapes between the human signer and the avatar. In conclusion,

our animations successfully emulate key movements and sign parameters, with room for

improvement in the areas of fluidity and reference accuracy. These aspects can be enhanced

by integrating more human feedback and upgrading collision detection mechanisms.

4.6.3 System Evaluation

Sentence Translation. We first assess sentence translation in both accuracy and ro-

bustness. We use word accuracy (WAcc) as the metric for accuracy, which is calculated for

both gloss sequences and English sentences. We compare ours with I3D and SL-GCN. Since

I3D and SL-GCN do not support segmentation and syntax translation, we apply the same

scheme as ours in these steps. All models are trained with the combined D1+D2 set, and

then evaluated on D3. Note that, D3 is never used in training and records real-world 911

conversations.

Model D3
New
Signer

I3D 80.18 37.49
SL-GCN 86.31 56.32

Sign-to-911 91.37 82.40

Table 4.3: Word Accuracy (%) for Sentence Translation

Table 4.3 lists the comparison between our approach and the two related models. Sign-to-

911 yields 5.06% higher in WAcc than SL-GCN, and 11.19% higher than I3D. Our detailed

analysis reveals that the context model indeed helps; it improves WAcc from 84.49% to

91.37%.

We also evaluate translation robustness with respect to new signers. We collect the sign

videos from a new signer under emergency call settings. The signer has not appeared in the

training datasets. Results show that Sign-to-911 still achieves 82.40% accuracy (shown in
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Table 4.3). Both sign parameters and categorization help to reduce the impact of varying

sign habits and speeds. In contrast, I3D and SL-GCN barely achieve 37.50% and 56.32%

accuracy, respectively.

Robustness Upon Emergencies Emergency situations can have more uncertainties

than normal conditions. Diverse signer and environmental factors can result in varied data

capture, which may consequently degrade sign recognition accuracy. It is thus necessary for

our solution to accommodate these conditions. We utilized the same pre-trained model to

assess recognition performance in different settings, including fast-paced walking at 4 miles

per hour, low-light environments with illumination of 40 Lux, and outdoors. Across all

settings, we evaluated recognition performance on the same subset of sign interactions from

D3. Table 4.4 shows the results of comparison against the baseline lab environment with the

illumination of 500 Lux. The recognition accuracies fall within the ±3%, indicating that our

solution is robust enough to handle broad signer and environmental conditions.

Condition Accuracy(%)
Lab 90.7

Low-light 92.8
Walking 90.9
Outdoor 88.9

Table 4.4: Accuracy Under Different Environment

End-to-End Latency. We quantify the end-to-end latency for both ASL-to-English and

English-to-ASL pipelines. For ASL-to-English, we measure the interval from when a sign is

completed to when the corresponding voice is generated. We define translation latency as

the time it takes for the model to produce a translation. The remaining components (video

encoding/decoding, transmission, etc.) are collectively referred to as capturing latency. We

compare the latency with SL-GCN model on mobile (Mobile-SG+) and the cloud (Cloud-

SG). For Cloud-SG, the phone transmits the video to the cloud through 5G for translation.

The cloud runs the SL-GCN model with an Nvidia RTX 3090 GPU. The SL-GCN model

running on mobile takes an average of 62 seconds due to its slow skeleton extraction module.
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Alternatively, we extract the skeletons with [Med23] and feed them to the model. This

modified version is referred to as Mobile-SG+. We also gauge our model without sign

categorization.

Mobile-SG+
Cloud-SG

W/o-Cat. Ours
0.0
2.5
5.0
7.5
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Figure 4.14: A2E Latency

The results are shown in Figure 4.14. Our solution achieves an average time of 0.55

seconds, resulting in 17.4× reduction for Mobile-SG+ (9.7s). Compared to directly running

SL-GCN on the mobile, our solution reduces 112× of latency. Although Cloud-SG reduces

processing time with its powerful GPU, it still takes 7× longer than our solution. Compared

with the pipeline without sign categorization, our solution reduces translation latency by

8×, and achieves 3.1× reduction in end-to-end latency. Therefore, Sign-to-911 provides

swift ASL-to-English translation on commodity mobile devices.
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Figure 4.15: E2A Latency

We quantify the English-to-ASL latency from when the voice is received to when the

glasses render the sign. As shown in Figure 4.15, we compare three solutions: streaming

generated video at 480P, streaming full skeleton sequences, and our phoneme streaming. The

translation on mobile takes 122ms on average, and phoneme streaming only takes 206ms to

render the animation. In contrast, video-based and skeleton-based animations incur 22× and

49



16× latency, respectively. Our phoneme streaming thus ensures low-latency sign production

despite using Bluetooth.

Model Complexity & System Overhead. The deep learning models for sign recogni-

tion use millions of parameters in their neural networks [LRY20, JSW21]. We use traditional

AI/ML models with domain knowledge with only ∼4,000 parameters to be trained in our

two-way, ASL-English communications. It significantly prunes the search space with ASL

domain knowledge and offers lightweight solution.

We further show the applicability of our solution on mobile phones with different hard-

ware capabilities. In addition to OnePlus 10 Pro 5G (∼550 USD), we run Sign-to-911 on

Mate 20 (<300 USD) that runs Android 10 with a Kirin 980 processor, 6GB RAM, and

128GB storage. Results show that Sign-to-911 works with both high-end and mid-range

smartphones. The average translation latency is 650ms, still a 14.9× reduction from Mobile-

SG+.

We measure the system overhead by recording the power, CPU, and memory consumption

over time during the operation of the entire setup on each device. Our system’s power

consumption is comparable to that of other camera applications or media players, less than

1.89W on glasses and less than 2.75W on smartphones. The mobile application uses less than

35% of CPU and takes up 350MB of memory, while the glass application uses less than 50%

of CPU processing and takes up 65MB of memory. These results suggest that our application

is efficient and should not significantly drain device resources, making it compatible with a

wide range of commodity devices.

4.6.4 User Study

To evaluate the performance of our system in real-world scenarios, we conduct a user study.

For emergency calls in D3, we ask 12 participating signers to rate the quality of experience

(QoE), in terms of accessibility, usability, and overall experience on a 5-point scale: Excellent
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Accs. Usab. Oval.
Text-based 2.9 2.8 2.8

VRS 3.4 3.5 3.6
Sign-to-911 4.2 4.3 4.6

Table 4.5: User Study

(5), Good (4), Fair (3), Poor (2), and Very Poor (1). We further consider the diversity of

the signers’ background. We conducted a survey among users aged 20 to 80, which included

the deaf, hard-of-hearing individuals, and students learning ASL. The accessibility reflects

how readily the system can be learned by new users and activated upon emergencies. The

usability reflects correctness, liveliness, and human likeness; it is well accepted in translation

assessment [SRT10]. Signers further rate their overall experiences. They also use and rate

two other emergency call solutions: text-based and video relay services (VRS). As shown in

Table 4.5, our solution achieves the best QoE on both accessibility (4.2) and usability (4.3).

The overall experience is 4.6, which indicates improved user experience compared with the

text-based scheme (2.8) and VRS (3.4). Through interactions with users, we discovered

that opinions about text-based communication significantly vary, mainly because many deaf

individuals are not yet familiar with the new Text-to-911 service [Com23]. The user feedback

highlights the importance of having a single-click solution for deaf people to make emergency

calls. It confirms the demand for accessible emergency call services by the deaf community.

4.7 Discussion

Signing Variants & Iconic Classifiers. Differing methods and techniques in Deaf

education and contact with English over the years have led to a continuum between two

signing varieties: American Sign Language (ASL) and Signed Exact English (SEE). Because

individuals in the Deaf community sign along this continuum, it is critical to be aware of such

diversity in order to better adapt the model to be an accessible tool for the Deaf community.

In addition, we must take into account this continuum along with other varieties of ASL,
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such as regional varieties and Black ASL (BASL), for future studies.

Some signs change the path movement in order to convey different semantic meanings.

This usually applies to a limited number of signs that are iconic2 in nature (e.g., FIRE,

ACCIDENT). Nearly all documented sign languages, including ASL, utilize iconic construc-

tions called classifiers, signs that “represent the position or movement of an entity in a highly

iconic fashion[Sch21].” Classifier constructions in sign languages can function syntactically

as predicates, critical to an adequate translation of a sentence’s semantic meaning. Some

signs, such as FIRE, can be expressed as classifier predicates in which the sign is modified in

its production to convey various levels of fire. This iconicity of classifier predicates presents a

challenge for sign language translation as signs that may be signed under a normal condition

may differ in production (e.g., different path movement) from those signed under different

conditions. Since the number of commonly used classifiers is limited [Vic23] and variants

mainly come from changes in path movement, our solution has a high chance of covering

sign variants with improvements from more diversified training samples.

Device Compatibility Our solution has been meticulously designed to align with the

common design of assistive glasses, typically encompassing a camera and display. Such

compatibility allows glasses with these components to be seamlessly integrated with our

solution. While AR headsets could also be used, they might not be ideal for prolonged

usage due to potential discomfort and inconvenience. This inherent flexibility of our solution

enables its application across a vast spectrum of devices, extending its accessibility to a

larger user demographic.

Sign Language Universality Our solution is not exclusive to American Sign Language

(ASL), it also demonstrates applicability across various sign languages. Given the shared

parameters across different sign languages, our methods of capturing, translating, and pro-

ducing sign languages can be easily adapted. To apply our solution to other sign languages,

2An iconic sign is one that specifically denotes the visual characteristics, such as shape and size, of its
referent [VL00].
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minor modifications like creating new handshape references and updating the grammar model

might be needed. These adaptations potentially broaden the scope of our solution across a

wide array of sign languages.

Extensive Use Case Applications The utility of our solution extends beyond emer-

gency calls, demonstrating potential applicability across a diverse range of use cases. We

envisage that the glass-based ASL translation can be effectively employed in different forms

of communication, including phone calls and direct interactions such as customer service

encounters, grocery shopping, and daily conversations. Our future development plans in-

clude expanding the sign language coverage and incorporating complex grammars like ASL

classifiers to further enhance the versatility and functionality of our solution. This advance-

ment has the potential to drastically improve accessibility, facilitating communication for

individuals who primarily rely on sign language.

4.8 Related Work

Sign Language Translation. Sign language recognition has been an active research

topic in recent years. The existing solutions are either vision-based (I3D [LRY20], SAM-

SLR [JSW21], and DeepASL [FCZ17]) or sensor-based (using gloves [AZZ18], smart watches [HLZ19],

earphones [JGZ21], EMG sensors [ZJW22], etc.). These solutions, regardless of how to ex-

tract sign features, apply deep-learning-based models (e.g., RNN and its variants) on tempo-

ral data for sign recognition. Given the model complexity, the trained model could only cover

a vocabulary set size of around 100 signs. In contrast, our solution departs from the deep

learning based approach. We use simpler, traditional AI/ML models, while exploiting rich

ASL domain knowledge. We thus recognize about 550 signs. Our solution runs on commod-

ity smartphones for recognition without cloud/edge support. We further reduce translation

latency by an order of magnitude. Previous research [SSB20] employs the Hamburg Notation

System (HNS) [Han04] for teaching sign language, but its complex combinational represen-
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tation and lack of design for recognition prompted us to use the simpler Stokoe system in

this paper.

Moreover, existing solutions cannot well handle sentence-level translations for ASL. They

either offer no sentence-level translation at all [LRY20, JSW21], or rely on complex temporal

model training on large sentence corpora [FCZ17, AZZ18, HLZ19, JGZ21, ZJW22]. In

contrast, we explicitly consider ASL grammar and embed such domain knowledge into our

sentence-level translation models. In summary, we pursue an explainable AI model approach,

thus departing from the blackbox deep learning schemes. Our models are simpler and run

on smartphones.

Sign Language Production. For sign language production, current apps, such as

HandTalk [han23] and Sign Language Translator [Sig23a], cannot often produce the cor-

rect grammar order. They also cover limited signs, rely on clouds/edges for sign pro-

duction [Viv23, ASL23], or require heavy GPU processing for rendering and generation

[SCH20, SHB20, SCB20]. In contrast, we devise a grammar model using ASL syntax knowl-

edge, thus providing both accurate and high-fidelity ASL reproduction. Our solution runs

on mobile devices, and renders signs and ASL sentences on AR glasses.

Assistive AR/VR. AR/VR technologies have been used to develop assistive applications

for people with disabilities [Dic21]. For instance, [ZBB18] and [BH20] enable navigation for

people with visual impairments, [VOI23] leverages AR for social and emotional learning, etc.

We report the first system using assistive AR glasses to support ASL communications. Our

software-based solution on commodity AR glasses makes it readily accessible to ASL users.

4.9 Conclusion

As we draw this chapter to a close, we emphasize the vital importance of sign language

support for individuals with hearing disabilities, particularly in emergency scenarios. In

today’s high-speed, interconnected society, a significant number of people depend on sign
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languages like ASL as their primary means of communication. The urgency of this need

escalates in emergency situations, where instant, dependable, and accessible communication

channels are a necessity. Regrettably, many of the current solutions fall short, being deemed

inconvenient or, in some cases, inaccessible.

In response to this pressing issue, this chapter has introduced our solution, Sign-to-

911. This rapid and lightweight system has been designed specifically to bridge the gap in

ASL-English communication during emergencies. Sign-to-911 effectively employs traditional

AI/ML models but also integrates specific ASL linguistic domain knowledge, allowing us

to reduce model complexity while retaining high accuracy and speed in translations. The

system’s effectiveness has been validated through rigorous evaluations with real signers.

Sign-to-911 was subjected to a rigorous stress test using the 911 call service. This service

not only requires high recognition accuracy but also necessitates swift bidirectional trans-

lations. Importantly, all of these requirements are met using mobile and wearable devices,

without the need for cloud/edge support.

To sum up, Sign-to-911 offers a swift, lightweight, and accessible solution, addressing

the urgent need for effective ASL-English communication in emergency scenarios. We are

confident that by offering a more accessible and efficient solution for emergency communi-

cation, we are opening a pathway to potentially save lives in critical moments. The core

value of Sign-to-911 is its ability to meet the immediate and significant needs in emergency

communication, making it an essential tool in the ASL user community.
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CHAPTER 5

Advancing Sign Language Translation in Accessibility

Solutions

The previous chapter introduces our approach to sign-oral language translation for emergency

communication. In this chapter, we discuss our attempts to bridge the communication gap in

general usage cases. Compounding these challenges is the notable dearth of suitable training

datasets, a significant obstacle in the effective training and development of machine learning

models, especially for assistive AR.

The organization of this chapter is as follows: We commence with §5.1, where we dis-

cuss the pressing need and the significant challenges associated with general sign language

interaction. In §5.2, we introduce a novel method for sign recognition that uses non-video

references. §5.3 presents this approach’s analysis and implementation.

5.1 Sign Language in Accessibility Services

5.1.1 Accessibility for Deaf and Hard-of-Hearing

Accessibility standards have been established in various regions around the world. These

include the Web Content Accessibility Guidelines (WCAG) by the World Wide Web Con-

sortium (W3C) [Con18], the Americans with Disabilities Act (ADA) in the United States

[ada90], the European Accessibility Act (EAA) within the European Union [Uni23], and

the Accessibility for Ontarians with Disabilities Act (AODA) in Ontario, Canada [aod05].
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Ensuring accessibility for the deaf and hard-of-hearing community means providing accom-

modations such as sign language interpretation videos and closed captioning for multimedia

content. Additionally, for public services the ADA requires businesses and nonprofits that

serve the public to make ”reasonable modifications” to ensure equal access for people with

disabilities. This includes providing accommodations such as sign language interpreters in

hospitals for the deaf and hard of hearing. Without these accommodations, many people

may struggle to access information, participate in activities, or benefit from digital advance-

ments. By being inclusive, these accessibility standards not only protect the rights of the

deaf community but also contribute to the diversity of interactions and experiences.

Despite the emphasis on accessibility for the deaf and hard of hearing, the practical

implementation of these services frequently encounters significant challenges. The presence

of ASL interpreters is often inconsistent [Cen23], and the online content’s sign language

interface is insufficient. Due to these shortcomings, many from the deaf community find

themselves marginalized, facing barriers to quality education, online engagement, and daily

routines.

5.1.2 Challenges in Delivering Sign Language Services

Effective machine sign language translation is a complex and demanding task, impeded

by numerous hurdles, primarily rooted in the inherently distinctive characteristics of sign

language. Unlike conventional spoken languages, sign languages employ a dynamic three-

dimensional motion and visual context, requiring specialized strategies for machine learning

model training and translation methodologies. This section outlines the primary challenges

encountered in the development and implementation of effective and generalizable sign lan-

guage translation algorithms.

Insufficiency of Labeled Video Training Sets for Signs A prominent challenge in

machine learning applications for sign language translation pertains to the scarcity of ad-
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equately labeled video datasets for signs. The success and efficiency of machine learning

models are contingent on their training with comprehensive, diverse, and accurately labeled

datasets. For sign language translation, this translates into the need for high-quality video

footage that captures a wide array of sign language vocabularies executed by different sign-

ers. Subsequently, each sign must be accurately labeled, a process that necessitates expert

knowledge of sign language, alongside significant time and effort. The limited availability of

such precisely labeled video training sets imposes considerable constraints on the robustness

and accuracy of translation models, hindering the progression of sign language translation

technology.

Shortage of Parallel ASL Datasets Efficient sign language translation faces another

major obstacle - the lack of parallel American Sign Language (ASL) datasets. In machine

translation, parallel datasets that contain sentence pairs in two languages with equivalent

meanings are crucial for training translation models. These datasets enable the mapping of

meanings between two different languages, which is essential for achieving effective transla-

tion.

While ample parallel datasets exist for various spoken languages, generating equivalent

datasets for ASL and English involves unique challenges. The primary hurdles include the

complex task of recording synchronous ASL and spoken English translations, reconciling the

different grammatical structures, and accommodating the visual-spatial nature of ASL in

contrast to the linear nature of spoken English. This acute shortage of parallel ASL datasets

presents considerable obstacles to the development of high-performing machine translation

models, thereby impeding progress in ASL-English translation.

To address these dual challenges, we unveil our innovative approach designed to facilitate

the learning of the translation pipeline despite a limited training dataset. Our methodology

encompasses two key components: first, we leverage dictionary-based descriptions to learn

the representation of ASL signs, thereby bypassing the need for extensive labeled video data.
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Secondly, we employ a learning-based approach to understanding ASL grammar, drawing on

a set of predefined, constrained rules. By strategically maneuvering within the boundaries

of these limitations, we endeavor to optimize the capabilities of our translation model.

5.2 Sign Recognition with Non-Video Reference

Approaches [LRY20, RKE21b] applied to camera-based sign language recognition predomi-

nantly center on using video samples as the primary resource for learning the sign recognition

model. This intuitive strategy, while having its merits, grapples with significant constraints

that limit its overall efficacy and scalability. The first notable issue arises from the heavy

dependence on data collection, requiring an immense repository of video samples from ASL

users to ensure a robust learning process. Each sign demands multiple instances to prevent

misinterpretation and errors, thereby multiplying the data collection effort. Additionally,

a secondary challenge stems from the scalability of this method. Extending the scope to

encompass a comprehensive catalog of signs presents logistical complications, effectively hin-

dering the adoption of this approach on a larger scale.

In the face of these formidable challenges, we have embarked on a quest for an innovative,

effective solution. In our quest, we drew an intriguing parallel between ASL and spoken lan-

guages, particularly regarding representation. Spoken languages have successfully adopted

the International Phonetic Alphabet (IPA) as a standardized written form of the pronun-

ciations, enabling consistent and universal representation. Borrowing from this strategy,

we hypothesized that sign language could also be effectively represented using a dictionary-

like format. By systematically correlating these dictionary entries with their corresponding

physical manifestations – the hand/body movements – we established an unconventional yet

promising method for learning signs without a mandatory reliance on video samples.
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5.2.1 Insight from International Phonetic Alphabet

Our strategy was further bolstered by the exhaustive lexical descriptions provided by ASL-

LEX [CSC17, SCC21b]. This resource served as a valuable bridge, allowing us to translate

the lexical descriptions into identifiable movement features. Following an in-depth analysis

of the descriptions, we delineated a distinct set of features that effectively encapsulated

the range of hand and body movements required to perform each sign. By establishing this

translation from lexical descriptions to movement features, we crafted a robust understanding

of ASL with the descriptions.

The key insight underscoring our approach is that sign language, much like its spoken

counterparts, can be represented in a dictionary format. This innovative perspective allows

us to bridge the gap between dictionary entries and physical hand/body movements, enabling

the learning of signs devoid of video representations and thus bypassing the limitations of

conventional video-based learning approaches.

5.3 Analysis and Implementation

The initial step in offering dictionary-based translation involves constructing a dictionary de-

tailing signs and their descriptive parameters. We harness three resources for this endeavor:

ASL-LEX [SCC21b], which provides tables of lexical features; SigningSavvy [Sig23b], which

offers text descriptions; and the American Sign Language Handshape Dictionary [TGB10], a

conventional dictionary enumerating sign parameters. By incorporating features from these

sources, we have assembled a sign-parameter database. This database comprises 7 categories

of discrete parameters—including hand number, handshape, same/different handshape dis-

tinction, major location, minor location, repetition, and movement shape—and presents

between 2 to 58 candidates for each parameter.

To enhance our understanding of sign recognition, we delved deeper into the lexical pa-

rameters extracted. Using a comprehensive chart for Sign Identification Using the Dictionary,
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Figure 5.1: Distribution of Sign Lexicon Groups

we noted the efficacy of our database. From a single source, only 56.0% of the signs can be

uniquely discerned based on the provided parameters. However, after the concatenation of

our diverse sources, the accuracy exhibited a marked improvement:

• 74.7% of the signs could be singularly pinpointed (Figure 5.1).

• We observed a 94.4% identification rate when considering the top-3 possible matches.

Further expanding the scope to the top-5 possible matches yielded a remarkable 98.9%

accuracy.

We utilized the AR/VR glasses to record these parameters in real time. Currently, our

system is implemented on the Unity AR platform (as illustrated in Figure 5.2), which is

adept at tracking the motions of fingers, hands, and the head concerning stationary world

objects.

Testing with the goggles shows that our approach is able to capture the
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Figure 5.2: Sign Capture in AR/VR

5.4 Conclusion

This chapter delved into the pressing issues of accessibility services for the deaf commu-

nity in general conditions. We have highlighted the existing gaps and the need for more

comprehensive solutions. To address these challenges, we proposed a solution design that

leverages a dictionary-based corpus for general sign language recognition. This design not

only promises to bridge the accessibility gap but also offers a scalable and adaptable ap-

proach for various scenarios. Furthermore, we discussed the implementation and analysis of

this solution, shedding light on its practicality and potential outcomes.
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In the next chapter, we will introduce AnySign, our developed platform. It is designed

to enhance interaction and data collection by leveraging a user-feedback loop, aligning with

our dictionary-based design.
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CHAPTER 6

AnySign: An Open Platform for Sign Language

Interaction and Sign Documentation

In this chapter, we explore the development and structure of an integrated online platform

aimed at enhancing the learning and interactive experience with ASL. The platform seeks to

connect the Deaf community and the hearing population through a multifaceted approach

to sign language translation and engagement.

In addressing the pressing challenges faced by users and learners of ASL, this innovative

platform integrates four key modules: Sign Dictionary, English to ASL Translator, Teach-Me-

Sign, and SignChat. Each module is crafted to alleviate specific issues, collectively providing

a holistic solution that caters to the distinctive needs of the ASL community.

The Sign Dictionary module introduces a system that offers detailed animations and

documentation for each sign. It supports not only ASL users but also aids ASL learners.

The English to ASL Translator is designed to transform English input into ASL syntax

and grammar, serving as an effective learning interface for both beginners and intermediate

learners. Teach-Me-Sign leverages community contributions to address the issue of ASL

variations. Finally, SignChat, a module that integrates sign language with advanced AI

language models, propels the interpretation and generation of signs into the digital era.

The following sections will expound upon the approach and the unique ways this online

platform has been designed to resolve the challenges intrinsic to ASL communication and

learning. Further details and live interaction with the system can be accessed via our website
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at AnySign.net. Through the presentation and discussion of this innovative platform, we

hope to bring a new dimension to the world of sign language, making ASL more accessible,

interactive, and integrative.

6.1 Overall Platform Design

The platform’s overall structure is depicted in Figure 6.1. Sign dictionary, Teach-me-sign,

and SignChat are three applications of our system, while the translator is achieved by our

translation core functionalities. It is also used for other modules and mainly runs on our

backend, so it is not listed in the applications.

The web system implementation is divided into two critical parts: the frontend and

the backend. The frontend is responsible for the user-facing aspect of the web application,

managing all user interactions, real-time animation interpretation, and webpage updates. It

includes a sign production interface using Three.js[Cc23], a cross-browser JavaScript library,

a MoCap module for video stream in Teach-me-sign and SignChat, and other pages or

components. Users can access the platform through these interfaces and utilize the key

modules.

On the other hand, the backend, built using the Flask framework, serves as the back-

bone of the system, responsible for handling all data processing, access to the algorithm

library, and communication with the database. It can load our key algorithms and models

in the translation-core, responsible for sign recognition and production, and the SignCor-

pus, designed for avatar transformation processing. Specific APIs are designed to complete

interactions with the frontend.

The frontend and the backend communicate through Axios, a powerful and promise-based

HTTP client for Node.js and the browser. The frontend makes use of Axios to send and

receive requests to and from the backend. Then, the backend interacts with the database

and processes data according to the requests received from the frontend. It may also receive
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feedback from the frontend.

Our database, which includes two types of tables - one with sign-related information and

another with user information for the user system - can be accessed by the backend. It can

be modified by the backend order and provide the necessary data.

This architecture ensures that the web system is scalable, maintainable, and responsive

to user interactions, enabling efficient communication between the frontend and backend and

providing a seamless user experience.

6.1.1 Frontend

Interface layout The design of the user interface (UI) is a critical aspect in web and

software development, as it greatly impacts the user’s overall experience with the application.

Our aim with the UI layout is to create a design that is easy to navigate and intuitive to

use.

The website’s interface layout consists of three main components: the navigation bar,

page content, and footer. The navigation bar acts as the primary navigation tool, helping

users navigate throughout the website with ease. It includes three key elements: the logo,

menu, and user component. The logo, located on the left side of the navigation bar, provides

a quick link to the home page, which also serves as the sign search page. The menu includes

several buttons that direct users to different pages within the website. For instance, the

“products” button contains a sub-menu that links to the website’s three main offerings: the

sign dictionary, the ASL sign translator, and the “Teach-Me-Sign” page. The menu also

collapses automatically to ensure a consistent user experience across different devices and

screen sizes. The user component, located on the right side of the navigation bar, displays

either a login button when the user is logged out or the user’s avatar when logged in or

logged out.

The page content can be filled with various components and is designed based on user
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Figure 6.1: System structure
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demand. This section is dynamic and can change according to different development need.

The footer is attached to the end of each page and serves as a copyright statement for the

website.

In summary, the interface layout provides a clear and intuitive navigation structure that

makes it easy for users to find what they are looking for. Each component serving a distinct

purpose to enhance the overall user experience.

6.1.2 Backend

The backend is an essential component of the system, facilitating seamless communication

between different parts and enabling smooth data processing. We selected Flask as the back-

end framework for its compatibility and ease of transition from the existing legacy system.

The backend is accountable for connecting to the database and accessing the algorithms and

models to handle incoming data. The detailed design of each module will be discussed in

the following sections.

Moreover, the privacy and security of the confidential information stored in the database

are of utmost importance. To ensure this, the port used for the backend has been kept private

and set to 6000, inaccessible from the public internet. This helps to thwart unauthorized

access and preserve the confidentiality of the data being processed by the backend.

6.1.3 Database

The database AnySign webuses MySQL as the management system. We designed several

tables to serve different use cases. One table contains all words with the necessary informa-

tion, including their ids, parameters, landmark file location, etc. The other table is used for

user system with the user’s email, area, and identity information. The datasets introduced

below is where our raw data comes from.

The database AnySign web utilizes MySQL as its database management system and
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has been designed with multiple tables to cater to different purposes. One of the tables

holds a comprehensive list of all words with relevant information such as their unique IDs,

parameters, and landmark file locations. Another table is dedicated to the user system and

contains user-specific information such as email, location, and identity.

Video dataset We designed a motion-capture (MoCap) [RKE21a] based approach to pro-

duce each sign with animated avatars. The motion landmarks for the avatar were sourced

from the WLASL video dataset, which is the largest video dataset for ASL recognition and

features 2,000 common ASL words.

Sign parameter dataset The sign parameter dataset is based on the ASL-LEX 2.0, which

is an open-source database of the lexical and phonological properties of ASL signs. The 2.0

version of the database has been significantly expanded and now includes information on

2,723 signs. It provides a comprehensive introduction to each sign, including handshape and

sign type, which is useful for our sign search module.

6.2 Sign Dictioanry

The sign dictionary system aims at facilitating easy and intuitive learning about signs. The

system has two primary functionalities, search and results display. The user can input the

desired sign they wish to search for and receive a list of cards displaying relevant information

about each sign, along with its corresponding animation. The information displayed in the

results cards is comprehensive, and our motion-capture-based avatar provides a vivid and

interactive representation of each sign, making it easier for users to understand and learn.

This system serves as a one-stop-shop for users seeking information about ASL signs and

makes it easy for them to access and learn about each sign. The user-friendly interface and

intuitive design of the search engine make it a valuable tool for anyone looking to learn about

ASL signs, whether they are a beginner or an experienced user.
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{
” pose landmarks ” : [
{

”x ” : 0 . 5 ,
”y ” : 0 . 5 ,
”z ” : 0 . 0 ,
” v i s i b i l i t y ” : 0 . 9 9

} , . . . ] (33 landmarks in each frame ) ,
[ . . . ] ( landmarks f o r r e s t frames )

] ,
” face landmarks ” : [ . . . ] ,
” l e f t hand landmarks ” : [ . . . ] ,
” r ight hand landmarks ” : [ . . . ]

}
Listing 6.1: Landmark JSON file structure obtained from video.

6.2.1 Animation processing

As introduced in the 6.1.3, the motion landmarks are obtained from the WLASL video

dataset. There are 10908 json files in total, each containing pose landmarks, face landmarks,

left hand landmarks, and right hand landmarks in chronological order per frame. The land-

marks follow the MediaPipe[b820] pose 33 3D landmarks structure (shown in 6.1), which is

an ML solution for body pose tracking from video frames. However, our 3D avatar model

requires a dictionary input format with keys such as “Spine” and “Head” for the body, and a

52-dimension facial morph dictionary (ARKit)[b9]. To process the landmarks accordingly, we

developed SignCorpus, which incorporates modules for generating and refining sign corpus,

including facial expressions and ik.py for hand and body transformation. We used inverse

kinematics(IK) to get the body and hand animation data morph target and then used facial

expression module to produce the morph target.
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{
”1” : [

” t r a n s d i c t ” : {
” Spine1 ” : [ . . . ] ,
. . .

} ,
” morph target ” : {

”browDownLeft ” : 0 ,
”browDownRight ” : 1 ,
. . .

} ] , ( the f i r s t frame )
”2” : [ . . . ] ,
. . . ( r e s t frames )

}
Listing 6.2: Animation JSON file structure after processing.

6.2.2 Database

Each word in our database is assigned a unique ID (as referenced in 6.1.3). However, it

is possible for a single word to have multiple glosses, meaning that there can be multiple

results of one sign. Additionally, the quality of the videos associated with each gloss can

vary. In our initial version, we display only one animation for each word from the WLASL

dataset. To determine which animation to display, we mapped each video file size to the

corresponding sign and selected the animation with the highest quality. Thus, we can only

determine which sign animation has the largest video file size for each gloss in the raw data.

6.2.3 User Interface

The interface of the sign dictionary system consists of two main pages: a search page for

signs and a results page displaying sign cards with animations.

Sign search page The sign search page, which also serves as the home page of the

website, has a simple and user-friendly interface, as depicted in Figure 6.2. The center of

the page features a search text input field. Users can initiate a search by clicking the search
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Figure 6.2: ASL sign lookup page

icon or pressing the enter key, which will redirect them to the results page. The sign input

is automatically included in the URL, enabling users to easily visit specific pages and track

their activities through the URL.

Search result page In the results page, all signs that match the input will be displayed

as a list of cards, as shown in Figure 6.3. Each card features an avatar canvas on the left

and sign word, description, and a play button for the sign animation on the right. When

the play button is pressed, the static avatar picture will be replaced with an ASL video

demonstrating the gestures of the sign, as depicted in Figure 6.4.

Upon being redirected to the results page, the React component retrieves the user input

from the URL and sends a request to the backend. Upon receiving the result data, each

matching sign information is mapped to a SignCard component. The SignCard component

is responsible for the card layout and managing video playback. If the user presses the play

button, the SignCard component sends a request for animation data and passes it to the

SignAnimation module, which is responsible for the avatar actions.

The SignAnimation module uses Three.js to load and display animated 3D avatars in

a web browser. It exports an animationDrawer function, which can load 3D models saved

72



Figure 6.3: Result page for each sign.

in the GL Transmission Format (glTF) and set the model gestures based on the animation

data previously obtained. Each animation plays in a loop unless the user presses the pause

button or another card’s animation is played. Only one animation is designed to play at a

time, which is achieved through the use of the React embedded component, Reducer. The

Reducer consolidates all state update logic outside of the component into a single function.

The result cards are wrapped in React context to maintain a shared status glossID. The

Reducer updates the glossID status of the currently playing video whenever the play button

is pressed. Each sign card has a unique ID stored in the database, so when the currently

played video ID does not match the one in the Reducer, the animation will automatically

pause.

6.2.4 APIs

The search sign module has two APIs available. The first API is responsible for returning

all matched signs from the database, while the second API is responsible for returning the

corresponding animation data for a given sign.

For the search API, the module retrieves the user input from the request and fetches all
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Figure 6.4: Card interface when playing animation.

data that match the input from the database. The module then selects the result with the

largest video size and returns the associated ID, gloss, and related explanation.

On the other hand, the sign/animation API is activated when the user presses the play

button on the frontend. This API sends a request with an ID, which the backend uses to

locate the corresponding animation data and return it to the frontend.

6.2.5 Let ML Model Learn the Signs from the Dictionary

A significant challenge faced in the field of sign language recognition stems from the scarcity

of video data for training machine learning models. The relatively limited number of sam-

ples available for ASL, as compared to major spoken languages, compounds this issue. Nev-

ertheless, an underexplored approach that can potentially mitigate this problem involves

leveraging the ASL sign dictionary as a training source for the recognition model.

The fundamental idea behind this strategy involves exploiting the inherent structural

composition of sign language, specifically the discrete features that form the basis of signs.

Each sign can be decomposed into a combination of several discrete features, including

handshape, hand symmetry, wrist position, orientation, movement, and more. These features

can be captured in the ASL dictionary and subsequently reorganized for machine processing.

In the proposed approach, the first step involves the extraction of hand landmarks. These
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landmarks encompass crucial information, such as the handshapes and their symmetry. The

second step considers the wrist position and orientation, which are used to identify hand

number, movement, and palm orientation. These landmark traces then feed into a classifi-

cation model, which outputs discrete classifications.

Next, we combine the discrete classifications to identify potential signs that match the

same category. Given that the signs within each category are sparse (with 74.7% of the signs

being unique within their respective categories), this step considerably narrows down the

possibilities.

However, the categorization process may introduce errors, owing to the inevitable overlap

and ambiguity in sign features. Subsequently, the signs can be classified based on similarity

scores, calculated as the cosine distance between the feature vectors and the ground truth.

In this way, even with limited video data, the model can effectively learn and recognize ASL

signs by referring to the sign dictionary.

6.3 Teach-Me-Sign

ASL is a language with a wide range of regional variations, as different areas and people

may have distinct body shapes and habits for producing the various handshapes used in the

language. To ensure that our system accurately reflects these regional variations and diverse

expressions, we have developed the teach-me-sign system.

The teach-me-sign system is designed to help us collect a comprehensive sign corpus that

accurately represents the full range of regional ASL variations. To achieve this goal, we

utilize a motion capture (MoCap)-based approach, which will be introduced in the following

sections.

Users can access the “Teach-Me-Sign” system in two ways: either through the “Teach-

Me-Sign” link in the sign dictionary results page or by using the random sign button on the

search page. There are several use cases for the system. The first scenario is when a user
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finds a sign animation in the database, but notices variations in how the sign is displayed.

Alternatively, there may be signs that are not included in our corpus, prompting the user

to teach our avatar their way of performing the sign using the “Teach-Me-Sign” link. In the

second scenario, users can access the system by teaching the avatar random signs. This can

be especially useful when users do not have a specific sign in mind that they wish to teach.

Our system plan to prioritize signs that are not well-represented in our database if users

choose random signs, and we plan to generate a ranking list of users based on their contri-

butions to encourage them to add more sign data. Currently, signs are randomly selected

with equal probability, and users can input any sign they wish to teach the avatar.

As for the specific functionalities, users are able to record their gestures for signs. The

avatar will represent the animation that has been recorded for the user to verify the animation

meet their expectation. Once they are satisfied with it, they can submit it to the server. A

user system is built to help collect the area and identity information to help further process

the data received.

The system allows users to record their own gestures for ASL signs. This feature is

designed to enhance the inclusivity of our system, by allowing users to contribute their own

unique regional and personal variations to our sign corpus.

When a user records their gesture, the avatar will display the corresponding animation,

allowing the user to verify that the avatar correctly interprets the sign. Once the user is

satisfied with the animation, they can submit it to the server.

To help us better process the data we receive, we have built a user system that collects

information about the user’s region and identity. This information can help us on the further

learning and processing.
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6.3.1 User Interface

“Teach-Me-Sign” has a single user interface page as depicted in Figure 6.5, which is primarily

composed of two canvases. The left canvas shows an avatar, while the right canvas displays

the user’s video stream. The avatar is designed to follow the user’s movements when they

are initially setting up or recording a sign. This allows users to see how their movements

correspond to the animation in real-time. In addition, the video canvas displays the land-

marks that have been recognized by our model. This feature allows users to see how our

avatar is interpreting their movements and provides valuable feedback that can help users

refine their gestures and improve the quality of submitted data.

At the top of the page, there is a user input area where the user can enter the sign they

wish to teach. This area also includes a button that allows users to either return to the result

page or choose a random sign, depending on how they accessed the page. The control panel

for the video source is located in the lower-left corner of the page. Here, users can monitor

the fps and select the device they wish to use for their video input. The record and submit

buttons are located in the lower-right corner of the page. When the user is ready to record

their sign, they can press the record button, and the avatar will repeat the sign after it has

been recorded. If the user is satisfied with the result, they can press the submit button.

Once the backend successfully saves the animation, a modal will appear with a thank you

notice.

6.3.2 Animation Module

The animation module is a key component of the teach-me-sign. It relies on two custom

components - MoCap.js and avatar.js - to manage video input and avatar output separately

while communicating with each other and the backend.

The MoCap component plays a crucial role in capturing each video frame and employing

MediaPipe Holistic to produce landmarks. MediaPipe Holistic amalgamates pose, face,
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Figure 6.5: Teach-Me-Sign Interface

and hand landmark models, collectively generating a comprehensive 543 landmarks. These

encompass 33 pose landmarks, 468 face landmarks, and 42 hand landmarks (21 per hand).

However, as discussed in section 6.2.1, the avatar library cannot directly consume these

landmarks. Therefore, they undergo processing by the backend before being transmitted

back to the avatar library. Furnished with the corresponding skeleton data, the avatar

component can then render diverse animations that accurately mirror the ASL signs that

users have either recorded or generated.

This system is further enhanced by the inclusion of animations from WLASL, deployed

using a combination of skeleton and morph animations. Such a setup ensures the highest

level of accuracy and detail in representing ASL signs in an animated form.

Facial Expression Module While our avatar is capable of displaying hand and body

movements, facial expressions are also an important aspect of ASL that are not currently

captured by the system. To address this limitation, we plan to add a facial expression module

to our SignCorpus library.

The facial animation in our system is based on shape keys, and we have updated our

avatar from the ready-player-me Metaverse 3D Avatar Creator[b11] to include shape keys
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for facial animation control. To create the facial expression module, we designed the module

based on an open-source package called FaceTranslator[M]. This module converts Medi-

aPipe face motion to shape keys by projecting the landmarks onto the canvas and using

the BlendshapeCalculator component to calculate the corresponding morph representations.

The output of this process is an ARKit morph dictionary, as introduced previously.

Due to limitations in the accuracy of facial landmark recognition, we have chosen to

selectively display facial keys for certain facial features, such as eyebrows and mouth. For

features that are not displayed, the corresponding keys in the morph dictionary are set to

zero in order to maintain the dimensionality of 52. By incorporating facial expressions into

our system, we hope to create a more comprehensive and expressive representation of ASL.

6.3.3 APIs

We rely on two APIs to support the teach-me-sign system. The first API is used to facilitate

the process of transforming video landmarks into motion animations. The client sends the

video landmarks to the server through this API, and the server is responsible for processing

the data and generating the corresponding motion animation.

The second API is used to save the animation data after the user submits their recording.

This allows us to efficiently store and organize the new sign data that users have contributed.

6.3.4 User System

A distinctive challenge in effectively harnessing ASL within a digital platform lies in the

inherent variability of the language. As noted earlier, ASL usage can differ markedly across

regions, communities, and individuals. This variability adds a layer of complexity to the

accurate interpretation and representation of ASL.

In light of this, we underscore the necessity of developing a robust user system on our

platform. This system is not simply an add-on but a critical component of our strategy to
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enhance the accuracy and usability of our platform. It is meticulously designed to capture

and learn from these regional and personal nuances in ASL usage.

By integrating this user system into our website, we aim to foster a more comprehen-

sive understanding of these differences, thereby facilitating a more accurate translation and

representation of ASL. This system not only aids us in comprehending the idiosyncrasies of

individual users but also allows for the improvement of our platform’s overall effectiveness

and adaptability, making it a truly user-centric resource for the ASL community.

Located in the navigation bar, the login button steers users toward the login page. As it

stands, our system supports login authentication via Google email accounts. Upon successful

account authorization, users gain access to their personal profile page (refer to Figure6.6).

Within this personalized space, users possess the ability to modify their name and con-

tribute details regarding their geographical region and linguistic background. This granular

level of information, coupled with the animation data submitted by users, plays a vital role

in enriching our understanding of the users’ contexts. Such understanding equips us to pro-

vide ASL services that are not only accurate but are also tailored to the unique needs and

backgrounds of individual users, thus enhancing the overall user experience on our platform.

6.4 English to ASL Translator

The translator module is primarily based on the original module and is designed to allow

users to input English text and view the output in ASL grammar, as well as an animation

demonstrating how to represent it.

The feasibility of implementing an ASL translator is due to one unique feature of the

language: the limited number of handshapes. ASL is capable of representing a wide range of

words and concepts. In some cases where no corresponding sign exists, ASL can use finger-

spelling to manually spell out a word letter by letter using hand gestures that correspond to

each letter in the English alphabet. This feature enables our translator to display all words
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Figure 6.6: Profile page for identifying user’s sign language background

in English, including those that do not have a corresponding sign.

6.4.1 User Interface

The central focus of our ASL translation system is the translator interface (https://dev.

anysign.net/e2a), an interactive application designed for the facilitation of ASL learning

and practice. The interface, comprised of several key components, caters to users’ needs by

displaying interactive translations of ASL sentences in an easily understandable manner.

Canvas and Animated Demonstrations The canvas, situated in the center of the

screen, serves as a dynamic platform for visualizing translated ASL sentences. The default

animation sequence starts with the sign “HELLO”. The word or letter that is currently being

signed is displayed at the lower-right corner of the canvas, providing an instantaneous refer-

ence for users. This visual aid contributes significantly to enhancing users’ comprehension

of ASL.

English Text Input and ASL Translation Display Located directly beneath the

canvas on the left-hand side of the screen is a text field for user input. Here, users can enter
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Figure 6.7: English to ASL translator

the English text they wish to translate into ASL. Upon clicking the translate button, two

simultaneous actions are triggered.

First, the ASL gloss sequence, which provides the structure and order of signs in the

translated ASL sentence, appears on the right-hand side of the screen. This feature allows

users to understand the grammatical flow of the ASL sentence. Concurrently, the canvas

comes to life, showcasing an animated demonstration of the translated ASL sentence.

This dual response system allows users to connect the English text with its corresponding

ASL gloss sequence while witnessing a real-time demonstration of the sentence. Through

this innovative interface, the system aims to enhance the user experience by making ASL

learning more engaging, effective, and intuitive.
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6.4.2 APIs

The translator module is powered by a single API that is responsible for converting English

text into ASL representations and associated animation data. This API is accessed using the

endpoint e2a animation/<english>, where the input is an English string and the output

is the corresponding ASL sentence and animation data.

Once the user inputs English text and initiates the translation process, the frontend sends

a request to the e2a animation API. The API utilizes the algorithms and tools provided by

our custom package, translation-core, to process the input. This package provides interfaces

for both English-to-ASL and ASL-to-English translation.

Once the translation process is complete, the frontend updates the text field to display

the ASL output. At the same time, the animation data is loaded onto an avatar on the

screen, providing a visual representation of the ASL sentence.

6.5 SignChat

SignChat is an innovative system that aims to bridge the communication gap between chat-

bots and sign language users. Our solution has been developed to enable sign language

interfaces to advanced chatbots. With SignChat, signers can interact with chatbots and

receive responses in their preferred language.

To ensure accurate sign language interpretation and production, we have integrated Large

Language Models(LLMs) into our solution. We also apply them to understand and generate

natural sign language, providing a more authentic communication experience for signers.

Moreover, SignChat is designed to learn from signers’ feedback, enabling it to handle

variations in signs and grammar and continually improve its performance over time.

We have chosen to implement our solution to work with ASL as it is one of the most

widely recognized and used sign languages globally. Our system is scalable and can be
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adapted to other sign languages as well.

6.5.1 Pipeline

Our goal is to develop a chatbot model capable of understanding, producing, displaying

professionalism and learning variations in ASL. To achieve this, we have developed a three-

step solution to decompose the task. We uses a dialogue core consists of sign recognition,

discussion, and production modules to implement the solution.

Interpretation from ASL. Pre-trained large language models are designed to take text

as input and cannot directly accept input from ASL gestures. Therefore, the first step is to

convert ASL gestures into English text, which can then be processed by the language model

as machine-readable input.

ASL has its own vocabulary and grammar rules that are differ from English. To ac-

curately convert ASL into English, we follow a two-step approach of recognizing glosses (a

written word that represents the meaning of a sign) and translating gloss sequences into En-

glish sentences. Accurate recognition and high-quality translation in traditional approaches

require large training sets as input. However, ASL does not have a well-accepted written

form and is instead typically recorded using video recordings. This lack of documentation

makes it difficult to obtain high-quality interpretation from ASL.

To overcome this issue, we propose the following steps to design an effective solution:

1) use a n-gram model to help select the correct word from the candidates, and 2) apply

grammar correction and improvement to generate English from the ASL expression.

Our approach to achieving our goal involves utilizing pre-trained LLMs, specifically a

2-gram model and GPT-3 [BMR20]. The 2-gram model is trained on both English and ASL

corpus, which assists in selecting the most appropriate sign by considering the context and

language usage.

When the server receives landmarks from the sign capture interface, our sign translation
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module produces a set of potential sign selections. We then apply the previously mentioned

2-gram model to these options, select the most appropriate sign based on context, and use

it to generate the gloss sequence.

Additionally, we utilize GPT-3 for grammar correction and in-context learning to further

refine the translation. Specifically, we fine-tune GPT-3 to improve the accuracy and fluency

of the translation when converting the ASL gloss sequence to English. This improves the

quality and accuracy of the final translation output.

ASL Production from Response. Producing sign language from English language

models is challenging for long sentences since English and ASL have different grammar rules.

When a user queries the chatbot, the responses are provided in English text. However, ASL

signers may still prefer to receive the response message in sign language due to their language

background or learning purpose. To meet this need, we leverage Large Language Models

(LLMs) for pre-processing our English input and then use the processed input to generate

an ASL response.

First, we use GPT-3 to generate a response to the English input obtained from the sign

recognition, with a prompt like “The user input is: [English sentence]. Your response is: ”.

Next, to balance response speed and quality, we utilize a large-sized T5 model to extract the

topic of sentence sequences. We then use a pre-trained GPT-3 model to convert the long

response to short sentences with simple grammar structures, making it easier to transfer

English to ASL. This step includes a prompt like “Please refine and shorten ’Please make

these sentences shorter’”. Afterward, our dialogue core model converts the English to a

gloss sequence, and finally, we produce the final sign gloss sequence using a hard-coded ASL

sequence generation.

Learn the Sign Variations with Human Feedback. As previously mentioned, ASL

includes a significant number of variations that are difficult to document. Existing corpus

data is inadequate to train a model that can convert between English and ASL. To overcome
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this difficulty, our system learns from signers on two key levels. First, the system learns

to recognize variations in signs used by different signers. If one detects an inaccurately

recognized gloss, the user can correct it in the input text area. The system records this

information and uses it to improve the gloss corpus, which forms the basis for sign recognition.

Second, our system learns to produce more natural expressions from user feedback on word

order. Both the English response and the ASL gloss sequence are provided in the output

text area, and users can edit the gloss sequence. These refined gloss sequences are used to

fine-tune the topic-comment model for sentence generation. Through this iterative process

of collecting feedback and refining the models, our system can continually improve itself over

time.

6.5.2 User Interface

The web page for the signchat system is similar to the one used in teach-me-sign and trans-

lator. There are two interfaces respectively responsible for sign capture and sign production.

For sign capture, we first apply a skeleton-based approach for streaming and recognizing

signs from the webcam video. We deploy a pose recognition model, Mediapipe, on the web

page so that the browser detects and skeleton landmark sequences. The detected landmarks

contain the major positions of the body, hands, and face, which is the same as in Section6.3.

These landmarks are processed in on the server using translation-core package.

After processing the landmarks following the steps in our pipeline, the ASL Sign produc-

tion interface then displays the ASL animations. the ASL responses from the chatbot are

streamed back to the server as animation sequences. These animations are then dynami-

cally applied to the pre-loaded avatars on the client’s browser for real-time display, without

the need for any pre-rendering on the server. This results in an engaging and interactive

experience for the users.

While our system can provide ASL-to-ASL chat functionality by combining the two inter-
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Figure 6.8: SignChat Interface with Avatar Response.

faces, we recognize that accurately converting between English and ASL can be a challenge.

To overcome this challenge, we have incorporated a feature that allows users to contribute

feedback to improve the system’s accuracy.

To facilitate this, our interface provides two text areas that display the gloss sequence.

When a user inputs gestures, the corresponding ASL gloss is displayed in the gloss sequence

input area, with the response sequence appearing in the response area. Users can then review

the gloss sequence and animation, and make any necessary edits to provide feedback on any

inaccuracies.

6.5.3 Downstream Tasks

A sign language interaction platform has the potential to revolutionize the way people in-

teract with and learn sign languages. It can be used in a number of downstream tasks to

improve accessibility for sign language users. The following are some of the key downstream

tasks for a sign language chatbot:

Enhancing Sign Language Learning through Interaction. Interaction is a crucial

component of language learning. With the emergence of sign language chatbots, students
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can now practice their sign language skills and receive real-time feedback from virtual tutors.

This immersive learning experience can help bridge the gap in sign language education and

provide students with a valuable tool to improve their signing proficiency.

Inclusive Educational Tools and Resources. Education is a fundamental field where

sign language chatbots could make a significant impact. Often, educational resources and

tools are not designed with accessibility for sign language users in mind. Integrating a sign

language chatbot into educational platforms could create an inclusive learning environment.

For instance, it could enable real-time translation of lectures and learning materials into sign

language, assist in virtual classroom interactions, and even help design curricula specifically

for sign language learners. Furthermore, coupling such a chatbot with Assistive AR could

lead to immersive, interactive learning experiences that cater to the needs of both sign

language users and those wishing to learn sign language, fostering an inclusive educational

landscape.

Improving Accessibility for Sign Language Users in Customer Services. Cus-

tomer services can be challenging for sign language users to access, particularly if they are

not designed with accessibility in mind. Sign language chatbots can serve as accessibility

interfaces by translating text and voice into sign language and vice versa. This approach can

help ensure sign language users can fully participate in online services and access the same

information and opportunities as all other users.

Facilitating Virtual Assistants and Assistive AR Integration for Sign Language

Users. While voice-activated virtual assistants like Siri have become commonplace, there’s

a dearth of virtual assistants designed specifically for sign language users. SignChat, in-

tegrated with modern hardware such as smart monitors, smartphones, and Assistive AR

goggles, has the potential to fill this void. It could serve as a virtual assistant for signers,

enabling applications currently available for voice assistants - including home automation

and entertainment - to be accessed by sign language users in an intuitive and accessible way.
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Furthermore, the integration of Assistive AR technology could offer real-time sign language

translation, converting signed phrases into text or speech and vice versa. This innovative

combination could serve as a communication bridge in various settings, including education,

healthcare, and professional environments, truly enhancing inclusivity and communication.

The downstream tasks of a sign language chatbot have the potential to greatly improve

accessibility and life quality for sign language users and provide new opportunities for lan-

guage learning and interaction.

6.6 Future Work

There are several directions for future research on AnySign platform. One direction is to

expand the functionality of the Sign Dictionary module to allow for multiple kinds of signs

to be displayed. To achieve this, we plan to cluster the sign data in our database and

incorporate users’ submissions to update the original database. With this effort, signs from

various regions and some newly accepted signs can also be displayed, making the platform

more comprehensive.

Another area of focus for future research is the backend functions of the entire system.

Although the dialogue core package and sign corpus processing and generation modules have

been developed, some of the backend functions still rely on local data corpus. In order to

improve the efficiency of the system, we plan to directly import the package and connect all

APIs to the server database for loading and updating.

6.7 Conclusion

In conclusion, AnySign is a comprehensive cross-device platform that aims to make ASL more

accessible. Our approach addresses the challenges faced by the deaf community, providing a

collaborative solution to improve ASL communication. The Sign Dictionary, English to ASL
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Translator, and Teach-Me-Sign modules work together to create a comprehensive corpus of

ASL. Our solution, SignChat, is a novel chatbot that bridges ASL with state-of-the-art AI

tools, bringing the benefits of AI advancement to the sign language community. Our system

has received positive feedback and demonstrates the potential for further advancements

in sign language chatbots and their applications in various fields. AnySign is a promising

solution to the challenges faced by ASL human-machine communication and can demonstrate

the potential for further advancements in various fields.
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CHAPTER 7

MORSE: Private Model Protection for Wearable and

IoT System

While the previous chapters focused on delivering ASL interaction with mobile and wearable

devices, such as assistive glasses, user privacy remains paramount—especially when sensors

gather personal data. This chapter presents a protection scheme designed to safeguard ML

models that contain private or personal information.

The Internet of Things (IoT) applications are envisioned to enable unprecedented cyber-

physical interactions in an automated fashion. In a typical IoT usage scenario, multiple

sensor data streams form the system inputs. An IoT service provider is interested in learning

their relationship with the system output. To this end, the input-output data is fed to the

IoT service provider, which may further train a model using machine learning or other models

at an edge or cloud server. Once trained, the model can be used to estimate or predict future

output given certain inputs.

The above model-centric operations hold great promises for many emerging IoT applica-

tions [WJC19, SHB17]. A typical application is shown in Fig. 7.1. The IoT service provider

configures sensors to collect patients’ health data streams. The inputs are forwarded to the

edge server, which trains a model together with the patient’s health status as output. With

the trained model, the service provider can infer a patient’s health status based on his/her

health data. Meanwhile, it wants to protect the model training process from the adversary.

We will use the notions of “sensors,” “edge,” and “service provider” in this chapter.
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To protect the model from the adversary over-the-air and the untrusted edge server,

the state-of-the-art approach is to encrypt the data during the process of data transfer

and processing. In this chapter, we take a different approach. We address a simple yet

fundamental question for IoT security: Can we directly secure the model rather than the data

streams prior to training? We thus explore a paradigm shift from data-centric protection

to model-centric security for IoT applications. The perceived benefits to IoT systems are

crystal clear. Compared with other alternatives, such as end-to-end encryption, particularly

the homomorphic encryption-based scheme [Gen09, SHB17], the processing overhead could

be greatly reduced if we only protect the model. So is the power consumption for the

energy-constrained IoT devices.

We have two goals for model security design. First, we ensure that an adversary or

the untrusted edge server cannot learn the true model with the cleartext input-output data

streams. Instead, they can only train an obfuscated model, which does not leak any critical

information on the model. Second, the authentic service provider can reconstruct the true

model from the obfuscated one. Therefore, we devise a single solution that achieves these

two seemingly conflicting goals.

Our study yields a positive answer to the above problem. We use the Bayesian network

model as a case study. Specifically, we propose a sampling-based scheme to ensure the

independence between the inputs and output. Note that sampling is a natural and inherent

procedure with sensors in IoT systems. We leverage the built-in sampling function for model

obfuscation. Our solution configures the sensors to collect the data with a well-crafted data-

dependent sampling scheme. Despite its simplicity, our proposal neutralizes the dependency

among inputs and outputs that are used to train the IoT model. We illustrate the idea in

§7.2.

We thus design MORSE (Model Obfuscation foR SEcurity), which offers a model-based

protection scheme (§7.3). The core of MORSE is a low-overhead sampler that generalizes

our data-dependent sampling idea to obfuscate Bayesian network models. By breaking the
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variables into groups according to their dependencies, the sampler allows the sensors to

produce data samples based on the subsets of variables. This component addresses the curse

of dimensionality, thus making sampling efficient and practical. Moreover, MORSE designs

a shuffling module that processes the data after sampling for certain corner cases and a

reconstructor that recovers the true model for the authentic service provider.

In §7.4, we formally prove the security of MORSE against two types of attackers. Without

knowing the sampling or shuffling scheme, the adversary cannot learn the authentic model

even (s)he is aware that MORSE is used. In contrast, for the authorized service provider, we

show that MORSE reconstruction converges to the true model. Therefore, MORSE meets

both design goals.

We implement MORSE in our IoT testbed (§7.5) and evaluate the effectiveness with

three real-world IoT applications (§7.6). We compare the trained obfuscated model with the

true model and an uninformed model that randomly guesses the output. We propose a novel

metric RAUC to quantify this. It approaches 1 when the obfuscated model approximates

the true model but is close to 0 when it behaves similarly to the uninformed model. We

show that an attacker, regardless of knowing the existence of MORSE, can only achieve its

RAUC close to 0. On the other hand, the reconstructed models are similar to the true

models with RAUC s over 0.97. Moreover, MORSE incurs 10X and 15kX less computational

overhead compared with AES and Paillier, respectively. It is thus an appropriate solution

to resource-constrained IoT systems.
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The rest of the chapter is organized as follows. Section 7.1 introduces the system setting

and the background. Section 7.2 discusses the threat model and the design goals. Section 7.3

elaborates on the design of MORSE, and Section 7.4 analyzes its security and convergence.

Section 7.5 presents the prototype and empirical evaluations. Section 7.6 compares our

design with the related work. Section 7.8 concludes the chapter.

7.1 Background for Model Security

7.1.1 Model Security for IoT Applications

We consider a supervised learning scenario, where a user wants to train a model based on

the collected input-output data stream (e.g., from IoT sensors). The user often delegates

the model training to a powerful server with computation and storage capacity (e.g., the

edge server). After processing, the edge returns the trained model to the authentic service

provider. The edge is not always trustworthy since it is vulnerable to the outsider or insider

attacks [WJC19, SHB17].

To secure the model, traditional data-driven approaches protect individual data records

by encryption. An adversary, who eavesdrops on the data channel or steals data from the

edge, cannot decrypt the data without secure keys. The attacker thus fails to train a model.

Subsequently, the edge is also disabled from learning the model. To address the dilemma,

homomorphic encryption allows the edge to help train the model without knowing the records

[SHD15, SHB17, GDL16, AEH15]. Despite optimizations, the overhead is prohibitive for IoT

systems.

Instead of encrypting each data record, our shifted paradigm directly obfuscates the

model. By processing the entire data from a global, organized approach, an attacker will fail

to learn the correct model even if some individual data records are exposed. This is motivated

by the premise that securing the model is less expensive than securing the massive data, thus

being a better fit for IoT systems.
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Model obfuscation for security: We propose a new concept, called “Model Obfuscation.”

We present the overall procedure in Fig. 7.2. Concretely, we pre-process the data before

learning the model so that the resulting data follows a completely different distribution from

the original one. When the data is leaked to the attacker, she can only learn an “obfuscated”

model and fail to reconstruct the original model. This obfuscation procedure should thus be

mathematically sound so that the attacker cannot learn anything useful to reconstruct the

model even with information about the obfuscation method.

Modeling via Bayesian network: Bayesian networks (BN) offer an explainable AI ap-

proach and are widely used in IoT and machine learning tasks [DSA11, ZP15, NFO17]. In

contrast to black-box modeling (e.g., deep learning or other neural network schemes), they

offer a white-box solution to capturing the variables’ conditional dependencies. It is thus

ideal for taking an occurred event and predicting the likelihood of any known cause.

BN provides a coherent framework to characterize probabilistic relations between vari-

ables. For example, given the environmental characteristics, researchers have used it in

computing the probabilities of fire [JJ12]. In this work, we focus on parameter learning in

BN and design obfuscation schemes to protect conditional probabilities. BN graph structures

are known via application domain knowledge in our settings [DSA11].

7.1.2 Threat Model

The adversary is interested in learning the model from the sensor data. To be specific, we

target preventing the adversary from learning parameters/probabilities in BN. As shown in

§7.1, the model is crucial as it contains the economic value and sensitive information. If

the attacker attempts to learn a model other than BN from launching the attack, we will

empirically show that our method can still defend against it.

We mainly consider the data leakage at the edge server where we offload the computation.

The data stored in edge is a common victim of attacks due to internal attacks (e.g., illegal
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company actions [Gua13] or curious employees [Ars15]) and external attacks (e.g., from

hackers or competitors [Ver19]). We assume the attacker at the edge is “passive,” as it still

follows the scheme we configure correctly without actively modifying the data or breaking the

system. The assumption is valid as the adversary is more eager to learn the valuable model

without being detected instead of preventing us from using the system. In addition, the

current high-availability solutions provided by edge use multiple nodes for storage, making

it difficult to change them all without being detected. This threat model is sometimes

referred to as “curious-but-honest.”

We consider two levels of attackers:

• Basic attacker: A basic attacker directly trains a BN model from the data leaked

from the edge.

• Advanced attacker: An advanced attacker realizes the method we use and tries to

reconstruct the model.

Assumptions: We make a few assumptions about the threat model. The sensors are on-

premise and safe. Communications between all entities are secured during transmission. In

addition, the protection of the raw data is orthogonal to our work.

7.2 Sampling for Model Security

We elaborate on the security requirement and motivate the sampling-based methods to

obfuscate the model.

7.2.1 Design Goals

Model protection: Given the obfuscated sensor data streams, the adversary cannot learn

the authentic parameters in the Bayesian network, regardless of whether she knows the

network structure. To ensure the security of Bayesian network, we focus on the input-output
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independence, i.e., if the observed inputs and output are independent after processing, an

attacker surely cannot learn the correct relationship between them. Instead, she will think

that the output cannot be classified with the inputs. Presenting such an obfuscated model

also prevents the advanced attacker from learning valuable information. For example, if the

obfuscated model is the “farthest away” from the original one, the advanced attacker might

be able to reverse the procedure and infer the model.

Ability to reconstruct: While the model is obfuscated for the attacker, the IoT service

provider must be able to reconstruct the original model. In our context, the parameters for

the Bayesian network can be reconstructed with the extra information of how the obfusca-

tion is enforced. The reconstructed model needs to converge to the correct one before the

obfuscation. The reconstructing process should be functional for any Bayesian model.

Low overhead: The processing should only incur negligible overhead to even run on low-

end IoT devices. In addition, we recall our original purpose of incorporating edge that we

wish to offload computation to it. This goal requires our solution to utilize edge server for

computation even if the data on it is obfuscated.

7.2.2 Idea: Data-Dependent Sampling

We propose a sampling-based approach to achieve input-output independence. Intuitively,

this does not work: sampling is usually employed to keep the distribution unchanged from

the original data, yet our target is to obfuscate the model. Although it seems conflicting, we

can sample with different probabilities that depend on the data: we keep the more frequent

input-output pairs with lower probabilities. Henceforth, all the pairs will appear with similar

probabilities after sampling. As long as the sampling probabilities are kept secret, the

adversary cannot acquire the true model. We call it “data-dependent sampling.”

We use a simple example to illustrate the idea. Let A be the reading from a temperature
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Temp.
Pr(A,B) S(A,B) Ps(A,B)
Safe Fire Safe Fire Safe Fire

Low 0.40 0.10 0.25 1.00 0.25 0.25
High 0.10 0.40 1.00 0.25 0.25 0.25

Table 7.1: An example of data-dependent sampling.

sensor, with values of “high” or “low.” Let B represent the fire event, with values of “safe”

or “fire.” The system wants to learn the probability Pr(A,B). Suppose the true probability

is shown in Table 7.1. We use adaptive sampling probability for different combinations. We

denote S(a, b) as the sampling probability when A = a and B = b and Ps(A,B) as the

distribution after the sampling.

A sufficient condition is to make Ps equal to 0.25 for any input-output pair. We can

achieve so with S(low, safe) = 25% and S(high, fire) = 25%. The observed sensor reading

and fire event are independent. Meanwhile, the service provider can reconstruct Pr from Ps

and S.

7.2.3 Challenge for Data-Dependent Sampling Design

The previous example illustrates the feasibility of model obfuscation using data-dependent

sampling. However, the obfuscation scheme should be carefully designed to fit the IoT

applications with limited hardware capacity.

The major challenge for the data-dependent scheme comes from the curse of dimension-

ality. We derive sampling probability for every combination of A and B in our example.

Although acceptable for a 2-variable case, the overhead is prohibitive with more variables.

It significantly impedes the feasibility since we need to query a huge table of sampling prob-

abilities for each data. Considering the limited storage capacity and computational power

on the IoT devices, we need to reduce the sampling complexity without compromising the

security goals.
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Figure 7.3: A Bayesian network example

7.3 MORSE Design

We design MORSE following the procedures in Fig. 7.2. On the IoT devices, the data are

loaded from the source to the obfuscation processor. The processor samples data following

the obfuscation scheme and feeds the processed data to the edge server for training an

obfuscated model. Finally, the model is reconstructed at the service provider.

This section first elaborates on a data-dependent sampling approach in the Bayesian

network, which greatly reduces the overhead. Then we introduce the other components in

MORSE for exception handling and online updating. We use the Bayesian network structure

in Fig. 7.3 as an example throughout this section.

To facilitate the following component design, we denote the notations we will use in

Table 7.2.

7.3.1 Data-Dependent Sampling in Bayesian Network

MORSE scheme generator produces the sampling schemes that eliminate the dependencies

between variables. In the example of Fig. 7.3, sampling based on all variables requires sam-

pling probabilities for different combinations of 15 variables. We elaborate on how MORSE

reduces this prohibitive overhead by decomposing the scheme using the network structure.

Given the data stream with multiple variables, MORSE applies two approaches to reduce
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Variable Explanation

X n input variables, {X1, . . . , Xn}
Y Output variable

MB(Y )/MBs(Y )
Y ’s Markov blanket before/after
sampling

∥V ∥ The size of V ’s alphabet, V ∈
X ∪ {Y }

Pr
Probability distribution before
sampling

Ps
Probability distribution after
sampling

Pt
Probability distribution after
obfuscation

pa(V ) V ’s parent nodes, V ∈ X ∪ {Y }

SV (V,pa(V ))
Sampling probability for
{V,pa(V )}

Table 7.2: Notations for design and analysis.

the complexity.

1. MORSE splits the variables into groups and applies data-dependent sampling in each

group independently. Since the size of each group is small compared to the entire graph,

this approach reduces the overhead for storing and querying the sampling probabilities.

2. MORSE only samples according to a subset of groups that include Y to reduce the

processing time and complexity.

We now demonstrate how we form the groups and why such a multi-step data-dependent

sampling scheme works. We construct groups following the Bayesian network structure. Each

group is constructed by a variable V and its parents pa(V ) that it is conditionally dependent

on. Note that one variable can belong to multiple groups. We select the groups with Y to

process. For our example in Fig. 7.3, we have 3 groups to apply the sampling schemes:

{Y, pa(Y )}, {X3, pa(X3)} , and {X6, pa(X6)}. In the example, the sampling overhead is∑
V ∈{Y,X3,X6}

(∏
Vo∈{V }∪pa(V ) bVo

)
which is much smaller compared to

∏
V ∈X∪{Y }∥V ∥.

For groups with Y , we use sampling to make pa(V ) independent of V . We use SV (V, pa(V ))
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to define the sampling probability given the value of V and pa(V ). When the values of the

variables in the group are pa(V ) = vpa and V = v, we sample this data with probability

SV (v,vpa) =
1/∥V ∥

Pr(v | vpa)
, (7.1)

where Pr is the probability before sampling and ∥V ∥ is the number of possible values that V

can take, i.e., V ’s alphabet size. Any possible value for V thus appears with equal probability

after sampling. After processing all groups, we keep the data if sampled in every step.

Note that the calculated sampling probabilities can be greater than 1 to balance the data

size before and after sampling. We randomly select the sampling times from a distribution

with the expected value equals to the SV . If a record is sampled more than one time,

the duplicates are inserted after a random delay so that the attacker cannot filter out the

repeated samples.

The philosophy of the design is to eliminate the dependency between Y and its close

neighbors, which implicitly reduces the dependency between Y and the other variables. We

later prove the effectiveness of this approach in Theorem 7.4.1, §7.4: sampling eliminates

the dependency within the group without adding any new dependency. It implies that, by

applying the sampling scheme to the groups with Y , our protection goal of input-output

independence is reached.

7.3.2 Other Components of MORSE

Based on the data-dependent sampling introduced above, we further enhance MORSE with

exception handling and an online updating scheme as the general solution.

Obfuscation for 0-probabilities: Sampling scheme in Eq. (7.1) is viable when Pr (v | vpa)

is greater than 0. When it equals 0, one common solution is to assign a small value to

the entry using Laplace smoothing [AC98]. We show a more rigorous approach that keeps

input-output independence without introducing much computation complexity and storage
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cost.

We select the nodes form groups with 0-probability entries and denote this set of nodes

except Y as MBs(Y ), the Markov blanket [Pea14] of Y after sampling. In Fig. 7.3, suppose

group {X3, pa(X3)} has a 0-probability. Then, MBs(Y ) = {X5, X3}. The post-sampling

distribution is

Ps(x, y) = Ps(x) Ps(MBs(Y ) = m). (7.2)

We apply a shuffling scheme to balance the conditional distribution of Y by switching

Y ’s values in the data stream. For every MBs(Y ) = m and Y = yi,

• if Ps(yi | m) ≤ 1/∥Y ∥, we keep yi unchanged;

• otherwise, we switch some yi to yj, where Ps(yj | m) ≤ 1/∥Y ∥, with transition proba-

bilities. The probability to keep yi unchanged is 1/∥Y ∥
Ps(yi|m)

. For the remaining part, the

probability of changing yi to yj is proportional to 1/∥Y ∥ − Ps(yj | m).

We have the obfuscated distribution Pt (yi | m) = 1/∥Y ∥ for all yi and m. Therefore, it

makes Y independent of MBs(Y ). Theorem 7.4.2 in 7.4.1 proves that our obfuscation method

is sufficient to ensure the independence between X and Y for any Bayesian network.

Online updating for obfuscation schemes: The obfuscation schemes are generated

according to Pr(X, Y ). However, Pr(X, Y ) is a part of the unknown model to learn from

the data. We break this dilemma by designing an online approach which estimates the

probability and updates the scheme continuously.

First, MORSE initializes an estimated Pr(X, Y ) with a random distribution. Then it

updates the probability at run-time from the collected data stream. The online procedure is

secure as long as initial Pr(X, Y ) is unknown to the attacker.

In detail, MORSE splits the time into separated periods. In each time period, the security

scheme is unchanged. To update the estimation from the collected data, we need to derive

the distribution before sampling and shuffling. Notice that, we focus on reconstructing the
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Bayesian model, namely the conditional probabilities instead of the actual data. eventually

converges to an accurate estimate.

The sampling and shuffling in essence provide a mapping between the original distribution

and observed distribution. We use transition matrix Tm to denote the transition probabilities

when MBs(Y ) = m. To reconstruct the model, we first derive the probability before shuffling,

which equals to multiplying the inverse of transition matrix Tm with the distribution after

shuffling. We will show that Tm is invertible in §7.4.3 and its inverse multiplies by the final

observed distribution yields the post-sampling distribution. Next, among all groups where

sampling is possible, we derive the probability before sampling steps in turn by dividing the

distribution by sampling probability and then taking normalization.

After estimating the distribution, we update the sampling and shuffling scheme based

on the probability estimation with approaches described in §7.3.1 and §7.3.2. We will prove

that, this iterative procedure guarantees the estimation of distribution converges to the

pre-sampling distribution. Eventually, the model can be correctly reconstructed albeit ob-

fuscated.

7.4 Analyzing MORSE

We first show that MORSE is secure against both the basic attacker and advanced attacker.

Then we formally prove the reconstructability and convergence.

7.4.1 Security Against Basic Attackers

We first prove that the model is obfuscated against a basic attacker. This type of attacker

directly uses the observed data for model training. We first show that sampling can help each

group achieve variable independence in Theorem 7.4.1. Afterwards, Theorem 7.4.2 proves

that all remaining variables will achieve independence after shuffling. Therefore, all X and

Y are independent after sampling and shuffling.

103



Theorem 7.4.1. Sampling in each group eliminates the dependencies within the group and

does not affect the relationship outside the group.

Proof. To prove this theorem, we calculate the probability distribution after sampling.

The obfuscation scheme applies sampling probability SV (V = v, pa(V ) = vpa) to the

original conditional distribution Pr(V = v | pa(V ) = vpa). The result is Pr(v | vpa) ·

SV (v,vpa) = 1/∥V ∥, which is a constant number for all conditions of V and pa(V ). Hence,

Ps(V = v) = 1/∥V ∥ replaces Pr(V | pa(V )) in the joint distribution function after sampling.

The dependency between V and pa(V ) is eliminated in the new Bayesian network.

Additionally, all conditional probability distributions other than Ps(V | pa(V ) keep the

same after sampling with group {V, pa(V )}, therefore, the other dependencies in the Bayesian

network remain unchanged.

Corollary. If all groups with Y do not have 0 probabilities in their conditional distribution

functions, sampling is applicable to all the groups, and Y is independent to X after sampling.

We next prove that X and Y are always independent after sampling and shuffling.

Theorem 7.4.2. Output variable, Y , is always independent of input variables, X, after

MORSE’s obfuscation.

Proof. We first prove that the shuffling scheme only needs to handle Markov blanket MBs(Y )

of Y after sampling. We then show this is sufficient to make Y independent of MBs(Y ).

The property of Markov blanket [NSL13] shows that the other variables are independent

of Y conditioned on MBs(Y ). Since sampling eliminates the dependencies, the remaining

groups after sampling construct the Y ’s new Markov Blanket MBs(Y ). The probabilities

after sampling are

Ps(x, y) = Ps(x)Ps(y | x) = Ps(x)Ps(y | MBs(Y ) = m).
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Next, we prove MORSE manipulates the conditional dependency and eliminates the

dependency in Ps(Y | MBs(Y )). §7.3.2 shows that the sampling scheme for each condition of

the Markov blanket MBs(Y ) = m has a transition matrix Tm that balances the obfuscated

model’s distribution. Tm is a ∥Y ∥ × ∥Y ∥ matrix. Element at row i and column j of Tm

represents the probability of switching Y from ith value to jth. If Ps(Y = yi | MBs(Y ) =

m) ≤ 1/∥Y ∥, we keep the post-sampling records here since they are below or equal to the

average. Otherwise, we divide the extra samples to the ones below average by changing the

value of Y .

The transition probabilities change Ps(Y | MBs(Y ) = m) to a uniform distribution that

Pt(y) = Pt(y | m) = 1/∥Y ∥ for all y. Since the shuffling scheme only changes Y ’s value,

Ps(X) is not affected. X and Y are independent after the obfuscation.

7.4.2 Security Against Advanced Attackers

We consider the advanced attacker who is aware of MORSE’s system, except the parameters

for model obfuscation. We show that such an attacker cannot estimate the correct model

given the obfuscated observation.

Theorem 7.4.3. An attacker cannot infer the original model from the obfuscated observa-

tion from MORSE.

Proof. Suppose sampling is applied to group {V, pa(V )}, any distribution P ′
r(V | pa(V ))

with probabilities all greater than 0 can generate the same post-sampling distribution as

the original Pr(V | pa(V )). Suppose shuffling is applied to Y and its Markov Blanket

MBs(Y ), distribution P ′
s(Y | MBs(Y )) with arbitrary probabilities can generate the same

post-shuffling distribution as the real Ps(Y | MBs(Y )).

Recall Theorem 7.4.1 that the sampling is feasible for any conditional distributions that

do not have 0 probabilities, and all the post-sampling conditional probabilities equal to

1/∥V ∥.
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So, for each sampling step with group {V, pa(V )}, any initial conditional distribution

P ′
r(V | pa(V )) without zero-probabilities can generate the same post-sampling conditional

distribution, Ps(v | vpa) = 1/∥V ∥.

Additionally, the sampling process does not change the conditional distributions outside

the group {V, paV }. So the post-sampling distributions, Ps(V | pa(V )) from the true model

and P ′
s(V | pa(V )) from the randomly generated model, are the same.

Similarly, the shuffling module generates the same observations from different post-

sampling distributions. Therefore, the attacker cannot infer the original model without

knowing the obfuscation schemes.

The theorem shows that an advanced attacker cannot estimate the distributions before

either sampling or shuffling. Since they are processed independently, all the sampling prob-

abilities and transition matrices are indispensable for reconstructing the model. Infinitely

many distributions can generate the observation with similar probability (validated in §7.6.2).

Therefore, the original model is secure against advanced attackers.

7.4.3 Reconstructability and Convergence

This section shows that MORSE is invertible, and the reconstructed distribution converges

to the real distribution. We first show that we can reconstruct the real distribution regardless

of the sampling and shuffling scheme in Theorem 7.4.4.

Theorem 7.4.4. Original distribution can be reconstructed from the post-shuffling distri-

bution with the knowledge of the sampling probabilities and shuffling transition matrices.

Proof. We show that both sampling and shuffling schemes are invertible so that the original

distribution can be reconstructed.

Tm is the transition matrix defined in §7.3.2. Since there is no loop for switching the

value of Y , Tm can be written as a triangular matrix with all diagonal values greater than 0.
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Thus, the transition matrix and shuffling process are invertible. By multiplying the observed

distributions with T−1
m , we can recover the distribution before shuffling.

Second, we calculate the original distribution from the post-sampling distribution. Mul-

tiplying and scaling the distribution with the inverse of the sampling rates generate the

original distribution. The expectation of the reconstructed distribution P̂r(X, Y ) equals to

Pr(X, Y ).

Corollary. The estimated distribution with the online method converges to the real distri-

bution.

Proof. From Theorem 7.4.4, the expectation of the reconstructed distribution is the real

distribution in any iteration. Based on the law of large numbers (LLN), since we update

the estimation with the average of the results P̂r(X, Y ) obtained from a large number of

iterations, it eventually converges to the expectation, which is the real distribution.

7.4.4 Discussion

Obfuscating other models: Though we focus on obfuscating the Bayesian models in

MORSE, the data-dependent sampling can be generalized in the follow-up works. In §7.6.2,

we show that MORSE still protects the input-output relation when the attacker applies other

machine learning methods.

Multiple outputs: MORSE could be extended to multiple-output cases without major

modification. We repeat the procedure of deriving sampling/shuffling schemes for every

output sequentially. Note that processing one output may change the Bayesian network

structure. It updates the structure when deriving scheme for the later outputs.
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Figure 7.4: Implementation of MORSE.

7.4.5 Applications

We present two real-world applications in healthcare and automotive that MORSE can be

used.

Preventive medical diagnosis: Home tele-health services collect metrics from medical

IoT devices to enable preventive diagnosis by a remote doctor. For example, sports injury

prevention screenings are done by the patient completing several fundamental movement

patterns and may measure angle, distance, or offset of completion of patterns.

Vehicle reliability diagnostics: Car manufacturers install multiple in-car sensors to mon-

itor cars’ reliability state. The task is to track multiple sensor readings and reason which

sensor reading(s) is the most probable cause of the reliability issue. The reliability diagnosis

includes normal tear, engine issue, and tire issue. Different sensors could be scattered across

the factory, which are first aggregated in a local gateway and then uploaded for further

learning tasks.

7.5 Implementing MORSE in an IoT system

In this section, we describe MORSE system implementation, which is shown in Fig. 7.4. We

build MORSE as software modules in IoT devices, edge servers, and service providers. As

software-based implementations, they are applicable to most IoT systems. The sampling

and shuffling are implemented in MORSE Processor at the IoT device, while the service
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provider reconstructs the authentic model and updates the MORSE scheme based on it.

The communication between modules is realized via (local) inter-process communication

and (remote) socket communication.

• MORSE processor on IoT devices: We implement MORSE processor in the IoT devices.

It fetches the sampling and shuffling scheme from the service provider, samples and shuffles

data from different sensors, and then uploads the processed data to the edge server. The

data is processed efficiently both in time and space. To improve the look-up efficiency, we

use in-memory hash tables to store the sampling probabilities and transition matrices.

• Obfuscated model trainer at the edge server: The edge saves all incoming data streams in

its database. After receiving a batch of data, it learns the (obfuscated) Bayesian model with

package bnlearn [Scu09].

• Reconstructor at service provider: The reconstructor takes the obfuscated model and esti-

mates the real model, as shown in §7.3.2. The mapping is a sequence of matrix calculations,

which we implement using Python package numpy.linalg. It is then used to update shuffling

and sampling schemes.

• MORSE scheme generator at service provider: MORSE generates our protection scheme

in §7.3 - §7.3.2. This scheme is then forwarded to IoT devices securely with encryption. We

leverage Python linear algebra libraries to generate the sampling and shuffling scheme. Since

the scheme update happens infrequently as the data is processed in batches, the overhead

incurred at the scheme generator is less important in MORSE.

7.6 Evaluation

7.6.1 Experiment Setup

Testbed: We build a testbed as shown in Fig. 7.5. A Beaglebone Green board with an

AM3358 1GHz CPU and 512MB RAM and a Raspberry Pi 3 with a Cortex-A53 1.2GHz
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Figure 7.5: MORSE prototype testbed.

Dataset Nodes Edges Parameters Output (Y )

SACHS 11 17 178 Akt

CANCER 5 4 10 Cancer

ALARM 37 46 509 LVV

Table 7.3: Characteristics of the datasets for evaluation.

CPU and 1GB RAM serve as the sensor and gateway. We write a program that feeds the

sensor datasets locally to the gateways. They are connected to a Microsoft Surface Book

with a 2.4GHz Intel Core i5-6300U and 8GB RAM for synchronization. It establishes a TCP

connection with the edge server. We use a server with a 12-core Intel Xeon Silver 4214 CPU

and 32GB RAM. A Microsoft Surface2 with an Intel Atom x7 CPU and 4GB RAM serves

as the service provider.

Application and dataset: We examine the performance of MORSE with three IoT-related

applications: SACHS [SPP05], CANCER [LS88], and ALARM [BSC89], from different fields.

They have gold standard Bayesian network models from the previous studies [KN10, GFZ19],

which cover different scales and structures. Table 7.3 summarizes their parameter settings.

We extract 100,000 records for training (including obfuscating) and 10,000 records for testing

in each dataset.

Evaluation metrics: We evaluate our design with the following metrics: mutual informa-

tion [CT12] (for measuring input-output mutual dependencies), accuracy (for measuring the

prediction performance), and Euclidean distances (for comparing the similarity between the

reconstructed model and the original model). Additionally, we design a novel metric RAUC
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(Relative Area Under Curve Score) to quantify the similarity among the obfuscated model,

the original model, and the uninformed model.

We devise RAUC to quantify the security score of a modified model comparing with the

original. RAUC is calculated with

RAUC(Mmod | Mreal) =

∣∣∣∣AUC(Mmod) − AUC(Muninf)

AUC(Mreal) − AUC(Muninf)

∣∣∣∣ , (7.3)

where AUC(M∗) denotes the AUC score of model M∗. We take the average AUC score

when Y has more than two classes [HT01]. Mreal, Mmod, and Muninf correspond to the

real, obfuscated/reconstructed, and uninformed models. The uninformed model’s AUC is

always 0.5. RAUC quantifies the relative likeness between the modified model and the

original/uninformed model. If the modified model performs the same as the original model,

its RAUC is 1. If the model works as if taking random guessing (uninformed classifiers), its

RAUC equals 0.

7.6.2 Security of MORSE

We empirically that MORSE is secure against both basic and advanced attackers.

Input-output independence: We used the mutual information between the inputs and

the output, I(X;Y ), to measure the independence. Fig. 7.6a plots the relationship between

mutual information and the number of data records. By applying our obfuscation approach,

the input-output mutual information in the collected data converges to 0.

Obfuscating Bayesian model for basic attackers: Fig. 7.7 shows that the models

directly learned from processed datasets have poor performance in the classification tasks.

We repeat experiments 20 times for each dataset, averaging out the randomness introduced

by probabilistic sampling and shuffling. Moreover, RAUC scores for the Bayesian models

shown in Table 7.4 are all close to 0 after obfuscation, which equal to 5.73%, 2.80%, and

0.60%, respectively. Therefore, the obfuscated model is close to an uninformed model which
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Figure 7.6: Input-output independence and correctness of reconstruction.
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Figure 7.7: High accuracy of reconstructed model on different datasets after
convergence.
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Dataset
Bayesian Network (BN) Other Models

Obfuscated Reconstructed NB RF GB NN
SACHS 5.73 99.71 4.39 4.39 0.99 4.67
CANCER 2.80 97.82 5.85 2.33 3.32 4.61
ALARM 0.60 99.15 5.75 0.78 2.87 1.79

Table 7.4: RAUC s(%) of MORSE and effectiveness against other machine learn-
ing models.
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Figure 7.8: Accuracy distribution of possible models learned by an advanced
attacker.

randomly guesses Y and the basic attacker can learn nothing.

Obfuscating Bayesian model for advanced attackers: We let an advanced attacker

generate 2000 models according to the observation for each dataset. Fig. 7.8 shows the

accuracy distribution tested on these models. The average classification accuracies are 0.333,

0.503, and 0.334 for SACHS, CANCER, and ALARM, i.e., the model reconstructed by an

advanced attacker is similar to the uninformed one in expectation.

Since the input and output are independent after the obfuscation, MORSE is still effective

when the attacker applies other machine learning models to learn the input-output relation.

Table 7.4 shows that if we learn other models from the observed data, such as näıve Bayes

(NB), random forest (RF), gradient boosting (GB), and feed-forward neural network (NN)

classifiers, the RAUC scores of them are still close to 0.
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Approach
Encrypt/Process
(s/1000 records)

Decrypt/Reconstruct
(s/1000 records)

Scheme Update
(s/update)

Paillier 601.1 181.1 -
AES-CBC 0.406 0.452 -
AES-CTR 0.391 0.328 -
MORSE-Näıve 0.641 0.257 0.208
MORSE 0.039 0.008 0.044

Table 7.5: Comparison of processing latency between encryption and MORSE.

7.6.3 Correctness of Model Reconstruction

Convergence of the reconstructed model: we measure the Euclidean distance between

the reconstructed model and the original model to show the correctness. It is shown in

Fig. 7.6b as the distance quickly approaches 0 after a few thousand original data points.

Performance of the correctly reconstructed model: We show the performance of the

reconstructed model with accuracy and RAUC. Fig. 7.6b and Table 7.4 demonstrate that the

reconstructed models produce similar accuracy and RAUC compared to the original models.

7.6.4 Overhead

Processing time overhead: MORSE obfuscates the model with high efficiency. We evalu-

ate the average sampling and reconstruction latency compared to other common encryption

methods. We choose AES-CBC from [FGK03] and AES-CTR from [MS10] as encryption

baseline and Paillier from [Pai99] as homomorphic baseline. We compare them on ALARM.

The results are shown in Table 7.5. MORSE runs 10X faster for data processing and 40X

for reconstructing model (data decryption for AES) compared to AES baselines. MORSE

is a few magnitudes faster than the homomorphic approach, which could overwhelm the

resource-constrained IoT devices. We also compare MORSE with a näıve data-dependent

sampling solution which samples and shuffles data based on all variables. This solution runs

even slower than AES, which shows the necessity and the effectiveness of MORSE design.
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7.7 Related Work

Model extraction attack is a close topic to ours. Existing works investigate several attack

models that steal information of models. [LEM18] introduces a method to steal the hyper-

parameters from machine learning models. [JSM19, JCB20] show different approaches to

extract the DNN models from the prediction APIs. These attacks target machine learning

as a service (MLaaS) platform. The attacker in our setting has direct access to the data on

the edge server. Also, to the best of our knowledge, this is the first work addressing model

attacks and protection in the IoT sensor context.

Several works have studied detecting and defending against the model learning attacks.

[JSM19, CCW20] propose ways to detect the model extraction behaviors and hold services

whenever they identify the attack, which is not suitable in our settings since our sensor data

always go through the edge server. To prevent the adversary from accessing the original data,

[GDL16] offers a way to transform the trained neural network to be used on encrypted data.

[AEH15] introduces a method with a fully homomorphic function for learning random forest

or näıve Bayes models. [HZX18] protects user-level computations from untrusted privileged

cloud services with hardware-specific enclaves. Our work differs from their work in two

aspects. Firstly, we focus on securing the probabilistic models, which cannot be protected

by these works. Second, MORSE does not require complex (homomorphic) encryption or

hardware features while protecting the model. This is suitable for capacity-constraint IoT

devices.

Protecting IoT data from the edge/cloud server’s access is a popular topic. [SBH17,

SBR20, CBB19, HZX18] secure IoT data access with decentralized authentication. [SHD15,

SHB17] leverage homomorphic encryption to prevent the cloud from obtaining the original

data. In contrast, MORSE focuses on directly obfuscating the model rather than individual

data or particular queries. Sampling provides a fresh yet efficient way for IoT security

without expensive operations.
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7.8 Conclusion

In this work, we study the model protection problem in the IoT setting where the model is

learned from the sensor/output data. A novel data-dependent sampling scheme is proposed.

The scheme produces the dataset that obfuscates the dependency which is critical to model

learning. Meanwhile, the real model can still be reconstructed from the obfuscated model.

To the best of our knowledge, MORSE is the first work to explore the possibility of such a

model-centric security design for a class of IoT scenarios. We hope MORSE could stimulate

more efforts towards model security for IoT usages.
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CHAPTER 8

Conclusion and Future Work

As we enter the concluding phase of this dissertation, it’s important to underscore the vital

communication chasm that exists between the Deaf and hearing communities. Despite strides

made in technology and communication tools, there currently lacks a comprehensive end-

to-end solution that effectively bridges this gap. Existing approaches either fall short in

accessibility or capacity, leaving a void in truly seamless communication. However, with

recent advancements in hand and body detection algorithms, devices now have a chance

to “see” and interpret sign language in a manner similar to humans. Capitalizing on this

promising trend, our research has centered around developing Assistive AR system solutions

to effectively bridge this communication divide.

A significant breakthrough in our journey to connect sign and oral language can be

traced back to William Stokoe’s groundbreaking theory, which posits sign language as a

natural language replete with its own phonetic and grammatical nuances. Embracing this

principle has allowed us to apply linguistic studies of ASL to automatic sign translation and

mobile systems, opening up exciting avenues of accessibility and communication.

The main claim of this dissertation is that the gap between Deaf and hearing communi-

cation can be bridged through a series of systematic solutions. First and foremost, we honed

in on urgent needs scenarios, such as emergency calls, and discovered that translation could

be accomplished by categorizing signs into sign parameter groups. We also found that ASL

possesses its own unique syntax rules, differing from English but just as systematic. Building

on this understanding, we broadened our focus from emergency scenarios to more general-
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ized communication contexts by transforming ASL dictionaries into machine-interpretable

parameter sets.

Recognizing that languages, including sign languages like ASL, are dynamic and vary

across time, regions, and sub-cultural groups, we prioritized continuous learning and col-

laboration with sign language users. To this end, we developed the AnySign platform.

This comprehensive solution provides ASL search functionality, sign collection, full sentence

translation, and interactive features, offering a promising path towards true communication

inclusivity.

In the ensuing sections, we will succinctly recap our findings in Section §8.1, share insights

gleaned from our research in Section §8.2, and explore potential avenues for future research

in Section §8.3.

8.1 Summary of Results

This dissertation illuminates the complexities of communication barriers faced by the deaf

community in an interconnected society, largely resulting from a blend of factors such as lack

of accessibility, inadequate support for sign languages, and a shortage of efficient translation

resources. To alleviate these issues, we propose a novel approach with Assistive Augmented

Reality (AR) to bridge the divide between the deaf and hearing communities. This en-

compasses the creation of Sign-to-911 for emergency situations, a general sign language

translation mechanism, and AnySign, a comprehensive cross-device platform. By utilizing

AR as an innovative bridge for communication, we provide robust, accessible, and efficient

solutions. The principal contributions of this dissertation are as follows:

Sign-to-911: Emergency Call for Sign Language Users with Assistive AR Rec-

ognizing the urgent need for accessible and efficient sign language support during emergency

situations, we developed Sign-to-911. This system is a rapid, lightweight solution specifically
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designed to bridge the ASL-English communication gap during emergencies. By integrating

AI and ML models with specific ASL linguistic domain knowledge, we successfully reduced

model complexity while maintaining high translation accuracy and speed. Rigorous eval-

uations with real ASL users and stress tests in simulated emergency situations confirmed

its effectiveness and reliability. Importantly, Sign-to-911 is designed to function indepen-

dently on mobile and wearable devices without reliance on cloud or edge support, ensuring

it can be of service under any circumstances. It represents a significant stride in emergency

communication for the ASL user community, potentially serving as a lifesaver in critical

moments.

AnySign: A Comprehensive Cross-device Sign Language Interaction Platform

To address the unique communication challenges faced by the Deaf community, we introduced

AnySign, a comprehensive platform designed to enhance the general accessibility of ASL.

AnySign brings together the Sign Dictionary, English to ASL Translator, and Teach-Me-

Sign modules to provide a comprehensive ASL learning and communication platform. One

of the highlight features of the platform is SignChat, an AI-powered chatbot capable of

enabling a new mode of ASL human-machine interaction. Feedback from system users

demonstrates the potential of AnySign to effect change and catalyze further advancements

in ASL communication.

MORSE: Private Model Protection in Machine Learning Pipeline In response

to the increased privacy and security concerns associated with deploying machine learning

models on wearable and IoT devices, particularly in the context of Assistive AR, we devised

MORSE, a lightweight model privacy protection solution. MORSE employs a novel sampling

approach that effectively protects the privacy of models without exposing sensitive personal

information to cloud platforms. This approach ensures both functionality and trainability

of models while maintaining the benefits of AI and machine learning. Importantly, MORSE

is developed with a focus on IoT and wearable applications, demonstrating our commitment
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to secure and trustworthy computing in this emerging field where user privacy is paramount.

The integration of MORSE into Assistive AR devices could offer users confidence in the

secure use of AI technologies, making a significant step toward the broader adoption of these

tools for improved communication and accessibility.

8.2 Lessons Learned

This dissertation journey was a critical platform for learning and understanding, not only

from a technological perspective but also from a socio-cultural standpoint. Key lessons that

we gleaned include the importance of cultural respect and the need for interdisciplinary

collaboration.

8.2.1 Acknowledging and Embracing Cultural Variance

Acknowledging and valuing cultural differences, notably within the diverse Deaf commu-

nity, was a cornerstone of our research. In a world where hearing individuals often dictate

discourse, there is a tendency among tech developers to focus on what they already pos-

sess, potentially neglecting the specific needs of Deaf individuals. The guiding question that

underpinned our dissertation was, “Is this truly beneficial to the Deaf community?”

Our platform, christened as AnySign, embodies this commitment to creating sign lan-

guage accessibility at any moment, in any place. But the name conveys a dual message:

it’s an affirmation saying “I need sign”, encouraging the wider community to respect and

employ sign languages equivalently to oral languages, fostering greater inclusivity in our rich

and dynamic world.
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8.2.2 The Crucial Role of Interdisciplinary Collaboration

The second key takeaway from our research journey stresses the indispensability of inter-

disciplinary collaboration in this arena. Misinterpretations of sign language have remained

entrenched, with prevalent assumptions incorrectly reducing it to merely a physical mani-

festation of English. To thoroughly grasp the complexities and nuances of sign languages,

debunking such misapprehensions is critical – a task best accomplished through concerted

interdisciplinary collaboration.

By bridging the divides between various fields – including linguistics, technology, and

social studies – we can collaboratively dispel longstanding myths and misconceptions about

sign languages. This collaborative effort is not only vital for nurturing a more comprehen-

sive understanding of sign languages but also instrumental in developing more precise and

effective communication tools. Essentially, these concerted efforts across disciplines are the

catalyst for innovative breakthroughs, paving the way towards more sensitive and effective

communication technologies. Our collective goal is to better cater to the Deaf community,

fostering an inclusive society that values and embraces linguistic diversity.

8.3 Looking Forward

8.3.1 Harnessing AIGC for Streamlined Sign Language Captioning

In today’s digital age, movies, and online video platforms serve as vital gateways for knowl-

edge acquisition. Offering sign language captions can increase linguistic accessibility for

individuals who prefer sign languages, such as deaf children and native sign language users.

Recently, companies like Disney have acknowledged this need, implementing human inter-

preters for select content [Sha21, Chi21]. However, due to the scarcity of certified ASL

interpreters and the continuous eruption of new online content, manual interpretation for all

these media remains an unrealistic task.
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One potential solution lies in automated caption generation, akin to YouTube’s approach,

where speech is understood and transcribed into sign language. Central to this process is

the translation from English to ASL while adhering to accurate syntax and sign usage. In

this work, we have explored the viability of generating ASL with its unique grammar and

signs.

However, unlike text, vocal communication encompasses richer information encapsulating

the speaker’s tone and mood. To capture this nuance in sign language, modern deep learning

models such as the Generative Adversarial Network (GAN) [GPM20] framework and stable

diffusion methods [RBL22, ZA23] show promise in producing photorealistic sign language

interpretations.

Looking ahead, we foresee a promising future where the deployment of AI-Generated

Content (AIGC) could significantly enhance sign language captioning. Leveraging AIGC

not only promises to widen the accessibility of this crucial form of communication but also

enhance comprehension, particularly benefiting children and sign language users.

To put this theory into practice, we undertook a preliminary experiment where image

generation was appended to the ASL production pipeline. Using the stable diffusion model,

we were successful in converting avatar-rendered images into model-generated human-like

images. While this trial yielded encouraging results in terms of individual image generation,

two significant challenges emerged: 1) The lack of control over the shape of generated hands

sometimes resulted in deformed appearances—a flaw which is unacceptable in sign language

production; 2) Maintaining content continuity was a problem, given the fluctuations in cloth-

ing and facial features over time. Despite these challenges, we remain confident about the

potential of AIGC in revolutionizing sign language captioning.
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8.3.2 Leveraging Transformers for an Advanced ASL Translation Pipeline

The task of translating sign language involves not just sign recognition but also the inter-

pretation of sign sequences to construct a meaningful sentence. Currently, the approaches

explored in our translation system depend on segmenting signs based on the hold states

of hands. However, in natural sign language expression, signers possess differing signing

intervals, introducing complexity into the segmentation process.

This variability calls for a more adaptable solution. Sequence-to-sequence models, such

as transformers [VSP17], have been shown to effectively handle similar challenges in the field

of Natural Language Processing. They have the potential to do the same for sign language

translation. Transformers’ attention mechanism allows them to focus on different parts of

the input sequence when generating the output, enabling them to handle variable length and

order, which is crucial for interpreting sign sequences.

Moreover, transformers’ ability to process sequences in parallel rather than in a sequential

manner can lead to a significant reduction in computation time. In the context of sign

language translation, this capability can result in real-time translation services that are

essential in many practical applications.

However, this approach does entail more comprehensive data collection and pre-processing.

Given the inherent complexity of sign languages, obtaining high-quality, varied data for

model training is essential. Additionally, the pre-processing of sign language data, such as

proper segmentation and feature extraction, will be critical in ensuring the effective use of

the transformer model.

Therefore, employing transformer models within the ASL translation pipeline could be a

promising path to enhance the robustness and efficiency of sign language translation systems.

While this approach demands extensive data collection and pre-processing efforts, it holds

the potential to make ASL translation more accessible, versatile, and practical. In the long

run, these advancements could contribute significantly to bridging the communication gap
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between the Deaf and hearing communities.

8.3.3 Assistive AR for a Broad Spectrum of Applications

As the world embraces the era of augmented reality, Assistive AR presents enormous po-

tential to extend beyond just aiding sign language communication, offering assistance to a

much broader range of use cases.

Enhancing Communication for Hearing Impairment. One such application is in

aiding those grappling with hearing loss, which is often due to aging. Traditional solutions

such as hearing aids or cochlear implants (CI) come with their own set of challenges - they

often demand a significant period for users to adjust to, and even after that, they might not

restore the hearing ability completely. Assistive AR can offer an instant and intuitive solution

to this challenge, by offering real-time captioned text, hence enhancing the communication

experience for those with hearing loss.

Assistive AR for Low-vision Support. In the realm of low-vision assistance, Assistive

AR offers promising avenues. Features such as object detection and content reading can be

provided by Assistive AR technology, allowing individuals with low-vision to navigate their

surroundings more effectively and safely. By presenting enhanced visual cues and magnified

or simplified visual information, Assistive AR holds the potential to significantly improve

the quality of life for people with visual impairments.

Enriching Daily Life Activities with Assistive AR. Beyond these specific appli-

cations, Assistive AR holds vast potential for enriching general daily life activities. For

instance, during sporting activities, Assistive AR could offer real-time data and feedback to

athletes, enhancing performance and training effectiveness. Similarly, in navigation, Assis-

tive AR could offer more intuitive and immersive wayfinding solutions, transcending what

traditional GPS or map services offer.
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In conclusion, the prospective applications of Assistive AR, while vast, present a par-

ticularly promising tool for bridging the divide between the Deaf and hearing communities.

By redefining communication boundaries and fostering inclusivity, Assistive AR plays an

instrumental role in making the world more accessible for everyone. Beyond this vital con-

tribution, Assistive AR also holds immense potential in revolutionizing daily life activities,

from aiding those with visual or hearing impairments to enhancing athletic performance and

navigation. In essence, this technology promises a future wherein AR integrates seamlessly

into our everyday lives, breaking barriers, enhancing experiences, and ensuring that no one

is left behind. The evolution of Assistive AR, as evidenced in this dissertation, is not just a

thrilling prospect for technological progression, but also a beacon of hope for a more inclusive

and enhanced future for all.
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