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ABSTRACT OF THE DISSERTATION 

 

 

Thermodynamic Controls on Deep Convection in the Tropics:  

Observations and Applications to Modeling 

 

by 

 

Kathleen Anne Schiro 

Doctor of Philosophy in Atmospheric and Oceanic Sciences 

University of California, Los Angeles, 2017 

Professor J. David Neelin, Chair 

 

Constraining precipitation processes in climate models with observations is crucial to 

accurately simulating current climate and reducing uncertainties in future projections. This work 

presents robust relationships between tropical deep convection, column-integrated water vapor 

(CWV), and other thermodynamic quantities analyzed with data from the DOE Atmospheric 

Radiation Measurement (ARM) Mobile Facility in Manacapuru, Brazil as part of the GOAmazon 

campaign and are directly compared to such relationships at DOE ARM sites in the tropical 

western Pacific. A robust relationship between CWV and precipitation, as explained by variability 

in lower tropospheric humidity, exists just as strongly in a tropical continental region as it does in 

a tropical oceanic region. Given sufficient mixing in the lower troposphere, higher CWV generally 

results in greater plume buoyancies through a deep convective layer. Although sensitivity of 
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convection to other controls is suggested, such as microphysical processes and dynamical lifting 

mechanisms, the increase in buoyancy with CWV is consistent with the sharp increase in 

precipitation observed. 

Entraining plume buoyancy calculations confirm that CWV is a good proxy for the 

conditional instability of the environment, yet differences in convective onset as a function of 

CWV exist over land and ocean, as well as seasonally and diurnally over land. This is largely due 

to variability in the contribution of lower tropospheric humidity to the total column moisture. Over 

land, the relationship between deep convection and lower free tropospheric moisture is robust 

across all seasons and times of day, whereas the relation to boundary layer moisture is robust for 

the daytime only. Using S-Band radar, these transition statistics are examined separately for 

unorganized and mesoscale-organized convection, which exhibit sharp increases in probability of 

occurrence with increasing moisture throughout the column, particularly in the lower free 

troposphere. An observational basis for an integrated buoyancy measure from a single plume 

buoyancy formulation that provides a strong relation to precipitation can be useful for constraining 

convective parameterizations. A mixing scheme corresponding to deep inflow of environmental 

air into a plume that grows with height provides a weighting of boundary layer and free 

tropospheric air that yields buoyancies consistent with the observed onset of deep convection 

across seasons and times of day, across land and ocean sites, and for all convection types. This 

provides a substantial improvement relative to more traditional constant mixing assumptions, and 

a dramatic improvement relative to no mixing. Furthermore, it provides relationships that are as 

strong or stronger for mesoscale-organized convection as for unorganized convection. 

Downdrafts and their associated parameters are poorly constrained in models, as physical 

and microphysical processes of leading order importance are difficult to observe with sufficient 
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frequency for development of robust statistics. Downdrafts and cold pool characteristics for 

mesoscale convective systems (MCSs) and isolated, unorganized deep precipitating convection in 

the Amazon are composited and both exhibit similar signatures in wind speed, surface fluxes, 

surface equivalent potential temperature (𝜃") and precipitation. For both MCSs and unorganized 

convection, downdrafts associated with the strongest modifications to surface thermodynamics 

have increasing probability of occurrence with decreasing height through the lowest 4 km and 

show similar mean downdraft magnitudes with height.  If 𝜃" is approximately conserved following 

descent, a large fraction of the air reaching the surface likely originates at altitudes in the lowest 2 

km. Mixing computations suggest that, on average, air originating at heights greater than 3 km 

would require substantial mixing, particularly in the case of isolated cells, to match the observed 

cold pool 𝜃". Statistics from two years of surface meteorological data at the GOAmazon site and 

15 years of data at the DOE ARM site on Manus Island in the tropical western Pacific show that 

∆𝜃" conditioned on precipitation levels off with increasing precipitation rate, bounded by the 

maximum difference between surface 𝜃" and its minimum in the profile aloft. Robustness of these 

statistics observed across scales and regions suggests their potential use as model diagnostic tools 

for the improvement of downdraft parameterizations in climate models.  
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CHAPTER 1 

Introduction 

 

Understanding how precipitation will change in the future is one of most important, 

scientifically challenging, and societally relevant climate problems. Climate model disagreement 

on both the sign and magnitude of future precipitation changes in the tropics (IPCC AR5 WG1 Ch. 

12) is one of the largest uncertainties in understanding the response of climate to increasing 

greenhouse gas concentrations (Douville et al. 2006). Currently, the scientific community has a 

limited understanding of what controls the distribution and variability of rainfall, and a lack of 

robust observational constraints on precipitation processes in models continues to perpetuate this 

uncertainty. Thus, there is a dire need to reduce such uncertainties by systematically studying the 

processes governing deep precipitating convection and by finding simple, robust ways to 

observationally constrain such processes in climate models. 

The uncertainty linked to deep convection lies primarily within a model’s representation 

of complicated interactions across scales and the onset of deep convection. Since most of the 

present-day global climate models (GCMs) cannot explicitly resolve the small-scale physics of 

convection, the ensemble effect of convection is represented through parameterization. 

Observational constraints on these processes would provide much-needed insight into the physical 

basis of these parameterizations.  

Several factors contribute to deep convective onset and associated uncertainty in GCMs, 

yet one of the most significant is thought to be the entrainment profile. Deep convective plumes 

interact with the surrounding environment as they ascend, mixing in air that dilutes plume 

buoyancy. Thus, plumes ascending through moister air are more likely to remain buoyant through 
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the depth of the troposphere. Several previous studies suggest that deep convection is sensitive to 

moisture in the free troposphere (e.g. Austin 1948; Malkus 1954; Brown and Zhang 1997; 

Derbyshire et al. 2004; Guichard et al. 2004; Sobel et al. 2004; Holloway and Neelin 2009), yet 

these processes are difficult to observe and are thus poorly constrained in GCMs.   

GCMs are also sensitive to downdrafts parameters (Maloney and Hartmann 2001; Sahany 

and Nanjundiah 2008; Pritchard et al. 2011). Convective downdrafts are primarily a result of 

condensate loading and the evaporation of hydrometeors in unsaturated air below cloud base (e.g. 

Houze 1993), which form cold pools of air that spread horizontally and can initiate convection at 

their leading edge (e.g. Weisman and Klemp 1986). Observational limitations have hindered the 

development of robust statistics of such processes, and thus remain poorly constrained in GCMs. 

Most previous observational studies of downdrafts have examined case studies using data from 

field campaigns, which have been largely focused over tropical oceans and the continental US.  

Overall, a key factor limiting our understanding of deep convection is that the complex 

interplay between precipitation, convection, and the large-scale dynamics in the tropics has been 

difficult to observe in both space and time, and taking a multi-scale approach to investigating these 

relationships is critical. The research conducted in this dissertation employs in-situ observations 

from a two-year intensive US Department of Energy (DOE) - Brazil collaborative field campaign 

in the Amazon ("GOAmazon") and multi-year records from DOE Atmospheric Radiation 

Measurement (ARM) sites in the tropical western Pacific.  

My main research goals for this work are as follows: (1) to examine similarities and 

differences in thermodynamic controls on deep convection over land and ocean in the tropics; (2) 

to better understand how variability in moisture vertical structure controls deep convection in the 

tropics, and how this can be understood in terms of mixing schemes suitable for convective 
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parameterizations; (3) to probe the physics of downdrafts over the Amazon and bound their 

behavior using simple thermodynamic arguments; (4) to present robust, statistical relationships 

describing these processes, for potential use as observational constraints for convective 

parameterizations and model diagnostic tools; (5) to understand to what extent these observational 

relationships apply to spatially organized mesoscale systems, and to what extent these are similar 

or different from unorganized convection. 

This dissertation is based on published and to-be-published work that draws conclusions 

from the exploration of the research goals outlined above. Chapter 2, published as Schiro et al. 

(2016), concludes that leading order behavior characterizing a strong relation between 

precipitation and column integrated humidity identified in previous studies over tropical oceans 

act similarly as thermodynamic controls on deep convection over the Amazon. Chapter 3 explores 

this behavior in detail, concluding that variability in lower tropospheric moisture is the main 

thermodynamic factor contributing to variability in the onset of organized and unorganized deep 

convection (e.g. regional, seasonal, diurnal), and that a measure of buoyancy based on a mixing 

scheme that includes nearly equal weighting of boundary layer and free tropospheric air can be a 

useful predictor of precipitation across regions, seasons, and times of day for both organized and 

unorganized convection. Chapter 4 closes the loop by examining downdraft characteristics for 

mesoscale convective systems and isolated cells. For both convective types, evidence from radar 

vertical velocity and thermodynamic arguments imply downdrafts originate in the lowest few 

kilometers. Relationships between precipitation and surface thermodynamics suggest downdrafts 

reach a typical limit in their cooling/drying potential at the surface for rain rates higher than 10 

mm hr-1. Simple, statistical relationships focused on providing observational constraints for 

convective parameterizations are presented in all three chapters.  
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CHAPTER 2 

Deep Convection and Column Water Vapor over Tropical Land vs. Tropical 

Ocean: A comparison between the Amazon and the Tropical Western Pacific 

Abstract   

The relationships between the onset of tropical deep convection, column water vapor 

(CWV), and other measures of conditional instability are analyzed with two years of data from the 

DOE Atmospheric Radiation Measurement (ARM) Mobile Facility in Manacapuru, Brazil as part 

of the GOAmazon campaign, and with 3.5 years of CWV derived from Global Positioning System 

meteorology at a nearby site in Manaus. Important features seen previously in observations over 

tropical oceans — precipitation conditionally averaged by CWV exhibiting a sharp pickup at high 

CWV, and the overall shape of the CWV distribution for both precipitating and non-precipitating 

points — are also found for this tropical continental region. The relationship between rainfall and 

CWV reflects the impact of lower free tropospheric moisture variability on convection. 

Specifically, CWV over land, as over ocean, is a proxy for the effect of free tropospheric moisture 

on conditional instability as indicated by entraining plume calculations from GOAmazon data. 

Given sufficient mixing in the lower troposphere, higher CWV generally results in greater plume 

buoyancies through a deep convective layer. Although sensitivity of buoyancy to other controls in 

the Amazon is suggested, such as boundary layer and microphysical processes, the CWV 

dependence is consistent with the observed precipitation onset. Overall, leading aspects of the 

relationship between CWV and the transition to deep convection in the Amazon have close 

parallels over tropical oceans. The relationship is robust to averaging on time and space scales 

appropriate for convective physics, but is strongly smoothed for averages greater than three hours 

or 2.5°. 
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2.1  Introduction 

Despite the complex relationships, interactions, and feedbacks that exist among the 

atmosphere, land, and ocean, a robust relationship exists between precipitation and column water 

vapor (CWV). Bretherton et al. (2004) identified a smooth relationship of CWV and precipitation 

in daily mean satellite observations. On shorter timescales, conditionally averaged precipitation 

rate increases sharply with increasing CWV (Peters and Neelin 2006, Holloway and Neelin 2009, 

Neelin et al. 2009). This sharp pickup is associated with the onset of conditional instability leading 

to deep convection. Furthermore, statistics of the transition to deep convection are analogous to 

properties of a continuous phase transition at a critical value of CWV (Peters and Neelin 2006; 

Neelin et al. 2009) and can be understood in terms of stochastic variations across the deep 

convective onset threshold (Stechmann and Neelin 2011). Evaluating this deep convective 

transition using radiosondes from the DOE ARM site at Nauru in the tropical western Pacific, 

Holloway and Neelin (2009) demonstrated that CWV represents a proxy for the impact of free 

tropospheric humidity on the conditional instability of entraining plumes affecting the transition 

from shallow to deep convection, and thus that the statistics quantifying this transition provide a 

substantial constraint on subgrid scale processes that must be represented in climate models. It was 

previously unclear, however, the extent to which this simplifying CWV-precipitation relationship 

applies for convective transition statistics over tropical land, as fundamental differences exist in 

the convective environment over land compared to ocean - including a stronger diurnal cycle and 

greater variations in the boundary layer (Nesbitt and Zipser 2003). 

 There is substantial evidence suggesting the importance of free tropospheric humidity to 

the onset of deep convection (Austin 1948; Malkus 1954; Yoneyama and Fujitani 1995; Brown 

and Zhang 1997; Wei et al. 1998; Raymond and Torres 1998; Sherwood and Wahrlich 1999; 
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Parsons et al. 2000; Raymond 2000; Raymond and Zeng 2000; Tompkins 2001a; Redelsperger et 

al. 2002; Ridout 2002; Grabowski 2003; Bretherton et al. 2004; Chaboureau et al. 2004; 

Derbyshire et al. 2004; Guichard et al. 2004; Sobel et al. 2004; Sherwood et al. 2004; Kuang and 

Bretherton 2006; Tian et al. 2006; Wu et al. 2009; Waite and Khouider 2010; Zhang and Klein 

2010; Kumar et al. 2013), yet many models are currently too insensitive to free tropospheric 

humidity (Biasutti et al. 2006; Dai 2006; Oueslati and Bellon 2013). This insensitivity contributes 

to systematic errors and biases in simulated precipitation on a number of space and time scales: 

the erroneous appearance of a double inter-tropical convergence zone (Hirota and Takayabu 2013; 

Hirota et al. 2014); deficiencies in the simulation of the Madden-Julian Oscillation (Grabowski 

and Moncrieff 2004; Hannah and Maloney 2011; Jiang et al. 2011; Del Genio et al. 2011; Kim et 

al. 2012; Holloway et al. 2013; Kim et al. 2014; Rowe and Houze 2015); failure to represent the 

shallow-to-deep convective transition and diurnal cycle of deep convection (Randall et al. 1991; 

Yang and Slingo 2001; Betts and Jakob 2002; Dai and Trenberth 2004; Bechtold et al. 2004; 

Chaboureau et al. 2004; Guichard et al. 2004; Dai 2006; Del Genio and Wu 2010; Waite and 

Khouider 2010). The effect of free tropospheric humidity on the onset of deep convection can be 

explained through mixing between a convective plume and its surrounding environment, which 

greatly affects the plume’s buoyancy. Mixing assumptions must, therefore, be appropriately 

constrained in convective parameterizations. This has been a long-standing challenge, yet several 

studies have demonstrated significant model improvement with realistic representations of 

entrainment processes (Neale et al. 2008; Bechtold et al. 2008; Zhao et al. 2009; Neelin et al. 2010; 

Sahany et al. 2012). In this regard, the convective transition statistics developed over tropical 

oceans have proven useful as model diagnostics (Sahany et al. 2012, 2014) that help to constrain 

entrainment representations, along with other observational and modeling studies (Raymond and 
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Blyth 1986; Brown and Zhang 1997; Jensen and Del Genio 2006; Kuang and Bretherton 2006; Li 

et al. 2008; Bacmeister and Stephens 2011; Luo et al. 2010; Romps and Kuang 2010). The 

transition to deep convection can also be examined in the temporal domain (Holloway and Neelin 

2010; Adams et al. 2013) in which timescales, lead-lag relations and the distinction between 

temporal onset and termination (Stechmann and Neelin 2014) can be important. 

 There are several additional variables and processes controlling the transition to deep 

convection that must also be understood and accurately represented in models: free tropospheric 

moistening processes (Johnson et al., 1999; Benedict and Randall, 2007; Kemball-Cook and 

Weare, 2001; Mapes et al., 2006; Hohenegger and Stevens 2013; Kumar et al. 2013; Masunaga 

2013; Hagos et al. 2014); the influence of the diurnal cycle (Betts and Jakob 2002; Bechtold et al. 

2004; Chaboureau et al. 2004; Del Genio and Wu 2010; Zhang and Klein 2010; Bechtold et al. 

2014); the larger-scale dynamics forcing vertical ascent (Kumar et al. 2013; Hohenegger and 

Stevens 2013); convective downdrafts and cold pool formation (Tompkins 2001b; Khairoutdinov 

and Randall 2006; Schlemmer and Hohenegger 2014); cloud size (Boing et al. 2012); moist static 

energy gradients (Neelin and Held 1987; Lintner and Neelin, 2007, 2008; Raymond et al. 2009; 

Lintner and Neelin 2010; Ma et al. 2011); vertical wind shear (Rotunno et al. 1988; LeMone et al. 

1998); and microphysical processes, including cloud-aerosol interactions (Andreae et al. 2004; 

Khain et al. 2005). Important differences likely exist in the way these processes and variables 

contribute to the conditional instability of the environment over tropical land vs. tropical oceans.   

 Thus far, an insufficient observational record in the continental tropics has limited 

development of convective transition statistics, yet the Green Ocean Amazon campaign in 

Manacapuru, Brazil (2014-2015, Martin et al. 2016) has provided a unique opportunity to evaluate 

the transition to deep convection over tropical land, to elucidate potential complexities compared 
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to the ocean, and to develop simple, useful statistics as model diagnostics. Here, we derive the 

CWV-precipitation relationship and associated statistics with these data and with a complementary 

3.5 year data set from the central Amazon using Global Positioning System (GPS) meteorology 

that provides continuous, all-weather observations of CWV at high temporal resolution over 

tropical land (Adams et al. 2013, 2015). Parallels are drawn between the land and the ocean to 

assess whether free tropospheric humidity is also of leading order importance to the conditional 

instability of an entraining plume over land as it is over ocean. The robustness of the convective 

transition statistics is tested as a function of spatial and temporal scales to establish a benchmark 

for comparison between models and observations at various scales.  Lastly, the CWV-precipitation 

relationship is examined physically by linking vertical profiles of key thermodynamic quantities 

and plume buoyancies computed using turbulent mixing to the observed onset of deep convection.    

2.2  Data 

 A suite of observations is used to establish relationships between CWV and deep 

convection across various instruments, time periods, and tropical locations. The principal location 

examined is the DOE ARM Mobile Facility at Manacapuru, BR (3° 12' S, 60° 35' W, 50 meters 

altitude), established as part of the GOAmazon field campaign (January 2014 - December 2015).  

The GOAmazon data used in this study cover the period 10 Jan 2014 to 20 Oct 2015. The results 

for the GOAmazon site are compared to those derived from two retired DOE ARM sites in the 

Tropical Western Pacific: Nauru Island (0° 31' S, 166° 54' E, 7 meters altitude) and Manus Island 

(2° 3' S, 147° 25' E, 4 meters altitude). The analysis period used in this study and in Holloway and 

Neelin (2009) for Nauru spans Apr. 2001 – Aug. 2006, and the analysis period from Manus Island 

spans Jan. 2008 – Dec. 2010. In terms of radiosonde launches, these periods yield roughly 
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comparable numbers to the western Pacific sites (3320 for Nauru and 3309 for Manus), each 

somewhat larger than the 2379 for GOAmazon.  

 Additional observations from a GPS meteorological station in Manaus, Brazil are included 

in this study; this station functioned from July 2008 to December 2011 as part of the National 

Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) 

Real-Time Ground-Based GPS Meteorological Network and was located at the National Institute 

for Amazon Research/Large Scale Biosphere-Atmosphere Experiment (INPA/LBA) in Manaus 

(2.61°S, 60.21°W) (Adams et al. 2013, 2015).  

2.2.1  Column Water Vapor 

 Radiosonde measurements at all ARM sites were obtained from Vaisala Digi-Cora III 

sounding systems at 2-second resolution; the raw sounding data were interpolated to 5-hPa 

intervals. Reported instrumental uncertainties are approximately 0.5oC for temperature and 5% for 

relative humidity below 500 hPa. At the GOAmazon site, radiosonde launches occurred four times 

daily (6 hourly), at 05:30, 11:30, 17:30, and 23:30 UTC (01:30, 07:30, 13:30, and 19:30 LT), with 

occasional launches at 14:30 UTC (10:30 LT) during the wet season. At Nauru, launches took 

place at 00:00 and 12:00 UTC (12:00 and 0:00 LT), with occasional launches at 02:30 and 14:30 

UTC (14:30 and 02:30 LT), while at Manus Island, most launches took place at either 11:30 or 

23:30 UTC, with occasional launches at 03:30 or 15:30 UTC (13:30 or 01:30 LT).  

 Water vapor and liquid water data sampled by microwave radiometer (MWR) at the 

GOAmazon site are derived from measurements of absolute microwave radiances (expressed as 

brightness temperatures) obtained at 23.8 GHz and 31.4 GHz. The retrieval uncertainty for 

brightness temperatures is 0.3 K and for CWV is typically ~ 0.5 mm. The data used here are derived 

from radiance measurements with a statistical retrieval algorithm that uses monthly derived and 
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location-dependent linear regression coefficients (Liljegren 1999). Data from another CWV 

product derived from a more physically-based retrieval (Turner et al. 2007) are compared to these 

data in the Appendix. All data for which the brightness temperature exceeds 100 K are removed 

from this dataset (Morris 2006), as are data that are affected by direct sunlight near local noon 

(15Z – 17Z) for roughly a 3-week period surrounding the equinoxes. To address the so-called wet-

window problem, in which water collecting on the surface of the lens introduces measurement 

inaccuracy during rainy periods, we linearly interpolate CWV values across time-periods of 6 

hours or less. While the existence of the wet-window problem introduces uncertainty, particularly 

within the highest CWV bins, we argue that the linear interpolation procedure likely 

underestimates peak CWV and is justified given that the data gaps are typically short and the 

temporal persistence of water vapor values for strong convective events is on the order of hours 

(Holloway and Neelin 2010). Additionally, Figure A1 in the Appendix illustrates that there is no 

obvious systematic bias at high CWV for the times sampled (15-minute average radiometer CWV 

surrounding radiosonde launch between 10 Jan 2014 and 31 July 2014), which suggests that this 

interpolation does not greatly affect the results presented in this study.  

 One way to overcome measurement inaccuracy during rainy times is through use of GPS 

technology, as its all-weather capability allows for CWV measurements during rainy times (Adams 

et al. 2011; Adams et al. 2015). The CWV from GPS is derived from water-vapor-induced delays 

in the radio signals from the satellite to the ground-based receiver (Bevis et al., 1992), and its 

accuracy in the Amazon is on the order of 1-2 mm (Adams et al. 2011). The INPA site consisted 

of a dual frequency, geodetic-grade GNSS receiver/antenna and meteorological station 

concurrently measuring pressure, temperature, relative humidity, winds, and precipitation at 1 min 
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sampling frequency.  NOAA/ESRL processed the GNSS data in near real time (2 h latency), with 

30-minute average CWV values used in this study. 

2.2.2  Precipitation 

 The GOAmazon precipitation measurements analyzed in Sections 2.3, 2.4 and 2.6.3 are 

from the Aerosol Observing System (AOS) meteorological station, measured by the acoustic gauge 

of a Vaisala WXT520. When related to radiosonde CWV, AOSMET precipitation is averaged at 

1-hour intervals surrounding the launch; for analyses with radiometer CWV, AOSMET 

precipitation is averaged at 15-minute intervals. In Section 2.4, the averaging intervals are varied 

to evaluate the robustness of the statistics. These data were chosen among many other datasets 

available because we deemed them the most reliable over the full 2014-2015 period (a detailed 

comparison of the different precipitation observing systems available at the GOAmazon site is 

included in Figs. 2.A2 and 2.A3).  

 The precipitation measurements used in this study vary slightly across sites due to 

differences in instrumentation availability and reliability. In the tropical western Pacific at the 

Nauru and Manus Island ARM sites, precipitation was measured with an Optical Scientific optical 

rain gauge (ORG815), and 1-hour averages surrounding radiosonde launches are analyzed in 

Section 2.3.2. Section 2.5 uses precipitation from a Vaisala WXT-520 at the INPA site in Manaus, 

Brazil (30-minute averages) for the analysis with GPS-derived CWV.  

 Section 2.4.2 assesses the robustness of the statistics presented as the horizontal resolution 

of the precipitation measurements decreases. We average precipitation from the Tropical Rainfall 

Measuring Mission's (TRMM) 3B42 version 7 product across various spatial scales. The 3B42 

precipitation estimates (mm hr-1) have a 3-hourly temporal resolution on a 0.25o x 0.25o grid, 

covering 50oS - 50oN from 01 Jan 1998 - present. The TRMM 3B42 precipitation estimates are a 
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combination of multiple independent precipitation estimates from various microwave retrievals 

and algorithms, while missing data in individual 3-hourly merged-microwave retrievals are filled 

with microwave-adjusted merged geo-infrared (IR) estimates. The precipitation radar (PR) and 

TRMM microwave imager (TMI) are used to calibrate all input microwave data, while the IR 

estimates are computed using monthly matched microwave-IR histogram matching (Huffman et 

al. 2007). Estimates of precipitation from the microwave instruments are derived from several 

versions of the Goddard Profiling Algorithm (GPROF), a multi-channel physical approach used to 

retrieve rainfall and vertical structure information (Kummerow et al. 2001). Over the oceans, 

GPROF uses signals from emission at low frequencies and scattering at higher frequencies. Over 

land, the algorithm reduces to a scattering-type procedure using only the higher-frequency 

channels. All of these estimates are adjusted to a best estimate using probability matching of 

precipitation rate histograms assembled from coincident data. Note that both the microwave and 

IR data are snapshots, except for small regions in which two or more overlapping microwave 

scenes are averaged. Generally, however, each satellite provides a sparse sampling of precipitation. 

As a result, there can be significant gaps in the 3-hourly coverage by passive microwave estimates.  

Because of this, precipitation estimates can be thought of as instantaneous values, representative 

of the 3-hour period in which they fall.  

2.3  The Relationship between Deep Convection and CWV over Tropical Land vs. 

Tropical Oceans 

2.3.1  The GOAmazon Site - Manacapuru, BR 

 To illustrate the relationship between CWV and deep convection at the GOAmazon site, 

we conditionally average precipitation rate by CWV in Figure 2.1. Figure 2.1a is the 1-hour 
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average precipitation rate conditioned on radiosonde CWV, with the average centered at the time 

of radiosonde launch. Measurements for all available times (01:30, 07:30, 13:30 and 19:30 LT,  

 

Figure 2.1: The relationship between precipitation and CWV at the GOAmazon site in Manacapuru, BR. (a) The 1-
hour average precipitation (mm hr-1) centered at the time of radiosonde launch conditionally averaged on CWV (mm). 
The mean of precipitating points greater than 0.1 mm hr-1 is 2.72 mm, given by the black triangle on the y-axis. (b) 
The fraction of observations per CWV bin with rain rates greater than 0.5 mm hr-1, for radiosonde CWV. (c) The 
frequency density of all points and precipitating points with rain rates greater than 0.5 mm hr-1, for radiosonde CWV. 
(d-f) Same as (a-c), except using 15-min average CWV from the microwave radiometer (MWR). The CWV bins for 
each set of analysis are given by their respective color bars. The highest bin for the radiosonde analysis has a width of 
6 mm and a range from 64 mm to 70 mm, differing slightly from that of the radiometer data. 
 

and occasionally 10:30 LT) were included in the averages. Note that for the statistics presented 

throughout, CWV bins are typically of equal 1.5 mm width and range from 28 mm to 70 mm; 

exceptions to this will be noted where appropriate, such as here, where the highest CWV bin spans 

6 mm from 64 mm to 70 mm, to include sufficient counts.  

 Beyond a threshold CWV value, a sharp increase in rain rate is evident. This confirms that 

the CWV-precipitation relationship and associated behavior exists over tropical land as it does 

over tropical oceans (Peters and Neelin 2006; Neelin et al. 2009; Holloway and Neelin 2009).  The 

Figure 1: The relationship between precipitation and CWV at the GOAmazon site in Manacapuru, BR. (a) 
The 1-hour average precipitation (mm hr-1) centered at the time of radiosonde launch conditionally averaged 
on CWV (mm). The mean of precipitating points greater than 0.1 mm hr-1 is 2.72 mm, given by the black 
triangle on the y-axis. (b) The fraction of observations per CWV bin with rain rates greater than 0.5 mm hr-1, 
for radiosonde CWV. (c) The frequency density of all points and precipitating points with rain rates greater 
than 0.5 mm hr-1, for radiosonde CWV. (d-f) Same as (a-c), except using 15-min average CWV from the 
microwave radiometer (MWR). The CWV bins for each set of analysis are given by their respective color 
bars. The highest bin for the radiosonde analysis has a width of 6 mm and a range from 64 mm to 70 mm, 
differing slightly from that of the radiometer data.
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limited sampling of high CWV in the GOAmazon radiosonde observations, reflected in the large 

error bars (+/- 1 standard error), limits the precision with which the behavior above the pickup can 

be estimated; nevertheless, the data are sufficient to establish the occurrence of the pickup, and the 

radiosonde observations are key to analyzing the vertical structure, which will be discussed in 

Section 2.6 below. 

 The larger sample size of radiometer CWV affords better quantification of the behavior at 

high CWV (Figure 2.1d).  For this purpose, Figs. 2.1d-f include four additional 1.5 mm bins at 

high CWV, in comparison to Figs. 2.1a-c. A sharp pickup is clearly evident in this dataset. 

Additionally, the conditionally averaged rain rates in the 61-64 mm range in Fig. 2.1a and the 

magnitudes observed in the 61-64 mm range of Fig. 2.1d mimic each other, demonstrating the 

robustness of the results across various instruments. A strong correlation (r=0.91) between the 15-

minute average radiometer CWV and radiosonde CWV (see Fig. 2.A1) further highlights this 

consistency. Note that standard error bars in Fig. 2.1a,d reflect only the precipitation variance and 

number of counts in each bin as an estimate of sampling error, and do not account for potential 

errors in CWV estimation. 

 The value of CWV at which the rapid pickup in precipitation begins, referred to as the 

critical value, is a useful measure in characterizing this onset. For the short, in situ datasets used 

here, empirical fits involve relatively few points with large error bars, so we simply use the point 

at the beginning of the rapidly increasing range as a rule of thumb. Estimating the critical value by 

a linear fit through the range over which precipitation is rapidly increasing, as in Sahany et al. 

(2014), and choosing a range of above 1 mm hr-1  (appropriate for these data) yields a CWV value 

of ~60mm where the interpolation crosses 1 mm hr-1 (Fig. 2.1d). This range is, however, instrument 

dependent. 
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 Compared to the results from Neelin et al. (2009), the mean tropospheric temperature at 

the GOAmazon site is 271.4 K, so the location of the pickup for GOAmazon occurs at lower CWV 

(~ 61 mm) than for comparable temperatures in the tropical eastern Pacific (~ 65 mm, interpolated 

between 271 and 272 K). This is consistent with the expectation that the mean tropospheric 

temperature is only one of several controls on conditional instability and thus the location of the 

pickup, and indicates that other key factors differing between tropical land and ocean are reflected 

in the onset. Specifically, boundary layer dynamics introduce additional complexity to the 

transition to deep convection over land, as the diurnal cycle is stronger over land and the 

partitioning of surface net radiation between latent and sensible heat fluxes depends on the 

interactions between several surface attributes (e.g., vegetation growth and soil moisture) and the 

atmosphere.  

 The curvature above the critical CWV in the radiometer analysis qualitatively resembles 

the behavior observed over the tropical oceans (Peters and Neelin 2006; Neelin et al. 2009), but 

we are cautious in drawing conclusions about this given the scatter at high values and limitations 

of the radiometer. The quantitative values of the conditionally averaged precipitation in the pickup 

region are slightly smaller than those in microwave retrievals in Neelin et al. (2009) and Sahany 

et al. (2014), presumably in part a result of inherent uncertainties at high rain rates, particularly in 

the satellite observations where precipitation is inferred from cloud liquid water. Comparing the 

15-minute averages from the GOAmazon site to microwave retrievals over the tropical oceans 

(effectively snapshots) may also play a role.  

 Figures 2.1b and 2.1e illustrate an equally sharp increase in probability of precipitation as 

a function of CWV comparable to that shown for conditionally averaged rain rate in Figs. 2.1a and 

2.1d, respectively. The fraction of precipitating points per CWV bin is defined as the number of 
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CWV observations with rain rates greater than a small threshold (here 0.5 mm hr-1), divided by the 

total number of CWV samples in each bin. The probability increases dramatically above the critical 

value, sharply increasing to values greater than 50% in the highest CWV bins.  

 Figures 2.1c and 2.1f show the frequency of occurrence of different CWV values for all 

times and for precipitating times (where precipitation rates exceed 0.5 mm hr-1) at the GOAmazon 

site for radiosonde and radiometer CWV, respectively. Curves are scaled with respect to CWV bin 

sizes, similar to a probability density function (PDF) but in counts per millimeter – referred to here 

as frequency density. We chose not to normalize to instead yield PDFs to make the counts for each 

bin visible, as the lengths of the available datasets vary by instrument and location. The peak in 

the distribution of CWV, for both the radiometer and radiosonde analysis, occurs between 55-60 

mm.  The occurrence of the peak in the distribution occurs just below the critical point, consistent 

with the findings of Peters and Neelin (2006) and Neelin et al. (2009). The highest probability state 

of the system is near the beginning of the intense precipitation regime, as is shown by the 

distribution of precipitating points (the peak occurs in the 61-62.5 mm bin in the radiometer 

analysis, and is slightly more spread out in the radiosonde data). Below 45 mm, no events 

exceeding the 0.5 mm hr-1 threshold are observed.  

 The longer-than-Gaussian tails of this distribution are also consistent with those seen in 

previous studies (Neelin et al. 2009; Neelin et al. 2010), seen here with different instrumentation. 

Because of the lower number of radiosonde observations, we focus on radiometer observations 

(Fig. 2.1f). Firstly, there is a long tail extending towards lower CWV in the distribution for 

precipitating points. The peak occurs just below or near the critical point, with a sharp decrease in 

frequency towards higher CWV in the region of rapid pickup of precipitation, consistent with the 

dissipative effects of precipitation on CWV (and of convection on buoyancy). Beyond the critical 
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value, there is evidence of a long tail with roughly exponential decay as CWV increases, 

suggesting that the system is characterized by a higher frequency of extremes than would be 

expected from Gaussian statistics. This behavior is particularly evident in the radiometer analysis 

shown in Fig. 2.1f, but low counts in the high CWV bins and measurement uncertainty limit 

confidence in this feature.  

 Many of the onset statistics can be qualitatively and quantitatively captured by a simple 

stochastic model (Stechmann and Neelin 2011). This model suggests that the long tail for 

precipitating points in the low CWV regime is associated with a transition probability in which it 

typically takes some time to transition to a non-raining state when CWV decreases from the raining 

regime. The same hysteresis affects the position and value of the peak in the distribution for 

precipitating points, consistent with results here, suggesting it may be interesting in further work 

to distinguish temporal aspects of the transition, including distinguishing precipitating shallow and 

congestus convection or the formation of stratiform rain from deep precipitating convection 

(Ahmed and Schumacher 2015), as this is also a possible explanation of such characteristics of the 

distribution. The behavior of the distribution for all points at low CWV is expected to be rather 

dependent on the dynamics of the dry regime and has been noted to have various forms over ocean 

basins, including a second maximum. This may occur near the balance between evaporation and 

moisture divergence (Lintner and Neelin 2009).   

2.3.2  The Tropical Western Pacific  

Figure 2.2 illustrates the CWV-precipitation relationship for two sites in the tropical 

Western Pacific - Nauru (Fig. 2.2a-c) and Manus Island (Fig. 2.2d-f). Compared to the Amazon in 

Fig. 2.1, the tropical western Pacific sites show very similar behavior. Radiosonde estimates are 

shown in Fig. 2.2, which can be directly compared to Fig. 2.1a-c. Both pickups of precipitation, 
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for Nauru (Fig. 2.1a) and Manus Island (Fig. 2.1d), occur at higher values of CWV (~67 mm) than 

in the Amazon. As was discussed in Section 2.3.1, this is due in part to small differences in the  

 

Figure 2.2: Same as Fig. 2.1, but for the relationship between precipitation and radiosonde CWV at Nauru (a-c) and 
Manus Island (d-f) in the tropical western Pacific. The mean of precipitating points greater than 0.1 mm hr-1 is 2.18 
mm hr-1 for Nauru and 2.78 mm hr-1 for Manus Island. CWV bins are the same as in Fig. 2.1d-f (see color bar). 
 

mean tropospheric temperatures (272.0 K at Nauru, 271.9 K at Manus Island) but is also likely due 

to fundamental differences in the convective environments of a tropical land site vs. a tropical 

oceanic site. For reference, the values of column integrated saturation specific humidity (𝑞'()) for 

the three sites are 76.0 mm, 75.2, and 73.0 mm at Nauru, Manus Island and the GOAmazon site, 

respectively, although it is known for tropical ocean basins spanning a wider range of tropospheric 

temperatures that 𝑞'() poorly captures the temperature dependence (Neelin et al. 2009, Sahany et 

al. 2012) because the relevant physical control is conditional instability rather than large-scale 

saturation.  

Figure 2: Same as Fig. 1, but for the relationship between precipitation and radiosonde CWV at Nauru (a-c) 
and Manus Island (d-f) in the tropical western Pacific. The mean of precipitating points greater than 0.1 mm 
hr-1 is 2.18 mm hr-1 for Nauru and 2.78 mm hr-1 for Manus Island. CWV bins are the same as in Fig. 1d-f 
(see color bar).
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 As in the GOAmazon case, the fractions of precipitating points (Figs. 2.2b and 2.2f, for 

Nauru and Manus Island, respectively) sharply increase to 50% or greater beyond a critical CWV. 

This, again, illustrates that a sharp transition occurs not only in rain rate, but also in the probability 

of precipitation beyond a threshold CWV. In Fig. 2.2f, Manus Island exhibits distinct peaks in its 

distributions: the peak of the CWV distribution occurs between 58 and 60 mm, whereas the peak 

in the distribution of precipitating points occurs between 60-63 mm. This is consistent with the 

findings from previous studies, where the peak in the precipitating points occurs at slightly lower 

CWV than the critical value. Also consistent is the sharp decrease in the frequency of CWV 

between the distribution peak and the CWV values where precipitation picks up rapidly. These 

characteristics are also observed for Nauru, but the peaks in the distributions of CWV and the 

precipitating points are broader in this sample from radiosondes, i.e., the CWV distribution peak 

spans roughly 8 mm (~50-58 mm), whereas the peak in the distribution of precipitating points 

spans roughly 10 mm (~57-67 mm).  

 Even though marginal differences can be observed across locations, the main features of 

these statistics are consistent and robust across all three tropical locations. Though these statistics 

were not examined near regions of strong topographic forcing, land-sea contrasts or other 

inhomogeneity, it has been suggested that these complexities can impact the statistics (Bergemann 

and Jakob, 2016), as additional processes driving deep convection in these regions are not 

adequately captured with proxies such as CWV or column saturation. Nevertheless, the results 

presented here suggest that CWV is a good proxy for conditional instability and has a clear 

relationship to the onset of deep convection throughout much of the tropics.  
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2.4  The robustness of the observed statistics at various scales 

2.4.1 The effects of temporal averaging 

 To explore how averaging over differing temporal scales can affect the statistics describing 

the transition to deep convection, we compute the transition statistics at various averaging intervals 

with in situ precipitation and radiometer CWV from the GOAmazon site. Four averaging intervals 

were chosen for this analysis: 15-min, 1-hour, 3-hour and daily averages. These intervals were 

chosen to be most comparable to the current output available from models and observations. 

 

Figure 2.3: Same as Fig. 2.1d-f, using in-situ precipitation and radiometer CWV from the GOAmazon site, but with 
additional averaging intervals: 15-min averages (red); 1-hr averages (yellow); 3-hr averages (green); daily averages 
(blue).  
 

 In Fig. 2.3a, the magnitude of the conditionally averaged precipitation in the highest four 

CWV bins diminishes considerably as the averaging interval increases. Up to and including 3-

hourly averages, the magnitude and sharpness of the pickups are largely preserved. Beyond 3 

hours, the pickup is noticeably degraded. However, adapting the scale of the precipitation to the 

decrease in resolution (not shown) illustrates that despite the decreased sharpness of the pickup, 

the precipitation still increases with increasing CWV. Despite some variability in the shapes of the 

curves, the overall locations of the pickups are robust for temporal resolutions of 3 hours or less. 

The location of the probability curve pickup in Fig. 2.3b, however, varies substantially as the size 

of the averaging interval increases: larger averages pick up sooner and have a higher probability  

Figure 3: Same as Fig. 1d-f, using in-situ precipitation and radiometer CWV from the GOAmazon site, 
but with additional averaging intervals: 15-min averages (blue); 1-hr averages (green); 3-hr averages 
(yellow); daily averages (red). 
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Figure 2.4: Same as Fig. 1d-f, but instead using area-averaged TRMM 3B42 3-hourly instantaneous precipitation at 
varying resolution from the grid box that includes the GOAmazon site; CWV values are derived from the 15-min 
averages of MWR data surrounding the TRMM snapshot. (a-c) for precipitation at 0.25o x 0.25o horizontal resolution 
(grid box over GOAmazon site); (d-f) spatial average of precipitation at 1.25o x 1.25o around GOAmazon site ; (g-i) 
same as (d-f) but for 2.5o x 2.5o. 
 

of precipitating at high CWV. This can be explained by the fact that the 3-hourly and daily averages 

are more likely to span times when it is raining than the shorter averages are. The overall shape of 

the distribution is preserved with averaging (Fig. 2.3c), but the mean shifts to lower CWV and the 

tails of the distribution are shorter. Overall, these results illustrate how the statistics vary with 

temporal resolution, which should be considered when applying them as model diagnostics. 

 

 

Figure 4: Same as Fig. 1d-f, but instead using area-averaged TRMM 3B42 3-hourly instantaneous 
precipitation at varying resolution from the grid box that includes the GOAmazon site; CWV values are 
derived from the 15-min averages of MWR data surrounding the TRMM snapshot. (a-c) for precipitation at 
0.25o x 0.25o horizontal resolution (grid box over GOAmazon site); (d-f) spatial average of precipitation at 
1.25o x 1.25o around GOAmazon site ; (g-i) same as (d-f) but for 2.5o x 2.5o.
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2.4.2  The effects of spatial averaging 

 The relationship between spatially averaged TRMM 3B42 3-hourly instantaneous 

precipitation (see Section 2.2) and radiometer CWV (15-min averages) over the GOAmazon site 

is shown in Figure 2.4 for 0.25 x 0.25 degrees (a-c), 1.25 x 1.25 degrees (d-f), and 2.5 x 2.5 degrees 

(g-i). At either 0.25o or 1.25o, the relationship is comparable to the results in Fig. 2.1 and thus 

robust. However, at 2.5o, it starts to deteriorate, as the pickup of precipitation and the percentage  

of precipitating points occur too soon in comparison to Fig. 2.1d-e. These results are encouraging, 

as they suggest that resolutions up to about 1.25 x 1.25° are still of sufficient spatial resolution to 

reproduce robust statistics that explain the CWV-precipitation relationship, given that the temporal 

resolution is also adequate. This implies that these statistics are reproducible using the horizontal 

resolutions available with many current generation GCMs. In such comparisons, it should be borne 

in mind that a GCM with, e.g., 2° resolution may respond at the finest scale available to it, i.e. the 

grid scale, in a manner similar to the convective response occurring at finer scales in observations. 

2.5  Use of GNSS Meteorological Networks in the Tropics 

 For two decades, GNSS/GPS meteorology has offered relatively inexpensive, high-

frequency (~5 min), all-weather retrievals of CWV, and is thus ideal for analyses requiring long, 

continuous records of observed CWV over land. This is particularly useful for studies in the 

tropics, where collecting in situ measurements is a challenge. We thus evaluate the convective 

transition statistics here for GPS data from a site in Manaus. In Figure 2.5, the statistics are 

reproduced for GPS CWV and coincident measurements of precipitation (30-minute averages) as 

in Fig. 2.1. Note that the precipitation measurements from the INPA site are biased low (see 

Appendix). Therefore, for better comparison to the statistics in Fig. 2.1, the range shown on the 

precipitation axis (0-1.28 mm hr-1) is reduced relative to the range on the other pickup plots (0-6 



	

	 23 

mm) by a factor of 4.7 – the ratio of means of precipitating points between the 30-minute average 

precipitation from both sites. Additionally, the threshold for identifying precipitating points is 

lowered to 0.1 mm hr-1 to more appropriately complement the 0.5 mm hr-1 threshold used in Fig. 

2.1. When measurement differences are properly accounted for, Figs. 2.1 and 2.5 compare well: 

the location and shape of the pickup of precipitation is consistent, the probability of precipitation 

is just below 50% in the highest bin, and the distribution of CWV and precipitating points resides 

near the transition, with a sharp drop in frequency between the peak and the transition and a long 

tail extending out to high CWV. This suggests GPS technology will be valuable in observing 

characteristics of convection at high temporal resolution throughout tropical land regions.  

 

Figure 2.5: Same as Fig. 2.1a-c, but using in-situ precipitation (30-min averages) binned by 30-min GPS-retrieved 
CWV from a site at the INPA in Manaus, BR. The triangle in (a) denotes the mean of precipitating points > 0.1 mm 
hr-1, which is 1.04 mm hr-1. Note the change in the precipitation axis in comparison to Fig. 2.1a,d and the change in 
threshold value used in Fig. 2.5b,c. The rain gauge at the INPA is biased low (see Appendix), and thus to allow for 
direct comparison to the GOAmazon case, the range on the precipitation axis defined in Fig. 2.1a,d (0 – 6 mm) is 
decreased here by a factor of 4.68, the ratio of the means between the AOSMET gauge and the INPA gauge.  

 
2.6   Characterizing the variability of column moisture 

2.6.1  Vertical thermodynamic profiles  

 Vertical profiles of thermodynamic quantities – specific humidity (𝑞), relative humidity 

(𝑅𝐻) and equivalent potential temperature (𝜃") – are conditionally averaged on CWV in Figs. 2.6a, 

2.6b, and 2.6c, respectively. In Fig. 2.6a, it is evident that profiles of 𝑞 are most variable in the 

layers above 800 mb at the GOAmazon site. This differs slightly from the western Pacific case, as 

Figure 5: Same as Fig. 1a-c, but using in-situ precipitation (30-min averages) binned by 30-min GPS-
retrieved CWV from a site at the INPA in Manaus, BR. The triangle in (a) denotes the mean of 
precipitating points > 0.1 mm hr-1, which is 1.04 mm hr-1. Note the change in the precipitation axis in 
comparison to Fig. 1a,d and the change in threshold value used in Fig. 5b,c. The rain gauge at the INPA 
is biased low (see Appendix A), and thus to allow for direct comparison to the GOAmazon case, the 
range on the precipitation axis defined in Fig. 1a,d (0 – 6 mm) is decreased here by a factor of 4.68, the 
ratio of the means between the AOSMET gauge and the INPA gauge. 
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the variability in free tropospheric 𝑞 (850-500mb) with respect to CWV is slightly less over the 

Amazon than it is for Nauru (see Figure 3a Holloway and Neelin 2009), presumably due to stronger 

horizontal moisture gradients near Nauru (see Lintner et al. 2011). Additionally, the contribution 

from the boundary layer is greater at the GOAmazon site with a ~ 4 g kg-1 difference in humidity 

between the lowest and highest bins at 975 mb (Fig. 2.6a), whereas the difference is lesser at 

Nauru. 

 

Figure 2.6: Vertical profiles of (a) specific humidity (g kg-1), (b) relative humidity (%), and (c) equivalent potential 
temperature (K) measured or derived from radiosonde data collected at the GOAmazon site and conditionally averaged 
by CWV (mm). The mean saturated equivalent potential temperature (θ-., K) for profiles greater than 50 mm is shown 
in the dashed line in (c). 
 
 
 𝑅𝐻 profiles (𝑅𝐻 with respect to water) belonging to the highest CWV bins at the 

GOAmazon site (> 61 mm) are at least 90% saturated throughout the lower troposphere. At Nauru, 

this is the case for CWV greater than 66 mm (see Fig. 4a, Holloway and Neelin 2009), suggesting 

that the column is saturated for lower CWV in the Amazon than it is over the tropical western 

Pacific. Additionally, the boundary layer RH is roughly twice as variable over the Amazon as it is 

over Nauru, ranging from a ~ 35% difference at 975 mb between the highest and lowest bins versus 

a ~15% difference at Nauru.  The variability observed in 𝑅𝐻 is highly consistent with variability 

in column moisture, since free tropospheric temperature variations tend to be modest. 
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Figure 6: Vertical profiles of (a) specific humidity (g kg-1), (b) relative humidity (%), and (c) equivalent potential 
temperature (K) measured or derived from radiosonde data collected at the GOAmazon site and conditionally 
averaged by CWV (mm). The mean saturated equivalent potential temperature (Θes) for profiles greater than 50 mm is 
shown in the dashed line in (c).
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Equivalent potential temperature (𝜃"), calculated reversibly following Emanuel (1994) in 

Fig. 2.6c, is an approximate measure of non-entraining parcel buoyancy, as convective available 

potential energy (CAPE) can be approximated by drawing a vertical line upward from the initial 

𝜃". Where this line crosses the 𝜃"'  curve is roughly the level of free convection (LFC) of the 

unmixed parcel; the area to the left of the vertical line and to the right of the 𝜃"'  curve is roughly 

proportional to CAPE. 𝜃"   at the GOAmazon site shows similar overall variability in the vertical 

as it does at Nauru. In the absence of entrainment, many of the profiles belonging to the highest 

CWV bins have sufficient 𝜃"  to support deep convection, providing that the convective inhibition 

(CIN) residual from the nighttime hours (seen in the 𝜃"  profile) could potentially be overcome. 

This will be discussed further in Section 2.7. 

 

Figure 2.7: Profiles of specific humidity differences (g kg-1) from radiosonde measurements at the GOAmazon site 
between precipitation events (1-hour average rain rates > 0.5 mm hr-1) and no precipitation events (1-hour average 
rain rates < 0.01 mm hr-1) for 1.5-3 hours leading precipitation (red), within the hour of precipitation (black), and 1.5-
3 hours lagging precipitation (blue). Results are shown for Jan-Apr only (2014-2015). 
 

2.6.2  Moisture anomalies 

 Figure 2.7 illustrates the differences in 𝑞 at 1.5-3 hours leading (red) and 1.5-3 hours 

lagging (blue) precipitation, between profiles corresponding to precipitation events (rain rate > 0.5 

Figure 7: Profiles of specific humidity differences (g kg-1) from radiosonde measurements at the GOAmazon 
site between precipitation events (1-hour average rain rates > 0.5 mm hr-1) and no precipitation events (1-hour 
average rain rates < 0.01 mm hr-1) for 1.5-3 hours leading precipitation (red), within the hour of precipitation 
(black), and 1.5-3 hours lagging precipitation (blue). Results are shown for Jan-Apr only (2014-2015).
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mm hr-1) and those that do not correspond to a precipitation event (rain rate < 0.01 mm hr-1) for 

January-April soundings only. Leading an event, moisture anomalies exceeding 0.5 g kg-1 and as 

large as 1 g kg-1 are seen clearly throughout the lower troposphere, with a particularly large 

increase between 750-950 mb. This is consistent with evidence that increased low-tropospheric 

humidity supports deep convective initiation. These moisture anomalies are also seen in the 

tropical western Pacific at Nauru (Fig. 5, Holloway and Neelin 2009), where anomalies as large as 

3 g kg-1 occur in the lower-mid troposphere within 3 hours of a precipitation event. The anomaly 

in the lower-most layer at the GOAmazon site is, however, more distinct from and almost as large 

as the anomaly within the hour of rainfall compared to the anomalies at Nauru, which show a 

consistent vertical structure at all times leading and lagging rainfall. This illustrates the greater 

moisture variability in the boundary layer over land preceding convection. It can be seen at both 

sites, however, that a distinct increase in moisture is present in the lower troposphere. There are 

likely multiple causes of this moistening in the lower troposphere preceding convection at both 

locations, including mixing and detrainment of water from shallow cumulus convection, in concert 

with convergence or lifting. Regardless of the cause, it will become evident in the next section as 

we examine the role of entrainment that sufficient lower free tropospheric moistening is essential 

to the onset of deep convection. 

 During a precipitation event, the anomaly in the 750-950 mb layer decreases, suggesting 

that moist air is lofted by updrafts, with drier air from downdrafts diluting the layer’s moisture 

content. The increased anomaly of mid-upper tropospheric humidity between 200-700 mb is likely 

due to the effects of convection via some combination of lofting and detrainment of moist air, and 

large-scale ascent induced by convective heating, potentially including stratiform effects. As 

precipitation dissipates, this mid-upper tropospheric anomaly persists for hours afterwards, which 
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may aid in supporting subsequent convective events.  These anomalies are present in the tropical 

western Pacific case as well, but the vertical structure is more consistent throughout the 6-hour 

period than it is for the GOAmazon case, i.e. the maximum q anomaly at all times is around 800 

mb. In the GOAmazon case, on the other hand, the maximum 1.5 hours before precipitation is 

found around 900 mb, during precipitation it is around 700 mb, and after precipitation it is found 

at about 500 mb. Additionally, separating the analysis out by time-of-day (not shown) indicates 

that these moisture anomalies are consistent for events occurring at all times of day.  

 Overall, in both the Amazon and the tropical western Pacific, humidity is enhanced 

throughout most of the troposphere for several hours leading and lagging the original precipitation 

event. Free tropospheric humidity appears to behave similarly in land and ocean cases (although 

with larger amplitude variation in the Western Pacific), whereas boundary layer moisture is more 

variable on short time scales in the land case. The Amazon also more clearly exhibits upper 

tropospheric moisture anomalies in the hours following precipitation, while both the Amazon and 

western Pacific exhibit reduced boundary layer moisture. 

2.6.3  Dependence on Time-of-Day 

 Considering the strength of the diurnal cycle over land, it is natural to wonder whether 

CWV is a good proxy for conditional instability at all times of day, given how conditions 

contributing to instability can vary diurnally. Fig. 2.8 suggests that the relationship between CWV 

and precipitation is robust at all times of day. Figure 2.8a shows the relationship between 15-min 

average radiometer CWV and precipitation for nighttime hours (7 pm – 8 am). The time intervals 

were chosen to complement the radiosonde launch times and the analysis presented in Section 2.7. 

Figure 2.8d shows this relationship for the midday hours, which are the most convective hours of 

the day (10 am – 4 pm). The pickups of both conditionally averaged precipitation (Figs. 2.8a and 
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2.8d) and the probability of precipitation (Figs. 2.8b and 2.8e) affirm that the relationship is robust 

throughout all times of day. The frequencies of occurrence of precipitation (Figs. 2.8c and 2.8f) 

are also consistent with the results in Fig. 2.1. Despite the fact that more convection occurs in the 

midday hours over the Amazon, the relationship holds true for all times of day.  

 

Figure 2.8: Same as Fig. 1d-f, except for (a-c) nighttime hours (8 pm – 7 am), and (d-f) midday hours (10 am – 4 
pm) only. 
 

2.7  The sensitivity of plume buoyancy to entrainment under simple freezing assumptions 

 In this section, we focus on connecting the observed pickup of precipitation to observed 

increases in buoyancy and the sensitivity to entrainment. We calculate the buoyancy perturbation 

profiles, the virtual temperature difference between the environment and the plume 

∆𝑇0 = 𝑇0,3456" − 𝑇0,"80  for plumes rising from the subcloud layer (1000 hPa), with mixing 

occurring at each pressure level as described by 

    𝑟: = 1 − 𝑋:=> 𝑟:=> + 𝑋:=>𝑟:=>    (1) 

Figure 8: Same as Fig. 1d-f, except for (a-c) nighttime hours (8 pm – 7 am), and (d-f) midday hours (10 
am – 4 pm) only.
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where 𝑋 is the mixing coefficient, 𝑟 is a conserved variable (with 𝑟 its environmental value), and 

𝑘 denotes pressure level if 𝑋 varies. Here we calculate the mixing coefficient proportional to 𝑧=>, 

where 𝑧 is height, in the layer in which plume mass flux is growing. This mixing assumption was 

referred to in Holloway and Neelin (2009) as Deep-Inflow-A (DIA) and corresponds to the 

Siebesma et al. (2007) LES-based dependence. DIA is chosen here because of its realistic 

representation of buoyancy perturbation profiles and overall consistency with the pickup of 

precipitation observed in Fig. 2.1, and is described as  

     𝑋: = 𝑐∈𝑧:=>∆𝑧      (2) 

where 𝑋: is the coefficient in (1), ∆𝑧 is a positive finite difference layer depth, and 𝑐∈ = 0.4. 

Following Holloway and Neelin (2009), a simplified limiting case of freezing microphysics is also 

used: all condensate is conserved and freezing is assumed to take place very rapidly when the 

parcel reaches the freezing level.  

 The individual perturbation profiles are shown in Figure 2.9 and have been conditionally 

averaged by CWV, with bin spacing as in Fig. 2.1a. Figure 2.9a illustrates the profiles of the 

radiosondes from all times of day. It is evident that only the highest CWV bins could be convective 

through a deep layer, as both the CIN (between the surface and ~850 hPa) and reduced buoyancies 

in the mid-upper troposphere are more likely to inhibit deep convection at lower CWV. Since the 

afternoon is the most convective time of day in the Amazon (Machado et al. 2004), we also 

separate the profiles by time-of-day to examine key thermodynamic differences and how stability 

in the nighttime hours could be contributing to the CIN observed in Fig. 2.9a.  

Figure 2.9b, which includes nighttime soundings only (01:30, 07:30 and 19:30 LT), shows 

the larger layer of CIN seen in Fig. 2.9a, which suggests that this CIN is most characteristic of the 

nighttime soundings. At these times of day, it is unlikely for convection to fire as a result of 
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Figure 2.9: Virtual temperature (𝑇0) difference between the parcel (computed with Deep-Inflow-A mixing) and the 
environment, binned by CWV. CWV bins are 1.5 mm in width (shown in the color bar), with the highest bin spanning 
64-70 mm and the lowest bin spanning 30-41.5 mm. Plume buoyancy differences are shown in (a) for all times of day, 
(b) for nighttime soundings (19:30, 01:30, 07:30 LST) soundings only, and (c) for midday (10:30, 13:30 LST) 
soundings only.  
 

local instability, but the profiles at high CWV appear supportive of deep convection if forced (Fig. 

2.9b). In Figure 2.9c, only profiles from late morning (10:30 LT) and early afternoon (13:30 LT) 

soundings were conditionally averaged by CWV. In contrast to the evening/morning soundings, 

there is very little CIN. The variability observed in the upper CWV bins is due to the low counts 

of profiles contributing to the average. Overall, it appears that a variety of CWV values would be 

conducive to convective activity in the afternoon hours, with CWV bins < 60 mm acting to support 

shallow convection, whereas only the highest CWV bins act to support deep convection.  

 The entrainment calculations suggest that CWV has a causal effect on deep convection, 

but they do not indicate the extent to which this effect dominates the observed relationship. 

Evidence suggests that CWV can also co-vary with convective precipitation (Raymond et al. 

2015). A concurrent study evaluating causality with modeling experiments (Y.-H. Kuo et al. 2016, 

personal communication), shows that without sufficient entrainment the pickup behavior observed 

in the relationship between precipitation and CWV (Figs. 2.1 and 2.2) does not occur.   

 Some caveats on this analysis should be noted: 

Figure 9: Virtual temperature (Tv) difference between the parcel (computed with turbulent entrainment) and the 
environment, binned by CWV. CWV bins are 1.5 mm in width (shown in the colorbar), with the highest bin spanning 
64-70 mm and the lowest bin spanning 30-41.5 mm. Plume buoyancy differences are shown in (a) for all times of 
day, (b) for nighttime soundings (19:30, 01:30, 07:30 LST) soundings only, and (c) for midday (10:30, 13:30 LST) 
soundings only. 
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(1) The plume buoyancies sorted by CWV are considerably smaller in the lower troposphere 

compared to the tropical western Pacific case for the same computation (Holloway and Neelin 

2009, Fig 2.8c). The onset of deep convection is thus likely dependent upon other factors unique 

to tropical land cases, in particular the greater variability of the boundary layer, as both sensible 

and latent heat fluxes are more variable. Additionally, there are key thermodynamic differences 

between the convective environments in the wet and dry seasons in the Amazon and thus likely 

differing thermodynamic controls on deep convection; i.e. during the wet season, there is less CIN, 

less CAPE and more moisture available throughout the column, whereas in the dry season there is 

more CIN, more CAPE and less moisture available in the column (Collow et al. 2016).  

(2) Entrainment assumptions can affect the details of the buoyancy profiles seen in Fig. 2.9c. In 

particular, smaller/larger values of the mixing coefficient in the lower troposphere yield 

larger/smaller buoyancy values.  Here it is useful to use a scheme that has already been applied to 

corresponding soundings at the western Pacific ARM site, but one could evaluate in further work 

whether there is evidence for differences in entrainment characteristics for deep convection over 

land in comparison to the ocean. More complex entrainment assumptions would obviously also 

have an impact, e.g., rescaling the entrainment from the cloud base (de Rooy et al. 2013; Bechtold 

et al. 2014), the entrainment rate weakening as convection over land deepens (Del Genio and Wu 

2010; Stirling and Stratton 2012), having a parameterized dependence on environmental humidity 

(Zhang and Klein 2010; Stirling and Stratton 2012) or a dependence on cloud size (Simpson 1971; 

Grabowski 2006; Khairoutdinov and Randall 2006; Stirling and Stratton 2012).  However, the 

computations here indicate a strong dependence on free tropospheric humidity can be found even 

with fixed entrainment. 
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(3) Associated with the smaller buoyancy in the lower free troposphere compared to the oceanic 

case, the role of freezing is more important to occurrences of positive buoyancy in the upper 

troposphere. If freezing is completely omitted, the jump in buoyancy seen near 550 mb in Fig. 2.9 

does not occur, and profiles in the upper troposphere decrease slightly faster with height, yielding 

little buoyancy even in the high CWV cases. Microphysical differences are known to exist in 

continental vs. maritime deep convective clouds: robust mixed-phase processes dominate 

continental convection, whereas maritime deep convection rarely involves vigorous microphysical 

processes in mixed-phase regions, although ice processes are still important (Rosenfeld and 

Lensky, 1998; Xu and Zipser, 2012). Proper representation of microphysical processes in models 

can affect simulation of clouds and precipitation (Khain et al. 2015; Zhang and Song, 2016), and 

these processes can be significantly altered by different concentrations of aerosols (Andreae et al., 

2004; Rosenfeld et al., 2008; Grabowski and Morrison, 2016). Empirically examining the effects 

of ice microphysics on buoyancy in various convective environments of the tropics is thus of 

interest for future work.  

 The discussion of caveats above points to some interesting aspects in which representation 

of deep convection over tropical land can be expected to be more sensitive than over the ocean. 

The additional involvement of the boundary layer is no surprise. However, the dependence of the 

deep convective instability through the upper troposphere on contributions to buoyancy from the 

freezing process over land, even under highly favorable conditions (sufficient free tropospheric 

water vapor and at a favorable time of day), points to a potentially greater sensitivity to freezing 

microphysics than over ocean.  These sensitivities will be addressed in future work. Nonetheless, 

the overall results for the leading order effects of lower free tropospheric water vapor on 

convection in the Amazon have striking parallels to the oceanic case. 
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2.8  Conclusions 

 This study compares and contrasts the relationship between CWV and deep convection in 

the Amazon to that in the tropical western Pacific using measurements from two neighboring sites 

at each location: specifically, results from the GOAmazon site in Manacapuru, BR and the GNSS 

site at INPA in Manaus, BR are compared to results from the DOE ARM sites at Nauru and Manus 

Island. The relationships evident at all locations are robust, with an increase in conditionally 

averaged rain rate as a function of CWV. The probability of precipitation often increases beyond 

50% in the highest CWV bins. The distribution of CWV is consistent with the distributions 

observed in microwave retrievals over ocean (Neelin et al. 2009) for both precipitating points and 

all points, with the distribution for precipitating points peaking just below the critical value at 

which precipitation increases sharply, and decreasing rapidly over the pickup region. All cases 

with sufficient data counts are consistent with a longer-than-Gaussian tail extending out to high 

CWV. Much of the variability in column moisture is due to variability in free tropospheric 

humidity, suggesting that the onset of deep convection is strongly dependent on free tropospheric 

humidity at tropical land sites, much like over tropical ocean sites.  

 The relationship between CWV and precipitation is generally robust across time-of-day. 

While there is a smaller fraction of precipitating points of a given CWV in nighttime hours 

compared to those occurring near midday, the conditionally averaged precipitation exhibits a very 

comparable pickup that increases beyond a threshold value of CWV. Thus, while the probability 

of nighttime precipitation likely depends on boundary layer factors, CWV remains an important 

proxy for the effects of lower free tropospheric water vapor on deep convection.  

 Because convection occurs at small time and space scales, spatial and temporal averaging 

can degrade the statistics describing the transition to deep convection. In daily averages, a highly 
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smoothed version of the behavior may still be seen, but much information about the underlying 

physics - particularly the sharp onset of conditional instability associated with deep convection - 

is largely lost. Daily averages are thus suboptimal for examining this behavior over both land and 

ocean, and their use for such an analysis is not recommended. Examining these statistics at various 

averaging intervals closer to the appropriate time scales for convection indicates that the pickup 

curves are robust over averages from 15 minutes to 3 hours. One-hour averages yield results very 

similar to 15-minute averages, while 3-hour averages slightly reduce the sharpness of the pickup. 

Similarly, using satellite retrievals of precipitation for a region surrounding the GOAmazon site at 

different spatial resolution yields convective transition statistics that reasonably reflect the in situ 

observations at 0.25° resolution, but the sharpness of the pickup of precipitation becomes 

smoothed as the domain of the spatial averaging increases.  

 Examining the temporal and vertical structure, lower tropospheric moisture increases prior 

to convection and precipitation at the GOAmazon site. This is consistent with findings for the 

tropical western Pacific ARM sites (Holloway and Neelin 2009). However, for the land case the 

lower tropospheric moisture is more variable in time and there are clear indications that moisture 

has been lofted following the convection, whether by the detrainment of water at various levels 

during the convective event or by heating and stratiform processes. After convection, the sub-cloud 

layer becomes cooler and slightly drier over both land and ocean. The before-and-after moisture 

profiles in this tropical land case thus illustrate the two-way interaction between convection and 

water vapor, with increases in lower tropospheric water vapor prior to convection consistent with 

impacts on buoyancy in entraining convection. 

 The latter impacts are tested by computing buoyancy profiles with a previously used profile 

of turbulent entrainment, which are then conditionally averaged by CWV to assess whether 
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buoyancy through a deep convective layer is comparable to the onset of precipitation as a function 

of CWV. This is examined for soundings from all times of day, and for nighttime and midday 

ensembles of profiles separately. For nighttime conditions, CIN may be an additional control, 

although the CIN is considerably smaller for the highest CWV values. The nighttime results may 

point to the presence of pre-existing disturbances or boundary layer conditions not captured by 

CWV. The midday soundings show buoyancies sufficient for shallow convection over a middle 

range of CWV. However, only the highest CWV bins would be convective through a deep layer 

for each case – nighttime, midday and all times – consistent with the pickup of precipitation. Some 

differences relative to the ocean are worth noting: there are likely greater contributions from the 

boundary layer to the conditional instability of the environment that cannot be sufficiently 

explained by variability in CWV, and there is evidence that freezing microphysics exerts greater 

influence on the development of buoyancy above the freezing level. Nevertheless, the dependence 

of deep convective onset on free tropospheric humidity is robust and of leading order over both 

tropical land and tropical ocean.  

2.A  Appendix 

 To illustrate the consistency between radiometer CWV and radiosonde CWV, Fig. 2.A1 

shows 15-min average radiometer CWV scattered against radiosonde CWV. CWV is thus sampled 

every 6 hours within the period 10 Jan - 30 Sep 2014. It is evident that there are no systematic 

biases observed at high values of CWV, which could have resulted from interpolation or 

measurement inaccuracy. Overall, while our ability to confirm consistency between instruments is 

limited to the sampling of the radiosondes, it is evident from this sample that the CWV values 

agree well across instruments. 
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Figure 2.A1: The relationship between radiometer CWV and radiosonde CWV for 10 Jan 2014 – 31 Jul 2014. The 
correlation coefficient (R) is 0.91. 
 

 Figure 2.A2 shows the probability density functions (PDFs) of the precipitating points 

using five precipitation datasets used throughout this study: AOSMET at the GOAmazon site, 

ORG at Nauru, ORG at Manus Island, TRMM, and the dataset from INPA in Manaus, Brazil 

coincident with the GPS CWV measurements. It is evident that the PDFs of the precipitation data 

from the GOAmazon site, Nauru, and Manus Island are all consistent with one another, whereas 

the TRMM and INPA datasets are biased low, with much lower probability of high rain rates (Fig. 

2.A2a). This contributes to differences in the magnitudes of the pickup curves between those seen 

in Fig. 2.4 (TRMM) and Fig. 2.5 (INPA), in comparison to Figs. 2.1 and 2.2. The TRMM data in 

Fig. 2.4 require a unique precipitation axis to those of Figs. 2.1 and 2.2, since these data have a 

different spatial footprint than all others used in this study. Fig. 2.5, on the other hand, adopts an 

axis that is scaled according to the ratio of 30-minute mean INPA data and 30-minute mean 

radiometer data. This value (4.68 mm hr-1) is divided by the range used in Figure 2.1d (6 mm hr-

1) to instead yield a range of 1.28 mm hr-1 for the axes in Fig. 2.5. It is also apparent that the PDFs 

of the precipitation datasets at Nauru, Manus Island, and the GOAmazon site all exhibit power law 

behavior (Fig. 2.A2b) out to high precipitation (~40 mm hr-1), after which point the distribution 
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Figure A1: The relationship between radiometer CWV and radiosonde CWV for 10 Jan 2014 – 31 
Jul 2014. The correlation coefficient (R) is 0.91.
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drops off exponentially. The exponent of the power law range is approximately -1.25, while the 

decay scale of the exponential range is roughly 26 mm hour-1. 

 

Figure 2.A2: (a) A PDF of precipitating points using 1-min average precipitation for all five instruments used in this 
study. The means of precipitating points (> 0.1 mm hr-1) are as follows: 7.7 mm hr-1 at Nauru, 9.7 at the GOAmazon 
site, 8.7 mm hr-1 at Manus Island, 2.5 mm hr-1 at the INPA in Manaus, and 2.2 mm hr-1 for the TRMM grid box (0.25o 
x 0.25o) that includes the GOAmazon site. A reference line of slope -0.017 is shown near the exponential part of the 
curve (from ~40-100 mm hr-1). (b) Same as in (a) but on log-log axes. A reference line corresponding to a power law 
with slope -1.25 is shown for precipitation rates < 40 mm hr-1. 
 

 

Figure 2.A3: Scatterplots of the precipitation data available from various instruments at the GOAmazon site – optical 
rain gauge (ORG), present weather detector (PWD), Parisvel laser disdromeder (PARS), tipping bucket rain gauge 
(RAIN) - in comparison to the AOSMET instrument chosen for this analysis. Results shown are for the time periods 
(a) prior to 15 Oct 2014 (ORG and PWD only) and (b) after 15 Oct 2014, as a limited selection of reliable observations 
were available before 15 Oct 2014. 
 
 

Figure 2.A3 compares the available precipitation observing systems at the GOAmazon site 

by scattering the 15-minute average precipitation rates of each system against the chosen data set, 

Figure A2: (a) A PDF of 1-min average precipitation for all five instruments used in this study. The 
means of precipitating points (> 0.1 mm hr-1) are as follows: 7.7 mm hr-1 at Nauru, 9.7 at the GOAmazon 
site, 8.7 mm hr-1 at Manus Island, 2.5 mm hr-1 at the INPA in Manaus, and 2.2 mm hr-1 for the TRMM grid 
box (0.25o x 0.25o) that includes the GOAmazon site. A reference line of slope -0.017 is shown near the 
exponential part of the curve (from ~40-100 mm hr-1). (b) Same as in (a) but on log-log axes. A reference 
line corresponding to a power law with a slope of -1.25 is shown for precipitation rates < 40 mm hr-1.

100 101 102

Precip (mm hr-1)

10-5

10-4

10-3

10-2

10-1

10-0

Pr
ob

ab
ilit

y 
De

ns
ity

Nauru ORG
GOAmazon AOSMET
Manus Island ORG
Manaus INPA
TRMM 0.25o

0 20 40 60 80 100
Precip (mm hr-1)

10-5

10-4

10-3

10-2

10-1

10-0

Pr
ob

ab
ilit

y 
De

ns
ity

Nauru ORG
GOAmazon AOSMET
Manus Island ORG
Manaus INPA
TRMM 0.25o

(b)(a)

AOSMET (mm hr-1)
0 20 40 60 80

G
au

ge
 (m

m
 h

r-1
)

0

20

40

60

80

100

120
PARS
RAIN
ORG
PWD
1:1

(b) After 10/15/14 
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Figure A3: Scatterplots of the precipitation data available from various instruments at the GOAmazon site – optical 
rain gauge (ORG), present weather detector (PWD), Parisvel laser disdromeder (PARS), tipping bucket rain gauge 
(RAIN) - in comparison to the AOSMET instrument chosen for this analysis. Results shown are for the time periods 
(a) prior to 15 Oct 2014 and (b) after 15 Oct 2014, as a limited selection of reliable observations were available 
before 15 Oct 2014.
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AOSMET. Between 01 Jan and 15 Oct 2014, four instruments recorded precipitation: an optical 

rain gauge (ORG), a present weather detector (PWD), a Vaisala WXT520 from the Aerosol 

Observing Meteorological Station (AOSMET), and a Vaisala WXT520 from a system including a 

3-channel microwave radiometer (MWR3C). Comparison to MWR3C precipitation is not included 

in this analysis, but the data compare well with the AOSMET precipitation chosen for use in this 

study (personal communication, ARM Climate Research Facility Data Quality Office).  

 Figure 2.A3a shows the PWD and ORG datasets scattered against the AOSMET dataset. 

Two main features are worth noting: (1) the plateau of rain rates in the PWD data (blue), and (2) 

the erroneous rainfall measured by the ORG (green). The plateau of PWD rain rates indicates that 

the instrument records a maximum value of ~8-10 mm hr-1; this leads to the systematic recording 

of erroneously low rain rates above an unknown threshold. These data could be used to confirm 

the incidence of rain, but analysis of the rain rate magnitudes using these data is not recommended. 

The ORG had many operational problems throughout the specified time period and thus often 

recorded precipitation when it was not raining, as is evident from the scatter on the ordinate. Less 

evident are all of the erroneous values at low rain rates recorded as a result of instrument 

malfunction. Eliminating all points < 0.5 mm hr-1 in the ORG data would likely remedy some 

issues on the low end, but a threshold would not likely help to eliminate erroneous data on the high 

end. Therefore, these data must be extensively examined and errors must be corrected for before 

using these data prior to 15 Oct 2014 when the instrument was repaired (personal communication, 

ARM Climate Research Facility Data Quality Office).  

After 15 Oct 2014, five instruments measured precipitation at the GOAmazon site; all data 

besides that from the MWR3C system are included in Fig. 2.A3b. It is evident that the ORG data 

are consistent with the AOSMET precipitation after 15 Oct 2014, as are the data from the Parisvel 
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laser disdromeder (PARS) and the tipping bucket rain gauge (RAIN). Overall, however, the 

AOSMET precipitation data set is the most reliable for use throughout the entire GOAmazon 

campaign, and is thus chosen for use in this analysis. Prior to 15 Oct 2014, use of neither the PWD 

nor the ORG precipitation data sets is recommended. 

 

Figure 2.A4: Same as Fig. 1d-f, except with the MWRRET value-added product best-estimate CWV data following 
the methods of Turner et al. (2007).  
 

 As previously noted in Section 2.2, a value-added CWV product from the MWR was 

archived by the DOE ARM Data Archive in March 2016 and made available in June 2016 

(personal communication, ARM Climate Research Facility Data Quality Office). This data set, 

referred to as MWRRET, is retrieved using a physically-based methodology that includes more 

information about the atmospheric state in the retrieval process, an optimal estimation in an 

iterative scheme to retrieve CWV and liquid water path, and a radiative transfer model (Turner et 

al. 2007).  

 Even after linearly interpolating over periods of 6 hours or less, the MWRRET contains 

60% less data in comparison to the MWR data, and the missing data is likely biased towards 

periods with substantial precipitation. The length of missing values over which the MWRRET data 

are linearly interpolated is roughly 10-50% greater than for the MWR data.  In the MWRRET 

CWV dataset, differences in the linear interpolation of CWV values across wet-window periods 

30 40 50 60 70
CWV (mm)

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y 
of

 P
re

ci
p

30 40 50 60 70
CWV (mm)

100

101

102

103

104

Fr
eq

 D
en

si
ty

precip > 0.5 mm hr-1

all

30 40 50 60 70
CWV (mm)

1

2

3

4

5

6

Pr
ec

ip
 (m

m
 h

r-1
) GOAmazon

AOSMET
MWRRET

Figure A4: Same as Fig. 1d-f, except with the MWRRET value-added product best-estimate CWV data 
following the methods of Turner et al. (2007). 

(b) (c)(a)
70

64
61
58
55
52
49
46
43
40
37
34
31
28

67



	

	 40 

(rainy times) tend to shift many of the values previously belonging to high CWV bins to lower 

CWV bins. The above contributes significantly to the difference in the statistics.  

 Figure 2.A4 shows a comparison of this data set to the analysis in Fig. 2.1.  The results 

using MWRRET yield identical locations of the precipitation and probability pickups. However, 

the magnitude of the precipitation and the probability of precipitating points in the last four CWV 

bins (Figs. 2.A2a, 2.A2b) are reduced compared to Figs. 2.1d and 2.1e. Additionally, the long tails 

of the CWV distributions for all points and precipitating points at high CWV, seen in Fig. 2.1f, are 

less pronounced (Fig. 2.A2c) since the occurrence of high CWV is significantly reduced. Overall, 

this comparison of the less filtered MWR retrieval in the body of the paper to the more conservative 

MWRRET retrieval in Fig. 2.A4 helps to bound the sensitivity of the statistics to retrieval choices. 

Regardless of the CWV data retrieval algorithm and method, the key features of the statistics 

observed in Fig. 2.1 are robust. 

 In summary, although the qualitative convective transition statistics are robust across a 

broad set of instrumentation, careful consideration must be given to the observing systems and 

various data retrieval methods for quantitative aspects, as systematic biases and instrument error 

could affect comparisons to model output.  

 

 

 

 

 

 

 



	

	 41 

CHAPTER 3 

Deep Convective Organization, Moisture Vertical Structure, and Convective 

Transition using Deep-Inflow Plume Buoyancies in the Amazon 

Abstract 

It is an open question whether an integrated buoyancy measure from a single plume 

buoyancy formulation can yield a strong relation to precipitation across tropical land and ocean, 

across seasons and times of day, and for varying degrees of convective organization. An 

observational basis for such a relation can be beneficial for constraining convective 

parameterizations, and the consistency of the precipitation-water vapor relation between the DOE 

Atmospheric Radiation Measurement (ARM) sites in Manacapuru, Brazil and at Nauru in the 

tropical western Pacific provides one indication that this may be possible. Entraining plume 

buoyancy calculations confirm that CWV is a good proxy for the conditional instability of the 

environment, yet differences in convective onset as a function of CWV exist over land and ocean, 

as well as seasonally and diurnally over land. This is largely due to variability in the contribution 

of lower tropospheric humidity to the total column moisture. Over land, the relationship between 

deep convection and lower free tropospheric moisture is robust across all seasons and times of day, 

whereas the relation to boundary layer moisture is robust for the daytime only. Using S-Band radar, 

these transition statistics are examined separately for unorganized and organized convection. The 

latter exhibit sharp pickup curves as a function of lower free tropospheric humidity, consistent 

with buoyancy-based parameterization. Mixing corresponding to deep inflow of environmental air 

into a plume that grows with height provides a weighting of boundary layer and free tropospheric 

air that yields buoyancies consistent with the observed onset of deep convection across seasons 
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and times of day, across land and ocean sites. Furthermore, it provides relationships that are as 

strong or stronger for mesoscale-organized convection as for unorganized convection. 

3.1  Introduction 

Convection is a key process in the hydrologic and energy cycles through the vertical 

transport of heat, moisture and momentum, and thus largely affects the global energy balance. 

Representing convection at the right time and place is crucial to the realistic simulation of 

atmospheric variability. However, the representation of convection remains a large source of 

uncertainty, bias, and error in current generation numerical weather prediction and climate models 

(Knight et al. 2007; Sanderson et al. 2008). Errors in simulated precipitation fields often indicate 

deficiencies in the representation of these physical processes in models. Improving the 

representation of deep convection thus depends on knowledge of leading-order controls and further 

requires the development of robust observational constraints from statistical relations that describe 

these controls.  

The uncertainty linked to deep convection lies primarily within a model’s representation 

of complicated interactions across scales and the onset of deep convection. Since most of the 

present-day global climate models (GCMs) cannot explicitly resolve the small-scale physics of 

convection, the ensemble effect of convection is represented through parameterization.  The 

differences among the different convective parameterizations lie primarily in the identification of 

the source layer of convection and how convective instability is defined and released (Suhas and 

Zhang 2014). Observational constraints on these processes would provide much-needed insight 

into the physical basis of these parameterizations. Studies suggest that improvements in the 

simulation of the Madden-Julian Oscillation (MJO) can be achieved by tweaking the convective 

closure (Wang and Schlesinger 1999; Zhang and Mu 2005; Lin et al. 2008), and numerical 
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experiments of the diurnal cycle of precipitation reveal that the parameterization is the main source 

of error (Betts and Jakob 2002; Bechtold et al. 2004, Knievel et al. 2004; Xie et al. 2004; Lee et 

al. 2007). Additionally, sensitivity experiments show that certain parameterizations work better 

for some geographic regions or environments than others, indicating the limitations of 

parameterizations to consider a range of dynamical and thermodynamic constraints (Liang et al. 

2004).  

Factors controlling deep convection in the tropics include sensitivity to free tropospheric 

moisture and entrainment profiles (Brown and Zhang 1997; Holloway and Neelin 2009), the 

diurnal cycle (Betts and Jakob 2002; Chaboureau et al. 2004; Del Genio and Wu 2010; Zhang and 

Klein 2010), large-scale dynamics forcing vertical ascent (Kumar et al. 2013; Hohenegger and 

Stevens 2013), vertical wind shear (Rotunno et al. 1988), microphysical processes and aerosols 

(Andreae et al. 2004; Rosenfeld et al. 2008), and lifting at the leading edge of cold pools (Tompkins 

2001; Khairoutdinov and Randall 2006; Schlemmer and Hohenegger 2014). Examining the 

transition to deep convection in varying spatial domains and in time (Holloway and Neelin 2010; 

Adams et al. 2013) is also critical to our understanding. Despite additional complexities, it is of 

interest to examine whether a bulk measure of buoyancy computed from a simple plume model 

can yield a consistent relation with observed deep convection over a range of conditions, including 

larger mesoscale convective systems (MCSs). Ideally, a parameterization would yield realistic 

statistics for such processes across regions, seasons, times of day, and even for varying levels of 

convective organization.  

Several factors contribute to deep convective onset and associated uncertainty in GCMs, 

yet one of the most significant is thought to be the entrainment profile. Sensitivity studies with 

climate models have demonstrated that the mixing processes in cumulus convection are among the 
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most sensitive of parameters (Murphy et al. 2004; Klocke et al. 2011; Bernstein and Neelin 2017). 

Sahany et al. 2012 showed that differing the entrainment profiles in CAM3.5 had a substantial 

impact on the convective onset as defined by the entraining CAPE. Additionally, Kuo et al. 2017 

found that without entrainment, the sharp increase in precipitation with CWV observed over both 

land (Schiro et al. 2016; Ahmed and Schumacher 2016) and ocean (Bretherton et al. 2004; Peters 

and Neelin 2006; Holloway and Neelin 2009; Neelin et al. 2009; Ahmed and Schumacher 2015) 

disappears. However, detailed representation of cumulus mixing remains highly uncertain due 

partly to the lack of observational constraints (e.g. Mapes and Neale 2011).  

By modifying the entrainment profile, the relative roles of boundary layer humidity and 

free-tropospheric humidity can significantly change, which motivates our discussion here about 

the appropriate weighting of free tropospheric and boundary layer air and the interaction between 

convection and the moisture field. It is of interest to find a mixing scheme that is most appropriate 

to span a range of conditions in varying convective environments. Holloway and Neelin (2009) 

explored the consistency of various mixing assumptions to the observed onset of precipitation as 

a function of CWV and introduced a mixing scheme associated with deep inflow into the plume 

through a deep lower tropospheric layer. The concept of deep inflow into a plume is agnostic 

regarding the extent to which the environmental air enters via small-scale turbulence versus 

organized inflow. It is thus plausible that it may span a range of convection types and is reasonable 

to test for consistency with the way organized convective system interact with their environments. 

This is explored here using radar data to distinguish local, isolated convection from organized 

convection. 

Here, we extend beyond the CWV-precipitation relation to examine the moisture vertical 

structure, its associated variability (e.g. regionally, diurnally, seasonally), its effects on the 
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conditional instability of the environment and thus the onset of deep convection, and its relation 

to convective organization. The convective environments in and around Manaus, Brazil, as 

intensively observed during the two-year (2014-2015) Green Ocean Amazon, or GOAmazon, 

campaign will be of primary focus, but we will draw parallels where appropriate to the convective 

environment in the tropical western Pacific using data from the DOE Atmospheric Radiation 

Measurement (ARM) site at Nauru. The relationship between boundary layer and free tropospheric 

moisture to convective onset will be quantified, and plume buoyancies, computed with various 

mixing assumptions, will be related to the observed onset of deep convection across regions, 

seasons, and times of day, and for varying degrees of convective organization. 

3.2 Data 

3.2.1  Precipitation 

The in situ precipitation measurements analyzed from the GOAmazon site are from the 

Aerosol Observing System and measured by the acoustic gauge of a Vaisala WXT520 

meteorological station; these data are thus referred to as AOSMET precipitation. When related to 

radiosonde CWV, AOSMET precipitation is averaged at 2-hr intervals centered 1 hour after 

radiosonde launch; for analyses with radiometer CWV, AOSMET precipitation is averaged at 12-

min intervals. Precipitation probability is computed with respect to a threshold of 0.5 mm hr-1.   

Radar derived precipitation rates are also incorporated. These data were obtained from the 

Sistema de Proteção da Amazonia (SIPAM) ground-based S-Band (10 cm wavelength), Doppler, 

single-polarized radar, with a horizontal beam width of 0.96o and a vertical beam width of 0.93o. 

The radar scans up to 17 elevation angles from 0.9o to 19o every 12 min. The reflectivity data are 

interpolated to the Constant Altitude Plan Position Indicator (CAPPI) data with horizontal 

resolution of 2 km and vertical resolution of 0.5 km (altitude ranges from 0.5 to 20 km). A single 
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reflectivity-precipitation (Z-R) relation (Z=174.8R1.56), created using 2014 wet-season impact 

disdrometer data, was applied by ARM to the 2.5 km SIPAM Manaus S-Band CAPPI data to 

generate rain rates for each radar volume. These data are then spatially averaged in 25 km and 100 

km grid boxes surrounding the GOAmazon site (T3), to provide statistics comparable to that of 

typical GCM grid scales. The 100 km grid box was shifted slightly right of center from the T3 site, 

as data is not recommended for use for rain rate retrievals beyond a 110 km radius of the radar (see 

Giangrande et al. 2016, Fig. 1).  

3.2.2  Moisture  

The data used in this study are taken from two DOE ARM sites in the tropics. The first is 

the DOE ARM Mobile Facility deployed as part of the GOAmazon field campaign (January 2014–

December 2015). All observations in this study were measured at the T3 site (3.21oS, 60.60oW, 

50-m altitude) near Manacapuru, except for data from an S-Band radar at site T1 (3.15oS, 59.99oW) 

to the east of T3. The results from the GOAmazon site are compared to 5 years of data (2001-

2006) from a retired DOE ARM site in the tropical western Pacific at Nauru (0o 31’S, 166o 54’E; 

7-m altitude).  

Thermodynamic profiles and CWV data from the radiosondes were obtained from 4-5 

times daily launches (01:30, 07:30, 10:30 – wet season only, 13:30 and 19:30 LT) at the 

GOAmazon site from Vaisala Digi-Cora III sounding systems at 2-s resolution. The raw sounding 

data were interpolated to 5-mb intervals (1 mb = 1 hPa) for mixing computations in Section 2.5. 

The reported uncertainties are ~5% for relative humidity and ~0.5oC for temperature below 500 

mb. It is worth noting that, because of sampling, averages including all available data in this 

analysis will be more representative of the nighttime soundings than the daytime soundings. At 

Nauru, launches occurred twice daily (00:00 and 12:00 LT). We remove any radiosondes from the 
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analysis if rain occurred 4 hours prior to launch to avoid, as best as possible, sampling within a 

cold pool and an environment modified by precipitation processes. 

Microwave radiometer CWV from the GOAmazon site using the MWRRET value-added 

product (Turner et al. 2007) is employed in Section 2.4.1. A linear interpolation procedure is 

performed to gap-fill CWV values across time periods of 6 hours or less. Interpolation is 

reasonable given that the data gaps are typically short and the temporal persistence of water vapor 

values for strong convective events is on the order of hours (Holloway and Neelin 2010), although 

quantitative differences can be noted between different methods of filtering and interpolation. 

Figure 3.S1 quantifies these differences by comparing different interpolation methods and datasets, 

including those used in Schiro et al. (2016). The linear interpolation procedure likely 

underestimates peak CWV, but is chosen as the more conservative method. The data used in this 

study are averaged at 12-min intervals to match the 12-min resolution of the Doppler radar. 

3.2.3  Cloud top height 

Cloud top height provides an additional measure of deep convection to the convective onset 

statistics presented in Section 3.4. These data are obtained from a product provided through the 

DOE ARM program that uses the 95 GHz W-Band ARM Cloud Radar (WACR), micropulse lidar, 

and ceilometer data to produce cloud boundaries using the WACR Active Remote Sensing of 

Clouds (WACR-ARSCL) Value-Added Product (Kollias and Miller, 2007). Cloud top heights are 

averaged at 1-hour intervals, and cloud tops with bases greater than 3 km are excluded from the 

analysis.  

3.2.4  Convection Classification 

Information about convection type is obtained from composite S-Band radar reflectivity in 

a 100 km grid box surrounding the GOAmazon site. Classifying deep convection and organized 
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convection using radar data typically involves employing a maximum reflectivity threshold in base 

reflectivity (e.g. Churchill and Houze 1984; Steiner et al. 1995). If this threshold exceeds 40 dBz, 

it is typically convective, as stratiform precipitation usually does not have such high base 

reflectivity. Here, we employ a threshold of 45 dBz to distinguish convective from stratiform 

processes since we use composite reflectivity instead of base reflectivity. Events are grouped into 

four categories.  Deep organized convection (“DEEP-org”) is classified as having maximum 

reflectivity greater than or equal to 45 dBz and a spatial extent greater than 50 km in one direction. 

Spatial extent is defined by contiguous pixels with reflectivity greater than 30 dBz. A 50 km 

threshold is employed here, rather than a more traditional 100 km threshold to identify mesoscale 

convective systems (MCSs; Houze 2004), as a reasonable separation in order to include as many 

convective events as possible. Deep cellular convection (“DEEP-cell”) are locally-occurring, 

isolated cells with reflectivity greater than 45 dBz and a spatial extent less than 50 km in one 

direction. Examples of DEEP-org and DEEP-cell events are shown in Fig. 3S.1. Other 

precipitation (“other”) is defined by maximum reflectivity less than 45 dBz for any spatial extent. 

Lastly, no precipitation (“no precip”) is defined by maximum reflectivity less than 20 dBz 

throughout the 100 km domain.  

3.3  Moisture Vertical Structure 

A robust relationship exists between CWV and precipitation over tropical oceans 

(Bretherton et al. 2004; Peters and Neelin 2006; Neelin et al. 2009; Holloway and Neelin 2009; 

Ahmed and Schumacher 2015), which also holds over tropical land (Schiro et al. 2016; Ahmed 

and Schumacher 2016). In this study, we go beyond this relation by characterizing the effects of 

variability in moisture vertical structure regionally, seasonally, and diurnally on convective onset, 
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with the aim of better understanding the mechanisms through which the moisture field interacts 

with the convection through effects on conditional instability.  

 

Figure 3.1: (a) Mean specific humidity profiles at the GOAmazon site by time of day (nighttime – 01:30, 07:30 and 
19:30 LT; daytime – 10:30, 13:30 LT) and season (wetter months, DJFMAM, in blue; drier months, JJASON, in 
orange). (b) As in (a), but for specific humidity variance. 
 

Fig. 3.1 shows the mean moisture structure (Fig. 3.1a) and moisture variance profiles (Fig. 

3.1b) throughout the troposphere for Nauru in the tropical western Pacific (black curve; see also 

Holloway and Neelin 2009) and the GOAmazon site (color). The results shown at Nauru span the 

entire seasonal cycle, as there is little variability seasonally. There is also little variability in 

moisture diurnally, but we show this for reference. At the GOAmazon site, we define seasons 

based on the two main patterns observed in moisture variance, seen in Fig. 3.1b. This definition 

varies from those traditionally used in the literature defining wet, dry, and transition seasons in the 

Amazon (e.g. Machado et al. 2004). Since we are specifically examining variability in moisture 

vertical structure and its effects on conditional instability of the environment and the onset of deep 

convection, we feel justified in our definitions based on moisture variance only. This also aids in 

developing robust statistics, given the limited sampling of the radiosondes. Thus, we are left with 

Figure 1: (a) Mean specific humidity profiles at the GOAmazon site by time of day (nighttime
– 01:30, 07:30 and 19:30 LT; daytime – 10:30, 13:30 LT) and season (wetter months,
DJFMAM, in blue; drier months, JJASON, in orange). (b) As in (a), but for specific humidity
variance.
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two seasons consisting of 6 months each – the wetter half of the year (Dec-May, DJFMAM) and 

the drier half (Jun-Nov, JJASON) – that will be compared throughout the study. 

 

Figure 3.2: (a) Specific humidity profiles conditionally averaged by CWV (colors) for Nauru (dashed) and 
GOAmazon (solid). Averages are for profiles during all times of day and all seasons. (b) For GOAmazon profiles 
only, zoomed in on the lower troposphere (700-1000 mb) and split out by season (wetter months, solid; drier months, 
dashed) and time of day (night, top panel; day, bottom panel). 
 

During the wetter months (JFMAM), the atmosphere is moist throughout the entire 

troposphere and is less variable than the dry season, wherein the humidity in the boundary layer 

and middle troposphere is more variable. Diurnal variability also exists in the vertical moisture 

structure, most notably in the near-surface layer but also in the lower free troposphere. Compared 

to Nauru, along the eastern margin of the warm pool in the tropical western Pacific, the boundary 

layer at the GOAmazon site is less moist, but the lower free troposphere is moister. Moisture 

variance is notably greater at Nauru, particularly in the lower free troposphere, than it is at the 

GOAmazon site.  

Fig. 3.2a shows the profiles of specific humidity conditionally averaged by CWV for Nauru 

(dashed), as shown in Fig. 3a of Holloway and Neelin (2009), over top of the results for 
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Figure 2: (a) Specific humidity profiles conditionally averaged by CWV (colors) for Nauru
(dashed) and GOAmazon (solid). Averages are for profiles during all times of day and all
seasons. (b) For GOAmazon profiles only, zoomed in on the lower troposphere (700-1000 mb)
and split out by season (wetter months, solid; drier months, dashed) and time of day (night, top
panel; day, bottom panel).
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GOAmazon (solid). The results in Fig. 3.2a are averaged for all times of day and all seasons. For 

the same CWV values, the boundary layer humidity is higher at Nauru than at GOAmazon, and 

the lower free troposphere (~750-900 mb) is moister at GOAmazon than at Nauru, especially at 

lower CWV. Above 700 mb, the GOAmazon site still has higher humidity on average, but the 

profiles are more consistent across CWV. To summarize, the contribution to total CWV from the 

boundary layer at Nauru is larger, and thus the moisture content aloft is, on average, lesser at Nauru 

than it is at the GOAmazon site for the same CWV. Thus, there are different moisture profiles with 

the same total column humidity over land and ocean, which likely contribute to differences 

observed in the onset of deep convection as a function of CWV over land and ocean. For instance, 

the onset of deep convection occurs at lower CWV over land and ocean (Schiro et al. 2016; Ahmed 

and Schumacher 2017). This will be explored further in Section 3.5 where we examine the effects 

of moisture on conditional instability with simple plume models. 

To examine the diurnal cycle and its relation to the moisture vertical structure in greater 

detail with respect to CWV at the GOAmazon site, we conditionally average the specific humidity 

profiles on CWV for daytime and nighttime soundings for DJFMAM (solid) and JJASON (dashed) 

and zoom in on the structure in the lower troposphere (700-1000 mb) in Fig. 3.2b. Overall, the 

boundary layer in the daytime is deeper (on the order of 1 km), more variable, and spans a broader 

range of specific humidity values with CWV than in the nighttime boundary layer, which is much 

shallower (on the order of a few hundred meters), less variable, and spans a narrower range of 

humidity values with CWV. In the drier months, the boundary layer contributes more to the total 

column moisture than in the wetter months. In the drier months during the day, total column 

moisture is characterized by a narrower range of humidity values in the lower free troposphere 

than in the wetter months. Alternatively, above 700 mb, total column moisture is characterized by 
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a broader range of humidity values in the drier months than the wetter months for both daytime 

and nighttime soundings (not shown). For reference, Fig. 3.S2 in the supplement shows the 

correlation of CWV with specific humidity as a function of height broken out by time-of-day and 

season. 

Overall, the moisture profiles that characterize the total column moisture can vary 

seasonally, diurnally, and regionally. The implications of this will be explored in greater detail in 

Section 3.5, as we examine the relation between the moisture vertical structure and the conditional 

instability of the environment with entraining plume buoyancies. 

3.4  Convective Onset Statistics 

3.4.1  Relationship to Seasonal and Diurnal Cycles 

The onset of deep convection, as shown by precipitation and cloud top height as a function 

of CWV, is shown in Fig. 3.3 for DJFMAM Day, DJFMAM Night, JJASON Day, and JJASON 

Night. The statistics are shown for both in situ precipitation and precipitation from the S-Band 

radar, as well as for CWV from both the microwave radiometer and radiosondes. Cloud top heights 

are derived from the W-Band cloud radar (x’s). All cloud tops with bases greater than 3 km are 

excluded from the statistics. It is evident that the conditional mean rain rate and cloud top height, 

as well as the probability of precipitation exceeding 0.5 mm hr-1 and cloud top height exceeding 8 

km, sharply increase with CWV across the diurnal and seasonal cycles.  

During the daytime, precipitation is frequent, which is evident in the PDFs of precipitating 

points (colors) in comparison to the total points (black/gray squares). On average, the onset is 

observed at slightly lower CWV in the daytime than at night, and at higher CWV in the wetter 

months than in the drier months. Additionally, in the drier months, the range of CWV observed is 
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Figure 3.3: Convective onset statistics at the GOAmazon site for DJFMAM Day (top row), DJFMAM Night (second 
row), JJASON Day (third row), and JJASON Night (bottom row) for 12-min average microwave radiometer CWV 
and in situ precipitation (blue stars), radar precipitation at 25 km (green circles), radar precipitation at 100 km (yellow 
stars), and W-Band Cloud Radar derived cloud top height (x‘s), as well as radiosonde-derived CWV with 1-hr average 
in situ precipitation (blue circles). Left column: precipitation conditionally averaged on CWV. Middle column: 
probability of precipitation greater than 0.5 mm hr-1 in each CWV bin. Right column: probability density of radiometer 
(black squares) and radiosonde (gray squares) CWV, and of precipitating points (colors).  
 

wider than that observed during the wetter months. In the daytime, the lower tropospheric moisture 

is higher than in the nighttime for the same CWV value and for the dry season in comparison to 

the wet season (Fig. 3.2). This result suggests that differences in lower tropospheric moisture 

content, rather than total column moisture, are most important to the onset of deep convection, 
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thus contributing to the differences observed in the onset with respect to CWV regionally, 

seasonally, and diurnally. In Section 3.4.3, we divide the lower troposphere into contributions from 

the boundary layer and free troposphere to examine their respective influences.  

It is worth noting that these characteristics defining the onset are consistent across all 

observational platforms, yet the sampling limitation of the radiosonde and in situ-derived statistics 

in comparison to the radiometer and radar derived statistics is apparent. Throughout the remainder 

of the study, we use radiosonde-derived thermodynamic quantities in relation to in situ and radar 

precipitation, since we wish to examine the vertical moisture structure within the context of the 

conditional instability of the environment. This, however, provides some context for the robustness 

of the statistics when the sample size is increased.  

3.4.2  Convective Organization 

To examine the onset as it relates to convective organization, radar data are employed to 

characterize the level of organization of the convection within a 100 km grid box surrounding the 

GOAmazon site within an hour of radiosonde launches. As described in Section 3.2.4, convection 

is classified as deep if the composite radar reflectivity exceeds 45 dBz. The convection is 

considered organized when it exceeds 50 km in one linear dimension (contiguous reflectivity > 30 

dBz), and is considered cellular for anything less than 50 km. This information is displayed in a 

histogram in the left column of Fig. 3.4, with the probability of precipitation (precipitation rates 

greater than 0.5 mm hr-1) as a function of radiosonde-derived CWV overlain. Moving forward, all 

radiosondes launched after precipitation events up to 4 hours prior are eliminated from this analysis 

to reduce the likelihood of sampling air directly modified by precipitation processes. For the 

probability, only bins including 5 or more samples are plotted. 
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Figure 3.4: (left column) Histograms of convection type as classified using radar reflectivity and precipitation area 
within a 100 km grid box surrounding the GOAmazon site (black – organized deep convection ≥ 45 dbz and at least 
50 km wide in one direction; dark grey – cellular deep convection ≥ 45 dbz and < 50 km wide in one direction; light 
gray – other precipitation with reflectivity < 45 dbz; white - no reflectivity signature > 20 dbz detected in the domain) 
and probability of precipitation greater than 0.5 mm hr-1 from in situ rain gauge measurements (blue diamonds), radar 
precipitation from a 25 km spatial average around the GOAmazon site (green circles), and radar precipitation from a 
100 km spatial average around the GOAmazon site (yellow star) conditionally averaged by integrated humidity in (a) 
the total column from 200-1000 mb, (b) the lower free troposphere (700-900 mb), and (c) the boundary layer (950-
1000 mb). (right column) The fraction of the total observations that were deep convection (grey stars), cellular deep 
convection only (blue squares) and organized deep convection (red circles) with rain rates greater than 0.5 mm hr-1.  

 

The information in Fig. 3.4 (top row) is complementary to that presented in Fig. 3.3: the 

probability of precipitation is the same except for being matched to radiosonde CWV and using 1-

hr averages instead of 12-min averages, and the histogram presented is a more detailed look at the 

convective type contributing to the distribution of precipitating points. The right column examines 

the fraction of the total observations that were classified as deep convection (all deep convection 

– grey stars; organized deep convection – red circles; cellular deep convection – blue squares). 
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The grey stars share a symbol with the yellow stars in the left panel to signify their similarity, as 

the black stars are derived from the classification at 100 km and the yellow stars are derived from 

the mean reflectivity in the 100 km domain. 

The onset of deep convection occurs with increasing total moisture in the column. The 

average probability of precipitation is greater at 100 km than at 25 km and in situ because the 

likelihood of observing precipitation increases as the size of the grid cell increases. Isolated cells 

are the most common deep convection type, with organized deep convection a larger fraction of 

the total at high CWV. A key finding is that organized convection and local, isolated cells are both 

sensitive to the humidity in the atmosphere, and the occurrence of both convective types sharply 

increases with increasing CWV. Isolated cellular convection is, however, observed at CWV in the 

40-50 mm range, whereas organized convection is rarely observed in this range. This will be 

explored further in Section 3.4.3. 

3.4.3  Boundary Layer vs. Free Troposphere 

We now examine the respective relationships of boundary layer and free tropospheric 

humidity to deep convection and convective organization. Much of the relation between deep 

convection and CWV can be explained by its relation to free tropospheric moisture (middle row, 

Fig. 3.4). Some of the relation can also be explained by boundary layer humidity (bottom row, Fig. 

3.4), although this relationship is less pronounced on average. (For information about the 

sensitivity of these results to layer averaging, see Fig. 3.S4 and corresponding discussion in the 

supplement.) It should be noted, however, that the averages over all times of day are more 

representative of nocturnal convection, as radiosondes are more frequently launched at these times.  

Fig. 3.5 is the same as Fig. 3.4 for the free troposphere, but separates out the analysis by 

time-of-day and season. The probabilities of precipitation for in situ, 25 km radar, and 100 km 
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Figure 3.5: Same as Fig. 3.4, except for integrated humidity in the free troposphere (700-900 mb) only during (a) 
DJFMAM Day, (b) DJFMAM Night, (c) JJASON Day, and (d) JJASON Night.  
 

radar precipitation all increase sharply with increasing lower free tropospheric humidity for all 

seasons and times of day; the one exception is the dry season nighttime, whose probabilities are 

lower. It appears for this case that high humidity in the lower free troposphere does not guarantee 

convection, but when convection is observed it occurs in humid environments only. Additionally, 

the probability of both cellular and organized deep convection increases sharply with increasing 

humidity in the wet season, but the dry season daytime shows moderately high probability of 
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Figure 3.6: Same as Fig. 3.5, except for integrated humidity in the boundary layer (950-1000 mb) during (a) DJFMAM 
Day, (b) DJFMAM Night, (c) JJASON Day, and (d) JJASON Night.  
 

isolated cellular convection even for lower humidity. Cellular deep convection is ubiquitous 

throughout the domain during the daytime hours in all seasons and is the most frequent type of 

deep convection observed. At night, however, the probabilities of both convection types are 

equally likely and increase sharply with increasing lower free tropospheric humidity. Overall, the 

occurrence of both cellular and organized convection is strongly tied to the lower free tropospheric 

humidity, with occurrence of cellular convection at lower humidity in the daytime hours 

(particularly the dry season). 
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The role of the boundary layer is depicted in Fig. 3.6, where the probability of precipitation 

and frequency of deep convective events show strong relation to the boundary layer humidity 

(1000-950 mb) during the daytime. At night, this relationship is less discernable. The nocturnal 

boundary layer, often shallower than 950 mb, is much less variable than the daytime boundary 

layer and maintains high humidity at nearly constant values. A layer of convective inhibition 

develops, and in some instances, is possibly a hindrance to the development of convection without 

the presence of mechanical lifting or erosion by solar heating in the morning hours. Cellular 

convection increase sharply with increasing humidity during the daytime, while organized 

convection does not appear to be as tied to the boundary layer humidity.  Both the probabilities of 

precipitation in the left column and the probability of deep convection (right column) show that 

the relation to the boundary layer is much weaker during the nighttime than daytime. 

Overall, deep convection of all types, in all seasons, and at all times of day occurs more 

frequently with increasing lower free tropospheric humidity. The lower free tropospheric humidity 

is strongly tied to the occurrence of organized deep convection. The boundary layer is also strongly 

related to convective onset, but this is mainly true for the daytime and cellular convection only. 

For reference, variants of these statistics for the boundary layer and lower free troposphere are 

reproduced in the supplemental material (Figs. 3.S5 and 3.S6) as a function of their respective 

layer saturation.  

3.5  Relating observed deep convection to plume buoyancy under different mixing 

parameterizations 

In Section 3.4, we examine the relation between deep convection and moisture and how 

variability in moisture vertical structure (e.g. seasonally, diurnally) contributes to variability in 

deep convective onset as a function of total column moisture. It was also shown that both organized 
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and unorganized convection show strong relation to lower tropospheric moisture, particularly in 

the free troposphere. CWV has proven useful in previous studies since it is commonly available 

from GCM output and satellite retrievals (over ocean), and since it is a good proxy for conditional 

instability over land and ocean (Holloway and Neelin 2009; Schiro et al. 2016). Here, since we 

have additional data available – vertical moisture structure, information about diurnal variability 

and convection type – we have the opportunity to test various assumptions of plume buoyancy 

against observed deep convection across a range of conditions.  Thus, in Section 3.5, we refine our 

analysis by replacing CWV by measures explicitly based on the conditional instability of the 

environment, using different postulates for mixing as it affects plume buoyancy.  

GCMs all make assumptions about buoyancy that, in combination with other parts of the 

deep convective closure scheme, yield precipitation. We thus ask how strong a relation to observed 

deep convection can be achieved with a single, physically-consistent plume buoyancy formulation. 

Ideally, a bulk measure of plume buoyancy given a realistic, physically-based assumption would 

show strong relation to observed precipitation and deep convection over a wide range of 

environmental conditions. Our exploration of thermodynamic controls in the previous section 

suggested that the consistent relation to lower tropospheric moisture, particularly in the lower free 

troposphere, provides some indication that buoyancy is largely dependent on the moisture 

available in this layer, and that a model of plume buoyancy that adequately accounts for variability 

in this quantity could yield consistent results under a range of environmental conditions (e.g. across 

seasons, diurnal cycle, regions, and even for different convection types).  

3.5.1  Formulation 

All mixing assumptions discussed here follow the general form 𝑟: = (1 − 𝜒:=>𝛥𝑝)K=: +

𝜒:=>𝛥𝑝𝑟:=>, where 𝑟	is the conserved variable, 𝑟 is the corresponding environmental variable, 𝑘 
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is the pressure level, ∆𝑝 is the pressure interval, and 𝜒 is the mixing coefficient. For all mixing 

assumptions that include freezing, liquid water is converted to ice conserving the ice-liquid water 

potential temperature when the plume reaches 0oC.  All computations are performed in pressure 

coordinates. For reference, a case with no mixing is also shown, in which a parcel is raised 

undiluted from 1000 mb. 

The constant-mixing case assumes that the plume mixes with the environmental air at a 

constant rate of 0.001 hPa-1 between 50 and 950 mb with a larger rate of 𝜒 (0.18 hPa-1) in the 

boundary layer (1000-950 mb). This is the same assumption used in Holloway and Neelin (2009), 

and is similar to the assumption from Brown and Zhang (1997). It has been noted previously in 

the literature the limitations of such an assumption, either in the magnitude of the coefficient used 

(Kuang and Bretherton 2006) or in the range of values needed to yield consistency to observed 

deep convection (Jensen and Del Genio 2006). Here, we expand upon these arguments by 

examining its consistency to observed deep convection over a tropical land site. 

Deep-Inflow mixing, first introduced by Holloway and Neelin (2009) but reviewed here, 

follows the assumption that the updraft mass flux increases nearly linearly through a deep lower 

tropospheric layer, consistent with observations of vertical velocity and derived mass flux profiles 

over tropical ocean (e.g. Robe and Emanuel 1996; LeMone and Zipser 1980) and tropical land 

(May and Rajopadhyaya 1999; Kumar et al. 2015; Giangrande et al. 2016). Deep inflow refers to 

a plume’s interaction with its environment by way of lateral inflow of environmental air through 

a deep lower tropospheric layer and is relatively agnostic to the mechanism through which the air 

becomes incorporated into the plume (e.g. it could occur partly through organized inflow at the 

plume-scale or mesoscale in addition to small-scale turbulence). It is thus reasonable to conjecture 
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that this scheme might apply to the mesoscale-organized convection identified in the analysis 

above, in addition to unorganized plumes. 

If detrainment is neglected, an entrainment profile can be calculated for any corresponding 

mass flux profile from mass continuity. We can derive mixing coefficients using                                   

𝜒: = 	−𝑚=>(𝜕𝑚 𝜕𝑝)∆𝑝, where 𝑚 is the mass flux and 𝑝 is pressure, with ∆𝑝 defined to be 

positive. If mass flux increases with height throughout the lower troposphere, this would suggest 

large lower tropospheric entrainment rates. The weighting of the environmental variable is given 

by the vertical rate of increase of mass as follows: 

𝑟 𝑝 = 	
1

𝑚 𝑝 𝑟	
𝜕𝑚
𝑑𝑝

3

3P
𝑑𝑝 

If the plume’s mass is increasing linearly with height, this reduces to a vertical average of all levels:                                                      

																																																															𝑟 𝑝 = 	 (𝑝 − 𝑝Q)=> 𝑟3
3P

𝑑𝑝 

Deep-Inflow-A (Holloway and Neelin 2009; Sahany et al. 2012) is given from an LES-based 

estimate of the vertical dependence of the mixing coefficient reported in Siebesma et al. (2007), 

where the mixing coefficient has an inverse dependence on height following  𝜒:∆𝑝 = 𝑐∈𝑧:=>∆𝑧:, 

where 𝑐∈ = 0.4, 𝑧 is the height, and ∆𝑧: is the depth of the layer. Deep-Inflow-B uses an idealized 

updraft vertical velocity which increases nearly linearly with height with 0 at 1000 hPa and its 

maximum at 430 hPa. The mixing coefficients are then computed from the vertical gradient of the 

specified updraft vertical velocity profile, with the mixing coefficient set to zero above 430 hPa 

(under the postulate that there is negligible mixing above the level where mass flux no longer 

increases).  
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Figure 3.7: Mean virtual temperature differences between plumes originating at 1000 mb and their surrounding 
environments conditionally averaged by CWV for (a) no mixing, (b) constant mixing (0.001 hPa-1), (c) Deep-Inflow-
A mixing, and (d) Deep-Inflow-B mixing for Nauru (dashed) and GOAmazon (solid).  
 

3.5.2  Profiles 

Fig. 3.7 compares buoyancy profiles between the GOAmazon site and Nauru for the range 

of mixing assumptions described above and examines their consistency to the onset of deep 

convection observed with increasing humidity. All profiles are virtual temperature profiles derived 

from the radiosondes. Environmental profiles are subtracted from the plume computations, which 

originate at 1000 mb (near-surface). Profiles in Fig. 3.7 are averaged for all times of day and all 

seasons. It is worth noting again that, unless separated by time-of-day, the analysis at the 
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GOAmazon site will be more representative of the nighttime soundings than the daytime soundings 

due to a higher frequency of nighttime soundings.  

Fig. 3.7a is the simplest case, which assumes no mixing with the surrounding environment, 

and thus the buoyancies are largely dependent on the characteristics of the plume at its level of 

origin. This yields results inconsistent with the onset of precipitation at a critical value of CWV 

(e.g., Fig. 4; see also Fig. 3a, Holloway and Neelin 2009; Fig. 2a, Schiro et al. 2016) over both 

land and ocean, since buoyancies are positive through the free troposphere for all CWV at Nauru 

and GOAmazon (above a layer of convective inhibition in the nighttime hours at GOAmazon). 

This would imply conditional instability available to deep convection, even under CWV conditions 

for which little occurs. Additionally, at the GOAmazon site, the lower CWV cases are more 

buoyant than the higher CWV cases. This is largely because, on average, 1000 mb moisture is 

similar across CWV values at GOAmazon, yet the free troposphere is cooler on average for lower 

CWV (not shown). This means that the parcel originating at 1000 mb starts off just as buoyant as 

the high CWV parcels, but then travels through cooler, denser air aloft, enhancing parcel buoyancy. 

The excessive buoyancy for this case occurs even without the inclusion of freezing, which tends 

to enhance buoyancy in the upper troposphere. 

In comparison to the no mixing case, the constant-mixing case shows some improvement 

in matching buoyancy with the onset of precipitation in that the buoyancy is small or negative for 

the lowest CWV values at both Nauru and GOAmazon (Fig. 3.7b). For the GOAmazon site, the 

inverse relationship between buoyancy and CWV seen in the 600-800 mb layer is still apparent, 

yet there exists a consistent relation to CWV in the layers above. In these figures, the rapid-freezing 

assumption allows the contribution of freezing to buoyancy at upper levels to be easily seen; more 

gradual freezing would spread this increase across the layers above. If freezing is not included, 
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this scheme would appear more consistent with the pickup in precipitation at Nauru (Holloway 

and Neelin 2009). With freezing, it suggests conditional instability through a deep layer even for 

fairly low values of CWV. 

 

Figure 3.8: Mean virtual temperature differences between plumes originating at 1000 mb and their surrounding 
environments conditionally averaged by CWV for Deep-Inflow-B (solid) and constant 0.001 hPa-1 (dashed) mixing 
with ice at the GOAmazon site for (a) DJFMAM day, (b) DJFMAM night, (c) JJASON day, and (d) JJASON night.  
 

Figure 3.7c and 3.7d show that including inflow from a substantial lower tropospheric layer 

using Deep-Inflow mixing yields a more robust relationship between plume buoyancies observed 

and the sharp increase in precipitation observed with increasing CWV (Holloway and Neelin 2009; 

Schiro et al. 2016) than the other relations in Figs. 3.7a and 3.7b for both land and ocean cases. It 

should be noted that these calculations can be sensitive to microphysical assumptions (not shown), 
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such as the removal of condensate within the calculation, which can increase buoyancies in the 

lower-mid troposphere. Overall, for a plume originating from the boundary layer, mean plume 

buoyancies with respect to CWV are most consistent with the sharp increase in precipitation 

observed throughout the depth of the troposphere for assumptions that include substantial mixing 

through a deep lower tropospheric layer over both land and ocean. 

Figure 3.8 examines the GOAmazon case in greater detail. Since there is more variability 

in the moisture vertical structure as a function of time of day and season at this site, we can gain 

insight from how moisture variability affects buoyancy and thus the onset of deep convection. We 

examine this by checking for consistency between the observed moisture-precipitation relations 

and the onset as given by the buoyancy profiles. Results are shown for buoyancies computed using 

constant mixing with freezing (0.001 hPa-1, dashed lines, as in Fig. 3.7b) and Deep-Inflow-B with 

freezing (as in Fig. 3.7d, solid lines) for plumes originating at 1000 mb. The onset occurs at lower 

total CWV in the dry season than the wet season, and in the daytime compared to nighttime, as is 

shown in Fig. 3.3. This is most likely a result of the greater moisture in the boundary layer and 

lower free troposphere for the same CWV values (see Fig. 3.2), yielding more buoyancy.  

For the case of constant mixing, the boundary layer and lower free troposphere are treated 

unequally, placing greater weight on the boundary layer. The constant mixing case appears to be 

too buoyant (in the sense that it predicts deep conditional instability at CWV values for which little 

precipitation is observed) at all times. Increasing the entrainment coefficient helps to a certain 

extent (see Fig. 3.S7), but since it decreases buoyancy relatively uniformly throughout the whole 

column, rather than enhancing mixing in the lower troposphere only, there is an upper limit to the 

coefficient before significantly reducing buoyancy above the freezing level to values no longer 

consistent with deep convection. Raising the parcel from above the boundary layer also reduces 
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the spurious prediction of deep conditional instability at intermediate CWV values to some degree 

(see Fig. 3.S8), although it is unphysical to assume a parcel originates from 925 mb all the time. 

Overall, the constant-mixing is limited in its representation of diurnal and seasonal variability in 

convective onset as a function of CWV. This suggests that its weighting of lower tropospheric air, 

placing greater emphasis on boundary layer air, is not optimal. 

For the Deep-Inflow mixing case, which accounts for nearly equal weights of boundary 

layer and free tropospheric humidity, the range of CWV values at which the plumes become 

positively buoyant (∆Tv > 0) is generally consistent with the approximate CWV values at which 

the onset can be observed in Fig. 3.3 for all times of day and seasons. While we are careful not to 

suggest this as the optimal weighting, we note that mixing of such proportions can capture diurnal 

and seasonal variability in buoyancy consistent to the observed onset. The ratio of free tropospheric 

moisture to boundary layer moisture varies seasonally and diurnally (Fig. 3.2), but the consistency 

between the observed onset and Deep-Inflow mixing suggests that this variability appears less 

important than the total moisture content. In other words, the Deep-Inflow scheme appears to be 

giving sufficient weight to lower tropospheric moisture, consistent with its importance as a key 

thermodynamic variable controlling convective onset.  

3.5.3  Onset of deep convection as a function of buoyancy 

We now examine how strong a relation to observed deep convection an integral measure 

of buoyancy can yield. For simplicity, we use the mean buoyancy from 200-1000 mb as the integral 

measure, since we want to consider a quantity that transitions smoothly from negative to positive 

and includes both the lower and upper troposphere.  Fig. 3.9 shows the histograms of convection 

type and probabilities of precipitation for three mixing cases: no mixing without freezing (top 

panel), constant mixing (0.001 hPa-1 with ice (middle panel) and Deep-Inflow-B mixing with ice 
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Figure 3.9: Same as Fig. 5, but probabilities and frequencies are conditionally averaged by mean tropospheric virtual 
temperature difference (buoyancy) between a plume originating at 1000 mb and the surrounding environment for 
constant mixing with ice (0.001 hPa-1; top row) and DIB with ice (bottom row). 

 

(bottom panel). Deep-Inflow-A behaves similarly to Deep-Inflow-B, so we choose the latter as the 

case with deepest inflow to provide a sense of the bounding behavior. Given that layer integrated 

water vapor quantities exhibit strong relations to a pickup in precipitation probability, we seek a 

buoyancy-based calculation showing at least as strong a relationship.  

Precipitation probability conditioned on buoyancy computed using a Deep-Inflow mixing 

assumption indeed yields a strong pickup above a threshold value. In this sense, Deep-Inflow-B 

buoyancy can be termed a good predictor for precipitation probability. Precipitation probabilities 

conditioned on buoyancies computed using no mixing or constant mixing yield less strong 

relationships. As mentioned previously, increasing the entrainment coefficient in the constant-
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entrainment case helps somewhat, but increasing it too much tends to shift the entire plot toward 

negative buoyancies. Buoyancies start becoming strongly negative before a relation that closely 

resembles that between precipitation and buoyancy from Deep-Inflow mixing emerges.  

 

Figure 3.10: Probability and frequency of precipitation and deep convection conditionally averaged by mean 
tropospheric virtual temperature difference (buoyancy) between a plume originating at 1000 mb and the surrounding 
environment for various times of day and seasons. (left column) Buoyancies computed using constant mixing with ice 
(0.001 hPa-1). (right column) Buoyancies computed with DIB mixing with ice.  
 

We then explore the potential utility of the two buoyancy computations as predictors of 

precipitation probability across seasons and times of day in Fig. 3.10. The no-mixing case is not 

considered because it tends to behave poorly (shown in Fig. 3.S9 of the supplemental material for 
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reference). Both mixing assumptions show an increase in the probability of precipitation with 

increasing buoyancy during the daytime when the boundary layer has a more robust relation to the 

precipitation (Fig. 3.6), but differences can be seen at nighttime by comparing the constant mixing 

case in the left column to the Deep-Inflow-B case. There is a strong relationship to 700-900 mb 

humidity across the diurnal and seasonal cycles (Fig. 3.5), and thus assumptions that more heavily 

weight the contribution of the lower free troposphere to parcel buoyancies will show a more 

consistent relation to the probability of precipitation. At nighttime, when the boundary layer exerts 

less influence, the Deep-Inflow-B case performs better than the constant mixing case originating 

at 1000 mb. This suggests that a scheme that uses an appropriate weighting of plume inflow 

between the free troposphere and boundary layer is important for adequate representation of 

nocturnal convection.  

Fig. 3.11 examines the utility of these assumptions as predictors of deep convection 

occurring in organized systems versus unorganized convection. One can ask whether buoyancy 

based on a single mixing parameterization can yield strong relationships to probability of 

precipitation for both organized and local convection. The constant mixing case (left column), is  

more limited than the Deep-Inflow case as a predictor of both organized and unorganized 

convection. In particular, the relation between plume buoyancy and organized convection is 

stronger for the Deep-Inflow case. This is consistent with the relation between organized 

convection and humidity apparent in Figs. 3.5 and 3.6, particularly in relation to lower free 

tropospheric humidity in the nighttime cases. This is suggestive of a single scheme’s applicability 

to both organized and unorganized convection for convective closure. Moreover, using a mixing 

assumption that includes sufficient mixing from the lower free troposphere, a similarly strong 

relation to that of deep convection and humidity is captured by an integral buoyancy measure. 
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Figure 3.11: Probability of deep convection as determined by the fraction of total events that are deep convective 
(DEEP-cell and DEEP-org, red circles) and the fraction of all events that are organized deep convective events (blue 
squares). Probabilities are conditionally averaged by mean tropospheric virtual temperature difference (buoyancy) 
between a plume originating at 1000 mb and the surrounding environment for various times of day and seasons. (left 
column) Buoyancies computed using constant mixing with ice (0.001 hPa-1). (right column) Buoyancies computed 
with DIB mixing with ice.  
 

Overall, these results suggest that plume models without sufficient influence of the lower 

free troposphere are less successful predictors of deep convection. A single plume formulation 

with a similar weighting of air mixing in through a deep lower tropospheric layer to that of Deep-

Inflow-B used here is likely to, however, exhibit skill as a predictor of deep convection.  
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3.6  Conclusions 

A robust relation between CWV and precipitation over land and ocean provides a useful 

model constraint for the onset of deep convection. The GOAmazon campaign (2014-2015) near 

Manacapuru, BR provides a unique opportunity to examine this relation in greater detail by 

studying the interaction between variability in moisture vertical structure and the conditional 

instability of the environment. Results shown previously for a tropical oceanic environment at the 

DOE ARM site at Nauru in the tropical western Pacific are examined as a basis for comparison.  

There is little variability in moisture vertical structure across the seasonal and diurnal cycle 

at Nauru. The Amazon, however, has both a distinct seasonal and diurnal cycle in moisture vertical 

structure and associated variability. This makes the Amazon a good test case for examining 

variability in the moisture field and its effects on deep convection in the tropics. Mean moisture 

profiles show that the boundary layer at Nauru is moister than in the Amazon, while the lower free 

troposphere is drier. Moisture variance is large in the free troposphere at Nauru and the GOAmazon 

site. The maximum (near 800 mb) is larger at Nauru than GOAmazon, and over land this maximum 

(~700 mb) is most evident in the drier months. During the wet season, moisture is less variable 

and more uniform throughout the column.  

Over land, where larger diurnal and seasonal cycles exist, the onset to deep convection is 

strongly tied to free tropospheric moisture across all seasons and times of day, whereas the onset 

shows a strong relation to boundary layer moisture during the daytime only. The onset is 

characterized by the occurrence of locally-occurring cellular convection, as well as larger, 

organized convective systems. During the daytime, local cellular convection is the most common 

convection type whereas larger-scale, organized convective systems are a larger fraction of the 

total convection occurring during nighttime. The probability of organized convection increases 
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sharply with increasing lower free tropospheric humidity, whereas the relation to boundary layer 

moisture is less discernible. The probability of isolated cellular convection, however, is strongly 

tied to both lower free tropospheric moisture and boundary layer moisture. Isolated cellular 

convection occurs at lower values of lower free tropospheric humidity than organized convection, 

most probably due to the strong influence of the boundary layer on isolated cells. The influence of 

the boundary layer is primarily confined to the daytime, whereas the lower free tropospheric 

moisture is strongly tied to both daytime and nocturnal convection. 

Variability in lower tropospheric humidity accounts for variability in the conditional 

instability of the environment, as estimated from buoyancy computations, and thus the onset of 

deep convection over both land and ocean, and across the seasonal and diurnal cycles to leading 

order. CWV is reaffirmed as a good proxy for conditional instability, yet since differences exist in 

the total moisture content of the lower troposphere for a given CWV regionally, seasonally, and 

diurnally, differences are thus observed in the observed onset of precipitation with CWV. For 

instance, more moisture in the daytime boundary layer and lower free troposphere for a given 

CWV allow for the onset of deep convection to occur at lower CWV in the dry season daytime 

than wet season daytime at the GOAmazon site. Furthermore, the large range of environmental 

conditions across day and night and for the wet season and dry season at the GOAmazon site 

permits inferences to be made about the relative success of different mixing assumptions as 

predictors of deep convective conditions. The criterion here is whether buoyancy computations 

based on a giving mixing scheme (as summarized by an integrated buoyancy measure) can yield a 

strong relationship to the pickup in probability of precipitation. Given that the pickup can be seen 

as a function of layer integrated water vapor, a buoyancy computation should yield at least as 
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distinct a relationship to be considered successful. This comparison can be carried out separately 

for organized and unorganized convection. 

A plume buoyancy formulation with deep inflow through a deep lower tropospheric layer 

shows that a single plume formulation can capture this leading order behavior across tropical land 

and ocean, across seasons and times of day, and for both organized and unorganized convection. 

Rather than suggesting an exact formulation for an optimal profile, we provide evidence that a 

single, physically-based plume computation with an appropriate weighting of lower free 

tropospheric humidity can be a useful predictor of deep convection across a range of scales. This 

does not exclude the need for explicit treatments of organized convection (e.g. Mapes and Neale 

2011; Khouider and Moncrieff 2015), but it does suggest that a Deep-Inflow framework for mixing 

in the buoyancy calculations can be useful even in presence of organization. We interpret this as 

the organized convection being sustained by the same basic mechanisms driving buoyancy, with 

the inflow of environmental air into updrafts coming from a roughly similar deep layer in both 

cases. Even when the mesoscale systems are pre-existing and propagating into the region where 

the sounding is observed, lack of conditional instability (given suitable inflow assumptions) yields 

low probability of that system continuing to produce precipitation. The results here suggest 

implementing Deep-Inflow mixing in a convective parameterization would be warranted, although 

it is an open question whether this change alone would be sufficient to reduce long-standing 

precipitation biases in regions like the Amazon. 

3.S Supplemental Material 

3.S.1  Data 

Figure 3.S1 is similar to Figure 3.3, but for all seasons, and shows a comparison of results 

from the MWR raw data using three methods of gap-filling and filtering points for which the  



	

	 75 

 

Figure 3.S1: A comparison of various interpolation methods used to gap-fill microwave radiometer data at times 
when the instrument is not recording (mostly raining times) over periods of 6 hours or less: (a) Cubic spline 
interpolation, (b) linear interpolation similar to Schiro et al. (2016), and (c) linear interpolation like that used in Fig. 
3.3. 
 
 
radiometer CWV may be affected by rain (wet-window problem). Figure 3.S1a,c compare cubic 

spline interpolation with linear interpolation. A threshold of 100 K in the 23.8 GHz channel is used 

to filter out points affected by rain, unless otherwise noted. Additionally, data in a 1-month period 

surrounding the equinoxes is removed from 11:00 – 13:00 LT due to instrument malfunction. 

Figure 3.S1b,c compare results using the above filtering procedure to those presented in Schiro et 

al. (2016) using the 31.4 GHz channel. The spline interpolation is possibly more often correct than 

the linear interpolation, given that CWV is often increasing at the beginning of the gap and 

decreasing afterward, but we cannot exclude that it could create artificial high values. The method 

of Fig. 3.S1c is the most conservative, and is thus chosen for use in Fig. 3.3 using the most 
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conservative dataset (MWRRET). Although it likely underestimates results at high CWV values, 

it guards against any possible overestimates in this range.  

 
3.S.2  Classification of Organized vs. Unorganized Convection 

Fig. 3.S2 shows three radar images as examples of deep convective events occurring within 

100 km of the GOAmazon site. Fig 3.S2a typifies unorganized cellular convection, meeting the 

criteria outlined in Section 3.2, and is classified as DEEP-cell throughout the study. Fig. 3.S2b is 

a convective cell that exhibits some degree of organization, but is less than the typical 100 km 

threshold characteristic of MCSs (Houze 2004). Convection of this nature are grouped into the 

DEEP-org category, following the criteria outlined in Section 3.2. Lastly, Fig. 3.S2c is a well- 

defined MCS with a leading line of convective cells and trailing stratiform region, a common MCS 

type occurring in the Amazon basin. This is also classified as organized within our definition. 

3.S.3  Moisture Vertical Structure 

In Fig. 3S.3a, the CWV value for each sounding in the wetter months is correlated to the 

moisture at each 5 mb vertical level for daytime (solid, light blue) and nighttime (dashed, dark 

blue) soundings. The daytime soundings show strong positive correlation to CWV in the boundary 

layer and free troposphere, with a local minimum in the layers right near cloud base. In the drier 

months (Fig. 3.S3b), the correlations at every level are higher.  

3.S.4  Convective Onset Statistics 

Fig. 3S.4 presents a sensitivity study to examine whether any layer in the free troposphere 

exerts greater control over the onset to deep convection. It is evident from this plot (left panel) that 

the layer < 500 mb exhibits less of a relation to the onset than in other layers. The 700-900 mb has 

a very robust relation to the precipitation observed. The 500-700 mb layer shows a reasonably 

strong relation as well, but there is more precipitation observed over a much wider range of  
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Figure 3.S2: Examples from S-Band Radar on 20 May 2014 at 18:00 UTC (14:00 LT) for a case of isolated, cellular 
convection (DEEP-cell), at 30 Apr 2014 at 22:24 UTC (18:24 LT) for a case of organized convection between 50-
100 km in horizontal extent (DEEP-org), and on 22 Jul 2014 at 20:12 UTC (16:12 LT) for a case of organized 
convection exceeding 100 km in one direction (MCS).   The red dot indicates the location of the S-Band radar, and 
the blue dot indicates the location of the main GOAmazon site (T3). 
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Figure 3.S3: Correlation coefficient between CWV and specific humidity in each 5 hPa layer for (a) DJFMAM and 
(b) JJASON for daytime (light shading, solid lines) and nighttime radiosondes (dark shading, dashed lines). 
 

 

Figure 3.S4: Sensitivity test for the humidity-precipitation relation for various definitions of free tropospheric (left) 
and boundary layer (right) humidity. 
 

 
 
Figure 3.S5: Same as Fig. 3.5 (left column), but for values of 700-900 mb saturation. 
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Figure 3.S6: Same as Fig. 3.6 (left column), but for values of boundary layer (1000-950 mb) saturation. 

 

Figure 3.S7: Mean virtual temperature differences between plumes and their surrounding environments conditionally 
averaged by CWV for constant mixing at a rate of 0.001 hPa-1 (solid) and 0.002 hPa-1 at the GOAmazon site for (a) 
DJFMAM day, (b) DJFMAM night, (c) JJASON day, and (d) JJASON night.  
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humidity within this layer. Overall, this supports our choice to define the lower free troposphere 

between 700-900 mb throughout the study. 

To consider the effects of temperature in the analysis presented in Figures 3.5 and 3.6, 

Figure 3.S5 plots integrated moisture in the 700-900 mb layer divided by the saturation specific 

humidity. The relation to column saturation is just as strong as that shown in Fig. 3.5 for the 700-

900 mb specific humidity. In the daytime in the drier months, the onset occurs at lower column 

saturation than during the daytime in the wetter months; the onset at nighttime occurs at 80% 

humidity or greater. This is also true in Fig. 3.S6 for the boundary layer (approximated as 950-

1000 mb), although more scatter is seen in the observations. 

3.S.5  Buoyancy Computations 

Fig 3.S7 shows plume buoyancies given two constant rates of mixing: 0.001 hPa-1, the 

same as is used throughout the study, and a doubling of this rate (0.002 hPa-1), which was referred 

to as C2 in Sahany et al. (2012). As discussed in the main text, increasing the mixing coefficient 

helps to show more consistent relation between the buoyancy curves and the corresponding 

increases in precipitation (Fig. 3.3), increasing the entrainment coefficient helps to a certain extent, 

but does not better consistency compared to the Deep-Inflow assumptions (Fig. 3.8). Increasing 

the coefficient any more reduces buoyancies in the upper troposphere significantly. 

Fig. 3.S8 shows the results divided by time-of-day and season for the constant mixing case 

lifted from 925 mb. This is roughly at the top of the boundary layer in the daytime, and is above 

the nocturnal boundary layer. Overall, raising the plume from 925 mb does not show considerable 

improvement over the 1000 mb case: daytime buoyancies are lesser, yet still consistent with the 

onset observed, whereas buoyancies in the dry season are too high with freezing included. Plumes 

should originate from the most unstable layer, however, which is usually the boundary layer.  
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Figure 3.S8: Mean virtual temperature differences between plumes originating at 925mb and their surrounding 
environments conditionally averaged by CWV for constant mixing at a rate of 0.001 hPa-1 at the GOAmazon site for 
(a) DJFMAM day, (b) DJFMAM night, (c) JJASON day, and (d) JJASON night. Dashed lines show buoyancies for 
plumes in which all condensate (retained) is frozen at 0oC; solid lines do not include the effect of freezing. 

 

Lastly, Fig. 3.S9 reiterates the fact that plume buoyancies computed without mixing are 

unrealistic as predictors of precipitation.  
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Figure 3.S9: Same as Fig. 3.5, but probabilities and frequencies are conditionally averaged by mean tropospheric 
virtual temperature difference (buoyancy) between an undilute plume originating at 1000 mb and the surrounding 
environment.  
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CHAPTER 4 

Tropical Continental Downdraft Characteristics: Mesoscale System versus 

Unorganized Convection 

Abstract 

Downdrafts and cold pool characteristics for mesoscale convective systems (MCSs) and isolated, 

unorganized deep precipitating convection in the Amazon are composited and compared using two 

years of data from the GOAmazon campaign. For both MCSs and isolated cells, there are increases 

in column water vapor (CWV) and surface fluxes observed in the two hours leading the convection 

and an increase in wind speed, decrease in surface moisture and temperature, and increase in 

relative humidity coincident with system passage. Composites of vertical velocity data and radar 

reflectivity from a radar wind profiler show that the downdrafts associated with the sharpest 

decreases in surface 𝜃" have a probability that increases towards lower levels throughout the lowest 

4 km. Both MCSs and unorganized convection show similar mean downdraft magnitudes and 

probabilities with height.  This is consistent with thermodynamic arguments: if 𝜃" is approximately 

conserved following descent, a large fraction of the air reaching the surface likely originates at 

altitudes in the lowest 2 km. Mixing computations suggest that, on average, air originating at 

heights greater than 3 km would require substantial mixing, particularly in the case of isolated 

cells, to match the observed cold pool 𝜃".  Precipitation conditionally averaged on decreases in 

surface equivalent potential temperature (∆𝜃") exhibits a strong relationship simply because the 

largest ∆𝜃" values are associated with high probability of precipitation.  The more physically 

motivated conditional average of ∆𝜃" on precipitation levels off with increasing precipitation rate, 

bounded by the maximum difference between surface 𝜃" and its minimum in the profile aloft. 
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Precipitation values greater than about 10 mm/hr are associated with high probability of ∆𝜃" 

decreases. Robustness of these statistics observed across scales and regions suggests their potential 

use as model diagnostic tools for the improvement of downdraft parameterizations in climate 

models.  

4.1  Introduction 

Convective downdrafts involve complex interactions between dynamics, thermodynamics, 

and microphysics across scales. They form cold pools, which are evaporatively cooled areas of 

downdraft air that spread horizontally and can initiate convection at their leading edge (Byers and 

Braham 1949; Purdom 1976; Wilson and Schreiber 1986; Rotunno et al. 1988; Fovell and Tan 

1998; Tompkins 2001; Khairoutdinov and Randall 2006; Lima and Wilson 2008; Khairoutdinov 

et al. 2009; Boing et al. 2012; Rowe and Houze 2015). The boundary between the cold pool and 

the surrounding environmental air, known as the outflow boundary or gust front, is the primary 

mechanism for sustaining multi-cellular deep convection (e.g. Weisman and Klemp 1986). It has 

also been shown to trigger new convective cells in marine stratocumulus clouds (Wang and 

Feingold, 2009; Terai and Wood, 2013) and in trade-wind cumulus (Zuidema et al. 2011; Li et al., 

2014). Downdrafts also have implications for new particle formation in the outflow regions, which 

contribute to maintaining boundary layer CCN concentrations in unpolluted environments (Wang 

et al. 2016). 

Precipitation-driven downdrafts are primarily a result of condensate loading and the 

evaporation of hydrometeors in unsaturated air below cloud base (e.g. Houze 1993). Some studies 

claim that the effects of condensate loading are greater than those of evaporative cooling (Torri 

and Kuang, 2016); others say that evaporation is the main driver (Knupp and Cotton 1985; 

Srivastava 1987). It was originally suggested by Zipser (1977) that the downdrafts in the 
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convective part of a system are saturated, referred to in the literature as convective-scale 

downdrafts, and the downdrafts in the trailing stratiform region (referred to as mesoscale 

downdrafts) are unsaturated. Studies with large-eddy simulations (LES; Hohenegger and 

Bretherton 2011; Torri and Kuang 2016) indicate, however, that most convective downdrafts are 

unsaturated, consistent with evidence that the evaporation of raindrops within the downdraft likely 

does not occur at a sufficient rate to maintain saturation (Kamburova and Ludlam 1966).  

More recently, studies have shown the importance of downdraft parameters in maintaining 

an accurate simulation of tropical climate in global climate models (GCMs; Maloney and 

Hartmann 2001; Sahany and Nanjundiah 2008). Accurate simulation of MCSs in continental 

regions (Pritchard et al. 2011) was also shown to be sensitive to downdraft-boundary layer 

interactions, with significantly improved representation of MCS propagation in the central US 

once such interactions were resolved. Additionally, representing the effects of downdrafts and cold 

pools in models has been shown to have positive effects on the representation of the diurnal cycle 

of precipitation (Rio et al. 2009; Schlemmer and Hohenegger 2014). 

This study aims to characterize the physics of downdrafts in a comprehensive way in the 

Amazon for both isolated and mesoscale convective systems, and to provide useful guidance for 

downdraft parameterization in GCMs. The DOE-Brazil Green Ocean Amazon (GOAmazon) 

campaign (2014-2015) provides an unprecedented opportunity to evaluate downdraft 

characteristics for the first time in the Amazon with sufficiently large datasets for quantifying 

robust statistical relationships describing leading order processes. Relationships explored 

previously, primarily in tropical oceanic or mid-latitude regions, are revisited and compared to our 

findings over the Amazon. Downdrafts in MCSs and isolated cells will be compared, to inform 

decisions concerning their unified or separate treatment in next generation models. The effect of 
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downdrafts on surface thermodynamics and boundary layer recovery will be examined, and the 

origin height of the downdrafts will be explored, combining inferences from radar wind profiler 

data for vertical velocity and thermodynamic arguments from simple plume models. Lastly, 

statistics describing cold pool characteristics at the surface will be presented and discussed for 

possible usage as model diagnostics.  

4.2  Data and Methods 

Surface meteorological values (humidity, temperature, wind speed, precipitation) were 

obtained from the Aerosol Observing meteorological station (AOSMET) at the DOE ARM site in 

Manacapuru, Brazil, established as part of the GOAmazon campaign (site T3). The record used in 

this study spans 10 Jan 2014 – 20 Oct 2015. Values in this study are averaged at 30-min intervals. 

Equivalent potential temperature is computed following Bolton (1980). Sensible and latent heat 

fluxes (30-min) are derived from eddy correlation flux measurements obtained with the eddy 

covariance technique involving correlation of the vertical wind component with the horizontal 

winds, temperature, water vapor density, and carbon dioxide concentration. A fast-response, three-

dimensional sonic anemometer is used to obtain the wind components and speed of sound, while 

an open-path infrared gas analyzer is used to obtain the water vapor density and carbon dioxide 

concentrations. Surface flux data from 01 Apr 2014 – 20 Oct 2015 are used here, with periods of 

missing and unreliable data excluded, as flagged by ARM. 

Thermodynamic profiles are obtained from radiosonde measurements within 6 hours of a 

convective event. Radiosondes are launched at approximately 01:30, 7:30, 13:30, and 19:30 LT 

each day, with occasional radiosondes at 10:30 LT in the wet season. Profiles of vertical velocity 

and radar reflectivity are obtained from a 1290 MHz radar wind profiler (RWP) reconfigured for 
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precipitation modes. It has a beam width of 6o (~ 1 km at 10 km AGL), a vertical resolution of 200 

m, and a temporal resolution of 5 seconds (Giangrande et al. 2016).  

 

Figure 4.1: Examples from S-Band Radar on 01 Apr 2014 at 15:00 UTC (11:00 LT) before the passage of an MCS, 
and at 17 Jul 2017 at 21:24 UTC (17:24 LT) after the passage of an isolated cell. The red dot indicates the location of 
the S-Band radar, and the blue dot indicates the location of the main GOAmazon site (T3). 
 

Precipitation data at 25 km and 100 km, as well as convection classifications, are derived 

from an S-Band radar located approximately 67 km to the northeast of T3 at the Manaus Airport. 

Composite constant altitude low-level gridded reflectivity maps (e.g., constant altitude plan 

position indicators, CAPPIs) were generated, and the radar data were gridded to a Cartesian 

coordinate grid with horizontal and vertical resolution of 2 km and 0.5 km, respectively. These 

data were processed by GOAmazon instrument scientists and are available on the intensive 

operational period ARM server. Rain rates were obtained from the 2.5 km reflectivity using the 

reflectivity-rain rate (Z-R) relation Z=174.8R1.56 derived from disdrometer data. The spatially 

averaged rainfall rate over a 25 km and 100 km grid box were used in this study. The center of the 

100 km grid box is shifted slightly to the right of center with respect to the T3 site due to reduced 

data quality beyond a 110 km radius.  
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All convective events used in this study meet the following criteria: producing downdrafts 

that create a subsequent drop in 𝜃" at the surface of less than -5oC in a 30-min period and having 

precipitation rates exceeding 10 mm hr-1 in that same period. These criteria were chosen to examine 

the most intense downdraft events with the most well-defined vertical velocity signatures in the 

RWP data. Only data for events with complete vertical velocity data coverage over the 1-hr period 

spanning the passage of the convective cell(s) and centered around the maximum precipitation 

were composited and evaluated. 

Isolated convective cells were identified by S-Band composite reflectivity, as in Fig. 1, and 

are defined as being less than 50 km in any horizontal dimension (contiguous pixels with 

reflectivity > 30 dBz) with a maximum composite reflectivity of greater than or equal to 45 dBz. 

Following the criteria defined above, this resulted in the selection of 11 events, all of which were 

in the late morning or afternoon hours between 11:00 and 18:00 LT. Mesoscale convective systems 

follow the traditional definition of regions of contiguous precipitation at scales of 100 km or 

greater (contiguous pixels with reflectivity > 30 dBz) in any horizontal dimension (e.g. Houze 

1993; Houze 2004). All of the events sampled are characterized by a leading edge of convective 

cells with a trailing stratiform region (Fig. 4.1), which is the most common MCS type (Houze et 

al. 1990). The above criteria yielded 17 events: 11 in the late morning and early afternoon hours 

(11:00-18:00 LT) and 6 in the late evening/early morning hours (22:00-11:00 LT).  

In Section 4.6, statistics are presented using the entire two year timeseries of 

meteorological variables at the GOAmazon site, as well as 15 years of data (1996-2010) from the 

DOE ARM site at Manus Island in the tropical western Pacific. One-hour averages are computed 

in ∆𝜃" and precipitation.  
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4.3.  Surface Thermodynamics 

Composites of surface meteorological variables are displayed in Fig. 2.2 for the 11 isolated 

cellular deep convective events coinciding with drops in equivalent potential temperature of -5oC 

or less and precipitation rates greater than 10 mm hr-1 (see Section 4.2). The composites are 

centered 3 hours before and after the time marking the beginning of the sharpest decrease in surface 

𝜃". All differences quoted are the differences in values between the maximum and minimum values 

within the 1-hr timeframe of convective cell passage, unless noted otherwise. All timeseries 

averaged in the composites are shifted to the mean value at 0.5 hour, the timestep immediately 

following the minimum ∆𝜃", and error bars on the composites are thus shown with respect to time 

0.5.  

In the two hours leading the convection, the CWV increases by 4.3 mm.  Values of 𝜃" are 

353.6 K on average before passage of the cell. An hour after the passage, the 𝜃" value drops by an 

average 8.9oC to an average value of 344.7 K. Since the isolated convective cells observed occur 

in the daytime hours, the relative humidity is seen to drop steadily throughout the 3-hr period 

leading the convection following the rise in temperatures with the diurnal cycle. Once the cell 

passes, RH values rise to 81.6%, which indicates that the downdrafts are sub-saturated when they 

reach the surface. Temperatures drop by 4.4oC to 24.9oC, which is less of a drop in temperature 

than observed over mid-latitude sites (see Table 2 in Engerer et al. 2008 for a review of mid-

latitude case studies) and specific humidity drops by 1.1 g kg-1 to 16.0 g kg-1. Wind speeds reach 

5.5 m s-1 on average, consistent with previous studies that document strong horizontal winds 

associated with the leading edges of cold pools (e.g. Fujita 1963; Wakimoto 1982), but are lower  
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Figure 4.2: Composites of meteorological variables from the AOSMET station at site T3 6 hours leading and 6 hours 
lagging the 30 minute interval right before the drop in equivalent potential temperature (2nd panel) and precipitation 
maximum (3rd panel) coincident with the passage of isolated cells. Error bars are +/- 1 standard deviation with respect 
to time 0.5. 
 

than the observed values for mid-latitude storms (Engerer et al. 2008). Additionally, surface 

pressure often increases with the existence of a cold pool and is referred to as the meso-high 

(Wakimoto 1982). Here, it increases marginally by 0.8 hPa, but this value is much less than the 

typical values observed in mid-latitudes (e.g. Goff 1976; Engerer et al. 2008). Lastly, 63% of the 
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temperature and moisture depleted by the downdraft recovers within two hours of cell passage, 

with moisture recovering more quickly and by a greater percentage than temperature.  

 

Figure 4.3: Same as Fig. 4.2, except for MCSs. 

Complementary to those in Fig. 4.2, composites of surface meteorological variables are 

shown in Fig. 4.3 for the 17 MCSs with surface 𝜃" depressions of -5oC or less and coindicent 

precipitation rates of 10 mm hr-1 or greater. On average, the environment is more humid, as is seen 
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in the CWV composite. Values of 𝜃" leading the passage of MCSs are a few degrees lower than 

the 𝜃" values leading the isolated cells. This is mostly due to lower surface temperatures. The 

precipitation occurs over a longer period than in the cases of isolated cells, as there is stratiform 

rain trailing the leading convective cells.  The stratiform rain and associated downdrafts also 

sustain the cooling and drying of the near surface layers for many hours lagging the precipitation 

maximum. Column water vapor values leading the MCSs are slightly higher on average than 

observed leading the isolated cells, with an average maximum value of 59.8 mm. The relative 

humidity maximum in the cold pool is 90.2% (∆𝑅𝐻 = 14.2%), the specific humidity minimum is 

15.5 g kg-1 (∆𝑞 = 1.7 g kg-1), and the temperature minimum is 22.9oC (∆𝑇 = 4.7oC), with winds 

gusting to an average of 6.3 m s-1 with the passage of the leading convective cells. The cold pools 

are thus cooler, drier, and nearer to saturation for the MCSs than for the isolated cells. It is worth 

noting that these statistics for MCSs are not greatly affected by the inclusion of nighttime events; 

composites for afternoon only MCSs yield similar results.  

Overall, the environments in which MCSs live are moister, they have colder, drier cold 

pools that are nearer to saturation, the winds at their leading edges are gustier, and their boundary 

layers recover more slowly than for isolated cells. 

4.4.  Downdraft Origin and the Effects of Mixing 

Many previous studies of moist convective processes use 𝜃" as a tracer since it is conserved 

in the condensation and evaporation of water and for dry and moist adiabatic processes (e.g., 

Emanuel, 1994). Tracing surface 𝜃" to its equivalent value aloft has been done before in many 

studies of tropical convection to examine potential downdraft origin heights (e.g. Zipser, 1969; 

Betts, 1973, 1976; Betts and Silva Dias, 1979; Betts et al. 2002). This follows the assumption that 

downdraft air conserves 𝜃" to a good approximation. It also assumes that downdraft air originates 
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at one height above ground level (AGL). Neither of these assumptions is likely to be true, as mixing 

is likely occurring between the descending air and the environmental air and thus originating from 

various levels.  

 

Figure 4.4: Mean profiles of 𝜃" for isolated cells (left) and MCSs (right) within 6 hours leading the passage of a deep 
convective event. Dashed lines indicate the mean descent path for plumes originating at various altitudes and mixing 
with its environment at various rates; solid blue line shows mean descent without mixing.  
 

We examine the mean 𝜃" profiles for MCSs and isolated cells, conditioned on the existence 

of a substantial drop in 𝜃" and precipitation rates above a threshold value, to place bounds on 

mixing and downdraft origin with simple plume computations. Matching the minimum 𝜃" value 

observed at the surface following the passage of convection to the minimum altitude at which those 

values are observed yields 1.3 km for isolated cells (left panel, Fig. 4.4) and 2.0 km for MCSs 

(right panel, Fig. 4.4). Again, this assumes that 𝜃" is conserved and that all of the air originates at 

one altitude. If instead we assume that substantial mixing occurs with the surrounding environment 

and that air originates at multiple levels in the lower troposphere, it would be plausible for more 

of the air reaching the surface to originate at altitudes greater than 1.3 and 2 km for isolated cells 
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and MCSs, respectively. This has been alluded to in previous studies (e.g. Zipser, 1969; Gerken et 

al. 2016), providing evidence that air originates in the middle troposphere.  

To examine this, we mix air from above the altitude where the 𝜃" matched the surface value 

is shown in the composites in Figs. 4.2 and 4.3 downward towards the surface, varying the 

entrainment rate (constant with pressure). To start, we use a mixing of 0.001 hPa-1, as this is the 

constant entrainment value used in Holloway and Neelin (2009) and Sahany et al. (2012), which 

produced realistic updraft buoyancy profiles over tropical oceans. For the MCS case, it is plausible 

that a downdraft could originate at a height of 2.3 km given this rate of mixing to reach the surface 

with characteristics given by Fig. 4.3. (Note that there is a spread in surface values and profile 

characteristics, but for simplicity we use mean values.) If instead the air were coming from the 

level of minimum 𝜃", an assumption similar to that made by many downdraft parameterizations 

(e.g. Zhang and McFarlane 1995; Tiedke 1989; Kain and Fritsch 1990), mixing would need be 2.5 

times greater. For the isolated cells, mixing rates appear to need to be much greater in order to 

produce results consistent with those seen at the surface. If we start out at 0.0025 hPa-1, the rate 

sufficient for a minimum 𝜃" origin for the MCSs, this only yields an origin height of 1.5 km. If 

instead we assume the air originates near the level of minimum 𝜃", mixing would need to be about 

2.5 times greater. For reference, in the Tiedke and Zhang-McFarlane schemes, downdrafts mix 

with environmental air at a rate nearly double the rate of mixing in updrafts, which in the Tiedke 

scheme is 2 x 10-4 m-1. This is similar to 0.0025 hPa-1 in pressure coordinates in the lower 

troposphere. 

To summarize, this analysis is suggestive of bounds on mixing coefficients for downdraft 

parameterizations. Downdrafts would need to mix less substantially through the lower troposphere 

for MCSs than isolated cells to draw down air that matched the observed characteristics at the 
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surface, and the rate of mixing needed to bring air down from the level of minimum 𝜃" would be 

2.5 times greater for isolated cells than for the MCSs.  

4.5.  Vertical Velocity and Downdraft Probability 

Figure 4.5 composites reflectivity (Z), vertical velocity (w) and the probability of observing 

downdrafts (w < 0 m s-1) for the 11 cases of isolated cellular convection meeting the minimum 

∆𝜃" criteria of -5oC and minimum precipitation criteria of 10 mm hr-1. Time 0 is the time right 

before the sharpest decrease in 𝜃", repeated from Fig. 4.2 in the top panel, and maximum 

precipitation. A 3-hr window is composited for reference, but the interval of primary interest is the 

1-hr window within which the minimum ∆𝜃" and maximum precipitation are observed. To 

highlight the interval of interest, the 1-hr intervals leading and lagging this period are masked out. 

The drop in 𝜃" is coincident with the passage of the isolated cell and its main updraft and 

precipitation-driven downdraft. Mean reflectivity exceeding 40 dbz is observed during this period, 

as are strong updrafts in the middle-upper troposphere. The cell then dissipates and/or moves past 

the site within an hour. A downdraft is observed directly below and slightly trailing the updraft 

core. This is the downdraft that is associated with the largest drop in surface 𝜃". As is suggested 

in the literature, these are mainly driven by condensate loading and evaporation of precipitation 

and are negatively buoyant. The probability of observing negative vertical velocity (threshold < 0 

m s-1) within the 30 minutes of observed maxima in the absolute value of ∆𝜃" and precipitation is 

highest in the lower troposphere (0-2 km), consistent with precipitation-driven downdrafts 

observed in other studies (Sun et al., 1993; Cifelli and Rutledge, 1994).   



	

	 96 

 

Figure 4.5: The mean reflectivity (top, dBz), mean vertical velocity (w; middle, m s-1), and probability of w < 0 m s-

1 (bottom) measured by the radar wind profiler at T3 leading and lagging the passage of isolated cells. 
 

There is also a high probability of downdrafts in air near the freezing level (masked out in 

the vertical velocity retrievals, as there is large error associated with retrievals near the freezing 

level; Giangrande et al. 2016). It appears likely, however, that these downdrafts are discontinuous 

in height more often than not, as high probabilities are not observed coincidentally in the lowest 

levels beneath these downdrafts. These mid-upper level downdrafts are documented in previous 

studies of MCSs, suggesting that they form in response to the pressure field (e.g. Biggerstaff and 

Houze, 1991), can occur quite close to the updraft (Lily, 1960; Fritsch, 1975), and are positively 
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buoyant (Fovell and Ogura, 1988; Jorgensen and LeMone, 1989; Sun et al., 1993). These motions 

produce gravity waves in upper levels, as is discussed in Fovell et al. 1992. 

Figure 6 shows the same composites for the 17 MCSs observed. They, too, have high 

reflectivity (mean > 40 dbz) in the 30 minutes coincident with the minimum 𝜃" and a defined 

updraft extending up to the upper troposphere. Downdrafts occurring coincident with the minimum  

 

Figure 4.6: Same as Fig. 4.5, but leading and lagging the passage of MCS’s. 

𝜃" are observed directly below the updraft signature in the mean vertical velocity panel, and the 

probabilities are greatest below the freezing level. There is also evidence of mesoscale downdrafts 

in the trailing stratiform region of the MCSs, which Miller and Betts (1976) suggest are more 
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dynamically driven than the precipitation-driven downdrafts associated with the leading-edge 

convection. These sustain the low 𝜃" air in the boundary layer for hours after the initial drop, 

observed in Fig. 4.3. Vertical motions in the stratiform region are weaker than in the convective 

region, and on average, as in Cifelli and Rutledge (1994), rarely exceed 1 m s-1. 

Figure 4.7 is a concise summary of the results presented in Figs. 4.5 and 4.6, showing the 

mean vertical velocity within the 30-min period leading maximum precipitation and during 

minimum ∆𝜃" for MCSs and isolated cells weighted by the frequency of data at each altitude. 

Previous studies using radar wind profilers have shown mean updraft and downdraft strength 

increases with height (May and Rajopadhyaya, 1999; Kumar et al. 2015; Giangrande et al. 2016), 

consistent with our results here for both isolated and organized deep convection. The 

corresponding mean probability is shown in the right panel. The probability of downdrafts for both 

isolated cells and MCSs increases nearly linearly towards the surface below the freezing level. 

Thus the behavior in the lowest 4 km summarizes our results from the previous two figures and 

suggests that downdrafts accumulate air along their descent, analogous to mixing. Probabilities, 

which can be interpreted loosely as convective area fractions following methods outlined in Kumar 

et al. (2015) and Giangrande et al. (2016), are also largest below the freezing level for downdrafts 

and in the 3-7 km region for updrafts. The probability and vertical velocity for both MCSs and 

isolated cells correspond to mass flux profiles that increase nearly linearly throughout the lower 

troposphere for updrafts and that decrease nearly linearly throughout the lower troposphere for 

downdrafts, as seen in Giangrande et al. 2016 over a broader range of convective conditions. 

These results suggest that in most downdrafts, a substantial fraction of the air reaching the 

surface originates in the lowest 3 kilometers within both organized and unorganized convective 

systems. Several observational studies corroborate the evidence presented here that a majority of 
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Figure 4.7: (left) Mean vertical velocity profiles for MCS’s (navy) and isolated cells (light blue) weighted by the 
frequency of data at each altitude for downdrafts (w < 0 m s-1; dashed) and updrafts (w > 0 m s-1; solid). (right) Mean 
probability of observing updrafts or downdrafts as a function of altitude. Means are composited from data within the 
30 minutes of the observed ∆𝜃" minimum and precipitation maximum. 
 

the air reaching the surface in deep convective downdrafts originates at low-levels (Betts 1976; 

Barnes and Garstang 1982; Betts et al. 2002). Betts 1976 concluded that the downdraft air descends 

approximately only the depth of the subcloud layer (~150 mb). Betts et al. (2002) cited a range of 

765-864 hPa for the first levels at which the surface 𝜃" values matched those of the air aloft. 

Additionally, there are many modeling studies that provide evidence of these low-level origins 

(Moncrieff and Miller, 1976; Torri and Kuang, 2016). Recently, Torri and Kuang (2016) used a 

Lagrangian particle dispersion model to show that precipitation-driven downdrafts originate at 

very low levels, citing an altitude of 1.5 km from the surface. All of these conclusions are 

consistent with our results here, suggesting that downdraft parameterizations substantially weight 

the contribution of air from the lower troposphere (e.g. with substantial mixing, modifying height 

of downdraft origin). 
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4.6.  Relating Cold Pool Thermodynamics to Precipitation 

As seen previous sections, the passage of both organized and unorganized convective cells 

can lead to substantial decreases in 𝜃" resulting mainly from precipitation-driven downdrafts 

formed from the leading convective cells. In this section, we search for robust statistical 

relationships between key thermodynamic variables for potential use in improving downdraft 

parameterizations in GCMs. These statistics differ from those presented in Figs. 4.2-4.7, as these 

statistics are not conditioned on convection type and sample precipitating and non-precipitating 

points within the timeseries analyzed. All data available at the surface meteorological station 

during the GOAmazon campaign from 10 Jan 2014 – 20 Oct 2015 are included in these statistics. 

  

Figure 4.8: (left) Precipitation (30-min averages) conditionally averaged by coincident changes in equivalent potential 
temperature (∆𝜃") at the GOAmazon site. Precipitation values corresponds to the 𝜃" values at the end of each 
differencing interval. Bins are a width of 1o. (middle) The probability of precipitation (precip > 1 mm hr-1) occurring 
for a given ∆𝜃". (right) The frequency of occurrence of ∆𝜃" (x’s) and precipitation for a given ∆𝜃" (blue dots; precip 
> 1 mm hr-1). Precipitation derived from S-Band radar reflectivity at spatial averages over 25 km (yellow squares) and 
100 km (navy diamonds) grid boxes surrounding the GOAmazon site are included for comparison to the in situ 
precipitation (aqua circles).  
 

The first of these statistics conditionally averages precipitation rate by Δ𝜃" (Fig. 4.8), 

variants of which have been discussed in previous studies (Barnes and Garstang 1982; Wang et al. 

2016). Our statistics mimic those shown in previous work relating column-integrated moisture to 

deep convection over tropical land (Schiro et al. 2016) and ocean (Neelin et al. 2009, Holloway 

and Neelin 2009). The direction of causality in the CWV-precipitation statistics, however, is the 
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opposite of what is presented here. CWV is thought to primarily be the cause of intense 

precipitation and deep convection, while here the Δ𝜃" observed is a direct result of the precipitation 

processes and associated downdraft. Nevertheless, examining the distribution of Δ𝜃" observed at 

the surface and magnitudes of the rain rates associated with the highest drops in Δ𝜃" across 

different regions in the tropics can place bounds on downdraft behavior. We will also conditionally 

average Δ𝜃" by precipitation rate, a more physically consistent direction of causality. 

Fig. 4.8 shows precipitation rate binned by Δ𝜃" for in-situ precipitation and radar 

precipitation. Bins are 1oC in width and precipitating events are defined as having rain rates greater 

than 1 mm hr-1. These statistics mainly suggest that any substantial decrease in 𝜃" at the surface 

occurs coincidently with heavy precipitation, which is particularly evident in the sharp increase in 

probability of precipitation (middle panel). The width of the distribution precipitating points is of 

greatest interest here. The distribution of precipitating points peaks just shy of a Δ𝜃" of 0oC, 

indicating that most precipitation events have low rain rates and do not occur coincidently with an 

appreciable drop in Δ𝜃". The frequency of precipitation drops off roughly exponentially towards 

lower Δ𝜃". An interesting feature is the lower bound observed in the Δ𝜃" near -15oC. Examining 

mean profiles in Fig. 4.5 show that, on average, this value of -15oC would be consistent with air 

originating from the level of minimum 𝜃" and descending undiluted to the surface. The frequency 

of observing these values suggests that air very rarely reaches the surface from these altitudes 

undiluted.  

S-Band radar data are averaged in 25 km and 100 km grid boxes surrounding the 

GOAmazon site to examine the precipitation-Δ𝜃" relation with model diagnostics in mind (Fig. 

4.8). Out to 25 km, the statistics are very similar to those observed using in situ precipitation. 

Theoretical (Romps and Jevanjee, 2015), modeling (Tompkins, 2001; Feng et al. 2015), and 
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observational studies (Feng et al. 2015) have all examined typical sizes of cold pools, which are 

on the order of 25 km in diameter for any one cell. Cold pools can combine, however, to form a 

larger, coherent mesoscale-sized cold pool (radius of 50 km or greater), as is commonly associated 

with mesoscale convective systems (Fujita 1959; Johnson and Hamilton 1988). Therefore, it is 

likely that our use of the in situ ∆𝜃", assuming cold pool properties are somewhat homogeneous 

in space, is appropriate for scales up to 25 km. Beyond this scale, it is likely that the ∆𝜃" would be 

smoothed by averaging, particularly for the smaller isolated cells, as would precipitation. For 100 

km, the precipitation is smoothed by averaging, which would likely degrade further if information 

of 100 km mean surface thermodynamics were available. This suggests that comparing these 

statistics to those produced with model output for diagnostic purposes would yield a narrower 

range of Δ𝜃" and lower conditionally averaged rain rates.  

 

Figure 4.9: (left) Precipitation (30-min averages) conditionally averaged by coincident changes in equivalent potential 
temperature (∆𝜃") at the GOAmazon site (top) and Manus Island (bottom). Precipitation values corresponds to the 𝜃" 
values at the end of each differencing interval. Bins are a width of 1o. (middle) The probability of precipitation 
occurring for a given ∆𝜃". (right) The frequency of occurrence of ∆𝜃" (x’s) and precipitation for a given ∆𝜃" (blue 
dots).  
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Fig. 4.9 shows remarkable similarity in these statistics when comparing across regions to 

a DOE ARM site at Manus Island in the tropical western Pacific. As ∆𝜃" decreases, in situ 

precipitation rates sharply increase. The distributions, as well as the steepness and locations of the 

pickups, are remarkably consistent. Again, the sharpness of these curves is a result of the strongest 

precipitation events coinciding with the strongest decreases in 𝜃", shown in the middle panels in 

Fig. 4.9, where the probability of observing precipitation is greatest at lower ∆𝜃".  

 

Figure 4.10: ∆𝜃" conditionally averaged by coincident precipitation (1-hr averages) at the GOAmazon site (top) and 
at Manus Island (bottom). Precipitation values corresponds to the 𝜃"values at the end of each differencing interval. 
Bins are a width of 1o. Error bars represent standard error. The 10th and 90th percentile values for each bin are drawn 
for reference. 
 

It is then of interest to see if for a given precipitation rate we can expect a particular ∆𝜃", 

as this is the proper direction of causality. Fig. 4.10 conditionally averages Δ𝜃" by precipitation 

rate (1-hr averages). The maximum Δ𝜃" within a 3-hr window of a given precipitation rate is 

averaged to minimize the effects of local precipitation maxima occurring slightly before or after 
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the minimum in Δ𝜃". Comparing Figs. 4.9 and 4.10 shows that there can be strong precipitation 

events without large, corresponding decreases in surface 𝜃", but that large decreases in surface 𝜃" 

are almost always associated with heavy precipitation.  

Beyond about 10 mm hr-1 there is high probability of observing large, negative Δ𝜃" and an 

apparent limit in mean 𝜃" decreases with rain rate. This makes physical sense, as discussed above 

(and in Barnes and Garstang 1982), since cooling is limited by the maximum difference between  

the surface 𝜃" and the 𝜃" minimum aloft. The average Δ𝜃" for rain rates exceeding 10 mm hr-1 is 

about -5oC for the Amazon and -4oC for Manus Island. This statistic could be of use in constraining 

downdraft parameters to be consistent with surface cooling and drying observed in nature. There 

are still, however, open questions about scale dependence and how much cooling or drying should 

be observed for varying space and time scales. This result is likely applicable to GCM grid scales 

of 0.25o or less, as is suggested from the results in Fig. 4.9, but would be of lesser magnitude at 

scales more comparable to typical GCM grids (100 km or greater). Overall, if convective 

precipitation is present in a GCM grid, a corresponding Δ𝜃" should result within a range consistent 

to those observed here, subject to scale dependence.  

4.7.  Conclusions 

Convective events sampled during the GOAmazon campaign compare downdraft 

characteristics between MCSs and isolated cells and examine their respective effects on surface 

thermodynamics. All events sampled passed directly over the GOAmazon site with minimum 

precipitation rates of 10 mm hr-1 and ∆𝜃" less than or equal to -5oC. Isolated events occurred in the 

afternoon hours and were characterized by average decreases of 1.1 g kg-1 in specific humidity, 

3.9oC in temperature, and 8.0 K in 𝜃", with an increase of 5.5 m s-1 in wind speed at the surface. 

More than half of the deficit in 𝜃" observed with the passage of the cells recovers within 2 hours, 
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on average, with the moisture recovering faster than temperature and a larger fraction of the total 

𝜃" recovered. MCSs show similar decreases in temperature (3.7oC) but larger decreases in moisture 

(1.5 g kg-1) and thus 𝜃" (9.1 K) at the surface. The 𝜃" recovers much more slowly for MCSs due 

to the mesoscale downdrafts and associated precipitation in their  trailing stratiform regions.  

Vertical velocity profiles from a radar wind profiler show that the probability of observing 

downdraft air during the 30 minutes of observed minimum ∆𝜃" increases with decreasing height 

in the lowest 4 km for both isolated cells and MCSs. This vertical structure of the downdraft 

probability is consistent with negative vertical velocities originating at various levels within this 

layer and continuing to the surface. Considering complementary thermodynamic arguments, 

without mixing, profiles of 𝜃" suggest that origin levels at average altitudes of 1.3 and 2 km for 

isolated cells and MCSs, respectively, would be consistent with average surface 𝜃" for these cases. 

A minimum in 𝜃" is observed between 3 and 7 km, on average, so for air to originate above 3 km, 

simple plume calculations suggest that downdrafts in MCSs would have to be mixing with 

environmental air at an approximate rate of 0.0025 hPa-1 along descent and at a rate roughly 2.5 

times greater (0.006 hPa-1) for isolated cells. This would imply mass entering the downdraft 

throughout the lowest few kilometers. Overall the vertical velocity and thermodynamic constraints 

are consistent in suggesting a spectrum of downdraft mass origin levels throughout the lowest few 

kilometers. 

Robust statistical relationships between ∆𝜃" and precipitation are examined from nearly 

two years of data at the GOAmazon site and 15 years of data at the DOE ARM site at Manus Island 

in the tropical western Pacific. Conditionally averaging precipitation by ∆𝜃" is examined, similar 

to the statistics of precipitation conditioned on a thermodynamic quantity we consider for 

convective onset statistics. Here, however, the most likely direction of causality differs in that the 
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𝜃" drop is caused by the downdraft that delivers the precipitation (as opposed to the 

thermodynamic profile providing convective available potential energy for an updraft). For in situ 

precipitation, the conditional average precipitation exhibits a sharp increase with decreasing ∆𝜃", 

which is similar in magnitude over land and ocean, reaching roughly 10 mm/hour at a ∆𝜃" of -

10°C. For area averaged precipitation on scales typical of GCM grids, precipitation magnitude is 

lower for strong, negative Δ𝜃", consistent with the points with large ∆𝜃" occurring at localized 

downdraft locations within a larger system with smaller average precipitation. The probability 

distributions of ∆𝜃" (for precipitating and non-precipitating points) over land and ocean are also 

remarkably similar. Distributions show exponentially decreasing probability with decreasing ∆𝜃", 

providing additional evidence that downdraft plumes originating in the lowest levels are orders of 

magnitude more likely than plumes descending with little mixing from the height of minimum 𝜃". 

Conditionally averaging ∆𝜃" by precipitation (the most likely direction of causality) suggests an 

average limit in ∆𝜃" of -4 to -5°C given high precipitation typical of downdraft conditions. The 

corresponding 90th percentile yields ∆𝜃" of roughly -10°C, consistent with results obtained from 

composting strong downdrafts. The robustness of these statistics over land and ocean, and to 

averaging in space at scales appropriate to a typical GCM resolution, suggests possible use of these 

statistics as model diagnostic tools and observational constraints for downdraft parameterizations.  

4.S Supplemental Material  

In Figs. 2 and 3 of the main text, composites were based on deep convective events meeting 

stringent criteria (minimum precipitation rates of 10 mm hr-1 and coincident with ∆𝜃" of -5oC or 

less, as well as complete data coverage from the radar wind profiler in the hour surrounding the 

precipitation maximum). Additionally, the data were averaged by convection type (isolated cell or 
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MCS). Here, we composite without requiring both criteria or complete data coverage from the 

radar wind profiler. All events with a minimum ∆𝜃" less than or equal to -5oC within a 12-hr  

 

Table 4.S1: Dates and times (UTC) of MCS (left) and isolated cell (right) passage. Data is obtained from the 
timeseries of ∆𝜃" (30-min averages) and signifies the timestep before the drop in equivalent potential temperature 
observed at the surface. 
 

window are averaged and shown in Fig. 4.S1 (183 events), and events with precipitation rates 

greater than or equal to 10 mm hr-1 within a 12-hr window are averaged and shown in Fig. 4.S2 

(166 events). Error bars are +/- 1 standard deviation with respect to time 0. A total of 65 events 

meet both criteria coincidentally, and from this sample of 65, 28 are used in the main body of the 

text (11 isolated cases, 17 MCSs). The cases composited in Figs. 4.2 and 4.3 are listed in Table 

4.S1. 

The composites based on ∆𝜃" (Fig. 4.S1) show marginal differences in the thermodynamic 

variables compared to the composite based on precipitation (Fig. 4.S2): lower relative humidity, 

higher temperature, and higher CWV. It is likely that this results from a daytime bias for the 

composites in Fig. 4.S1. They do, however, differ in their respective mean rain rates and ∆𝜃" at 

time 0, confirming that not all precipitation produces ∆𝜃" of -5oC or greater and vice versa. 

Date	 Time	(UTC)	
03/27/2014	 13:30	
03/31/2014	 07:00	
04/01/2014	 16:00	
05/16/2014	 18:00	
06/19/2014	 16:00	
06/21/2014	 02:30	
07/03/2014	 10:30	
07/22/2014	 20:00	
08/16/2014	 15:00	
10/04/2014	 15:00	
10/12/2014	 05:00	
10/18/2014	 15:00	
01/10/2015	 14:00	
01/14/2015	 18:00	
01/19/2015	 20:00	
03/29/2015	 16:30	
04/25/2015	 16:00	
07/22/2015	 14:00	
	

Date	 Time	(UTC)	
03/11/2014	 15:30	
03/17/2014	 18:30	
05/20/2014	 17:00	
07/17/2014	 21:30	
08/15/2014	 19:30	
09/09/2014	 19:30	
09/13/2014	 17:30	
09/22/2014	 15:30	
10/06/2014	 16:30	
01/04/2015	 16:30	
02/03/2015	 21:30	
03/02/2015	 21:00	
	

Isolated CellsMCSs
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Figure 4.S1: Composites of meteorological variables from the AOSMET station at site T3 (GOAmazon) 6 hours 
leading and 6 hours lagging drops in equivalent potential temperature less than or equal to -5 K. 183 events total are 
sampled from 10 Jan 2014 – 20 Oct 2015 contribute to the composite. Error bars are +/- 1 standard deviation with 
respect to time 0. 
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Figure 4.S2: Same as Fig. 4.S1, except compositing based on precipitation rates greater than 10 mm hr-1 instead of 
∆𝜃". 166 events are averaged, 65 of which are coincident with drops in ∆𝜃" less than or equal to -5 K and thus 
included in the composites in Fig. 4.S1. 
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Figure 4.S3: Mean thermodynamic profiles (equivalent potential temperature, left; relative humidity, right) within 6 
hours leading the passage of a deep convective event. Dashed lines at 1.3 km and 2.0 km (with an average pressure 
of 860 mb and 800 mb, respectively) indicate the first altitude at which the minimum surface 𝜃"	matches the 𝜃"	in 
the vertical profile for isolated cells (blue) and MCS’s (navy), respectively.  
 

Lastly, mean profiles of 𝜃" and relative humidity are shown in Fig. 4.S3 for the isolated 

and MCS cases leading the passage of the convective systems by up to 6 hours. The MCS cases 

have higher RH and 𝜃" throughout the column than the isolated cases, except for in the boundary 

layer, consistent with the higher CWV observed in the composites of Fig. 4.3 compared to Fig. 

4.2. 
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