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Abstract of the Thesis

An Overview of Non-Linear Kernel

Functions for Solving the Human

Face Recognition Problem

by

Luis Antonio Sosa

Master of Science in Statistics

University of California, Los Angeles, 2016

Professor Ying Nian Wu, Chair

Principal Component Analysis has been extensively used in the computer vision field as

a method of capturing orthogonal axes of large variability in high-dimensional data sets.

Computer vision scientists have come up with reconstructive models which capture the most

distinguished features of a human face using Principal Component Analysis, known as Eigen-

faces. Several papers have approached the problem of facial recognition using standard PCA,

however very few provide a detailed comparison on the different non-linear kernels which can

be used in place of the traditional linear approach. The aim of this paper is to introduce

several non-linear kernel functions to the human recognition problem, by working with a

set of radial basis kernels, a logarithmic kernel, a Cauchy kernel, and a polynomial kernel.

We perform a model assessment for each kernel using a parameter tuning method which

minimizes reconstruction error, and display reconstruction plots for each kernel method. We

also capture influential physical features of the images in the high-dimensional space (the

Eigenface) for each kernel and compare reconstructed and original images, by capturing the

Frebenius (L2) norm between test and original image data.
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CHAPTER 1

Introduction

The Face Recognition problem has been an area of fascination for many researchers in the

past few decades. During this time, advances in high-level computing has allowed thor-

ough and extensive contribution to the assortment of face recognition literature [1]. With a

wide-array of applications such as biometric authentication, security, surveillance, and face

detection, the promises of what Face Recognition can provide in our day to day lives intro-

duces a remarkable benefit and interest for future computer vision collaborators, whether it

be in the research realm, government, or private sector [6]. The face recognition problem can

be defined as the following: Given an input face image and a database of known individuals

and their face images, how can we verify the identity of the person in the input image [1]?

This question poses some underlying difficulties which arise when coming up with an

accurate and precise face recognition algorithm. For instance, how can we most effectively

capture a familiar face with least amount of noise and variability? To solve this problem,

researchers in computer vision have categorized the variability of face images into two known

distinct classes– intrinsic factors and extrinsic factors [7]. Intrinsic factors are defined as the

physical characteristics and independent nature of the individual face. Gender, age, and

physical characteristics of race, can be considered intrinsic factors. The other set of factors,

extrinsic factors, cause the appearance of the face to alter via interaction with lighting.

Examples of extrinsic factors are illumination, scale and imaging parameters (resolution,

noise, focus, etc.). Both intrinsic and extrinsic factors can cause the image of the human

face to vary greatly, which makes the human face recognition problem quite a task to achieve

efficiently [1].

1



With this problem in mind, two researchers (Sirovich and Kirby) published a paper

in 1987 discussing a new dimensionality reduction technique for human face images, using

principal component analysis on image data [3]. The term Eigenpictures (or more commonly

Eigenfaces) was termed for the first time, and gave concept to an image representing the

most influential features of a human face. Principal components work by finding the most

influential orthogonal components of a covariance matrix, representing a set of training

images, and using these components to represent the image in a lower-dimensional subspace

by a linear transformation [8]. Eigenfaces have shown much success in capturing influential

areas of human faces, and have been a focus for many researchers looking to optimize and

study the benefits of principal components to distinguish human faces.

In this thesis, I propose an alternative approach to the traditional principal components

analysis by using a set of non-linear kernel methods. Kernel methods work by embedding

data into a vector space by using a feature map (Gaussian, Laplacian, etc.) [9]. If the map is

chosen suitably, complex relations can be simplified and easily detected, making the kernel

approach a useful statistical learning method. There have been papers in the past discussing

the use of kernel methods in principal component analysis of face data (Yang. M, 2002)

[4]. But, in my paper I demonstrate a larger range of several non-linear kernel techniques.

The kernel techniques I use are the exponential radial basis function, logarithmic, Cauchy,

laplacian, Gaussian and polynomial (of degree 2).

The order of the paper is as follows: I first begin with a review of Principal Component

Analysis and the theoretical framework behind Kernel Principal Component Analysis. Then

I will display the notation and characteristics for the several feature spaces used in Kernel

Principal Component Analysis. The following chapter will discuss my dataset, and for my

analysis I will display the reconstruction errors for the different types of kernel methods.

Reconstruction errors plots that I create show the L2-norm between the original test image

and the reconstructed test image using my proposed algorithm. I also show images of the

Eigenfaces for each kernel method and capture the features which are heavily influenced

among the different feature spaces.
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CHAPTER 2

Principal Component Analysis: An Eigenvalue

Problem

2.1 Background

Principal Component Analysis is a multivariate statistical technique widely used in signal

processing, exploratory data analysis, dimension reduction, clustering, etc [12]. The origins

of Principal Component Analysis (or PCA) can be traced back to Karl Pearson in 1901 [13],

and modernly instantiated by Hotelling in 1933 [10]. The idea behind PCA is to project a

dataset into a new coordinate system by an orthogonal linear transformation. The transform

is chosen in a manner to maximize the variance among several linearly orthogonal axes,

known as principal components. The axes can be discovered by an eigen-decomposition of a

data matrix, using the covariance matrix of a standardized data set [8]. Figure 2.1 shows a

set of two correlated variables X and Y, and displays the axes of highest variance X1 and Y1

known as principal components. X1 is the first principal component, containing the largest

variation of the data and Y1 is the second principal component containing the second-largest

variation of the data. X1 and Y1 are both linearly uncorrelated, that is, they are orthogonal

to each other.
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Figure 2.1: The two principal components of a set of observations in a 2 dimensional plane.

X1 is largest principal component, and Y2 is second largest. Both axes are linearly orthog-

onal.

2.2 Methods and Algorithm

A summary of the PCA Approach is the following: First standardize the data matrix. Then

obtain the eigenvectors and eigenvalues of your covariance matrix. Choose the k eigenvectors

which correspond to the largest eigenvalues so that k is the new dimension of the feature

space (where k << m, m being the dimension of the original feature space). Construct the

projection matrix W using the best k eigenvectors. Finally transform the original dataset

via W to create a new k dimensional feature subspace Y [10].

Let us first define the data matrix X, containing m parameters and n observations:
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X =


x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n
...

...
...

. . .
...

xm1 xm2 xm3 . . . xmn


Then construct the mean vector ~µ by adding every column of X and dividing by number

of observations n.

~µ =
1

n

n∑
i=1

xi =
1

n
(x1 + x2 + · · ·+ xn)

where xi represents a vector containing the m features of observation i

xi =


x1i

x2i
...

xmi


The mean vector ~µ is important for standardizing our data matrix X. We subtract ~µ

from X in order to ensure the columns in the data matrix are centered around ~µ. Let W

represent our data matrix with the mean ~µ subtracted.

W =


x11 − µ1 x12 − µ1 x13 − µ1 . . . x1n − µ1

x21 − µ2 x22 − µ2 x23 − µ2 . . . x2n − µ2

...
...

...
. . .

...

xm1 − µm xm2 − µm xm3 − µm . . . xmn − µm


Solve for the covariance matrix S, where n is the number of observations and W is our

standardized data matrix.

S =
1

n− 1
WWT

5



When dealing with data which contains very large features (m), the matrix WWT ends

up becoming very large (m x m). This makes solving for the eigenvalues and eigenvectors of

the covariance matrix computationally expensive. A nice workaround can be achieved with

the following proposition:

If A is any m x n matrix of real numbers, then the m x m matrix AAT and the n x n

matrix ATA are both symmetric [11].

Now the question to ask is: how do the eigenvalues/eigenvectors for both symmetric

matrices AAT and ATA relate? If we let ~v be a nonzero eigenvector of ATA with eigenvalue

λ 6= 0, we will have:

(ATA)~v = λ~v

Multiply both sides of the equation with matrix A and we obtain:

AAT (A~v) = λ(A~v)

The above equation gives a solid workaround for computing the eigenvectors and eigen-

values of our covariance matrix. If A is any m x n matrix, the matrices AAT and ATA

share the same nonzero eigenvalues [11]. Considering that n is the number of observations

and m is the number of features in data matrix A (where n << m), it would be much

less computationally expensive to compute the eigenvectors of ATA (an n x n matrix) than

AAT (an m x m).

Now that we have our eigenvectors and eigenvalues for symmetric matrix ATA, we can

choose the largest k eigenvectors which correspond to the largest eigenvalues of our covari-

ance matrix. These k eigenvectors will act as a basis for the reconstruction of our original

standardized data W. In other terms, we project the original standardized data W into

these k eigenvectors and transform them into the eigenspace Φ.

6



Φi = ~vTi ∗W

The eigenspace is a linear combination of orthogonal vectors that act as a representation

of our original data. This linear combination represents our data in a reduced dimension,

making it easier to capture features of most influence. Figure 2.2 demonstrates a set of

observations in a 2 dimensional axes being projected into a 1 dimensional linear subspace.

This linear subspace represents the largest principal component in this data.

Figure 2.2: A set of observations in a 2 dimensional space being projected onto a linear

subspace represented in green. White dots represent the original observation and blue dots

represent the linear projection.
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2.3 Eigenfaces for Face Recognition

Eigenfaces have proven to be a very effective face recognition technique. The eigenface is

an image which displays the principal components of a set of face data, by displaying the

highest variation in features (eyes, nose, mouth, eyebrows, etc.) [5]. Figure 2.3 displays an

example of 5 eigenfaces, created from a collection of face images.

Figure 2.3: A representation of 5 individual eigenfaces, each representing the most influential

features of a human face.

2.3.1 Classification

Mathematically, the eigenface represents the set of eigenvectors which characterizes the vari-

ation between a training set of face images, using the covariance or scatter matrix [5]. To

perform face recognition, one would calculate the best k eigenfaces of a face dataset (eigen-

faces with the largest eigenvalues), project a test image into the face space (the eigenspace

for eigenfaces) and find the euclidean norm between an image already in the database and

the test image (both images projected onto the face space) [5]. Ω represents the projection

of the test image and Ωi represents the projection of an image belonging to individual i.

εi = ‖(Ω− Ωi)‖2

If this Euclidean norm is underneath a certain threshold T , then the image is correctly

classified as belonging to individual i (otherwise, the face does not match).

8



2.3.2 Image Reconstruction

Any image that is projected into the face space can be reconstructed using the linear combi-

nation displayed below, where uj represents an eigenface and wi the weight for each eigenface.

Figure 2.4 displays an example of a reconstructed test image to the right, and the original

test image to the left (taken from the FaceAccess Database produced by Cornell University

[21]) . The reconstructed test image has its advantage over the original test image in that its

components are shown in a reduced dimension, making calculations much simpler and less

computationally expensive in classifying the face.

Φi =
k∑
j=1

wiuj

Figure 2.4: Test Image reconstructed using a linear combination of eigenfaces. The recon-

structed image displays the features of the original image, in a reduced dimension. Image

taken from FaceAccess produced by Cornell University [21].

2.3.3 Reconstruction Error Plots

Reconstruction error plots are an effective tool which measure the difference in pixels (or

errors) between the original test image and the reconstructed test image. These errors

are plotted as a measure of k, the amount of eigenfaces used to create the reconstructed

9



test image. Generally, as the number of eigenfaces (k) used in the image reconstruction

increases, the more closely the reconstructed test image will resemble the original test image

(thus producing smaller errors). The trade-off however is that an increase in the number

of eigenfaces increases the amount of computations and calculations in the algorithm, with

accuracy and effectiveness being limited. A good analogy to how reconstruction errors act

as a function of k would be to that of screwing a nail to a wooden door. You can screw the

nail into the door as much as you can, but there is a point where you dont need to screw

anymore (the nail is firmly in).

Figure 2.5 displays a reconstruction error plot for the difference between the original

image shown, and the reconstructed image at every value of k. Notice the image of the

reconstructed image using 10 eigenfaces is not as precise as the reconstruction image using

100 eigenfaces. According to the plot, the reconstruction error levels off at about k = 30 and

shows a slower rate of decrease in error as k increases (image taken from Indian Institute of

Technology Kanpur [22]).

Figure 2.5: A representation of the reconstruction error for every value of k, using the test

image shown. As k increases there is a dramatic reduction in reconstruction error, until a

certain threshold is reached and k does not reduce error significantly. Image taken from

Indian Institute of Technology Kanpur [22].
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2.4 Kernel Principal Component Analysis

Kernel functions are a class of algorithms used in pattern recognition and statistical learning.

The main idea behind using kernel functions is to find general types of relationships in higher

dimensional spaces. Suppose we would like to map data nonlinearly into a feature space F

[15]

Φ : RN → F , x→ X

For the nonlinear transformation Φ, we can still perform PCA in feature space F by the

use of kernel functions. Let us assume that our original data x1,x2, . . . ,xn is mapped into

feature space Φx1 ,Φx2 , . . . ,Φxn , and is centered
n∑
k=1

(Φxk
) = 0. A standard eigendecomposi-

tion of the covariance matrix [15]

C =
1

n

n∑
j=1

Φxj
ΦT

xj

will leave us with the eigenvectors of the transformed data within F. These eigenvectors

act as the principal components of our original data, mapped into the high dimensional space.

Figure 2.6 represents a 2-Dimensional scatter of observations re-mapped using a Gaussian

Radial Basis kernel. The two separate classes in the left image could not be separated linearly,

however after applying the Gaussian RBF kernel map we have a linearly separable distinction

between the two classes. This is what makes the use of kernel functions so effective, in that

there are many classification and regression problems which are not linearly separable in the

original space of the inputs x.

11



Figure 2.6: Two classes which are linearly inseperable in one feature space, transformed into

a new feature space using the Gaussian Radial Basis Function. In the new feature space,

the two classes are linearly seperable.

To demonstrate this non-linear transformation, let us consider the following mapping

Φ for an example x1,x2, . . . ,xD. We would like to convert our original variables into the

feature space:

Φ : x2
1,x

2
2, . . . ,x

2
D,x1x2,x1x3, . . . ,x1xD, . . . ,xD−1xD

The feature space above is an example of a quadratic mapping, which is a taking a set

of observations into a higher dimensional space using different combinations of polynomials.

Notice the amount of variables in the new feature space is larger than in our original data

x1,x2, . . . ,xD. This introduces a new set of problems with computing the variables of our

new feature space because these spaces have much higher dimensions, and to perform PCA

one would have to find the covariance matrix of these newly mapped variables. This can be

very computationally expensive, so a workaround is introduced in the following section.
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2.4.1 The Kernel Method (or Kernel Trick)

The function Φ, which is needed to form the covariance matrix, does not need to be calculated

explicitly. Since we are mapping x1,x2, . . . ,xn to a higher dimension, the actual calcuation

of Φx1 ,Φx2 , . . . ,Φxn can be time consuming and computationally expensive. A workaround

to avoid explicitly mapping into the higher dimensional space was introduced in 1992 by

Vapnik, Guyon and Bosner, and is known as the kernel method, or kernel trick [16] (I like to

view this technqiue as a medium or driver as opposed to a trick, simply because there are no

tricks involved). The idea is to calculate the inner product between all pairs of data in the

feature space, in order to maximize margins in a dual space (this technique is also applied

to Support Vector Machines) [16]. The inner product matrix, called the kernel matrix, is

shown below.

K(xi,xj) = Φ(xi)Φ(xj)
T

With this kernel matrix, it is possible to calculate the eigenvectors and eigenvalues under

various feature spaces. Let α represent the nonzero eigenvectors of kernel matrix K and λ

its eigenvalues.

Kα = λα

An eigendecomposition of the kernel matrix will obtain the principal components of the

data in the high-dimensional feature space F. If the data used to construct K is not centered

around 0 (not standardized), the equation below can be used in place of K. This equation

calculates the Gramian matrix, where 1n represents the n x n matrix of 1/n and K represents

the kernel matrix above [17]. The Gramian matrix is represented as K̃.

K̃ = K− 1nK−K1n + 1nK1n

Now this paper will focus on the different kernel functions used in this thesis.
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2.4.2 Kernel Functions

2.4.2.1 Polynomial Kernel

The polynomial kernel maps input data into a feature space over polynomials of the original

variables. This kernel function is an example of a non-stationary kernel. Parameters which

can be adjusted are the slope α, the constant c, and the degree d [9].

K(xi,xj) = (αxTi xj + c)d

2.4.2.2 Gaussian Kernel

The Gaussian kernel is a radial basis function kernel. This kernel maps input data into an

infinite dimensional Hilbert space. The adjustable σ parameter plays a very important role

in the performance of the kernel. If overestimated, the kernel will behave almost linearly

and if underestimated the function will lack regularization and be highly sensitive to noise

[9].

K(xi,xj) = exp(−‖xi − xj‖2

2σ2
)

2.4.2.3 Exponential Kernel

The Exponential kernel is another radial basis function kernel, very similar to that of the

Gaussian RBF. Instead of calculating the squared Euclidean norm however, it calculates the

standard Euclidean norm [9].

K(xi,xj) = exp(−‖xi − xj‖
2σ2

)
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2.4.2.4 Laplacian Kernel

The Laplacian Kernel is less sensitive to changes in the sigma parameter and is another

example of a radial basis function kernel. It also uses the Euclidean norm.

K(xi,xj) = exp(−‖xi − xj‖
σ

)

2.4.2.5 Logarithmic Kernel

The Logarithmic kernel belongs to a class of conditionally positive definite kernels. This

kernel was introduced in 2005 and has proven to work very well with SVM-based image

recognition [18]. What makes this kernel unique is how well it performs in comparison

to its classical positive definite kernel counterparts, making research in this kernel very

opportunistic.

K(xi,xj) = −log(‖xi − xj‖d + 1)

2.4.2.6 Cauchy Kernel

The Cauchy kernel was introduced in 2010, and worked very well in a research focusing on

Spam classification (email filtering). It is a long-tailed kernel and can be used to give long-

range influence and sensitivity over the high dimension space. This is another interesting

kernel to use because of how recently it has been introduced.

K(xi,xj) =
1

1 +
‖xi−x2

j‖
σ2
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CHAPTER 3

The Chicago Face Database

Now let’s dicscuss the image data used in this thesis. The Chicago Face Database was

developed by researchers from the University of Chicago in 2015 [20]. These images are high-

resolution color, standardized photographs of male and female faces, with varying ethnicity,

between the ages of 17 and 65. Figure 3.1 displays three of the images contained in the

Chicago Face Database, in this case our focus primarily on Caucasian males.

Figure 3.1: Three random images chosen from the Chicago Face Database [20]. Each image

shares similar backgrounds, facial expression, and shirt color for standardization.

Originally, the images are 2444 x 1718 pixels in .jpeg format. All images share a white

background for standardization and displays the subjects top of head, and their shoulders.

For the purpose of this research, the images used for analysis have been standardized even

further by reducing variation and noise. The color pixels have been converted to grey scale

using IrfanView, a photo editing software. In addition, the original 2444 x 1718 pixel images

have been reduced to a size of 750 x 750 pixels for less expensive computations in our analysis.

The original .jpeg images have also been converted to .bitmap as well, in an effort to reduce

individual file size of the images (.jpeg files sizes are traditionally larger than .bitmap file
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size).

The analysis focuses on the area of the face above the eyebrows, down to the top of the

subjects chin. This method reduced the noise in image pixel accounted by hair, shoulder,

background, etc. Figure 4.2 displays the cropped, edited image data used in our analysis.

Figure 3.2: Images from the Chicago Face Database that have been cropped even further for

the purpose of our analysis. The crop area is greyscaled and focuses on the more intrinsic

features of the face (eyebrows, nose, mouth, etc).

The next sections of this paper will discuss the analysis and results of the linear and

non-linear Kernel PCA methods.
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CHAPTER 4

Assessment of Linear and non-linear Kernel PCA

methods on Face Data

Since the Chicago Face Database contains a large variety of different faces, the images were

categorized by its intrinsic factors, mainly gender. This is done in order for our models to

focus on particular features of a face without extraneous variation.

Given the dataset of 93 individual males, 84 images were used for training the model

and 9 were used for testing. Each image represents a vector of 562,500 pixels, because every

bitmap image is 750 x 750 pixels. The original data matrix A will therefore be a size of

562,500 x 84 pixels, since there are 84 images for training the model and 562,500 pixels per

image. Adding up the 84 columns in data matrix A, and dividing by the number of columns

leaves us with an average representation for each of the 562,500 features. Therefore, we are

left with a mean vector µ which represents the average face. The average face of the 84

training images is shown in Figure 4.1.

Figure 4.1: The mean face of the 84 training images used in our analysis. This mean face

captures the ”average” features among the 84 individual faces.
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With this average face, we can subtract this face from every column in data matrix A

in order to standardize our data. Lets call this standardized matrix B. The covariance

matrix BBT will be a size of 562,500 x 562,500 pixels, which is far too large to compute

(316,406,250,000 pixels of information). Calculating BTB on other hand, leaves us with

a covariance matrix of 84 x 84 pixels (which is 7,056 pixels of information, compared to

316,406,250,000).

4.1 Standard PCA - Linear Approach

Performing the eigendecomposition of covariance matrix BTB leaves us with the eigenvectors

and eigenvalues associated with our 84 training images, our principal components. Here are

the six eigenfaces with the largest eigenvalues (largest principal components).
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(a) λ = 5.2681× 109 (b) λ = 4.1504× 109 (c) λ = 2.4869× 109

(d) λ = 1.7473× 109 (e) λ = 1.4476× 109 (f) λ = 1.2211× 109

Figure 4.2: The six eigenvectors with the largest eigenfaces using the standard linear Prinipal

Component Analysis.

These six eigenfaces contain the largest variation in features among the face training set,

each eigenface representing its own linearly orthogonal axis. A linear combination of these

faces can be used to reconstruct any of the nine test images we have chosen. In Figure 4.16

(in back of thesis), we show the nine test images and their reconstructed images using 20 of

the best eigenfaces.

With the reconstructed images in figure 4.16, we calculate the L2-norm between the

reconstructed test image and its original form. Table 4.1 displays the set of L2-norms between

all nine test images using linear principal component analysis. Image 8 appears to be the

most accurate reconstruction amongst all 9 images, with image 3 and image 5 coming to a
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close second and third respectively. Image 7 did not perform as well in reconstruction as

did the other images. We will compare the individual image reconstructions using the other

kernel methods in the following sections.

L2-Norm: Reconstruction - Original

Test Image L2-Norm

1 1.2808 x 104

2 1.3582 x 104

3 1.1342 x 104

4 1.4926 x 104

5 1.1628 x 104

6 1.1819 x 104

7 1.8407 x 104

8 1.1030 x 104

9 1.2749 x 104

Table 4.1: A table displaying the L2-norm between the original test image, and reconstructed

image using standard linear principal component analysis.

A reconstruction plot is created which shows the average reconstruction error amongst

all 9 test images for every value of k used. The average error displayed in the reconstruction

shows the arithmetic mean error for all values of k, which will be used as a measure of

how well each kernel model performs. The reconstruction error plot is show in figure 4.3

below. Notice how the error levels off after about k = 20 (20 eigenfaces are used in the

reconstruction test data).
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Figure 4.3: Reconstruction error plot using the standard linear PCA.

4.2 Gaussian Kernel

The first kernel in our analysis is the Gaussian Radial Basis Function. In order to compute

the Squared Euclidean norm between every pair of images, the identity equation:

‖X−Y‖2 = X ·X + Y ·Y− 2(X ·Y)

was used to create the kernel matrix. The next step was tuning the Gaussian kernel,

which was determined by performing a cross validation on a set of σ values. The σ value

which had the lowest reconstruction error was approximately 2 × 109, at an error level of

1.3172× 104. The eigenfaces for the Gaussian kernel are shown in figure 4.4. The first two

eigenfaces appear similar to that of the linear PCA, but the third and fourth are completely

different features. Notice the inclusion of head hair in Gaussian Eigenface 4 as well as a

new type of face for Gaussian Eigenface 3. The shift into the higher dimension using the
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Gaussian kernel displays some new information that would not have been shown using the

Linear PCA.

(a) λ = 2.0449 (b) λ = 1.6639 (c) λ = 1.0286

(d) λ = 0.7126 (e) λ = 0.6136 (f) λ = 0.5108

Figure 4.4: The six eigenfaces with the largest eigenvalues using the Gaussian kernel.

Image reconstructions are shown in the back of this thesis in Figure 4.17. The recon-

structed image with least amount of error was again image 8, with 3 and 5 playing a second

and third best role again. Image 7 also plays the worst role as well, similar to the linear

PCA assessment. Table 4.2 shows the rest of the L2-norms amongst the 9 test images using

the Gaussian kernel.
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L2-Norm: Reconstruction - Original

Test Image L2-Norm

1 1.2874 x 104

2 1.3574 x 104

3 1.1404 x 104

4 1.4877 x 104

5 1.1606 x 104

6 1.1838 x 104

7 1.8493 x 104

8 1.1097 x 104

9 1.2790 x 104

Table 4.2: A table displaying the L2-norm between the original test image, and reconstructed

image using the Gaussian kernel.

The reconstruction plot for the Gaussian is very similar to the original linear PCA re-

construction plot. The overall average error on the other hand, appears to be slightly larger

than in the linear form. This is very interesting to note, because the σ parameter in the

Gaussian kernel plays a role in the flexibility or rigidity of the model. A high σ can make a

Gaussian kernel appear linear, so if our lowest reconstruction errors occur with our Gaussian

kernel appearing linear, then that can give us some useful information about the structure of

our data. Overall, Gaussian performs well as a feature space for image data. In this instance

linear PCA performs slightly better.
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Figure 4.5: Reconstruction error plot using the Gaussian kernel.

4.3 Exponential Kernel

The Exponential kernel is another radial basis kernel which uses the Euclidean norm, in

contrast to the Euclidean squared norm calculated in the Gaussian kernel. For this function,

the optimal tuning parameter sigma was set to 1×1010. In the construction of the eigenfaces,

the top 6 faces for the Exponential kernel appeared the exact same as the top 6 faces for the

Gaussian Kernel (which makes sense since they are both Radial Basis Functions). Below are

the Eigenfaces shown:
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(a) λ = 0.002483 (b) λ = 0.002107 (c) λ = 0.001405

(d) λ = 0.001034 (e) λ = 0.000909 (f) λ = 0.000791

Figure 4.6: The six eigenfaces with the largest eigenvalues using the exponential kernel.

The reconstruction errors for the test images (Figure 4.18) show a bit of an increase in

comparison to the Gaussian Kernel. Not surprisingly, the test images with the lowest recon-

struction errors were again images 8, 3 and 5 (first, second, and third lowest respectively),

and the worst reconstruction (highest error) was test image 7 again. The outcomes of the

test images were similar to the Gaussian kernel, with some interesting changes. For instance,

test images 4 and 5 actually obtained lower reconstruction errors for the exponential kernel

in comparison to the Gaussian. This makes it apparent that the exponential kernel performs

better on some images, than the Gaussian kernel.
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L2-Norm: Reconstruction - Original

Test Image L2-Norm

1 1.3187 x 104

2 1.3631 x 104

3 1.1570 x 104

4 1.4863 x 104

5 1.1604 x 104

6 1.1865 x 104

7 1.8806 x 104

8 1.1198 x 104

9 1.2840 x 104

Table 4.3: A table displaying the L2-norm between the original test image, and reconstructed

image using the exponential kernel.

In the reconstruction plot shown, the trend is similar to that of the Gaussian kernel and

has a slightly larger average error of 1.3156× 104. This leads us to the conclusion that the

Gaussian kernel performs better than the Exponential kernel overall, but as we have noticed

before, the exponential kernel has the potential to perform better on some images than the

Gaussian. Overall it is apparent these two kernels are very similar to one another since they

are in the same family of radial basis functions and have their benefits in face reconstruction.

The linear PCA algorithm overall, still outperforms both Gaussian and Exponential kernels.
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Figure 4.7: Reconstruction error plot using the exponential kernel.

4.4 Logarithmic Kernel

The logarithmic kernel is a function which uses the L2-norm between every pair of image,

raises it to the power of d, and adds a constant 1 in the transformation to its feature space.

To tune this kernel was a simple matter of choosing which power of d to select. The ranges

of d which historically work well with this kernel are 0 < d ≤ 2 (18). The degree which

minimizea the reconstruction error occurs at d = 2, which means the Euclidean Squared

norm is what works best here.

The eigenfaces created under the logarithmic kernel were very different from the ones cre-

ated using the radial basis functions and linear approach. Eigenfaces 1 and 2 are completely

new images tracking more or less the shape of the face in contrast to its features. Notice

how the eyebrows in eigenface 1 have been removed in comparison to previous eigenfaces.

Eigenfaces 3, 4, 5, and 6 display similar characteristics to that of the previous eigenfaces,

with minor details omitted (notice the hair in eigenface 4 is gone, as opposed to the Expo-
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nential/Gaussian Kernel).

(a) λ = 30.8404 (b) λ = 29.2244 (c) λ = 26.0988

(d) λ = 24.3896 (e) λ = 23.2913 (f) λ = 22.8283

Figure 4.8: The six eigenfaces with the largest eigenvalues using the logarithmic kernel.

The reconstruction errors among all test images show an increase in magnitude, meaning

the logarithmic kernel did not perform as well as the Gaussian, Exponential or Linear PCA.

The best image reconstructions occurred with test image 8, 3, and 6 (notice how the loga-

rithmic kernel performs better in image 6 than in image 5, which is different from previous

kernels). With that being said, it is clear that the logarithmic kernel also puts emphasis on

different features than the ones use in the previous kernels, so it has the potential to work

well with very unique images, but overall not as effective generally as the radial basis and

linear kernels.
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L2-Norm: Reconstruction - Original

Test Image L2-Norm

1 1.4654 x 104

2 1.4261 x 104

3 1.1855 x 104

4 1.5204 x 104

5 1.2095 x 104

6 1.2021 x 104

7 2.0458 x 104

8 1.1372 x 104

9 1.3113 x 104

Table 4.4: A table displaying the L2-norm between the original test image, and reconstructed

image using the logarithmic kernel.

The reconstruction plot below for the logarithmic kernel shows an error of 1.3938× 104,

which is significantly greater than the previous errors. The shape of the plot is interesting

as well, with a quick sharp decrease in early k values but as k increases the error stays

consistent at a level of about 1.4 × 104 (starting at k = 10). This leads me to believe that

the logarithmic function works very well in instances when you want to use low amount of

k. In practice, if you are focusing on computations that are less expensive and need a quick

solution (with k being small), the logarithmic kernel can provide some great use.
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Figure 4.9: Reconstruction error plot using the logarithmic kernel.

4.5 Cauchy Kernel

The Cauchy Kernel is a kernel which works well on spam filtering, but has not been ex-

tensively used in image processing. This makes for a great opportunity in applying the

Cauchy kernel within this thesis. With the function, comes a tuning parameter σ and the

Euclidean squared norm between pairs of images. The optimal σ which created the least

reconstruction error was at σ = 1.3 × 1010. The eigenfaces are shown below, which appear

to be a combination of the faces from logarithmic and radial basis kernels. Eigenfaces 1

and 2 are similar to that of the logarithmic kernel, but have now been swapped in terms of

magnitude of eigenvalue. It is important to note that the eigenvalues for the Cauchy kernel

include negative numbers (meaning this kernel matrix is not conditionally positive/positive

definite). The sign of the eigenvalue displays the direction of the vector and has nothing

to do with strength. So the eigenvalues with the largest absolute value, or magnitude have

been chosen as the most influential eigenfaces. Eigenface 4 appears very similar to that of
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the Gaussian and Exponential kernel, and there is an inclusion of a new face for Eigenface

6.

(a) λ = 0.0371 (b) λ = −0.0266 (c) λ = −0.0132

(d) λ = −0.0092 (e) λ = −0.0075 (f) λ = −0.0067

Figure 4.10: The six eigenfaces with the largest eigenvalues using the Cauchy kernel. Note:

Emphasis was focused on eigenvalues with the largest magnitude, regardless of sign.

The reconstruction errors for the Cauchy Kernel (Figure 4.20) showed some interesting

results, with images 8, 3, and 5 again being the top three reconstructed images. Images 7 and

8 actually had a much lower reconstruction error than in the logarithmic and exponential

kernels, which shows the usefulness of the Cauchy kernel for certain images. In the overall

assessment of reconstruction however, Cauchy does not perform as well as the Gaussian,

Exponential, or Logarithmic kernels.
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L2-Norm: Reconstruction - Original

Test Image L2-Norm

1 1.4210 x 104

2 1.3854 x 104

3 1.1476 x 104

4 1.5028 x 104

5 1.1761 x 104

6 1.1879 x 104

7 1.8675 x 104

8 1.1111 x 104

9 1.2915 x 104

Table 4.5: A table displaying the L2-norm between the original test image, and reconstructed

image using the Cauchy kernel.

The reconstruction plot for the Cauchy kernel displays a steady decrease as k increases

(as opposed to the logarithmic which shows a fast rate of decrease in early stages of k and

then levels off at a consistent error level). The overall average error for this kernel function

is 1.42×104, which has been the highest so far. It seems though Cauchy has the potential to

perform better at reconstruction in individual images, the other kernels have shown a much

better performance in the overall image reconstruction process.
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Figure 4.11: Reconstruction error plot using the Cauchy kernel.

4.6 Polynomial of Degree 2

The polynomial kernel is a popular kernel used in many statistical learning applications.

For this analysis, the polynomial kernel of degree 2 has been chosen. The parameters which

can be modified for this kernel are the scaling constant α (multiplied with the dot product

X · Y) and the additional constant c (which is added to the product of αX · Y). In the

case of degree 2, the kernel was optimized using α = 1000 and c = 1.0× 1015 Below are the

eigenfaces for the Polynomial kernel, which appear very simlar to that of linear PCA.
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(a) λ = 1.3413× 1028 (b) λ = 1.0702× 1028 (c) λ = 6.3326× 1027

(d) λ = 4.4479× 1027 (e) λ = 3.6853× 1027 (f) λ = 3.1073× 1027

Figure 4.12: The six eigenfaces with the largest eigenvalues using the Polynomial Kernel

(degree 2).

The L2-norms for the polynomial kernel of degree 2 were some of the best (lowest errors)

in this analysis thus far. The polynomial kernel beat the linear PCA model in reconstruction

error for test images 1, 2, and 7. The top three test images are the same as in the other

kernels (test image 8, 3, and 5), but what really stood out is how similar the reconstructions

between the linear PCA and polynomial kernel PCA are. With minor modifications and

tweaks, the polynomial performs just as good, and potentially better than the linear PCA.

The linear PCA does have better performance in individual test image 3. In general the

polynomial kernel of degree 2 tops the other non-linear kernels used in this analysis.
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L2-Norm: Original - Reconstruction

Test Image L2-Norm

1 1.2807 x 104

2 1.3581 x 104

3 1.1344 x 104

4 1.4926 x 104

5 1.1628 x 104

6 1.1819 x 104

7 1.8404 x 104

8 1.1030 x 104

9 1.2749 x 104

Table 4.6: A table displaying the L2-norm between the original test image, and reconstructed

image using the Polynomial kernel (degree 2).

The reconstruction plot of the polynomial kernel with degree 2 is shown in Figure 4.13.

Interestingly, the average error of the polynormial kernel is 1.2852 × 104, which is almost

exactly alike as the linear PCA average error. This makes it clear that the Polynomial kernel,

though uses a higher dimensional space, performs in a very similar manner to that of Linear

PCA. The benefit of using the Polynomial PCA is because there is the potential to perform

better than Linear PCA in individual images. So based on what we’ve seen thus far, in terms

of non-linear kernel methods the polynomial kernel of degree 2 will work the best.
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Figure 4.13: Reconstruction error plot using the Polynomial Kernel (degree 2).

4.7 Laplacian Kernel

The last kernel function we will apply to our image data is the Laplacian kernel, which is

another radial basis kernel in the same family as the Gaussian and Exponential. Unlike

its Exponential and Gaussian counterparts however, the norm of every pair of image is not

divided by 2σ2, instead the Laplacian kernel is divided by σ (refer back to section 2.4.2

for the difference between the kernel functions). Dividing simply by σ results in a tuning

parameter which is much less sensitive to changes in the σ value, which makes this radial

basis function an interesting kernel to use for various regression and classification problems.

The eigenfaces for the Laplacian kernel are displayed below, and because of the difference

in σ versus 2σ2, the eigenfaces appear different from the Exponential and Gaussian kernels.

The first eigenface looks exactly the same as in the Exponential, linear, polynomial and

Gaussian kernels, and interestingly enough the second eigenface appears exactly like the
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Cauchy kernel’s first eigenface (or the logarithmic kernel’s second eigenface). Eigenface 3 is

the exact same eigenface as the logarithmic kernel’s third eigenface, and eigenfaces 4, 5, and

6 appear exactly the same as the polynomial (with degree 2) and linear eigenfaces.

(a) λ = −14.8308 (b) λ = −11.7736 (c) λ = −7.2074

(d) λ = −5.1744 (e) λ = −4.3412 (f) λ = −3.7208

Figure 4.14: The six eigenfaces with the largest eigenvalues using the Laplacian kernel. Note:

Emphasis was focused on eigenvalues with the largest magnitude, regardless of sign.

In general, the Laplacian eigenfaces represent a combination of several of the kernels used

in this thesis. The reconstructions errors for each test image, shown in Table 4.7, demonstrate

a significant decrease in error similar to that of the linear and polynomial kernel of degree

2. Test images 2, 4, 5, and 7 have lower reconstructions errors than both the linear and

polynomial kernel PCA of degree 2. This is signficant because, the polynomial kernel and

linear PCA have performed the best in this analysis thus far. Comparing the Laplacian
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kernel to the other radial basis functions display an improvement with no question. The

Laplacian kernel works better than the Gaussian and the Exponential kernel, making this

the best radial basis function applied in this thesis.

L2-Norm: Reconstruction - Original

Test Image L2-Norm

1 1.2817 x 104

2 1.3567 x 104

3 1.1352 x 104

4 1.4909 x 104

5 1.1612 x 104

6 1.1817 x 104

7 1.8383 x 104

8 1.1043 x 104

9 1.2752 x 104

Table 4.7: A table displaying the L2-norm between the original test image, and reconstructed

image using the Laplacian kernel.

The reconstruction plot for the Laplacian kernel shown in Figure 4.15 displays a smooth

improvement as k increases in comparision to the logarithmic and Cauchy kernels. With

the average error calculated at 1.2854 × 104, this kernel function performs better than the

Gaussian Kernel and the Exponential kernel. The error for the Laplacian Kernel is higher

than in the linear and polynomial PCA, but overall the error is extremely close considering

the polynomial kernel error was 1.2852 × 104 and the linear error was 1.2851 × 104. With

regards to individual test image, it is clear the Laplacian outperforms its radial basis coun-

terparts and can potentially do better than the linear and polynomial kernel, making this

an excellent choice for kernel PCA in face reconstruction. Overall, the Laplacian kernel is

the best radial basis function used in this thesis.
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Figure 4.15: Reconstruction error plot using the Laplacian kernel.

In Figure 4.16, we display the reconstruction plots for the Laplacian, Logarithmic, Expo-

nential, Cauchy, and Gaussian Kernels side by side. The radial basis functions (Laplacian,

Gaussian, and Exponential) work the best while the Logarithmic and Cauchy kernels have

larger errors in comparison. The Logarithmic kernel performs very well in early values of k.

The Linear and Polynomial Kernel outperforms all these kernels (the reconstruction error

for linear, polynomial, and laplacian appear to be the exact same, denoted as red in the plot

below).
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Figure 4.16: Reconstruction plot for every kernel used in this analysis. Note: Linear, Poly-

nomial, and Laplacian Kernel all share similar error values denoted in red.
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CHAPTER 5

Conclusion and Future Work

The assessment of non-linear kernel techniques which have been applied to face image data

has brought some very interesting findings in this thesis. First and foremost, it is clear to say

that non-linear kernels have proven to be an effective alternative to linear principal compo-

nent analysis. The linear PCA has the ability to capture significant features and performed

the best in face reconstruction, while the kernel functions provide a much larger flexibility in

capturing influential features of variation. Secondly, the type of kernel selected for modeling

the face images depends on the type of requirements needed to solve a certain problem. For

example, if somone needs to create an algorithm which performs a face reconstruction using

only k = 5 eigenfaces, the logarithmic function would be of great use (because of how well

it works with low levels of k). In general what this thesis has shown is the manner in which

each non-linear kernel captures the features of influence, and how each function works in

reconstruction for individual images, and also for every value of k.

The results of our analysis is as follows. The linear PCA, Polynomial kernel of degree 2,

and the Laplacian kernel have all performed the best in our analysis. In several instances, the

polynomial kernel of degree 2 and the Laplacian kernel perform better than linear PCA. The

Gaussian and Exponential kernels are runner-ups after the linear PCA, Polynomial kernel,

and Laplacian kernel. The Gaussian and Exponential kernel perform better for certain test

images than the linear, polynomial, and laplacian kernels, but in the overall assessment

does not have as low of reconstruction errors as the linear, laplacian, or polynomial kernels.

The Laplacian, Exponential, and Gaussian kernels are all of the same radial basis family,

and Laplacian performs the best in this family of kernels. The logarithmic kernel performs
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similarly to the other kernels for low levels of k, but does not achieve low reconstruction

error rates in the long-term, in comparison to its radial basis and polynomial counterparts.

The Cauchy distribution performed the worst in this assessment, making this kernel not a

very good choice for image-based data (as far as this thesis is concerned).

These findings provide a basis for future work with regards to kernel PCA and human face

reconstruction. Though this thesis has focused on a set of male images, the same assessment

can be performed on female faces in order to confirm this paper’s finding. Furthermore, the

amount of pixel data used in this analysis (750 x 750) can be a contributing factor to the

performance of the different kernels, so a modification of pixel size with regard to image

data can be looked onto further. Other face databases which exist currently contain images

of people expressing different emotions (happiness, anger, etc.), along with images of faces

seperated by other intrinsic factors (a person’s race can affect intrinsic features of a face).

These future analyses can provide some overall conclusions between the performance of these

non-linear kernel methods and the large variety of face data that exists in the world today,

making the possibilities of future work very opportunistic.
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(a) Test Image 1 (b) Reconstruct 1 (c) Test Image 2 (d) Reconstruct 2

(e) Test Image 3 (f) Reconstruct 3 (g) Test Image 4 (h) Reconstruct 4

(i) Test Image 5 (j) Reconstruct 5 (k) Test Image 6 (l) Reconstruct 6

(m) Test Image 7 (n) Reconstruct 7 (o) Test Image 8 (p) Reconstruct 8

(q) Test Image 9 (r) Reconstruct 9

Figure 5.1: Comparison of the nine original test images and reconstruction images using

standard linear principal component analysis.
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(a) Test Image 1 (b) Reconstruct 1 (c) Test Image 2 (d) Reconstruct 2

(e) Test Image 3 (f) Reconstruct 3 (g) Test Image 4 (h) Reconstruct 4

(i) Test Image 5 (j) Reconstruct 5 (k) Test Image 6 (l) Reconstruct 6

(m) Test Image 7 (n) Reconstruct 7 (o) Test Image 8 (p) Reconstruct 8

(q) Test Image 9 (r) Reconstruct 9

Figure 5.2: Comparison of the nine original test images and reconstruction images using the

Gaussian kernel.
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(a) Test Image 1 (b) Reconstruct 1 (c) Test Image 2 (d) Reconstruct 2

(e) Test Image 3 (f) Reconstruct 3 (g) Test Image 4 (h) Reconstruct 4

(i) Test Image 5 (j) Reconstruct 5 (k) Test Image 6 (l) Reconstruct 6

(m) Test Image 7 (n) Reconstruct 7 (o) Test Image 8 (p) Reconstruct 8

(q) Test Image 9 (r) Reconstruct 9

Figure 5.3: Comparison of the nine original test images and reconstruction images using the

exponential kernel.
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(a) Test Image 1 (b) Reconstruct 1 (c) Test Image 2 (d) Reconstruct 2

(e) Test Image 3 (f) Reconstruct 3 (g) Test Image 4 (h) Reconstruct 4

(i) Test Image 5 (j) Reconstruct 5 (k) Test Image 6 (l) Reconstruct 6

(m) Test Image 7 (n) Reconstruct 7 (o) Test Image 8 (p) Reconstruct 8

(q) Test Image 9 (r) Reconstruct 9

Figure 5.4: Comparison of the nine original test images and reconstruction images using the

logarithmic kernel.
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(a) Test Image 1 (b) Reconstruct 1 (c) Test Image 2 (d) Reconstruct 2

(e) Test Image 3 (f) Reconstruct 3 (g) Test Image 4 (h) Reconstruct 4

(i) Test Image 5 (j) Reconstruct 5 (k) Test Image 6 (l) Reconstruct 6

(m) Test Image 7 (n) Reconstruct 7 (o) Test Image 8 (p) Reconstruct 8

(q) Test Image 9 (r) Reconstruct 9

Figure 5.5: Comparison of the nine original test images and reconstruction images using the

Cauchy kernel.
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(a) Test Image 1 (b) Reconstruct 1 (c) Test Image 2 (d) Reconstruct 2

(e) Test Image 3 (f) Reconstruct 3 (g) Test Image 4 (h) Reconstruct 4

(i) Test Image 5 (j) Reconstruct 5 (k) Test Image 6 (l) Reconstruct 6

(m) Test Image 7 (n) Reconstruct 7 (o) Test Image 8 (p) Reconstruct 8

(q) Test Image 9 (r) Reconstruct 9

Figure 5.6: Comparison of the nine original test images and reconstruction images using the

Polynomial kernel of Degree 2.
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(a) Test Image 1 (b) Reconstruct 1 (c) Test Image 2 (d) Reconstruct 2

(e) Test Image 3 (f) Reconstruct 3 (g) Test Image 4 (h) Reconstruct 4

(i) Test Image 5 (j) Reconstruct 5 (k) Test Image 6 (l) Reconstruct 6

(m) Test Image 7 (n) Reconstruct 7 (o) Test Image 8 (p) Reconstruct 8

(q) Test Image 9 (r) Reconstruct 9

Figure 5.7: Comparison of the nine original test images and reconstruction images using the

Laplacian kernel.
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