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ABSTRACT OF THE DISSERTATION

Ensuring Correctness of Modern Software Systems by Example

by

Aishwarya Sivaraman

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2022

Professor Todd D. Millstein, Chair

Software is intertwined in our daily lives: it manages sensitive personal information, allows

us to connect with our peers, and controls devices like planes, cars, etc. Recent years have

seen a surge in the adoption of a new kind of software system that uses Machine Learning

and Artificial Intelligence due to an abundance of data. Owing to the ubiquitous nature,

the security and reliability of these systems are paramount. However, due to these systems’

complex nature, they are fragile and suffer from design and implementation flaws that make

them unreliable. Unfortunately, building systems with provable guarantees is still a niche

domain and remains largely unapproachable for the software development community, since

these techniques require significant investment in terms of time and effort.

In this dissertation, I present verification techniques that ease the manual burden required

to build reliable software and machine learning systems. The proposed techniques leverage

specifications in the form of input/output examples and program synthesis techniques to

ensure system correctness. I present the first approach that reduces the general lemma

synthesis problem to a data-driven program synthesis problem, for easing the proof burden in

a foundational verification setting. I then present an extension to this data-driven synthesis
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approach that expands the class of lemmas that can be synthesized. I conclude with the first

counterexample-guided verification approach that can provably enforce correctness properties

in Neural Networks.
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CHAPTER 1

Introduction

How can we enable programmers across different domains to formally guarantee that a

software or machine learning system is “error-free” – for a given definition of correctness?

The field of formal verification attempts to answer this question and has come a long

way in realizing this goal. In fact, the first attempt to prove such correctness was proposed

by Alan Turing in his seminal paper “Checking a Large Routine” [Tur89]. In this work,

Turing proved that the factorial function always terminates and produces the factorial of

its input. The key insight from this work is “proof decomposition”, i.e. Turing proposed to

prove lemmas for each instruction and stitch these together to prove the correctness of the

full program. This insight led to the development of several program verification algorithms,

languages, and tools that allow programmers to build systems with strong guarantees, by

formally proving the desired properties [Tel80, DKW08, BH14]. However, the increasing

scale of software systems and rapidly evolving machine learning systems have made current

verification techniques onerous (§ 1.2.1) or inapplicable (§ 1.2.2). This thesis aims to change

that by proposing example-driven automated techniques to reduce the cost of verification,

thereby aiding a programmer’s effort in building reliable systems.

1.1 Why do Systems need Verification?

Software is intertwined in our daily lives: it manages sensitive personal information, allows us

to connect with our peers, and controls devices like planes, cars, etc. Further, recent years have

1



seen a surge in the adoption of a new kind of software system that uses Machine Learning (ML)

and Artificial Intelligence (AI) due to an abundance of data. Machine learning algorithms have

helped make tremendous progress in complex computing tasks like object recognition, natural

language processing, and so on. This has led to the development of a new kind of software

system that is a combination of manually written code and automatically trained models. As

software becomes more complex and assumes a greater role in our lives, it is important that

we develop techniques that ensure its safety and reliability. However, due to these systems’

complex nature, they are fragile and suffer from design and implementation flaws that make

them unreliable. New methods are constantly sought to reduce complexity and improve the

reliability of software and machine learning systems. Despite these growing efforts, in the

past decade, researchers and/or hackers have identified software bugs, specifically security

vulnerabilities that had a major impact on the economy and society. Examples include the

Log4j vulnerability in Java [log], the Heartbleed vulnerability in Openssl [DLK14], and

in 2011 Jerome Radcliffe showed they could wirelessly hack an insulin pump and cause it to

deliver incorrect dosages of medication [Rad11].

Furthermore, machine learning systems exacerbate these problems since the prevailing

practice is to train a system on a training data set and then test it on another set. While

training with data reveals the average-case performance of models, it provides no guarantees

on correctness invariants. Therefore, there are looming concerns about the privacy, security,

fairness, and explainability of AI/ML-based models. These models are associated with a set

of risks and concerns including errors in AI software, cyber-attacks, and safety of AI-based

systems [AOS16, RDT15]. The failure of ML models has produced catastrophic results. For

example, autonomous vehicles have been involved in numerous fatal crashes despite very high

test and training accuracy. Some of the machine learning models like Deep Neural Networks

are vulnerable to adversarial attacks that make them unsafe and unstable [PMG17, GSS18].
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1.2 How do we currently verify systems?

1.2.1 Foundational Verification of Software Systems

One of the promising pillars of software verification is foundational verification, where pro-

grammers provide formal proof of the desired property of a program. Typically programmers

use an interactive theorem prover (also known as proof assistants) such as Coq [BBC97] or

Isabelle/HOL [Pau86] to state and prove the correctness properties of their programs. A

formal proof can be “machine-checked”, i.e. given a representation of a formal system and

a proof of correctness, a computer program can decide if the proof is valid. This approach

provides high levels of assurance. The interactive theorem prover makes sure that proofs

of program properties are done in complete detail, without any implicit assumptions or

forgotten proof obligations. Since this is an appealing advantage, the use of theorem proving

for verification has been used to build pieces of system infrastructure that are widely relied

upon to be correct and secure. For example, in compilers [Ler09], file systems [CCK17],

database systems [MMS10], cryptographic primitives [App15], etc. Figure 1.1 illustrates a

typical proof workflow when using an interactive theorem prover. A programmer starts by

providing the proof assistant with the program definitions and specifications. To write a

proof, they use tactics (like induction), and the proof assistant responds to each tactic by

refining the current goal to some subgoal. If a tactic cannot be applied to the current goal,

the proof assistant provides error feedback to the programmer. This loop of tactics and goals

continues until no goals remain, at which point the programmer has constructed a sequence

of tactics called a proof script.

Despite their tremendous success in providing provable guarantees, the adoption of

foundational verification is limited. Unfortunately, building systems with provable guarantees

is still a niche domain and remains largely unapproachable for the software development

community. Although formal methods research has produced techniques and tools [BBC97,

App15] that aid in reliable system building, verification is too costly today [BH14] and hence
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Figure 1.1: Typical Interactive Workflow when using Coq proof assistant.

is not done in practice, leaving software rife with bugs. This can be attributed to (1) large

amounts of manual effort required to formalize the intended behavior, and (2) these techniques

do not scale well for large software systems. First, a programmer should provide a formal

specification or identify some key properties of their code and prove that the implementation

follows these properties. A proof assistant is just a checker, therefore, all details of the proof

need to be rigorously formalized in the theorem prover. A theorem prover doesn’t a priori

know any properties, for example, that addition is commutative a + b = b + a is true. To

use this property as a lemma, it needs to be either proven, added as an assumption, or

imported from an external library. Hence theorem proving remains esoteric, and the cost

prohibits the proliferation of this approach as a go-to verification method. For example, the

seL4 operating system kernel [KEH09] took 22 person-years to verify.

To combat the proof burden of interactive theorem proving, several techniques have

been proposed to complete the proof steps by predicting the tactics [Chl13a] and lemmas

to use [CK18a, KU15a]. Recent works have proposed the use of machine learning to reduce

proof burden [SAS20a, BLR19a, FBG20a, GKU18]. For example, the IronFleet project used

SMT solvers and Dafny – a verification language – to write a verified distributed system

in 3.7 person-years [HHK15]. While this is an improvement over the manual proof burden

of seL4 (22 person-years), it is still costly. This is due to the manual effort required by

the programmer to provide necessary specifications and intermediate helper lemmas where

necessary.
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Techniques described so far aid a human prover with automation, there are works in the

domain of automated theorem proving that aim to reduce manual proof burden by fully

automating the proof search. The goal of any automated theorem proving (ATP) engine is to

find proof of a given theorem statement with simply a push of a button. Typical ATP tries to

find a proof using resolution refutation: it converts the premises and negation of the theorem

into first-order clauses in conjunctive normal form. It then keeps generating new clauses by

applying the resolution rule until an empty clause emerges, yielding a proof consisting of a

long sequence of CNFs and resolutions [YD19a]. Exhaustive deductive reasoning tools quickly

hit combinatorial explosion, and are unusable when reasoning with a very large number

of facts without careful premise selection [BKP16]. Further, ATP representation of simple

formulas can be long and complicated and make it difficult to benefit from the higher-level

abstraction and manipulation that is common to human mathematical reasoning. Therefore,

ATPs are limited in the type of problems they can solve. Since ATP is a search problem,

to work around these difficulties, recent works focus on using machine learning for proof

search [BLR19a, KUM18, Wha16a]. In addition to proof search, recent works have used

machine learning algorithms for premise selection. The typical setting for the task of premise

selection is the selection of a limited number of most relevant facts from a large corpus of

knowledge, to prove a new conjecture [CK18a, ACE16]. Despite these advancements, ATPs

suffer from a fundamental limitation that in general automatically proving that a property is

true about a system can be undecidable. This limits the applicability of ATPs, emphasizing

the importance of human-machine collaboration to formalize properties using proof-assistants.

While all of this prior work has been very helpful in pushing state-of-the-art, the vast

majority of this work focuses on forms of automation techniques to help users prove a single

lemma or subgoal within a lemma, using a given knowledge base. However, when we move

beyond the simple example, the proof of the main theorem is typically decomposed into many

smaller lemmas, and each of those lemmas has its helper lemmas too. One key challenge

that limits the current techniques is the need to identify auxiliary lemmas that are required
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in order to prove the desired theorem. For example, a lemma may be required in order to

rewrite the subgoal at a particular point in the proof into a form that allows the induction

hypothesis to be applied. As another example, the theorem’s induction hypothesis may be too

weak, thereby necessitating a stronger lemma that is amenable to an inductive proof. If the

required auxiliary lemma is not provided as part of the knowledge base, the above-mentioned

techniques fail to return a successful proof. Automating the discovery of these helper lemmas

remain a challenge that this thesis addresses.

1.2.2 Verification of Machine Learning Systems

Neural networks and deep learning have revolutionized machine learning [KSH17, GBC16]

achieving the state of the art performance on a wide range of complex prediction tasks.

Neural networks are typically tested using the standard machine learning paradigm: If

the performance of the network is sufficiently high on a test set that the network did not

have access to while training, the network is deemed acceptable. However, this evaluation

protocol is not sufficient in domains where for safety, ethical, and legal reasons, it is of

utmost importance that decisions made by neural networks adhere to properties like fairness,

monotonicity, etc. Even networks that perform well on a large sample of inputs may not

correctly generalize to new situations and may be vulnerable to adversarial attacks [PMJ16].

Currently, there are three classes of techniques for the general verification of neural

networks. (1) Constraint-based verification: These techniques take a neural network and a

property of interest and encode the verification problem as a set of constraints that can be

solved by a Satisfiability Modulo Theories (SMT) solver or a Mixed Integer Linear Program

(MILP) solver. Such a prover can prove or disprove a property, returning a counterexample

in the latter case [KBD17, HKW17, DJS18, Ehl17]. (2) Abstraction-based verification

techniques employ abstract domains to evaluate the neural networks on sets of inputs. These

techniques execute the neural network over an infinite set and show that all of those inputs

satisfy desirable correctness properties. These techniques are incomplete and therefore are
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more scalable than constraint-based verification approaches [GMD18, GDS18, WPW18].

(3) Certification-based verification techniques, for example, robustness-based certification

techniques add regularizing terms to the loss function of the model such that the prediction

for a small distance around a given input point does not change [SNV17, RSL18].

The first two verification works proposed above can only check for the presence or absence

of correctness counterexamples. These techniques are post-hoc validation and currently, there

is no way to rectify and encourage the model to obey correctness properties. Certification-

based techniques do enforce the required behavior when learning a model, however, these

guarantees are limited to only points that are very close to the train/test points. These

techniques do not provide any guarantees for arbitrary points from the input distribution.

Designing algorithms that provide provable correctness guarantees for all points in the input

domain remains a challenge that this thesis addresses.

1.3 Thesis Statement and Contributions

The rise of modern software systems has led to a world where they control medical devices like

insulin pumps, computer peripherals like printers, communication equipment like cellphones,

various kinds of vehicles, and so on. Therefore it is of paramount importance that developers

of these systems are equipped with the right tools and techniques to build reliable and

secure systems. Further, as described above, building reliable modern software systems is

onerous or does not provide provable guarantees, requiring new verification techniques and

algorithms. My thesis is that, it is possible to dramatically reduce the manual effort required

by programmers to develop reliable modern software systems with automated techniques that

use examples to verify and enforce key correctness properties.

To design such techniques, we must address the following key concerns. First, we need

to tackle the technical challenges that are necessary to overcome for that approach with a

focus on reducing manual effort in practice. Second, we need to design approaches that are
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extendable, such that they can support a variety of correctness properties. Lastly, we need

to ensure that the proposed techniques do not cause significant performance degradation

(specifically in the case of machine learning systems).

The key insight is that input/output examples of a system are easy to obtain, and act as

an additional specification that helps navigate the verification search space efficiently. Hence,

I use input/output examples of the system and example-based program synthesis techniques

to design and develop approaches that ensure correctness. During my doctoral program, I

have made significant progress on the proposed goals using this key insight. Through this

thesis, I have made three contributions to reduce the manual effort needed to develop provably

correct modern software systems. The following sub-sections enumerate this dissertation’s

contributions individually.

1.3.1 Example-Driven Lemma Synthesis for Interactive Theorem Proving

Interactive proofs of theorems often require auxiliary helper lemmas to prove the desired

theorem. Existing approaches for automatically synthesizing helper lemmas fall into two

broad categories. Some approaches are goal-directed, producing lemmas specifically to help a

user make progress from a given proof state, but they have limited expressiveness in terms

of the lemmas that can be produced. Other approaches are highly expressive and able to

generate arbitrary lemmas from a given grammar, but they are completely undirected and

hence not amenable to interactive usage.

In this work, I develop an approach to lemma synthesis that is both goal-directed and

expressive. The key novelty is a technique for reducing lemma synthesis to a data-driven

program synthesis problem, whereby examples for synthesis are generated from the current

proof state. I also describe a technique to systematically introduce new variables for lemma

synthesis, as well as techniques for filtering and ranking candidate lemmas for presentation

to the user. I implement these ideas in a tool called lfind, which can be run as a Coq tactic.

In an evaluation of four benchmark suites, lfind produces useful lemmas in 65% of the cases
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where a human prover used a lemma to make progress. In these cases, lfind synthesizes a

lemma that either enables a fully automated proof of the original goal or that matches the

human-provided lemma.

1.3.2 Increasing Expressivity of Example-Driven Lemma Synthesis

Lemma synthesis approach proposed in § 1.3.1 suffers from two key limitations. First, the

generated lemmas of lfind always have the same top-level structure as the goal. While these

candidate lemmas are useful in applying to the full goal state or rewriting one side of the

equality in the goal state, they fail to produce a useful candidate lemma in cases that require

equality helper lemmas about the subterms in the goal. Second, many natural lemmas are

also conditional, where a particular property is true only under certain circumstances. lfind

fails to produce conditional candidate lemmas.

In this work, I propose two extensions to lfind that improve the expressivity of the

data-driven paradigm for lemma synthesis. To address the first limitation of generating

equalities about subterms, I extend the kind of lemma sketches defined by lfind. The key

novelty is a technique to generate candidate lemmas based on subterms while reusing the

data-driven synthesis problem setup in lfind. I address the second limitation by proposing

a novel counterexample-guided refinement algorithm to generate conditional lemmas.

I implement these ideas in a tool called lfind++, which can be run as a Coq tactic. In an

evaluation of six benchmark suites, with 323 evaluation locations, lfind++ synthesizes useful

lemmas in 76% of the cases where a human prover used a lemma to make progress. On these

evaluation locations, lfind can only solve 49% of the cases, indicating the effectiveness of

the proposed approach in improving expressivity.
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1.3.3 Counterexample-Guided Verification of Neural Networks

The widespread adoption of deep learning is often attributed to its automatic feature

construction with minimal inductive bias. However, in many real-world tasks, the learned

function is intended to satisfy domain-specific constraints. I focus on monotonicity constraints,

which are common and require that the function’s output increases with increasing values

of specific input features. I develop a counterexample-guided technique to provably enforce

monotonicity constraints at prediction time. Additionally, I propose a technique to use

monotonicity as an inductive bias for deep learning. It works by iteratively incorporating

monotonicity counterexamples in the learning process. Contrary to prior work in monotonic

learning, I target general ReLU neural networks and do not further restrict the hypothesis

space. I have implemented these techniques in a tool called COMET. Experiments on real-world

datasets demonstrate that the approach achieves state-of-the-art results compared to existing

monotonic learners, and can improve the model quality compared to those that were trained

without taking monotonicity constraints into account.
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CHAPTER 2

Example-Driven Lemma Synthesis for Interactive

Theorem Proving

2.1 Introduction

Interactive proof assistants [FHB97, Pau93, MKA15] are powerful frameworks for writing code

with strong guarantees. While various tools exist to perform automated proof search [YD19b,

GKU17, SAS20b, BLR19b, PLR20, SIS17, FBG20b, Wha16b] and to integrate external

automated solvers [BBP11, KU15c, CK18b, KU15b], the manual proof burden remains high.

One particular challenge is the need to identify auxiliary lemmas that are required to prove a

desired theorem. For example, the theorem’s induction hypothesis may be too weak, thereby

necessitating a stronger lemma that is amenable to an inductive proof. As another example,

a lemma may be required to rewrite a subgoal at a particular point in the proof into a form

that allows the induction hypothesis to be applied.

Existing approaches to address this problem through a form of lemma synthesis fall into

two categories. In the first category, heuristic rewrites are performed on the proof state at

the point where the user is stuck to identify potentially useful lemmas [KM97, KS96, BSV93,

JDB10, DF03, SDE12, Aub76, Cas85, Hum90, Hes92]. For example, the generalization

technique [BM79, KM97] from ACL2 heuristically replaces one or more terms in the current

subgoal with fresh variables. In the second category of approaches, candidate lemmas are

generated from a grammar through a form of enumeration-based synthesis [CJR13, YFG19,
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RK15]. For example, HipSpec [CJR13] enumerates many candidate lemmas and attempts to

prove them with an automated prover.

The strength of the heuristic rewriting approach is that it is goal-directed, producing

candidate lemmas that are directly related to the current proof state. However, the approach

has limited expressiveness, as the space of possible candidates is dependent on a particular

set of rewrite rules. The enumeration approach has the opposite strengths and weaknesses.

Because candidate lemmas are enumerated from a grammar, they can be highly expressive.

However, candidate lemmas are generated in an undirected fashion, independent of the

particular state where the user is stuck. Hence this approach will generate many irrelevant

lemmas and so is ill-suited for an interactive setting. Indeed none of the enumeration-based

tools cited above support interactive usage.

In this chapter, I propose a new approach to lemma synthesis that combines the strengths

of the existing approaches. I show how to reduce lemma synthesis to a data-driven program

synthesis problem, which aims to synthesize an expression that meets a given set of input-

output examples. The examples for synthesis are generated directly from the current proof

state, ensuring that lemma candidates are targeted at the goal. At the same time, the

approach enables the usage of off-the-shelf data-driven program synthesizers that generate

expressions in a user-provided grammar [AGK13, OZ15, LCO20, FCD15, FOW16, MNB22].

This new approach allows us to successfully synthesize helper lemmas for more stuck proofs

than ever before.

Reducing lemma synthesis to data-driven program synthesis requires us to solve several

technical challenges. While data-driven synthesis is a common approach to generating

other kinds of program invariants [GLM14, GNM16, END18, PSM16, ZMJ18, MPW20], for

instance, loop invariants, these prior settings have several advantages that our setting lacks. In

prior settings, the desired invariant is a predicate over a fixed set of variables, for example, the

variables that are in scope at a loop. In contrast, it’s common for auxiliary lemmas to require

new variables that do not appear in the current proof state. Further, prior approaches employ
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counterexample-guided inductive synthesis (CEGIS) [Sol09], because there exists a clear

behavioral specification for the desired invariant: each candidate invariant is verified against

the specification, and counterexamples become new input-output examples for synthesis. In

our setting, we lack such a specification since a proof state can require an auxiliary lemma

for many different reasons. Hence we cannot generate input-output examples using CEGIS.

Finally, the lack of a specification also makes it difficult to determine whether any particular

candidate lemma is useful.

To address the problem of lemmas that require variables not appearing in the proof state,

I observe that the generalization technique [BM79, KM97] described above can be used not

only to produce candidate lemmas but also as a systematic way to “lift” the current proof

state to new variables for lemma synthesis. Hence our approach starts by producing all

generalizations of the proof state, each formed by replacing one or more terms with fresh

variables.

To generate examples for synthesis without counterexamples, I leverage the implicit

observation underlying the heuristic rewriting approaches described earlier, that the necessary

lemma often has a similar structure to the goal in the current proof state. The approach

produces a set of lemma sketches for each generalized goal, each sketch consisting of a version

of that goal but with one expression replaced by a hole to be synthesized. I sample valuations

of the variables in the current goal to generate input examples, and the expected output value

for each example is determined by the value of the hole’s original expression. In this way, I

require that the synthesized expression’s behavior be consistent with that of the expression

that it is replacing.

Finally, to address the lack of clear criteria for candidate lemmas to satisfy, I have

developed techniques to filter candidate lemmas that are not useful and to rank the remaining

candidates based on their likely utility to the user. Filtering removes lemmas that are

determined to be either trivial, redundant, or invalid, the latter using existing tools for

automated counterexample search [PHD15, CH00]. Since the ultimate utility of a lemma
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is based on whether it is provable and allows the user to complete the current proof, the

ranking approach employs existing tools for automated proof search to categorize lemmas for

user inspection.

I have implemented this approach as a tactic for Coq and call the resulting tool lfind.

Coq users can invoke lfind as a tactic at any point in their proof, and it will produce a

set of ranked lemma candidates. Lemma synthesis in lfind is targeted for use in proving

properties of programs (as opposed to other uses of interactive theorem proving, such as

formalizing mathematics). This is a common use case for Coq, aligns with the focus of

prior lemma synthesis approaches, and is compatible with the data-driven style that our

tool employs. The approach is parameterized by a data-driven program synthesizer (for

candidate lemma generation), counterexample searcher (for candidate filtering), and proof

searcher (for candidate ranking). The implementation uses the Myth [OZ15] data-driven

program synthesizer for OCaml, the Quickchick [PHD15] tool for counterexample search,

and the state-of-the-art Proverbot9001[SAS20b] tool for proof script search. Note that

the approach is agnostic to the specific toolset we use for implementation; in fact, future

improvements in data-driven program synthesis, counterexample search, and proof search

can be directly leveraged to improve lemma synthesis.

I evaluate my approach on two benchmark suites from prior work on lemma synthesis,

clam [IB96] and lia [YFG19], as well as two new benchmarks from diverse domains, full

adder [cir95] and compiler correctness [Chl13b]. Together, there are 222 evaluation locations

from these benchmarks, where a human prover used an auxiliary lemma to progress. lfind

synthesizes a useful lemma for 144/222 of these locations, with a median runtime of 4.8

minutes (see § 2.5.3). At 109 of these locations lfind provides a full automated proof of the

synthesized lemma and the goal; at the other 35 locations lfind produces a ranked list of

lemma candidates where the human-written lemma is in the top 10. I also show that our

approach significantly outperforms the prior technique of generalization as well as a version
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of lfind that employs type-guided synthesis without examples (§ 2.5.4). Finally, in § 2.5.5 I

evaluate lfind’s sensitivity to different hyperparameters and timeouts.

In summary, I make the following contributions:

1. I present the first approach that reduces the general lemma synthesis problem to a data-

driven program synthesis problem. The approach derives both lemma sketches as well as

examples for synthesis from a given stuck proof state, and it uses the existing generalization

technique to lift the proof state to new variables for synthesis.

2. I describe a suite of filtering and ranking strategies for candidate lemmas, which are

necessary for an interactive verification setting.

3. I have instantiated the approach in a tactic called lfind for Coq.

4. The experimental evaluation demonstrates the practical utility of the approach and tool,

quantifies the benefits over multiple alternative approaches to lemma synthesis, and

investigates the sensitivity of lfind to different parameter values.

2.2 Overview

2.2.1 Motivating Example

To illustrate how lfind works, we’ll start with an example. Figure 2.1 shows Coq code that

tries to prove a simple theorem: that reversing a list twice returns the same list. It starts by

defining lists of nats along with definitions for appending and reversing lists. Following that

is an attempt to prove the theorem, named rev_rev.

The proof proceeds by induction on the list l. The Nil case is easily proven, but the Cons

case is trickier. After simplification, the user is stuck because the goal is not in a form that

enables direct use of the induction hypothesis. Figure 2.2 shows the proof state at that point,

including the current assumptions and goal.
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1 Inductive lst : Type :=
2 | Nil : lst
3 | Cons : nat -> lst -> lst.

5 Fixpoint app (l1 : lst) (l2 : lst) : lst :=
6 match l1 with
7 | Nil => l2
8 | Cons n l1’ => Cons n (app l1’ l2)
9 end.

11 Fixpoint rev (l : lst) : lst :=
12 match l with
13 | Nil => Nil
14 | Cons n l1’ => app (rev l1’) (Cons n Nil)
15 end.

17 Lemma rev_rev : forall l, rev (rev l) = l.
18 Proof.
19 induction l.
20 - reflexivity.
21 - simpl. (∗ I’m stuck! ∗)

Figure 2.1: A partial proof of a theorem in Coq that requires an auxiliary lemma.

1 n : nat
2 l : lst
3 IHl : rev (rev l) = l
4 ---------------------------------------------
5 rev (app (rev l) (Cons n Nil)) = Cons n l

Figure 2.2: The proof state when the user gets stuck.

To get unstuck, the user can invoke our tool lfind as a tactic at this point. In this

example, the top three lemmas that lfind produces are as follows:

1(Λ1) Lemma lem1: forall l n,
2 rev (app l (Cons n Nil)) = Cons n (rev l).
3(Λ2) Lemma lem2: forall l1 l2,
4 rev (app l1 l2) = app (rev l1) (rev l2).
5(Λ2) Lemma lem3: forall l1 l2,
6 rev (app (rev l1) l2) = app (rev l2) l1.
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1 Lemma lem1: forall l n,
2 rev (app l (Cons n Nil)) = Cons n (rev l).
3 Proof.
4 intros.
5 induction l.
6 simpl.
7 eauto.
8 simpl.
9 rewrite IHl.

10 eauto.
11 Qed.

13 Lemma rev_rev : forall l, rev (rev l) = l.
14 Proof.
15 induction l.
16 - reflexivity.
17 - simpl. rewrite <- IHl. unfold app.
18 rewrite IHl. rewrite lem1. rewrite IHl. easy.
19 Qed.

Figure 2.3: A full proof provided by lfind.

Each lemma is bucketed into one of three categories (Λ1, Λ2, or Λ3), and the categories are

presented to the user in that order. Λ1 lemmas are those in which lfind can automatically

find a complete proof of the original goal using the generated lemma and Proverbot9001,

a state-of-the-art automated prover. In other words, lfind has successfully generated an

appropriate auxiliary lemma, proven that lemma, and used the lemma to complete the original

proof. The lemma lem1 is such an Λ1 lemma; the full proof of the theorem rev_rev using

lem1 is shown in Figure 2.3.

Λ2 lemmas are those that are sufficient to automatically prove the original goal, not

disprovable by Quickchick, but Proverbot9001 cannot automatically prove the auxiliary

lemma. lfind indicates that the second and third lemmas in the above listing are Λ2

lemmas; indeed, each of them in turn depends on its own auxiliary lemmas, for example,

the associativity of app. However, both lemmas are also still good options for the user: the

lemma lem2 is a more general version of lem1, while lemma lem3 reduces to the original
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rev_rev lemma when l2 is Nil. Λ3 lemmas are ones that are not disprovable by a tester like

Quickchick but automation using Proverbot9001 can’t be used to prove either the goal

or the auxiliary lemma; since they are similar to the goal and not disprovable, they might

still be useful to the user.

In the rest of this section, I explain how lfind produces these results.

2.2.2 Approach

As mentioned in § 2.1, the generality of our setting induces several technical challenges.

Lemma synthesis in lfind has four steps that are targeted at these challenges, as shown in

Figure 2.4. We start by generalizing the goal state, in order to systematically introduce new

variables that can be used in candidate lemmas. From each generalization, we create sketches

and sample variable valuations from the current goal in order to reduce lemma synthesis to

data-driven program synthesis. Finally, we filter the resulting lemma candidates to

remove those that cannot be useful and rank and categorize the remaining candidates for

user inspection.

Generalization In Coq, helper lemmas are generally used as arguments to the apply and

rewrite tactics. To use the apply tactic, the consequent of the lemma has to structurally

match the goal state to which it is applied. Similarly, if you are using the rewrite tactic, the

lemma needs to be a setoid relation, one of whose arguments structurally match a portion

of the goal state. It is for these reasons that prior techniques for lemma synthesis in the

interactive setting [KM97, BSV93] work by making heuristic rewrites to the goal state.

Our approach starts from the same intuition and we observe that generalization provides

a systematic way to introduce new variables to the synthesis process. Since we are not sure in

advance how many and which variables a useful lemma might need, we exhaustively generate

generalizations. Therefore, we start by producing all generalizations of the goal at the point

where lfind is invoked, which are formed by replacing one or more terms within the goal
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Figure 2.4: Overview of lfind.

with fresh variables [KM97]. In our example, there are six non-variable terms in the goal

(Figure 2.2). While in principle there are 26 possible generalizations using these terms, there

are only 16 unique ones, since some terms are only present as subterms of other ones.

For example, replacing rev l with a fresh variable l1 of type lst produces the following

generalization:

forall l n l1, rev (app l1 (Cons n Nil)) = Cons n l.

Alone, this generalization does not produce a valid lemma, as it does not hold when l1 is not

the reverse of l. Typically generalization is only applied on terms that appear more than

once in a goal [KM97], to avoid these cases. In our example, there are no such terms, and in

fact, all lemmas generated by generalization alone are easily disprovable.

Nonetheless, these generalizations play a crucial role in our approach. In addition to

being treated as candidate lemmas themselves, we use each generalization as a starting point

from which to produce many more candidate lemmas via data-driven program synthesis.

Each generalization introduces new variables that can be leveraged as part of that synthesis

process.
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Synthesis From each generalization, we create a set of sketches, where each sketch is a

version of that generalization with one term replaced by a hole. Note that synthesis is much

more expensive than the generalization process described above which simply replaces some

terms with variables. Furthermore, the need for lemmas to structurally match the goal

state limits how many parts of that state can be usefully rewritten. For these reasons, we

consider only one hole per lemma sketch, but lfind’s algorithm conceptually does not limit

the number of holes per synthesis. Our technique can be extended to synthesize terms for

each hole one at a time and then induce candidate lemmas from their combinations.

For example, if we replace the term Cons n l in the generalization above with a hole,

then we end up with the following sketch (note that we remove variable l from the quantifier

since it is no longer used):

forall l1 n, rev (app l1 (Cons n Nil)) = 2.

Intuitively, we would like the expression that fills the hole to behave consistently with the

expression that it is replacing. To that end, we generate concrete examples of the original

goal in the stuck state and then map them to input-output examples for data-driven synthesis.

In our running example, the original goal has two variables, l and n, so suppose we randomly

generate the following (l, n) pairs (using regular list notation for clarity):

{([], 4), ([0; 1], 2), ([2; 1], 1)}.

Next, we map these examples to our sketch. We do so by leveraging the fact that the

new variable l1 replaced rev l from the original goal. Hence we evaluate rev l for each of

our three examples to produce the following l1 values: {[], [1; 0], [1; 2]}. Similarly, we

produce the expected value of the hole for each example, by leveraging the fact that the hole

replaced Cons n l. This yields the values {[4], [2; 0; 1], [1; 2; 1]}.

As a result of this mapping, we can now produce a set of input-output examples that act

as a specification for synthesis, each mapping (l1, n) pairs to the expected output value of

the term to be synthesized:
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([], 4) 7→ [4]

([1; 0], 2) 7→ [2; 0; 1]

([1; 2], 1) 7→ [1; 2; 1]

Finally, we pass these input-output examples to a data-driven synthesizer. In addition to

the examples, we provide the type of the function to be synthesized (which in this case is

lst * nat → lst) and a grammar to use for term generation. lfind automatically creates

a grammar consisting of the definitions that appear in the stuck proof state along with

definitions that they recursively depend upon. In our example the grammar includes the

constructors Nil and Cons and the functions app and rev. One term that the synthesizer

generates from these inputs is Cons n (rev l1). Substituting this expression into the hole

in our sketch yields exactly the lemma lem1 shown earlier, which enables a fully automated

proof of the original lemma.

In summary, I have shown how to generate candidate lemmas in a targeted way, based on

the current proof state, using a novel combination of generalization and data-driven program

synthesis. While the expressions that are generated by synthesis can make use of a general

grammar, the form of the lemmas that we generate are still limited to the structure of the

sketches that we produce. As I demonstrate in §2.5, the approach can generate useful lemmas

for a variety of interesting benchmarks.

Filtering As described above, the approach induces many generalizations of each goal,

multiple sketches for each generalization, and multiple synthesis results for filling each sketch’s

hole. Hence, the set of candidate lemmas that are generated is quite large. In our running

example, with default settings for the number of sketches to produce for each generalization

and the number of synthesis results to produce for each sketch (see § 2.5.2), lfind generates

276 candidate lemmas. While the ability to explore a large space of candidates is a strength

of the approach, we must organize these candidates in a manner that is understandable and

beneficial to users.
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To that end, we filter out extraneous candidates in multiple ways.

First, we filter out candidates for which we can find a counterexample; we search for

counterexamples using Quickchick, an existing counterexample-generating tool [PHD15].

Second, we filter out candidates representing trivial facts, for example forall l, rev l =

rev l. We identify such cases using Coq’s trivial tactic.

Finally, we filter out candidates that "follow directly" from the user’s original lemma,

a notion we explore in more detail in § 2.3.4. For instance, in our running example one

candidate lemma is forall n l, rev (rev (Cons n l)) = Cons n l, which is a special

case of the original rev_rev lemma and hence is discarded in this step.

Ranking After filtering, there are 21 candidate lemmas remaining in our running example.

While that constitutes a 92.4% reduction, it is still too many candidates to require the user

to examine. Hence, we rank candidates based on their likely utility to the user and present

them in ranked order. Since ultimately the utility of a lemma is based on whether it allows

the user to prove the original goal, our ranking leverages a state-of-the-art automatic prover

for Coq, Proverbot9001, which searches the space of Coq tactics to try to prove a given

goal [SAS20b].

Specifically, we use the automatic prover to partition the candidate lemmas into the three

groups introduced in §2.2.1: Λ1 lemmas that are automatically provable and enable automatic

proof of the user’s stuck proof state; Λ2 lemmas that are not automatically provable but

enable automatic proof of the user’s stuck proof state; and the remaining Λ3 lemmas. Next,

we sort each group in order of size from least to greatest, since we expect smaller lemmas to

be easier for users to understand and evaluate. Finally, we concatenate these sorted groups

to form the final ranked list.

In our running example, there are 2, 2, and 17 lemmas respectively in each of these

three categories. The first lemma in category Λ1, which yields a fully automated proof, is
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lem1 shown earlier, so it is ranked first. Lemmas lem2 and lem3 are the smallest lemmas in

category Λ2 and hence are ranked next in our results.

2.3 Algorithms

In this section, I formally describe the core algorithms that make up the approach.

2.3.1 Preliminaries

The approach synthesizes lemmas for a given proof state Ψ, which is a tuple ⟨H, g,Γ,D⟩,

where H is a set of logical formulas that are the current hypotheses, g is a logical formula that

is the current goal, Γ is a type environment for all free variables in H and g, and D is a set of

type and term definitions that are recursively referred to in H and g. It is required that the

goal g be unquantified, which in practice typically means that the original lemma/theorem

should have all variables universally quantified at the front.

I use ϕ to denote logical formulas, x for variables, v for values, t for terms of sort Type, and

τ for the types of terms. A sample for a proof state Ψ = ⟨H, g, ⟨x1 : τ1, . . . , xn : τn⟩,D⟩ is an

environment e = ⟨x1 : v1, . . . , xn : vn⟩ such that e is a model of H → g, denoted e ⊨D H → g.

I also use the notation t ⇓e v to denote the evaluation of term t to value v under environment

e.

Finally, I assume the existence of several black-box functions that have been created

by others in prior work. I assume the availability of a black-box synthesizer that takes as

input a grammar G , consisting of typed constants and functions; a type signature τ1 → τ2;

and input-output examples of the form (v1, v2), where v1 has type τ1 and v2 has type τ2.

This synthesizer returns a list of functions f of type τ1 → τ2 in the grammar G such that

f(v1) = v2 for all examples; or it fails after some time limit. I also assume the existence of a

function Sample(Ψ) that produces a set of samples. Last, I assume the existence of both

automated theorem provers and disprovers. A prover R(ϕ, ϕ̄,D) attempts to prove a given
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formula in the context of a set of auxiliary lemmas ϕ̄ as well as a set of definitions, returning

either Valid or Dont Know. A disprover C(ϕ,D) searches for concrete counterexamples to

ϕ and returns either Invalid or Don’t Know.

2.3.2 Lemma Synthesis

First, I describe how we reduce lemma synthesis to data-driven program synthesis. As

described in the previous section, the first step is to produce generalizations of the current

goal g, by replacing some set of terms in g with fresh variables. The following definition

formalizes this notion of generalization.

Definition 2.1. (Generalization: G) Given a goal g, a type environment Γ, and a set

T = {t1, . . . , tn}, we define the generalization of g with respect to Γ and T, denoted

G(g,Γ,T), as the tuple ⟨g′,Σ⟩, where Σ = ⟨x1 7→ t1, ..., xn 7→ tn⟩ records the mapping from

each new variable to the term that it replaces, variables x1, . . . , xn are not in the domain of

Γ, and g′ = g[t̄i 7→ x̄i].

lfind uses the generalizations that it constructs as candidate lemmas. In addition,

generalizations are used as the basis for creating sketches for data-driven synthesis. Each

sketch is simply a version of a generalized goal that has one term replaced by a hole, denoted

2.

Definition 2.2. (Sketch: S) A sketch of goal g with respect to term t, denoted S(g, t), is

g[t 7→ 2].

In order to produce a data-driven program synthesis problem, we must generate input-

output examples. The following definition shows how I extend an environment to an

input-output example, given a set of terms (which are used for generalization), and a term

(used for creating a sketch). Intuitively, the new variables created by generalization become

additional input variables, and the term used to create a sketch defines the expected output.

24



Definition 2.3. (Input-output example: IO) The input-output example corresponding to a

given environment e = ⟨x1 7→ v1, . . . , xn 7→ vn⟩, term mapping Σ = ⟨x′
1 7→ t1, ..., x

′
m 7→ tm⟩,

and term ts, denoted IO(e,Σ, ts), is defined as

⟨⟨x1 7→ v1, . . . , xn 7→ vn, x
′
1 7→ v′1, ..., x

′
m 7→ v′m⟩, vs⟩

where ti ⇓e v
′
i for each ti in t1, . . . , tm and ts ⇓e vs.

Finally, we can put all of this together to specify how to reduce lemma synthesis to

data-driven program synthesis.

Definition 2.4. (Lemma synthesis as data-driven program synthesis) Given a proof state

Ψ = ⟨H, g,Γ,D⟩, a set of terms T = {t1, . . . , tm} for generalization, and a sketch term ts, we

produce a data-driven program synthesis problem as follows. Let G(g,Γ,T) = ⟨g′,Σ⟩, where

Σ = ⟨x′
1 7→ t1, ..., x

′
m 7→ tn⟩. Let S(g′, ts) = gs.

• The grammar G for synthesis is defined by the type and term definitions in D.

• Let Γs be Γ restricted to the variables that appear free in gs. The input variables and

associated types for the function to be synthesized are Γs@⟨x′
1 : τ1, ..., x

′
m : τn⟩, where

Γ ⊢ ti : τi for each t1, . . . , tm.

• The output type for the function to be synthesized is τs, where Γ ⊢ ts : τs.

• The input-output examples for synthesis are produced as follows. First we generate a set of

samples Sample(Ψ) = ⟨e1, . . . , ep⟩ for the given proof state. Then the set of input-output

examples is ⟨IO(e1,Σ, ts), . . . , IO(ep,Σ, ts)⟩.

We invoke the synthesizer with these inputs and ask for up to k functions (§ 2.5 reports

sensitivity analysis for k) that meet this specification. For each such function f , with body

expression tf , the induced candidate lemma is created by universally quantifying all free

variables in the term gs[2 7→ tf ].
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So far, I have formalized the process of lemma candidate generation from a single set of

terms to be generalized and a single term to be used for creating a sketch. lfind performs

this process many times, for many different generalizations and many different sketch terms.

Various approaches to exploring this space are possible. lfind exhaustively explores the

generalization space, producing one generalization for each subset of terms in the goal g.

For each such generalization, lfind employs terms that have sort Type for creating sketches.

There are several ways to pick a synthesis term for a sketch, and in §2.5 I carry out sensitivity

analysis for two natural approaches to choosing such terms.

2.3.3 Filtering

The approach described so far generates a lot of candidate lemmas. If there are t subterms

in a given goal to use for generalization, m sketches per generalization, and we ask the

synthesizer for k results, then without any filtering lfind would produce a maximum of

2t+1mk candidates, including all generalizations and the lemmas derived from them using

data-driven synthesis. Exploring a large space of candidates is advantageous, but clearly, we

require techniques to filter out candidates that are not going to help the user.

I employ four different filtering techniques. First, it’s common for there to be many

duplicate lemmas. For example, it’s possible for synthesis from two different sketches to

produce the same result. It’s also possible for synthesis from a single sketch to produce

syntactically distinct results that are behaviorally equivalent. We identify and filter duplicates

by applying Coq’s simpl tactic and then comparing the results for syntactic equivalence.

Second, we use the disprover C to search for counterexamples, filtering out any candidate

ϕ such that C(ϕ,D) = Invalid. Third, we remove lemmas that can be solved using Coq’s

trivial tactic, since they are self-evident and hence never needed as explicit auxiliary

lemmas.

Finally, we filter lemmas that “follow directly” from the original lemma, as they will not

help in proving that lemma. This is a subtle notion. For example, it is not a form of logical

26



implication, since if the candidate lemma is valid then any other lemma implies it. Instead,

we formalize this filter via a binary relation ⪯, which says that one lemma is an instantiation

of (or equivalent to) another, defined as follows:

Definition 2.5. (⪯-operator) Given lemmas l1 and l2, we say l1 ⪯ l2 if we can prove l1

using either of the following proof scripts:
1 intros. apply l2. Qed.
2 intros. rewrite <- l2. reflexivity. Qed.
3 intros. rewrite -> l2. reflexivity. Qed.

We then filter out any candidate lemma that is ⪯ than the original lemma.

2.3.4 Ranking

We rank the remaining candidate lemmas using the automated prover R we introduced

earlier. For each candidate ϕ we use the prover to determine if the candidate can be used

to automatically prove the goal g — R(g, {H, ϕ},D) — and whether the candidate itself is

automatically provable — R(ϕ, ∅,D). Based on the results we partition the lemmas into

three groups, Λ1, Λ2, and Λ3. The Λ1 group contains the lemmas for which both calls to R

return Valid, meaning that we have obtained a fully automated proof of the user’s original

goal. The Λ2 group contains the lemmas for which the first call to R return Valid, meaning

that the lemma enables the goal to be automatically proven but the lemma is not itself

automatically provable. The remaining lemmas go in the Λ3 group. We sort the lemmas in

each group in order of size from smallest to largest, since we expect smaller lemmas to be

easier for users to understand and evaluate. Finally, we concatenate these sorted groups to

form the ranked list.

2.3.5 Discussion

Note that lfind’s approach to candidate lemma generation imposes some important re-

strictions on its usage. I have already mentioned that the goal in the proof state must be
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unquantified. Further, the approach relies on the ability to generate examples for the stuck

state, which limits it to the capabilities of current test generation techniques. Because I reduce

lemma synthesis to program synthesis I require the ability to extract necessary definitions

as code and translate code back to Coq. Finally, because sketches for synthesis are derived

from a generalization of the original goal, the generated lemmas will always have the same

top-level structure as the goal. For example, if the original goal has the form A = B then the

candidate lemmas will also have this form. § 2.5.3 shows that despite these limitations, lfind

can successfully identify non-trivial helper lemmas for a variety of examples. In addition, all

of these limitations represent useful avenues of investigation in future work.

2.4 Implementation

Figure 2.5 illustrates the overall architecture of lfind, which leverages three black-box

components: a data-driven synthesizer for candidate lemma generation; an automatic disprover

for candidate filtering; and an automatic prover for candidate ranking. The implementation

of lfind is 3.2 KLOC of OCaml code.

Stuck Goal

Generalizations

Examples

QuickChick

Sketches

Synthesized 
Terms

ML of CoqCoq of ML

Candidates

Filtered 
Candidates

QuickChick 
SerAPI

ProverBot9001

Ranked 
Candidates

Myth

Figure 2.5: Given a stuck goal, lfind implements generalization, synthesis, filtering, and
ranking in conjunction with existing tools to generate candidate lemmas.
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2.4.1 Example Generation

To synthesize candidate lemmas, the approach relies on a Sample function that can produce

samples for the variables in the stuck state g. I leverage Quickchick [PHD15], a state-of-

the-art property-based randomized tester for Coq, for this purpose. While Quickchick is

intended as a testing tool, we log all of the test inputs that it generates and use them as the

samples from which to produce examples for synthesis.

Specifically, for each user-defined type T in the stuck goal, lfind first generates the

following Coq code, which enables the usage of Quickchick for that type:
1 Derive Show for T.
2 Derive Arbitrary for T.
3 Instance Dec_Eq_T : Dec_Eq T.
4 Proof. dec_eq. Qed.

The Show typeclass is required for printing test cases and the Arbitrary typeclass is required

to combine test-case generation with an operation for shrinking test inputs. Quickchick

supports automatic derivation of instances of these type classes for simple types. Quickchick

also requires that types have decidable equality, so we derive an instance of the Dec_Eq

typeclass for T.

Next, to produce examples for the stuck proof state g, we create a Coq lemma for that

state, defined as Lemma stuckState: H → g. We also create a function collect_data

whose input type V is the tuple of the types of all free variables in H → g. The function logs

the input values to a file and returns the valuation of H → g on those input values:
1 Definition collect_data (n:V) :=
2 in let _ := print_to_file (show n)
3 in stuckState n.
4 QuickChick collect_data.

Finally, we run Quickchick on this function, thereby logging samples to use for data-driven

synthesis and also searching for counterexamples to the stuck proof state. If Quickchick

returns any such counterexamples, then there is no way to complete the proof so we report

this to the user and halt lfind. Otherwise we proceed with synthesis.
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2.4.2 Synthesis

To my knowledge, there are no data-driven synthesizers that work directly for Coq. So I

chose Myth [OZ15] as the synthesizer because it accepts and generates OCaml code, for

which tools exist to convert to/from Coq’s language Gallina; it has a simple interface that is

easy to use; and it has worked well for us in the past. Myth requires an input grammar in

OCaml, so I use Coq’s Extraction feature to recursively extract reachable definitions and

types from the stuck goal to OCaml. Additionally, I adapt Myth slightly in two ways. First,

Myth supports only a subset of OCaml and does not support common syntactic sugars. For

example, Myth does not support the function keyword. To get around these limitations, I

wrote a translator that desugars the definitions extracted from Coq into a form acceptable

by Myth. Second, I modified Myth to return a set of candidate functions sorted by size,

instead of just one. This enables the generation of multiple candidate lemmas as described

earlier. Finally, to substitute the synthesized OCaml function body back into the lemma

sketch, I use an open-source tool, coq-of-ocaml [coq03].

2.4.3 Filtering and Ranking

In § 2.3.3, I described multiple filters to remove extraneous candidate lemmas. To implement

these filters, I declare each candidate as a Coq lemma and use Quickchick to remove

lemmas that have counterexamples. The remaining filters are implemented by running proof

tactics using SerAPI [GPP20], a library for machine-to-machine interaction with Coq. To

rank the filtered lemmas, I use Proverbot9001 [SAS20b], a state-of-the-art proof-synthesis

tool that uses machine learning to produce proofs of Coq theorems. Proverbot9001 takes

as input definitions, a theorem that needs to be proven, and a set of axioms that can be

assumed, and returns a proof script or Don’t Know.
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2.4.4 Discussion

In the implementation, I try to disprove each generalization eagerly and carry out synthesis

from generalizations for which the disprover finds a counterexample. Intuitively, if a gen-

eralization is not disprovable then it is itself a candidate lemma, and so we would rather

spend our synthesis resources elsewhere. Candidate lemmas are produced incrementally, as

generalization and synthesis proceed. Hence the algorithm is any-time: we can stop at any

point, collect up the current set of candidates, and filter and rank them. Furthermore, I stop

synthesis as soon as we get a category Λ1 lemma since we will have a fully automated proof

of the user’s original goal.

My implementation inherits the limitations of the black-box tools we rely on. Notably,

Myth only supports a small subset of OCaml. As described above, I mitigate this limitation

by implementing a translator, but this is not a solution that works for the full OCaml

language, and so in some cases lfind can fail to produce code that Myth accepts. Myth

also does not support polymorphic types.

2.5 Experimental Results

In this section I perform experiments to answer the following research questions:

RQ1. (§ 2.5.3) How effective is lfind in synthesizing useful helper lemmas? How fast can

the tool synthesize these helper lemmas? What is the impact of its filtering and ranking

techniques?

RQ2. (§ 2.5.4) How does lfind’s data-driven approach compare in effectiveness to prior

approaches to lemma synthesis?

RQ3. (§ 2.5.5) How sensitive is lfind to hyperparameters and timeouts?
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2.5.1 Benchmark Suite

The approach generates candidate helper lemmas from a given proof context, and the tool is

implemented as a tactic. Hence, to evaluate lfind we need to invoke lfind at each point

in the proofs where a user-provided helper lemma was used. These are called evaluation

locations. Concretely, a proof state is an evaluation location if a human prover has used either

the apply or rewrite tactics with a helper lemma that they created. We evaluate lfind on

a total of 222 evaluation locations. These benchmark locations are drawn from the following

sources.

• CLAM (140): This benchmark suite consists of 86 theorems about natural numbers as

well as various data structures, including lists, queues, and trees, and it has been used to

evaluate prior forms of lemma synthesis [IB96, YFG19]. These benchmarks lack associated

proofs, so we converted them to Coq and manually proved each theorem (more details

on this process below). Out of the 86 clam theorems, 67 require at least one helper

lemma, with many requiring multiple lemmas. In total, the clam suite contains 184 unique

evaluation locations that employ a helper lemma. Implementation limitations mentioned

in § 2.4.4 preclude 44 locations from clam from being used for evaluation, leaving 140

remaining evaluation locations.

• Full Adder (62): This project [cir95] from the coq-contribs collection formalizes a full

adder and proves it correct [cir95]. The program first builds a half-adder circuit (which

takes two binary digits, and outputs two binary digits) and proves properties about it.

Then the half-adder circuit is used to build a full-adder circuit ( which takes two binary

digits, plus a “carry” digit, and outputs two binary digits). Finally, the program chains

together a sequence of full adders to create an adder circuit, which is proven correct. All of

the 40 theorems in this project require at least one helper lemma, and the project contains

62 evaluation locations in total.
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Table 2.1: Results
CLAM Full Adder Compiler LIA

Setup
# Theorems 86 40 1 9
# Evaluation Locations 140 62 1 19

Results
# fully proven lemma and goal 68 34 0 7
# else human match in top 1 14 0 1 0
# else human match in top 5 9 1 0 3
# else human match in top 10 6 0 0 0
# else more general than human lemma in top 1 1 0 0 0
Summary 98/140 35/62 1/1 10/19

• Compiler (1): This benchmark is the compiler example from Chapter 2 of Chlipala’s

CPDT textbook [Chl13b], which is a certified compiler from a source language of expressions

to a target language of a stack machine. The final theorem formalizes the correctness of

the compiler. This benchmark contains one theorem, which uses one helper lemma, which

is the evaluation location. Though it contains only a single evaluation location, I chose

this example as a benchmark because it showcases a different application and the required

helper lemma is relatively large and complex.

• LIA (19): This benchmark suite consists of 9 theorems about data structures that require

linear integer arithmetic, from a prior work on lemma synthesis for fully automated proofs

about data structures (see Table 1 in [YFG19]). As with the CLAM benchmarks, I

converted them to Coq and manually proved each theorem. Each proof requires at least

one helper lemma, and there are a total of 19 evaluation locations.

The Full Adder and Compiler benchmark suites already contain full Coq proofs

written by others, which in turn determine our evaluation locations. The theorems in the

CLAM and LIA benchmark suites lack proofs, so each theorem was manually proven by one

of three of us, with varying experience from novice to expert in interactive theorem proving.

Specifically, one person had only done a small class project with Coq previously, one has

been using Coq for the past few years on a research project, and one has used it on and off
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for a decade. The proofs were completed independently of lfind’s evaluation, and helper

lemmas were used wherever the human prover deemed necessary. In § 2.5.4, I show that the

vast majority of these helper lemmas are indeed necessary, in the sense that a state-of-the-art

automated prover cannot complete the proof of the theorem without a helper lemma.

2.5.2 Experimental Setup

For each evaluation location, lfind generates 50 input-output examples from the current

proof state and is allowed to generate candidate lemmas with a maximum timeout of 100

minutes. Despite the large search space, in § 2.5.3 I show that the tool is performant with a

median runtime of only 4.8 min. The tool has a 12s timeout for each call to Myth and a 15s

timeout for each call to Proverbot9001. In addition to the timeout parameters, two key

hyperparameters to the algorithm are the choice of subterms to use for generating sketches

and the number of synthesis results k to obtain per sketch. In the experiments, I generate

sketches from all subterms of sort Type, and ask for 5 synthesis terms per sketch. Empirically

I have found these choices to provide good results, but I also present a sensitivity analysis of

other choices for timeout and hyperparameters in § 2.5.5.

All evaluations were performed on a machine that runs MacOS (10.15.6) in a 2.3 GHz-

Quad-Core Intel Core i7, with 32GB memory.

2.5.3 Synthesized Helper Lemmas

Table 2.1 summarizes the results for all the benchmarks. I consider the use of lfind at an

evaluation location to be successful in three scenarios. First, lfind is successful if it can

produce a candidate helper lemma that is automatically proven by Proverbot9001 and

this helper lemma enables Proverbot9001 to automatically prove the user’s goal. This is

the best-case scenario, as lfind has produced a complete proof for the user. Second, lfind

is successful if a lemma that matches the human-provided lemma is ranked highly (top-10) by

34



the tool. Third, lfind is successful if a lemma that is more general than the human-provided

lemma is ranked highly by the tool. I use the ⪯ operator defined in § 2.3.3 to automatically

identify if a candidate lemma l matches or is more general than the human-provided lemma

h. Specifically we say that l matches h if both l ⪯ h and h ⪯ l, and we say that l is more

general than h if h ⪯ l but not vice versa. These are reasonable success metrics for the tool,

as I expect versions of the human-provided lemma to be "natural" for people to understand,

and also we know that the human-provided lemma does indeed lead to a full proof of the goal.

Note however that the metrics are conservative, as there could be other lemmas produced by

lfind that are natural and appropriate but do not fall into one of the above three categories.

In total, based on the evaluation metrics we see that lfind succeeds in 144 (64.9%) of

the 222 evaluation locations across all benchmarks. Further, as shown in the third row of

the table, in 109 (75.7%) of these successful 144 locations, lfind was able to synthesize a

lemma that led to a fully automated proof of the user’s goal. Rows 4-7 of Table 2.1 show

a breakdown of the remaining 35 successful locations. Notably, for 15 of these evaluation

locations, the top-ranked candidate lemma produced by lfind matches the helper lemma

provided by the human prover. These results demonstrate the effectiveness of the filtering

and ranking strategies in surfacing relevant lemmas toward the top, and often as the top

result.

Examples. Table 2.2 shows examples of lemmas synthesized by lfind along with their

rank and category (see § 2.3.4 for category notations). I describe the first four of them in

detail.

The first example from the Compiler benchmark formalizes the correctness of a compiler

from a source language of expressions to a target language of a stack machine. In this case,

type exp defines the source language of arithmetic expressions. evalExp function evaluates

the programs in this language. The target language’s instructions are of type instr, which

are executed on a stack machine. The function execI takes an instruction and a stack
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Table 2.2: A sample of lfind synthesized lemmas and their associated rank and category.
# Original Theorem lfind Synthesized Lemma Λ

1. Theorem correct_compilation:∀ (e
:exp), execIs (compile e) Nil =
(evalExp e) :: Nil.

Lemma lem1:∀ (e: exp) (l: list
instr) (s: list nat), execIs
(compile e ++ l) s = execIs l
(evalExp e :: s).

Λ2

2. Theorem BV_full_adder_nil_ok :∀
(v:BoolList) (cin:bool), BV_to_nat
(BV_full_adder v Nil cin) = BV_-
to_nat v + Bool_to_nat cin.

Lemma lem1:∀ (l:BoolList), BV_-
to_nat (BV_full_adder_sum l Nil
false ++ BV_full_adder_carry l Nil
false::Nil) = BV_to_nat l.

Λ1

3. Theorem app_revflat:∀ (x:tree)
(y:list nat), (revflat x) ++ y =
qrevaflat x y.

Lemma lem10:∀ (l l1 l2:list nat),
(l ++ l1) ++ l2 = l ++ (l1 ++ l2).

Λ3

4. Theorem queue_push:∀ (q:queue)
(n:nat), qlen (qpush q n) = 1 +
(qlen q).

Lemma lem1:∀ (l l1:list nat), len
l + len l1 = len (l ++ rev l1).

Λ2

5. Theorem qreva_qreva:∀ (x:list
nat), (qreva (qreva x Nil) Nil)
= x.

Lemma lem9:∀ (n:nat) (l:list nat),
qreva (append l n::Nil) Nil =
n::(qreva l Nil).

Λ2

6. Theorem rotate_len:∀ (x:list nat),
rotate (len x) x = x.

Lemma lem2:∀ (l l1:list nat),
rotate (len l) l ++ l1 = l1 ++
l.

Λ2

7. Theorem add_even:∀ (x y:nat),
even(x+y) = even(y+x).

Lemma lem1:∀ (n x:nat), negb
(even(n+x)) = even(n+(S x)).

Λ1

8. Theorem drop_elem:∀ (v w x y:nat)
(z:list nat), drop (S v) (drop w
(drop x y::z)) = drop v (drop w
(drop x z)).

Lemma lem1:∀ (n x:nat) (l:list
nat), drop (S x) (drop n l) = drop
x (drop (S n) l)).

Λ1
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(represented as a list of nats and returns an updated stack, and execIs uses this function to

execute a list of instructions. Finally, the compiler function translates source programs to

a list of instructions. The theorem itself is not inductive, necessitating an inductive helper

lemma that implies the theorem [Chl13b]. lfind was not able to identify a helper lemma

that leads to a fully automated proof of the theorem. However, it produces candidate lemmas

in categories Λ2 and Λ3, and the top-ranked candidate in category Λ2, shown in the table,

exactly matches the human-provided lemma. The lemma is non-trivial as it involves multiple

calls to execIs, an arbitrary list of stack instructions l1, and an arbitrary stack l2.

The second example is from the full adder benchmark. The theorem says that if we

convert to a natural number the result of adding a binary number, we get the same natural

number we would if we converted that input to a natural number. I present a synthesized

helper lemma in Table 2.2, which belongs to category Λ1 and hence led to a full proof of the

theorem.

The third example in the table is from the clam benchmark suite and proves the

equivalence of two functions for converting a binary tree into a list. For this example, lfind

produced candidate helper lemmas in both categories Λ2 and Λ3. The tenth-ranked candidate,

shown in the table, matches the human-provided lemma.

The fourth example in the table is from the lia benchmark suite and reasons about

how pushing onto a queue affect its length. This is a case in which our evaluation does not

deem lfind to have succeeded, since it does not produce a fully automated proof and does

not produce a match for the human-provided lemma in the top ten results. However, the

top-ranked result, shown in the figure, is very close to the human-provided lemma, which

simply replaces the term (rev l1) with l1. Further, this lemma is itself equally useful in

completing the proof, despite being slightly more complex.

Runtime Performance. Figure 2.6 plots the runtime distribution of lfind across all

222 evaluation locations. The tool ran to completion on each of these benchmarks with a
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Figure 2.6: lfind has a median total runtime of 4.8 min. Further, the tool has a median
runtime of 1.2 min for the 109 cases (see Table 2.1) where it was able to a find a full automated
proof (Λ1).

median runtime of 4.8 min (shown in the plot where the curve labeled Total Time reaches

a CDF of 0.50). Recall that lfind produces a full automated proof (category Λ1) in 75.7%

(see Table 2.1) of the successful evaluation locations. As shown by the curve labeled Time

to Category 1 in Figure 2.6, the median and 75th percentile runtime of the tool were only

1.2 min and 3.8 min respectively. These runtimes indicate the viability of the approach and

its instantiation in lfind to support interactive usage.

Impact of Filtering and Ranking Figure 2.7 provides a detailed view of how many

candidate lemmas were generated and filtered, for the results presented in Table 2.1. As

explained in § 2.3.3, the approach indeed generates a lot of candidate lemmas. For example,

lfind generates a median of 168 candidate lemmas for each evaluation location from the

benchmarks (shown where the solid curve reaches a CDF of 0.50). However, the filtering

techniques are very effective in removing useless lemmas. As mentioned in § 2.4, I filter

Invalid candidates (labeled Filter 1 in the figure) as we generate candidate lemmas. I

then filter lemmas (labeled Filter 2) that are either syntactically similar to each other, or

trivial, or restatements or special versions of the theorem statement. After Filter 1, the

median number of lemmas is reduced to 112. Further, after Filter 2 there is a median of 17
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candidate lemmas. Hence on average, Filter 1 reduced the candidate lemmas by 33.3%,

and Filter 2 reduced the remaining candidates by 84.8%.

Finally, as mentioned above even after filtering we are left with a median of 17 lemmas

for each benchmark suite. This highlights the importance of our ranking strategy, which was

already shown to be effective in the results of Table 2.1.

0 1000 2000 3000
# Lemmas

0.00
0.25
0.50
0.75
1.00

CD
F # Generated

# After filter 1
# After filter 2

Figure 2.7: lfind reduces the number of lemmas by 89.9% on average after application of
both filters.

2.5.4 Comparison with Other Approaches

In order to understand how lfind compares with other approaches to lemma synthesis, I

performed an ablation study in which I compare lfind against versions of it that have certain

features disabled. First, I compare against a version of the tool that generates no lemmas,

instead simply using a state-of-the-art automated prover to try to complete the proof from

the evaluation location (proof context). Second, I compare against a version of lfind that

only generates candidate lemmas through generalization, without performing any synthesis.

This version of the tool allows us to compare against the commonly used generalization

technique [BM79, KM97]. Finally, I compare against a version of lfind that is identical

to the original version except that it provides no examples to Myth for synthesis. This
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change has the effect of forcing Myth to do type-guided synthesis, thereby providing a closer

comparison with the term enumeration approach to lemma synthesis [CJR13, YFG19].

No Synthesis In this study, I ran Proverbot9001 on each evaluation location across

all benchmarks, without providing any synthesized lemma from lfind. Proverbot9001

can automatically prove only 22.1% of the evaluation locations. In contrast, with a lemma

synthesized by lfind, Proverbot9001 can automatically prove 49.1% of the evaluation

locations (109 out of 222), and as shown earlier overall lfind provides a useful lemma in

64.9% of the cases. This experiment highlights the need for lemma synthesis and shows how

lfind complements existing work on automated proofs. These results also serve as a measure

of the quality of the human proofs, as the human-provided lemmas are required in the vast

majority of cases. Situations where a lemma is used but not needed could arise due to the

inexperience of the human prover or simply for readability purposes.

Generalization For this comparison, I disable lfind’s synthesis process, so Myth is not

used at all, but all other parts of lfind work as described earlier. This version of lfind

can be seen as a best-case version of the generalization technique [BM79, KM97], since we

exhaustively consider all possible generalizations, while in prior tools typically only one or

a small number of generalizations are heuristically chosen [CDK11, YFG19]. According to

the success metrics defined in § 2.5.3, a generalization is deemed useful in only 19.4% of all

evaluation locations, as compared with 64.9% of locations for lfind.

Type-guided Synthesis For this comparison, I use a version of lfind that does not

provide any examples to Myth whenever it is invoked, but is otherwise identical to lfind.

Without examples, all terms of the desired type will be considered by Myth to meet the

given specification, so the effect is that Myth will perform a type-guided synthesis through

the given grammar, Hence this version of lfind is related to the enumeration techniques

from prior work on lemma synthesis, like HipSpec [CJR13] and AdtInd [YFG19]. This
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version synthesizes a successful helper lemma according to our success metric in 67 evaluation

locations, whereas lfind does so in 109 evaluation locations. Note that these results exclude

cases where generalization produces the useful lemma for an evaluation location, since the

two versions of lfind are identical in those cases. These results demonstrate the benefits of

data-driven synthesis: the examples act as a specification that allows for early filtering of

candidate lemmas, which in turn enables the synthesizer to provide higher-quality candidates.

2.5.5 Sensitivity

As described in § 2.3, lfind has two hyperparameters: (1) number of synthesis results per

sketch, and (2) which terms to select for generating sketches. Further, as described in § 2.4,

lfind uses Proverbot9001 to rank candidate lemmas and the Myth synthesis engine for

term generation. I limit the time spent on each of these tools to efficiently search over the large

space of candidate lemmas using available resources. I carry out four separate experiments

on the largest benchmark suite (clam, with 140 evaluation locations) to understand lfind’s

sensitivity to each of these parameters. To quantify the sensitivity of a parameter, in each

experiment we vary one parameter while fixing all others.

Number of Synthesis Terms. In the first experiment, I vary the number of synthesis

results (k) that we ask of Myth per sketch. We generate sketches from maximal subterms,

and use 10s and 12s timeout for Proverbot9001 and Myth respectively. I study the

sensitivity to this parameter by varying k to be 5, 15, and 25. Respectively for these settings,

lfind is successful in 85, 89, and 80 clam evaluation locations. There is a modest 4.7%

increase in effectiveness from k = 5 to k = 15, since there is a large search space of candidate

lemmas as k increases. However, there is a significant drop in effectiveness from k = 15 to

k = 25 — as the search space increases, the useful candidates can more easily fail to be highly

ranked. Figure 2.8 plots the total runtime for different k values, and as expected, the median

total time increases with increasing k. Median total time of k = 5 is 4.4 min (labeled Top 5),
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Figure 2.8: Total runtime of lfind increases when increasing number of synthesis terms per
sketch. Runtime almost doubles when k increases from 5 to 15, while it is 1.3x more when it
is increases from 15 to 25.

while it is 8.0 min and 10.9 min for k = 15 and k = 25 respectively (labeled Top 15, Top

25). I pick k = 5 as the optimal number of synthesis terms for the remaining experiments,

since the increase to k = 15 has a large time cost and only a modest effectiveness benefit.

Proverbot Timeout. In the second experiment, I vary Proverbot9001 timeout to

be 5s, 10s, and 15s, setting k = 5 and keeping other parameters similar to the previous

experiment. Respectively for these settings, lfind is successful in 50, 85, and 94 clam

evaluation locations. The tool performs poorly with a 5s timeout, since Proverbot9001

spends the first few seconds in setup, leaving too little time for the actual proof search.

Figure 2.9 plots the runtimes for the 10s and 15s timeout cases. Median total runtime for 10s

(labeled 10 seconds) is 4.4 min, while it is only 3.4 min for 15 seconds (labeled 15 seconds).

It is perhaps unintuitive that allowing Proverbot9001 more time leads to lower time overall,

but the additional time for Proverbot9001 can allow it to complete a proof that would

otherwise not be possible, thereby finding a category Λ1 lemma sooner. Therefore, I pick 15s

as the optimal timeout parameter for Proverbot9001 in the remaining experiments.
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Figure 2.9: Median runtime of lfind decreases with an increase in Proverbot9001 timeout.
While this is unintuitive, this is because the prover is allocated more time per call, enabling
it to prove a candidate lemma earlier, which was otherwise not provable using a smaller
timeout.

20 40 60 80 100
Runtime (minutes)

0.00
0.25
0.50
0.75
1.00

CD
F 8 seconds

12 seconds
16 seconds

Figure 2.10: Median runtime of lfind is unaffected when increasing Myth timeout.

43



20 40 60 80 100
Runtime (minutes)

0.00
0.25
0.50
0.75
1.00

CD
F

Maximal terms
All possible terms

Figure 2.11: There is a modest increase in median runtime of lfind from 3.4 min to 4.5 min
when generating synthesis sketches from maximal terms compared to all terms.

Myth Timeout. The third experiment varies the Myth timeout to be 8s, 12s, and 16s,

updating Proverbot9001 timeout to 15s and keeping other parameters similar to the

second experiment. Respectively for these settings, lfind is successful in 87, 94 and 94 clam

evaluation locations. Figure 2.10 plots the total runtime for these timeout values. Despite

increasing timeouts, the total runtime is very similar among the three settings, with a median

timeout of 3.1 min, 3.4 min, and 3.5 min for 8s, 12s, and 16s respectively. Therefore, I pick

12s as the optimal timeout parameter for Myth.

Sketch Generation. In this final experiment, I explore two choices for sketch generation,

using the optimal choices for other parameters based on the previous experiments. I generate

synthesis sketches from (1) all subterms of sort Type or (2) only from maximal subterms of

sort Type. To make the use of maximal terms more feasible, for that setting we also use a

heuristic that requires the synthesized expression to refer to all generalized variables from the

sketch. The use of all terms is successful in 98 evaluation locations while the use of maximal

terms is successful in 94 locations. Figure 2.11 plots the total runtime for these settings, and

as expected, the total runtime is more when generating sketches from all subterms compared
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to only maximal subterms. However, the difference in the median runtime is only one minute.

Therefore, I pick all subterms as the optimal parameter for sketch generation.

2.6 Related Work

2.6.1 Lemma Synthesis

As described in § 2.1, there are a variety of existing approaches to lemma synthesis, and they

broadly fall into two categories. Many techniques perform rewrites on the target theorem or

the current proof state, in order to identify stronger induction hypotheses and helper lemmas.

Most common among these is the generalization technique [BM79, Aub76, Cas85, Hum90,

Hes92, DF03, KM97], whereby selected terms are replaced by fresh variables. Other works

go beyond generalizing variables to a broader set of rewrites [KS96, BSV93, JDB10, SDE12].

For example, the rippling technique [BSV93] employs a set of rewrite rules in order to make

the current goal match the induction hypothesis.

The other category synthesizes candidate lemmas from a grammar using bottom-up

enumeration. QuickSpec [CSH10] employs this approach and filters candidates by searching

for counterexamples [CH00]. HipSpec [CJR13] combines QuickSpec with an automated

prover in order to synthesize a set of provably correct lemmas. A similar enumerate-and-filter

strategy is used to automate induction in the CVC4 solver [RK15]. Finally, AdtInd [YFG19]

employs bottom-up enumeration in order to search for candidate lemmas in the context of

an automated prover for abstract datatypes. Notably, like lfind, AdtInd leverages both

generalization and sketches (which they call templates) for synthesis, but it is unclear how

generalizations are chosen and the sketches are user-provided.

lfind’s key innovation over these prior works is showing how to reduce the problem of

lemma synthesis to a form of data-driven program synthesis. Versus the first category of

approaches, lfind explores a wider space of potential lemmas via grammar-based synthesis

and can leverage off-the-shelf program synthesizers. Versus the second category of approaches,
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lfind generates candidates that are directly targeted toward the current goal, which is critical

in an interactive setting. However, the approach borrows several techniques from these prior

works. First, lfind also employs generalization, but it is used not only to directly produce

candidate lemmas but also as the basis for producing sketches for program synthesis. Second,

lfind employs counterexample search to filter candidates, which has been previously used

for filtering in both of the earlier approaches [CDK11, CSH10]. Third, lfind also employs

automated provers, though due to the interactive setting we use them to rank rather than

verify candidates.

2.6.2 Data-driven Invariant Inference

Data-driven invariant inference has been widely used for various software engineering tasks, at

least since Ernst’s dissertation on inferring likely program invariants from data [Ern00]. In this

approach, data about concrete program executions is used to generate positive and/or negative

examples, and the goal is to synthesize a predicate that separates these two sets of examples.

Recently these techniques have become state of the art for automated program specification

and verification [GLM14, GNM16, END18, PSM16, ZMJ18, AMS19]. For example, prior

work has shown how to generate examples for data-driven synthesis of loop invariants that are

sufficient to prove that a function meets its specification [GLM14, GNM16, PSM16]. To our

knowledge, only one prior work uses data-driven synthesis in the context of interactive proofs:

the Hanoi tool [MPW20] infers likely representation invariants to aid users of interactive

theorem provers in proving that a data structure implementation meets its specification.

As described in §2.1, the existing data-driven verification techniques fundamentally exploit

the specific kind of invariant being targeted, which has a clear logical specification over a

fixed set of variables. This enables a natural approach based on CEGIS [Sol09] for both

generating examples and verifying candidate invariants. Our setting of lemma synthesis is

more general and poses a challenge for data-driven inference, as we lack both a fixed set

of variables for the lemma and clear criteria upon which to classify examples as positive or

46



negative. Hence, I have devised a new reduction to data-driven program synthesis: lfind

produces sketches from generalizations of the goal state and generates examples for synthesis

using the heuristic that a synthesized term should behave consistently to the term that it

replaces. I have also developed new approaches to filtering and ranking lemma candidates, to

address the lack of clear success criteria in our setting.

2.6.3 Automated Proofs for Interactive Theorem Provers

A variety of tools exist for automatically generating proofs in interactive settings, both in

Coq and other languages. Recent techniques use a form of machine learning, for example a

neural network, to guide a heuristic proof search, given a set of proof tactics as well as a set

of existing lemmas/theorems [SAS20b, FBG20b, YD19b, HDS19, PLR20, BLR19b, GKU17].

Another class of techniques serialize the proof context into a format for input to an external

automated solver and then serialize the resulting proof back into the interactive theorem

prover [CK18b, BBP11, KU15b, KU15c].

My contribution is orthogonal to these works, which do not perform lemma synthesis. For

example, while the machine-learning-based approaches leverage existing lemmas as part of the

proof search, they will fail if the existing lemmas are not sufficient. As shown in §2.5.3, lfind

can improve the capabilities of Proverbot9001 [SAS20b], a state-of-the-art automated

prover for Coq based on neural networks, synthesizing lemmas that allow it to prove goals

that it otherwise could not. lfind uses Proverbot9001 to rank candidate lemmas and

produce proofs for ones that are fully automatable. However, the approach is independent of

the particular prover used and so for example could instead employ a solver-based prover like

CoqHammer [CK18b] or even employ multiple provers to leverage their relative strengths.
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2.7 Summary

In this chapter, I developed a new approach to lemma synthesis for interactive proofs that is

both goal-directed and expressive. The key technical contribution is a new reduction from the

general lemma synthesis problem to a data-driven program synthesis problem. The approach

leverages the information available in a given stuck proof state in multiple ways: sampling

variable valuations for example generation, generalizing the state to systematically introduce

new variables for synthesis, and deriving synthesis sketches from the current goal. I also

describe several techniques for filtering and ranking candidate lemmas, which are critical

in an interactive setting. While the problem of lemma synthesis is hard in general, the

experimental evaluation of our resulting tool lfind demonstrates the promise of the approach

and quantifies the benefits over other approaches.
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CHAPTER 3

Increasing Expressivity of Example-Driven Lemma

Synthesis

3.1 Introduction

In the previous chapter, I proposed a data-driven lemma synthesis approach that is goal-

directed and expressive. Despite its success, this approach suffers from two key limitations.

First, recall that sketches for synthesis are derived from a generalization of the original goal,

therefore, the generated lemmas will always have the same top-level structure as the goal.

For example, if the original goal has the form A = B then the candidate lemmas will also have

this form. These candidate lemmas are useful in applying to the full goal state or rewriting

one side of the equality in the goal state. However, some cases may require equality helper

lemmas about the subterms in the goal. lfind fails to produce candidate lemmas that target

these subterms of the goal state. This limitation is exacerbated by lemmas with arbitrary

propositions. This is because lemmas with arbitrary propositions often rely on the use of

subterm rewriting that requires helper lemmas with equality proposition.

Second, many natural lemmas are also conditional, where a particular property is true

only under certain circumstances and lfind fails to produce these conditional candidate

lemmas. If the stuck proof state has a goal similar to the consequent of the helper lemma,

then lfind can potentially synthesize that consequent. However, if the required helper lemma

is conditional, then lfind produced lemma, despite matching the consequent, would not be

valid and is not useful.
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To address the first limitation of generating equalities about subterms, I extend the kind

of lemma sketches defined by lfind. At each generalization point, we produce an additional

sketch with an equality proposition, where one side consists of a version of a subterm of the

goal and the other side is a hole to be synthesized. We sample valuations of the variables in

the subterm to generate input examples, and the expected output value for each example

is determined by the value of the subterm. In this way, we require that the synthesized

expression’s behavior be consistent with that of the subterm. A key insight is that we are

able to use the same data-driven synthesis setup as lfind for this additional sketch.

I address the second limitation of lfind by proposing a counterexample-guided refinement

algorithm to generate conditional lemmas. Recall that lfind uses the goal in the stuck

proof state to create candidate lemmas, by first generalizing the goal, then creating a hole

in the goal, and finally synthesizing a new term for the hole. But in general, a stuck-proof

state will also include a set of assumptions, for example, the induction hypothesis but also

other assumptions from the statement of the theorem and the case analysis. Hence, any

candidate lemma l generated by the approach can also induce a candidate of the form

h1 → ...hn → l, where hi formulas are generalized versions of the assumptions in the current

proof state. Technical challenges include determining assumptions that are likely to be useful

and minimizing the number of assumptions required in the final synthesized lemma. To

address this challenge, I propose a counterexample-guided refinement procedure to choose the

right set of hypotheses from the goal state when generating a candidate lemma. We collect

counterexamples to the validity of a candidate lemma and use these valuations to identify

hypotheses that are contradicted. In this way, I show how to iteratively choose the right set

of hypotheses from the goal state to generate candidate lemmas that are conditional.

I have implemented the proposed extensions in a tool called lfind++, which extends

lfind. Coq users can invoke lfind++ as a tactic at any point in their proof, and it will

produce a set of ranked lemma candidates.
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I evaluate the approach on four benchmark suites used by lfind, namely, clam [IB96]

and lia [YFG19], full adder [cir95], compiler correctness [Chl13b], as well as two new

benchmarks hardware [har96], and additions [add18]. Together, there are 323 evaluation

locations from these benchmarks, where a human prover used an auxiliary lemma to progress.

lfind++ synthesizes a useful lemma for 244/323 of these locations, with a median runtime

of 2.6 minutes (see § 3.4.3). At 186 of these locations lfind++ provides a full automated

proof of the synthesized lemma and the goal; at the other 58 locations lfind++ produces a

ranked list of lemma candidates where the human-written lemma is in the top 10. I also show

that the approach outperforms lfind which could synthesize a useful candidate lemma in

only 158 locations (see § 3.4.4). The proposed extensions of lfind++ synthesizes 54% more

candidates than vanilla lfind.

3.2 Overview

In this section, I describe the contributions of lfind++ using two examples.

3.2.1 Motivating Example for Generating Equality Lemmas about Subterms

To illustrate how lfind++ works on identifying equality helper lemmas for subterms of the

goal state, we’ll start with an example. Figure 3.1 shows Coq code that tries to prove the

following strict inequality: length of two appended lists is less than length + 1 of the two

lists appended in the reverse order. It starts by defining lists of nats along with definitions

for append and length of lists. Following that is an attempt to prove the theorem, named

appLenS.

The proof proceeds by induction on the list l. The Nil case is proven using a relatively

simple appToNil helper lemma. For this case, lfind++ is able to synthesize the required

helper lemma as the top result. In the Cons case, after simplification, and application of a

library lemma lt_n_S, the user is stuck, because the goal is not in a form that enables direct
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1 Inductive lst : Type :=
2 | Nil : lst
3 | Cons : nat -> lst -> lst.

5 Fixpoint app (l1 : lst) (l2 : lst) : lst :=
6 match l1 with
7 | Nil => l2
8 | Cons n l1’ => Cons n (app l1’ l2)
9 end.

11 Fixpoint len (l : lst) : nat :=
12 match l with
13 | Nil => 0
14 | Cons x y => 1 + len y
15 end.

17 Lemma appToNil : forall l, len (app l Nil) = len l.
18 Proof.
19 ...

21 Lemma lt_n_S : forall n m, n < m -> S n < S m.
22 Proof.
23 ...

25 Lemma appLenS : forall x y, (len (app x y)) < S (len (app y x)).
26 Proof.
27 intros.
28 induction x.
29 - simpl. rewrite appToNil. auto.
30 - simpl. apply lt_n_S. (∗ I’m stuck! ∗)

Figure 3.1: A partial proof of a theorem containing non-equality proposition in Coq that
requires an auxiliary lemma.

1 n: nat
2 x, y: lst
3 IHx: len (append x y) < S (len (append y x))
4 ---------------------------------------------
5 len (append x y) < len (append y (Cons n x))

Figure 3.2: The proof state when the user gets stuck.

use of the induction hypothesis. Figure 3.2 shows the proof state at that point, including
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the current assumptions and goal. Note that the hypothesis and the goal reason about the

length of a list using an inequality proposition.

To get unstuck, the user can invoke our tool lfind++ as a tactic at this point. In this

example, the top three lemmas that lfind++ produces are as follows:

1(Λ1) Lemma lem1: forall n l l1,
2 len (app l (Cons n l1)) = S (len (app l l1)).
3(Λ1) Lemma lem2: forall n l l1,
4 len (app l (Cons n l1)) = len (Cons n (app l l1))).
5(Λ1) Lemma lem3: forall n l l1,
6 len (app l (Cons n l1)) = len (Cons O (app l l1))).

Similar to lfind, each lemma is bucketed into one of three categories (Λ1, Λ2, or Λ3), and

the categories are presented to the user in that order. Λ1 lemmas are those in which lfind++

can automatically find a complete proof of the original goal using the generated lemma and

Proverbot9001, a state-of-the-art automated prover. In this case, the top three lemmas

produced by lfind++ are Λ1 lemmas. The full proof of the theorem produced by the tool

for appLensS using lem1 is shown in Figure 3.3. Additionally, lem1 exactly matches the

human-provided helper lemma. Although the original proof state contains < proposition,

lem1 contains = proposition. Note that lfind does not identify any of these lemmas, in fact,

it does not produce any useful lemma for this example.

In the rest of the section, I explain how lfind++ produces these results.

Approach. Similar to lfind we start by generalizing the goal state. From each general-

ization, we create sketches and sample variable valuations from the current goal in order to

reduce lemma synthesis to data-driven program synthesis. The key innovation is in extending

the type of sketches per generalization while reusing the same data-driven synthesis setup

as lfind. This enables the synthesis of candidate lemmas for subterms in the goal state.

Finally, we use similar filters as lfind to remove candidates that cannot be useful and rank

and categorize the remaining candidates for user inspection.
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1 Lemma lem1: forall n l l1,
2 len (app l (Cons n l1)) = S (len (app l l1)).
3 Proof.
4 induction l.
5 simpl.
6 intros.
7 eauto.
8 intros.
9 simpl.

10 rewrite IHl.
11 easy.
12 Qed.

14 Lemma appLenS : forall x y, (len (app x y)) < S (len (app y x)).
15 Proof.
16 intros.
17 induction x.
18 - simpl. rewrite appToNil. auto.
19 - simpl. apply lt_n_S. unfold len. simpl. rewrite lem1. eauto.
20 Qed.

Figure 3.3: A full proof provided by lfind.

Generalization. As with lfind, I start by generalizing (append x y) with a fresh variable

l1 of type lst produces the following generalization:

forall l1 y n x, (len l1) < len (append y (Cons n x)).

This generalization does not produce a valid lemma, therefore I set up the following synthesis

problem.

Synthesis. From each generalization, I create multiple sketches to generate candidate

lemmas for goal state with arbitrary proposition while reusing the same data-driven synthesis

problem as lfind. Specifically, I create two kinds of sketches. The first sketch is the same

as what lfind produces, where the sketch is a version of that generalization with one term

replaced by a hole. For example, if we replace the term len (append y (Cons n x)) in the

generalization above with a hole, then we end up with the following sketch. Note that we

quantify over variables present in the sketch.
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forall l1, (len l1) < 2.

Intuitively, the first kind of sketch help creates candidate lemmas that are structurally

similar and share a root proposition with the original lemma. As explained in § 3.1, while

these are useful, they are not the only kind of helper lemmas that are useful for a proof

state. We may require equality lemmas about the subterms in a proof state. Therefore, we

create a second kind of sketch with an equality proposition, where one side is filled with a

subterm from the generalization and the other side is a hole. For example, for the subterm

len (append y (Cons n x)) from the goal state, we create the following sketch

forall y n x, len (append y (Cons n x)) = 2

Note that the second kind of sketch can be used as a helper lemma in a goal state with

equality and non-equality propositions. In the case of equality propositions, it is used to

rewrite smaller subterms within the goal state with equivalent expressions.

Recall from lfind that we generate concrete examples of the original goal in the stuck

state and then map them to input-output examples for data-driven synthesis. The synthesis

process is the same for both these sketches. Just for illustration, I explain the synthesis

process for the second sketch, however, this is the same as what lfind does. In the running

example, the original goal has three variables, n, x and y, so we randomly generate values for

(n, x, y) tuples.

Next, we map these examples to our second sketch. We already have values for variables

in the sketch, i.e. for n, x and y. We just need to produce the expected value of the hole

for each example, by leveraging the fact that the value of the hole will be the same as the

subterm len (append y (Cons n x)).

As a result of this mapping, we can now produce a set of input-output examples that act

as a specification for synthesis, each mapping (n, x, y) tuple to the expected output value

of the term to be synthesized.
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Finally, we pass these input-output examples to a data-driven synthesizer. In addition to

the examples, we provide the type of the function to be synthesized (which in this case is

nat * lst * lst → nat) and a grammar to use for term generation. Similar to lfind, we

automatically create a grammar consisting of the definitions that appear in the stuck proof

state along with definitions that they recursively depend upon.

In our example the grammar includes the constructors Nil and Cons and the functions

app and len. One term that the synthesizer generates from these inputs is S (len (app x

y)). Substituting this expression into the hole in our sketch yields exactly the lemma lem1

shown earlier, which enables a fully automated proof of the original lemma.

In summary, I have shown how to generate useful helper lemmas for subterms in a goal

state, in a targeted way, based on the current proof state, using a novel observation regarding

the different ways helper lemmas can be used in a proof context and augmenting sketch

creation to cater to these different cases, making them applicable to a wider class of lemmas.

As I demonstrate in § 3.4.4, lfind++ can generate significantly more useful lemmas for a

variety of interesting benchmarks compared to lfind. Note that we apply the same filtering

and ranking techniques as lfind.

3.2.2 Motivating Example for Generating Conditional Lemmas

I illustrate how lfind++ generates conditional helper lemmas using an example. Figure 3.4

shows Coq code that tries to prove a theorem: count of the occurrence of an element x in

a list l where an element y is inserted using insertion sort is the same as the count of an

element x in list l when x is not the same as y. It starts by defining lists of nats along with

definitions for counting, and insertion sort of lists. Following that is an attempt to prove the

theorem, named count_insort.

The proof proceeds by induction on list l. The Nil case is proven using a helper lemma

eqb_false_iff and hypotheses from the goal. Although this case uses a helper lemma, I
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1 Inductive lst : Type :=
2 | Nil : lst
3 | Cons : nat -> lst -> lst.

5 Fixpoint count (arg1 : lst) (arg2 : nat): nat:=
6 match arg1,arg2 with
7 | Nil, x => O
8 | Cons y z, x => if eqb x y then
9 S (count z x)

10 else
11 count z x
12 end.

14 Fixpoint insort (arg1 : lst) (arg2 : nat) : lst:=
15 match arg1, arg2 with
16 | Nil, i => Cons i Nil
17 | Cons x y, i => if less i x then
18 Cons i (Cons x y)
19 else
20 Cons x (insort y i)
21 end.

23 Lemma eqb_false_iff: forall (x y: nat), x <> y -> eqb x y = false.
24 ...

26 Theorem count_insort: forall (x y: nat) (l: lst),
27 x <> y -> count (insort l y) x = (count l x).
28 Proof.
29 intros.
30 induction l.
31 - simpl. apply eqb_false_iff in H. rewrite H. auto.
32 - simpl. destruct (less y n) eqn:El; destruct (eqb x n) eqn:Ee.
33 + simpl.
34 apply eqb_false_iff in H.
35 rewrite H. rewrite Ee.
36 auto with arith.
37 + (∗ I’m stuck! ∗)

Figure 3.4: A partial proof of a theorem in Coq that requires an auxiliary lemma.

illustrate our contributions using the Cons case. In this case, destructing less and eqb leads

to four sub-cases. And in the second sub-case, a user is stuck with the proof state illustrated

in Figure 3.5.
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1 x, y, n: natural
2 l: lst
3 H: x <> y
4 IHl: count (insort l y) x = count l x
5 El: less y n = true
6 Ee: eqb x n = false
7 ---------------------------------------------
8 count (Cons y (Cons n l)) x = count l x

Figure 3.5: The proof state when the user gets stuck.

To get unstuck the user can invoke lfind++ as a tactic at this point. In this example,

the top lemma produced by lfind++ is:

1(Λ2) Lemma lem1: forall x y l,
2 x <> y -> count (Cons y l) x = count l x.

lem1 is a Λ2 lemma which was sufficient to automatically prove the original goal, but

Proverbot9001 cannot automatically prove the auxiliary lemma, since this requires ad-

ditional helper lemmas. Note that lem1 generated by lfind++ is a conditional lemma, and

this exactly matches the user-provided helper lemma.

Approach. In addition to the generalization and synthesis steps, lfind++ includes a

counterexample-guided refinement step to generate conditional lemmas. Recall that a

candidate lemma is produced via a combination of generalization and synthesis. The key

innovation is in utilizing counterexamples to the validity of a candidate lemma to choose the

correct set of hypotheses to include from the stuck proof state to generate a valid candidate

lemma. Note that filtering and ranking techniques proposed by lfind remain useful for this

case.

Generalization. As with the previous example, we start by producing all generalizations

of the goal state.

For example, replacing Cons n l with a fresh variable l1 of type lst produces the

following generalization:
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forall l y x l1, count (Cons y l1) x = count l x.

In addition to generalizing terms in the goal state, we also generalize the same terms

present in the hypotheses. For this particular generalization, there are no terms in the

hypotheses that need to be generalized. However, let’s say we generalize the term count l x

to a variable l2, then we need to generalize the same term in hypothesis IHl with the same

variable.

Synthesis. For the above generalization candidate we set up the following synthesis

problem. We create a sketch where count l x is replaced with a hole.

forall y x l1, count (Cons y l1) x = 2.

Similar to the example described in § 3.2.1, we want to fill the hole by synthesize an

alternate expression to count l x using variables y, x, and l1. For brevity, we skip the

details of the data-driven synthesis setup. One such expression generated by the synthesizer

is count l1 x. Substituting this expression into the hole in our sketch yields the following

candidate lemma:

forall y x l1, count (Cons y l1) x = count l1 x.

Counterexample-Guided Refinement. This candidate lemma generated by lfind++ is

invalid. When we run Quickchick on this candidate lemma, there are valuations to variables

y, x, and l such that the lemma is false. A potential way to repair an invalid lemma is

to identify conditions under which a particular lemma is true. In the most general setting,

identifying such a sufficient condition can be set up as a data-driven synthesis problem

using examples and counterexamples. Our key insight is that we can avoid this expensive

computation by utilizing additional information (i.e. hypotheses) present in the goal. In Coq,

typically when a conditional helper lemma is used in a proof context, it introduces new goals,

(i.e. conditions from the helper lemma) which are then proved using one or more hypotheses
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from the goal state. Note that there are cases when new goals introduced by conditional

lemmas require additional hypotheses, but the most common case for conditional lemmas is

the former. Therefore, we propose a counterexample-guided refinement procedure to choose

the right set of hypotheses from the goal state when generating a candidate lemma.

To this end, we track a candidate lemma’s validity counterexamples. In our running

example, the current candidate is invalid for the following valuations of variables.

x = 0

y = 0

l1 = []

Next, we evaluate the hypotheses in the goal state for these values and identify those that

are violated. From Figure 3.5, there are four hypotheses (i.e. H, IHl, El, Ee) in the goal state.

Note that to evaluate a hypothesis, we need the variables of the hypothesis to be a subset of

the variables of the candidate lemma. For our example, only hypothesis H from the goal state

is applicable, the other hypothesis contains variables that do not have valuations.

To identify if a hypothesis is violated, we substitute the counterexample values. In this

case, for H, we substitute values for x and y.

0 <> 0.

This is clearly a contradiction, therefore we add H as a condition to the candidate lemma

and repeat this process until there are no more counterexamples or hypotheses left from the

goal state. Adding the hypothesis leads to the generation of candidate lemma lem1, which is

also the user-provided helper lemma for this proof state.

forall x y l1, x <> y -> count (Cons y l1) x = count l1 x.

In summary, I have shown how to generate conditional candidate lemmas in a targeted

way, based on the current proof state, using a novel combination of data-driven program
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1 Input:l:Lemma, s:subterm

3 Returns:A set sketches

5
1: Sketches := ∅
2: Sketches := Sketches ∪ l[s 7→ 2]
3: Sketches := Sketches ∪ s = 2
4: return Sketches

Figure 3.6: Sketch Generation.

synthesis and counterexample-guided refinement. While the conditions for the lemmas can

be arbitrary, we propose a solution to the common case where the conditions can be derived

from the hypothesis. As I demonstrate in § 3.4, our approach can generate useful lemmas for

a variety of interesting benchmarks.

3.3 Algorithms

In this section, I describe the core algorithms that make up our approach.

3.3.1 Equality Lemmas about Subterms

Figure 3.7 presents the combined algorithm of lfind and the proposed extension to generate

equality lemmas about subterms. We are given H, containing a set of logical formulas that are

the current hypotheses, g is a logical formula that is the current goal, Γ is a type environment

for all free variables in H and g, D is a set of type and term definitions that are recursively

referred to in H and g, and E is a set of examples that satisfy the current proof state, which

is generated using a disprover. Note that we require that the goal g be unquantified, which in

practice typically means that the original lemma/theorem should have all variables universally

quantified at the front. The goal is to return a set of ranked candidate lemmas Lr.
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1 Dependencies: A synthesizer Synth a disprover Disprover, and a prover Prover

3 Input:H:Hypotheses, g:Goal, Γ:Type Environment, D:Grammar,
E:Examples

5 Returns:A set of ranked candidate lemmas

7
1: Lc := ∅
2: Genpoints := 2GetTerms(g)

3: Lg := GeneralizeLemma(H, g, Γ, genpoints)
4: for lg ∈ Lg do
5: if is_LikelyValid(disprover(lg))) then:
6: Lc := Lc ∪ (lg)
7: else:
8: SynPoints := GetTerms(lg)
9: for s in SynPoints do
10: Sketches := GetSketches(lg, s)
11: for sketch in Sketches do
12: ls= SynthesizeLemma(Synth, sketch, E, s)
13: if is_LikelyValid(disprover(ls))) then:
14: Lc := Lc ∪ (ls)

15: Lf := Filter(Disprover, Lc)
16: Lr := Rank(Prover, Lc)
17: return Lr

Figure 3.7: lfind++ Algorithm.

The initial set of candidate lemmas is empty and the tool starts by collecting all terms in

the goal state g and constructing the power set of these terms named Genpoints. Based

on this, the tool generates a set of generalized lemmas, where terms from Genpoint are

replaced with a fresh variable (see Definition 2.1). lfind++ then iteratively performs a loop

on lines 4-14 to generate candidate helper lemmas. First, if a lemma is not disprovable,

it is added to the list of candidate lemmas. If it is disprovable, then the tool iteratively

carries out data-driven synthesis (lines 9-14) for each term in the generalized lemma lg. The

algorithm uses sketches to generate candidate lemmas, where new subexpressions that behave

consistently with some term are synthesized (lines 11-14). Figure 3.6 describes the sketches

produced by lfind++. This function takes as input a lemma, and a subterm and returns
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possible sketches for synthesis. The first sketch replaces the subterm s with a hole and the

second sketch is an equality lemma where the subterm is equal to the hole. This additional

sketch creation is the only difference from lfind. Note that GetSketches function returns

sketches that enable generation of candidate lemmas that can be used with apply and

rewrite tactic. Note that we are able to use the same synthesis process. Finally, the

candidate lemmas are filtered and a ranked set of lemmas are returned for user inspection.

3.3.2 Conditional Lemmas

In this section, I describe how we reduce hypotheses selection from the goal state to a

counterexample-guided refinement procedure. For notations refer to § 2.3 from Chapter 3.

As described in § 3.2.2, the first step before generating conditional lemmas is to produce

candidate lemmas via the combination of generalization and synthesis. We start by identifying

if a candidate lemma is disprovable.

Definition 3.1. (Counterexample: ρ) Given a disprover C, candidate lemma lc, and D which

is a set of type and term definitions recursively referred to in lc, we define counterexample

ρ = C(lc,D), such that lc ⇓ρ False, where ρ is ⟨x1 : v1, ..., xn : vn⟩ and xi are universally

quantified variables of lc.

lfind++ uses this counterexample to identify hypotheses that are violated when evaluated

with the variable values of the counterexample. Note that ρ is empty when C returns Don’t

Know.

Definition 3.2. (Violation) Given a proposition ϕ, a sample valuation ρ = ⟨x1 : v1, ..., xn : vn⟩

for universally quantified variables in ϕ, and D which is a set of type and term definitions

recursively referred to in ϕ, we say a sample valuation violates a formula, denoted Violated(ϕ,

ρ) is defined as ϕ[xi 7→ vi] ⇓ρ False.

Identifying if a proposition is false is a hard problem in general. Instead, we use a more

efficient incomplete approach and use a disprover to test it.
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Finally, we can put all of this together to specify how to reduce hypothesis selection to

counterexample-guided refinement.

Definition 3.3. (Hypothesis Selection as Counterexample-Guided Refinement) Given a

candidate lemma lc, a set of generalized hypotheses Hg, and D which is a set of type and term

definitions recursively used in lc, we produce the following counterexample-guided refinement

problem.

• Let ρ be the counterexample to lc, where ρ = ⟨x1 : v1, ..., xn : vn⟩ .

• Let Hv be Hg restricted to those hypotheses such that Violated(Hi, ρ) where Hi ∈ Hg.

We add Hv as additional hypotheses to lc forming a new candidate Hv → lc.

The above definition details a single refinement step. Further, Figure 3.8 presents the

hypothesis selection algorithm which is run as part of the algorithm presented in Figure 3.7

whenever it finds a candidate lemma that is disprovable. We are given a candidate lemma, a

set of hypotheses, and an initial counterexample to the lemma, which contains valuations for

the free variables of the lemma. The initial set of hypotheses to be added to the candidate

lemma is empty. It is possible that identifying the right set of hypotheses requires multiple

refinement steps. Therefore, we iteratively continue to add hypotheses, if the disprover returns

a counterexample and ends when there are no more counterexamples or hypotheses left to be

added.

3.4 Experimental Evaluation

3.4.1 Benchmark Suite

As with lfind, the approach generates candidate helper lemmas from a given proof context.

Hence, I evaluate lfind++ on evaluation locations which are points in the proof where a

user-provided helper lemma was used (see § 2.5.3). I evaluate lfind++ on a total of 323
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1 Input:l:Lemma,H:Hypotheses,ρ:Counterexample

3 Returns:A candidate lemma

5
1: do
2: Hr := ∅
3: for h in H do
4: if Violated(h, ρ) then
5: Hr := Hr∪ h
6: lc := Hr ∪ lc
7: ρ := Counterexample(lc)
8: while IsNotEmpty(ρ) or IsNotEmpty(Hr)
9: return lc

Figure 3.8: Counterexample-Guided Refinement.

evaluation locations. Of these locations, 222 of those are from the benchmarks used in lfind.

The rest of the benchmark locations are drawn from the following sources.

• LIA (41): 19 of the 38 evaluation locations of this benchmark is the same as lfind. We

augmented the rest of the evaluation locations to require linear integer arithmetic and

contain arbitrary propositions or require conditional helper lemmas.

• Hardware (38): This project [har96] from coq-contribs collection, formalizes hardware

linear arithmetic structures. The project contains several theorems about arithmetic,

booleans, representation of natural numbers as lists of digits in a given base, and so on.

• Additions (32): This project [add18] from coq-contribs collection, formalizes common

mathematical properties.

The Hardware and Additions benchmark suites already contain full Coq proofs written

by others, which in turn determine the evaluation locations. Table 3.1 provides more details

on the proof state and the kind of helper lemmas used in the evaluation locations. As shown

in the first row of the table, 76.7% of the evaluation locations contain a proof state with an

equality proposition. This is expected since 222/323 evaluation locations were taken from
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Table 3.1: lfind++ Benchmark Summary
#

Proof state with eq prop 248
Proof state with non-eq prop 75
Proof state requires a conditional helper lemma 64
Proof state requires a helper with non-eq prop 6
Proof state with non-eq prop but requires a helper with eq prop 22

the lfind which works only on lemmas with equality proposition. As shown in the second

row, 23% of the evaluation locations contain propositions other than equality like lt, le,

and so on. The last three rows summarize the kind of helper lemmas provided by the human

prover in these evaluation locations.

3.4.2 Experimental Setup

For each evaluation location, lfind++ generates 50 input-output examples from the current

proof state and is allowed to generate candidate lemmas with a maximum timeout of 100

minutes. lfind++ has a median runtime of 2.6 min. The tool has a 12s timeout for each

call to Myth and a 15s timeout for each call to Proverbot9001. For these experiments, I

generate sketches from all subterms of sort Type, and ask for 5 synthesis terms per sketch.

These choices were based on the sensitivity analysis done by lfind in § 2.5.5.

All evaluations were performed on a machine that runs MacOS (10.15.6) in a 2.3 GHz-

Quad-Core Intel Core i7, with 32GB memory.

3.4.3 Synthesized Helper Lemmas

Table 3.2 summarizes the results for all the benchmark locations. Recall from the previous

chapter that we consider the use of lfind++ at an evaluation location to be successful in

three scenarios. First, we say that lfind++ is successful if it can produce a candidate helper

lemma that is automatically proven by Proverbot9001 and this helper lemma enables
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Table 3.2: Results
CLAM Full Adder Compiler LIA Hardware Additions

Setup
# Theorems 86 40 1 27 105 55
# Evaluation Locations 149 62 1 41 38 32

Results
# fully proven lemma and goal 82 37 0 20 32 15
# else top 1 31 2 0 2 0 0
# else top 5 10 1 1 2 0 1
# else 10 3 1 0 2 1 1
# else more general top 1 0 0 0 0 0 0
Summary 126/149 41/62 1/1 26/41 33/38 17/32

Proverbot9001 to automatically prove the user’s goal. This is the best-case scenario,

as lfind++ has produced a complete proof for the user. Second, we say that lfind++ is

successful if a lemma that matches the human-provided lemma is ranked highly (top-10)

by the tool. Third, we say that lfind++ is successful if a lemma that is more general than

the human-provided lemma is ranked highly by the tool. I use the ⪯ operator defined in

§ 2.3.3 to automatically identify if a candidate lemma l matches or is more general than the

human-provided lemma h. Specifically we say that l matches h if both l ⪯ h and h ⪯ l, and

we say that l is more general than h if h ⪯ l but not vice versa.

In total, based on the evaluation metrics we see that lfind++ succeeds in 244 (75.5%) of

the 323 evaluation locations across all benchmarks. Further, as shown in the third row of

the table, in 186 (76.2%) of these successful 244 locations, lfind++ was able to synthesize a

lemma that led to a fully automated proof of the user’s goal. Rows 4-7 of Table 3.2 shows

a breakdown of the remaining 58 successful locations. Notably, for 36 of these evaluation

locations, the top-ranked candidate lemma produced by lfind++ matches the helper lemma

provided by the human prover.

Examples. Table 3.3 shows examples of lemmas synthesized by lfind++ along with their

rank and category (see § 2.3.4 for category notations). I describe the first four of them in

detail.
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Table 3.3: A sample of lfind++ synthesized lemmas and their associated rank and category.
# Original Theorem lfind++ Synthesized Lemma Λ

1. Theorem tree_insert_all : ∀
(l:list nat) (t:tree), (tsize
t) <= (tsize (tinsert_all t l)).

Lemma lem2 : ∀ (t:tree) (n:nat),
tsize (tinsert t n) = S (tsize
t).

Λ2

2. Theorem sorted_sort : ∀ (x:lst),
sorted (sort x) = true.

Lemma lem2: ∀ (n:nat) (l:list
nat), sorted l = true → sorted
(insort n l) = true.

Λ2

3. Lemma dif_0_pred_eq_0_eq_1 : ∀
(n:nat), n <> 0 → pred n = 0 → n
= 1.

Lemma lem1: ∀ (n:nat), pred n =
O → n = O ∨ n = S O.

Λ1

4. Lemma exp_n_incr : ∀ (n m p:nat),
n <= m → exp_n n p <= exp_n m p.

Lemma lem1: ∀ (n:nat)(lf1:nat)
(m:nat) (n0:nat), n <= m -> lf1
<= exp_n m n0 -> n <= m -> n *
lf1 <= m * exp_n m n0.

Λ1

5. Lemma half_lt : ∀ a b : nat, 0
< b → b = shift a ∨ b = S (shift
a) → a < b.

Lemma lem1 : ∀ (n:nat), n < S
(shift n).

Λ1

6. Lemma le_reg_minus: ∀ (n m
p:nat), n <= m → n - p <= m -
p.

Lemma lem1: ∀ n:nat, n = n - O. Λ1

7. Theorem lst_int_subset : ∀
(x:list nat) (y:list nat), lst_-
subset x y = true -> lst_eq (lst_-
intersection x y) x = true.

Lemma lem1: ∀ (x:list nat)
(lf2:lst) (lf1:lst), lst_subset
x lf1 = true -> lst_subset x (lf2
++ lf1) = true.

Λ2

8. Lemma lenSConsRev : ∀ l1 l2 n,
len (l1 ++ n :: l2) = S (len (l2
++ l1)).

Lemma lem1 : ∀ (l : list nat)
(l1 : list nat), len (l ++ l1) =
(len l1) + (len ls0))).

Λ1

9. Lemma rev_nth : ∀ l d n, n < len
l -> nth n (rev l) d = nth (len l
- S n) l d.

Lemma lem1 : ∀ l, len (rev l) =
len l.

Λ1

10. Theorem theorem0 : ∀ (x:list
nat) (y:list nat), len (qreva x
y) = (len x) + (len y).

Lemma lem1 : ∀ (n:nat) (m:nat),
n + S m = S n + m.

Λ1
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The first example from the LIA benchmark suite states that the number of elements of a

tree is less than the number of elements in a tree when additional elements are added from a

list. The inductive case requires a helper lemma that captures the special case of the tree size

when one element is inserted. I present the synthesized lemma in Table 3.3, which belongs to

Λ2, and this exactly matches the human-provided helper lemma. Further, note that the proof

state contains <= proposition, whereas the helper lemma contains equality proposition. This

shows how the proposed approach in § 3.3.1 is effective in synthesizing the required helper

lemma with arbitrary propositions.

The second example is from the CLAM benchmark suite. The theorem says that

checking for sortedness property after sorting a list would always be true. For this example,

lfind++ produces a conditional candidate lemma in category Λ2. This example illustrates

the effectiveness of the proposed approach in § 3.3.2 in synthesizing condtional helper lemmas.

The third example is from the Hardware benchmark suite. For this example, lfind++

identified a candidate in category Λ1, and hence led to a full proof of the theorem.

The fourth example is from Additions benchmark suite and reasons about the exponential

function. For this example, lfind++ identified a candidate in category Λ1, and hence led to

a full proof of the theorem. Further, the candidate lemma contains multiple conditions.

Runtime Performance. Figure 3.9 plots the runtime distribution of lfind++ across all

323 evaluation locations. The tool ran to completion on each of these benchmarks with a

median runtime of 2.6 min (shown in the plot where the curve labeled Total Time reaches

a CDF of 0.50). Recall that lfind++ produces a full automated proof (category Λ1) in 76.2%

(see Table 3.2) of the successful evaluation locations. As shown by the curve labeled Time

to Category 1 in Figure 3.9, the median and 75th percentile runtime of the tool were only

1.0 min and 2.85 min respectively. Despite the increased search space of candidate lemmas,

these runtimes are lower than that of lfind, with a median total runtime is 4.8 min and

time to category Λ1 is 1.2 min. It is perhaps unintuitive that searching over a larger search
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Figure 3.9: lfind++ has a median total runtime of 2.6 min. Further, the tool has a median
runtime of 1.0 min for the 186 cases (see Table 3.2) where it was able to a find a full automated
proof (Λ1).

Table 3.4: Expressivity extensions of lfind++ significantly outperforms vanilla lfind.

lfind lfind++

CLAM 100 126
Full Adder 35 41
Compiler 1 1
LIA 15 26
Hardware 5 33
Additions 2 17

Total 158 244

space leads to lower time overall, but the increased expressivity leads to a useful lemma

being identified earlier, leading to a lower runtime. These results indicate the viability of the

approach and its instantiation in lfind++ to support interactive usage.

3.4.4 Comparison with lfind

To understand the benefits of the proposed extensions to increase expressivity, I compare

lfind++ against lfind. Table 3.4 compares the number of cases lfind and lfind++ were
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successful in each benchmark suite. lfind succeeds in 158 of the 323 evaluation locations,

whereas lfind++ does so in 244 evaluation locations. The proposed approach outperforms

lfind on all benchmark suites. As shown by rows 1-3 in Table 3.4, both tools are successful

in identifying the required helper lemma in the case where the proof state contains an equality

proposition. However, lfind performs rather poorly on benchmarks (rows 4-6) that contain

proof states with arbitrary propositions or conditional lemmas. In fact, on these three

benchmarks lfind is deemed useful in only 19.8% of the cases, as compared with 68.4% of

lfind++. These results demonstrate the benefits of the proposed extensions to data-driven

synthesis: adding a new kind of sketch to synthesize helper lemmas about subterms in a goal

and using counterexamples to pick the required hypotheses to construct conditional lemmas,

which in turn enables the synthesizer to provide higher-quality candidates.

3.5 Summary

In this chapter, I have proposed two extensions to the data-driven lemma synthesis approach for

interactive proofs that is significantly more expressive than prior lemma synthesis approaches.

Two key technical contributions include (1) a new sketch generation that uses the same

synthesis setup as lfind while enabling helper lemma generation for subterms in the goal state;

(2) a new counterexample-guided refinement procedure that leverages validity counterexamples

to select the required hypotheses from the goal state to generate conditional candidate lemmas.

While the problem of lemma synthesis is hard in general, the experimental evaluation of our

resulting tool lfind++ demonstrates the promise of the approach and quantifies the benefits

over lfind.
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1 Fixpoint power (x n : nat) {struct n} : nat :=
2 match n with
3 | O => 1
4 | S n’ => x * power x n’
5 end.

7 Theorem le_mult_right : forall a b : nat, 0 < b -> a <= a * b.
8 Proof.
9 ...

11 Lemma power_lt_O : forall x n : nat, 0 < x -> 0 < power x n.
12 Proof.
13 ...

15 Lemma power_le : forall x n : nat, 0 < n -> x <= power x n.
16 Proof.
17 intros x n; case n; simpl in |- *; auto.
18 intros H’; inversion H’.
19 intros n’; case x; intros; auto.
20 apply le_mult_right; auto.
21 apply power_lt_O; auto with arith.
22 Qed.

Figure 3.10: Proof of a theorem in Coq that requires multiple helper lemmas.

1 x, n, n’, n0: nat
2 H: 0 < S n’
3 ---------------------------------------------
4 S n0 <= S n0 * power (S n0) n’

Figure 3.11: The proof state when the user gets stuck.

3.6 Future Work

3.6.1 Synthesizing Conditional Lemmas

To generate conditional lemmas, the extension described in § 3.3.2 proposes to choose a

set of hypotheses from the goal state. However, it is possible that the required hypotheses

are not available in the goal state. Figure 3.10 illustrates a case where the required helper

lemma is conditional and the hypothesis is not available in the goal state. In this example,
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a user-provided helper lemma, le_mult_right is applied at line 20. Figure 3.11 shows the

stuck state before applying the helper lemma. lfind++ would identify candidate lemmas

from this stuck state.

lfind++ creates the following generalization of the stuck state, where S n0 is replaced

with variable a and power (S n0) n’ is replaced with b. This generalization matches the

consequent of the user-provided helper lemma, le_mult_right.

forall a b, a <= a * b

However, no hypothesis in the goal state matches the required condition 0 < b. Therefore,

the counterexample-guided refinement process described in § 3.3.2 would not produce the

required candidate lemma.

This limitation can be addressed using a data-driven hypotheses synthesis setup. When

we generalize a term with a variable, we lose information about the term’s properties.

For example, S n0 is always greater than 0, however, when we generalize we lose this

information. Therefore, for each term we generalize, we need to identify and add their

properties as additional hypotheses. Once we add these additional hypotheses, we can reuse

the counterexample-guided hypotheses selection approach described in § 3.3.2 to generate

conditional candidate lemmas.

Concretely, we want to identify predicates that satisfy the values of the generalized terms.

To do this, we would set up a boolean synthesis problem containing positive examples. For

our example, S n0 would take values 1, 2, 3 and so on. Next we map these values to true.

(1) 7→ true

(2) 7→ true

(3) 7→ true

Finally, we pass these input-output examples to a data-driven synthesizer. In addition to

the examples, and grammar inferred from the goal state, we provide the most commonly used
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1 Lemma mult_succ : forall (x y : nat), x * y + x = x * S y.
2 Proof.
3 intros.
4 induction x.
5 - reflexivity.
6 - simpl. rewrite plus_succ. rewrite plus_assoc.
7 rewrite (plus_commut y x). rewrite <- plus_assoc.
8 rewrite IHx. rewrite plus_succ. reflexivity.
9 Qed.

Figure 3.12: Proof of a theorem in Coq that requires multiple helper lemmas.

operators like >, < , and, not, or etc. One term synthesized for these inputs is S n0 >

0. Similarly, we can synthesize a boolean predicate for the term power (S n0) n’ > 0.

Once these predicates are added to the hypotheses, lfind++ can identify the required

conditional lemma using the method described in § 3.3.2.

3.6.2 Multiple Helper Lemmas

As currently formulated, a user invokes lfind++ as a tactic at any point in the proof, and it

will produce a set of ranked candidate lemmas. The current ranking scheme is designed to

maximize provability metrics, where a lemma is most useful if it leads to proof of the goal

state and proof of the lemma itself. However, this ranking scheme might be too restrictive in

cases where the required helper lemma is generated by lfind++, but an automated prover

fails to prove the goal state or the helper lemma. For instance, a proof could require multiple

helper lemmas interleaved with other Coq tactics. Figure 3.12 illustrates a case where the

inductive case of the proof requires five helper lemmas. In this case, it is possible that even if

lfind++ identifies the correct helper lemma, an automated prover will not be able to prove

the goal state without the other helper lemmas. Hence, the ranking scheme will fail to rank

this candidate in top-k. This limitation can be addressed with a new ranking scheme based

on proof progress rather than full provability. A simple proof progress metric could be to

identify if a candidate lemma enables the use of certain Coq tactics like simpl or rewrite of
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the induction hypothesis. Sophisticated progress metrics can potentially be inferred from the

failure proof trees produced by Proverbot9001.
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CHAPTER 4

Counterexample-Guided Verification of Neural Networks

4.1 Introduction

Deep neural networks are increasingly used to make sensitive decisions, including financial

decisions such as whether to give a loan to an applicant [HPS16] and as controllers for safety

critical systems such as autonomous vehicles [BDD16, ZHL20]. In these settings, for safety,

ethical, and legal reasons, it is of utmost importance that some of the decisions made are

monotonic. For example, one would expect an individual with a higher salary to have a higher

loan amount approved, all else being equal, and the speed of a drone to decrease with its prox-

imity to the ground. Learning problems in medicine, revenue-maximizing auctions [FNP18],

bankruptcy prediction, credit rating, house pricing, etc., all have monotonicity as a natural

property to which a model should adhere. Guaranteeing monotonicity helps users to better

trust and understand the learned model [GCP16]. Furthermore, prior knowledge about

monotonic relationships can also be an effective regularizer to avoid overfitting [DBB01].

Unfortunately, there is no easy way to specify that a trained neural network should be

monotonic in one or more of its features. Existing approaches to this problem, such as

min-max networks [Sil98], monotonic lattices [FCC16], and deep lattice networks [YDC17],

guarantee monotonicity by construction but do so at the cost of significantly restricting the

hypothesis class. Other solutions, such as learning a linear function with positive coefficients,

are even more restrictive. Furthermore, techniques that enforce monotonicity as a soft

constraint in neural networks [SA97, GSM19] suffer from not being able to provide any
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provable monotonicity guarantee at prediction time. Finally, the well-known framework of

isotonic regression [BB72, SS97] is effective only when the training data can be partially

ordered, which is rarely the case in high dimensions.

In this chapter, I develop techniques to incorporate monotonicity constraints for standard

ReLU neural networks without imposing further restrictions on the hypothesis space. These

techniques leverage recent work that employs automated theorem provers to formally ver-

ify robustness and safety properties of neural networks [XTJ17, XTJ18, GMD18, KBD17].

First, I present a counterexample-guided algorithm that provably guarantees monotonicity

at prediction time, given an arbitrary ReLU neural network. This approach works by con-

structing a monotonic envelope of the given model on-the-fly via verification counterexamples.

Empirically I show that our approach can guarantee monotonicity with little to no loss in

model quality at a computational cost on the order of a few seconds on standard datasets.

Second, I propose a new counterexample-guided algorithm to incorporate monotonicity as

an inductive bias during training. The approach identifies monotonicity counterexamples

on the training data, inducing additional supervision for training the network, and per-

form this process iteratively. I also show that monotonicity is an effective regularizer: the

counterexample-guided learning algorithm improves the overall model quality. Empirically,

the two algorithms, when used in conjunction, enable better generalization while guaranteeing

monotonicity for both regression and classification tasks. I have implemented our algorithms

in a tool called “COunterexample-guided Monotonicity Enforced Training” (COMET). Finally,

I demonstrate that COMET outperforms min-max and deep lattice networks [YDC17] on four

real-world benchmarks.

4.2 Preliminaries: Finding Monotonicity Counterexamples

I begin by introducing some common notation. Let X be the input space consisting of d

features, and suppose that it is a compact finite subset X = [L,U ]d of Rd. Let Y be the
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output space. I consider regression and (probabilistic) binary classification tasks where Y is

totally ordered.

The goal will be to learn functions that are monotonic in some of their input features.

Definition 4.1. A function f : X → Y is monotonically increasing in features S iff each

feature in S is totally ordered and for any two inputs x, x′ ∈ X that are (i) non-decreasing in

features S, ∀i ∈ S, x[i] ≤ x′[i], and (ii) holding all else equal, ∀k ̸∈ S, x[k] = x′[k], the output

of the function is non-decreasing: f(x) ≤ f(x′).

Formal properties of functions are often characterized in terms of their counterexamples.

Counterexample-guided algorithms are prevalent in the field of formal methods, for example

to verify [CGJ00] and synthesize programs [STB06]. The techniques proposed in this chapter

will be centered around using counterexamples to the monotonicity specification.

Definition 4.2. A pair of inputs x, x′ ∈ X is a monotonicity counterexample pair for the

ith feature of function f : X → Y iff the points are (i) non-decreasing in feature i, that is,

x[i] ≤ x′[i], (ii) holding all else equal, that is, ∀k ̸= i, x[k] = x′[k], and (iii) the function is

decreasing: f(x) > f(x′).

Notably, for a function to be (jointly) monotonic in features S, it is both necessary

and sufficient that there does not exist a monotonicity counterexample pair for any of the

individual features in S.

ReLU neural networks generalize well and are widely used [GBB11, XCL16, SPD19],

particularly in the context of verification and robustness. Hence, we will assume that f is a

ReLU neural network.

Definition 4.3. A ReLU neural network is a directed acyclic computation graph consisting

of neurons that compute ReLU(
∑

iwixi + b), where the activation function is a rectified

linear unit ReLU(y) = max(0, y), the weights wi and bias b are parameters associated with

each neuron, and neuron inputs xi are either input features or values of other neurons. The

value of a designated output neuron defines the value of a function f : X → Y .
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Counterexample-guided algorithms rely on the ability to find counterexamples, usually

by relegating the task to an off-the-shelf solver. This requires that both the counterexample

specification and the object of interest — in this case the function f — can be encoded in

a formal language amenable to automated reasoning. We will use a satisfiability modulo

theories (SMT) solver [BT18] for this purpose. Recall that satisfiability (SAT) is the problem

of deciding the existence of assignments of truth values to variables such that a propositional

logical formula is satisfied. SMT generalizes SAT to deciding satisfiability for formulas with

respect to a decidable background theory [BT18]. We will use the background theory of

linear real arithmetic (LRA), which allows for expressing Boolean combinations of linear

inequalities between real number variables.

The encoding of ReLU neural networks into SMT(LRA) is well-known and readily

available [KBD17, HKW17]. Briefly, the relationship between any neuron value and its inputs

is encoded in SMT(LRA) as follows. The linear sum over neuron inputs is already a linear

constraint. Additionally, we encode the non-linearity of the ReLU activation function using

logical implications in SMT. Concretely, for z = ReLU(y) = max(0, y), we add two SMT

constraints: y > 0 → z = y and y ≤ 0 → z = 0.

We can now ask an SMT solver to find monotonicity counterexample pairs: we simply take

the (linear) conditions in Definition 4.2 and conjoin with the SMT (LRA) encoding of the

function f . Linear real arithmetic is a decidable theory [Tar98]; hence we will always obtain a

correct counterexample if one exists. In §4.3, we require the ability to obtain a counterexample

that maximally violates the monotonicity specification. Hence, I use Optimization Modulo

Theories (OMT) [ST15], which is an extension of SMT for finding models that optimize

secondary linear objectives, which is again decidable. Note that the above definitions consider

monotonically increasing features, and I assume that form of monotonicity throughout. We

can analogously define corresponding notions for monotonically decreasing features, and our

algorithms can be applied straightforwardly to that setting as well.
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Figure 4.1: Monotone envelopes around a simple non-monotone learned function

While this setup allows us to verify monotonicity of a learned function, it is not at all

clear how to guarantee monotonicity, or how to enforce monotonicity during training as an

inductive bias. The next two sections present the counterexample-guided algorithms that

address these challenges.

4.3 Counterexample-Guided Monotonic Prediction

A neural network trained using traditional approaches is not guaranteed to satisfy monotonicity

constraints. In this section, I describe a technique to convert a non-monotonic model to

a monotonic one. The technique leverages monotonicity counterexamples to construct a

monotonic envelope (or hull) of the learned model. Further, this technique is online: the

monotonic envelope is constructed on-the-fly at prediction time.

As an example, consider the regression task of predicting house prices, which monotonically

increase with the number of rooms. Suppose that the solid line ( ) in Figure 4.1 plots the

learned model’s predictions. This function is not monotonic; for example f(3) > f(4). The

two dotted lines in Figure 4.1 show two monotonic envelopes that the technique produces: an

upper envelope ( ) that increases the output where necessary to ensure monotonicity, and a

lower envelope ( ) that decreases the output where necessary to ensure monotonicity. The
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rest of this section describes these envelopes formally and presents an empirical evaluation of

the technique.

4.3.1 Envelope Construction

First, I describe envelope construction for the case with a single monotonic feature (with any

number of other features) and then generalize the approach to handle multiple monotonic

features.

4.3.1.1 Envelope - Single Monotonic Feature

Recall that Definition 4.2 in the previous section defines when a pair of inputs constitutes a

monotonicity counterexample. To construct the envelope we require a special form of such

counterexamples, namely maximal ones in terms of the degree of monotonicity violation,

while fixing a single input example.

Definition 4.4. Consider example x ∈ X , function f : X → Y, and feature i. Let set A

(resp. B) consist of all examples x′ such that (x, x′) (resp. (x′, x)) is a counterexample pair

for f and i. Then, a lower envelope counterexample for example x, function f and feature i

is an example x′ ∈ A that minimizes f(x′). An upper envelope counterexample is an example

x′ ∈ B that maximizes f(x′).

For example, consider Figure 4.1 again. The upper envelope counterexample for input

3 is the input 2, since f(2) has the maximal value of all counterexamples below 3. The

lower envelope counterexample for the input 3 is 4, since f(4) has the minimal value of all

counterexamples above 3.

Now we can define the upper and lower envelopes of a function.
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Definition 4.5. The upper envelope fu
i of function f : X → Y for feature i is defined as

follows:

fu
i (x) =


f(x′) where x′ is an upper envelope counterexample for x, f , and i

f(x ) if no such counterexample exists

The lower envelope f l
i is defined analogously.

I observe that it is not necessary to construct the envelope function explicitly. Rather, to

ensure monotonicity, it suffices to construct the envelope incrementally at prediction time.

Given an input xt, we make a single query to an SMT solver to find the input’s upper (lower)

envelope counterexample or determine that no such counterexample exists. Note that this

query is much simpler than would be required to verify that the original function is monotonic.

Doing the latter would require searching for an arbitrary monotonicity counterexample pair

(Definition 4.2), which is a pair of points. In contrast, our query is given the input xt and

hence only requires the SMT solver to search over the space of inputs that are identical to

xt except in the ith dimension. Concretely, for a feature i in the bounded interval [L,U ],

the upper envelope search is over the interval [L, xt[i]) and the lower envelope search is over

the interval (xt[i], U ]. Empirically we will later show that our envelope construction is faster

than querying for an arbitrary counterexample pair (see Figure 4.3).

4.3.1.2 Envelope - Multi-Dimensional Case

I now generalize the envelope construction to the case where multiple dimensions are monotonic.

For space reasons, I present only the upper envelope construction; the lower envelope is

analogous.

Recall from § 4.2 that, to verify if a function is monotonic in more than one dimension, it

is sufficient to verify that it is monotonic in each dimension separately. However, to construct

the envelope, it is not sufficient to identify maximal counterexamples in each dimension and
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then take the maximum of these maxima. The envelopes produced using that approach are

not guaranteed to be monotonic, which I now demonstrate with an example. Consider a

function f that is intended to be monotonically increasing in its two input features. Now,

consider the point (3, 5), suppose that (1, 5) and (3, 3) are the upper envelope counterexamples

in each dimension (Definition 4.4), and suppose that f(3, 3) > f(1, 5) so we set fu
{0,1}(3, 5)

= f(3, 3). Now consider a second point (7, 5), suppose that (1, 5) and (7, 2) are the upper

envelope counterexamples in each dimension, and suppose that f(1, 5) > f(7, 2) so we set

fu
{0,1}(7, 5) = f(1, 5). Since f(3, 3) > f(1, 5) we have that fu

{0,1}(3, 5) > fu
{0,1}(7, 5), which

violates monotonicity.

To overcome this problem, we generalize to multiple dimensions by searching jointly in all

monotonic dimensions and prove that this approach is correct.

Definition 4.6. Consider example x ∈ X , function f : X → Y, and set of features S. Let

set B consist of all examples x′ such that ∀i ∈ S, x′[i] ≤ x[i] and ∀i ̸∈ S, x′[k] = x[k] and

f(x′) > f(x). An upper envelope counterexample is an example x′ ∈ B that maximizes f(x′).

It is easy to show that this approach does not identify spurious counterexamples: if an

upper envelope counterexample exists for x and f and set of features S, then there is a

dimension i ∈ S and points x′ and x′′ such that x′ and x′′ are a monotonicity counterexample

for f in the ith dimension.

I now define the upper envelope function, analogous to the single-dimensional case:

Definition 4.7. The upper envelope fu
S of function f : X → Y for feature set S is defined as

follows:

fu
S (x) =


f(x′) where x′ is an upper envelope counterexample for x, f , and S

f(x ) if no such counterexample exists

Finally, I prove that the upper envelope is in fact monotonic, even when the function f is

not.
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Theorem 4.1. For any function f and set of features S, the upper envelope fu
S is mono-

tonic in S.

Proof. Let i0 ∈ S and x and x′ be any two inputs such that x[i0] ≤ x′[i0] and ∀k ̸= i0, x[k] =

x′[k]. I will prove that fu
S (x) ≤ fu

S (x
′) and hence that fu

S is monotonic. There are two cases:

1. An input x′
e is the upper envelope counterexample for x′, f , and S, so fu

S (x
′) = f(x′

e). We

have two subcases.

• An input xe is the upper envelope counterexample for x, f , and S, so fu
S (x) = f(xe).

By Definition 4.6 we have that ∀i ∈ S, xe[i] ≤ x[i]∧ ∀i ̸∈ S, xe[k] = x[k], so also ∀i ∈ S,

xe[i] ≤ x′[i] ∧ ∀i ̸∈ S, xe[k] = x′[k]. Therefore again by Definition 4.6 it must be the

case that f(xe) ≤ f(x′
e).

• There is no upper envelope counterexample for x, f , and S, so fu
S (x) = f(x). Since

∀i ∈ S, x[i] ≤ x′[i] ∧ ∀i ̸∈ S, x[k] = x′[k], by Definition 4.6 it must be the case that

f(x) ≤ f(x′
e).

2. There is no upper envelope counterexample for x′, f , and S, so fu
S (x

′) = f(x′). We have

two subcases.

• An input xe is the upper envelope counterexample for x, f , and S, so fu
S (x) = f(xe).

By Definition 4.6 we have that ∀i ∈ S, xe[i] ≤ x[i]∧ ∀i ̸∈ S, xe[k] = x[k], so also ∀i ∈ S,

xe[i] ≤ x′[i] ∧ ∀i ̸∈ S, xe[k] = x′[k]. Therefore again by Definition 4.6 it must be the

case that f(xe) ≤ f(x′), or else x′ would have an upper envelope counterexample.

• There is no upper envelope counterexample for x, f , and S, so fu
S (x) = f(x). Then

again by Definition 4.6 it must be the case that f(x) ≤ f(x′), or else x′ would have an

upper envelope counterexample.

Hence, our envelope construction algorithm guarantees monotonicity of the predictive

function, regardless of where it is evaluated, and regardless of the underlying learned function.
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Figure 4.2: Empirically, the best learned baseline model is not monotonic. The figure presents
the percentage of examples that have an upper or lower envelope counterexample for the
Auto MPG dataset.

4.3.2 Empirical Evaluation of Monotonic Envelopes

I report the experimental results on the quality and performance of the envelope construc-

tion algorithm. Experiments were implemented in Python using the Keras deep learning

library [Cho15], using the ADAM optimizer [KB14] to perform stochastic optimization of the

neural network models, and Optimathsat [ST18] solver for counterexample generation.

Data and experiment setup: I use four datasets: Auto MPG and Boston Housing

are regression datasets used for predicting miles per gallon (monotonically decreasing with

respect to features weight (W), displacement (D), and horsepower (HP)) and housing prices

(monotonically decreasing in crime rate and increasing in number of rooms) respectively and

are obtained from the UCI machine learning repository [BM98]; Heart Disease [GLF89] and

Adult [BM98] are classification datasets used for predicting the presence of heart disease

(monotonically increasing with trestbps (T), cholestrol (C)) and income level (monotonically

increasing with capital-gain and hours per week) respectively. For each dataset, we identify

the best baseline architecture and parameters by conducting grid search and learning the

best ReLU neural network (NNb). I carry out our experiments on three random 80/20 splits

and report average test results, except for the Adult dataset, for which we report on one

random split.
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Table 4.1: Best parameter configurations on each dataset for each data fold found using grid
search for baseline neural networks (NNb).

Auto-MPG Boston Heart Adult
Batch Size # Epochs LR Batch Size # Epochs LR Batch Size # Epochs LR Batch Size # Epochs LR

0 32 2000 0.01 64 1000 0.01 32 400 0.01 1024 500 0.01
1 32 1500 0.01 64 1000 0.001 32 400 0.01 - - -
2 32 2000 0.01 32 500 0.01 32 400 0.001 - - -

System Specifications and Architecture Setup: All experiments were run on an

Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz CPU with 512GB of DDR3 RAM running

Ubuntu 18.04.3 LTS with kernel 5.3.0-28-generic. For each dataset, we train five baseline

architectures from a set of configurations and choose the best architecture based on train

error. For Boston Housing, Heart Diseases, and Adult dataset, best baseline architecture

includes three layers and 16 hidden neurons per layer. For Auto MPG dataset, best baseline

architecture includes three layers and 12 hidden neurons per layer (see Table 4.1 for best

baseline neural network parameters).

Q1. Is a deep neural network trained on such data monotonic? Figure 4.2 shows

that the best baseline model (NNb) is not monotonic, motivating the need for envelope predic-

tions that guarantee monotonicity. The percentage of data points that have a counterexample

can be as high as 50% for Auto MPG. See Table 4.2 for detailed results on all datasets, where

the percentage can be as high as 98%.

Q2. When enforcing monotonicity using an envelope, does it come at a cost

in terms of prediction quality? In this experiment, I compare the quality of the original

model (NNb) with its envelope on the test data. I select the envelope with the lowest train

mean squared error (MSE) in case of regression and the highest train accuracy in case of

classification. Table 4.3 demonstrates that an envelope can be used with a single or multiple

monotonic features with little to no loss in prediction quality. In fact, in some cases (see

rows in bold), the envelope has better average quality. This can be explained as follows:

although the true data distribution is naturally monotonic, existing learning algorithms might
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Table 4.2: Empirically, the best baseline neural network model (NNb) trained on data is
not monotonic. The table presents the percentage of examples that have an upper or lower
envelope counterexample.

Dataset Feature Train Test
% CG % CG

Auto-MPG

Weight 7.11 6.41
Displ. 48.62 52.99
W,D 50.85 54.7
W,D,HP 50.96 54.7

Boston Housing Rooms 7.59 7.92
Crime 16.75 16.5

Heart

Trestbps 73.14 74.86
Chol. 86.91 87.98
T,C 97.38 98.91

Adult Cap. Gain 1.57 1.39
Hours 18.93 19.58

Table 4.3: For regression (MSE, Left Table) and classification (Accuracy, Right Table)
datasets, envelope predictions on test data have similar quality compared to baseline models.
This means we can guarantee monotonic predictions with little to no loss in model quality.

Dataset Feature NNb Envelope

Auto-MPG

Weight 9.33±3.22 9.19±3.41
Displ. 9.33±3.22 9.63±2.61
W,D 9.33±3.22 9.63±2.61
W,D,HP 9.33±3.22 9.63±2.61

Boston Rooms 14.37±2.4 14.19±2.28
Crime 14.37±2.4 14.02±2.17

Dataset Feature NNb Envelope

Heart
Trestbps 0.85±0.04 0.85±0.04
Chol. 0.85±0.04 0.85±0.05
T,C 0.85±0.04 0.85±0.05

Adult Cap. Gain 0.84 0.84
Hours 0.84 0.84

be missing simpler monotonic models and instead overfit a non-monotonic function because

of noise in the training data.

Q3. How scalable is on-the-fly envelope construction? In this experiment, I report

the run times for the Auto MPG dataset. Recall that the envelope approach need only search

for maximal counterexamples relative to a given input. Owing to the narrowed search space,

we see that envelope prediction time is comparable to the baseline model’s prediction time

in smaller models (see Figure 4.4). Overhead caused by envelope construction is only a few

seconds. In contrast, the overhead to finding a maximal counterexample pair (Definition 4.2)
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for a single monotonic feature is 48.29 minutes. As a scalability study, in Figure 4.4, I plot

the time taken to obtain a monotonic prediction for various model sizes. We can see that the

envelope prediction time is comparable to the baseline prediction time in smaller models but

grows with the model size. The main challenge for the OMT solver is in dealing with the

ReLU piece, which leads to a worst-case complexity of NP-hard. Intuitively, the conditional

(non-linearity) introduced by the ReLU may force the solver to explore both branches of the

conditional. Therefore the set of possible paths to explore can grow exponentially with the

number of available ReLUs. The growth is significantly less pronounced in the number of

monotonic features (see Figure 4.3). Of course, when violating monotonicity leads to safety,

ethical or legal problems, the question is not whether we can scale monotonicity enforcement,

but whether it is safe to use machine learning at all. In this context, the computational price

of enforcing monotonicity, even if it ends up being significant, is entirely warranted.

4.4 Counterexample-Guided Monotonicity Enforced Training

In this section, I propose an algorithm that uses monotonicity as an inductive bias during

learning to improve model quality. This algorithm is orthogonal to the envelope prediction

technique of the previous section; I evaluate the learning algorithm both on its own and in

conjunction with the envelope technique.
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4.4.1 Counterexample-guided Learning

The learning algorithm consists of two phases that alternate: the training phase and the

verification phase. The training phase is given labeled input data and produces the best

candidate model f . The verification phase checks if a given model is monotonic; if not,

it generates one or more counterexamples, which are provided as additional data for the

next iteration of the training phase. These two phases repeat for T epochs, which is a

hyperparameter to the algorithm.

The algorithm is universal in the sense that it is compatible with any training technique

that produces ReLU models and does not further restrict the hypothesis class. This gives our

approach an advantage over prior monotonic learners [Sil98, YDC17].

The verification phase could use Definition 4.2 to identify monotonicity counterexamples,

but this has two major drawbacks: (1) it is computationally expensive as the size of the

pre-trained model grows; (2) an arbitrary counterexample might include out-of-distribution

examples, which are therefore not representative. Hence, we instead appeal to Definition 4.6

to generate maximal counterexamples relative to each training point. In each epoch, for each

train point we generate and use both upper and lower envelope counterexamples as additional

data for the next round of training.

At this point, we are almost done with the algorithm, with the following detail to address.

Counterexamples generated by the verification procedure do not have a known ground-truth

label. There are different heuristics that one could adopt to label these points and encourage

the learned function to become more monotonic. In our algorithm, for regression tasks, we

calculate the average prediction values of upper and lower counterexamples and the given

training point and assign this average as the label for these counterexamples and the training

point. The hypothesis is that using the average value will result in a smoother loss with

respect to monotonicity. For classification tasks, we assign each counterexample point the
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same label as the corresponding training point. Empirically (see Table 4.6), I show that this

labeling heuristic is sufficient to improve the model quality.

Data augmentation through counterexamples could cause drift in the model quality. The

proposed approach guards against this in multiple ways. First, data augmentation with

counterexamples is recomputed for each batch at every epoch. This ensures that: 1) an

incorrect old counterexample does not burden the learning, and 2) learning incorporates

multiple counterexamples at a time and so is less sensitive to any particular one. Second, the

labeling heuristic for counterexamples provides a smoother loss with respect to monotonicity.

Empirically (see Table 4.4), I show that there is no drift in the model quality. The quality

of the re-trained model is similar to or better than a model trained without monotonicity

constraints.

4.4.2 Empirical Evaluation of COMET

I will now evaluate the iterative algorithm for training with monotonicity counterexamples,

as well as the entire COMET pipeline, which also includes the envelope technique from the

previous section. We use the same datasets as in § 4.3.2.

Table 4.4: Monotonicity is an effective inductive bias. Counterexample-guided Learning
(CGL) improves the quality of the baseline model in regression (MSE, Left Table) and
classification (Accuracy, Right Table) datasets

Dataset Feature NNb CGL

Auto-MPG

Weight 9.33±3.22 9.04±2.76
Displ. 9.33±3.22 9.08±2.87
W,D 9.33±3.22 8.86±2.67
W,D,HP 9.33±3.22 8.63±2.21

Boston Rooms 14.37±2.4 12.24±2.87
Crime 14.37±2.4 11.66±2.89

Dataset Feature NNb CGL

Heart
Trestbps 0.85±0.04 0.86±0.02
Chol. 0.85±0.04 0.85±0.05
T,C 0.85±0.04 0.86±0.06

Adult Cap. Gain 0.84 0.84
Hours 0.84 0.84

Q4. Is the stronger inductive bias of our learning algorithm able to improve

the overall quality of the original non-monotonic model? In this experiment, I

compare the test quality of the model learned with monotonicity counterexamples with the
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original model (NNb). From Table 4.4, we can see that monotonicity is indeed an effective

inductive bias that helps improve the model quality. It is able to reduce the error on all

regression datasets, with the biggest decrease from 14.37 to 11.66 for the Boston Housing

dataset when employing monotonicity counterexamples based on the Crime Rate feature.

Although the algorithm improves the quality, it does not guarantee monotonic predictions.

Table 4.5: Counterexample-guided learning (CGL) is able to make a model more monotonic
by reducing the number of test and train counterexamples compared to the baseline model
(NNb). However, the algorithm is unable to guarantee monotonicity, motivating the need for
monotonic envelopes.

Dataset Features Train Test

NNb CGL NNb CGL

Auto-MPG

Weight 22.33 11.33 5 2
Displ. 139.67 37 37 10.33
W,D 159.67 85.67 42.67 22.67
W,D,HP 149.67 61.33 39.33 15

Boston Rooms 30 15.67 8 6.33
Crime 80 38.67 19 8

Heart
Trestbps 188.67 31 49 7
Chol. 212.67 45.33 53 10.67
T,C 235.67 169.67 60.33 40.33

Adult Cap. Gain 7407 2755 1903 700
Hours 379 0 84 0

Q5. Does our learning algorithm make the original non-monotonic model

more monotonic? To quantify if a function is more monotonic, I calculate the reduction in

the number of counterexamples. On average, the algorithm reduces the number of test coun-

terexamples by 62%. Although in some cases we can remove all counterexamples, in general

this is not the case (see Table 4.5). This motivates the need for using monotonic envelopes

(described in § 4.3) in conjunction with the counterexample-guided learning algorithm, to

guarantee monotonic predictions.
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Table 4.6: For regression (MSE, Left Table) and classification (Accuracy, Right Table)
datasets, counterexample-guided learning improves the envelope quality
Dataset Features NNb Env. lfind

Auto-
MPG

Weight 9.19±3.41 8.92±2.93
Displ. 9.63±2.61 9.11±2.25
W,D 9.63±2.61 8.89±2.29
W,D,HP 9.33±2.61 8.81±1.81

Boston Rooms 14.19±2.28 11.54±2.55
Crime 14.02±2.17 11.07±2.99

Dataset Features NNb Env. lfind

Heart
Trestbps 0.85±0.04 0.86±0.03
Chol. 0.85±0.05 0.87±0.03
T,C 0.85±0.05 0.86±0.03

Adult Cap. Gain 0.84 0.84
Hours 0.84 0.84

Q6. Does counterexample-guided learning help improve the quality of the

original model’s envelope? In § 4.3.2 Q2, (Table 4.3), I showed that the envelope has

similar model quality compared to the baseline model. By additionally enforcing monotonicity

constraints through counterexample-guided re-training, we further improve the envelope

quality (Table 4.6). In this experiment I re-train NNb with counterexamples for 40 epochs,

model selection is based on train quality, and we report the change in the quality of the

test envelope (see below for additional model selection experiments). Thus, we get both a

monotonicity guarantee and better generalization performance.

Table 4.7: COMET outperforms Min-Max networks on all datasets. COMET outperforms DLN
in regression datasets and achieves similar results in classification datasets.
Dataset Features Min-Max DLN COMET

Auto-
MPG

Weight 9.91±1.20 16.77±2.57 8.92±2.93
Displ. 11.78±2.20 16.67±2.25 9.11±2.25
W,D 11.60±0.54 16.56±2.27 8.89±2.29
W,D,HP 10.14±1.54 13.34±2.42 8.81±1.81

Boston Rooms 30.88±13.78 15.93±1.40 11.54±2.55
Crime 25.89±2.47 12.06±1.44 11.07±2.99

Dataset Features Min-Max DLN COMET

Heart
Trestbps 0.75±0.04 0.85±0.02 0.86±0.03
Chol. 0.75±0.04 0.85±0.04 0.87±0.03
T,C 0.75±0.04 0.86±0.02 0.86±0.03

Adult Cap. Gain 0.77 0.84 0.84
Hours 0.73 0.85 0.84

Additional model selection experiment. In § 4.4.2, model selection was based on

minimum train error. In this experiment, I carry out model selection based on the least

number of counterexamples. Overall, we find that monotonicity counterexamples act as a

good inductive bias and improve model quality. However, there is a tradeoff on how much

one could enforce monotonicity as a bias. Figure 4.5 plots test envelope MSE of Auto MPG
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Figure 4.5: Monotonicity is a good inductive bias and helps in improving model accuracy.
However, there is a tradeoff between performance and reducing the number of examples that
have counterexamples.

and Boston Housing datasets. We can see that envelope construction on a function with

minimum counterexamples has a higher error than the original model’s envelope.

Q7. How does the performance of COMET compare to existing work? First I

describe the Min-Max and Deep Lattice Network setup. Min-Max networks [DV10] proposes

a fixed, feedforward three-layer (two hidden layer) architecture. The first layer computes

different linear combinations of input that are partitioned into different groups. If increasing

monotonicity is desired, then all weights connected to that input are constrained to be positive.

Corresponding to each group, the second layer computes the maximum, and the final layer

computes the minimum over all groups. For monotone features that are decreasing, we negate

the feature to use the same architecture. The Deep Lattice Network [YDC17] architecture

consists of six layers as proposed by the authors: calibrators, linear embedding, calibrators,

ensemble of lattices, calibrators, and linear embedding. Note that for these approaches, for

each dataset, I tune parameters separately for each combination of monotonic features at

each fold using grid search; hence it is optimized for each monotone prediction task. However,

93



for lfind it is sufficient to tune parameters for the original neural network (NNb) once per

dataset.

Table 4.7 reports the MSE and accuracy of COMET compared to two existing methods that

guarantee monotonicity: min-max networks [DV10] and deep lattice networks (DLN) [YDC17].

We tune Adam stepsize, learning rate, number of epochs, and batch size on all methods.

Additionally, for DLN we tune calibration keypoints and report the results based on the

six-layer architecture as proposed by the authors. The results in Table 4.7 indicate that

COMET outperforms min-max networks on all datasets and DLN on all except for Adult, where

we are similar.

Q8. How robust is COMET to data outliers? COMET constructs its monotonic envelope

on the learned function and not on the data. Therefore, individual data outliers will not

affect it too much. Moreover, if the function to be learned is naturally monotonic, enforcing

invariants counteracts noise and outliers, leading to improved robustness. To illustrate this

advantage, we duplicate 1% of the data and modify the value of the monotonic feature and

the label for each new point in order to introduce monotonicity outliers (violations). For

example, for an increasing monotonic feature, we reduce the label and increase the value of

the monotonic feature. Table 4.8 shows that our approach produces more robust models, with

COMET improving baseline model quality.

Table 4.8: With monotonicity data outliers, lfind produces models that are more robust
than the baseline models (NNb) for regression (MSE, Left Table) and classification (Accuracy,
Right Table) datasets.
Dataset Features NNb lfind

Auto-
MPG

Weight 13.54±4.65 10.50±1.87
Displ. 12.00±2.94 10.34±1.25
W,D 15.35±2.30 13.84±3.09
W,D,HP 10.26±2.19 9.48±1.29

Boston Rooms 12.79±3.88 10.23±1.95
Crime 21.13±4.41 19.20±6.64

Dataset Features NNb lfind

Heart
Trestbps 0.77±0.07 0.78±0.07
Chol. 0.77±0.06 0.77±0.06
T,C 0.77±0.06 0.81±0.03

Adult Cap. Gain 0.82 0.82
Hours 0.82 0.82
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4.5 Related Work

Monotonic Networks. Liu et al. [LHZ20] propose a concurrent work that uses verification

techniques to learn certified monotonic networks. The approach encodes an arbitrary ReLU

neural network using mixed-integer linear programming and solves an optimization problem to

verify monotonicity. The optimization problem is to identify if the minimum derivative of the

function is non-negative. Further, the approach learns monotonic networks by training with

heuristic monotonicity regularizations and gradually increasing the regularization magnitude

until it passes the monotonicity verification. We differ from this work in two ways. First,

our envelope technique produces a monotonic version of an arbitrary ReLU neural network

without having to retrain it. Second, we solve an optimization problem to identify the

maximum violation for a given point, which is necessary for the envelope construction.

Other related work in this area can be categorized into algorithms that (1) guarantee

monotonicity by restricting the hypothesis space, or (2) incorporate monotonicity during

learning without any guarantees. In the first category, Archer and Wang [AW93] propose

a monotone model by constraining the neural net weights to be positive. Other methods

enforce constraints on model weights [DK99, Wan94, MVL10, DBB09, AXK17] and force the

derivative of the output to be strictly positive [WL19]. Monotonic networks [Sil98] guarantee

monotonicity by constructing a three-layer network using monotonic linear embedding and

max-min-pooling. Daniels and Velikova [DV10] generalized this approach to handle functions

that are partially monotonic. Deep lattice networks (DLN) [YDC17] proposed a combination

of linear calibrators and lattices for learning monotonic functions. Lattices are structurally

rigid thereby restricting the hypothesis space significantly. Our envelope technique is similar

to these works in that it guarantees monotonicity. However, it does so at prediction time and

can do so for any ReLU neural networks, without needing to restrict the hypothesis space

further. Finally, isotonic regression [BB72, SS97] requires the training data to be partially
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ordered, which is unlikely to happen; in general input points over many features are not

partially ordered.

In the second category, monotonicity can be incorporated in the learning process by

modifying the loss function or by adding additional data. Monotonicity Hints [SA97] proposes

a modified loss function that penalizes non-monotonicity of the model. The algorithm models

the input distribution as a joint Gaussian estimated from the training data and samples random

pairs of monotonic points that are added to the training data. Gupta et. al. [GSM19] introduce

a point-wise loss function that acts as a soft monotonicity constraint. Our approach is similar

to these works in that it adds additional data to enforce monotonicity. However, COMET’s

counterexample-guided learning and envelope technique together guarantee monotonicity,

while these works provide no such guarantees. In addition, unlike prior work, we look beyond

the neighborhood of a training point by identifying maximal violations. Other works enforce

monotonicity to accelerate learning of probabilistic models in data-scarce and knowledge-rich

domains [ON18, ARD12, YN13]. Similarly, these works fail to provide any formal guarantee

for the learned model.

Verification of Neural Networks and Adversarial Learning. Reluplex [KBD17], an

augmented SMT solver, verifies properties of networks with ReLU activation functions. Huang

et. al. [HKW17] leverage SMT for verification of safety properties by discretizing the continuous

region around an input and show that there are no counterexamples. Our approach leverages

the SMT encodings of neural networks from this prior work but uses them only to obtain

counterexamples rather than for verification. Recently, many approaches propose adversarially

robust algorithms which can be divided into empirical [KGB16, MMS17, GSS14, GR14] and

certified defenses [WK18, SND18, RSL18, HA17, SLR19, SGM18, GMD18]. We are closely

related to these works, in that we carry out adversarial training using counterexamples.

However, we differ in two ways. First, to the best of our knowledge, there is no related work

in the adversarial robustness literature for ensuring monotonicity. Second, related work in

adversarial training only ensures correctness in the neighborhood of a training point, while
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we globally search for a counterexample and are able to discover long-range monotonicity

violations. Counterexample-driven learning has also been used to enforce fairness constraints

on Bayesian classifiers [CFB20].

4.6 Summary

I presented two algorithms that incorporate monotonicity constraints into neural networks:

counterexample-guided prediction that guarantees monotonicity and counterexample-guided

training that enforces monotonicity as an inductive bias. I demonstrate the effectiveness of

these techniques on regression and classification tasks.

4.7 Extensions and Future Work

4.7.1 Fairness

In this chapter, I have explored provable guarantees for monotonicity. However, machine

learning models can benefit from other kinds of inductive bias, such as those coming from

algorithmic fairness. The FETA work by Mohammadi et al. [MSF22] utilizes key ideas

from COMET to enforce and guarantee individual fairness. Specifically, to enforce fairness,

FETA reuses the counterexample-guided retraining approach of COMET and uses fairness

counterexamples instead of monotonicity counterexamples. Additionally, FETA also proposes

a counterexample-guided online technique to provably enforce fairness constraints at prediction

time. Empirical evaluation of FETA indicates that it is able to guarantee fairness on-the-fly

at prediction time and is able to train accurate models exhibiting a much higher degree of

individual fairness.
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4.7.2 Scalability

In this chapter, I have shown that enforcing monotonicity constraints can improve model

quality while providing provable guarantees. Unfortunately, the approach is limited in its

applicability by the size of the network and the network architecture. COMET uses an SMT

solver to encode the property of interest and to obtain a counterexample. While these solvers

are complete (i.e., do not have any false positives), it can be challenging to scale these to large

networks. Future work can address this limitation may be using specialized SMT solvers, or

by using MaxSMT solvers instead of OMT for finding maximal counterexamples.
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CHAPTER 5

Conclusion

“Have you tried turning it off, then on?” is now a common adage due to the ubiquitous

nature of software and how it has firmly intertwined with our everyday lives. But this adage

is not always applicable — coffee-makers can be restarted mid-operation, but what about

autonomous vehicles? When we take a step back and think about this, it seems like software

has a tendency to creep into unexpected states more often than desired, and resetting a

system is one way to bring it back to a known-good state. These systems are complex, so they

are fragile and suffer from design and implementation flaws that make them unreliable. In

recent years, software bugs have become more than a mere annoyance, they have had a major

impact on the economy and society. Examples include the Log4j vulnerability in Java [log],

the Heartbleed vulnerability in Openssl [DLK14], and in 2011 Jerome Radcliffe [Rad11]

showed they could wirelessly hack an insulin pump and cause it to deliver incorrect dosages

of medication.

“Why should systems land at unknown states in the first place when we have perfectly

good program verification techniques that can ensure the reliability of a given system at

all times?” - This guileless question has been bothering me ever since I encountered a large

system with recurring bugs transacting in billions of dollars during my first job straight out

of undergrad. Traditional program verification techniques are being proposed regularly but

they tend to work well only on small programs or require significant manual work. When

exploring this problem, I realized that full automation for reliability is a very hard goal. We

need new ways to harness human intuition while automating parts of the verification process
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that machines are good at. To this end, Chapters 2 and 3 of this dissertation present my

contributions to the reduction of the manual effort required by human-in-the-loop verification

approaches, by proposing semi-automated techniques to guarantee system reliability.

While investigating recent automation available for human-in-the-loop verification a.k.a

foundational verification, I found that there are several tactic-based automation approaches

that search for a proof script given a set of library lemmas. While this is useful, these

approaches fail when the set of lemmas is incomplete. If a required lemma is not available

as prior input, these approaches cannot successfully identify a valid proof script. In fact,

providing the right set of lemmas is an onerous manual effort. This motivated me to focus

on lemma synthesis. Unfortunately, blind enumeration and filtering to identify the correct

set of candidate lemmas do not scale well. Instead, I needed to develop techniques that

were directed and used information from the proof context to guide the candidate lemma

search. The idea to use examples as a specification to better guide the search was immediate,

however, identifying a formal synthesis model that worked well took significant effort. This

data-driven synthesis approach is presented in Chapter 2. I also had to solve several technical

challenges w.r.t to example generation and synthesis of candidates, which are detailed in the

chapter.

While this was a good first exploration, I quickly realized that the synthesis setup performs

well only on certain classes of helper lemmas, namely those that share the same root structure

as the goal state. However, many natural lemmas can contain helper lemmas that do not

share the root structure. While this looks like a search-space explosion, I was able to get

around this by looking into how helper lemmas are typically used. This key insight helped

me easily extend and reuse the same synthesis problem as lfind to cater to lemmas that

are used to rewrite a subterm in a goal state. Additionally, I observed that helper lemmas

can be conditional. The first look at this problem made me think that we need an elaborate

boolean program synthesis algorithm that can synthesize these conditions. Once again this

looked like a computationally expensive process and we would need good heuristics to arrive
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at the correct conditional predicate for the lemma. However, after perusing several real-world

examples it became apparent that, in the common case, the required hypotheses are present

in the goal state. This insight helped me develop the counterexample-guided refinement

approach presented in Chapter 3. I believe the proposed data-driven angle to lemma synthesis

can serve as the basis of future work in the area of proof automation. I have listed two such

directions in § 3.6.

Just as software systems took over the world, we are now at the cusp of the stage when

Machine Learning is rapidly proliferating in our lives. Machine Learning has been touted

as the panacea to many of humanity’s current problems. But it remains a black box, with

seemingly insurmountable hard challenges such as privacy, verifiability, explainability, and

fairness. Similar to software systems, the failure of machine learning systems has produced

catastrophic results. For example, autonomous vehicles have been involved in numerous fatal

crashes despite very high test and training accuracy.

I was able to appreciate the benefits of machine learning since it can flexibly learn from

all sorts of data with minimal inductive bias. But this also means that we lack any semblance

of behavioral formal guarantees. To avoid catastrophic outcomes, there is an urgent need for

research into model behavior guarantees. I was motivated by this goal and wanted to apply

existing formal method techniques to machine learning models as they have been widely

successful in providing strong guarantees in software systems. Formal properties of functions

are often characterized in terms of their counterexamples. Counterexample-guided algorithms

are prevalent in the field of formal methods, for example to verify and synthesize programs.

Therefore, I decided to develop a counterexample-guided algorithm that can enforce a given

property (e.g. monotonicity) as an inductive bias during training time. While this was

straightforward, it took significant effort to provide provable guarantees that a learned model

is monotonic for all points in the input domain. These techniques are presented in Chapter 4.

Although COMET works well for monotonicity constraints, I believe the proposed techniques

can serve as the basis for future work for other properties like fairness, submodularity, etc.
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