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Whereas mechanistic developmental biology and evolutionary
genetics largely proceeded independently from each other
throughout most of the twentieth century, new discoveries and
technologies have made it possible to revisit longstanding
questions of how molecular mechanisms generate the
phenotypic effects of alternative alleles. Pioneers such as
Schmalhausen (1949) emphasized that phenotypic variation
can often be surprisingly limited to both within and between
species and proposed that the process of development and its
genetic underpinnings are organized to allow a ‘reserve of
hereditary variability * to accumulate within a species that can
then be mobilized when conditions change . We are now in a
position to dissect the molecular mechanisms that generate the
apparent mismatch between extensive genetic and limited
phenotypic variation. One important milestone was the
discovery that knocking out the activity of the molecular
chaperone Hsp90 results in an efflorescence of phenotypic
variation due to the exposure of underlying genetic variation.
The effects of new mutations are context dependent, and
functional Hsp90 dramatically reduces these effects under
normal conditions (Rutherford and Lindquist, 1998). Such
genes that allow variation to accumulate without having
an effect have been dubbed capacitors (Figure 1). In a recent
article published in Molecular Systems Biology, Tirosh et al
(2010) provide new evidence that chromatin regulators may
also act as capacitors for gene expression.

Early proposals for explaining the maintenance of genetic
variation within populations focused on external forces, e.g.,
balancing and purifying selection (Lewontin, 1974). Better data
on how genetic variation is distributed within and between
species and how genetic information is actuated to produce
phenotypes made it possible to consider intrinsic factors. For
instance, the redundancy of the genetic code provided an
explicit internal mechanism for how the effects of genetic
variation (at least on coding sequence) could be masked or
generated. Kimura (1968), King and Jukes (1969) seized upon
this and other functional data to support their claim that most
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genetic variation is selectively neutral or nearly so. Models of
how metabolic flux is controlled along linear pathways showed
why null alleles of metabolic enzymes tend to be recessive and
therefore that network organization affects the neutrality of
alleles (Kacser and Burns, 1981). One of the key insights of
these papers was that genotypic variation is processed and
filtered at multiple steps during the generation of a phenotype,
such that its effects may be removed long before selection even
has a chance to see it. There are more possible genotypes than
phenotypes (Figure 1).

The discovery that molecular chaperones can buffer genetic
variation led to an ongoing search for other classes of genes
that act as capacitors. Tirosh et al (2010) use gene expression
profiling in engineered strains of two species of yeast to show
that chromatin regulators may have this role and mask the
effects of genetic divergence between species. They reasoned
that if chromatin regulators reduce the effects of allelic
differences on gene expression, then deleting them should
increase the divergence of gene expression levels between
species. In order to test this hypothesis, they deleted eight
different chromatin regulators and one transcription factor in
two closely related species of yeast, Saccharomyces cerevisiae
and S. paradoxus, which diverged about 10 Mya, but normally
have similar expression patterns (Tirosh et al, 2009). When the
same regulator was deleted in each species, genome-wide gene
expression divergence systematically increased. A control
experiment where 11 metabolic genes were deleted did not
reveal such a systematic effect, implying that chromatin
regulators are capacitors and that this is not an effect of all
deletions—at least on a system-wide scale.

S. cerevisiae and S. paradoxus have the key property that
they can breed and produce hybrids. This allowed Tirosh et al
(2010) to ask whether the effects of the mutations that were
revealed by the chromatin regulator knockouts are generally in
cis (local) to the affected gene or in trans. Using allele-specific
expression profiling in F1 hybrids, they showed that most of
the increased divergence upon chromatin regulator deletion
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Figure 1  Physiological and developmental mechanisms reduce the spectrum
of possible phenotypes that can be produced from a set of genotypes. Genes or
nodes in the network that increase the phenotypic effects of mutations when
removed are potential capacitors (orange node here).

could be traced to trans effects. This implies that chromatin
regulators buffer expression variation by acting on compo-
nents located upstream of the expressed genes themselves.
This suggests that chromatin regulators may function as
capacitors that prevent variation occurring at upstream
locations from propagating downstream in the regulatory
network.

The demonstration that specific molecules act generally to
funnel pervasive genetic variation into a smaller spectrum of
phenotypes (Rutherford and Lindquist, 1998; Tirosh et al,
2010) implies that the mapping between genotypic and
phenotypic states might also evolve on microevolutionary
timescales. The set of genotypes that can produce a particular
phenotype might shrink or grow depending upon allelic
variation at a chromatin regulator locus, although it is far
from clear that selection can discriminate between alleles of
capacitors based solely on their ability to buffer genetic
variation. To clarify this point, we need to identify segregating
alleles of these capacitors with different buffering abilities in
natural populations and further explore the conditions that
favor their fixation or elimination. The ability to measure
heritability of noise in gene expression in natural strains of
yeast opens this possibility (Ansel et al, 2008). Also left
unresolved is whether chromatin regulators can buffer
mutations that occur de novo. Indeed, the genetic differences
that were tested using these two species have been sorted by
billions of generations of natural selection. Finally, the
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molecular mechanisms by which chromatin regulators may
buffer variation are unknown. The chaperone function of
Hsp90 directly suggests a model, by which it can accommodate
the accumulation of non-synonymous substitutions (Ruther-
ford and Lindquist, 1998). As more capacitors are discovered
(Levy and Siegal, 2008), both global and local, linking their
molecular mechanisms of action to their buffering effects will
be an important component in explaining how genotype is
mapped to phenotype and in integrating developmental and
evolutionary genetics.
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