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Abstract

Designing Explainable Autonomous Driving System for Trustworthy Interaction

by

Chen Tang

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

The past decade has witnessed significant breakthroughs in autonomous driving technologies.
We are heading toward an intelligent and efficient transportation system where human errors
are eliminated. While excited about the emergence of autonomous vehicles with increasing
intelligence, the public has also raised concerns about their reliability. Modern autonomous
driving systems usually adopt black-box deep-learning models for multiple function modules
(e.g., perception, behavior prediction, behavior generation). The opaque nature of neural
networks and their complex system architecture make it extremely difficult to understand
the behavior of the overall system, which prevents humans from confidingly sharing the road
and interacting with autonomous vehicles. This motivates the design of a more transparent
system to build a foundation for trustworthy interaction between humans and autonomous
vehicles.

This dissertation is concerned with the design of an explainable autonomous driving system,
leveraging the strengths of explainable artificial intelligence, control, and causality. In par-
ticular, we focus on the behavior system of an autonomous vehicle, which plays a crucial role
in its interaction with human road participants. The work consists of two parts. In Part I,
we explore methods to improve model interpretability. The goal is to ensure that the model
is more intelligible for humans in the design stage, which is achieved by introducing hard
or soft constraints formulated from domain knowledge. We demonstrate how to formulate
domain knowledge of social interaction into structured reward functions (Chapter 2) and
pseudo labels (Chapter 3) as well as how to utilize them to induce interpretable driving
behavior models. We also introduce an interpretable and transferable hierarchical driving
policy that combines deep learning with robust model-based control (Chapter 4). In Part II,
we explore the usage of post hoc explanation techniques in diagnosing model behavior. We
introduce two case studies, in which we utilize sparse graph attention to diagnose interaction
modeling in behavior prediction (Chapter 5) and develop a Shapley-value-based method to
study the inherent causality issue in conditional behavior prediction (Chapter 6).
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the naturalistic traffic scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.9 Out-of-distribution scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.10 Results of the out-of-distribution synthetic car-following scenario . . . . . . . . . 41
2.11 Results of the out-of-distribution synthetic lane-changing scenario . . . . . . . . 42
2.12 Results of the out-of-distribution naturalistic traffic car-following scenario . . . . 43
2.13 Results of the out-of-distribution naturalistic traffic lane-changing scenario . . . 44
2.14 Examples where the leading car is placed behind the following car . . . . . . . . 45
2.15 The graph inferred by GRI-VAIRL in the synthetic lane-changing scenario. . . . 46

3.1 A motivating toy example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 The ground-truth joint distribution and marginal distributions of sa,20 and sb,20 55
3.3 Joint goal distributions decoded from different latent variables with different models 56
3.4 Overall Model Architecture and Pseudo Interaction Labels. . . . . . . . . . . . . 60
3.5 Comparison of six sampled first-step goal predictions conditioned on two different

selected latent z values using the Joint-Full model . . . . . . . . . . . . . . . . . 66

4.1 Target domain on-line implementation of the PN-RC architecture . . . . . . . . 71
4.2 The architecture of PAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 The nonlinear path-following model in the Serret-Frenet frame with an orthogonal

projection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



v

4.4 Block diagram of the linear tracking model. . . . . . . . . . . . . . . . . . . . . 77
4.5 Block diagram of the closed-loop system. . . . . . . . . . . . . . . . . . . . . . . 77
4.6 Block diagram of the feedback controller with adaptive DOB . . . . . . . . . . . 78
4.7 Closed-loop reference path smoothing . . . . . . . . . . . . . . . . . . . . . . . . 81
4.8 Diagram summarizing the sim-to-sim policy transfer procedure . . . . . . . . . . 82
4.9 The training log using IL and RL. . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.10 Tracking errors without trajectory smoothing . . . . . . . . . . . . . . . . . . . 85
4.11 Tracking errors with trajectory smoothing . . . . . . . . . . . . . . . . . . . . . 85
4.12 Trajectories of PN in the source domain, PN in the target domain with parameter

variation, and PN-DOB in the target domain with parameter variation . . . . . 88
4.13 Preliminary experimental results for a real vehicle . . . . . . . . . . . . . . . . . 89
4.14 Behavior of the autonomous vehicle in the LT ⊕OB1 ⊕OBre1 ⊕OBre2 task . . 90

5.1 A latent variable model for interaction modeling . . . . . . . . . . . . . . . . . . 95
5.2 Social-CVAE architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3 Visualizing prediction results for the Interaction dataset. . . . . . . . . . . . . . 107
5.4 Visualizing prediction results for the Argoverse dataset. . . . . . . . . . . . . . . 108
5.5 ARδ(%) vs. Threshold on the Argoverse Dataset. . . . . . . . . . . . . . . . . . 111
5.6 The cyclical annealing schedule adopted in our experiments . . . . . . . . . . . 115
5.7 Road segments found by the graph search algorithm . . . . . . . . . . . . . . . . 117

6.1 An illustration of the difference between CBP and IBP . . . . . . . . . . . . . . 123
6.2 A motivating toy example, where a human car and a robot car are driving toward

a collision point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3 Toy example results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4 Bayesian networks of CBP and IBP . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5 The conditional behavior prediction scheme with Trajectron++. . . . . . . . . . 129
6.6 Box plots of Shapley values for different performance metrics. We compare the

Shapley values of different segments of the robot future for the two models. . . . 135



vi

List of Tables

2.1 Performance Comparison on Synthetic Dataset . . . . . . . . . . . . . . . . . . 29
2.2 Performance Comparison on a Naturalistic Traffic Dataset . . . . . . . . . . . . 37
2.3 Ablation Study on Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Validation Results on All Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Ablation Study on High-Interactive Samples . . . . . . . . . . . . . . . . . . . . 67

4.1 Tracking performance comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Comparison of the performances of the baseline PN and PN-RC architectures . 87

5.1 INTERACTION Dataset Validation and Test Results . . . . . . . . . . . . . . . 104
5.2 Argoverse Dataset Validation Results . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3 ETH/UCY Dataset Leave-One-Out Testing Results . . . . . . . . . . . . . . . . 105
5.4 Argoverse Dataset Testing Results . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5 ETH/UCY Testing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.6 INTERACTION Dataset Aggregation Function Comparison . . . . . . . . . . . 112
5.7 Argoverse Dataset Aggregation Function Comparison . . . . . . . . . . . . . . . 113
5.8 INTERACTION Dataset without Map - HM . . . . . . . . . . . . . . . . . . . 113
5.9 INTERACTION Dataset KL Annealing Experiment - HM . . . . . . . . . . . . 115

6.1 Shapley Values Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.2 Prediction Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . 132



vii

Acknowledgments

The past six years have been an incredible journey in my life. I would not have come this
far without the tremendous help from my family, friends, mentors, and colleagues. Their
support has been even more valuable considering the difficult times during the pandemic.

First, I would like to sincerely thank my advisor Professor Masayoshi Tomizuka for his
generous support and guidance over the past six years. He has been a great mentor and
role model, and I am grateful for his profound knowledge, enthusiasm, and open-minded
attitude toward research. Without his guidance as well as the excellent research atmosphere
he created in the MSC lab, I would never have learned how to become an independent
researcher or found my passion for an academic career. I hope I can follow his example and
become an extraordinary scholar and mentor.

I would like to thank Professor Anil Aswani, Professor Francesco Borrelli, and Professor
Mark Mueller for serving as my dissertation committee members. I am also thankful to
Professor Kameshwar Poolla and Professor Jonathan Shewchuk for serving on my qualifying
exam committee. Without their knowledge, I could not have finished the work on this
dissertation. I want to especially thank Wei-Bin Zhang for his tremendous support and help
throughout my time at Berkeley. In addition, Professor Jianjun Shi has given me valuable
advice and guidance since I was an undergraduate student.

During my PhD study, I have collaborated with many excellent minds in the MSC lab.
Some of these works are part of this dissertation. While the rest are not included in this
dissertation, I was greatly inspired by all of these collaborations. I am sincerely grateful
to Professor Changliu Liu, Professor Jianyu Chen, Dr. Wei Zhan, Dr. Zhuo Xu, Jinning
Li, Lingfeng Sun, and Chenfeng Xu. I would also like to express my thanks to my current
and past colleagues in the MSC lab: Minghui Zheng, Shiying Zhou, Kevin Haninger, Yu
Zhao, Xiaowen Yu, Te Tang, Hsien-Chung Lin, Chen-Yu Chan, Cheng Peng, Yongxiang
Fan, Yu-Chu Huang, Daisuke Kaneishi, Shuyang Li, Liting Sun, Kiwoo Shin, Zining Wang,
Jiachen Li, Yujiao Cheng, Shiyu Jin, Hengbo Ma, Jessica Leu, Changhao Wang, Xinghao
Zhu, Yiyang Zhou, Ge Zhang, Huidong Gao, Zheng Wu, Catherine Faulkner, Wu-Te Yang,
Xiang Zhang, Ting Xu, Chengfeng Xu, Chenran Li, Akio Kodaira, Ran Tian, Ce Hao, Wei-
Jer Chang, Jen-Wei Wang, and Yichen Xie. I am grateful for their assistance during my
PhD study and their efforts in maintaining a great research atmosphere.

I was also fortunate to collaborate with many outstanding researchers from different
institutes. I would like to thank the visiting scholars Professor Angel Cuenca, Dr. Long
Xin, Julian M. Salt Ducaju, Haonan Chang, and Yaru Niu. In addition, I want to thank Dr.
Sujitha Martin, Dr. Teruhisa Misu, Dr. Chiho Choi, Nishan Srishankar, and Enna Sachdeva
from the Honda Research Institute for the research collaborations that contributed to this
dissertation. I am also thankful to my mentors from my internship at Waymo, Dr. Stéphane
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Chapter 1

Introduction

1.1 Explainable Autonomous Driving: An Overview

The past decade has witnessed the rapid development of autonomous vehicles (AVs).
According to the reports from California Department of Motor Vehicles (DMV) [6], the total
annual mileage driven by the licensed test AVs in California increased from 450, 597 miles to
4, 051, 850 miles between 2015 and 2021. Meanwhile, the longest mileage per disengagement
for a single company drastically increased from 1, 244 miles (achieved by Waymo) to 50, 108
miles (achieved by AutoX) between 2015 and 2021. The statistics seem to suggest that there
has been a substantial leap toward the ideal driverless transportation system that motivated
the development of autonomous driving, where human-related errors are eliminated, resulting
in reduced traffic congestion and improved safety [4]. Deep learning has played an essential
role in pushing forward autonomous driving technologies in recent years. Deep-learning
models have been widely adopted for different AV function modules. They have even become
standard practice for some modules, such as perception and behavior prediction.

While those black-box neural network models significantly boosted the overall perfor-
mance, they also led to severe societal concerns about the reliability of the systems. Unlike
previous application domains where deep learning has been proven successful, such as com-
puter vision (CV) and natural language processing (NLP), AVs operate in a safety-critical
environment, where they need to interact with other human road participants (e.g., pedes-
trians, bicycles, and human-driven cars) while carrying human passengers. Humans need
to be convinced of their reliability to engage in trusting cooperation with AVs. However, it
is still not possible to fully understand or anticipate the behavior of these black-box mod-
els. Furthermore, modern autonomous driving systems usually stack multiple deep-learning
modules over their pipelines, which makes it even more prohibitive to inspect and analyze
the behavior of the overall system. The public concern has also been exaggerated by re-
cent traffic accidents associated with AVs, including some fatal accidents in which people
were killed. While AVs are not necessarily responsible for all the accidents, the opacity of
the autonomous driving systems makes it challenging to assert responsibility in accidents
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involving AVs. Taken together, these factors highlight a need to improve the transparency
of autonomous driving systems.

In the broader community of machine learning (ML) and artificial intelligence (AI), ex-
plainable AI (XAI) has drawn increasing research attention in recent years. XAI aims to
develop techniques allowing humans to better understand the behavior of an AI system
by providing explanations [45], which improves transparency and builds the foundation for
trustworthy human–AI interaction. In this dissertation, we are interested in exploring how
we may utilize the design principles and techniques of XAI to develop an explainable au-
tonomous driving system. XAI research has explored techniques for systems with different
levels of requirements for explainability. We follow the literature to categorize XAI methods
in order of increasing explainability as follows:

• Neural Network Post Hoc Explanation: Techniques to explain the behavior of a
deep-learning model with another neural network. The neural network for explanation
can be either integrated into the backbone model (e.g., visual attention network [62])
or trained as a separate module (e.g., textual explanation via NLP models [63]). The
explanation networks explain the model behavior in a post hoc manner and do not
interfere with the training process of the backbone model. Therefore, such kinds of
techniques have minimal impact on performance. However, these explanations gener-
ated by black-box modules could be ambiguous and misleading. Therefore, they should
be interpreted with extreme caution. Otherwise, they could instead cause significant
damage when applied to high-stakes decision-making systems [104].

• Model-Agnostic Post Hoc Explanation: Techniques to create model-agnostic ex-
planations, for instance, feature attribution methods (e.g., Shapley values [84]). Unlike
the last category, model-agnostic methods do not rely on specific explanation networks.
They quantify certain model characteristics (e.g., sensitivity to a specific input feature)
with a sequence of explicit operations. Compared to neural network explanations, the
generated explanations are well defined and have explicit semantic meaning. Never-
theless, we should still treat them cautiously because neural networks are complex
nonlinear systems. It could be risky to over-interpret the results (e.g., generalizing a
local quantitative characteristic globally without care).

• Interpretable ML: Techniques to improve model interpretability in the design stage.
Unlike post hoc explanations, these techniques focus on directly designing ML models
with improved interpretability. Formally, soft and hard interpretability constraints are
incorporated into the original training objective of an ML model to make it more intel-
ligible for humans [106]. The constraints are domain-specific, reflecting the definition
of interpretability in the specific domain (e.g., sparsity, disentanglement). For exam-
ple, a common technique for improving the interpretability of a neural network model
is to design a low-dimensional intermediate embedding space. The interpretability of
the low-dimensional space can be further improved by enforcing a disentanglement
constraint. For neural network models, we usually focus on interpretability constraints
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targeting some sub-modules, such as the low-dimensional embedding space mentioned
above. This results in partially interpretable ML models. In some applications, it is
also possible to enforce a constraint on the entire model. For instance, we may restrict
the model structure to inherently interpretable models (e.g., decision trees). In this
case, the model becomes a fully interpretable one. While a fully interpretable model is
always preferred if applicable, it could be challenging to optimize in practice, making
it prohibitive to obtain fully interpretable ML models with performance comparable
to their black-box counterparts in many applications.

When designing an explainable autonomous driving system, the core decision to make
is the required level of explainability. Ideally, we want fully interpretable ML models that
perform equally as well as the currently used deep-learning models. However, this could
be extremely difficult for a complex problem domain like autonomous driving. In this dis-
sertation, we will discuss what we think is the best practice for designing an explainable
autonomous driving system.

1.2 A Designer’s Perspective on Explainable

Autonomous Driving

Fig. 1.1 illustrates a typical paradigm of an explainable autonomous driving system. By
equipping the AVs with explanations, an obvious benefit is that end users (e.g., passengers)
can better understand the decisions made by the AVs. This allows the users to monitor
the decision-making procedure of the AVs in real time. If the AVs falsely understand the
environment and make inappropriate decisions, the users can provide feedback or promptly
override the AVs. In this dissertation, we consider this paradigm from a designer’s perspec-
tive. In particular, we focus on the behavior system of the overall pipeline. As illustrated
in Fig. 1.2, a behavior system mainly consists of three key elements: 1) behavior prediction:
forecasting the future behavior of the surrounding agents; 2) motion planning : planning the
future behavior of the ego vehicle; 3) vehicle control : controlling the ego vehicle to fulfill
the anticipated behavior. Altogether, these three modules control the behavior of the AVs,
given the information collected from the upstream perception module. The behavior sys-
tem involves reasoning about the sophisticated interaction among all the road participants.
Moreover, it directly governs how the AV interacts with the environment. Therefore, it is
crucial to develop a transparent behavior system to support trusting interaction between
humans and AVs.

We divide our discussion in this dissertation into two parts. Part I focuses on developing
methodologies to improve model interpretability, which we argue should be the primary
design objective for high-stakes decision-making systems like autonomous driving. The goal
is to ensure that the model is more intelligible for humans in the design stage, which is
achieved by introducing hard or soft constraints formulated from domain knowledge. Part II
explores the role of post hoc explanations in the design loop of autonomous driving systems.
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Figure 1.1: The paradigm of an explainable autonomous driving system. End users (e.g.,
passengers) can better understand the decision-making process of the autonomous driving
system via explanations. In return, they could provide feedback or override AVs promptly
if the AVs falsely understand the environment and make inappropriate decisions. In this
dissertation, we focus on the perspective of model designers in the paradigm. Part I focuses
on developing methodologies to improve model interpretability, which we argue should be the
primary design objective for high-stakes decision-making systems like autonomous driving.
The goal is to ensure that the model is more intelligible for humans in the design stage, which
is achieved by introducing hard or soft constraints formulated from domain knowledge. Part
II explores the role of post hoc explanations in the design loop of autonomous driving systems.
We demonstrate how we may diagnose the systems and further improve the model design
by analyzing the model behavior via explanations.

We demonstrate how we may diagnose the systems and further improve the model design by
analyzing the model behavior via explanations. An overview of the approaches and emphasis
of the two parts is provided in Fig. 1.1.

1.2.1 Model Design

As mentioned in Sec. 1.1, when designing an explainable autonomous driving system, the
core decision to make is our requirement for the level of explainability. We want to empha-
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Figure 1.2: The three key elements of the behavior system: 1) behavior prediction: fore-
casting the future behavior of the surrounding agents; 2) motion planning : planning the
future behavior of the ego vehicle; 3) vehicle control : controlling the ego vehicle to fulfill
the anticipated behavior. In a typical workflow, the modules are executed sequentially in
the order of behavior prediction, motion planning, and vehicle control. We connect them
with bi-directional arrows to unify the advanced system architectures that involve mutual
information exchange between modules.

size that our primary objective should be to improve the models’ inherent interpretability
instead of designing post hoc explanation modules. As stated in Sec. 1.1, post hoc explana-
tions, especially those generated by black-box modules, could be ambiguous and misleading.
Further, the underlying mechanism of a black-box neural network model is too intricate to
be fully understood through post hoc explanations. Therefore, it is risky to merely rely
on post hoc explanations to understand a complex and high-stakes decision-making system
like autonomous driving. Instead, we should design a more interpretable model so that the
decision-making procedure is aligned with human reasoning. In the first part of the disserta-
tion, we explore various methodologies for improving the interpretability of different modules
of a behavior system. Specifically, we focus on incorporating domain knowledge into a deep-
learning model so that the model operates consistently with the domain knowledge. When
designing each method in Part I, we essentially address the task by answering the following
two key questions:

• What domain knowledge do we want to incorporate into the deep-learning models?
Some examples of domain knowledge we think are potentially beneficial are vehicle
dynamics, traffic rules, and social norms. For instance, if constraints on vehicle dy-
namics are enforced, we can ensure that the behavior system outputs dynamically
feasible actions. If we regularize the behavior prediction model with traffic rules and
social norms, the AVs can reason the behavior of the surrounding agents in a more
human-like way.

• How can we formulate the domain knowledge into interpretability constraints, either
hard or soft, and optimize the training objective? While some formats of domain
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knowledge (e.g., vehicle dynamics) are well-defined, knowledge about, for example,
traffic rules and social norms is rather abstract. It is not trivial to formulate such
abstract knowledge into constraints in a principled manner. In addition, we need
to ensure that a practical training algorithm exists to optimize the model for the
formulated constraints.

1.2.2 Model Diagnosis

While interpretability should be prioritized when designing explainable autonomous driv-
ing systems, post hoc explanations can still play an essential role in the design procedure,
especially when the model is partially interpretable and contains black-box modules. If care-
fully interpreted, explanations can help the designers monitor the model behavior and iterate
the design if any failure mode is detected. In the second part of this dissertation, we inves-
tigate how we may diagnose an autonomous driving system with post hoc explanations. In
particular, we focus on studying the interaction modeling problem in behavior prediction.
In highly interactive urban traffic scenarios, it is crucial to model the interaction among
road participants for accurate forecasting. Various model structures have been proposed to
encode social information from aggregated observations in the literature. However, most
existing works have focused on overall prediction accuracy without verifying whether social
interaction is appropriately modeled and utilized. Only recently have researchers started to
formally investigate this problem, including works presented in this dissertation [127, 128]
as well as [85]. It was found that existing methods did not necessarily encode and utilize
social information as desired. In the second part of this dissertation, we present two case
studies on diagnosing and improving interaction modeling for behavior prediction with the
help of post hoc explanations.

1.3 Contributions and Outline

In summary, this dissertation aims to develop methodologies to develop an explainable
behavior system, an essential building block of an explainable autonomous driving system.
The outline of the dissertation is summarized in Fig. 1.3. In Part I, we focus on improving
model interpretability by incorporating human domain knowledge. Chapters 2–3 introduce
two different approaches to designing interpretable driving behavior models. In particular,
knowledge of interaction patterns is utilized to regularize the models. The interaction knowl-
edge is formulated into either reward functions (Chapter 2) or pseudo labels (Chapter 3).
Chapter 4 demonstrates how we can utilize prior knowledge of vehicle dynamics to develop
an interpretable and transferable deep-learning-based planning and control framework. In
Part II, we focus on developing post hoc explanation toolkits for diagnosing interaction mod-
eling in behavior prediction. Chapter 5 introduces a sparse graph attention mechanism to
diagnose the social posterior collapse issue of variational autoencoders for interaction model-
ing. Chapter 6 introduces a Shapley-value-based method to diagnose the inherent causality
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issue of using conditional behavior prediction for interactive planning. A detailed summary
of the contribution of each chapter is provided in the following subsections.

Chapter 2: Grounded Relational Inference

Multi-agent interaction modeling is crucial for accurate trajectory prediction in highly
interactive scenarios. We investigate how to design an interpretable deep-learning model
for interaction modeling. We propose equipping the model with explanations revealing the
underlying mechanism of the model. However, unlike post hoc explanations, which could
be ambiguous and falsely interpreted by humans, we want to ensure that the explanations
are consistent with both human domain knowledge and the model’s inherent causal relation
in the design stage, thereby binding the model’s underlying mechanism with human under-
standing to ensure interpretability. We focus on the relational inference problem studied
in [67], where an interactive system is modeled by explicitly inferring the inherent relations
between interacting objects. Kipf et al. proposed the neural relational inference (NRI) model
for this problem. In NRI, the inferred relations are formatted as a latent interaction graph,
whose edges are aligned with discrete latent variables corresponding to a cluster of pairwise
interactive behaviors between the objects. The inferred interaction graph could potentially
serve as the explanations. However, since NRI learns the latent space in an unsupervised
manner, it cannot be ensured that humans will be able to precisely interpret the semantic
meaning behind the interaction graph without ambiguity. To address this issue, we propose
grounding the latent space in a set of interactive behaviors defined with domain knowledge.

We reframe relational inference as an inverse reinforcement learning (IRL) problem and
introduce structured reward functions to ground the latent space. Concretely, we model the
system as a multi-agent Markov decision process (MDP), where the agents share a reward
function that depends on the relational latent space. We design structured reward functions
based on human domain knowledge to explicitly define the interactive behaviors correspond-
ing to the latent space. To solve the formulated IRL problem, we propose grounded relational
inference (GRI) [129]. It has the variational-autoencoder-like (VAE) graph neural network
(GNN) in NRI [67] as the backbone model. We incorporate the structured reward functions
into the model as an additional reward decoder. A variational extension of the adversarial
inverse reinforcement learning (AIRL) [35] algorithm is derived to train the model in an end-
to-end fashion. We demonstrate that the proposed GRI framework can model interactive
traffic scenarios in both simulated and real-world settings and generate semantic interaction
graphs grounded in domain knowledge to explain vehicles’ behavior based on their interac-
tions. Hence, GRI could serve as an essential building block of an interpretable trajectory
prediction model.

Chapter 3: Pseudo Labels for Interpretable Interactive Trajectory Prediction

Chapter 2 introduces GRI as an interpretable model for multi-agent interaction modeling,
which could be further extended into an interpretable trajectory prediction model. In this



CHAPTER 1. INTRODUCTION 8
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Figure 1.3: Dissertation outline. Chapters 2-4 belong to Part I. Chapters 2-3 present
two approaches for regularizing interaction modeling with domain knowledge of interaction
patterns, which is formulated into either reward functions (Ch.2) or pseudo labels (Ch.3).
Chapter 4 demonstrates how we can utilize prior knowledge of vehicle dynamics to develop an
interpretable and transferable deep-learning-based planning and control framework. Chap-
ters 5-6 belong to Part II. Chapter 5 introduces a sparse graph attention mechanism for
diagnosing the social posterior collapse issue of variational autoencoders for interaction mod-
eling, while Chapter 6 introduces a Shapley-value-based method for diagnosing the inherent
causality issue of using conditional behavior prediction for interactive planning.



CHAPTER 1. INTRODUCTION 9

chapter, we instead study how to directly improve the interpretability of state-of-the-art
trajectory prediction models while maintaining consistent prediction accuracy. We focus
on the interaction prediction problem, where the trajectories of two interacting agents are
predicted and evaluated jointly. This prediction task is formulated by Waymo [25], targeting
highly interactive scenarios. In particular, we are interested in the interaction prediction
problem under the goal-conditioned framework. We extend the state-of-the-art single-agent
goal-conditioned framework [42] to jointly predict the goal distribution of two interacting
agents. Additionally, we leverage conditional variational autoencoder (CVAE) [117] and
introduce a discrete latent space to capture the interaction modes explicitly, which should
improve the model’s interpretability and sampling efficiency.

However, it cannot be guaranteed that the model can learn an informative latent space
distinguishing semantically meaningful interaction modes that are useful for downstream
modules. We find that the vanilla model is prone to posterior collapse, resulting in an entirely
uninformative latent space. To tackle this problem, we propose the use of pseudo labels
designed based on domain knowledge to guide the training [121]. For each ground-truth goal
pair, we assign positive target values to goal pair candidates similar to it. The model learns
to encode similar goal pairs into the same latent variable by minimizing the corresponding
auxiliary loss function, defined as the distance between the decoded distribution and the
pseudo labels. In particular, we introduce three types of pseudo labels incorporating three
different types of domain knowledge. We apply the proposed method to train the prediction
model on the Waymo Open Dataset and show that the pseudo labels can effectively induce
an interpretable latent space and further improve prediction performance.

Chapter 4: Interpretable Policy Transfer via Robust Model-based Control

In Chapter 4, we turn to the downstream behavior generation module and develop an
interpretable learning-based planning and control framework. In particular, we focus on
the policy transfer problem, where the driving policy network is trained in a source domain
and deployed in a target domain with modeling discrepancy. This is an important prob-
lem because robustness has been the main drawback preventing the application of neural
networks policies in autonomous driving. Prior learning-based policy transfer efforts focus
on transfer learning and meta learning. However, their applications in autonomous driving
are limited due to safety concerns. Overall, such learning-based policy transfer methods
embed transferable representations into black-box neural networks and hope for the best
in the target domain, and thus they are not transparent and reliable. We seek to solve
the policy transfer problem using an alternative tool, robust control, and propose a generic
PN-RC transfer framework [140, 126]. The PN-RC framework aims to solve the policy trans-
fer problem between domains with different vehicle dynamics models. In this framework,
the policy network is applied to an imaginary setting in the source domain to generate a
kinematic-level reference trajectory for the target vehicle. In the target domain where we
assume prior knowledge of the dynamics of the target vehicle, a robust controller is designed
to track the reference trajectory tolerating the modeling gap. The proposed framework has
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two fundamental advantages: 1) transferring the interpretable kinematic features makes the
framework transparent and reliable; 2) the stability and response of the low-level controller
can be analyzed to design the optimal controller parameters. We present one realization
of the PN-RC framework. For the policy network, we implement a hierarchical parallel at-
tribute network (PAN) [141], which can flexibly compose a set of elementary policy networks
to tackle various driving tasks. For the robust controller, we design an adaptive disturbance-
observer-based (DOB) robust tracking controller. The DOB controller is integrated with
a novel reference smoothing algorithm, which improves the tracking performance when a
dynamical re-planning scheme is involved. The simulation and preliminary experimental re-
sults validate the ability of the proposed PN-RC architecture to zero-shot transfer the policy
under a certain level of parameter variation and external disturbances.

Chapter 5: Diagnosing Social Posterior Collapse with Sparse Graph Attention

Variational Autoencoder (VAE) [66] has been widely used in multi-agent behavior mod-
eling and trajectory prediction due to its ability to learn a low-dimensional representation
of the original high-dimensional data. However, VAEs do not necessarily learn a good rep-
resentation of the data [18]. This leaves us to wonder whether a VAE-based model can
always learn a good representation of a multi-agent interacting system. In particular, we
are interested in the following question: Does the latent space always properly model inter-
action? Formally, given a latent variable model of an interacting system, where a latent
variable governs each agent’s behavior, we wonder if the VAE learns to encode social context
into the latent variables. This is a crucial question that is under-explored in the literature.
Without properly encoding the social context, the model may suffer from over-estimated
variance and large prediction error. More importantly, since the joint behavior of the agents
is a consequence of their interactions, ignoring the causes may lead to poor generalization
ability [129, 47].

In this chapter, we initiate the study on this important issue with the help of a novel sparse
graph attention message-passing (sparse-GAMP) layer. We incorporate the sparse-GAMP
layer into the prediction model as the encoder for social context aggregation. Sparse-GAMP
generates a sparse attention map, from which we can directly identify those surrounding
agents ignored by the model. With the help of sparse-GAMP, we find that a typical for-
mulation of VAE for multi-agent interaction is indeed prone to ignoring the historical social
context. We refer to this phenomenon as social posterior collapse. We analyze social poste-
rior collapse under this formulation and propose several measures to alleviate the issue. Our
experiments show that social posterior collapse indeed occurs in real-world prediction tasks
and that the proposed measures can effectively alleviate the issue. The results suggest that
the model without social posterior collapse can attain better generalization performance if
the historical social context is informative for prediction.
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Chapter 6: Diagnosing Conditional Behavior Prediction with Shapley Values

In Chapter 5, we study the interaction modeling problem in behavior prediction. Like
most existing works [149, 43], the prediction model we focus on follows a passive prediction
scheme: The target agents’ future trajectories are predicted given their historical trajectories
and those of other surrounding agents. When using such a prediction model, downstream
decision-making modules determine the autonomous agent’s action according to the pre-
dicted trajectories passively. To ensure safety under various predicted trajectories of others,
the ego agent has to be overly conservative with inefficient maneuvers, especially in highly
interactive scenarios. To this end, researchers started to investigate a more coherent inter-
active prediction and planning framework that relies on predicting the surrounding agents’
future trajectories conditioned on the ego agent’s future actions. Under such frameworks,
the autonomous agents can reason over potential actions while considering their influence on
surrounding agents. This can then result in more efficient and less conservative maneuvers
in interactive scenes. In particular, we are interested in the line of research where a different
prediction task is formulated to develop and evaluate the prediction sub-modules in a self-
contained manner, which we refer to as the conditional behavior prediction (CBP) task. In
the CBP task, the future trajectories of the target agents are predicted conditioned on the
ground-truth future trajectory of an ego agent. Standard prediction metrics are adopted to
quantify the performance. This allows us to leverage large-scale naturalistic traffic datasets
to develop and validate a conditional prediction model prior to closed-loop testing.

However, we argue that it is risky to train and evaluate the model for conditional in-
ference. In the current CBP task, the prediction model learns the posterior distribution of
future trajectories conditioned on the future trajectory of the ego agent, where the future
trajectory of the ego agent is falsely treated as an observation. We argue that this results in a
discrepancy between 1) what information an autonomous agent receives by querying a CBP
model with a potential plan and 2) how the others will actually react if the agent executes the
plan. This discrepancy may lead to overly confident anticipation of the ego agent’s influence
on the surroundings, resulting in potential safety hazards during online usage. Instead, we
argue that we should treat the query plan as an intervention [93] and build the prediction
model to approximate the future trajectory distribution under the intervention of enforcing
the ego agent’s future trajectory. We refer to this new task as the interventional behavior
prediction (IBP) task [128]. In IBP, we still train and evaluate the model with an offline
dataset. The setting is essentially the same as CBP, except for learning an interventional
distribution instead of a conditional one.

Without knowing the ground-truth distribution in the intervention, we can only compare
the model’s output against the ground-truth labels for evaluation. However, such evalua-
tion metrics are naturally biased toward a CBP model. Accordingly, we propose verifying
the inherent temporal independence of a prediction model before comparing the prediction
performance to ensure proper evaluation of the IBP task. Under the interventional distri-
bution, the predicted states of the target agents in earlier time steps should be independent
from the ego agent’s states in later time steps. We propose a Shapley-value-based metric to
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verify whether the model obeys this temporal independence. We show that the proposed
metric can effectively identify a CBP model violating the temporal independence. More
importantly, we show that a state-of-the-art CBP model of a popular prediction benchmark
indeed violates the temporal independence, and its prediction accuracy benefits from this
violation. The results support the necessity of establishing a benchmark for our newly for-
mulated IBP task to replace the commonly adopted CBP benchmarks, in which the proposed
Shapley-value-based metric will play an important role.
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Part I

Domain Knowledge Driven
Interpretable Model Design
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Chapter 2

Grounded Relational Inference

2.1 Introduction

In this chapter, we explore how to design an interpretable model for an essential building
block of behavior system—multi-agent interaction modeling. It is crucial to properly model
the interaction among road participants for accurate behavior prediction in highly interactive
scenarios. However, modeling interaction between intelligent agents is challenging due to the
intricate nature of human minds. To gain the trust of human users, it is crucial that the
behavior system reasons the interaction transparently so that the human users can monitor
whether the system correctly understands an interactive scenario. As mentioned in Chapter
1, one popular approach to give people a better understanding of the underlying mechanisms
of deep learning models is through post hoc explanations [3]. Vision-based approaches, such
as visual attention [62] and deconvolution [12], illustrate which segments of the input image
are important to the output. Interaction-aware models, such as social Long-Short Term
Memory network (LSTM) with social attention [1, 136] and GNN with graph attention [53,
135, 120, 67], identify the agents that are critical to the decision-making procedure. However,
post hoc explanations could be ambiguous and falsely interpreted by humans. For instance,
a visual attention map only illustrates which regions of the input image the model’s output
depends on. The semantic meaning behind the causal relation is left for human users to
interpret. Kim et al. [63] attempted to resolve this ambiguity by aligning textual explanations
with visual attention. However, the underlying mechanism of the model is not necessarily
consistent with the textual explanations.

To develop an interaction model that humans can truly trust, we argue that the model
should be equipped with explanations that are consistent with both human domain knowledge
and the model’s inherent causal relation, thereby binding the model’s underlying mechanism
with human understanding to ensure interpretability. To explore how to approach the desired
model, we study the relational inference problem formulated in [67], where an interactive
system is modeled by explicitly inferring the inherent relations between interacting objects.
They proposed the NRI model to solve this problem. Formally, the NRI model aims to solve a
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reconstruction task. Given the observed trajectories of all the objects, an encoder first infers
the interaction between objects represented by an interaction graph, whose edges are aligned
with discrete latent variables corresponding to a cluster of pairwise interaction behaviors
between the objects. Afterward, a decoder, which learns the dynamical model conditioned
on the inferred interaction graph, reconstructs the trajectories given the initial states. If the
decoder can accurately reconstruct the trajectories, the latent space can effectively capture
the interaction between interacting objects.

We find this discrete latent space particularly interesting because the inferred interaction
graph could potentially serve as the desired explanation: it explains the reconstructed tra-
jectories as a sequence of interaction behaviors among agents. Moreover, the reconstructed
trajectories are governed by the same interaction graph. Therefore, the NRI model seems
promising to fulfill our goal to make the explanation consistent with the model’s underlying
mechanism. However, since the NRI model learns the latent space in an unsupervised man-
ner, we cannot ensure that humans will be able to precisely interpret the semantic meaning
behind the inferred interaction graph without ambiguity. To address this issue, we propose
grounding the latent space in a set of interactive behaviors defined with human domain
knowledge.

As a running example, consider the scenario depicted in Fig. 2.1, where we ask different
models to control the red vehicle. Attention mechanisms can indicate the critical pixels or
agents, but they cannot recognize different effects—the two cars are mutually important
but affect each other in distinct ways. The NRI model can distinguish between different
interactive behaviors. Still, the latent space does not have explicit semantic meaning. In
contrast, our model should determine the interaction graph with a latent space grounded in
yielding and cutting-in behaviors. It learns control policies that generate behaviors consistent
with their definitions in domain knowledge (e.g., traffic rules) and executes the corresponding
policies according to the inferred edge types. This semantic interaction graph illustrates the
model’s understanding of the scenario and explains the action it takes.

If we merely want to make the interaction graph consistent with humans’ labeling of the
scenes, a straightforward approach is training the encoder directly via supervised learning.
Interaction labels can be obtained either from human experts [123] or rule-based labeling
functions [69]. However, labels for the interaction graph are insufficient to induce the de-
coder to synthesize the interactive behaviors suggested by the labels, as the model cannot
capture the semantic meaning behind those interaction labels. Instead, we reframe rela-
tional inference as an IRL problem and introduce structured reward functions to ground
the latent space. Concretely, we model the system as a multi-agent MDP, where the agents
share a reward function that depends on the relational latent space. We design structured
reward functions based on expert domain knowledge to explicitly define the interactive be-
haviors corresponding to the latent space. To solve the formulated IRL problem, we propose
GRI, for which a VAE-like GNN in NRI [67] serves as the backbone model. Additionally,
we incorporate the structured reward functions into the model as an additional reward de-
coder. A variational extension of the AIRL algorithm is derived to train all the modules
simultaneously.
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Figure 2.1: A motivating lane-changing scenario where we ask different models to control
the red vehicle. All the models generate deceleration commands but have different inter-
mediate outputs. With the aid of visual attention, we generate a heat map indicating the
critical pixels of the input image. The graph attention network assigns edge weights ωi to
specify the importance of surrounding vehicles to the controlled vehicle. However, the at-
tention mechanisms cannot recognize different effects—the two cars are mutually important
but affect each other in distinct ways. The NRI model can distinguish between different
interactive behaviors by assigning different values to the latent variables zi in the interac-
tion graph. Still, the latent space does not have explicit semantic meaning. In contrast,
our model ensures a semantic interaction graph, which illustrates the model’s understanding
of the scenario and explains the action it takes. It determines the interaction graph with a
latent space grounded in yielding and cutting-in behaviors. Further, it learns control policies
that generate behaviors consistent with their definitions in domain knowledge (e.g., traffic
rules) and executes the corresponding policies according to the inferred edge types.

Compared to direct supervision via interaction labels, we provide implicit supervision to
GRI in terms of the structures of the reward functions. Since each reward function defines a
type of interactive behavior, we confine the latent space to a cluster of interactive behaviors.
This has two main advantages for supervision through labeling: 1) First, since the policy
decoder learns to maximize the cumulative reward given the inferred interaction graph,
the structured reward functions guide the policy to synthesize the corresponding semantic
behaviors rather than simply mimicking the demonstrated trajectories; 2) Second, the end-
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to-end training scheme leaves the model to identify the underlying interaction graph of the
observed trajectories and learn the characteristics of different behaviors (i.e., parameters
of reward functions) from the data. This avoids the undesired bias introduced during the
labeling procedure. Labels generated by human experts are subjective, and different people
may interpret an interacting scenario in different ways. In contrast, there are systematic
and principled ways to investigate what reward functions human behavior is subject to from
data [89].

The rest of the chapter is organized as follows. In Sec. 2.2, we present a concise review
of existing works that are closely related to ours in terms of methodology or motivation. In
Sec. 2.3, we briefly summarize NRI and AIRL to prepare the readers for the core technical
content. In Sec. 2.4, we introduce how we reformulate relational inference into a multi-agent
IRL problem with relational latent space. In Sec. 2.5, we present the GRI model in a general
context. In Sec. 2.6, we demonstrate how we can apply the proposed framework to model
interactive traffic scenarios in both simulated and real-world settings. The experimental
results show that the GRI can model interactive traffic scenarios and generate semantic
interaction graphs that are consistent with both human domain knowledge and the modeled
interactive behaviors.

2.2 Related Work

Our model combines GNNs and AIRL for interactive system modeling. This section
provides a concise review of these two topics and summarizes the existing works that are
closely related to ours. We also discuss some additional works on explainable driving models
as a complement to the discussion in Sec. 2.1.

Interaction modeling using GNN

GNNs have been widely applied for interactive system modeling in recent years [120,
133, 8]. One category of models we find interesting includes those with a graph attention
mechanism. One seminal model is the graph attention network (GAT) [135], which performs
well on large-scale inductive classification problems. Vertex attention interaction network
(VAIN) [53] applies attention in multi-agent modeling. The attention map unravels the
interior interaction structure to some extent, thus improving the explainability of VAIN. An
approach closely related to ours is NRI [67], which models the interaction structure explicitly
with a discrete relational latent space compared to continuous graph attention. We explain
the difference between NRI and our proposed method in Sec. 2.1 and Sec. 2.5. A related work
in the autonomous driving domain is [69], which also modeled interactive driving behavior
with semantically meaningful interactions but learned in a supervised manner.

Another type of model that is worth noting is the spatio-temporal graph (st-graph). An
st-graph decomposes a complex problem into components and their spatio-temporal inter-
actions, which are represented by nodes and edges of a factor graph. This makes st-graph
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a ubiquitous representation for interacting systems, e.g., human motion [58], human–robot
interaction [83], and traffic flow [143]. Jain et al. [58] proposed a general method for trans-
forming any st-graph into a mixture of recurrent neural networks (RNNs) called structural-
RNN (S-RNN). When using a recurrent decoder, our GNN policy is similar to S-RNN, as
it captures the same spatio-temporal dependency. In particular, Liu et al. [83] combined
S-RNN with model-free RL to obtain a structured policy for robot crowd navigation. In
terms of the underlying MDP, our GRI model is developed based on a multi-agent MDP,
whereas theirs uses a single robot as the agent and regards the surrounding humans as parts
of the environment. In addition, we adopt a structured reward function for each agent based
on the graph and introduce a relational latent space into the MDP.

Adversarial IRL and Imitation Learning

Next, we present a brief review of related works on adversarial IRL. We also include works
related to generative adversarial imitation learning (GAIL) [51], as it is closely connected to
AIRL [31]. Both methods have generative adversarial networks (GANs) as backbone models
and learn the discriminator through maximum entropy IRL. The difference is that GAIL
uses an unstructured discriminator and does not use the generator’s density.

Our work is mainly related to two types of methods: multi-agent and latent AIRL/GAIL
algorithms. Yu et al. [145] proposed a multi-agent AIRL framework for Markov games under
correlated equilibrium. It is capable of modeling general heterogeneous multi-agent inter-
actions. The PS-GAIL algorithm [10] considers a multi-agent environment in the driving
domain that is similar to ours—homogeneous agents with a shared policy under centralized
control—and extended GAIL [51] to model interactive behaviors. In [11], the authors aug-
mented the reward in PS-GAIL as a principle strategy for specifying prior knowledge, which
is similar to the structured reward functions in GRI.

Latent AIRL models integrate a VAE into either the discriminator or the generator
for different purposes. Wang et al. [138] conditioned the discriminator on the embeddings
generated by a VAE trained separately using behavior cloning. The VAE encodes trajectories
into low-dimensional space, enabling the generator to produce diverse behaviors from limited
demonstration. VDB [97] constrains information contained in the discriminator’s internal
representation to balance the training procedure for adversarial learning algorithms. The
PEMIRL framework [146] achieves meta-IRL by encoding demonstration into a contextual
latent space. Though studied in different context, PEMIRL is conceptually similar to our
framework as both its generator and discriminator depend on the inferred context variables.

2.3 Background

In this section, we briefly summarize two algorithms that are closely related to our ap-
proach in order to prepare the readers for the core technical content.
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2.3.1 Neural Relational Inference

Kipf et al. [67] represent an interactive system with N interacting objects as a complete
bi-directed graph:

Gscene = (V , E),

where the vertices and edges are defined as:

V = {vi}Ni=1 , E = {ei,j = (vi, vj) | i ̸= j} .

The edge ei,j refers to the one pointing from the vertex vi to vj. Each vertex corresponds
to an object in the system. The NRI model is formalized as a VAE with a GNN encoder
inferring the underlying interactions and a GNN decoder synthesizing the system dynamics
given the interactions.

Formally, the model aims to reconstruct a given state trajectory, denoted by:

x =
(
x0, . . . ,xT−1

)
,

where T is the number of time steps and xt = {xt1, . . . ,xtN}. The vector xti ∈ Rn denotes
the state vector of object vi at time t. Alternatively, the trajectory can be decomposed into
x = (x1, . . . ,xN), where xi =

{
x0
i , . . . ,x

T−1
i

}
. The encoder operates over Gscene, with xi

as the node feature of vi. It infers the posterior distribution of the edge type zi,j for all
the edges, collected into a single vector z. The decoder operates over an interaction graph
Ginteract and reconstructs x. The graph Ginteract is constructed by assigning sampled z to the
edges of Gscene and assigning the initial state to the nodes of Gscene. If Ginteract represents the
interactions sufficiently, the decoder should be able to reconstruct the trajectory accurately.

The model is trained by maximizing the evidence lower bound (ELBO):

L = Eqϕ(z|x) [log pγ(x|z)]−DKL [qϕ(z|x)||p(z)] ,

where qϕ(z|x) is the encoder output, which can be factorized as:

qϕ(z|x) =
N∏
i=1

N∏
j=1,j ̸=i

qϕ(zi,j|x), (2.1)

where ϕ refers to the parameters of the encoder. The decoder output pγ(x|z) can be written
as:

pγ(x|z) =
T−1∏
t=0

pγ(x
t+1|xt, . . . ,x0, z),

where γ refers to the parameters of the decoder.
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2.3.2 Adversarial Inverse Reinforcement Learning (AIRL)

The AIRL algorithm follows the principle of maximum entropy IRL [152]. Consider an
MDP defined by (X ,A, T , r), where X ,A are the state space and action space respectively.
In the remainder of the chapter, we use x and a with any superscript or subscript to represent
a state and action in X and A. T is the transition operator given by xt+1 = f(at,xt)

1, and
r : X × A → R is the reward function. The maximum entropy IRL framework assumes a
suboptimal expert policy πE(a|x). The demonstration trajectories generated with the expert

policy, DE =
{
τE
1 , . . . τ

E
M

}
, where τE

i =
(
xE,0
i , aE,0

i , . . . ,xE,T−1
i , aE,T−1

i

)
, have probabilities

that increase exponentially with the cumulative reward. Concretely, they follow a Boltzmann
distribution:

τE
i ∼ πE(τ ) =

1

Z
exp

(
T−1∑
t=0

rλ(xt, at)

)
,

where rλ is the reward function with parameters denoted by λ. Maximum entropy IRL aims
to infer the underlying reward function parameters of the expert policy. It is formalized as
a maximum likelihood problem:

λ∗ = argmax
λ

EτE∼πE(τ )

[
T−1∑
t=0

rλ(x
E
t , a

E
t )

]
− logZ.

To derive a feasible algorithm to solve the problem, we need to estimate the partition
function Z. One practical solution is co-training a policy model with the current estimated
reward function through reinforcement learning (RL) [30]. Finn et al. [31] found equivalency
between it and a special form of the GAN. The policy model is the generator, whereas
a structured discriminator is defined with the reward function to distinguish a generated
trajectory τG from a demonstrated one τE. Fu et al. [35] proposed the AIRL algorithm
based on it, using a discriminator that identifies generated samples based on state–action
pairs instead of the entire trajectory to reduce variance:

Dλ,η(x, a) =
exp {rλ(x, a)}

exp {rλ(x, a)}+ πη(a|x)
, (2.2)

where πη(a|x) is the policy model with parameters denoted by η. The models Dλ,η and πη
are trained adversarially by solving the following min-max optimization problem:

min
η

max
λ

ExE,aE∼πE(x,a)

[
log
(
Dλ,η(xE, aE)

)]
+ ExG,aG∼πη(x,a)

[
log
(
1−Dλ,η(xG, aG)

)]
, (2.3)

where πE(x, a) denotes the distribution of state and action induced by the expert policy, and
πη(x, a) is the distribution induced by the learned policy.

1The transition is assumed to be deterministic to simplify the notation. A more general form of the
algorithm can be derived for stochastic systems, which is essentially the same as the deterministic case.
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2.4 Problem Formulation

Our GRI model grounds the relational latent space in a clustering of semantically mean-
ingful interactions by reformulating the relational inference problem into a multi-agent IRL
problem. Since the framework has the potential to be generalized to interactive systems
in other domains besides autonomous driving, we will introduce our approach in a general
tone. However, it should be noted that we limit our discussion to autonomous driving prob-
lems, without claiming that our approach can be directly applied to other domains. GRI
relies on expert domain knowledge to identify all possible semantic behaviors and design the
corresponding reward functions. There is a broad range of literature on interactive driving
behavior modeling [123, 60], which we can refer to when designing the rewards. We can ex-
tend the proposed framework to other fields if proper domain knowledge is available, which
is left for future investigation.

We start with modeling the interactive system as a multi-agent MDP with a graph
representation. As in NRI, the system has an underlying interaction graph Ginteract. The
discrete latent variable zi,j takes a value from 0, 1, . . . , K − 1, where K is the number of
interactions. It indicates the type of relation between vi and vj with respect to its effect
on vj. Additionally, we assume that the objects of the system are homogeneous intelligent
agents who make decisions based on their interactions with others. Concretely, each agent is
modeled with an identical state space X , action space A, transition operator T , and reward
function r : X × A → R. At time step t, the reward of agent vj depends on the states and
actions of itself and the pairwise interactions between itself and all its neighbors:

rξ,ψ(v
t
j, zj) = rnξ (x

t
j, a

t
j) +

∑
i∈Nj

K∑
k=1

1(zi,j = k)re,kψk (x
t
i, a

t
i,x

t
j, a

t
j), (2.4)

where zj is the collection of {zi,j}i∈Nj , r
n
ξ is the node reward function parameterized by ξ, Nj

is the set of vj’s neighboring nodes, 1 is the indicator function, and re,kψk is the edge reward

function parameterized by ψk for the kth type of interaction. We utilize expert domain
knowledge to design re,kψk , so the corresponding interactive behavior emerges by maximizing
the rewards. In particular, the edge reward equals zero for k = 0, indicating that the
action taken by vj does not depend on its interaction with vi. We assume the agents act
cooperatively to maximize the cumulative reward of the system:

Rξ,ψ(τ , z) =
T−1∑
t=0

rξ,ψ
(
xt, at, z

)
=

T−1∑
t=0

N∑
j=1

rξ,ψ
(
vtj, zj

)
,

with a joint policy denoted by πη (a
t|xt, z). The cooperative assumption is not necessarily

valid for generic traffic scenarios [145], but it simplifies the training procedure significantly.
We will leave the extension of the proposed method to non-cooperative interactive traffic
scenarios for future work. Given a demonstration dataset, we aim to infer the underlying
reward function and policy. Different from a typical IRL problem, both rξ,ψ and πη depend
on z. Therefore, we need to infer the distribution p(z|τ ) to solve the IRL problem.
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2.5 Grounded Relational Inference Framework

We now present the GRI model to solve the IRL problem specified in Sec. 2.4. The model
consists of three modules modeled by message-passing GNNs [37]: an encoder inferring the
posterior distribution of edge types, a policy decoder generating control actions conditioned
on the edge variables sampled from the posterior distribution, and a reward decoder modeling
the rewards conditioned on the inferred edge types.

2.5.1 Architecture

The overall model structure is illustrated in Fig. 2.2. Given a demonstration trajectory
τE ∈ DE, the encoder operates over Gscene and approximates the posterior distribution
p(z|τE) with qϕ(z|τE). The policy decoder operates over a Ginteract sampled from the inferred
qϕ(z|τE) and models the policy πη (a

t|xt, z). Given an initial state, we can generate a
trajectory by sequentially sampling at from πη (a

t|xt, z) and propagating the state. The state
is propagated with either the transition operator T , if given, or a simulating environment if
T is not accessible. We denote a generated trajectory given the initial state of τE as τG.

In terms of model structure, both the encoder and the policy decoder are built based on
node-to-node message passing [37], consisting of node-to-edge message passing and edge-to-
node message passing:

v → e : hli,j = f le(h
l
i,h

l
j,xi,j), (2.5)

e→ v : hl+1
j = f lv(

∑
i∈Nj

hli,j,xj), (2.6)

where hli is the embedded hidden state of node vi in the lth layer, and hli,j is the embedded
hidden state of the edge ei,j. The features xi and xi,j are assigned to the node vi and the
edge ei,j, respectively, as inputs. Nj denotes the set of the indices of vi’s neighboring nodes
connected by an incoming edge. The functions f le and f

l
v are neural networks for edges and

nodes, respectively, shared across the graph within the lth layer of node-to-node message
passing.

GNN Encoder

The GNN encoder is essentially the same as in NRI. It models the posterior distribution
as qϕ(z|τ ) with the following operations:

h1
j = femb(xj),

v → e : h1
i,j = f 1

e (h
1
i ,h

1
j),

e→ v : h2
j = f 1

v

(∑
i ̸=j

h1
i,j

)
,

v → e : h2
i,j = f 2

e (h
2
i ,h

2
j),

qϕ(zi,j|τ ) = softmax
(
h2
i,j

)
,
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where f 1
e , f

1
v and f 2

e are multilayer perceptrons (MLPs) and femb is a 1D convolutional
network (CNN) with attentive pooling.

GNN Policy Decoder

The policy operates over Ginteract and models the distribution πη (a
t|xt, z), which can be

factorized with πη
(
atj|xt, z

)
as in Eqn. (2.1). We model πη as a Gaussian distribution, with

the mean value parameterized by the following GNN:

v → e : h̃ti,j =
K∑
k=0

1(zi,j = k)f̃ke (x
t
i,x

t
j), (2.7)

e→ v : µtj = f̃v

(∑
i ̸=j

h̃ti,j

)
, (2.8)

πη
(
atj|xt, z

)
= N (µt

j, σ
2I). (2.9)

Alternatively, we can improve model capacity by using a recurrent policy denoted by
πη
(
atj|xt, . . . ,x1, z

)
; Namely, the agents take actions according to the historical trajectories

of the system. We follow the practice in [67] and add a gated recurrent unit (GRU) to obtain
the following recurrent model:

v → e : h̃ti,j =
K∑
k=0

1(zi,j = k)f̃ke

(
h̃ti, h̃

t
j

)
, (2.10)

e→ v : h̃t+1
j = GRU

(∑
i ̸=j

h̃ti,j,x
t
j, h̃

t
j

)
, (2.11)

µtj = fout

(
h̃t+1
j

)
, (2.12)

πη
(
atj|xt, . . . ,x1, z

)
= N (µt

j, σ
2I), (2.13)

where h̃ti is the recurrent hidden state encoding the historical information up to time step
t− 1.

The reward decoder computes the reward of a state–action pair given the sampled edge
variables. We use it to compute the cumulative rewards of τG and τE conditioned on the
sampled Ginteract. The reward decoder is in the form of Eqn. (2.4). Additionally, we augment
the functions rnξ and re,kψk with MLP shaping terms to mitigate the reward-shaping effect [35],
resulting in:

fnξ,ω(x
t
j, a

t
j,x

t+1
j ) = rnξ (x

t
j, a

t
j) + hnω(x

t+1
j )− hnω(xtj), (2.14)

and

f e,kψk,χk(x
t
i, a

t
i,x

t+1
i ,xtj, a

t
j,x

t+1
j ) = re,kψk (x

t
i, a

t
i,x

t
j, a

t
j) + he,kχk (x

t+1
i ,xt+1

j )− he,kχk (x
t
i,x

t
j), (2.15)

where hnω and he,kχk are MLPs with parameters denoted by ω and χ, respectively. We denote
the shaped reward function of agent vj by fξ,ω,ψ,χ (x

t, at,xt+1, z), which is equal to the left-

hand side of Eqn. (2.4) but with rnξ and re,kψk substituted by the augmented rewards. The



CHAPTER 2. GROUNDED RELATIONAL INFERENCE 24

GNN
Encoder

Scene Graph
𝒢"#$%$

1

2

0

𝝉&
Demo. Trajectory: 

Interaction Graph 
𝒢'%($)*#(

1

2

0
Latent Posterior Distribution:

𝑧',,~𝑞-(𝑧',,|𝝉&)

(𝑧!,#, 𝑧#,!)
Policy GNN

Demo. Trajectory: 𝝉𝑬

Gen. Trajectory: 𝝉/

ℛ(𝝉/ , 𝒛)
Reward GNN

ℛ 𝝉𝑬, 𝒛

Initial state of 𝝉&: 𝒙&,0

𝒙!$

Figure 2.2: The Architecture of GRI. Given a demonstration trajectory τE ∈ DE, the
encoder operates over Gscene and approximates the distribution p(z|τE) with qϕ(z|τE). The
policy decoder operates over a Ginteract sampled from the inferred qϕ(z|τE) and models the
policy πη (a

t|xt, z). Given the initial state of τE, we sample a trajectory τG by sequentially
sampling at from πη (a

t|xt, z) and propagating the state. Finally, we use the reward GNN
to compute the cumulative rewards of τG and τE conditioned on the sampled Ginteract.

max
η

min
ξ,ω,ψ,χ,ϕ

EτE∼πE(τ )

{
Ez∼qϕ(z|τE)

[
−

T−1∑
t=0

logDξ,ω,ψ,χ,η(xE,t, aE,t,xE,t+1, z)

− EτG∼πη(τ |z)

T−1∑
t=0

log
(
1−Dξ,ω,ψ,χ,η(xG,t, aG,t,xG,t+1, z)

) ]}
,

s.t. EτE∼πE(τ )

{
DKL

[
qϕ
(
z|τE

)
)||p(z)

]}
⩽ Ic,

(2.16)

shaped reward function together with the policy model defines the discriminator, which
distinguishes τG from τE:

Dξ,ω,ψ,χ,η(xt, at,xt+1, z) =
exp {fξ,ω,ψ,χ (xt, at,xt+1, z)}

exp {fξ,ω,ψ,χ (xt, at,xt+1, z)}+ πη (at|xt, z)
.

2.5.2 Training

We aim to train the three modules simultaneously. Consequently, we incorporate the
encoder model qϕ

(
z|τE

)
into the objective function of AIRL, resulting in the optimization

problem (2.16). The encoder is integrated into the minimization problem because the reward
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function has a direct dependence on the latent space. The model is then trained by solving
Problem (2.16) in an adversarial scheme: We alternate between training the encoder and
reward for the minimization problem and training the policy for the maximization problem.
Specifically, the objective for the encoder and reward is the following minimization problem
given fixed η:

min
ξ,ω,ψ,χ,ϕ

J (ξ, ω, ψ, χ, ϕ, η)

s.t. E
{
DKL

[
qϕ
(
z|τE

)
)||p(z)

]}
⩽ Ic,

(2.17)

where J (ξ, ω, ψ, χ, ϕ, η) is the objective function of Problem (2.16). The objective for the
policy is maximizing J (ξ, ω, ψ, χ, ϕ, η) with fixed ξ, ω, ψ, χ and ϕ.

The objective function in Problem (2.16) is essentially the expectation of the objec-
tive function in Problem (2.3) over the inferred posterior distribution qϕ

(
z|τE

)
and the

demonstration distribution πE (τ ). The constraint enforces an upper bound Ic on the Kull-
back–Leibler (KL) divergence between qϕ

(
z|τE

)
and the prior distribution p(z). A sparse

prior is chosen to encourage sparsity in Ginteract. It has a similar regularization effect as
the DKL term in ELBO. We borrow its format from variational discriminator bottleneck
(VDB) [97]. VDB improves adversarial training by constraining the information flow from
the input to the discriminator. The KL divergence constraint is derived as a variational
approximation of the information bottleneck [2]. Although having a different motivation, we
adopt it for two reasons. First, the proposed model is not generative because our goal is not
to synthesize trajectories from the prior p(z) but to infer the posterior p

(
z|τE

)
. Therefore,

regularization derived from the information bottleneck is more sensible compared to ELBO.
Second, the constrained problem (2.17) can be relaxed by introducing a Lagrange multiplier
β. During training, β is updated through dual gradient descent as follows:

β ← max
(
0, αβ

(
E
{
DKL

[
qϕ
(
z|τE

)
)||p(z)

]}
− Ic

))
(2.18)

We find the adaptation scheme particularly advantageous. The model can focus on inferring
z for reward learning after satisfying the sparsity constraint because the magnitude of β
decreases toward zero once the constraint is satisfied. However, it is worth noting that our
framework does not rely on the bottleneck constraint to induce a semantically meaningful
latent space as in [50]. In contrast, GRI relies on the structured reward functions to ground
the latent space in semantic interactive behaviors. The bottleneck serves as a regularization
to determine the minimal interaction graph to represent the interactions. In fact, we trained
the baseline NRI models with the same constraints and weight update scheme. The experi-
mental results show that the constraint itself is not sufficient to induce a sparse interaction
graph.

In general, when the dynamics T are unknown or non-differentiable, maximum entropy
RL algorithms [72] are adopted to optimize the policy. We assume known and differentiable
dynamics, which is a reasonable assumption for the investigated scenarios. This allows us to
directly back-propagate through the trajectory for gradient estimation, which simplifies the
training procedure.
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2.6 Experiments

We evaluate the proposed GRI model on a synthetic dataset as well as a naturalistic traffic
dataset. The synthetic data are generated using policy models trained given the ground-
truth reward function and interaction graph. We intend to verify whether GRI can induce a
semantically meaningful relational latent space and infer the underlying relations precisely.
The naturalistic traffic data are extracted from the Next Generation Simulation (NGSIM)
dataset. We aim to validate whether GRI can model real-world traffic scenarios effectively
with the grounded latent space. Unlike synthetic agents, we cannot access the ground-
truth graphs governing human drivers’ interactions. Instead, we construct hypothetical
graphs after analyzing the segmented data. The hypotheses reflect humans’ understanding
of the traffic scenarios. Moreover, the hypothetical graphs are built upon a set of interactive
behaviors whose characteristics are described by the designed reward functions. We would
like to see if the reward functions can incorporate the semantic information into the latent
space and allow GRI to model real-world interactive systems in the same way as humans.
In each setting, we consider two traffic scenarios: car-following and lane-changing scenarios.

2.6.1 Baselines

The main question of interest is whether GRI can induce semantically meaningful inter-
action graphs. To answer this question, the most important baseline model for comparison
is NRI, as GRI shares the same prior distribution of latent variables with NRI. Compar-
ing the posterior distributions provides insights on whether the structured reward functions
can ground the latent space in semantic interactive behaviors. In each experiment, the
baseline NRI model has the same encoder and policy decoder as the GRI model. Addition-
ally, as stated in Sec. 2.5, the same bottleneck constraint and the weight update scheme in
Eqn. (2.18) were applied as regularization for minimal representation.

Another model for comparison is a supervised policy decoder. We assume that the
ground-truth graphs or human hypotheses are available. Therefore, we can directly train a
policy decoder in a supervised way. The ground-truth graph is fed to the policy decoder as a
substitute for the interaction graph sampled from the encoder output qϕ(z|τE). The training
of the decoder becomes a simple regression problem. We used mean square error as the loss
function to train it. As additional information is provided, it is unfair to directly compare the
performance of GRI with the supervised policy model. Since the supervised model is trained
with the ground-truth interaction graphs governing the systems, it is expected to have a
smaller reconstruction error. However, the supervised baseline provides some useful insights.
In the naturalistic traffic scenarios, the supervised model offers more information regarding
whether the human hypotheses are reasonable. If the supervised model can reconstruct
the trajectories precisely, it will justify our practice to adopt graph accuracy as one of the
evaluation metrics.

More importantly, in Sec. 2.6.5, we demonstrate that GRI’s latent space maintains its
semantic meaning under some perturbations to the initial states, whereas the decoders of the
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Figure 2.3: Test scenarios with the underlying interaction graphs. In the synthetic scenar-
ios, the graphs are the ground-truth ones governing the synthetic experts. In the naturalistic
traffic scenarios, the graphs are human hypotheses reflecting human understanding of the
traffic scenarios.

baseline models fail to synthesize those behaviors under the same perturbations, including
the supervised policy decoder, which is trained with the ground-truth interaction graphs.
This supports our argument that direct supervision via interaction labels is not sufficient to
guide the policy to synthesize behaviors with correct semantic meaning.

There are alternative methods for trajectory reconstruction. However, it is not our goal
to find an expressive model for accurate reconstruction. Therefore, we do not consider other
baselines from this perspective. For the task of grounding the latent space in semantic in-
teractive driving behaviors, we did not find any exact alternatives in the literature. For the
specific scenarios studied, we may design some rule-based approaches to directly infer the
interaction graph. However, it is difficult to determine the parameters that best describe
the interactive behaviors, as there is a spectrum in how people follow the rules [71]. We
are interested in a data-driven module that can be incorporated into an end-to-end learning
model and has the potential to be generalized to complicated driving scenarios and systems
in other domains. Apart from GRI, a potential alternative solution could be adopting a dif-
ferentiable logic module. For instance, Leung et al. [71] proposed a differentiable parametric
signal temporal logic formula (pSTL) that could be learned from data. We will investigate
this in our future works.

2.6.2 Evaluation Metrics

To evaluate a trained model, we sample a τE from the test dataset and extract the
maximum posterior probability (MAP) estimate of edge variables, ẑ, from qϕ(z|τE). Subse-
quently, we obtain a single sample of trajectories τ̂ by executing the mean value of the policy
output. The root mean square errors (RMSE) of the states and the accuracy of Ginteract are
selected as the evaluation metrics, which are computed based on ẑ, τ̂ , τE, and the ground
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truth or hypothetical latent variables denoted by zE:

RMSEϵ =

√√√√ 1

(N − 1)T

N∑
j=1

T−1∑
t=0

(ϵE,tj − ϵ̂tj)2,

Accuracy =

∑N
i=1

∑N
j=1,j ̸=i 1(z

E
i,j = ẑi,j)

N(N − 1)
.

If multiple edge types exist, we test all the possible permutations of edge types and report
the one with the highest graph accuracy for NRI.

It is worth noting that the graph accuracy of the naturalistic traffic dataset merely
quantifies the divergence between the inferred graphs and the hypotheses we construct. We
anticipate that GRI can achieve a higher accuracy than NRI. This would imply that we
can incorporate human domain knowledge into GRI and induce a semantic relational latent
space consistent with the hypotheses built upon the same domain knowledge. However, a low
graph accuracy does not necessarily mean that humans cannot interpret the inferred graphs
well. The hypothetical graphs represent one perspective for interpreting the interactive
scenes. It is possible that NRI may find another sensible way to categorize and interpret the
interactions, which can also be understood by humans.

To further study the interpretability of the learned latent spaces, we consider the inferred
graphs and make a qualitative comparison between the latent spaces learned by the two
models. For each setting, we compute the distribution of estimated edge variables ẑ over the
test dataset. As in [67], we visualize the results in multiple adjacency matrices corresponding
to different edge types. In the adjacency matrix corresponding to the kth type of interaction,
the element Ai,j indicates the relative frequency of ẑj,i = k, where ẑj,i is the latent variable
for the edge from node j to node i. In other words, Ai,j equals the ratio of test samples in
which the model infers ẑj,i = k. By inspecting the edge type distributions, we can obtain
insight into the interpretability of the two models beyond the quantitative metrics.

2.6.3 Synthetic Scenes

As mentioned above, we designed two synthetic scenarios, car-following and lane-changing
scenarios. The two scenes and their underlying interaction graphs are illustrated in Fig. 2.3.
In both scenarios, there is a leading vehicle whose behavior does not depend on the others.
Its trajectory is given without the need for reconstruction. We assume it runs at constant
velocity. The other vehicles interact with each other and the leader in different ways. In
the car-following scene, we model the system with two types of edges: zi,j = 1 means that
Vehicle j follows Vehicle i; zi,j = 0 means that Vehicle j does not interact with Vehicle i.
In the lane-changing scene, two additional edge types are introduced: zi,j = 2 means that
Vehicle j yields to Vehicle i; zi,j = 3 means that Vehicle j cuts in front of Vehicle i.

The MDPs for the tested scenarios are specified as follows. In the car-following scene,
since the vehicles mainly interact in a longitudinal direction, we only model their longitudinal
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dynamics to simplify the problem. For all j ∈ {1, 2, 3}, the state vector of Vehicle j consists
of three states: xtj =

[
xtj v

t
j a

t
j

]⊺
, where xtj is the longitudinal coordinate, vtj is the velocity,

and atj is the acceleration. There is only one control input, which is the jerk. We denote it
as δatj. The dynamics are governed by a one-dimensional (1D) point-mass model:

xt+1
j = xtj + vtj∆t+

1

2
atj∆t

2,

vt+1
j = vtj + atj∆t,

at+1
j = atj + δatj∆t,

where ∆t is the sampling time. In the lane-changing scene, we consider both longitudinal
and lateral motions. The state vector consists of six states instead: xtj =

[
xtj y

t
j v

t
j θ

t
j a

t
j ω

t
j

]⊺
.

The three additional states are the lateral coordinate ytj, the yaw angle θtj, and the yaw rate
ωtj. There is one additional action, which is the yaw acceleration, denoted by δωtj. We model
the vehicle as a Dubins’ car:

xt+1
j = xtj + vtj cos(θ

t
j)∆t,

yt+1
j = ytj + vtj sin(θ

t
j)∆t,

vt+1
j = vtj + atj∆t,

θt+1
j = θtj + ωtj∆t,

at+1
j = atj + δatj∆t,

ωt+1
j = ωtj + δωtj∆t.

The structured reward functions were designed based on expert domain knowledge (e.g.,
transportation studies [60, 131]). We mainly referred to [123, 89] in this work. The reward

Table 2.1: Performance Comparison on Synthetic Dataset

Model
Car Following (∆t = 0.2s, T = 20)

RMSEx(m) RMSEy(m) RMSEv(m/s) Accuracy(%)

GRI 0.241± 0.125 - 0.174± 0.068 100.00± 0.00
NRI 0.047± 0.024 - 0.056± 0.015 66.70± 0.00

Supervised 0.039± 0.016 - 0.050± 0.009 -

Model
Lane Changing (∆t = 0.2s, T = 30)

RMSEx(m) RMSEy(m) RMSEv(m/s) Accuracy(%)

GRI 0.529± 0.230 0.207± 0.046 0.303± 0.128 99.95± 0.01
NRI 0.109± 0.045 0.155± 0.038 0.061± 0.016 55.9± 7.98

Supervised 0.062± 0.027 0.145± 0.035 0.048± 0.011 -

1 The data are presented in the form of mean± std.
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function of the car-following behavior is defined as follows:
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− (1 + exp(ψ1,2)) glat(x
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t
j),

where the features are defined as:

gIDM(x
t
i,x

t
j) =

(
max

(
xti − xtj, 0

)
−∆xIDM,t

i,j

)2
, (2.19)

gdist(x
t
i,x

t
j) = exp

(
−
(
max

(
xti − xtj, 0

))2
ζ2

)
, (2.20)

glat(x
t
i,x

t
j) =

(
ytj − gcenter(yti)

)2
.

The feature gIDM suggests a spatial headway ∆xIDM,t
i,j derived from the intelligent driver

model (IDM) [60]. The feature fdist ensures a minimum collision-free distance. We penalize
the following vehicle for surpassing the preceding one with the help of xIDM,t

i,j in Eqn. (2.19)
and Eqn. (2.20). The last feature glat exists only in the lane-changing scenario. It regulates
the following vehicle to stay in the same lane as the preceding one with the help of gcenter,
which determines the lateral coordinate of the corresponding centerline based on the position
of the preceding vehicle. Altogether, the features define the following behavior as staying in
the same lane as the preceding vehicle while maintaining a safe longitudinal headway.

The reward function for yielding is defined as:

re,2ψ2
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)
=− (1 + exp(ψ2,0)) gyield(x

t
i,x

t
j)

− (1 + exp(ψ2,1)) gdist(x
t
i,x

t
j).

The feature gdist is defined in Eqn. (2.20). The other feature gyield suggests an appropriate
spatial headway for yielding:

gyield(x
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i)
)
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+1
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)
ggoal(x
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i,x

t
j),

ggoal(x
t
i,x

t
j) =

(
max

(
xti − xtj −∆xyield, 0

))2
. (2.21)

The suggested headway is set to a constant value, ∆xyield, when the other vehicle is merging,
and it switches to ∆xIDM,t

i,j once the merging vehicle enters into the same lane, where its
behavior becomes consistent with car that is following. We follow [123] and adopt different
reward functions depending on the lanes in which the vehicles are located. Merging occurs
during a short period of time. Therefore, we assume the driver sets a fixed short-term goal
distance as in [123] and then transits to following behavior afterwards.



CHAPTER 2. GROUNDED RELATIONAL INFERENCE 31

The reward function for cutting-in is similar:

re,3ψ3

(
xti,x

t
j

)
=− (1 + exp(ψ3,0)) ggoal(x

t
j,x

t
i)

− (1 + exp(ψ3,1)) gdist(x
t
j,x

t
i),

where the features are defined as in Eqn. (2.20) and Eqn. (2.21) but with the input arguments
switched, as the merging vehicle should stay in front of the yielding one.

Apart from the edge rewards, all the agents share the same node reward function. The
following one is adopted for lane changing:

rnξ (x
t
j, a

t
j) =− (1 + exp(ξ0)) fv(x

t
j)

− (1 + exp(ξ1:3))
⊺ fstate(x

t
j)

− (1 + exp(ξ4:5))
⊺ faction(a

t
j)

− (1 + exp(ξ6)) flane(x
t
j),

where fstate and faction take the element-wise square of
[
atj θ

t
j ω

t
j

]
and

[
δatj δω

t
j

]
, respectively.

It penalizes large control inputs as well as drastic longitudinal and angular motions to induce
smooth and comfortable maneuvers. The feature fv is the squared error between vtj and the
speed limit vlim. It regulates the vehicles to obey the speed limit. The last term flane penalizes
the vehicle for staying close to the lane boundaries. For car following, we simply remove the
terms that are irrelevant in 1D motion. In all the reward functions, the parameters collected
in ψ and ξ are unknown during training and inferred by GRI. We take their exponents and
add one to the results. This requires the model to use the features when modeling the
corresponding interactions.

For the scenarios defined above, we aimed to generate one dataset for each scenario. For
each scenario, we randomly sampled the initial states of the vehicles and trained an expert
policy given the ground-truth reward functions and the interaction graph. Then, we used
the trained policy to generate the dataset. The same sampling scheme was used to sample
the initial states.

Results

We trained a GRI model with the policy decoder (2.7)-(2.9) on each dataset. The results
are summarized in Table 2.1. The NRI model can reconstruct the trajectories with errors
close to the supervised policy. However, it learns a relational latent space that is different
from the one governing the demonstration. Therefore, the edge variables cannot be inter-
preted as those semantic interactive behaviors. In contrast, our GRI model interprets the
interactions consistently with the domain knowledge inherited in the demonstration and re-
covers the interaction graph with high accuracy. However, it has larger reconstruction errors
compared to the baseline approaches. To better understand this performance gap in recon-
struction, we examined the reconstructed trajectories of both models. Instead of executing
the mean value of the policy output, we sampled the actions from the policy distribution to
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(a) Car 0 (b) Car 1

Figure 2.4: Visualization of the reconstructed trajectories in a lane-changing scene. (a)
and (b) correspond to the trajectories of Car 1 and Car 0, respectively. We visualize the
distributions of the reconstructed trajectories estimated using the kernel density estimate.
The ground-truth trajectories are denoted by the blue curves.

Figure 2.5: Average standard deviation of states along the time horizon. (a) and (b) show
the standard deviation of x and v in the synthetic car-following scenario. (c)–(e) show the
standard deviation of x, y, and v in the synthetic lane-changing scenario.

estimate the variance of reconstructed trajectories. In Fig. 2.5, we plot the average standard
deviation of reconstructed states along the time horizon. We observed that the GRI policy
decoder tends to have a larger variance. This partially explains the large RMSE values re-
ported in Table 2.1: the metrics were computed with a single reconstructed trajectory. The
policy distribution of GRI still has larger bias than that of NRI. We visualize the recon-
structed trajectories of a lane-changing case in Fig. 2.4. While the GRI policy induces larger
variance, the distribution of the reconstructed trajectories is sensible, which means that GRI
can still sufficiently recover the interactive behaviors.

We computed the empirical distribution of the estimated edge variables ẑ over the test
dataset. The results are shown in Fig. 2.6. The distribution concentrates into a single inter-
action graph for both models in both scenarios—as opposed to the case on the naturalistic
traffic dataset introduced in the next section—because the synthetic agents have consistent
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interaction patterns over all the samples. We observe that NRI learns symmetric relations:
In both scenarios, the NRI model assigns the same edge types to the edges e0,1 and e1,0. It
is difficult to interpret their semantic meaning because those pairwise interactions are asym-
metric in our synthetic scenes. In contrast, the reward functions in our GRI model enforce
an asymmetric relational latent space.

2.6.4 Naturalistic Traffic Scenes

To evaluate the proposed method in real-world traffic scenarios, we investigated the same
scenarios as in the synthetic case, car-following and lane-changing scenarios. We segmented
data from the Highway-101 and I-80 NGSIM datasets. Subsequently, we further screened the
data to select the interactive samples and ensure that no erratic swerving or multiple lane
changes occur. Unlike the synthetic agents, human agents do not have a ground-truth inter-
action graph that governs their interactions. Instead, we constructed hypothetical Ginteract
after analyzing the segmented data. The hypotheses for the two scenarios are depicted in
Fig. 2.3. The one for car following is identical to the ground-truth interaction graph we
designed for the synthetic agents. However, we proposed a different hypothesis for lane
changing. We excluded the cutting-in relation to reduce the number of edge types and
therefore simplify the training procedure. Moreover, we differentiated distinct interactions
according to the vehicles’ lateral position. We say that a vehicle yields to its preceding
vehicle if it drives in neighboring lanes, whereas it follows the preceding one if it drives in
the same lane.

As in the synthetic scenes, the trajectory of the leading vehicle is given without the need
for reconstruction. We feed the ground-truth state of the leading vehicle sequentially to the
policy decoder when decoding the trajectories of the other vehicles. This practice enables
us to heuristically isolate a small interacting group from the large number of vehicles on
the highway. While the leading vehicle’s behavior depends on the other vehicles, it is fairly
reasonable to assume that the behavior of the modeled following vehicles is independent of
that of other surrounding vehicles on the road after conditioning on the trajectory of the
leading vehicle. Even though there may still be other surrounding vehicles interacting with
them, their influence should be subtle. The models should be able to capture the interactions
among the modeled subset effectively while marginalizing out those subtle effects.

The node dynamics are the same as in the synthetic car-following scene. For the lane-
changing scenario, since we did not have accurate heading information, we adopted a two-
dimensional (2D) point-mass model instead. As the behavior of human drivers is much more
complicated than that of the synthetic agents, we designed reward functions with larger
model capacity using neural networks. In the car-following scenario, the reward functions
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Figure 2.6: The empirical distribution of estimated edge variables ẑ over the test dataset
in the synthetic scenarios. We summarize the results in multiple adjacency matrices cor-
responding to different edge types. In the adjacency matrix corresponding to the kth type
of interaction, the element Ai,j indicates the relative frequency of ẑj,i = k, where ẑj,i is the
latent variable for the edge from node j to node i.
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are defined as follows:
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The features facc and fjerk penalize the squared magnitude of acceleration and jerk to induce
smooth and comfortable maneuvers. The functions h1, h2, and h3 are neural networks with
rectified linear unit (ReLU) output activation. The feature gNN

s is the critical component
that shapes the car-following behavior. It learns a non-negative reference headway and
penalizes the following vehicle for violating it. The features gNN

v and fNN
v suggest reference

velocities considering interaction and themselves, respectively. The edge reward function
has a large modeling capacity because we allow it to learn the adaptive reference headway
and velocity from data. Nevertheless, it still defines the fundamental characteristic of the
following behavior, which is always staying behind the preceding vehicle.

In lane changing, the node reward function and the edge reward function for the following
behavior are similar to those in the car-following scenario. The node reward function has an
additional term for lateral position, which encourages the vehicles to drive in the target lane,
i.e., the lane in which the leading vehicle is driving. It also has additional terms to penalize
the magnitude of lateral velocity and acceleration to induce comfortable maneuvers. To
design the yielding reward, we define a collision point of two vehicles based on their states.
We approximate the vehicles’ trajectories as piecewise-linear between sequential time steps
and compute the collision point as the intersection between their trajectories (Fig. 2.7). We
threshold the point if it exceeds a hard-coded range of interest (e.g., if it is behind the
vehicles or greater than a certain distance). Next, we define the distance to collision (dpoc)
as the longitudinal distance from the vehicle to the collision point and the time to collision
(Tcol) as the time to reach the collision point, which is calculated by dividing dpoc by the
velocity of the vehicle. Then, the yielding reward function is defined as follows:
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Figure 2.7: Collision point diagram. At every time step, the heading vector of the agents
can be calculated by approximating the motion as linear. The intersection between these
vectors is taken to be the collision point where the agents would collide if a yield action is
not taken.

The functions hdpoc and hTcol
are neural networks with ReLU output activation. The gspatial

term learns a spatial aspect of the yield behavior and compares the agent’s distance from the
estimated collision point with the NN-learned safe reference within which the lane-changing
maneuver can be done. The second term gtime adds a temporal aspect by enforcing the
vehicle to ensure a minimum safe time headway. We adopt gtime because time to collision is
an important measure in traffic safety assessment [88]. The intuition behind this is to ensure
that the vehicles do not occupy the same position at the same time.

Results

For each scenario, we trained a GRI model with the recurrent policy decoder (2.10)-(2.13).
As shown in Table 2.2, in car following, the NRI model still performs better on trajectory
reconstruction, but the GRI model achieves a comparable RMSE on the NGSIM dataset. In
lane changing, the comparison is consistent: The NRI model slightly outperforms our model
in trajectory reconstruction, while our model dominates the NRI model in graph accuracy.

We visualize the interaction graphs in Fig. 2.8. One interesting observation is that the
graphs inferred by NRI have more edges in general. We want to emphasize that both models
are trained under the same sparsity constraint. The results imply that we could guide the
model to explore a clean and sparse representation of interactions by incorporating relevant
domain knowledge, whereas the sparsity regularization itself is not sufficient to serve this
purpose. Moreover, the NRI model assigns the same edge type to both edges between a pair
of agents. This makes the graphs less interpretable because the vehicles should affect each
other in different ways. On the other hand, while differing from the hypotheses, our GRI
model tends to infer sparse graphs with directional edges.

The supervised policy has the lowest reconstruction error in lane changing. This implies
that the human hypothesis is reasonable because it is capable of modeling the interactions
among human drivers. In the car-following case, the reconstruction error is slightly higher
than NRI. Since we cannot ensure that our hypothesis is the ground-truth interaction graph
underlying the interacting system—in fact, as we mentioned before, we never meant to treat
it as the ground-truth—it is possible that the NRI model can find a latent space that can
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effectively model the interactions in an unsupervised manner. However, as shown in Fig. 2.8,
it is difficult to interpret the graphs inferred by NRI. Considering the sparse and semantic
nature of the hypothesis as well as the fact that the supervised policy’s reconstruction error
is on par with the NRI model, we think the chosen hypothesis is a valid one.

2.6.5 Semantic Meaning of Latent Space

The experimental results described above show that our GRI model can recover the
ground-truth interaction graphs in the synthetic scenarios with high accuracy and infer
interaction graphs that are consistent with human hypotheses regarding the NGSIM dataset.
However, as we argue in Sec. 2.1, accurate interaction inference alone is not sufficient to
show that the model can learn a semantically meaningful latent space that is consistent with
human domain knowledge. Given an edge, the policy decoder should also synthesize the
corresponding semantic interactive behavior indicated by its edge type. It is difficult to verify
whether the policy decoder is able to synthesize semantically meaningful interaction simply
by monitoring the reconstruction error. A small reconstruction error on in-distribution data
could be achieved by imitating demonstration without modeling the correct interaction [47,
127]. To study the semantic meaning of the latent space, we design a set of out-of-distribution
tests 2 by adding increasing perturbation to the initial states. We then enforce the same
edge types as in the in-distribution case and run those different policy decoders to generate
the trajectories. We are curious whether the policy decoders can consistently synthesize the
correct semantic interactive behavior under a distribution shift. If so, we argue that the

2For clarification, the models used in this section are the same as those introduced in Sec. 2.6.3. We
merely designed additional out-of-distribution cases for testing.

Table 2.2: Performance Comparison on a Naturalistic Traffic Dataset

Model
Car Following (∆t = 0.2s, T = 20)

RMSEx(m) RMSEy(m) RMSEv(m/s) Accuracy(%)

GRI 1.700± 1.005 - 0.721± 0.363 100.00± 0.00
NRI 1.436± 0.880 - 0.650± 0.328 64.09± 0.08

Supervised 1.482± 0.938 - 0.665± 0.344 -

Model
Lane Changing (∆t = 0.2s, T = 30)

RMSEx(m) RMSEy(m) RMSEv(m/s) Accuracy(%)

GRI 7.118± 3.647 0.764± 0.336 4.320± 2.392 98.55± 0.06
NRI 6.532± 3.822 0.330± 0.181 4.291± 2.544 28.98± 0.08

Supervised 5.897± 3.651 0.323± 0.223 4.307± 2.435 -

1 The data are presented in the form of mean± std.
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Figure 2.8: The empirical distribution of estimated edge variables ẑ in the test dataset for
the naturalistic traffic scenarios. We summarize the results in multiple adjacency matrices
corresponding to different edge types. In the adjacency matrix corresponding to the kth type
of interaction, the element Ai,j indicates the relative frequency of zj,i = k, where zj,i is the
latent variable for the edge from node j to node i.

latent space indeed possesses the semantic meaning that is consistent with human domain
knowledge.

In the synthetic scenarios, we focus on the following relation. For both car-following and
lane-changing scenes, we maintain the following relation for the two vehicles, resulting in
interaction graphs merely consisting of the following edges (Fig. 2.9). We introduce pertur-
bation by decreasing the initial longitudinal headway to values unseen during the training
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stage. The initial longitudinal headway is defined as ∆x = x01−x00, namely, the longitudinal
distance from Vehicle 1 to Vehicle 0 at the first time step. During the training stage, we
sampled ∆x from uniform distributions: in car following, ∆x ∼ unif(4, 8); in lane changing,
∆x ∼ unif(8, 12). In the out-of-distribution experiments, we gradually decreased ∆x from
the lower bound to some negative value, which means Vehicle 0 is placed in front of Vehicle
1. We are curious whether the models can generate trajectories meeting the characteristics
of the car-following behavior in these unseen scenarios—scenarios with a different number
of vehicles and a distorted state distribution. To quantitatively evaluate if the synthesized
behavior satisfies the requirement of car following, we consider three metrics for evaluation:

• Success Rate:

SuccessRate =
1

N

N∑
i=1

1(∆xfi ⩾ δf ), (2.22)

where ∆xfi = xT1,i − xT0,i,

• Collision Rate:

CollisionRate =
1

N

N∑
i=1

1(dmin,i ⩽ δc), (2.23)

where dmin,i = min
t

√∣∣xt1,i − xt0,i∣∣2 + ∣∣yt1,i − yt0,i∣∣2,
• Lateral Distance:

∆y =
∣∣yT1 − yT0 ∣∣− ∣∣y01 − y00∣∣ . (2.24)

We intend to quantify three typical characteristics of following behavior with the met-
rics defined above: 1) staying behind the leading vehicle; 2) maintaining a substantial safe
distance from the leading vehicle; 3) staying in the same lane as the leading vehicle. We con-
sider the following vehicle’s maneuver successful if the vehicle manages to keep a substantial
positive final headway, and we consider two vehicles as colliding if the minimum distance
between them is smaller than the safety threshold. Finally, we expect the following behavior
to attain a negative ∆y, which means the following vehicle attempts to approach the leading
vehicle’s lane.

All metrics were applied in the lane-changing scenario, but we only adopted SuccessRate
in the car-following scenario. Since we only model the longitudinal dynamics, ∆y is not
applicable. For the same reason, if their initial positions are too close or the following vehicle
is located ahead of the leading one initially, the following vehicle will inevitably crash into the
leading vehicle, resulting in dmin = 0. Therefore, we only care about the first characteristic.
The results are summarized in Fig. 2.10 and Fig. 2.11, where we plot the mean values of
the evaluated metrics versus ∆x. In the car-following scenario, the NRI policy fails to slow
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Figure 2.9: Out-of-distribution scenarios. We removed one vehicle from the nominal scenes
and shifted the initial longitudinal headway ∆x to unseen values.

down Vehicle 0 to follow Vehicle 1 when ∆x becomes negative. In contrast, the supervised
policy and GRI policy maintain high success rates with negative ∆x. However, the number
of failure cases starts to increase for the supervised policy when ∆x becomes substantially
negative, whereas the GRI policy maintains a perfect success rate over the tested range of
perturbation. We visualize a marginal example in Fig.2.14, where both the NRI policy and
the supervised policy fail to maintain a positive final headway.

In the lane-changing scenario, the GRI policy maintains a consistent perfect success rate
over all tested values of ∆x. For the other two models, the success rates drastically decrease
with decreasing ∆x. In terms of ∆y, all models tend to reduce the lateral distance between
the vehicles, which is consistent with the second characteristic of the following behavior.
However, the GRI policy attains an average ∆y with a smaller magnitude, and the magnitude
decreases with decreasing ∆x. This implies that the GRI policy changes its strategy when the
initial position of Vehicle 0 is ahead of Vehicle 1. In order to maintain a proper safe distance,
Vehicle 0 does not change its lane until Vehicle 1 surpasses it. Meanwhile, the lateral behavior
is unchanged for the other two models. However, the vehicle cannot maintain a substantial
safe distance if it changes lanes too early which is verified by the plot of collision rate versus
∆x. The difference in their strategies is further illustrated by the example visualized in
Fig. 2.14.

We repeat the experiment on the NGSIM datasets. Similar to the case of the synthetic
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Figure 2.10: Results of the out-of-distribution synthetic car-following scenario. We plot
SuccessRate versus ∆x with the error band denoting the 95% confidence interval of the
indicator, 1(∆xfi ⩾ δf ). We set δf = 2m.

dataset, we remove one vehicle from each scene, resulting in an interaction graph consisting
of a single edge (Fig. 2.9). It is worth noting that removing a vehicle from a scene alters
the dynamic of the interacting system. It is not fair to expect the models to synthesize
the same trajectories in the dataset. Therefore, we do not aim to compare the generated
trajectories with the ones in the dataset in this out-of-distribution test. Instead, we check
whether the generated trajectories satisfy the desired characteristics of the corresponding
interactive behaviors.

In the lane-changing case, the remaining edge has the type of yielding. According to our
definition of the yielding relation, we consider the same characteristics and adopt the same
metrics defined in Eqn. (2.22)-(2.24) for evaluation. Since we do not have control over the
data generation procedure, we generate out-of-distribution test samples with different levels
of discrepancy by controlling the ratio of longitudinal headway change. Given a sample
from the original test dataset, we generate its corresponding out-of-distribution sample by
shifting its initial longitudinal headway ∆x by a certain ratio, denoted by δ, resulting in a
new longitudinal headway ∆x′:

∆x′ = (1− δ)∆x.

We evaluate the models on datasets generated with different values of δ. We are particularly
interested in the cases when δ ⩾ 1, which leads to a negative initial headway. We present
the results in Fig. 2.12 and 2.13. The comparison is consistent with the synthetic scenarios.
Compared to the other baselines, our GRI policy can synthesize trajectories that satisfy the
desired semantic properties in a larger range of distribution shifts.

The results suggest that even though the NRI model can accurately reconstruct the tra-
jectories, the unsupervised latent space and the corresponding policies do not capture the
semantic meanings behind the interactions. In contrast, the GRI model learns a semantically
meaningful latent space, which is consistent with human domain knowledge. Another useful
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Figure 2.11: Results of the out-of-distribution synthetic lane-changing scenario. We plot
SuccessRate, CollisionRate, and the mean value of ∆y versus ∆x. The error bands denote
the 95% confidence interval. For SuccessRate and CollisionRate, the error bands are of the
indicator functions. We set δf = δc = 2m.

insight we draw from the experiment is that interaction labels are not sufficient to induce
an explainable model with semantic latent space. Even though the supervised policy utilizes
additional information on the ground-truth interaction graph, it fails to synthesize the fol-
lowing behavior in novel scenarios. Although the GRI model still exhibits a considerable gap
in reconstruction performance compared to the supervised baseline, it represents a promis-
ing and principled way to incorporate domain knowledge into a learning-based autonomous
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Figure 2.12: Results of the out-of-distribution naturalistic traffic car-following scenario.
We plot SuccessRate versus ∆x, with the error bands denoting the 95% confidence interval
of the indicator, 1(∆xfi ⩾ δf ). We set δf = 2m.

driving system and induce an explainable model.

2.6.6 AIRL Ablation Study

With the motivation of incorporating semantic meaning into the relational latent space,
we developed GRI by introducing AIRL into relational inference and studied how the se-
mantic reward functions may guide relational latent space learning. However, it would be
interesting to take a different perspective and study the effects of introducing relational
inference and semantic reward functions into AIRL. In this section, we take the synthetic
scenarios as examples and conduct an ablation study comparing GRI against two variants.

The first one is an AIRL variant, denoted as GRI-AIRL, which is obtained by removing
relational inference and semantic reward functions from GRI. Concretely, both the policy
and reward decoders operate on a fully connected interaction graph with a homogeneous edge
type. We simply use MLPs to model the reward functions in Eqn. (2.14) and (2.15) instead
of those semantic reward functions. The objective function then becomes Eqn. (2.16), but
without the expectation of z or the information bottleneck constraint. The second one is a
variational AIRL variant, denoted as GRI-VAIRL, in which we introduce relational inference
but do not use the semantic reward functions. In this case, the objective function is identical
to the one in GRI, that is, Eqn. (2.16).

The results are summarized in Table 2.3. For the car-following scenario, the reconstruc-
tion performance is improved after introducing relational inference into AIRL. It is interest-
ing that the GRI-VAIRL variant is able to recover the ground-truth interaction graph, even
without the semantic reward functions. It makes sense because the car-following scenario
only consists of a single non-trivial edge type. It is plausible for the model to distinguish
non-interaction edges from the others, because null reward is enforced for non-interaction
edges. In some senses, we may still consider the reward function semantic—it incorporates
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Figure 2.13: Results of the out-of-distribution naturalistic traffic lane-changing scenario.
We plot SuccessRate, CollisionRate, and the mean value of ∆y versus ∆x. The error bands
denote the 95% confidence interval. For SuccessRate and CollisionRate, the error bands are
of the indicator functions. We set δf = δc = 2m.

the semantic meaning of non-interaction into the latent space. However, we cannot guar-
antee that GRI-VAIRL can distinguish between different non-trivial interactive behaviors,
which is verified by the lane-changing case. Fig. 2.15 shows the inferred interaction graph.
The model only adopts a single non-trivial edge type to describe all the interactive behav-
iors. Compared to the ground-truth graph, the inferred graph has an additional edge z2,1
but ignores the edge z1,0. Ignoring this edge limits the modeling capacity of the policy de-
coder, which could possibly explain why GRI-VAIRL has larger RMSEx and RMSEv than
GRI-AIRL in the lane-changing case.

In summary, we could improve reconstruction performance by introducing relational in-
ference into AIRL. While GRI-VAIRL has a larger reconstruction error in the lane-changing
case due to the biased inferred graph, we still observe that GRI-VAIRL converges faster. The
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Figure 2.14: Examples where the leading car is placed behind the following car at the
initial time step. The trajectories are visualized as sequences of rectangles. Each rectangle
represents a vehicle at a specific time step. The vehicles are driving along the positive
direction of the x-axis. The GRI policy still prompts the car-following behavior: It slows
the vehicle until the leading one surpasses it. Meanwhile, the NRI policy and the supervised
policy do not behave as Ginteract suggests.

learning process becomes more stable and less sensitive to different hyperparameters. We
think this is because the model may identify agents that are not interacting with each other,
preventing the reward decoder from fitting a reward function unifying both interactive and
non-interactive behaviors. It is still necessary to incorporate semantic reward functions to
differentiate different interactive behaviors and induce a semantically meaningful interaction
graph. However, semantic latent space comes at a cost of reconstruction performance. The
structured reward functions limit the modeling capacity of the reward decoder. Additionally,
although the structured reward functions are differentiable, there is no guarantee that they
can be well optimized through gradient descent. As a result, they may interfere with the
stability of the learning procedure.
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Figure 2.15: The graph inferred by GRI-VAIRL in the synthetic lane-changing scenario.

2.7 Discussion and Limitation

2.7.1 Application of the Semantic Latent Space

Designing an explainable model is a crucial step toward trustworthy human-AI interac-
tion. However, it is still unclear how humans may benefit from improved explainability. We
would like to briefly discuss the potential application of the semantic latent space introduced
in GRI. When the autonomous vehicle encounters an unfamiliar situation (e.g., the out-of-
distribution scenarios studied in Sec. 2.6.5), a semantic latent space gives the safety drivers
or passengers the ability to review and override the inferred interaction graph if the model
misunderstands the scenario. In contrast, if the learned interactive behaviors do not have
explicit semantic meaning, humans can neither understand an interaction graph nor identify
the correct edge types. Such safety assurance could help in facilitating safe and trustworthy
cooperation between humans and autonomous vehicles.

However, it is impractical to require users to monitor the model output in real-time.

Table 2.3: Ablation Study on Synthetic Dataset

Model
Car Following (∆t = 0.2s, T = 20)

RMSEx(m) RMSEy(m) RMSEv(m/s) Accuracy(%)

GRI 0.241± 0.125 - 0.174± 0.068 100.00± 0.00
GRI-VAIRL 0.120± 0.054 - 0.116± 0.039 100.00± 0.00
GRI-AIRL 0.138± 0.068 - 0.150± 0.043 -

Model
Lane Changing (∆t = 0.2s, T = 30)

RMSEx(m) RMSEy(m) RMSEv(m/s) Accuracy(%)

GRI 0.529± 0.230 0.207± 0.046 0.303± 0.128 99.95± 0.01
GRI-VAIRL 0.377± 0.201 0.160± 0.038 0.190± 0.058 50.0± 0.00
GRI-AIRL 0.304± 0.321 0.198± 0.065 0.173± 0.101 -

1 The data are presented in the form of mean± std.
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Instead, we can introduce an additional module to detect out-of-distribution scenes [29, 122]
and use the estimated epistemic uncertainty to decide when to query the end users. In [29],
the authors proposed an adaptive variant of their robust imitative planning algorithm, which
incorporates such a unit. It is also a common practice for current autonomous driving com-
panies to have human assistants for vehicles to query when encountering abnormal situation.

2.7.2 Limitation of the Learning Algorithm

In our experiments, GRI always has higher reconstruction error than NRI, especially on
the synthetic dataset. One of the reasons for this is that reconstruction error is not di-
rectly optimized under the AIRL formulation. The objective function of NRI consists of a
reconstruction loss, which essentially minimizes the Euclidean distance between the recon-
structed trajectory and the ground-truth trajectory. In other words, it directly minimizes
the RMSE metrics used in our evaluation. In contrast, GRI adopts the objective function of
AIRL, which also minimizes the distance between the trajectory pair. However, the distance
is defined by the learned discriminator and is not necessarily equivalent to the Euclidean
distance. In Sec. 2.6.6, we study two AIRL baseline models on the synthetic dataset. The
results suggest that none of these AIRL-based approaches achieve the same reconstruction
performance as NRI.

Another reason is that the current learning algorithm is not entirely stable because of
the adversarial training scheme we introduce when incorporating AIRL into the original NRI
model. In typical AIRL settings, we can mitigate this problem by warm-starting the training
with a policy network pretrained through imitation learning or behavior cloning [30, 146].
However, since we aim to learn a semantic latent space, warm-starting the training with a
model with unsupervised latent space is not helpful. Alternatively, we may initialize the
policy decoder with the supervised one. One issue with this is that it will change our current
setting where human labels are not required. We will investigate this new setting in our future
work and develop a more stable training scheme to further optimize the performance of GRI.
A stable training scheme is also a prerequisite before applying GRI to more sophisticated
real-world scenarios.

The structured reward functions also interfere with the stability of the learning procedure.
Compared to the GRI variant studied in Sec. 2.6.6 with the semantic reward functions
removed, GRI is more sensitive to hyperparameters and prone to diverging if not carefully
tuned. This is because although the structured reward functions are differentiable, there is
no guarantee that the reward functions can be stably optimized through gradient descent.
In our future work, we will explore a more stable and robust learning scheme with those
structured reward functions.
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2.8 Chapter Summary

In this chapter, we propose GRI, which models an interactive system’s underlying dynam-
ics by inferring the agents’ semantic relations. By incorporating structured reward functions,
we ground the relational latent space into semantically meaningful behaviors defined with
expert domain knowledge. We demonstrate that GRI can model interactive traffic scenar-
ios under both simulated and real-world settings and generate semantic interaction graphs
explaining the vehicle’s behavior by their interactions.

There are several technical gaps we need to bridge before extending the current framework
to more complicated traffic scenarios. One technical gap is graph dynamics. We currently
assume a static interaction graph over the time horizon. We will investigate how to incor-
porate dynamic graph modeling into the current framework. Another gap is the cooperative
assumption, which we would like to remove in the future so that the framework can be
generalized to non-cooperative scenarios. Further, as we mentioned earlier, there is still a
considerable gap in the reconstruction performance of the GRI model compared to the other
baselines. In future work, we will improve the model architecture and training algorithm to
fill this performance gap while maintaining the advantages of GRI as an interpretable model.

Nevertheless, we are encouraged to see that the structured reward functions can in-
deed ground the relational latent space into semantically meaningful interactive behaviors.
This allows us to incorporate knowledge of human interaction in a principled manner to
induce an interpretable interaction model. Moreover, although we limit our experiments
to the autonomous driving domain, the model itself is formulated without specifying the
context. As long as proper domain knowledge is available, the proposed method can be
extended naturally to other fields (e.g., human–robot interaction). We believe that the GRI
framework proposed in this chapter could be an important building block to improve model
interpretability for autonomous driving as well as other intelligent systems interacting with
humans.
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Chapter 3

Pseudo Labels for Interpretable
Interactive Trajectory Prediction

3.1 Introduction

The last chapter introduced GRI as an interpretable model for multi-agent interaction
modeling. Although we can extend GRI for trajectory prediction, the current performance
limits of GRI make it impractical to directly adapt it to trajectory prediction tasks in com-
plicated interactive traffic scenarios. As mentioned at the end of the last chapter, we need
to fill the performance gap before extending GRI to more complicated scenarios, which will
be left for future investigation. In this chapter, we look into this problem from the opposite
direction. Instead of developing an interpretable model and extending it to trajectory pre-
diction, we study how to improve the interpretability of state-of-the-art trajectory prediction
models while maintaining consistent prediction accuracy.

We focus on the interaction prediction problem formulated by Waymo on their Waymo
Open Motion Dataset [25]. Previous prediction benchmarks mainly focus on single-agent
settings [150]. When multiple agents exist, the predicted trajectories of the agents are eval-
uated separately. While this evaluation scheme is sufficient for ordinary cases, it cannot
precisely assess a prediction model in highly interactive scenarios (e.g., intersections and
roundabouts). For instance, a vehicle may enter the intersection at a two-way stop or yield
before the stop line. In such a scenario, a prediction model capturing the multimodality
of a single vehicle can achieve good performance under the single-agent evaluation scheme.
However, two vehicles from different directions should never enter the intersection simulta-
neously. In this case, it is necessary to accurately predict the joint behavior of interacting
agents to ensure safe and efficient operations. However, a single-agent evaluation scheme can-
not effectively evaluate a model for joint prediction. In the interaction prediction benchmark
provided by Waymo, the trajectories of two interacting agents are predicted and evaluated
jointly. This motivates us to study the interaction prediction problem to derive a suitable
trajectory prediction model for highly interactive scenarios.
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In particular, we are interested in the interaction prediction problem under the goal-
conditioned framework, as goal-conditioned methods can effectively capture the multimodal-
ity in trajectory distribution [86, 151, 42]. However, previous methods mainly focus on
single-agent prediction. For multiple agents, these methods predict the trajectories inde-
pendently for each agent. To model the joint distribution of interacting agents’ goals, we
extend the goal set to a goal-pair set which allows joint prediction of two agents’ endpoints.
Under this framework, we first explicitly predict the distribution of an agent’s endpoint over
a discretized goal set and then complete the trajectories conditioned on the selected goal
points. By choosing a dense set as in [42], this categorical distribution of goal pairs can
reasonably approximate the joint distribution in any interactive scenarios.

In practice, downstream modules require a small set of representative predictions [24].
The limited onboard computational resources also restrict the number of sampled trajec-
tories. For the downstream module to understand the interactive scenario precisely, it is
critical to ensure that different interaction modes can be efficiently captured with a limited
number of sampled trajectories. To this end, we leverage the CVAE framework [117] and
introduce a discrete latent space to capture the interaction modes explicitly. Compared to
continuous latent variables, a discrete latent variable enables better interpretability of the
results [56, 109]. However, it does not guarantee that the model can learn an informative
latent space distinguishing semantically meaningful interaction modes that are useful for
downstream modules.

In our goal-conditioned CVAE framework, the goal pair follows a categorical distribution,
changing the reconstruction task into a multi-label classification problem. Without knowing
the distance between the goal pairs, it is difficult for the model to distinguish between them.
Therefore, it is difficult to determine which encoding goal pairs should correspond to the
same latent variable, which leads to the problem of posterior collapse in CVAE, resulting
in an uninformative latent space. To tackle this problem, we propose guiding the training
with pseudo labels1 designed based on domain knowledge. For each ground-truth goal pair,
we assign positive target values to goal pair candidates similar to it. The model learns to
encode similar goal pairs into the same latent variable by minimizing the distance between
the decoded distribution and the pseudo labels. Since the goal pair distribution is defined
over a fixed finite set, the pseudo labels can be pre-computed for each goal pair candidate.
We do not require the computation of pseudo labels to be differentiable, which allows us
to flexibly incorporate domain knowledge and specify any interaction modes for the latent
space to capture. In particular, we introduce three types of pseudo labels corresponding to
different domain knowledge on interaction. We show that the model learns to capture the
designated interaction modes in its latent space with the proposed pseudo labels.

The rest of the chapter is organized as follows. In Sec. 3.2, we briefly introduce the
goal-conditioned prediction framework under the single-agent setting, which is commonly
adopted in the literature. In Sec. 3.3, we formulate the goal-conditioned prediction problem

1For clarification, we refer to any generated labels other than the ground-truth ones as pseudo labels.
They are not necessarily generated for semi-supervised or self-supervised learning.
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for joint trajectory prediction of interacting pairs. In Sec. 3.4, we illustrate the motivation
of interpretable interactive prediction and pseudo labels with a toy example and derive three
types of pseudo labels incorporating different domain knowledge. In Sec. 3.5, we present
the architecture of the model we design based on state-of-the-art goal-conditioned trajectory
prediction models. In Sec. 3.6, we report the experiments on the Waymo Open Dataset,
showing that the proposed pseudo labels can effectively induce an interpretable latent space
and further improve prediction performance.

3.2 Background: Goal-Conditioned Prediction

In general, a trajectory prediction model learns to model the distribution p(y|T ), where y
denotes the future trajectory of the target agent, and T denotes the embedding of the agent’s
history and context information. In a goal-conditioned trajectory prediction framework, the
prediction task consists of two stages, goal prediction and trajectory completion, resulting
in the decomposition of p(y|T ):

p(y|T ) =

∫
g∈G

p(y|g,T ) · p(g|T )dg,

where G is the goal space. The goal-prediction model p(g|T ) can capture the multimodality
in driver intention, while the goal-conditioned trajectory completion module models the
driving behavior to reach the goals.

The overall framework has three stages. The first stage is goal distribution prediction.
Depending on the goal space, p(g|T ) can be modeled as either a continuous or discrete
distribution. We are particularly interested in the formulation of [42], in which G is defined
as a dense and discretized goal set covering the drivable area. Here, p(g|T ) directly models
the distribution of goal points instead of anchor points, as in [151]. The second stage is
goal-conditioned trajectory prediction, where the conditional distribution of future motions
is modeled as a simple unimodal distribution (e.g., Gaussian distribution). The third stage
is sampling and selecting, where a final small number of predicted trajectories are selected
to fulfill the requirement of downstream applications. Heuristic-based algorithms, such as
non-maximum suppression (NMS), are commonly used for this purpose [151].

3.3 Problem Formulation

The framework described in Sec. 3.2 is primarily designed for single-agent prediction. It
is not straightforward to extend this two-stage prediction scheme to multi-agent settings. In
multi-agent trajectory prediction, we need to model the joint distribution of all agents’ future
trajectories, i.e., p (y1,y2, · · · ,yN |T ). We can decompose the interacting agents in the tra-
jectory completion stage by adopting the assumption that the trajectories are independent
after conditioning on the goals. However, we still need to model the joint distribution of their



CHAPTER 3. PSEUDO LABELS FOR INTERACTIVE PREDICTION 52

goals, i.e., p(g1, g2, · · · , gN |T ). We cannot simply assume that the trajectories of interacting
agents are independent and decompose the joint distribution into

∏N
i=1 p(gi|T ). The sim-

plified distribution cannot model the interactive behavior between agents, for instance, the
fundamental interacting rule—collision avoidance. Meanwhile, if we directly model the joint
distribution, we need to select a discrete goal set Gi for each modeled agent i. The overall
dimension of the joint distribution becomes

∏N
i=1 |Gi|, which grows exponentially with the

number of agents.
To tackle this problem, one heuristic method is to first separately predict the marginal

distributions of the goals g1, g2, · · · , gN and then prune the unrealistic combinations using
designed rules. For example, collision is normally ruled out in the predicted trajectories [130,
124] to reduce prediction errors. However, it is difficult to prune the distribution with
heuristically selected rules without introducing bias into the model. After heuristic pruning,
the model cannot capture rule-violating behaviors (e.g., traffic accidents).

Instead, we propose an alternative scheme to mitigate the curse of dimensionality. We
first predict the marginal distributions of the goals. Then, we use the marginal distribu-
tions to prune the goal sets {Gi}Ni=1. Concretely, we select K goal candidates with the
highest marginal probability for each agent. We find that we can reasonably approximate
the marginal distribution with K << |Gi|. It is then sufficient to model the distribution of
|K|N goal combinations, which is applicable for the prediction task of the interacting pairs
we study. Further, we do not regularize joint prediction with interaction rules to avoid bias
or over-regularization. Instead, we propose a novel approach for incorporating interaction
domain knowledge under the VAE formulation with pseudo labels, which will be introduced
in the next section.

3.4 Interpretable Interactive Prediction

This section presents our study on a motivating toy example of an interactive traffic
scenario. The purpose is twofold: 1) to demonstrate the necessity of modeling the joint dis-
tribution in interactive prediction; 2) to explore how we may incorporate domain knowledge
on interaction rules to induce an interpretable model.

The scenario we consider is illustrated in Fig. 3.1. Vehicle A and B are driving toward a
collision point. The states of the vehicles are sa, sb and va, vb, where sa,b are the displacements
of the vehicles A,B relative to the collision point and va,b are the absolute velocities. Each
vehicle is assigned a target position to follow at each step, depending on which vehicle has
the “right of way.” If a vehicle has the right of way, it follows a target substantially far
away. Otherwise, the target is set as the collision point if the other vehicle has the right of
way and has not passed the collision point. We assume that the right of way is affected by
the difference in the time headway at the initial time since the car with a shorter headway
time to the collision point is more likely to have the right of way in the interaction. The

time headway at time step t is defined as Thead,t = max
(
st
vt
, 0
)
. The probability of Vehicle
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Figure 3.1: A motivating toy example, where two cars are driving toward a collision
point. The states of the vehicles are sa, sb and va, vb, where sa,b are the displacements of
the vehicles A,B relative to the collision point, and va,b are the absolute velocities. Each
vehicle is assigned a target position to follow at each step, depending on which vehicle has
the “right of way.” If a vehicle has the right of way, it follows a target substantially far away.
Otherwise, the target is set as the collision point if the other vehicle has the right of way
and has not passed the collision point.

A getting the right of way is calculated as follows:

pA = 0.5

(
tanh

Ta,head,0 − Tb,head,0
η

+ 1

)
,

where η controls the rate of transition between entering into the intersection and yielding.
The dynamics of the vehicles are governed by the intelligent driver model (IDM) [132]:

st+1 = st −∆t · vt,

vt+1 = vt +∆t ·

{
a

[
1−

(
vt
v0

)δ
−
(
s∗(vt,∆vt)

st − dt

)2
]
+ ωt

}
,

where

∆vt = vt − v0,

s∗(vt,∆vt) = s0 +max

(
0, vtT +

vt∆vt

2
√
ab

)
,

ωt ∼ N
(
0, σ2

)
.

The term dt denotes the target position. It is zero if the vehicle yields and the other vehicle
has not passed the collision point. Otherwise, a large negative value is assigned to dt. The
Gaussian noise ωt is added to inject stochasticity. The remaining parameters are defined as
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in the standard IDM. Readers may refer to [132] for detailed definitions. In our experiments,
we set v0 = 10m/s, T = 2s, s0 = 4m, δ = 4, a = 1m/s2, b = 1.5m/s2, ∆t = 0.2s, and
σ = 4m/s2.

Given the same initial conditions, there are two possible interaction modes, i.e., Vehicle A
yields to Vehicle B and vice versa. These two interaction modes result in a multimodal future
trajectory of both vehicles. The task here is to jointly predict the endpoints g = (ga, gb) =
(sa,20, sb,20) of both vehicles after 20 time steps. We abuse the notation here and denote the
initial condition as T , i.e., T = (T a,T b) = ([sa,0, va,0], [sb,0, vb,0]), as the initial condition is
the context information in this toy example. This is analogous to the goal prediction stage
in the goal-conditioned trajectory prediction framework. To train the model, We construct
a dataset with randomly sampled initial conditions.

3.4.1 Marginal vs. Joint Prediction

To demonstrate the necessity of joint prediction in this interactive scenario, we compare
the joint and marginal distributions of (ga, gb). We approximate the distributions with
samples and visualize the distributions in Fig. 3.2. For each vehicle, the marginal distribution
of the endpoint has two peaks, corresponding to entering the intersection and yielding. We
can observe that the peaks are paired, corresponding to two different interaction modes
from the joint distribution. However, we cannot identify the correspondence between the
peaks from the marginal distributions. As a result, we may obtain unrealistic predictions
(e.g., both vehicles yield) by querying a marginal prediction model. In highly interactive
cases, this may cause the downstream planner to misunderstand the scenarios and generate
dangerous or inefficient maneuvers.

3.4.2 Joint Prediction with Interactive Latent Variable

Now we study joint prediction using this toy example. We discretize the spaces of sa,20
and sb,20 and obtain a discrete set of goal pairs, Ga,b. We formulate the joint prediction
problem as a classification problem to predict the joint goal distribution from the initial
conditions. We leverage the CVAE framework [117] and introduce a discrete latent variable
z. The objective of the prediction model is twofold:

• Accurately model the ground-truth joint distribution of two agents’ goal pairs given
the initial conditions.

• Encode different interaction modes into the discrete latent space to enhance inter-
pretability and sampling efficiency.

The CVAE model consists of three modules: 1) An encoder qθ(z|T , g) approximating the
posterior distribution of z; 2) A conditional prior pϕ(z|T ); 3) A decoder pψ(g|T , z) modeling
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Figure 3.2: The ground-truth joint distribution and marginal distributions of sa,20 and
sb,20. We use kernel density estimation (KDE) to smooth the empirical distributions.

the conditional joint goal distribution. We use simple MLPs for all the modules. The model
is trained by maximizing the ELBO:

L(θ, ϕ, ψ) = ET ,g,y∼D

{
Ez∼qθ(z|T ,g) [f (y, pψ (·|T , z))]− βDKL [qθ(z|T , g)∥pϕ(z|T )]

}
, (3.1)

where D is the dataset consisting of initial states T , goal pairs g, and ground-truth labels
for goal distribution y. The vector y ∈ {0, 1}|Ga,b| collects ground-truth scores of the goal
pairs in Ga,b. We assign one to the ground-truth goal pair and zero to the others. In the
objective function, the first term is the joint reconstruction loss. We implement a binary
cross-entropy (BCE) loss for the categorical joint goal distribution. The second term is the
Kullback–Leibler (KL) divergence between posterior and prior encoder.

3.4.3 Avoiding KL Vanishing with Pseudo Labels

Our experiments with the CVAE model formulated above show that the KL divergence
term tends to vanish, and the conditional prior distribution always concentrates into a single
value. As shown in Fig. 3.3a, the latent space is completely uninformative. While the
decoder can still model the joint distribution, the model does not fulfill our objective to
explicitly capture interaction modes with the latent space. This phenomenon is similar to
the posterior collapse problem that occurs when an autoregressive decoder is used in sequence
modeling [33]. The MLP decoder we use can model the joint distribution without the latent
space. With such a powerful decoder, the model is prone to ignoring the latent space to
minimize the KL divergence.
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(a) Vanilla CVAE Model

(b) CVAE Model with Pseudo Distance Labels

Figure 3.3: Joint goal distributions decoded from different latent variables with different
models. For the vanilla CVAE model, the decoded distributions are invariant because of
posterior collapse. With the pseudo distance labels, the CVAE model is able to capture the
two interaction modes in its latent space. The results are the same when using other pseudo
labels.

We find it challenging to force the model to escape from posterior collapse in our case.
Given the same initial conditions, the joint prediction model essentially solves the following
maximization problem when the discrete latent variables are not involved:
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max
p∈∆d

|D|∑
i=1

d∑
j=1

1
(
yij = 1

)
log pj + 1

(
yij ̸= 1

)
log (1− pj),

where d = |Ga,b|. The optimal solution equals the empirical distribution of goal pairs in the
dataset:

p∗j =
1

|D|

|D|∑
i=1

1
(
yij = 1

)
, for j = 1, 2, · · · , d. (3.2)

By introducing a discrete latent variable z ∈ {1, 2, · · · , dz}, the VAE model essentially clus-
ters Ga,b into dz subgroups and solves the optimization problem separately for each subgroup.
The optimal clustering scheme maximizes the sum of objectives over the subgroups. Given
a fixed clustering scheme with subgroups {Sk}dzk=1, the optimal objective value equals to:

L({Sk}) =
dz∑
k=1

∑
j∈Sk

nj log(
nj
nSk

) + (nSk − nj) log(1−
nj
nSk

),

where we define nj and nSi as:

nj =

|D|∑
i=1

1
(
yij = 1

)
, nSk =

|D|∑
i=1

∑
j∈Sk

1
(
yij = 1

)
.

The optimal solution is then the subgroups that maximize L({Sk}). With posterior collapse,
the clustering scheme corresponds to having all the elements in a single subgroup while
leaving the remaining subgroups empty. In our toy example, it is easy to check that better
solutions do exist, for example, the one shown in Fig. 3.3b. However, it is difficult for the
model to escape from the suboptimal solution shown in Fig. 3.3a. From the equation above,
we can see that the optimal clustering scheme relies solely on the frequencies of different
classes in the dataset. We can interchange goal pairs that occur with similar frequencies
without affecting the objective value. It is then difficult for the VAE model to learn whether
two goal pairs should correspond to the same latent variable. Even if the model manages
to avoid KL vanishing, a latent space that clusters goal pairs based purely on frequencies is
not informative.

If we introduce an additional loss function incorporating our domain knowledge about
the proximity between goal pairs, it will break the tie and regularize the model to cluster the
goal pairs. We propose incorporating such auxiliary loss functions with generated pseudo
labels. For each goal pair gj, we generate pseudo labels over Ga,b denoted by ŷj ∈ [0, 1]d.
We then add the following auxiliary loss function to the original ELBO objective:

αET ,g,y∼D,z∼qθ(z|T ,g)

d∑
j=1

1(yj = 1)f
(
ŷj, pϕ(·|T , z)

)
.



CHAPTER 3. PSEUDO LABELS FOR INTERACTIVE PREDICTION 58

The function f quantifies the distance between the pseudo labels and the conditional joint
goal distribution. Intuitively, we assign positive target values to goal pairs that we think
are “close” to gj. By optimizing the auxiliary loss, the model learns to encode “close” goal
pairs into the same latent variable. We do not require the pseudo labels to be differentiable
functions of goal pairs, which allows us to incorporate arbitrary formats of pseudo labels. In
the following section, we will introduce three types of pseudo labels.

3.4.4 Pseudo Labels

Pseudo Distance Labels

Since the agents move continuously, their behaviors should be consistent if the targeted
goal pairs are close to each other in Euclidean distance. Such goal pairs should therefore
be clustered into the same group. Consequently, we introduce the pseudo distance labels
defined as:

ŷdistance
j,i = exp

(
−
∥gj − gi∥2

2σ2

)
, i = 1, 2, · · · , d.

This essentially smooths the original singular positive label with the radial basis (RBF)
kernel. We choose f as the BCE loss function.

With the auxiliary loss defined with the pseudo distance labels, the CVAE model learns
to separate the two interaction modes in the latent space (Fig. 3.3b). Further, the prior
probabilities of the two latent variables are consistent with the ground-truth probabilities
of the corresponding interaction modes. The interaction modes can be effectively separated
because the Euclidean distance between goal pairs from different clusters is far large.

Pseudo Marginal Labels

The joint goal distribution is the consequence of the interaction between agents. Suppose
Agent A behaves consistently while Agent B changes its behavior. In that case, we may
characterize the interaction by the goal point of Agent A. Therefore, we consider goal pairs
that share the same goal of one agent closer than those that are totally different. We then
define two sets of pseudo marginal labels:

ŷmarginal,a
j,i = 1

(
gj,a = gi,a

)
, ŷmarginal,b

j,i = 1
(
gj,b = gi,b

)
.

And we define the corresponding loss function:

fmarginal
(
ŷmarginal,a
j , ŷmarginal,b

j , pϕ(·|T , z)
)

= log

(
d∑
i=1

1
(
ŷmarginal,a
j,i = 1

)
pϕ(gi|T , z)

)

+ log

(
d∑
i=1

1
(
ŷmarginal,b
j,i = 1

)
pϕ(gi|T , z)

)
.
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We essentially maximize the log likelihood of the ground-truth goal pairs under the marginal
goal distributions.

In the toy example, we can guide the CVAE model to perfectly separate the goal pairs
into two interaction modes. The result is the same as shown in Fig. 3.3b. The interaction
modes can be perfectly identified because the goal pairs from different clusters happen to
have distinct coordinates in both dimensions in our toy example. If only one of the agents
changes his behavior in different modes, the pseudo marginal labels alone will not be helpful.

Pseudo Interaction Labels

The last type of pseudo labels we introduce allows us to incorporate domain knowledge
on interaction in a flexible way, which we refer to as pseudo interaction labels. From the per-
spective of a downstream planner, we want the latent space to distinguish specific interaction
modes for efficient planning and risk evaluation (e.g., collision vs. no collision, yielding vs.
passing). If we know that these interaction modes can be identified with certain features,
we can design the corresponding pseudo interaction labels as follows:

ŷinteract
j,i (T ) = 1

(
h(T , gi) = h(T , gj)

)
,

where the function h maps the goal pair and initial states to a vector of discrete variables
characterizing the interaction. We assign positive labels to the goal pairs that have the
same features as the ground-truth goal pair. This indicates that they are under the same
interaction mode as the ground-truth one. We note that pseudo interaction labels unify
the interaction rules that have been applied in prior work as regularization (e.g., collision
penalty [130, 124]). However, pseudo interaction labels are only applied to the distribution
decoded from the latent variable to which the ground-truth goal pair belongs. In other words,
we only require that there be an interaction mode in the latent space that is consistent with
the ground truth rather than requiring all the predicted goal pairs to satisfy the constraints.
As a result, we can avoid over-regularization and unnecessary bias.

Regarding the loss function, maximizing the log likelihood of positive goal pairs could be
misleading. There could be a large ratio of goal pair candidates under the same interaction
mode. Inspired by [64], we adopt a loss function to minimize the probabilities of negative
labels:

f interact
(
ŷinteract
j , pϕ(·|T , z)

)
=

d∑
i=1

1(ŷinteract
j,i = 0) log (1− pϕ(gi|T , z)) .

In this toy example, we adopt an interaction feature indicating which agent has longer
displacement in 20 steps, i.e., 1 (sa,0 − sa,20 > sb,0 − sb,20). With this feature, we can identify
which agent decides to yield. By incorporating the pseudo interaction labels, we are able to
separate the interaction modes and obtain a model similar to the one shown in Fig. 3.3b.
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Figure 3.4: Overall Model Architecture and Pseudo Interaction Labels.

3.5 Framework Architecture

In this section, we introduce the architecture of the model we propose for interactive
trajectory prediction. As illustrated in Fig. 3.4a, the model consists of three modules: 1) A
marginal goal prediction module that predicts the goal distribution of each interacting agent
separately; 2) A joint goal prediction module that explicitly models the joint distribution of
goal pairs based on the predicted marginal distributions; 3) A trajectory completion module
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that predicts the trajectory of each agent conditioned on sampled goal points. We also
introduce the architecture of each module and the training scheme. Finally, we describe the
goal selection method we use to query the model during online inference.

3.5.1 Modules

Marginal Goal Prediction

We choose DenseTNT [42] as the backbone model when designing the marginal goal
prediction module. Concretely, we extract features of high-definition (HD) maps and agents
using the vectorized encoding method proposed in [36]. Subsequently, we use the obtained
scene context embeddings to generate goal embeddings for a dense goal set G. The goal set
is sampled from the HD maps to cover the drivable area of the modeled interacting agents.
We follow DenseTNT and use the attention mechanism in [134] to extract local information
between the goals and the scene. We denote the embeddings obtained at this stage for the
dense goals and interacting agents as F ∈ R|G|×dg and L ∈ R2×dv , respectively, where dg and
dv are the dimensions of goal and agent embeddings.

The interaction prediction task of the Waymo Open Dataset has a prediction horizon
of 8s. It is difficult to capture the multimodality in long-term trajectory distribution with
a single goal point. We follow [43] to model the goal distributions in an autoregressive
manner at 3s, 5s and 8s, respectively. To encourage the use of interaction information in
goal prediction, we add an MLP to update the interacting agent embeddings at each time
step as follows:

L̂t,i = MLP
(
Li,L−i,F ki1:t−1

,F k−i1:t−1

)
,

where F ki1:t−1
collects the embeddings of the ith agent’s goals in previous time steps. Then,

we predict the score of the kth goal for the ith agent at each time step as follows:

ϕit,k =
exp

(
MLP(F k, L̂t,i)

)
∑|G|

j=1 exp
(
MLP(F j, L̂t,i)

) . (3.3)

In the training stage, we follow the well-known practice in autoregressive model training by
feeding the ground-truth goals of the previous time steps into the model.

Joint Goal Prediction

With the marginal goal distributions at time step t, we first select the top-M goal can-
didates for each agent based on their scores and then model the joint distribution over the
M2 goal pair candidates. As mentioned in Sec. 3.4, we model the joint distribution with
a CVAE and utilize the pseudo labels to induce an interpretable interactive latent space.
The conditional prior encoder models the distribution of z conditioned on L. The posterior
encoder further conditions z on F k11:T

and F k21:T
, i.e., the embeddings of the two agents’
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ground-truth goals. Both the conditional prior and posterior encoders are modeled with
simple MLPs. To decode the joint goal distribution from a sampled z, we first obtain a joint
agent embedding L̃t ∈ R1×dh as follows:

L̃t = MLP
(
L,F k11:t−1

,F k21:t−1
, z
)
.

We obtain the features of goal pairs by concatenating the corresponding goals’ embeddings
and their marginal probabilities, denoted by F̃ t ∈ RM2×dh . Subsequently, we use an attention
mechanism to gather the local information of goal pairs:

Qt = F̃ tW
Q,

Kt =
[
F̃ tW

K
m; L̃tW

K
v

]
,

V t =
[
F̃ tW

V
m; L̃tW

V
v

]
,

F̄ t = softmax

(
QtK

⊺
t√

dk

)
V t,

where WQ,WK
m,W

K
v ,W

V
m,W

V
v ∈ Rdh×dk are matrices for linear projection, dk is the di-

mension of query/key/value vectors. We predict the score of the kth goal pair at the given
time step in a similar way as in Eqn. (3.3).

Trajectory Completion

Our trajectory completion module is similar to the ones in [151] and [42]. Given a
sequence of goals, we pass their embeddings to a simple MLP to decode the whole trajectory.
The trajectories for the two agents are decoded separately. In the training stage, the teacher
forcing technique is applied by feeding the ground-truth goal sequences into the model when
training the trajectory completion module.

3.5.2 Training Scheme

To train the overall model, we first train the marginal goal prediction module together
with the trajectory completion module. The loss function is the same as in [42]. Afterwards,
we freeze the parameters of these modules and train the joint prediction module. The
objective function is essentially ELBO, in addition to the auxiliary loss corresponding to the
three types of pseudo labels introduced in Sec. 3.4. In particular, the pseudo interaction
labels are defined for each pair of segments connecting goal points at neighboring time steps
(e.g., 0s–3s, 3s–5s, 5s–8s). As illustrated in Fig. 3.4b, for each pair of segments, the pseudo
interaction labels are two indicators showing: 1) if the goal segments of the two vehicles
intersect; 2) if the goal segment of the first vehicle is longer than the one of the second
vehicle. The first feature gives us a hint regarding whether the two vehicles have a conflict
zone along their driving directions. The second feature provides a necessary condition on
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their right of way. If a vehicle has the right of way, it should have a larger average speed
than the vehicle yielding to it.

3.5.3 Goal Selection

At test time, we need to select a final small number of goal pairs for prediction. The most
widely used algorithm is NMS. However, such a heuristic approach is difficult to tune and
is not guaranteed to find the optimal solution. To address this issue, an optimization-based
approach is proposed in [42] to select a goal set from a predicted distribution. While we may
adopt it to select goal pairs at a single time step, it remains heuristic when sampling from
the latent space as well as the autoregressive model. To ensure a fair comparison among
the different model variants studied in Sec. 3.6, inspired by [24], we instead first randomly
sample N sequences of goal pairs and then fit them to a Gaussian mixture model (GMM)
to obtain the final K goal pair sequences.

3.6 Experiments

We evaluate the proposed prediction framework on the Waymo Open Motion Dataset.
In particular, we focus on the interaction prediction task, where the future trajectories of an
interacting pair for the next 8s are predicted, given the historical observation of the past 1s.
With the experiments, we would like to answer the following questions: 1) Do the proposed
pseudo labels help induce a meaningful latent space? 2) If learning a meaningful latent space,
does the CVAE structure improve performance and sampling efficiency?

Dataset and Data Pre-processing

The Waymo Open Motion Dataset is a large-scale motion forecasting dataset for au-
tonomous driving containing data mined on interactive behaviors across a diverse set of road
geometries. It provides more than 570 hours of unique data of over 1750 km of roadways,
with over 100000 scenes. In selected interactive subsets, i.e., interaction pairs of vehicles,
pedestrians and cyclists are labeled for the interaction prediction task. In our experiments,
we used the subset of the dataset with labeled interaction pairs of vehicles for training and
evaluation. We followed the data processing routine in [42] to calibrate the coordinates and
segment the road polylines. One issue we encountered was how to select the region of interest
on the HD map. The most commonly adopted method is to define the region of interest as
the union of circles or rectangles centered at the target agents. However, since the prediction
horizon in the Waymo dataset is extensive, the remaining road segments could be numerous.
Since we adopted a dense goal candidate set covering the road segments, there was a large
number of goal candidates. Because of the attention mechanism, the computational com-
plexity of goal encoding scales exponentially with the number of goal candidates. To tackle
this problem and achieve efficient encoding process, we further filtered the road segments
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based on traveling distance using a graph search. The algorithm is similar to the one used
in [127], the details of which will be presented in Chapter 6.

Model Variants

Our experiment mainly focuses on ablation studies, comparing our model against its
variants. We compare the performance of three models: 1) The Joint-Vanilla model, which
is our joint prediction model without the pseudo labels; 2) The Joint-NonInteract model,
uses pseudo distance and marginal labels in addition to the vanilla version; 3) The Joint-
Full model, which is the one we propose, i.e., the joint prediction model with the auxiliary
losses corresponding to all the proposed pseudo labels (i.e., distance, marginal, interaction).
We do not experiment with other methods from the literature for the following reasons: 1)
The Waymo Open Motion Dataset is a newly released dataset with few reproducible prior
works, especially for the interaction prediction task; 2) Our core contribution lies in utilizing
the novel pseudo labels to induce a non-trivial and interpretable latent space. Achieving
state-of-the-art performance on the benchmark is not our objective.

Training Settings

To train the overall model, we first train the marginal goal prediction module together
with the trajectory completion module following most of the hyper-parameters introduced
in [42]. Then, we select K = 65 goal candidates based on the marginal probability for each
agent and train the joint goal prediction module. We add annealing on the KL divergence
weight to mitigate KL vanishing as a complement to the pseudo labels.

Evaluation Metrics

We use these metrics—minADE, minFDE, and mAP—introduced in [25], to evaluate the
interactive prediction performance. The metrics for joint prediction involve the predicted
trajectories of two interacting vehicles at the same time. The definitions of minADE and
minFDE are similar to the single-agent case. However, the displacement errors are computed
between the trajectory pairs and their ground-truth labels jointly. The mAPmetric is a newly
proposed metric for Waymo Open Challenge2. It computes the mean average precision over
eight different ground-truth trajectory primitives defined based on the dataset.

3.6.1 Empirical Prediction Results

In Table 3.1, we compare the prediction performance of the model variants on the vali-
dation dataset. We evaluate the prediction over 20000 validation samples in 3s, 5s, and 8s
time horizons with the metrics introduced earlier. The results for the three time horizons
are averaged and reported. We show the evaluation results based on different numbers of

2Please refer to https://waymo.com/intl/en_us/open/challenges/ for more details.

https://waymo.com/intl/en_us/open/challenges/
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samples before GMM fitting, with N = 8 and N = 120. From Table 3.1, we can see that the
prediction performance is sensitive to the sample number N . As N increases, the sampled
trajectories are more likely to cover the multimodality in joint distribution, which leads to
more diverse and accurate prediction after GMM fitting. From the table, we can conclude
that both the Joint-Full and Joint-Vanilla models make better predictions when N is large,
and the Joint-Full model has better performance with the same sample number N . Note
that in online prediction, the maximum allowable N is directly determined by the required
computational time. Our purpose is to obtain accurate and diverse predictions with a small
sample number N to enable efficient online inference. To this end, we observe a larger
improvement with the use of pseudo labels when N = 8 compared to N = 120.

To evaluate our proposed joint prediction model in highly interactive scenarios, we select a
set of strong-interactive cases from the validation dataset. These highly interactive scenarios
essentially require joint modeling and sampling from the goal distribution of interacting
agents and effectively demonstrate the strength of our proposed framework. We select the
data samples where goal segments of two vehicles intersect. This is done using pseudo
interaction labels, introduced in Sec. 3.5.2. The prediction results of models using different
pseudo labels are shown in Table 3.2. Since mAP is extremely sensitive to the hyper-
parameters when N is low, we do not consider the mAP comparison for quantitative analysis.
As the number of selected samples is low compared to the complete validation set (351 of
20000), we evaluate each model three times and report the mean and standard deviation.
We observe a significant improvement in prediction performance and stability by adding
interaction pseudo labels (Joint-Full model). With a well-trained latent space, we are more
likely to cover more interaction patterns in the finite N = 8 samples. This is essential for
strong-interactive cases in which multiple interaction modes exist and the reason behind the
observed improvement.

3.6.2 Latent Space learned by CVAE with Pseudo Labels

During training, we indeed observed that pseudo labels, especially marginal pseudo labels,
help avoid KL vanishing in most cases. To demonstrate the interactive pattern encoded by
latent space, we visualize predicted trajectories for selected interactive scenarios from the

Table 3.1: Validation Results on All Samples

Method minADE minFDE mAP

Joint-Vanilla, N = 120 1.58 3.44 0.078
Joint-Full, N = 120 (Ours) 1.55 3.33 0.084

Joint-Vanilla N = 8 1.98 4.28 0.020
Joint-Full N = 8 (Ours) 1.89 4.09 0.027
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Figure 3.5: Comparison of six sampled first-step goal predictions conditioned on two dif-
ferent selected latent z value using the Joint-Full model. Different interaction modes can be
found in different latent values, meaning we have learned a meaningful latent space.

dataset, as shown in Fig. 3.5. We use the Joint-Full model with different latent variables in
the same scenario to make these predictions. Given the historical information, we sample
six different goal pairs from the joint goal distribution prediction model conditioning on
two different discrete latent variable z with the largest probabilities. In Fig. 3.5, we can
clearly see two different interaction modes with different z. The agents either change their
speed, route, right of way, or combinations of previous features when switching the latent
variables. Meanwhile, the Joint-Vanilla model fails to give a separated latent space (e.g.,
predictions sampled from different latent variables are similar) in the same scenarios because
of vanishing KL. This shows that our proposed model indeed learns an interpretable latent
space capturing the interaction modes inherited from the pseudo labels.
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Table 3.2: Ablation Study on High-Interactive Samples

Method minADE minFDE

Joint-Vanilla, N = 8 1.89 (0.06) 4.11 (0.17)
Joint-NonInteract, N = 8 1.88 (0.04) 4.02 (0.07)
Joint-Full, N = 8 (Ours) 1.76 (0.02) 3.78 (0.04)

3.7 Chapter Summary

In this chapter, we study the interaction prediction problem with a goal-conditioned
prediction model. To develop an interpretable and sampling-efficient prediction model, we
leverage the CVAE framework to explicitly capture diverse interaction modes in joint goal
distribution. While the discrete latent space we adopt is generally more interpretable than a
continuous latent space, we find that the vanilla model is prone to posterior collapse, resulting
in a totally uninformative latent space. To mitigate this issue, we propose the introduction
of auxiliary loss functions defined with pseudo labels incorporating domain knowledge on
interaction. We show that the proposed pseudo labels can effectively induce an interpretable
and meaningful interactive latent space and further improve prediction performance.

We find the proposed pseudo labels particularly interesting as a principled and flexible
way to incorporate domain knowledge to shape the latent space. Since we do not require
the generation process of the pseudo labels to be differentiable, we can design pseudo labels
reflecting arbitrary knowledge about the proximity between goal pairs. In contrast to GRI,
where a structured reward function is enforced, the pseudo labels only introduce a soft
regularization, making it easier to balance between interpretability and performance. While
a fully interpretable model should always be the ultimate goal, methods like pseudo labels
provide a practical way to improve the interpretability of current state-of-the-art models
without compromising performance.
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Chapter 4

Interpretable Policy Transfer via
Robust Model-based Control

4.1 Introduction

In the last two chapters, we focused on improving the interpretability of driving behavior
modeling approaches. In this chapter, we turn to the downstream planning and control task,
developing an interpretable learning-based driving policy. Learning intelligent and reliable
driving policy networks (PNs) has been an ongoing challenge in deep learning and control.
Although conventional planning-control approaches [73] are shown to have the capability to
control autonomous vehicles, deep learning-based methods are promising for tackling more
complicated and interactive scenarios, especially those rare corner cases that are hard to
program manually. However, robustness has been the main drawback that prevents the
application of neural network policies in autonomous driving. The policy networks are over-
specified for the source domain in which the policy networks are trained and thus often
fail when the dynamics of the target vehicle deviate from the training setting or when the
target vehicle is affected by external disturbances due to strong winds or body incline. The
difference between the source and target settings is called the modeling gap. As the modeling
gap is an inevitable barrier to the deployment of deep learning driving policies in autonomous
driving, we aim to bridge the modeling gap by achieving a fast and safe transfer of driving
policy.

Prior learning-based policy transfer efforts attempted to achieve their objective using
transfer learning and meta learning. Various contributions in these areas have indeed suc-
ceeded in getting source policies to work in the target settings, but their applications in
autonomous driving are limited due to safety concerns. Overall, such learning-based pol-
icy transfer methods embed transferable representations into black-box neural networks and
hope for the best in the target domain and thus are not transparent and reliable. We seek to
solve the policy transfer problem using an alternative tool: robust control (RC), and propose
a generic PN-RC transfer framework. The PN-RC framework aims to solve the policy trans-
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fer problem between domains with different vehicle dynamics models. In this framework,
the policy network is applied to an imaginary setting in the source domain to generate a
kinematic-level reference trajectory for the target vehicle. In the target domain, where we
assume prior knowledge of the dynamics of the target vehicle, a robust controller is designed
to track the reference trajectory tolerating the modeling gap. This framework is generic
because it can be generalized to other control tasks, and different kinds of robust controllers
can be used for tracking. Compared to other transfer learning methods, the proposed frame-
work has two fundamental advantages: 1) transferring the interpretable kinematic features
makes the framework transparent and reliable; 2) the stability and response of the low-level
controller can be analyzed to design the optimal controller parameters.

In this chapter, we investigate one realization of the PN-RC framework. For the policy
network, we implement a hierarchical PAN [141], which can flexibly compose a set of ele-
mentary policy networks to tackle a variety of driving tasks. For the controller, we design
an adaptive DOB robust tracking controller. The DOB controller is integrated with a novel
reference smoothing algorithm, which improves the tracking performance when a dynamical
re-planning scheme is involved. The simulation and preliminary experimental results vali-
date that the proposed PN-RC architecture can zero-shot transfer the policy under a certain
level of parameter variation and external disturbances.

The rest of this chapter is organized as follows. In Sec. 4.2, we summarize the related
works on policy transfer and vehicle control. In Sec. 4.3, we present the PN-RC architecture
for policy transfer. Then, we describe the high-level hierarchical PANs for motion planning
and the low-level adaptive DOB-based lateral tracking controller. In Sec. 4.4, we present
the simulation results, showing the effectiveness of the proposed method in actively rejecting
the modeling gap and the external disturbances in sim-to-sim policy transfer tasks and
comparing the proposed method with a wide range of baselines. In Sec. 4.5, the preliminary
experimental results are presented, showing the capability of the proposed method to handle
sim-to-real autonomous driving policy transfers.

4.2 Related Work

Neural Network Policy Transfer

Regarding pure learning-based policy transfer, one stream of literature examines the use
of source domain randomization to embed robustness. The ensemble policy optimization
(EPOpt) algorithm [101] randomly samples dynamic parameters from a prior distribution
and optimizes the policy for cases with worst-performing dynamic parameters. [96] uses an
RNN to take in historical paths, expecting the policy to be adaptive by implicitly identifying
the parameters. A similar idea has been adopted in [147], but an online system identification
module is explicitly introduced to identify the parameters. The estimated parameters are fed
into a parameter-universal policy. All of these works are limited in that they only address
the discrepancy in dynamic parameters, while robustness against external disturbances is
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excluded from consideration.
Another line of work involves model adaptation. [34] trains a neural network for a dynam-

ics model and adapts its online local linear model for model-based control methods. In [22],
a deep inverse dynamics model of the target system is trained, and transfer is achieved by
executing inverse model outputs to reach the nominal state generated by performing source
policy in the source environment. One problem with such approaches is that a feasible and
accurate inverse model for feed-forward tracking can hardly be guaranteed in the target
domain, unlike tracking based on feedback control. In addition, a neural network approxi-
mating system dynamics is non-trivial to find in practice. Furthermore, fine-tuning in the
target domain is not desirable due to safety.

A method developed based on a similar idea to the one in this paper is reported in [49], in
which a model predictive control (MPC) controller is designed to stabilize the target system
around the nominal trajectory generated by consecutively applying the policy in the source
system. Theorems on tube-based MPC ensure that the states are bounded under modeling
errors. However, the bound cannot be explicitly found, and no asymptotic stability can be
guaranteed. Moreover, solving online optimization problems is computationally expensive,
while robust controllers are usually easier and faster for dealing with the trajectory tracking
problem of automated vehicles.

Vehicle Lateral Control

Lateral control of an autonomous vehicle has been well established with many existing
methods [91]. Two main categories of controllers have been investigated in the literature.
For the first type of controller, tracking errors are defined in relation to a reference point
on the reference path. Control laws are derived to stabilize the vehicle around zero tracking
errors. The alternative method considers a section of the reference path or trajectory. A
widely adopted approach is formulating the problem as an MPC problem. Compared to
tracking a single reference point, MPC can handle a wider range of scenarios, especially
extreme scenarios where an accurate and sophisticated vehicle model is required. However,
the problem of tracking a dynamically re-planned reference path is nontrivial for MPC. If an
MPC-based motion planner is used, the problem can be formulated as a hierarchical MPC
problem [26][110]. Otherwise, designing an MPC controller for dynamically re-planning mo-
tion planners is not intuitive. Therefore, we adopt the first stream of control techniques and
develop an intuitive and straightforward method to improve tracking performance with a re-
planned path. In this chapter, we apply DOB together with the nominal feedback controller
to enhance the robustness of the system. DOB is a robust control technique for rejecting
disturbances with guaranteed stability for both linear [17] and nonlinear systems [16][19].
For a linear system, given a nominal stabilizing controller, the Q-filter in DOB can be an
arbitrary stable filter to shape the sensitivity function as desired [20]. A linear DOB has
been applied for the robust path tracking of automated vehicles, and its effectiveness has
been verified by experiments [102].
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Figure 4.1: Target domain on-line implementation of the PN-RC architecture

4.3 Methodology

4.3.1 PN-RC Framework

The proposed architecture is a two-layer planning-control architecture consisting of a
learning-based policy network as the high-level planner and a robust low-level tracking con-
troller. Therefore, it is called the PN-RC architecture. The use of the PN-RC architecture
consists of two streams: the offline policy network training and the online policy transfer.
The offline source domain, as presented in Sec. 4.3.2, is a standard training process in which
the policy network maps the state observation to the control commands corresponding to the
source domain vehicle dynamics. In the source domain, we construct an autonomous driving
simulation environment in which the autonomous car interacts with the road, the other cars,
and the traffic rules. The online policy transfer methodology is shown in Fig. 4.1 and elabo-
rated in Sec. 4.3.3. The PN-RC system performs closed-loop tracking of the driving behavior
generated by the pretrained policy in the imaginary source domain. Concretely, the system
constructs an imaginary source domain based on the target domain state observation at each
time step. The imaginary source domain is constructed with the same set of parameters as
the source domain where the policy network is trained. We then apply the pretrained policy
network to control the ego vehicle in the imaginary source domain to perform the driving
task. The resulting longitudinal and lateral kinematic behavior of the ego vehicle is directly
transferred to the target domain, serving as the reference for the ego vehicle in the tar-
get domain. Given the intermediate reference trajectory, we apply longitudinal and lateral
closed-loop robust tracking controllers in the target domain to produce the actual control
commands for the target ego vehicle. As the target environment makes one step forward,
the new state observation is collected, and the system iterates. This architecture transfers
the kinematic features without change, while robust tracking controllers compensate for the
modeling gap and other disturbances.
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There are two key underlying assumptions of the PN-RC framework: 1) The kinematic
reference planned in the imaginary source domain is comparably satisfying for the target
task; 2) It is feasible for the target vehicle to track the trajectories produced by the source
vehicle. These assumptions are reasonable when the source and target vehicles and settings
are similar. Our proposed PN-RC framework is generic in many aspects: 1) This architecture
can transfer policy networks for various kinds of tasks in autonomous driving. It can also be
applied in other robotics and control scenarios if the assumptions are satisfied, and a robust
controller can be designed; 2) The proposed method places no restrictions on the structure
of the policy network. One can use reinforcement learning (RL), imitation learning (IL), or
other approaches to train the policy network; 3) Any RC method is compatible with the
PN-RC architecture.

Some may argue that a more straightforward choice to generate the reference trajectory is
to train a neural network mapping the state observation directly into a sequence of waypoints.
We think this is less desirable than our proposed PN-RC framework because it has several
shortcomings. First, the generated trajectory is not guaranteed to be feasible or smooth.
In contrast, the reference trajectory in our framework is produced by simulation in the
imaginary source domain. The vehicle model encoded in the source domain can guarantee
its feasibility and smoothness. Second, it could be challenging to train the network, either
by supervised learning or reinforcement learning. The state-space of the trajectory is high
dimensional, especially for a long planning horizon. Therefore, it is difficult for RL to explore
the trajectory space efficiently for an optimal policy. This also makes it challenging to design
an appropriate objective function for regression. Moreover, the size of the neural network
needs to be extremely large for high-dimensional output.

4.3.2 Neural Network Driving Policy

We adopt the PAN proposed in [141] as the policy network in our experiments. To con-
struct PAN, we decompose driving tasks into a set of attributes. The attributes are classified
into two types: base and add-on attributes. The base attribute defines the canonical driving
task, whereas the add-on attributes define additional requirements altering the canonical
task. In our experiments, we consider a driving task involving one base attribute, lane track-
ing (LT), and two types of add-on attributes, obstacle avoidance (OB) and speed limit (SL).
The lane tracking attribute defines the fundamental driving task, where we control the vehi-
cle to track the centerline of the closest lane. The OB attribute is defined for each obstacle,
including surrounding vehicles and static road obstacles. We create an OB attribute defining
a safety region for each obstacle. The SL attribute specifies the SL subject to traffic rule
regularization. We denote a driving task with n obstacles and l SL constraints as:

LT ⊕
n∑
i=1

OBi ⊕
l∑

k=1

SLk. (4.1)

A PAN policy consists of a series of attribute networks, with each network trained for one
specific attribute of the driving task. A base attribute network outputs a canonical reference
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control command to solve the elementary task. Each add-on attribute network defines a
feasible set in the action space consisting of actions satisfying the specification defined by
the add-on attribute. As illustrated in Fig. 4.2, the overall control command is computed
by projecting the reference control command into the intersection of all the add-on feasible
sets. We essentially solve a constrained optimization problem by projection, subject to the
add-on feasibility constraints. To ensure fast online computation, we allow the output of each
add-on attribute network to define a half-space. The resulting optimization problem is then
a quadratic program. Since the resulting control command satisfies the specifications of all
the attributes, the PAN policy solves the overall driving task defined by all these attributes.
By combining elementary attribute networks in this way, we can conveniently solve various
driving tasks that share the same attributes without training a separate policy network for
each task from scratch.

In our experiments, we develop a PAN policy for the driving task defined in Eqn. (4.1)
and in a source domain where the vehicle dynamics is governed by the point-mass model.
Each vehicle has a state vector consisting of the planar coordinates, speed, and yaw angle,
i.e., si = [xi, yi, vi, θi]

T . The control inputs are the longitudinal acceleration ai and angular
velocity θ̇i, i.e., ui = [ai, θ̇i]

T . The discretized point-mass model is defined as follows:

si(k + 1) = si(k) +

 vi cos(θi)
vi sin(θi)

ui

 · dt, (4.2)

where k is the time index and dt is the sampling time. More details on PAN policy design
can be found in [141, 126].

4.3.3 Robust Trajectory Tracking

The reference trajectory generated with the neural network policy is a time series of state
vectors, (x0,k, y0,k, v0,k, θ0,k) for k = 1, 2, ..., h, where h is the number of time steps within
the planning time horizon. A robust tracking controller is required to track the trajectory
in the presence of model uncertainty and external disturbances. A common practice to
simplify the control problem is decomposing it into longitudinal speed control and lateral
steering control problems. These two problems are then considered separately. Accurate
modeling of the longitudinal dynamics, especially the powertrain, is difficult. As a result,
designing a longitudinal controller with guaranteed robust stability for the actual vehicular
system is hard. Nonlinear control techniques, such as the direct Lyapunov approach, can be
applied to handle longitudinal model uncertainties [5]. However, in practice, a well-tuned
PID controller should be sufficient as long as a smooth speed profile is generated. In this
section, we focus on designing a robust lateral controller while assuming the speed profile can
be perfectly tracked. The task of the lateral controller is to track the reference path consisting
of (x0,k, y0,k, θ0,k). In particular, we adopt DOB to design a robust lateral controller rejecting
modeling error and external disturbance. We start with a basic DOB-based controller with
constant parameters and then design an adaptive extension of it.
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Figure 4.2: The architecture of the parallel attribute network (PAN). The output of the
base attribute network is a reference action in the autonomous vehicle action space (the
red vector), while the output of the add-on attribute networks is the satisfactory sets in the
action space. The overall output is the projection of the reference action into the intersection
of all the satisfactory sets (the green vector).

DOB-based Tracking Controller with Constant Parameter

To design the controller, we need to obtain an approximate linear model for the tracking
problem. We adopt the constant speed linear bicycle model for lateral dynamics [100]:

ẋ = A · x+B · δ, (4.3)

where the state variable is x = [vy θ θ̇]
T , with vy as the lateral velocity, θ as the yaw angle,

and θ̇ as the yaw rate. The control input δ is the steering angle. Apart from the vehicle
dynamics, we need to define a tracking model given a reference as well. Following [77], the
nonlinear path-following model in the Serret-Frenet frame with an orthogonal projection is
illustrated in Fig. 4.3 and described by the following equations:

∆θ̇s = θ̇ − κsvs cos(∆θs + βs)

1− κs∆ys
(4.4)

∆ẏs = vs sin (∆θs + βs) . (4.5)

The tracking errors are defined with regard to a look-ahead point S. The point S is
defined as the point along the longitudinal axis a distance of ds from the center of gravity,



CHAPTER 4. INTERPRETABLE POLICY TRANSFER 75

s
d

s
βs

v

v sy∆

S

'
S

Y

X

x
vyv

θ

refθ

,ref sθ

y∆

Figure 4.3: The nonlinear path-following model in the Serret-Frenet frame with an orthog-
onal projection.

and its orthogonal projection onto the reference path S ′. The angular error ∆θs is defined
as the angle between the heading direction of the vehicle θ and the tangent direction of the
reference path at the projected point θs,ref , i.e., ∆θs = θ − θs,ref . The lateral distance error
∆ys is the signed distance between S and S ′. In the equations, vs is the magnitude of the
velocity at S. The variable κs is the signed curvature of the reference path at S ′. Under the
small angle assumption, β ≈ vy/vx, we can thereby approximate the slip angle at S, βs, as
follows:

βs ≈
vxβ + dsθ̇

vx
=

1

vx
vy +

ds
vx
θ̇,

where vy is the lateral velocity at the center of gravity and vx is the longitudinal velocity at
the center of gravity. Thus:

θvs = θ + βs =

[
1

vx
1
ds
vx

] vy
θ

θ̇

 = C · x. (4.6)

By linearizing Eqn. (4.4) and (4.5) at zero tracking errors, i.e., ∆θ̇s = 0 and ∆ẏs = 0, as well
as zero lateral velocity, we can obtain the following linearized tracking model:

∆θ̇s = θ̇vs − vxκs,ref ,
∆ẏs = vx∆θs,

where κs,ref refers to the curvature at the reference point. Equivalently, θ̇s,ref ≈ vxκs,ref .
Using the equations above and applying forward Euler discretization, the overall tracking
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model is obtained as the block diagram shown in Fig. 4.4, where Ts is the sampling time,
and Tsz−1

1−z−1 is the transfer function of the discretized integrator. Gv(z
−1) refers to the vehicle

dynamics that maps δ to θvs , from which we can derive the nominal transfer functionGnv(z
−1)

using Eqn. (4.3) and (4.6). As shown in the diagram, θs,ref can be considered a disturbance
to the system.

The robust controller is designed based on the nominal model of the vehicle in the target
domain. First, we design a proportional feedback controller as follows: uc = −k1∆θs−k2∆ys.
For analysis, we can further write the control law as follows:

uc = −k2(
k1
k2

+
vxTsz

−1

1− z−1
)∆θs = −k2C1(z

−1)∆θs, (4.7)

where C1(z
−1) = k1

k2
+ vxTsz−1

1−z−1 . In the implementation, we hold k1
k2

constant and tune k2 to
achieve stability of the closed-loop system using the root locus. We inspect the stability
for various vx such that the resulting controller can stabilize the vehicle for the range of
velocities in the given driving tasks.

Next, a DOB is added to the nominal feedback controller. The block diagram for the
overall closed-loop system is shown in Fig. 4.5. DOB is inserted between C1(z

−1) and k2 so
that the disturbance due to modeling error between ∆ys and ∆θs can be rejected. Pn(z

−1)
and P̂n(z

−1) are the nominal plant and nominal plant without delay, defined as follows:

Pn(z
−1) = z−2P̂n(z

−1) = Gnv(z
−1)C1(z

−1) (4.8)

In our case, the nominal plant Pn(z
−1) has a delay of two time steps. We make P̂n(z

−1) free
of delay so that P̂−1

n (z−1) is realizable. The closed-loop sensitivity function with DOB is:

S =
1

1 + k2GvC1 + z−2( Gv
Gnv
− 1)Q

(1− z−2Q). (4.9)

We design Q as a second-order low-pass filter to reject low-frequency disturbances,
as κs,ref should have relatively low-frequency components for smooth reference trajectory.
When modeling errors exist, we can use the robust control theorem to ensure robust stability
[20]. However, modeling uncertainty between the linear and nonlinear models is involved in
our problem, which complicates the analysis. Future efforts will be made to approximate
the uncertainty bound for robustness specification. One last note is that P is time-varying
since vx is not constant in general. In our implementation, we design the DOB based on the
final steady speed of the vehicle in simulations for simplification. In practice, an adaptive
DOB can be designed, which will be introduced in the next subsection.

Adaptive Disturbance Observer

The performance of the time-invariant DOB-based controller has been validated with
simulation results in [140]. However, the effect of DOB is limited because the cut-off fre-
quency of the Q-filter has to be relatively low due to stability considerations. Meanwhile,
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Figure 4.4: Block diagram of the linear tracking model.

Figure 4.5: Block diagram of the closed-loop system.

high-frequency components are observed in the estimated disturbance signal. Consequently,
the compensating input signal generated by DOB has a small magnitude compared to the es-
timated disturbance, meaning that only a limited range of disturbance is rejected by applying
DOB. In this section, we extend the DOB to be adaptive to the varying states.

To tackle this problem, we first need a more accurate nominal model so that the cut-off
frequency of the Q-filter can be increased. This can also reduce the high-frequency distur-
bance introduced by model linearization. The linear tracking model adopted previously is
obtained by linearizing the model at zero tracking errors. Consequently, the inverse nominal
model used in the DOB becomes inaccurate with increasing tracking errors. Moreover, the
lateral behavior of the vehicle varies drastically with longitudinal speed. The constant speed
linear bicycle model is not accurate when the speed of the vehicle deviates significantly from
the designed operating speed. Therefore, if the tracking model and the bicycle model are
linearized online in terms of current tracking errors and the longitudinal speed of the vehicle,
the resulting adaptive inverse nominal model should be more accurate and perform better.
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Figure 4.6: Block diagram of the feedback controller with adaptive DOB. The DOB is
inserted into the loop of ∆θs. The inverse nominal model has parameters varying with the
current states of the system, including ∆θs,t, ∆ys,t, vs, and the curvature of the reference
path κs.

Regarding the tracking model, if we linearize the Eqn. (4.4) and (4.5) for the current
states of the system, a parameter-varying linear model that is more accurate than the time-
invariant linear tracking model is obtained. Specifically, the model is linearized for the
current estimated value of ∆ys, ∆θs, vs and zero βs, resulting in a system of linear equations
in Eqn. (4.10) and Eqn. (4.11):

∆ẏs = v̂s,t sin∆θ̂s,t − v̂s,t cos∆θ̂s,t − v̂s,t cos∆θ̂s,t∆θs + cos∆θ̂s,tvy + ds cos∆θ̂s,tθ̇ (4.10)

∆θ̇s =
κ2sv̂s,t cos∆θ̂s,t∆ŷs,t

(1− κs∆ŷs,t)2
− κsv̂s,t sin∆θ̂s,t∆ŷs,t

1− κs∆ŷs,t
+

(
κsds sin∆θ̂s,t∆ŷs,t

1− κs∆ŷs,t
+ 1

)
θ̇

− κ2sv̂s,t cos∆θ̂s,t
(1− κs∆ŷs,t)2

∆ys +
κs sin∆θ̂s,t
1− κs∆ŷs,t

vy +
κsv̂s,t sin∆θ̂s,t
1− κs∆ŷs,t

∆θs, (4.11)

where ∆ŷs,t, ∆θ̂s,t, and v̂s,t are the estimated states at t.
Since the model is not linearized for the equilibrium point, additional disturbances are

introduced. Since the curvature κs should be quite small for normal driving scenarios, the
disturbance in Eqn. (4.11) is negligible compared to the term in Eqn. (4.10). Moreover, the
magnitude of longitudinal speed vx should be much larger than that of the lateral speed vy
when the vehicle is moving. Consequently, vx dominates vy in Eqn. (4.10), and the lateral
dynamics mainly affect ∆ys through ∆θs and θ̇. Therefore, it is sufficient for the DOB to
merely reject the disturbance from ∆θs. By doing so, disturbances entering into the lateral
dynamics system are rejected, while the disturbances introduced through linearization will
barely affect the performance of the DOB.
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The overall structure of the controller is shown in Fig. 4.6. The control law of the feedback
controller is the same as in the time-invariant case, i.e., u = k2(∆θ̂s,t + k1∆ŷs,t). However,
the DOB is inserted into the loop of ∆θs instead of the loop of the weighted sum of ∆θs
and ∆ys. The DOB consists of two components: Q(z−1) and P̂−1

n (z−1,ωt). The Q-filter is
designed as a discrete-time low-pass filter with the following transfer function:

Q(z−1) =
a

1− z−1 + az−2
. (4.12)

The transfer function P̂−1
n (z−1,ωt) parameterized by ωt is the inverse of the nominal plant

transfer function without delay from δ to ∆θs, computed based on Eqn. (4.10) and (4.11),
along with the nominal linear bicycle model of lateral vehicle dynamics. The parameter
vector ωt is a function of ∆θs,t, ∆ys,t, vs and κs. The analytical format of the function can
be computed offline. The estimated values are substituted into the function online, which
can be completed in constant time. Assuming that the system varies slowly over time, the
robust control theorem can be applied to determine the cut-off frequency of the Q-filter while
ensuring robust stability [19]. Specifically, provided that the feedback controller stabilizes
the system, if all the zeros of P̂n(z

−1,ωt) are inside the unit circle, we have

∥∆
(
ejω,γt

)
Q(ejω)∥ < 1,∀ω (4.13)

with ∆ (ejω,γt) being the unmodeled dynamics with respect to the nominal model P̂n(z
−1,ωt)

and the actual dynamics. However, modeling uncertainty between the linear and nonlinear
models is involved in our problem, which complicates the analysis. Future efforts will be
made to approximate the uncertainty bound for robustness specification.

Closed-loop Reference Path Smoothing

Apart from the linearization error, the motion planning procedure also introduces addi-
tional high-frequency disturbance into the system. The entire policy transfer framework is
a hierarchical control system with trajectory as its intermediate output. It is prohibitive to
analyze or optimize the entire system’s behavior, especially when a dynamical re-planning
mechanism is involved. The policy network generates a new reference trajectory based on the
most updated observations for every few steps. Therefore, the reference path for the tracking
controller varies rapidly compared to the length of the planning horizon. This results in a
very different tracking behavior than in the case where the reference path is consistent over
time because the closed-loop tracked path is not continuous. Although the dynamical re-
planning mechanism is extensively adopted in practice, this issue has seldom been addressed
in the literature. The controller is usually designed and analyzed merely in the context of
a fixed and smooth reference path. Fortunately, the path-following model adopted here and
the use of DOB allow us to analyze the problem and improve the tracking performance in
the presence of a dynamically re-planned reference path.

At each time step, the tracking errors are computed with regard to a point S ′
t on the cur-

rent reference path. Therefore, the controller is equivalently tracking a curve from which all
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the reference points {S ′
t}t=∞
t=1 are sampled. We refer to this curve as the closed-loop reference

path. Although there is always a smooth curve interpolating {S ′
t}t=∞
t=1 , the curvature and its

derivative are inevitably larger within the section interpolating reference points coming from
reference paths generated at two adjacent time steps. Since the control system is discrete,
step signals are introduced into ∆ys and ∆θs when the trajectory is re-planned. Such jumps
in the reference signal are undesirable because they lead to inappropriate transient response,
e.g., overshoot. In motion control systems, a practical solution is designing a transient pro-
file that the plant can follow reasonably [48]. Inspired by this idea, we construct a transient
curve that smoothly joins the closed-loop reference path and the newly received planned
trajectory.

This procedure can be formulated as a trajectory smoothing problem solved online by a
numerical optimization method. We denote the newly received planned trajectory as Pt. The
current closed-loop reference path is referred to as P c

t . The points S
′
t−1 and S

′
t are the refer-

ence points found at current and previous time steps. Their coordinates in Cartesian space
are denoted as xS′

t−1
and xS′

t
. The point xref,1 is computed based on the reference velocity at

S ′
t−1. Concretely, xref,1 = xS′

t−1
+∆t·vS′

t−1
, where vS′

t−1
is the velocity vector at S ′

t−1 and ∆t is
the sampling time. The remaining reference points are the next h−1 points after XS′

t
on Pt.

The smooth transient trajectory is represented by the vector x = [x⊺0, x
⊺
1, · · · , x

⊺
h]

⊺ ∈ R2(h+1).
The reference trajectory is denoted as xref = [x⊺S′

t−1
, x⊺ref,1, · · · , x

⊺
ref,h]

⊺ ∈ R2(h+1). The opti-

mization problem is formulated as a quadratic program as follows:

min
x

J(x;xref ) = ∥x− xref∥2Q + ω2∥x∥2S (4.14)

s.t. x0 = xS′
t−1
, x1 = xref,1 (4.15)

xh−1 = xref,h−1, xh = xref,h (4.16)

where Q = I2(h+1) + ω1V
⊺V and S = A⊺A. The matrix V : R2h×2(h+1) and A : R2(h−1)×2(h+1)

are finite difference operators, as defined in [81], such that V x is the velocity vector and Ax is
the acceleration vector of the trajectory x. The weights ω1, ω2 ∈ R+ can be tuned to adjust
the cost function. The first term ∥x − xref∥2Q penalizes the distance from the transient
trajectory to the reference trajectory. The second term ∥x∥2S penalizes the magnitude of
acceleration. The constraints (4.15) and (4.16) ensure continuity in coordinates and velocity.
Safety constraints can also be added to enable a collision-free transient trajectory. If the
constraints are non-convex, algorithms such as convex feasible set [81] can be applied to
solve the problem in real time.

4.4 Sim-to-sim Policy Transfer

We first tested the proposed policy transfer framework with three examples of sim-to-sim
policy transfer. The training scheme and results of the PAN are presented in Sec. 4.4.1,
and the tested driving scenarios are described in Sec. 4.4.2. The vehicle is simulated with
the point-mass model in the source domain. The simplicity in vehicle modeling enables
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Figure 4.7: Closed-loop reference path smoothing. The received planned trajectory is
denoted as Pt, and the current closed-loop reference path is denoted as P c

t . The points S
′
t−1

and S ′
t are the reference points found at current and previous time steps. Their coordinates

are denoted as xS′
t−1

and xS′
t
. The reference point xref,1 is computed based on the reference

velocity at S ′
t−1. The remaining reference points are the next h − 1 points after XS′

t
on Pt.

The smooth transient trajectory is an optimized curve passing through xS′
t−1

, xref,1, xref,h−1

and xref,h.

faster convergence in policy training. Meanwhile, the performance of the policy in the target
domain is less sensitive to the selection of the vehicle dynamics model in the training domain
because of our policy transfer framework. In the target domains, the lateral dynamics are
modeled with the nonlinear bicycle model [27] and Pacejka’s tire model [90]. The longitudinal
model is the same as in the source domain, where the acceleration command is perfectly
executed by the vehicle. For each example, the policy was first transferred to the target
domain with nominal model parameters. The parameters were consistent with the nominal
linear bicycle model used for controller design. Subsequently, we further transferred the
policy to target domains with uniformly distributed parameter variation or constant side
force. We compared the performance of the PN-RC framework and the original policy
networks in the target domains. In the target domains, the yaw rate command generated
by the policy network is converted into a steering angle command based on the kinematic
bicycle model:

δ = arctan

(
lf + lr
lr

tan

(
arcsin

(
θ̇
lr
v

)))
,

where lf and lr are the length from the front axis and the rear axis, respectively, to the
center of gravity. The testing procedure is summarized in Fig. 4.8.

4.4.1 Preparation of the Policy Networks

As described in Sec 4.3.2, we apply PAN to simultaneously train policy networks for all
the described driving tasks. In the source domain, the autonomous vehicle is assumed to
start in the rightmost lane with a desired longitudinal speed of vtar = 10m/s ≈ 22mph. The
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Figure 4.8: Diagram summarizing the sim-to-sim policy transfer procedure for a given test
driving scenario. The policy is trained in the source domain with the point-mass model. It
is transferred to the nominal target domain simulated with the nonlinear bicycle model. The
tracking controller is developed based on the nominal model parameters. Subsequently, the
policy and the PN-RC framework are tested in the target domains with disturbances.

sampling time is 0.02s. In our experiments, the base LT attribute module is trained using
the proximal policy optimization (PPO) algorithm [113] with a reward function of

r(t) = 2 ·∆y20 + (v0 − vtar)2. (4.17)

The add-on attribute modules are trained using IL, with analytical models serving as expert
demonstrations. The RL training process normally takes three hours to converge, while
the IL process typically takes only minutes. For IL of an add-on attribute network, the
training data are collected from the cases with only the base LT attribute and the attribute
to be trained to guarantee its independence from the other add-on attributes. For the OB
modules, the collision avoidance constraints are approximated using the safety set algorithm
(SSA) [79, 80]; for the SL modules, the speed constraints are derived using the IDM [60].
We then reform the constraints into the form of half planes and use them as the IL training
data. After the IL converges, the trained attribute modules are fixed and assembled into PAN
policies as needed. The projection of the reference action is a quadratic program problem,
which is solved using the CVX solver [40, 41].

We also compared the performance of RL and IL in training the SL attribute module,
as one can conveniently define a proper reward function for the LT ⊕ SL task. Making a
minor modification to the reward function defined in Eqn. (4.17), we can design the reward
function as follows:

r(t) =

{
−2 ·∆y20 − (v0 − vtar)2, out of speed limit

−2 ·∆y20 −min(v0 − vsl, 0)2, inside speed limit
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(a) The training log using IL (b) The training log using RL

Figure 4.9: The training log using IL and RL.

Based on the new reward function, we fix the base LT module and train the add-on SL at-
tribute network using RL and IL and then record and compare their performances (training
logs shown in Fig. 4.9). The SL module trained using RL can achieve better performance
than the analytical solution of IDM, and the SL module trained using IL can achieve com-
parable performance to the IDM.

In the PAN framework, one can use either RL or IL to train an attribute network, and
further, for IL, the training data can come from either human labels or analytical solutions.
In practice, RL training is the most difficult but has the best performance. While IL with
analytically calculated labels is more convenient, its performance is not as good as RL.
Therefore, the training approach should be selected based on the needs.

4.4.2 Driving Scenarios

Three different driving scenarios were implemented for the evaluation of the proposed
policy transfer framework, in which various combinations of attribute modules were encoded
into different PANs. More details of the attributes modules can be found in [141].

Following Curved Lane (CL)

The basic scenario is lane keeping, where the autonomous vehicle tracks a fixed reference
path. Only the LT module is involved in the PAN policy. To evaluate the robustness against
variation in lateral dynamics, the reference path is designed as a sine curve.

Collision Avoidance (CA)

The CA scenario involves two obstacle vehicles driving at a constant speed of 5m/s on
a two-lane straight road. The autonomous vehicle is expected to make double-lane changes
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to overtake the two vehicles. LT modules and four OB modules are used. Two of the OB
networks correspond to the obstacle vehicles, respectively. The other two correspond to the
road edges.

Collision Avoidance under Speed Limit (CASL)

The last scenario is similar to the second one, but it has an additional SL constraint.
An SL model is added to the PAN policy for the CA scenario to handle. The autonomous
vehicle behaves differently due to the SL.

4.4.3 Software Implementation

The policy networks were implemented in Python with Tensorflow. The controllers were
developed in MATLAB Simulink and converted into C++ code by code generation. The
Robot Operating System (ROS) was adopted to manage the entire system and mimic the
actual hardware system on the test vehicle. The driving scenario is simulated at a frequency
of 50Hz. When the neural network policy directly controls the vehicle, it is operated at 50Hz
as well. When the PN-RC framework is running, the planning module generates a reference
trajectory with a planning horizon of 4.5s for every 0.6s. The tracking controller is operated
at the frequency of simulation. Meanwhile, the policy networks output the longitudinal
acceleration command at the same frequency. The tracking controller is configured such
that k1 = 0.2 and k2 = 0.5. The Q-filter has a cut-off frequency of 10Hz. For the closed-loop
path smoothing algorithm, h = 80 and ∆t = 0.02s.

4.4.4 Tracking Performance

Before evaluating the policy transfer performance, we check whether the proposed con-
troller can improve the tracking performance, especially when the reference trajectory is
dynamically re-planned. We choose the scenario of CL following to compare the tracking
performance. The tested controllers include the basic proportional controller without DOB,
the controller with time-invariant DOB, and the controller with adaptive DOB. We also com-
pare the cases with and without the proposed closed-loop trajectory smoothing algorithm.
We investigate the effect of modeling error on tracking performance by shifting the nominal
model parameters with uniformly distributed errors bounded by 45%. The effect of modeling
errors on the transfer function is illustrated in [140]. A more comprehensive analysis of this
subject can be found in [44].

The results are summarized in Table 4.1. If the smoothing algorithm is not applied,
introducing DOB into the controller does not significantly improve tracking performance.
The tracking errors ∆ys and ∆θs can only be slightly decreased by adding DOB. Meanwhile,
the average yaw rate increases, indicating worse transient behavior with larger oscillation.
In contrast, the adaptive DOB achieves the smallest tracking errors and a comparable yaw
rate after applying the trajectory smoothing algorithm. Moreover, it maintains consistent
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Figure 4.10: Tracking errors without trajectory smoothing. High oscillation occurs for
both ∆ys and ∆θs. Neither DOB nor adaptive DOB can enhance the tracking performance
to a significant degree due to the high-frequency disturbance introduced by re-planning.

Figure 4.11: Tracking errors with trajectory smoothing. The frequency reduces for both
∆ys and ∆θs. DOB is able to compress the tracking errors after the smoothing procedure.
This is because the high-frequency disturbance introduced by re-planning is filtered out.

performance with modeling error. Indeed, smoothing the closed-loop reference path is a
key procedure for improving the tracking performance of the DOB-based controller, and its
effectiveness is shown in Fig. 4.10 and Fig. 4.11.

4.4.5 Policy Transfer Evaluation

In this subsection, we evaluate the policy transfer performance using the proposed PN-RC
architecture and its variants, including:
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Table 4.1: Tracking performance comparison

Modeling Error Variables
Without Smoothing

PID DOB Adaptive DOB

No
∆ys (m) 0.212± 0.050 0.128± 0.034 0.127± 0.027
∆θs (rad) 0.025± 0.001 0.023± 0.001 0.038± 0.003

θ̇ (rad/s) 0.073± 0.004 0.076± 0.006 0.109± 0.013

Yes
∆ys (m) 0.230± 0.059 0.139± 0.036 0.151± 0.035
∆θs (rad) 0.029± 0.001 0.025± 0.001 0.041± 0.002

θ̇ (rad/s) 0.081± 0.007 0.086± 0.008 0.119± 0.015

Modeling Error Variables
With Smoothing

PID DOB Adaptive DOB

No
∆ys (m) 0.211± 0.036 0.033± 0.001 0.020± 0.001
∆θs (rad) 0.023± 0.001 0.006± 0.000 0.005± 0.000

θ̇ (rad/s) 0.068± 0.004 0.073± 0.004 0.074± 0.005

Yes
∆ys (m) 0.199± 0.035 0.034± 0.001 0.020± 0.001
∆θs (rad) 0.035± 0.022 0.006± 0.000 0.004± 0.000

θ̇ (rad/s) 0.073± 0.005 0.080± 0.005 0.071± 0.005

1 Data are presented in the form of mean± std.

1. Use the baseline PN to directly control the vehicle.

2. Use the PN-RC architecture but with the basic proportional controller without the
adaptive DOB, denoted as PN-PID, to control the vehicle.

3. Use the PN-RC architecture with the controller with the adaptive DOB, denoted as
PN-DOB, to control the vehicle.

We simulated each test case ten times and recorded the total reward of each episode.
The episode length was fixed to 1200 steps, corresponding to 24s. The accumulated reward
was divided by the episode length to compute the average step reward. The mean and
standard deviation were computed over the ten episodes. Subsequently, the mean step reward
obtained by the baseline PN in the source domain was subtracted from the mean step reward
for each test case in the corresponding driving scenario. This makes the policy transfer
performance more apparent in the presented results, which are summarized in Table 4.2.
For the test cases with model parameter variation, uniformly distributed errors bounded by
45% are added to the nominal model parameters. For the cases with constant side force, the
magnitude of the side force is 3000N . Both PN-PID and PN-DOB can complete the tasks
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Table 4.2: Comparison of the performances of the baseline PN and PN-RC architectures

Task
Nominal Bicycle Model

PN PN-PID PN-DOB

CL −14.51± 39.98 −13.31± 37.13 10.69± 21.73
CA −153.60± 175.34 116.09± 36.06 146.40± 82.61

CASL 3.23± 12.39 6.69± 8.51 10.89± 8.60

Task
Model Parameter Variation

PN PN-PID PN-DOB

CL −4484.18± 7736.17 −39.67± 79.19 −2.40± 38.40
CA −202645.74± 571517.22 60.33± 68.19 162.49± 80.33

CASL −48673.10± 78547.46 11.53± 8.00 9.03± 5.91

Task
Constant Side Force

PN PN-PID PN-DOB

CL −29.66± 62.99 −42.50± 52.31 9.60± 29.38
CA −13783.18± 41876.28 54.98± 82.63 117.82± 88.12

CASL −6.24± 13.38 8.32± 8.92 10.65± 7.32.

1 Data are presented in the form of mean± std.
2 The reward is divided by the episode length to compute the av-
erage step reward. The mean value of the average step reward in
the source domain is then subtracted from the computed reward
.

with accumulative rewards comparable to PN in the source domain. Moreover, PN-DOB
achieves the highest reward in most of the test cases. In contrast, the performance of the
baseline PN is deteriorated by the modeling gap between the source and target domains.
Failure cases occur when additional modeling errors or external disturbances exist. The
vehicle is driven toward the road boundary and eventually leaves the drivable area.

The robustness of PN-DOB can be further verified by visualizing the trajectories as in
Fig. 4.12a to 4.12c. The green rectangles represent the ego vehicle. Moreover, the red
rectangles represent the surrounding vehicles. Although the trajectories obtained with PN-
DOB are slightly different from those in the source domain, all of the trajectories have
smooth lateral behavior and keep the same high-level behaviors as in the source domain.
However, when directly applying the baseline policy in the target domains, the difference is
quite apparent. Large tracking error can be observed in the lane-following scenario. In the
CA scenarios, significant lateral oscillation occurs. Furthermore, the oscillation in Fig. 4.12b
even affects the high-level behavior. The vehicle fails to overtake the second vehicle due to its
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(a) Curved lane following

(b) Collision avoidance

(c) Collision avoidance with speed limit

Figure 4.12: Trajectories of PN in the source domain, PN in the target domain with
parameter variation, and PN-DOB in the target domain with parameter variation. We plot
the results for three scenarios: CL following, CA, and CASL. In the last plot, the black
vertical line indicates the location where the SL takes effect.

unstable lateral motion. Based on the table and the visualized trajectories, we conclude that
the proposed PN-RC framework is more robust against the modeling gap than the baseline
policy. Moreover, the designed adaptive DOB-based controller improves its performance
compared to the baseline proportional controller.

4.5 Preliminary Sim-to-Real Policy Transfer

4.5.1 Experimental Setup

We validated the capability of the proposed architecture to generate onboard driving com-
mands for real autonomous vehicles in a preliminary experiment carried out in the Richmond
Field Station. The tested case is an obstacle avoidance task (LT ⊕OB1 ⊕OBre1 ⊕OBre2),
with a static obstacle vehicle parked in front of the autonomous vehicle. In the task decom-
position, OB1 refers to the OB attribute corresponding to the parked vehicle, and OBre1

and OBre2 refer to the OB attribute corresponding to the left and right road boundaries.
The autonomous vehicle starts with a speed of 10m/s ≈ 22mph. The autonomous vehicle
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Figure 4.13: (a)(b) The experiment setting and the obstacle avoidance task; (c) The
onboard tracking visualization screenshot, where the red dot is the ego vehicle, the blue dot
is the obstacle vehicle, and the thick green line is the reference trajectory generated using
the source domain [141].

incorporates GPS and inertial measurement units (IMUs) that can measure its states, while
the obstacle vehicle states are assumed to be known. Screenshots of the experiment setting
and the onboard tracking visualization are presented in Fig. 4.13.

For the motion planning part, a PAN policy with three pretrained OB modules is applied
to produce the longitudinal acceleration a0 and the lateral yaw rate θ̇0. During online usage,
we first employ the PAN policy to generate a reference trajectory for 80 time steps (1.6
seconds) in the simulator. For the longitudinal control, we use a PID controller to track
the generated longitudinal speed profile. For the lateral control, we apply the DOB-based
tracking controller to produce the steering commands to track the reference trajectory.

4.5.2 Lane Tracking and Obstacle Avoiding Performance

The online performance of the proposed architecture is stable and fast in the task, even
though the task has not been trained previously. The PAN policy node in the ROS publishes
the commands at 50Hz, the imaginary trajectory used to produce the steering command
publishes at a frequency of 5Hz, and the DOB-based robust tracking controller produces
the steering commands at 50Hz. We performed the experiment 10 times with different
starting positions and achieved a 10/10 success rate. Fig. 4.14 shows a typical experimental
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Figure 4.14: Behavior of the autonomous vehicle in the LT ⊕ OB1 ⊕ OBre1 ⊕ OBre2 task
in one of the real vehicle experiments. The red squares indicate the real trajectory of the
autonomous vehicle, the blue block is the parked obstacle vehicle, and the green lines are a
few reference trajectories generated by the PAN policy in the imaginary simulation [141].

trajectory. The experiment shows that the proposed PN-RC framework is promising in
zero-shot transferring policy networks to solve driving tasks in real-world environments.

4.6 Chapter Summary

In this chapter, we focus on the driving policy transfer problem between domains where
discrepancies in vehicle dynamics exist. We propose the PN-RC framework, which treats
state trajectories as invariant representations that are transferable across different domains.
Concretely, the policy network trained in the source domain is used to generate a refer-
ence trajectory through simulation in the source domain. Subsequently, a robust tracking
controller is used to track the reference trajectory in the target domain. The robust con-
troller is designed based on our knowledge of the vehicle dynamics in the target domain so
that disturbances caused by the modeling gap can be rejected. In particular, we present an
implementation of the generic framework consisting of a PAN policy network and an adap-
tive DOB-based robust tracking controller. Our experiments in simulated environments and
on a real testing vehicle show that the proposed PN-RC framework can achieve consistent
performance in target domains with modeling discrepancies and external disturbances. In
contrast, the baseline end-to-end policy network is sensitive to dynamic variations and fails
to complete the task when a modeling gap exists. Future efforts will extend the current
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method for more complicated and general driving tasks.
We close this chapter with a brief discussion of the importance of reference trajectories as

the interpretable intermediate representations of a policy network, even outside the context
of policy transfer. While it is sufficient to output control commands to control the vehicle
directly, it is difficult to understand the intended behavior of the policy network from the
control commands at a single time step. In contrast, a trajectory consisting of target states
over the preview horizon contains richer semantic information, making it easier to interpret
the underlying driving intention. Therefore, we should adopt this hierarchical planning and
control architecture, even just from the perspective of interpretability.
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Part II

Model Diagnosis with Post hoc
Explanation
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Chapter 5

Diagnosing Social Posterior Collapse
with Sparse Graph Attention

5.1 Introduction

Accurate modeling of the social interaction among road participants is a prerequisite for
accurate and robust trajectory prediction in interactive traffic scenarios. Generative latent
variable models are popular modeling options due to their ability to generate diverse and
naturalistic behavior [124, 46, 68, 109]. We focus on one category of generative models,
VAE [66], which has been widely used in multi-agent behavior modeling and trajectory
prediction [124, 109, 56, 86, 74, 148]. It is desirable because it learns a low-dimensional
representation of the original high-dimensional data. However, VAEs do not necessarily learn
a good representation of the data [18]. For instance, prior works on sequence modeling have
found that the model tends to ignore the latent variables if the decoder is overly powerful [13,
32, 114] (e.g., an autoregressive decoder). This makes us wonder whether a VAE-based model
can always learn a good representation of a multi-agent interacting system. However, this
is a general question, as researchers may look for different properties of the latent space, for
example, interpretability [54, 129] and multi-modality [109, 56]. In this chapter, we focus on
a fundamental aspect of this general question: Does the latent space always properly model
interaction? Formally, given a latent variable model of an interacting system, where a latent
variable governs each agent’s behavior, we seek to understand whether the VAE learns to
encode the social context into the latent variables.

This is a concern because VAE handles two distinct tasks in training and testing. In
the training stage, it learns to reconstruct a datum instead of generating one. For multi-
agent interaction modeling, the sample for reconstruction is a set of trajectories of all the
agents. Ideally, the model should learn to model the interaction among agents and jointly
reconstruct the trajectories. However, there is no mechanism to prevent the model from
separately reconstructing the trajectories. In fact, it could even be more efficient in the early
stage of training when the model has not learned an informative embedding of the social
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context. We then end up with a model that models each agent’s behavior separately without
social context, which might suffer from over-estimated variance and large prediction error.
More importantly, since the joint behavior of the agents is a consequence of their interactions,
ignoring the causes may lead to poor generalization ability [129, 47]. We find that a typical
formulation of VAE for multi-agent interaction is indeed prone to ignoring historical social
context (i.e., interactions over the observed time horizon). We refer to this phenomenon as
social posterior collapse. This issue has never been discussed in the literature. Considering
the consequences of ignoring social context, we believe it is necessary to study such a crucial
and fundamental issue.

In this chapter, we first abstract the VAE formulation from a wide range of existing
studies [124, 109, 56, 74]. Then, we analyze social posterior collapse under this formulation
and propose several measures to alleviate the issue. Next, we study the issue in real-world
settings with a realization of the abstract formulation we design. To monitor and analyze
social posterior collapse, we develop an explainable model with intermediate output indicat-
ing social attention. In particular, we propose a novel sparse-GAMP layer and develop the
social-CVAE model, which incorporates a sparse-GAMP encoder for social context aggrega-
tion. With the help of sparse-GAMP, we can directly identify the surrounding agents ignored
by the model. Consequently, we can easily detect social posterior collapse if the attention
map indicates that the model ignores all its surrounding agents. Our experiments show
that social posterior collapse occurs in real-world prediction tasks and that the proposed
measures can effectively alleviate this issue. We also evaluate how social posterior collapse
affects the model performance on these tasks. The results suggest that the model without
social posterior collapse can attain better generalization performance if the historical social
context is informative for prediction.

The rest of the chapter is organized as follows. In Sec. 5.2, we first formulate the VAE
interaction model studied. Subsequently, we define and analyze the social posterior collapse
phenomenon, which leads to several potential measures to alleviate this issue. In Sec. 5.3, we
present the proposed sparse-GAMP layer, which is powered by the α-entmax [98] function. In
Sec. 5.4, we introduce the architecture of social-CVAE, which incorporates sparse-GAMP for
social posterior collapse analysis and proposed modules to mitigate social posterior collapse.
In Sec. 5.5, we report our experiments on real-world trajectory prediction benchmarks. In
Sec. 5.6, we further analyze our findings with the help of detailed ablation studies. In
Sec. 5.7, we provide more details about the experimental settings. In Sec. 5.8, we conclude
the chapter by discussing the connections of our work with the existing literature as well as
the current limitations of our work.
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Figure 5.1: A latent variable model for interaction modeling. The dash edges from Ti to
zi apply only in the CVAE setting.

5.2 Social Posterior Collapse in Variational

Autoencoder Interaction Models

5.2.1 A Latent Variable Model for Interaction Modeling

Given an interacting system with n agents, an interaction-aware trajectory prediction
model takes all the agents’ observed historical trajectories, denoted by {xi}ni=1, as input and
predicts the future trajectories of all the agents or a subset of enquired agents. We denote
the collection of future trajectories as {yi}ni=1. In this chapter, we focus on the latent vari-
able model illustrated in Fig. 5.1, which is abstracted from existing literature on VAEs for
multi-agent behavior modeling [124, 109, 56, 74]. We model interaction by introducing a set
of variables {Ti}ni=1, which aggregates each agent’s state and its observation of other agents.
Formally, each Ti is modeled as a deterministic function of {xi}ni=1, i.e., Ti = fi ({xi}ni=1).
Afterward, the agents make decisions based on the aggregated information over the pre-
dicted horizon. Latent variables {zi}ni=1 are introduced to model the inherent uncertainty
in each agent’s behavior. It should be noted that interaction over the predicted horizon
is not modeled explicitly in this formulation. Although it can be achieved by exchanging
information between agents recurrently (e.g., social pooling in [1]), it is a common practice
to avoid explicit modeling of future interaction due to computational and memory costs [68,
74, 61].

We train the model as a VAE, where an encoder q (z|x,y) is introduced to approximate
the posterior distribution p (z|x,y) for efficient sampling in the training stage1. The per-
formance of variational inference is optimized if the KL divergence between the posteriors,
i.e., DKL [q (z|x,y) ∥p (z|x,y)], is small [18]. To derive a better approximation, we can in-

1The vectors x,y, and z collect the corresponding variables for all n agents.
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corporate inductive bias based on the characteristics of the true posterior into the encoder
function. We introduce the following proposition, which guides our model design:

Proposition 1. For any i = 1, 2, ..., n and j = 1, 2, ..., n, 1) If j ̸= i, zi and yj are
conditionally independent given x and yi; 2) If j ̸= i, zi and zj are conditionally independent
given x; 3) zi and xj are conditionally independent given Ti.

Proof. Because the graph in Fig. 5.1 is a directed acyclic graph (DAG), we can apply the
d-separation criterion [94] to analyze the conditional independence. For each pair of i and j
with i ̸= j, the node zi is connected to yj through Ti and Tj. Further, any path between Ti

andTj has a tripleTi ← xk → Tj for some k = 1, 2, ..., n, which is inactive after conditioning
on x. Therefore, we can apply the d-separation criterion to conclude that (zi ⊥⊥ yj) | x,yi.
The same inactive triples also imply that (zi ⊥⊥ zj) | x. For the third statement, any path
between zi and xj has a inactive path xj → Ti → yi. Therefore, the d-separation criterion
implies that (zi ⊥⊥ xj) | Ti.

Following the proposition, we decompose the posterior distribution as
∏n

i=1 p(zi|Ti,yi).
The decomposition suggests two insights. First, the encoder does not need to aggregate
future context information when inferring the posterior distribution of zi for each agent.
Second, the historical context variable Ti is all that is required in terms of the historical
information of the agent i. The encoder and decoder can share the same function to encode
historical information.

5.2.2 Social Posterior Collapse

We then design a VAE model reflecting the characteristics of the true posterior discov-
ered in Sec. 5.2.1. To simplify the problem, we further make the assumption of homogeneous
agents. The model has three basic building blocks: 1) A function modeling the historical
context, i.e., Ti = fθ (xi,x); 2) A function decoding the distribution of the future trajectory
yi given Ti and zi, i.e., pϕ (yi|Ti, zi); 3) A function approximating the posterior of zi condi-
tioned on Ti and yi, i.e., qψ (zi|Ti,yi). They build up the encoder and decoder of the VAE
model as follows:

qθ,ψ (z|x,y) =
n∏
i=1

qψ (zi|fθ(xi,x−i),yi) , pθ,ϕ (y|x, z) =
n∏
i=1

pϕ (yi|fθ(xi,x−i), zi) . (5.1)

We consider a continuous latent space and model qψ and pϕ as diagonal Gaussian distribu-
tions. The model is trained by maximizing the ELBO:

max
θ,ψ,ϕ

Ex,y∼D
[
Ez∼qθ,ψ(z|x,y) [log pθ,ϕ (y|x, z)]− βDKL [qθ,ψ (z|x,y) ∥p(z)]

]
. (5.2)

However, we find a critical issue in this naive formulation during experiments, which is
the social posterior collapse phenomenon mentioned previously. With the help of the sparse
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graph attention mechanism introduced in Sec. 5.3, we find that the model is prone to ignoring
historical social context when reconstructing the future trajectory of one agent. Equivalently,
the latent variable model collapses to one with all the variables of other agents marginalized
out.

We believe the reason for this is similar to, but different from, a well-known phenomenon
in VAE training—posterior collapse [18]. Due to the KL regularization term in ELBO, the
variational posterior distribution is likely to collapse toward the prior. This is particularly
likely to occur in the early stage of training, when the latent space is still uninformative [33].
In our case, the posterior of zi collapses into qθ,ψ(zi|xi,yi). It does minimize the KL diver-
gence: if both qθ,ψ (zi|xi,yi) and qθ,ψ(zi|x,yi) exactly approximate the true posteriors, then
conditioning on more context information increases the expected value of KL regularization:

ED [DKL [p (zi|x,yi) ∥p(zi)]] = I(zi;x,yi) ⩾ I(zi;xi,yi) = ED [DKL [p (zi|xi,yi) ∥p(zi)]] .

However, we argue that an additional factor contributes to the social posterior collapse
problem, which makes it a unique phenomenon for interaction modeling. In the training
stage, the goal is to reconstruct the future trajectories y. The trajectory itself contains all the
information needed for reconstruction. The history of the agent i provides complementary
information, such as the current state and static environmental information. There is no
explicit regulation in the current framework to prevent the model from extracting information
solely from xi and yi. In fact, the coding scheme is more efficient when the model has not
learned an informative representation of interaction. Techniques such as KL annealing [114,
33] rely on various β scheduling schemes to prevent KL vanishing, which has been shown
to be effective in mitigating the posterior collapse problem. However, reducing β could
merely privilege the model to gather more information from yi, which is consistent with the
reconstruction objective. Therefore, we need to explore alternative solutions to tackle the
social posterior collapse problem deliberately.

We start by changing the model into a conditional generative one [117, 57]. Additional
edges {Ti → zi}ni=1 are added to the original graph, which are annotated with dashed lines
in Fig. 5.1. We follow the practice in [117] and formulate the model as a CVAE. It is
straightforward to verify that the conclusion of Proposition 5.2.1 still applies. We model
the encoder and decoder as in Eqn. (5.1). The CVAE framework introduces an additional
module—a function approximating the conditional prior pη (zi|Ti), which becomes pθ,η (zi|x)
after incorporating fθ(x). The objective then becomes:

L(θ, ψ, ϕ, η) = Ex,y∼D
[
Ez∼qθ,ψ(z|x,y) [log pθ,ϕ (y|x, z)]− βDKL [qθ,ψ (z|x,y) ∥pθ,η(z|x)]

]
.

Compared to Eqn. (5.2), we no longer penalize the encoder for aggregating context
information but only restrict the information encoded from future trajectories. Therefore,
the encoder does not need to ignore context information to fulfill the information bottleneck.
However, the model still lacks a mechanism for encouraging context information encoding
deliberately. To achieve the goal, we propose incorporating an auxiliary prediction task into
the training scheme. Concretely, we introduce another module yi = gζ (Ti, zi). Composing gζ
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with fθ gives us another decoder y = hθ,ζ(x, z). The difference is that the latent variables are
always sampled from pη (zi|Ti). The auxiliary task is training this trajectory decoder, which
shares the same context encoder and conditional prior with the CVAE. Because the auxiliary
model does not have access to the ground-truth future trajectory, it needs to utilize context
information for accurate prediction. Consequently, it encourages the model to encode context
information into T and z. We use mean squared error (MSE) loss as the objective function.
The overall objective is a weighted sum of the two objective functions. In practice, we follow
the common practice of fixing the variance of pθ,ϕ (y|x, z). Consequently, the reconstruction
loss is equivalent to an MSE loss, and the overall objective becomes maximizing the following
objective function:

L̂(θ, ψ, ϕ, η, ζ) = Ex,y∼D
[
Ez∼qθ,ψ(z|x,y) ∥hθ,ϕ(x, z)− y∥2 − βDKL [qθ,ψ (z|x,y) ∥pθ,η(z|x)]

]
− αEx,y∼D,z∼pθ,η(z|x) ∥hθ,ζ(x, z)− y∥2 .

(5.3)
The training scheme looks similar to the one in [117], in which a Gaussian stochastic

neural network (GSNN) is trained together with the CVAE model. However, ours is different
from theirs in some major aspects. The GSNNmodel shares the same decoder with the CVAE
model. The primary motivation of incorporating another learning task is to optimize the
generation procedure during training directly. In contrast, our auxiliary prediction model
has a separate trajectory decoder. This is because we do not want the auxiliary task to
interfere with the decoding procedure of the CVAE model. We find that sharing the decoder
leads to less diversity in trajectory generation, which is not desirable.

5.3 Sparse Graph Attention Message-Passing Layer

Before introducing the specific model we developed for real-world prediction tasks, we
present a novel sparse-GAMP layer, which helps us detect and analyze the social posterior
collapse phenomenon.

5.3.1 Sparse Graph Attention Mechanism

Our sparse-GAMP layer incorporates α-entmax [98] as the graph attention mechanism.
α-entmax is a sparse transformation that unifies softmax and sparsemax [87]. Sparse ac-
tivation functions have received growing attention recently because they can induce sparse
and interpretable outputs. In the context of VAEs, they have been used to sparsify discrete
latent space for efficient marginalization [23] and tractable multi-modal sampling [55]. In
our case, we mainly use α-entmax to induce a sparse and interpretable attention map within
the encoder for diagnosing social posterior collapse.

We are particularly interested in the 1.5-entmax variant, which is smooth and can be
exactly computed. It is also easy to implement on GPUs using existing libraries (e.g.,
PyTorch [92]). Concretely, the 1.5-entmax function maps a d-dimensional input s ∈ Rd into
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p ∈ ∆d =
{
Rd : p ⩾ 0, ∥p∥1 = 1

}
as p = [s/2− τ1]2+, where τ is a unique threshold value

computed using s. Based on the theoretical results in [98], we derive an insightful proposition
that makes 1.5-entmax a desirable option in our framework.

Proposition 2. Let s[d] ⩽ · · · ⩽ s[1] denote the sorted coordinates of s. Define the top-ρ
mean, unnormalized variance, and induced threshold for ρ ∈ {1, ..., d} as

Ms(ρ) =
1

ρ

ρ∑
j=1

s[j], Ss(ρ) =

ρ∑
j=1

(
s[j] −Ms(ρ)

)2
, τs(ρ) =

{
Ms(ρ)−

√
1−Ss(ρ)

ρ
, Ss(ρ) ⩽ 1,

+∞, otherwise.

Let s′ ∈ Rd+1 satisfy s′i = si for i ⩽ d, and define p = 1.5-entmax(s) and p′ = 1.5-entmax(s′).

Then we have the following: 1) If
s′d+1

2
⩽

s[d]
2
−1, then p′i = pi for i = 1, ..., d and p′d+1 = 0;

2) If pi > 0 for i = 1, .., d, then p′i = pi for i = 1, 2, ..., d and p′d+1 = 0 iff s′d+1 ⩽ 2τs/2(d).

Proof. Proposition 3 in [98] suggests that the threshold value is equal to τs/2(ρ
∗) with any ρ∗

satisfying τs/2(ρ
∗) ∈ [

s[ρ∗+1]

2
,
s[ρ∗]
2
]. If d satisfies the condition, then τs/2(d) ∈ (−∞, s[d]

2
], which

is clearly finite. Therefore, τs/2(d) = Ms/2(d) −
√

1−Ss/2(d)

d
⩾

s[d]
2
− 1 by definition. Given

s′d+1

2
⩽

s[d]
2
− 1, we have τs′/2(d) = τs/2(d) ∈ [

s′d+1

2
,
s′
[d]

2
]. Therefore, τs/2(d) is still the threshold

value. If d is not a valid ρ∗, then there exists ρ∗ ∈ {1, ..., d− 1} defining the threshold value.

Because
s′d+1

2
<

s[d]
2
, augmenting the input vector does not affect the threshold value. In both

cases, the threshold value is unchanged, which leads to the first statement of the proposition.
Now we prove the second statement of the proposition. Because pi > 0 for i = 1, .., d, the

threshold value is smaller than
s[d]
2
, which makes d the only possible ρ∗. If s′d+1 ⩽ 2τs/2(d),

then τs/2(d) defines the threshold value for s′. Therefore, p′i = pi for i = 1, 2, ..., d and
p′d+1 = 0. Instead, if we are given p′i = pi for i = 1, 2, ..., d and p′d+1 = 0, the threshold

satisfies τs′/2(ρ
∗) ∈

[
s′d+1

2
,
s[d]
2

]
. Therefore, d is a valid threshold index for both s and s′, and

s′d+1 ⩽ 2τs′/2(d) = 2τs/2(d).

The first statement of the proposition provides a sufficient condition for augmenting an
input vector without affecting its original attention values. It is useful when applying 1.5-
entmax to graph attention. Unlike typical neural network models, GNNs operate on graphs
whose sizes vary over different samples. Meanwhile, nodes within the same graph may have
different numbers of incoming edges. Therefore, the 1.5-entmax function has inputs of vary-
ing dimensions even within the same batch of training samples, making it inefficient to com-
pute using available primitives. The proposition suggests a simple solution to this problem.
Given {sj}mj=1 with sj ∈ Rdj , we can compute a dummy value as minj∈{1,...,m},i∈{1,...,dj} sj,i−2.
We can augment the input vectors with this dummy value to transform them into a matrix in
Rm×d∗ , where d∗ is the largest value of dj. The dummy elements will not affect the attention
computation, and existing primitives based on matrix computation can be used directly.

The second statement implies that the activated coordinates determine a unique threshold
value for augmented coordinates. This property is beneficial when modeling interactions
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with a large number of agents (e.g., dense traffic scenes). This ensures that the effects
of interacting agents will not be diluted by the irrelevant agents, which could potentially
improve the robustness of the model [39]. Here, we mainly utilize the interpretability of
the sparse graph attention, but we will investigate its application in generalization in future
work.

5.3.2 Sparse-GAMP

To obtain the sparse-GAMP layer, we combine the sparse graph attention with a message-
passing GNN [37, 67]. Given a directed graph G = (V , E) with vertices v ∈ V and edges
e = (v, v′) ∈ E , we define the sparse-GAMP layer as a composition of a node-to-edge
message-passing step v → e and an edge-to-node message-passing step e→ v:

v → e : h(i,j) = fe
([
hi,hj,u(i,j)

])
, (5.4)

e→ v : ĥj =
∑
i∈Nj

w(i,j)h(i,j), where wj = G-entmax
({

h(i,j)

}
i∈Nj

)
,

In our prediction model, we use this sparse-GAMP layer to model the function for historical
social context encoding, i.e., Ti = fθ (xi,x).

5.4 Social-CVAE

In this section, we design a realization of the abstract framework studied in Sec. 5.2 for
real-world trajectory prediction tasks. We choose to design the model with GNNs, which
enable a flexible graph representation of data. Several GNN-based approaches have achieved
state-of-the-art performance in trajectory prediction tasks [151, 75, 149]. The resulting
model is depicted in Fig. 5.2, which we refer to as social-CVAE. During training, we first
encode the historical and future trajectories of all the agents using a GRU [21] network.
For vehicle trajectory prediction tasks, we incorporate the map information in a manner
similar to [36]. Different from [36], where road boundaries are modeled as nodes in the scene
graph, we adopt the representation in [9], where the map is denoted as a graph consisting
of lanelet nodes, i.e., drivable road segments. Each lanelet is represented by its left and
right boundaries, consisting of two sequences of points. We use another GRU network to
encode them. Although not utilized in this work, the lanelet representation also allows us
to combine routing information in a natural manner, as in [149].

To encode the historical context information, we construct a graph using the embeddings
of historical trajectories and lanelets if available. Each pair of agent nodes has a bidirectional
edge connecting each other. For each lanelet node, we add edges connecting it to all the
agent nodes. If the map information is not available, we add self-edges for all the agents to
enable direct self-encoding channels. One sparse-GAMP layer is applied to encode historical
context for all the agents. If social posterior collapse occurs, the agent-to-agent edges, except
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Figure 5.2: Social-CVAE architecture. We adopt a graph representation and use sparse-
GAMP to encode the context. The modules within the orange box are the auxiliary decoders.

for self-edges, are more likely to receive zero attention weights due to the sparse attention.
Therefore, we can use the percentage of unattended agent-to-agent edges as a metric to detect
social posterior collapse. This is a more objective metric than the quantitative magnitude
of attention weights. We can assert that an agent node does not contribute to the output
if its attention is strictly zero. However, we need to be more careful when comparing the
importance of two agents based on non-zero attention weights [59, 139]. For the same
reason, we do not consider techniques such as multiple message-passing layers [36, 75, 149]
or separating self-edges from aggregation [74]. Although they could potentially boost the
performance, it may be inconclusive to analyze the model based on the attention map.
After computing the historical context, we use an MLP to model the conditional Gaussian
prior pη (zi|Ti). To model the variational posterior, we concatenate the future trajectory
embedding with each agent’s historical context and use another MLP to output the posterior
mean and variance. For the decoder, we use another GRU to decode the future trajectory for
each agent separately. The auxiliary decoder shares the same structure but always samples
the latent variables from the conditional prior.

5.5 Experiments

In this section, we report the experimental results for two trajectory prediction tasks.
The main purpose is not achieving state-of-the-art performance but to study the social
posterior collapse problem. We compare social-CVAE with two variants: 1) A model without
the auxiliary task; 2) A model without the auxiliary task or the conditional prior. They
correspond to the vanilla CVAE and VAE formulations discussed in Sec. 5.2. We are curious
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about whether the proposed measures can alleviate social posterior collapse. We will briefly
introduce the experiment settings and present the main results. More details on experiment
settings as well as detailed ablation studies can be found in Sec. 5.6 and Sec. 5.7.

5.5.1 Vehicle Trajectory Prediction

The first task is the vehicle trajectory prediction problem, where we are asked to pre-
dict the future trajectory of one target vehicle given its historical trajectories and those
of other surrounding vehicles. We train the models on two datasets: the INTERACTION
dataset [150] and Argoverse Motion Forecasting dataset [15]. To evaluate the prediction
performance, we use the standard minimum average displacement error (minADE) and
minimum final displacement error (minFDE) over K sampled trajectories as metrics. We
follow [15] and define minADE as ADE of the trajectory with minimum FDE. Additionally,
we define a unique metric, agent ratio (AR), to study social posterior collapse:

AR =

∑n
i=1,i ̸=j 1(ω(i,j) ̸= 0)

n− 1
,

where the agent j refers to the predicted target vehicle, and w(i,j) is the attention weight
assigned to the edge from the agent i to the target vehicle. It is equal to the percentage of
surrounding vehicles that receive non-zero attention. A value close to zero implies that the
model ignores the majority of the surrounding vehicles, which is a sign of the occurrence of
social posterior collapse.

INTERACTION Dataset

The INTERACTION dataset provides three categories of driving scenarios: intersection
(IS), roundabout (RA), and highway merging (HM). For each experiment, we ran five trials
to account for the randomness in initialization. We then evaluated them on the validation
sets and computed the mean and standard deviation of the evaluated metrics over all the
trials. The best models were selected for testing on the regular (R) and generalization (G)
tracks of the INTERPRET Challenge 2. The results are summarized in Table 5.1. The CVAE
variants have AR values similar to the VAE variants on IS and HM. This is consistent with
our argument that merely changing the model to a conditional one is insufficient.

In contrast, our social-CVAE model consistently attains high AR values. However, the
CVAE variant achieves similar prediction performance as ours on the validation sets of IS
and RA, even if the CVAE variant suffers from the social posterior collapse problem. This
is because the driving behavior within ISs and RAs depends highly on location. When the
map is less informative (e.g., validation set in HM) or a novel scenario is encountered (e.g.,
generalization track), our social-CVAE model, which does not have social posterior collapse,

2The challenge adopts a different group of evaluation metrics; please see their website for the formal
definitions: http://challenge.interaction-dataset.com/prediction-challenge/intro

http://challenge.interaction-dataset.com/prediction-challenge/intro


CHAPTER 5. DIAGNOSING SOCIAL POSTERIOR COLLAPSE 103

outperforms the other variants. Notably, we compare it with another instance that attains
a AR value close to zero even with the auxiliary task. These test performances, especially
on the generalization track, are considerably different. This shows that it is mainly the
historical social context that improves the prediction performance. While the auxiliary task
also contributes, the improvement is not significant, especially in novel scenes, unless it
prevents social posterior collapse.

Argoverse Dataset

Similar to the INTERACTION dataset, we trained five models with random initialization
for each case and evaluated them on the validation sets. The best social-CVAE instance was
selected for submission to the Argoverse Motion Forecasting Challenge. Although achieving
state-of-the-art performance is not our objective, we still report the testing result in Sec. 5.5.4
and compare it with the other models on the leaderboard in order to provide the audience
with a complete picture of the model. Here, we mainly focus on the validation results in
Table 5.2. The conclusion is consistent. The difference is that the social-CVAE model
outperforms the others even on the validation set. This is because the validation set of the
Argoverse dataset is collected in different areas of the cities, which is more analogous to the
generalization track of the INTERPRET Challenge.

5.5.2 Pedestrian Trajectory Prediction

The second task is the pedestrian trajectory prediction problem, where we are asked
to forecast the future trajectories of all the pedestrians in each scenario. We trained the
models on the well-established ETH/UCY dataset, which combines two datasets, ETH [95]
and UCY [70]. Following prior works [46, 108, 109, 86, 148], we adopt the leave-one-out
evaluation protocol and do not use any environmental information. All the prediction met-
rics are computed with K = 20 samples. Similar to the vehicle case, we ran five trials for
each experiment. The results are summarized in Table 5.3, where we report the testing
results for each group and the averages for all the groups. A comparison between our model
and other methods can be found in Sec. 5.5.4. In Table 5.3, we see that changing to the
CVAE formulation leads to a significant boost in terms of AR, implying that the model
gives more attention to surrounding agents. However, neither changing to CVAE nor the
auxiliary task improves prediction performance. This is because historical social context is
less informative for pedestrian trajectory prediction. The ETH/UCY dataset is collected in
unconstrained environments with few objects. In addition, compared to vehicles, pedestri-
ans have fewer physical constraints in 2D motion, resulting in shorter temporal dependency
in their movement. This is consistent with the results in [148], where the authors pro-
posed a transformer-based model that achieves the current state-of-the-art performance on
ETH/UCY. The visualized attention maps in [148] show that the social context in nearby
time steps is more important to their prediction model. In contrast, the historical trajec-
tories of other agents always receive low attention weights. Therefore, even if the auxiliary
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Table 5.1: INTERACTION Dataset Validation and Test Results

Scene Model AR(%)
K = 1 K = 6

minFDE minADE minFDE minADE

IS
VAE 1.85± 4.02 1.32± 0.03 0.42± 0.01 0.73± 0.01 0.26± 0.01
CVAE 0.18± 0.36 1.27± 0.02 0.41± 0.01 0.68± 0.02 0.24± 0.01
Ours 15.8± 10.4 1.27± 0.02 0.41± 0.01 0.70± 0.02 0.25± 0.01

RA
VAE 0.05± 0.04 1.34± 0.02 0.42± 0.01 0.76± 0.01 0.26± 0.01
CVAE 13.4± 14.9 1.32± 0.01 0.42± 0.01 0.73± 0.02 0.25± 0.01
Ours 19.5± 15.4 1.29± 0.03 0.42± 0.01 0.72± 0.01 0.26± 0.01

HM
VAE 8.68± 8.36 0.87± 0.08 0.29± 0.03 0.42± 0.04 0.16± 0.01
CVAE 5.42± 10.2 0.83± 0.03 0.28± 0.03 0.40± 0.05 0.16± 0.02
Ours 15.5± 8.13 0.65± 0.09 0.22± 0.02 0.32± 0.04 0.13± 0.01

Track Model AR(%)
K = 6 K = 50

ADE FDE MoN ADE FDE MoN

R

VAE 0.35± 5.37 0.5685 1.7573 0.2238 0.5712 1.7709 0.1036
CVAE 0.07± 1.43 0.5323 1.6425 0.2144 0.5410 1.6725 0.0983
Ours∗ 0.88± 2.49 0.5157 1.5823 0.2195 0.5158 1.5823 0.1106
Ours 24.8± 20.2 0.4665 1.4174 0.2011 0.4662 1.4187 0.1050

G

VAE 0.02± 1.27 1.3428 3.8542 0.8193 1.3436 3.8564 0.5181
CVAE 0.05± 2.20 1.4517 4.2179 0.8743 1.3824 3.9972 0.5676
Ours* 0.37± 2.74 1.1615 3.3927 0.6811 1.1617 3.3939 0.4218
Ours 15.2± 14.7 0.9205 2.7049 0.6075 0.9186 2.6969 0.4891

Ours∗ refers to an instance of social-CVAE that still suffers from social posterior collapse.
The results are presented in the format of mean ± std. For the validation set, the mean
and standard deviation are computed over multiple trials. For the test set, the mean and
standard deviation of AR are computed over all the samples.

prediction task encourages our model to encode historical social context, it does not lead to
either a larger AR value or better prediction performance. This suggests that the simplified
latent variable model studied in this chapter might not be sufficient to model pedestrian
motion. Explicit future interaction should be considered, and an autoregressive decoder,
such as the one in [148], should be used to account for it.
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Table 5.2: Argoverse Dataset Validation Results

Model AR(%)
K = 1 K = 6

minFDE minADE minFDE minADE

VAE 1.27± 1.00 4.17± 0.17 1.86± 0.07 2.33± 0.06 1.30± 0.04
CVAE 0.40± 0.31 3.85± 0.01 1.73± 0.01 2.09± 0.02 1.19± 0.01
Ours 28.5± 15.7 3.52± 0.03 1.59± 0.02 1.98± 0.02 1.15± 0.01

The results are presented in the format of mean± std computed over multiple trials.

Table 5.3: ETH/UCY Dataset Leave-One-Out Testing Results

Model
ETH HOTEL

AR(%) minFDE minADE AR(%) minFDE minADE

VAE 74.0± 7.33 0.98± 0.07 0.63± 0.03 29.0± 28.1 0.28± 0.01 0.19± 0.01
CVAE 90.9± 6.38 0.94± 0.10 0.61± 0.05 69.8± 41.7 0.27± 0.01 0.18± 0.01
Ours 83.2± 12.6 1.08± 0.10 0.68± 0.04 72.9± 21.5 0.27± 0.02 0.18± 0.01

Model
ZARA1 ZARA2

AR(%) minFDE minADE AR(%) minFDE minADE

VAE 40.3± 22.8 0.38± 0.01 0.22± 0.01 30.1± 17.1 0.32± 0.01 0.18± 0.01
CVAE 89.4± 7.65 0.39± 0.01 0.22± 0.01 64.2± 25.6 0.35± 0.01 0.19± 0.01
Ours 61.9± 5.71 0.38± 0.01 0.22± 0.01 58.6± 15.7 0.37± 0.02 0.20± 0.01

Model
UNIV Average

AR(%) minFDE minADE AR(%) minFDE minADE

VAE 0.06± 0.09 0.55± 0.01 0.31± 0.01 34.7± 29.4 0.50± 0.27 0.30± 0.17
CVAE 41.2± 25.1 0.63± 0.05 0.35± 0.02 71.1± 29.5 0.51± 0.25 0.31± 0.17
Ours 36.3± 14.4 0.63± 0.02 0.35± 0.01 62.6± 21.0 0.54± 0.29 0.33± 0.19

The results are presented in the format of mean± std computed over multiple trials.

5.5.3 Visualization

In this section, we visualize the experimental results for the vehicle prediction task.
Fig. 5.3 and Fig. 5.4 show several examples from the INTERACTION and Argoverse datasets,
respectively. For each instance, we compare the outputs of the three model variants we study
in Sec. 5.5. The target vehicles’ historical trajectories and ground-truth future trajectories
are denoted by blue and red dots, respectively. We sample six predicted trajectories from
each model and plot them using dashed lines of different colors. We also approximate the
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density function of the prediction output using a kernel density estimator and visualize it
with a color map. Since we are particularly interested in monitoring the social posterior
collapse phenomenon, we visualize the attention map by highlighting the surrounding vehi-
cles and lanelets that receive non-zero attention weights. In particular, if a vehicle received
non-zero attention, we use the same method as with the target vehicle to annotate its his-
torical and future trajectories. Otherwise, its trajectories are annotated with grey dots. If
a lanelet node receives non-zero attention, we highlight its boundaries or centerline with
orange lines. The VAE and CVAE variants ignore all the surrounding vehicles in all the
visualized instances, including those close to the target vehicles. They only pay attention to
the lanelet nodes, which results in insensible prediction results, for instance, colliding into
preceding vehicles (e.g., the second row in Fig. 5.3 and Fig. 5.4). In contrast, the social-
CVAE models assign attention weights to vehicles that might potentially interact with the
target vehicles and maintain sparse attention maps in dense traffic scenes (e.g., the last two
rows in Fig. 5.3).

5.5.4 Testing Results on Argoverse and ETH/UCY

In this section, we report the testing results for the Argoverse and ETH/UCY datasets
and compare the results with other models in the literature. It should be noted that achieving
state-of-the-art performance is not our target. The testing results are provided to give the
reader a complete picture of the model. For the Argoverse dataset, we collect the results
of other models from the leaderboard. Although there are other models on the leaderboard
with better performance, we focus on those from published papers to obtain insights on the
reasons behind the performance gap. For the ETH/UCY dataset, we collect the results from
the corresponding papers.

On the Argoverse dataset, the performance of our social-CVAE model is similar to
TNT [151], which adopted a similar map representation to ours, in terms of minFDE and
minADE when K = 1. This implies that we could improve the performance of our model
by adopting alternative map representations, such as those proposed in LaneGCN [75] and
TPCN [142]. Another observation is that, compared to the other approaches, our model has
a large performance margin in the case of K = 6. The reason for this is that sampling from a
high-dimensional continuous distribution is inefficient, making it less effective for modeling
the multi-modality of driving behavior. Using discrete latent space as in [56] and [109] or
conditioning the latent space on goal points [86] could be better options under the CVAE
framework. On the ETH/UCY dataset, the VAE variant of our model has better or compa-
rable performance to all the other models except for Trajectron++ and AgentFormer. As
mentioned in the main text, we are particularly interested in the formulation of AgentFormer.
In future studies, we will incorporate a similar autoregressive decoder into our model and
investigate social posterior collapse under this setting.
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Figure 5.3: Visualizing prediction results for the Interaction dataset.
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Figure 5.4: Visualizing prediction results for the Argoverse dataset.

Table 5.4: Argoverse Dataset Testing Results

Model
K = 1 K = 6

minFDE minADE minFDE minADE

TNT [151] 4.9593 2.1740 1.4457 0.9097
LaneGCN [75] 3.7786 1.7060 1.3640 0.8679

LaneRCNN [149] 3.6916 1.6852 1.4526 0.9038
TPCN [142] 3.6386 1.6376 1.3535 0.8546

Social-CVAE (Ours) 4.2748 1.9276 2.4881 1.3568

5.6 Ablation Study

5.6.1 Effect of Aggregation Functions

In this section, we present an ablation study on the aggregation functions used in the
message-passing network. Because of the sparsity of α-entmax, the usage of sparse graph
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Table 5.5: ETH/UCY Testing Results

Model
minADE/minFDE, K = 20

ETH HOTEL UNIV ZARA1 ZARA2 Average

SGAN[46] 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.18
SoPhie[108] 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15

Transformer-TF[38] 0.61/1.12 0.18/0.30 0.35/0.65 0.22/0.38 0.17/0.32 0.31/0.55
STAR[144] 0.36/0.65 0.17/0.36 0.31/0.62 0.26/0.55 0.22/0.46 0.26/0.53
PECNet[86] 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48

Trajectron++[109] 0.39/0.83 0.12/0.21 0.20/0.44 0.15/0.33 0.11/0.25 0.19/0.41
AgentFormer[148] 0.26/0.39 0.11/0.14 0.26/0.46 0.15/0.23 0.14/0.24 0.18/0.29

VAE (Ours) 0.59/0.90 0.18/0.26 0.31/0.54 0.21/0.37 0.17/0.31 0.29/0.48
CVAE (Ours) 0.56/0.84 0.18/0.26 0.33/0.58 0.21/0.38 0.18/0.33 0.29/0.48

Social-CVAE (Ours) 0.64/0.99 0.18/0.27 0.35/0.62 0.21/0.37 0.19/0.34 0.32/0.52

attention may induce social posterior collapse. Therefore, we would like to study whether
social posterior collapse will still occur if we switch to other aggregation functions. We con-
sider two variants for comparison. The first one is replacing G-entmax with the conventional
softmax function, resulting in the following message-passing operations:

v → e : h(i,j) = fe
([
hi,hj,u(i,j)

])
,

e→ v : ĥj =
∑
i∈Nj

w(i,j)h(i,j), where wj = softmax
({

h(i,j)

}
i∈Nj

)
,

The second variant is using the max aggregation instead of the weighted sum. The message-
passing layer becomes the one in Eqn. (5.5) - (5.6). The max aggregation takes the element-
wise maximum along the dimension of the hidden unit. Therefore, it allows the number of
activated nodes to be at most the dimension of h(i,j). The social posterior collapse issue
should be avoidable if G-entmax is the reason for its occurrence.

v → e : h(i,j) = fe
([
hi,hj,u(i,j)

])
, (5.5)

e→ v : ĥj = max-aggregate
(
{h(i,j)}i∈Nj

)
. (5.6)

The issue that remains is the evaluation metric. Unlike sparse-GAMP, we do not have
the ability to detect social posterior collapse by monitoring the magnitude of AR. We
need to find alternative and unified evaluation metrics to compare models with different
aggregation functions. We adopt the two feature-importance measures used in [59] as our
evaluation metrics: 1) gradient-based measures of feature importance and 2) differences in
model output induced by leaving features out. However, instead of studying the importance
of single features, we are interested in the contribution of a single agent to model output.
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Consequently, we define a customized gradient-based measure as follows:

τg,i =
1

2(n− 1)Th

n∑
j=1,j ̸=i

∥∥∥∥∂ŷi,Tp∂xj

∥∥∥∥
1,1

,

where i is the index of the target agent, Tp is the number of predicted frames, ŷi,Tp is the
predicted state of the target agent at the last frame, ∂ŷi,Tp/∂xj is the partial Jacobian matrix
of ŷi,Tp regarding the observed trajectory of the agent j, and ∥ · ∥1,1 defines the entry-wise
1-norm, which sums the absolute values of the matrix’s entries. τg,i essentially measures the
average gradient of the model output regarding the observations of the surrounding agents.
If the model ignores the social context, a small τg,i is expected. Additionally, we define a
customized leave-one-out ADE metric as follows:

looADEi =
1

n− 1

n∑
j=1,j ̸=i

ADE (ŷ(x−j), ŷ(x)) ,

where x−j denotes the observed trajectories with the agent j masked out. looADEi is equal
to the average ADE between the normal prediction output and the prediction output with
each surrounding agent masked out. Similar to τg,i, we expect a small looADEi if social
posterior collapse occurs.

We conduct the ablation study on the vehicle prediction task. For both datasets, we
repeat the experiments but replace the models with their variants with different aggregation
functions. We are mainly interested in comparing the values of τg and looADE across the
models with the same aggregation functions. Because the other aggregation functions do
not encourage a sparse model structure, any surrounding agent could contribute to τg and
looADE. This makes it less informative to compare them against the model with sparse
attention. The results for the validation sets are summarized in Table 5.6 and 5.7. The trends
in τg and looADE are similar regardless of the aggregation functions. In most circumstances,
our social-CVAE model attains the highest scores with large margins, whereas the VAE
variant has the lowest τg and looADE. Meanwhile, the comparisons of prediction performance
are also consistent with the case of sparse-GAMP. Therefore, we can conclude that social
posterior collapse is not unique to the models with sparse-GAMPs.

We also observe that changing the formulation from VAE to CVAE always leads to
an increase in τg and looADE when the alternative aggregation functions are used. In
contrast, the values could stay unchanged in the case of sparse-GAMP. We are then curious
if merely changing the formulation can alleviate social posterior collapse when sparse-GAMP
is not used. We take the softmax variant as an example and investigate its attention maps.
However, simply computing the ratio of non-zero attention weights is meaningless because
the attention is no longer sparse. To solve this problem, we refine our definition of AR as
follows:

ARδ =

∑n
i=1,i ̸=j 1(ω(i,j) ⩾ δ)

n− 1
, δ ∈ [0, 1].
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Threshold

Figure 5.5: ARδ(%) vs. Threshold on the Argoverse Dataset.

Now ARδ is a function of a threshold value δ. Instead of looking at a single value at δ = 0,
we are interested in seeing how ARδ changes when increasing δ from 0 to 1. In Fig. 5.5, we
plot ARδ(%) versus the threshold δ for all the models with softmax and entmax functions on
the Argoverse dataset. By switching to the conditional model, the softmax variant assigns
relatively larger attention weights to surrounding agents. However, the increase in ARδ

mainly occurs at small threshold values. Compared to the social-CVAE models, the ratio
of agents receiving large attention weights is lower. This is consistent with our argument
that merely changing the formulation is insufficient to alleviate social posterior collapse.
Another interesting observation is that the ARδ curves for the two variants of social-CVAE
models coincide when δ ⩾ 0.1. This implies that our sparse graph attention does not prevent
the model from identifying interacting agents. It just filters out agents that are recognized
as irrelevant to maintain a sparse and interpretable attention map. We can also observe
from the evaluated prediction metrics that the sparse graph attention does not interfere
with the prediction performance. The social-CVAE models with either attention mechanism
achieve similar prediction accuracy. In short, our sparse graph attention function provides a
convenient and flexible toolkit that allows us to monitor and analyze social posterior collapse
without compromising performance. Although we can still analyze the models without it,
these universal metrics, i.e., τg and looADE, are computationally expensive, especially for
evaluation at run time.

5.6.2 Effect of Environmental Information

In this section, we investigate the effect of environmental information on social posterior
collapse. In Sec. 5.5, we find that the models behave quite differently on the pedestrian
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Table 5.6: INTERACTION Dataset Aggregation Function Comparison

Scene Aggreg. Model
τg looADE K = 6

(×10−4) (×10−3) minADE minFDE

IS

max
VAE 0.39± 0.10 0.52± 0.20 0.28± 0.01 0.79± 0.01
CVAE 3.86± 1.30 6.38± 2.76 0.24± 0.01 0.69± 0.01
Ours 14.8± 5.39 20.3± 3.25 0.25± 0.01 0.70± 0.01

softmax
VAE 0.90± 1.37 1.41± 2.35 0.26± 0.01 0.73± 0.02
CVAE 5.00± 1.04 10.6± 2.16 0.24± 0.01 0.67± 0.01
Ours 33.6± 19.0 17.7± 1.37 0.25± 0.02 0.70± 0.01

entmax
VAE 0.05± 0.09 0.20± 0.42 0.26± 0.01 0.73± 0.02
CVAE 0.02± 0.03 0.02± 0.03 0.24± 0.01 0.68± 0.01
Ours 29.6± 2.50 8.73± 5.50 0.25± 0.01 0.70± 0.02

RA

max
VAE 0.15± 0.05 0.36± 0.17 0.30± 0.01 0.86± 0.02
CVAE 5.12± 2.18 8.42± 2.41 0.26± 0.01 0.74± 0.01
Ours 36.3± 12.4 28.8± 1.40 0.28± 0.01 0.76± 0.02

softmax
VAE 1.62± 1.57 4.51± 3.30 0.27± 0.01 0.79± 0.02
CVAE 8.63± 2.85 18.4± 1.18 0.26± 0.01 0.73± 0.01
Ours 40.6± 10.2 22.8± 0.74 0.27± 0.01 0.73± 0.01

entmax
VAE 0.00± 0.00 0.01± 0.01 0.26± 0.01 0.75± 0.01
CVAE 11.8± 10.9 5.91± 5.70 0.25± 0.01 0.72± 0.01
Ours 71.0± 71.4 12.9± 8.64 0.26± 0.01 0.73± 0.02

HM

max
VAE 0.45± 0.36 0.40± 0.18 0.20± 0.02 0.52± 0.05
CVAE 37.8± 13.3 7.00± 0.68 0.15± 0.01 0.36± 0.01
Ours 196± 53.0 8.28± 0.57 0.13± 0.01 0.31± 0.01

softmax
VAE 8.89± 0.69 3.92± 2.68 0.17± 0.01 0.42± 0.02
CVAE 47.0± 8.01 11.5± 0.53 0.15± 0.01 0.34± 0.01
Ours 176± 36.0 9.42± 0.40 0.14± 0.01 0.32± 0.01

entmax
VAE 10.7± 22.4 1.80± 3.36 0.16± 0.01 0.41± 0.04
CVAE 16.4± 36.6 1.93± 4.14 0.15± 0.02 0.38± 0.04
Ours 205± 158 6.23± 3.27 0.13± 0.02 0.32± 0.04

prediction task and its vehicle counterpart. In our experiments on the ETH/UCY dataset,
although switching to CVAE leads to a larger AR value, it does not boost prediction per-
formance. Moreover, the auxiliary task neither improves prediction performance nor further
increases the AR value. In the main text, we argue that this is because, unlike vehicles,
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Table 5.7: Argoverse Dataset Aggregation Function Comparison

Aggreg. Model
τg looADE K = 6

(×10−3) (×10−2) minADE minFDE

max
VAE 0.11± 0.12 0.24± 0.31 1.47± 0.09 2.64± 0.07
CVAE 3.91± 2.06 3.33± 1.82 1.22± 0.02 2.15± 0.05
Ours 13.5± 2.35 13.9± 0.77 1.18± 0.04 2.07± 0.09

softmax
VAE 0.12± 0.06 0.29± 0.12 1.36± 0.11 2.40± 0.07
CVAE 5.85± 1.64 5.62± 1.00 1.16± 0.01 1.98± 0.01
Ours 13.1± 2.17 8.83± 1.27 1.13± 0.01 1.95± 0.03

entmax
VAE 0.02± 0.02 0.07± 0.06 1.29± 0.04 2.32± 0.05
CVAE 0.01± 0.01 0.02± 0.01 1.19± 0.01 2.08± 0.02
Ours 7.30± 2.95 5.77± 2.34 1.15± 0.02 1.97± 0.02

Table 5.8: INTERACTION Dataset without Map - HM

Map Model AR(%)
K = 1 K = 6

minFDE minADE minFDE minADE

Yes
VAE 8.68± 8.36 0.87± 0.08 0.29± 0.03 0.42± 0.04 0.16± 0.01
CVAE 5.42± 10.2 0.83± 0.03 0.28± 0.03 0.40± 0.05 0.16± 0.02
Ours 15.5± 8.13 0.65± 0.09 0.22± 0.02 0.32± 0.04 0.13± 0.01

No
VAE 24.4± 14.4 0.98± 0.08 0.34± 0.02 0.51± 0.05 0.20± 0.02
CVAE 43.5± 8.72 0.72± 0.02 0.25± 0.01 0.36± 0.01 0.15± 0.01
Ours 33.7± 5.77 0.62± 0.01 0.22± 0.01 0.32± 0.01 0.13± 0.01

pedestrians do not have a long-term dependency on their interaction. As a result, the model
cannot benefit from encoding the historical social context. However, we also adopt different
input representations for the two prediction problems. In the vehicle prediction task, the
input graphs have additional lanelet nodes, contributing to the difference in model behavior.

To answer this question, we trained models for vehicle prediction with the same represen-
tation as pedestrians, which means removing lanelet nodes and adding self-edges instead. We
choose to study this problem on the highway merging subset of the INTERACTION dataset
because the interaction between vehicles depends less on the map than urban driving. We
follow the same practice to run five trials for each model variant and report the means and
standard deviations for all the metrics. The results are summarized in Table 5.8. We also
copy the results from Table 5.1 for convenient comparison.
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We think social posterior collapse still occurs in the baseline VAE model. As social
context affects highway driving to a larger degree than road structure, our social-CVAE
model that encodes social context can maintain consistent prediction accuracy without map
information. On the other hand, removing lanelet nodes leads to a significant drop in the
baseline VAE model’s prediction accuracy. This indicates that the baseline VAE model does
not utilize social context well but relies heavily on map information, which is verified by its
lower AR value. In particular, one of the five VAE models has a nearly zero AR value.

The analysis becomes complicated when comparing our model against the CVAE variant.
Introducing the auxiliary task still improves prediction accuracy. Further, we note that
the CVAE model itself has a lower prediction error after removing lanelet nodes. If the
historical social context is the dominant factor determining prediction performance, we may
draw two conclusions. First, the CVAE model suffers less from social posterior collapse
under the graph representation without lanelet nodes. Second, the auxiliary prediction task
can further encourage the model to encode social context. However, we do not have direct
evidence showing that the auxiliary task encourages the model to encode social context —the
auxiliary task does not lead to a larger AR value.

We think the reason behind this is that removing lanelet nodes makes the attention
map less likely to become sparse. In most driving scenarios, the number of lanelet nodes
dominates the number of agents. Removing lanelet nodes reduces the number of incoming
edges for each agent node. Consequently, the agent-to-agent edges compete with a single
self-edge to gain attention instead of numerous lanelet-to-agent edges. This implies that
the format of representation affects the impact of social posterior collapse on the model.
More importantly, it shows the limitation of using AR as the single metric to analyze social
posterior collapse. This is particularly effective when the agent vertices are of a high degree,
but the analysis may be inconclusive otherwise. In future studies, we will investigate other
metrics and tools that can be applied to a broader range of problems.

5.6.3 Effect of KL Annealing

In Sec. 5.2.2, we argue that social posterior collapse is different from the well-known
posterior collapse issue, and typical techniques that address posterior collapse, e.g., KL
annealing, may not be effective in mitigating social posterior collapse. In this section, we test
if one of the annealing methods —cyclical annealing schedule [33] —can effectively alleviate
social posterior collapse. Again, we use the HM scenario from the INTERACTION dataset
as an example to study this problem. When training the baseline VAE and CVAE models,
we incorporate the cyclical annealing schedule plotted in Fig. 5.6 to adjust the magnitude
of β over training epochs. The results are summarized in Table 5.9. The cyclical annealing
schedule neither improves prediction performance nor increases AR value consistently. The
VAE model with a cyclical schedule does have a larger average AR value. However, two out
of the five trials attain zero AR, which causes the large standard deviation. In summary,
the cyclical annealing schedule does not alleviate the social posterior collapse issue in the
experiments, which is consistent with our previous argument.
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Figure 5.6: The cyclical annealing schedule adopted in our experiments. Each annealing
cycle consists of 25 training epochs. The magnitude of β increases linearly from zero to
the maximum value in the first half of the cycle, and then it remains unchanged in the
remaining epochs. The maximum value is set to be 0.03, which is the value used in previous
experiments with constant β.

5.7 Experiment Details

In this section, we report additional details of the experiments, including the data pro-
cessing scheme, implementation details, and hyper-parameters used.

Table 5.9: INTERACTION Dataset KL Annealing Experiment - HM

Model Cycling AR(%)
K = 1 K = 6

minFDE minADE minFDE minADE

VAE
No 8.68± 8.36 0.87± 0.08 0.29± 0.03 0.42± 0.04 0.16± 0.01
Yes 17.7± 16.5 0.96± 0.10 0.33± 0.03 0.52± 0.04 0.20± 0.01

CVAE
No 5.42± 10.2 0.83± 0.03 0.28± 0.03 0.40± 0.05 0.16± 0.02
Yes 7.65± 10.5 0.84± 0.07 0.28± 0.02 0.41± 0.03 0.16± 0.01

Ours - 15.5± 8.13 0.65± 0.09 0.22± 0.02 0.32± 0.04 0.13± 0.01
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5.7.1 Data Processing Scheme

INTERACTION Dataset. The access to the dataset is granted for non-commercial
usage through its official website: https://interaction-dataset.com (Copyright c○All
Rights Reserved). First, we use the script from the official code repository to split the
training and validation sets and segment the data. Each sample has a length of 4s, with
an observation window of 1s and a prediction window of 3s. The sampling frequency is
10Hz. We further augment the dataset by iteratively assigning each vehicle in a sample as
the target vehicle. Subsequently, we follow the common practice to translate and rotate the
coordinate system, such that the target vehicle is located at the origin with a zero-degree
heading angle in the last observed frame.

Regarding map information, the INTERACTION dataset provides maps in a format
compatible with the lanelet representation. For each lanelet, we fit its boundaries to two B-
splines through spline regression so that we can uniformly sample a fixed number of points
on each boundary. Apart from the coordinates, we add additional discrete features (e.g.,
boundary type, the existence of a stop sign) to each boundary point.

Argoverse Dataset. We download the dataset (v1.1), including the training, valida-
tion, and testing subsets, from its official website: https://www.argoverse.org/data.html
(Copyright c○2020 Argo AI, LLC). Each sample in the Argoverse Dataset has a length of 5s,
with an observation window of 2s and a prediction window of 3s. The sampling frequency
is 10Hz. We follow a similar scheme to process the dataset. However, since each sample
contains vehicles located in many city blocks, we first filter out irrelevant vehicles and road
segments. We remove surrounding vehicles whose distance to the target vehicle is larger than
a certain threshold value in the last observed frame. To identify irrelevant road segments,
we use a heuristic-based graph search algorithm similar to the one used in [149] to obtain
the road segments of interest (ROI). Instead of setting a threshold Euclidean distance, we
decide whether a road segment is relevant by estimating the traveling distance from the
target vehicle’s location to the segment. The algorithm is summarized in Alg. 1. Given x,
the coordinates of the target vehicle in the last observed frame, we set the traveling distance
threshold dmax based on the displacement of the target vehicle during the observed time hori-
zon. A larger distance threshold is necessary if the target vehicle is driving at high speed.
We initialize the graph search by finding road segments close to x from the map. Then, we
expand the search graph by adding adjacent, preceding, and succeeding road segments and
finding all segments within the threshold of traveling distances. We use simple heuristics
to compute the traveling distance between two segments. If two segments are adjacent, the
distance is set to zero. If one segment is a predecessor or successor of the other segments,
we set the distance to be the average length of their centerlines. Fig. 5.7 shows an example
of the resulting road segments.

Another issue is that the heading angles of the vehicles are not provided. We need to
estimate the heading angles of the target vehicles in order to rotate the coordinate system.
However, the trajectory data are noisy and include tracking errors. Simply interpolating
the coordinates between consecutive time steps results in noisy estimation. Instead, we first

https://interaction-dataset.com
https://www.argoverse.org/data.html
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Figure 5.7: Road segments found by the graph search algorithm. We denote the observed
trajectory of the target vehicle by the green dots. The road segments returned by the graph
search algorithm are highlighted in blue, while the other road segments are drawn in red.

estimate the heading angle in each observed frame by interpolating the coordinates and then
obtain a smooth estimation of the heading angle in the last observed frame as follows:

ψ̂Th =

Th∑
t=0

λTh−tψt,

where Th is the number of observed frames, ψt is the estimated heading in the tth frame,
λ ∈ (0, 1) is the forgetting factor, and ψ̂Th is the smoothed heading estimation in the last
observed frame.

ETH/UCY Datasets. For the ETH/UCY datasets, we adopt the leave-one-out eval-
uation protocol as in prior works [46, 108, 109, 86, 148] to obtain five groups of datasets:
ETH & HOTEL (from ETH) and UNIV, ZARA1 & ZARA2 (from UCY). The data from
the corresponding scenario are left out as testing data in each group, and the remaining data
are used for training and validation. We use the segmented datasets provided by the code
base of social-GAN (MIT License) [46]. Each sample has a length of 8s, with an observation
window of 3.2s and a prediction window of 4.8s. The sampling frequency is 2.5Hz. We do
not use any visual or semantic information to ensure fair comparisons to prior works. The
origin of the coordinate system is translated to the mean position of all agents atin the last
observed frame. Random rotation [108, 109] is adopted for data augmentation.
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5.7.2 Implementation Details

We implement our social-CVAE model using Pytorch 1.8 (Copyright c○Facebook, Inc) [92]
and Pytorch Geometric (PyG) 1.7 (MIT License) [28], a geometric deep learning extension
library for Pytorch that implements various popular GNN models. The sparse-GAMP net-
work is implemented by adapting the base message-passing class from PyG. The G-entmax
function is implemented using the entmax package (MIT License) from [98]. The function fe
in Eqn. (5.4) consists of two MLP networks: one network encodes hi and hj separately; one
network generates h(i,j) after concatenating the node embeddings with u(i,j). We select the
hyper-parameters through cross-validation with the aid of Tune (Copyright c○2021 The Ray
Team) [76]. All the MLPs used in the model are one-layer MLPs with layer normalization
applied [7]. All of the networks, including MLPs and GRUs, have 64 hidden units. For the
experiments on the INTERACTION dataset, we choose a latent space of 16 dimensions. For
the experiments on the Argoverse and ETH/UCY datasets, we choose a latent space of 32
dimensions. For the vehicle prediction experiments, we set β = 0.03. For the pedestrian
prediction experiments, we set β = 0.01. For the weight of the auxiliary loss function, we set
α = 0.3 on the INTERACTION dataset, α = 0.5 on the Argoverse dataset, and α = 0.2 on
the ETH/UCY dataset. We use Adam [65] to optimize the objective function. To generate
trajectories for evaluation, if K = 1, we sample a single trajectory by taking the means from
the prior or conditional prior as the latent variables. If K > 1, we randomly sample the la-
tent variables to generate multiple trajectories. However, the Argoverse Motion Forecasting
Challenge evaluates the metrics for K = 1 by picking one trajectory out of all the submitted
samples. Therefore, for evaluation on the Argoverse dataset, we randomly sample K − 1
trajectories and leave the last one as the trajectory corresponding to the mean value of the
latent variables. For the vehicle prediction experiments, all the models are trained for 100
epochs with a batch size of 40. For the pedestrian experiments, we choose a batch size of
20. All the models were trained with an Intel Core i9-9920X (12 Cores, 3.50 GHz) and four
RTX 2080 Ti GPUs. However, only a quarter of the memory of a single GPU is required to
train one model.

5.8 Discussion

Limitations

As the first study on social posterior collapse, we cannot explore every aspect of this
subject. Many factors could contribute to this phenomenon. Our experimental results can
only speak for the particular model we develop and the tasks we study. The occurrence
of social posterior collapse and its effect on overall performance may vary across different
problems and different model architectures. For instance, our finding from the pedestrian
trajectory prediction task is different from its vehicle counterpart. The format of the graph
representation, especially how the environmental information is incorporated, is also impor-
tant. Moreover, diagnosis based on the AR value could be inconclusive under different graph
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representations. In Sec. 5.6.2, we show that the AR values of the three models become simi-
lar after removing the lanelet nodes for the highway merging subset of the INTERACTION
dataset. However, this does not mean that social posterior collapse does not occur. Our
social-CVAE model can maintain consistent prediction accuracy without map information,
whereas the baseline VAE model has a significant drop in performance. This implies that
the baseline VAE model does not properly utilize the historical social context, but we cannot
assert that social posterior collapse occurs due to the lack of direct evidence.

Nevertheless, we do demonstrate that social posterior collapse is not unique to our sparse-
GAMP module (Sec. 5.6.1). Even if we switch to other aggregation functions, we still find
evidence suggesting its occurrence. Our sparse graph attention function, G-entmax, is a
convenient and flexible toolkit that allows us to monitor and analyze social posterior collapse
without compromising performance. In the future, we will work further in this direction to
explore alternative diagnosis toolkits that can be applied to detect social posterior collapse
with a broader range of models.

Connections to Related Works

We conclude our discussion with some thoughts about prior works on VAE-based multi-
agent behavior modeling. We are curious whether any elements in their models have im-
plicitly tackled this issue. However, we would like to emphasize that it is still necessary to
explicitly study social posterior collapse under their settings in the future, as it could provide
helpful guidance to avoid social posterior collapse in model design. Due to space limits, we
only discuss works using techniques potentially related to social posterior collapse, especially
those providing evidence that interacting behaviors have been appropriately modeled (e.g.,
attention maps or visualized prediction results in interactive scenarios).

Trajectron [56] and Trajectron++ [109], which are formulated as CVAEs, were used to
establish the previous state-of-the-art results on ETH/UCY. Unlike our model, they adopted
a discrete latent space to account for the multi-modality in human behavior. They did not
examine how their models utilize social context. However, we think that a discrete latent
space could potentially alleviate the social posterior collapse issue. Compared to a continuous
random variable, a discrete one can only encode a limited amount of information. This
prevents the model from bypassing the social context since a discrete latent variable is not
sufficient to encode all the information of a long trajectory. For the same reason, NRI [67],
which adopts a discrete latent space for modeling interactive systems, is also potentially
relevant. PECNet [86] is another CVAE-based trajectory prediction model. Instead of
conditioning on the entire future trajectory, they proposed an endpoint VAE, in which the
posterior latent variables are only conditioned on the endpoints. This could be a solution, as
it limits the amount of information the latent space can encode from the future trajectory.

In [124], Suo et al. proposed a multi-agent behavior model for traffic simulation under the
CVAE framework. They demonstrated that their method was able to simulate complex and
realistic interactive behaviors. In particular, they augmented ELBO with a commonsense
objective that regularizes the model from synthesizing undesired interactions (e.g., collisions).
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We think it plays a similar role to our auxiliary prediction task. The last work we would like
to discuss is the AgentFormer model [148] mentioned in Sec. 5.5.2. Their results suggest that
incorporating an autoregressive decoder and a future social context encoder could be more
effective in interaction modeling, especially for systems without long-term dependency (e.g.,
pedestrians). However, as we have mentioned above, the autoregressive decoder introduces
another issue if it is overly powerful.

5.9 Chapter Summary

In this chapter, we point out an under-explored issue, which we refer to as social posterior
collapse, in the context of VAEs in multi-agent modeling. We argue that one of the commonly
adopted formulations of VAEs in multi-agent modeling is prone to ignoring the historical
social context when predicting the future trajectory of an agent. We analyze the reason
for this and propose several measures to alleviate social posterior collapse. Subsequently,
we design a GNN-based realization of the general framework incorporating the proposed
measures, which we refer to as social-CVAE. Specifically, social-CVAE is an explainable
model incorporating a novel sparse-GAMP layer that helps us detect and analyze social
posterior collapse. In our experiments, we show that social posterior collapse occurs in real-
world trajectory prediction problems and that the proposed measures effectively alleviate this
issue. Further, the experimental results imply that social posterior collapse could cause poor
generalization performance in novel scenarios if the future movement of the agents indeed
depends on their historical social context. In the future, we will utilize the toolkit developed
in this work to explore social posterior collapse in a broader range of model architectures
and interacting systems. Additionally, we will explore other XAI techniques to develop more
robust and versatile toolkits for interaction modeling analysis.
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Algorithm 1 ROI Graph Search

1: function ROIGraphSearch(x, dmax, dinit,map)
2: segments← map.segmentsContainXY(x) ▷ A set of segments containing x
3: while segments is empty and dinit < dmax do ▷ Search local region if empty
4: segments← map.segmentsInBoundingBox(x, dinit)
5: dinit ← 2dinit
6: end while
7: pool← initialize a FIFO queue
8: for segment in segments do
9: node← Node(segment, 0, 0) ▷ Create node with segment, length and distance
10: pool← Insert(node, pool)
11: end for
12: ROI ← an empty dictionary of nodes
13: while pool is not empty do
14: node← Pop(pool)
15: if node.segment not in ROI or ROI[segment].distance ⩾ node.distance then
16: ROI[segment]← node
17: end if
18: children← map.adjacentSegments(node.segment) ▷ Get adjacent road segments
19: for child in children do
20: length← map.segmentCenterline(child) ▷ Get centerline length
21: node← Node(child, length, node.distance)
22: pool← Insert(node, pool)
23: end for
24: predecessors← map.predecessor(node.segment) ▷ Get preceding road segments
25: successors← map.successor(node.segment) ▷ Get succeeding road segments
26: children← predecessors+ successors ▷ Combine predecessors and successors
27: for child in children do
28: length← map.segmentCenterline(child)
29: distance← 1

2
(length+ node.length) + node.distance

30: if distance ⩽ dmax then
31: node← Node(child, length, distance)
32: pool← Insert(node, pool)
33: end if
34: end for
35: end while
36: return ROI
37: end function
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Chapter 6

Diagnosing Conditional Behavior
Prediction with Shapley Values

6.1 Introduction

In the last chapter, we studied the interaction modeling problem in behavior prediction.
Like most existing works [149, 43], the prediction model we focus on follows a passive predic-
tion scheme, where the target agents’ future trajectories are predicted given their historical
trajectories and those of other surrounding agents. When using such a prediction model,
downstream decision-making modules determine the autonomous agent’s action according
to the predicted trajectories in a passive manner. To ensure safety under various predicted
trajectories of others, the ego agent must be overly conservative with inefficient maneuvers,
especially in highly interactive scenarios. This is because passive prediction models ignore
the fact that the autonomous agent’s future actions can influence other agents’ behavior.
To this end, researchers have begun to investigate a more coherent interactive prediction
and planning framework that relies on predicting the surrounding agents’ future trajectories
conditioned on the ego agent’s future actions [111, 125, 103, 61, 109, 119, 82, 130]. Under
such frameworks, the autonomous agents can reason about potential actions while consid-
ering their influence on surrounding agents. This can then induce more efficient and less
conservative maneuvers in interactive scenes.

Some of these prior works merely demonstrated that their model architecture could sup-
port conditional prediction [125, 61]. Another line of work focused on the closed-loop per-
formance, which relies on a simulation environment [111, 103, 82]. More interestingly, some
existing works formulated an alternative prediction task to evaluate the prediction module
in a self-contained way [119, 109, 130]. We follow [130] and refer to this task as conditional
behavior prediction (CBP). In the CBP task, the future trajectories of the target agents are
predicted conditioned on the ground-truth future trajectory of an assigned ego agent. Stan-
dard prediction metrics are adopted to quantify the performance. This allows us to leverage
large-scale naturalistic traffic datasets to develop and validate a conditional prediction model
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Figure 6.1: An illustration of the difference between CBP and IBP. The robot car plans
to enter the roundabout aggressively and force the human car in the roundabout to yield.
It queries a prediction model regarding whether the human car will yield or pass. The CBP
model predicts the posterior distribution of the human car’s behavior conditioned on the
plan. Intuitively, it models the human behavior given that the driver is informed about the
robot car’s plan in advance. Therefore, CDP will always predict that the human car will
yield to the robot car. In fact, the human car will only react to the robot car’s action at
each time step. Consequently, the human car may attempt to pass first, as it has the right
of way, which may lead to a collision. The IBP model is able to warn the robot car of the
safety risk.

before closed-loop testing. A model that can achieve the smallest prediction error after it is
given the additional future information of the ego agent is considered the best. However, we
can only evaluate the prediction accuracy given the actual future trajectory of the ego agent
with a static offline dataset. It is impossible to quantify the model performance when it is
queried by an arbitrary plan of the ego agent. Therefore, we argue that we should be more
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careful when interpreting the evaluation results. In particular, we argue that it is risky to
train and evaluate the model for conditional inference. In the current CBP task, the predic-
tion model essentially learns the posterior distribution of future trajectories conditioned on
the future trajectory of the ego agent. In this way, the ego agent’s future trajectory is treated
as an observation. Since the actual ego agents in the offline dataset make decisions based
on the states of the surrounding agents, the surrounding agents under CBP are implicitly
assumed to obtain additional hints about the future behavior of the ego agents. With such
an unrealistic assumption, it is natural to consider the CBP model with the lowest prediction
error to be the best option for the CBP task. However, the surrounding agents in the real
world are not informed of the planned trajectories of the ego agents. Consequently, as illus-
trated in Fig. 6.1, there will be a discrepancy between 1) what information an autonomous
agent receives by querying a CBP model with a potential plan and 2) how the others will
actually react if the agent executes the plan. As we will show later in this chapter, this
discrepancy may lead to overly confident anticipation of the ego agent’s influence on the
surroundings, resulting in potential safety hazards during online usage.

This discrepancy is formally captured in the theory of causality [93] by the difference
between observation and intervention. With the intervention of a set of random variables,
we enforce the value of a random variable without treating it as the consequence of other
random variables. The resulting distribution of the remaining random variables under the
intervention is consistent with what will actually happen if we have the ability to manipu-
late the target random variable as desired. Consequently, we argue that we should build the
prediction model to approximate the future trajectory distribution under the intervention
of enforcing the ego agent’s future trajectory. We refer to this new task as the interven-
tional behavior prediction (IBP) task. In IBP, we still want to train and evaluate the model
with an offline dataset. The setting is essentially the same as CBP, except for learning an
interventional distribution instead of a conditional one.

The remaining issue is how to properly evaluate an IBP model with an offline dataset.
Without knowing the ground-truth distribution under intervention, we can only compare
the model’s output against the ground-truth future trajectories for evaluation. However,
such evaluation metrics are naturally biased toward a CBP model. The dataset is col-
lected without intervention. The ego agent in the dataset follows an internal reactive policy.
Therefore, the distribution of ground-truth labels given the same input essentially follows
a conditional distribution. As a result, a CBP model will consistently outperform an IBP
model if prediction accuracy is the only evaluation metric with an offline dataset. Accord-
ingly, we propose verifying the inherent temporal independence of a prediction model before
comparing the prediction performance to ensure a proper evaluation of the IBP task. Un-
der the interventional distribution, the predicted states of the target agents at earlier time
steps should be independent from the ego agent’s states at later time steps. We propose a
Shapley-value-based [115, 84, 85] metric to verify whether the model obeys this temporal
independence. More importantly, we show that a state-of-the-art CBP model on a popular
prediction benchmark indeed violates temporal independence, and its prediction accuracy
benefits from this violation. The results support the necessity of establishing a benchmark
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Figure 6.2: A motivating toy example, where a human car and a robot car are driving
toward a collision point.

for our newly formulated IBP task to replace the commonly adopted CBP benchmarks, in
which the proposed Shapley-value-based metric will play an important role.

The rest of the chapter is organized as follows. In Sec. 6.2, we explain the difference
between CBP and IBP and demonstrate the risk of using CBP with a motivating toy example.
In Sec. 6.3, we formulate the Shapley-value-based metric we propose for verifying temporal
independence and quantify the impact of CBP. In Sec. 6.4, we study a CBP model with the
proposed metric to demonstrate that such a model indeed violates temporal independence.
Moreover, failure to use the proposed metric results in misleading evaluation results. In
Sec. 6.5, we conclude the paper with a discussion on insights for future model design and
IBP benchmarks.

6.2 A Motivating Example

We begin our discussion by studying a motivating toy example to demonstrate the issue
of using conditional inference for interactive prediction. We consider the example depicted
in Fig. 6.2, where two cars are driving toward a collision point. One of them is controlled by
a human driver, while the other is an autonomous robot car. As an analogy of the CBP task,
the robot car can query the posterior distribution of the human car’s trajectory conditioned
on the planned trajectory of the robot car. The robot car can then evaluate the risk of
multiple planned trajectories and select the optimal one to execute.

We model the human drivers’ behavior with IDM [132, 131]. Each car has two states
at each time step, si,t and vi,t, where si,t is the displacement relative to the collision point
and vi,t is the absolute velocity. We denote the state vector as xi,t = [si,t vi,t]

⊺. Each car
is assigned a target position to follow at each step, depending on which car has the right
of way. If a car has the right of way, it is asked to follow a target substantially far away.
Otherwise, if the other car has the right of way and has not passed the collision point, the
target is set as the collision point. We determine which car has the right of way based on
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which car has smaller time headway at the current time step. The time headway is defined
as follows:

Thead,i,t = max

(
si,t
vi,t

, 0

)
.

Given a target position, the car dynamics are governed by the intelligent driver model as
follows:

si,t+1 = si,t −∆t · vi,t,

vi,t+1 = vi,t +∆t ·

{
a

[
1−

(
vi,t
v0

)δ
−
(
s∗(vi,t,∆vi,t)

si,t − di,t

)2
]
+ ωi,t

}
,

where

∆vi,t = vi,t − v0,

s∗(vi,t,∆vi,t) = s0 +max

(
0, vi,tT +

vi,t∆vi,t

2
√
ab

)
,

ωi,t ∼ N
(
0, σ2

)
.

The term di,t denotes the target position. It is equal to zero if the target point collides with
the collision point. Otherwise, a large negative value is assigned to di,t. The Gaussian noise
ωi,t is added to inject randomness. The remaining parameters are defined as in the standard
IDM model. Readers may refer to [132] for detailed definitions. In our experiments, we set
v0 = 10m/s, T = 2s, s0 = 4m, δ = 4, a = 1m/s2, b = 1.5m/s2, ∆t = 0.2s, and σ = 4m/s2.

In the CBP task, we aim to approximate the distribution of the human car’s future
trajectory conditioned on the initial states of the two cars and the future trajectory of the
robot car, i.e., p(x0,1:TH |x0,0,x1,0,x1,1:TH ), where TH denotes the number of time steps. The
robot car can query the conditional distribution with a planned trajectory x̂1,1:TH . In our
experiment, we use likelihood weighting [107] to estimate the conditional distribution given
an evidence set {x̂0,0, x̂1,0, x̂1,1:TH}. Meanwhile, we can approximate the actual distribution
of x0,1:TH after executing x̂1,1:TH via multiple simulation trials. In Fig. 6.3(a), we compare
the two distributions under the same initial conditions and query trajectory. We set s0,0 =
s1,0 = 15m, v0,0 = 8m/s, v1,0 = 5m/s, and TH = 10. Since the robot car has a smaller initial
speed, it is more likely to yield to the human car. However, we let the robot car execute an
aggressive maneuver, where it accelerates with an acceleration of 5m/s2 until reaching the
speed of 10m/s.

The conditional distribution implies that the human car always yields to the robot car.
However, the human car may actually not yield to the robot car when the robot car executes
the planned trajectory. Even if the human car eventually yields to the robot car, it starts
decelerating much later than the conditional distribution suggests. If we evaluate the risk
based on the conditional distribution, we may falsely conclude that the human car will always
yield to the robot car and so the robot car can safely pass the intersection at high speed,
which leads to an overly aggressive and unsafe maneuver. This can be further verified by
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Figure 6.3: Top: Histograms of s0,t for t = 1, · · · , TH under the conditional distribution and
the distribution given the interventional action. The red dots denote the planned trajectory
of the robot car; Bottom: Normalized histograms of minimum distance between cars under
these two distributions. The histograms are based on 10000 simulation trials.

estimating the histograms of the minimum distance between the two cars under these two
distributions (Fig. 6.3(b)). The minimum distance is biased under conditional inference. In
particular, the conditional distribution falsely implies that the two cars will never collide.

The toy example demonstrates the discrepancy between the reality and the anticipation
from conditional inference. Formally, the conditional distribution is governed by the Bayesian
network in Fig. 6.4(a), where the initial states and the query trajectory are treated as an
observation. However, the system is actually governed by the Bayesian network in Fig. 6.4(b)
when the robot executes x̂1,1:TH . The incoming edges of x1,i are removed because the robot
car follows a fixed trajectory regardless of the other car’s reaction. If fact, if we treat the
Bayesian network governing the system as a causal Bayesian network [93], then Fig. 6.4(b)
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Figure 6.4: (a) The Bayesian network representing the conditional distribution denoted by
p(x0,1:TH |x̂0,0, x̂1,0, x̂1,1:TH ); (b) The Bayesian network representing the distribution resulting
from the intervention do(x1,1:TH = x̂1,1:TH ), denoted by p(x0,1:TH |x̂0,0, x̂1,0, do(x̂1,1:TH )).

represents the distribution resulting from the interventional action do(x1,1:TH = x̂1,1:TH ),
denoted by p(x0,1:TH |x̂0,0, x̂1,0, do(x̂1,1:TH )). The difference between the two distributions,
p(x0,1:TH |x̂0,0, x̂1,0, x̂1,1:TH ) and p(x0,1:TH |x̂0,0, x̂1,0, do(x̂1,1:TH )), mirrors the difference between
seeing and doing [93]. By conditional inference, we aim to infer the distribution of x0,1:TH

after observing x̂0,1:TH , intuitively speaking, how the human driver behaves if knowing the
robot car will execute x̂0,1:TH in advance. However, we should not inform the human driver
of the robot car’s future motion when evaluating the consequence of the action do(x1,1:TH =
x̂1,1:TH ). This leads to overly confident anticipation of the human’s reaction to aggressive
maneuvers, as demonstrated in our toy example. Instead, we should evaluate x̂0,1:TH with a
model approximating the distribution p(x0,1:TH |x̂0,0, x̂1,0, do(x̂1,1:TH )), in other words, a model
designed for the IBP task.

6.3 Quantifying the Impact of Conditional Inference

on Real-World Datasets

Using the toy example, we have shown that conditional inference leads to biased predic-
tions and a potential safety hazard. We are then curious about 1) how conditional infer-
ence may impact interactive prediction in real-world scenarios and 2) how we can identify
a CBP model with potential safety risk. Unlike the toy example, we do not have access
to the ground-truth dynamics governing the interacting agents. However, it is expensive
and dangerous to estimate and compare the conditional and interventional distributions via
real-world experiments. Instead, we are interested in an evaluation method purely based
on offline datasets. Intuitively, the direct consequence of treating the query trajectory as
observation is that the robot may anticipate the interacting agents and react to its future ac-
tions in advance. Therefore, we propose detecting and quantifying the impact of conditional
inference by examining how much the future segment of the query trajectory contributes to
the prediction at prior time steps for a given CBP model. In particular, we adopt Shapley
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Figure 6.5: The conditional behavior prediction scheme with Trajectron++.

values as the evaluation tool.

6.3.1 Shapley Value in Explainable Deep Learning

Originating from cooperative game theory, Shapley values have been widely used in deep
learning to quantify the feature attribution of black-box models [84]. Shapley values quantify
the attribution of each dimension of an input x = (x1, · · · , xn) to a function describing the
model behavior f : X1 × · · · × Xn → R. The output of f could be the direct output of the
model. Alternatively, f could also output a numerical value quantifying the performance
or uncertainty of the model. Formally, one defines a set function ν : S → R where S is
the power set of N := {1, 2, · · · , n}, i.e., S = P (N). For a subset S ∈ S, the output ν(S)
corresponds to running the model on a modified version of the input x for which features
not in S are dropped or replaced. For instance, we may replace the dropped features xN\S
with samples drawn from their marginal distribution in the dataset [84] and then define the
following:

ν(S) = E
[
f(xS, XN\S)

]
. (6.1)

For each feature xi, its Shapley value ϕ(xi) is defined as:

ϕ(xi) =
∑

S⊆N\{i}

1

n
(
n−1
|S|

) (ν (S ∪ {i})− ν (S)) , (6.2)

i.e., the difference in ν between including and not including the feature xi averaged over
all subsets S. In the context of trajectory prediction, Shapley values have been adapted to
quantify the usage of social cues of prediction models [85].
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6.3.2 Shapley Value for Interventional Behavior Prediction

In our case, we define the Shapley values of features based on their attribution to pre-
diction performance. We adopt three evaluation metrics:

• Average Displacement Error (ADE): Mean L2 distance between the ground-truth and
predicted trajectories averaged over K samples.

• Final Displacement Error (FDE): L2 distance between the ground-truth and predicted
final position averaged over K samples.

• Kernel Density Estimate-based Negative Log Likelihood (KDE NLL): Mean NLL of
the ground-truth trajectory under a distribution created by fitting a kernel density
estimate on K trajectory samples [109].

It is worth noting that we do not follow the common practice of evaluating the minimum
distance metrics over sampled trajectories. As argued in [85], computing the minimum leads
to biased estimation. To minimize unnecessary bias in the computation of ν (S ∪ {i})−ν (S),
we choose a sufficiently large K and only consider the average values of the distance metrics.

The features of interest are essentially the states of the planned trajectory. The model is
evaluated with the ground-truth future trajectory of the robot car, denoted by xr,1:TH . Since
additional future information is granted, we expect more accurate prediction on average after
conditioning on the ground-truth robot future, which leads to non-negative Shapley values
in general. The question that remains is how to segment the robot future trajectory into
features. Since the entire trajectory is typically treated as a sequence when encoded [109],
perturbing the state at a single time step may have a minimal effect on the model output, as
the encoder might manage to smooth out the perturbation. In addition, treating the state at
each time step as a single feature leads to large n, which makes the computation of Shapley
values expensive, as |P (N)| grows exponentially with n. Instead, we split x̂r,1:TH into m
segments, with each segment consisting of states from multiple neighboring time steps:

xr,1:TH =
[
xr,1:t1 , xr,t1:t2 , · · · , xr,tm−1:tm

]
. (6.3)

We are then interested in evaluating the attribution of future segments to the prediction at
earlier time steps. To this end, we compute the Shapley values ϕ(xr,tj :tj+1

) regarding the
prediction at the first t1 time steps. If the prediction model approximates the interventional
distribution, we expect a large value for ϕ(xr,1:t1) but a nearly zero value for the latter
segments. If any of the Shapley values for xr,tj :tj+1

with j ⩾ 1 are significant, it indicates
that the model learns a distribution with a notable discrepancy related to the interventional
distribution, which may cause a safety issue if deployed in on-road autonomous vehicles.

6.4 Experiments

With the proposed toolkit, we now study the impact of conditional inference for a state-
of-the-art model on a real-world prediction dataset.
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6.4.1 Model and Dataset

We conduct our experiments with a state-of-the art trajectory prediction model, Trajec-
tron++ [109], on the nuScenes dataset [14]. We choose Trajectron++ because it supports
conditional trajectory prediction. More importantly, the authors showed that condition-
ing Trajectron++ on the future trajectory of the ego agent—referred to as robot future
in [109]—indeed improved the model’s prediction performance on the nuScenes dataset.

Trajectron++ leverages the CVAE [117] framework to explicitly model the multi-modality
in trajectory distribution. As shown in Fig. 6.5, the robot future trajectory is fed into Trajec-
tron++ through three channels: 1) feeding step-by-step into the corresponding GRU cell [21]
of the trajectory decoder; 2) feeding into the encoder modeling the posterior distribution of
latent variables after encoded by a LSTM network [52]; 3) feeding into the encoder model-
ing the conditional prior distribution of latent variables after encoded by the same LSTM
network.

The first two channels are not problematic. The computational graph of the first channel
is consistent with the causal Bayesian network after intervention, as shown in Fig. 6.4. For
the second channel, the posterior distribution is only used during training. However, the
last channel is potentially defective. During the inference stage, the latent variables are
sampled from the conditional prior distribution, which takes the embedding generated by
the LSTM network as input. The embedding fuses information along the entire planning
horizon. Consequently, the model has access to the robot future states at later time steps
when predicting the target agent’s states at former time steps.

We are curious how much performance gain is attributed to this faulty shortcut. Ac-
cordingly, we use the Shapley values proposed in Sec. 6.3.2 to analyze the model behavior
on the nuScenes dataset. The nuScenes benchmark sets a prediction horizon of 6s. We then
split the robot future trajectory into three equal segments. Then, we compute the Shapley
values to quantify their attribution to the prediction performance within the first 2s in the
future. In addition, we compare Trajectron++ with a variant created by masking out the
third channel (i.e., the dashed line in Fig. 6.5). By comparing the prediction performance of
these two models, we can see the effect of this shortcut on the model behavior.

To compute the Shapley values, we need to define the set function in Eqn. (6.1), which
requires a marginal distribution of dropped features to define the expectation. Since we do
not have access to the ground-truth distribution of the dataset, we train an unconditioned
Trajectron++ model as an approximation. When computing the Shapley values for a given
data sample, we sample trajectories from the trained Trajectron++ model’s prediction of
the robot car. The resulting Shapley values reveal the characteristics of the prediction
model when it is queried by a motion planner imitating human behavior. Alternatively, we
may estimate the expectation with the exact motion planner that will be deployed for a
customized analysis.
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Table 6.1: Shapley Values Comparison

Mask ϕADE
1 ϕADE

2 ϕADE
3

- 0.0148± 0.0839 0.0049± 0.0444 0.0044± 0.0376
✓ 0.0053± 0.0197 0.0000± 0.0024 0.0000± 0.0024

Mask ϕFDE
1 ϕFDE

2 ϕFDE
3

- 0.0332± 0.1569 0.0117± 0.0829 0.0109± 0.0716
✓ 0.0156± 0.0568 0.0000± 0.0045 0.0000± 0.0045

Mask ϕKDE
1 ϕKDE

2 ϕKDE
3

- 0.0636± 0.3365 0.0192± 0.1725 0.0179± 0.1676
✓ 0.0119± 0.0857 0.0000± 0.0527 0.0001± 0.0524

The results are presented in the format of mean± std.

Table 6.2: Prediction Performance Comparison

Ablation
minADEK=6 minFDEK=6 KDE NLL

Robot Mask

- - 1.73± 2.32 4.02± 5.62 1.86± 3.23
✓ - 1.61± 2.44 (−6.94%) 3.76± 5.99 (−6.47%) 1.61± 3.73 (−13.4%)
✓ ✓ 1.61± 2.43 (−6.94%) 3.72± 5.92 (−7.46%) 1.77± 3.43 (−4.84%)

The results are presented in the format of mean ± std. The number in the parentheses
indicates the percentage of improvement over the unconditioned model.

6.4.2 Results

We computed the Shapley values over the test set for the models with and without
masking the channel feeding the robot future embedding into the conditional prior encoder.
The results are presented in Table 6.1 and Fig. 6.6, where we summarize the statistics of
ϕADE
j , ϕFDE

j , and ϕKDE
j for j = 1, 2, 3. The superscript denotes the corresponding performance

metric. The subscript denotes the segment of the robot future trajectory. By masking the
input channel, the model satisfies the temporal independence inherited in the causal Bayesian
network after intervention. As expected, the Shapley values are minimal for j > 1. However,
we can see from Fig. 6.6 that the values are not strictly zero for all the data samples due to
the randomness in model output. In contrast, the model without masking, i.e., the original
Trajectron++ model, has significantly larger Shapley values for the latter two segments.
More importantly, their magnitude is not negligible compared to the Shapley value of the
first segment. This means that the future states of the robot can falsely affect the model’s
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prediction at earlier time steps.
In summary, the Shapley values suggest that the CBP model is indeed biased and could

potentially result in a safety hazard after deployment. However, it is difficult to precisely
measure these consequences without online testing. Even during online testing, the effect of
biased prediction could only be observed in highly interactive scenarios, which only comprise
a small proportion of real-world traffic scenarios. Therefore, we argue that a cheaper solution
is to prevent the bias in the design stage. Instead of developing models for the CBP task, we
should turn to the IBP task. The model should be carefully designed and implemented to
follow an interventional distribution. Further, the proposed Shapley values should be used
to monitor the model behavior.

A prediction benchmark designed for the IBP task should include such a quantitative
metric as a complement to the current prediction metrics. For instance, we may set con-
straints ϕFDE

2 ⩽ ϵ and ϕFDE
3 ⩽ ϵ for some small threshold value ϵ. Only models satisfying

the constraints are qualified for performance comparison. Such constraints are crucial for
prediction benchmarking because the models are evaluated as black boxes. In general, it
is expensive and time-consuming to check whether leakage occurs in the model design and
implementation. Without the constraints, the performance comparison could be mislead-
ing and unfair. For instance, we compare the performance of the models with and without
masking against the unconditioned model in Table 6.2. While the masking only slightly
affects the values of minADE and minFDE, the model without masking shows significant
improvement in terms of KDE NLL. Without the Shapley values, one may consider this
model with the defective input channel a better prediction model.

6.5 Discussion

6.5.1 Training Prediction Model for IBP

In our experiments, we demonstrated one practical way to design a prediction model for
the IBP task. As with a CBP model, the model takes the ego agent’s future trajectory as
input during training. However, we should ensure that the model architecture reserves the
structure of the causal Bayesian network under intervention (e.g., Fig. 6.4(b)). Alternatively,
we may train a prediction model for the joint behavior of all the agents, including the ego
agent and its surroundings. For online usage, we can then conduct an intervention on
this joint prediction model when given a planned trajectory. In fact, some prior works
follow this scheme implicitly for conditional prediction [111, 125, 61]. However, they seek to
approximate the conditional distribution by enforcing the ego agent’s action sequence, as it
is intractable to perform exact conditional inference on the joint prediction model. We are
interested in formally comparing these two training schemes in the future.
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6.5.2 Establishing Prediction Benchmark for IBP

To compute the Shapley values in our experiments, we sample the ego agent’s future
trajectories from an unconditioned Trajectron++ model. However, the sample distribution
is sensitive to the training dataset. Moreoer, if we want to establish a formal IBP benchmark,
we cannot ensure a transparent and fair evaluation using a black-box sampling method for
Shapley value computation. As a solution, we may evaluate the Shapley values with a set
of plausible future trajectories generated by a model-based motion planner [118]. We will
investigate this possibility and develop IBP benchmarks on public datasets in our future
work.

Further, we would like to emphasize that ensuring temporal dependence is only the basic
requirement for a good IBP model. Since a planner may query an IBP model with an
arbitrary planned trajectory, the IBP model should ideally be accurate over the entire input
space of the planned trajectories. However, it is prohibitive in general to train such a perfect
model with offline datasets. Instead, a practical solution is to equip the prediction model
with a module detecting out-of-distribution (OOD) inputs of planned trajectories [29, 122],
which can be utilized to prevent the planning module from exploiting the prediction model
with those OOD inputs. Therefore, it is crucial to require such an OOD module for an IBP
model and include the evaluation of OOD detection as part of an IBP benchmark.

6.6 Chapter Summary

In this chapter, we study the problem of conditional behavior prediction, which builds the
foundation for an interactive prediction and planning framework. We argue that it is risky
for the planner to query a prediction model trained for a CBP task. Instead, we should treat
the planned trajectory as an intervention and let the model learn the trajectory distribution
under intervention, which we refer to as an IBP task. To distinguish between a CBP model
and an IBP model, we propose a Shapley-value-based metric to verify if the prediction
model satisfies the inherent temporal independence of an interventional distribution. With
the proposed metric, we show that the CBP model trained on a real-world dataset violates
temporal independence, leading to potential safety hazards if queried by planning modules.
Additionally, the proposed metric enables a proper evaluation scheme with offline datasets
for the IBP task. Thresholds can be set on the Shapley values to ensure a fair evaluation.
In the future, we will utilize the proposed metrics to establish IBP benchmarks on public
datasets.
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(a) ϕADE
j for j = 1, 2, 3.

(b) ϕFDE
j for j = 1, 2, 3.

(c) ϕKDE
j for j = 1, 2, 3.

Figure 6.6: Box plots of Shapley values for different performance metrics. We compare the
Shapley values of different segments of the robot future for the two models.
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Chapter 7

Final Words

With the recent developments in autonomous driving, we are heading towards an intelli-
gent driver-less transportation system. However, the behavior of the current system pipeline
with black-box modules cannot be well understood, which makes it difficult for the public
to embrace and trust in the emerging autonomous driving technologies. Consequently, it
is crucial to build explainable autonomous driving systems so that humans can understand
and anticipate the decisions made by the AVs with which they share the road. In this dis-
sertation, we investigated explainable autonomous driving techniques from the perspective
of a model designer. We explored methods to improve model interpretability in the design
stage by incorporating domain knowledge. More specifically, in Chapters 2 and 3, we showed
how to formulate domain knowledge of social interaction into structured reward functions
and pseudo labels and utilize them to induce interpretable behavior models in a principled
manner. In Chapter 4, we demonstrated how to utilize knowledge of vehicle dynamics to
develop an interpretable and transferable hierarchical driving policy. Altogether, the meth-
ods introduced in these chapters improve the interpretability of the behavior system of an
AV, enabling trustworthy interaction between humans and AVs. While we argued that im-
proving model interpretability should be our primary design objective, we also demonstrated
the value of post hoc explanations through two case studies in which post hoc explanation
techniques were utilized to diagnose behavior prediction models. In Chapter 5, we diag-
nosed the social posterior collapse issue of VAE-based interaction models with the help of a
novel sparse graph attention mechanism. In Chapter 6, we diagnosed the causality issue of
conditional behavior prediction with the help of the proposed Shapley-value-based metric.

The work we presented in this dissertation is a step toward developing transparent au-
tonomous driving systems that can be verified by the designers and trusted by the end users.
There is still a large gap between a fully transparent and trustful system and the system
in its current form. It remains challenging to bridge this gap in model transparency while
maintaining the same level of performance. We believe there are several future research
directions that could help us reach this ultimate goal.
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Fully Interpretable Model

While the techniques proposed in this dissertation can improve interpretability, they
mainly rely on introducing interpretable intermediate representations. The backbone model
remains a neural network with complex behavior. A fully interpretable replacement could
offer greater transparency. While deep learning methods have shown superior performance
in different tasks, some recent works [105, 78] have indicated that interpretable models could
achieve the same level of performance in some problem domains. In particular, it was shown
that RL polices could be synthesized with interpretable models, such as decision trees [116]
or symbolic programs [137], while still achieving good performance and transferability. Al-
though current methods are limited to relatively simple tasks, continued investigations are
promising and could eventually lead to the construction of a fully interpretable model capable
of solving complicated real-world driving tasks.

Causal Inference

ML has largely focused on learning statistical associations between variables. However,
recently it has been argued [99, 112] that merely learning statistical correlations is not
sufficient to create models that can generalize effectively under distributional shifts or transfer
to new problems. This requires learning the underlying causal model of a problem. This
dissertation touches briefly on the subject of causality. The discrepancy in CBP and IBP
elaborated in Chapter 6 is an example from the autonomous driving domain showing that
ignoring causal factors may lead to unreliable and risky predictions. Although not formally
stated, the social posterior collapse problem introduced in Chapter 5 also occurs because
the training process of VAEs encourages learning correlations but not the underlying causal
relations of the data. Apart from generalization ability, capturing the causal structure is also
essential for building an interpretable and trustworthy model. Humans’ thinking process is
built upon causal reasoning. Hence, humans are better able to understand an ML model that
shares the same reasoning structure. However, it is challenging to discover causal relations
from observational data in general. Alternatively, we may utilize the specific characteristics
of the problem domains to help the models capture the causal structure in a domain-specific
manner. For instance, we may directly impose certain causality constraints [106] based on
domain knowledge. It is also possible to learn from interventional data obtained from either
online interventions or human expert labeling [47] in some applications. We are interested in
exploring these directions to develop autonomous driving systems that can genuinely think
like humans and thus be trusted by the public.

Comprehensive Sensitivity Analysis and Benchmark

The last two research directions mainly focus on creating models with better interpretabil-
ity. While we are awaiting fully interpretable models capable of solving sophisticated real-
world driving tasks, it is equally important and even more urgent to comprehensively un-
derstand the behavior and limitations of the current autonomous driving systems, which
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are increasing in complexity. Such principled studies are lacking in the literature. For ex-
ample, prediction accuracy has been the single most important criterion when evaluating a
behavior prediction model. However, as suggested by recent works [85] as well as by our
work [127, 128] presented in this dissertation, performance metrics alone are not sufficient to
evaluate and understand model behavior. Some modules (e.g., social interaction encoders)
may not work the same way as claimed [85, 127]. Moreover, there may be defects that can-
not be identified based on performance metrics computed using offline data [128]. We have
shown that model-agnostic feature attribution methods such as Shapley values are valu-
able complements to the current performance-orientated metrics for better understanding
model behavior. Encouraged by the results, we are interested in conducting a comprehen-
sive sensitivity analysis on state-of-art models for different tasks (e.g., perception, behavior
prediction, motion planning). In doing so, we could verify whether those state-of-the-art
models properly understand and utilize the semantic information inherited in the input fea-
tures. We hope that these efforts could eventually lead to more comprehensive and insightful
benchmarks, helping us better understand the limitations of current methods and inspiring
improvements.

Human-in-the-loop Learning

An explainable autonomous system enables humans to better understand the system’s
decision-making process, which builds the foundation for trustworthy interaction. Further, a
more transparent interface between the system and its end users allows closer collaboration
with humans during the learning process. This is particularly beneficial in terms of infusing
domain knowledge. While principled methods exist to formulate knowledge into constraints
regularizing the learning process, some knowledge is rather vague and subjective. With a
human-in-the-loop learning scheme, such knowledge can still be acquired by querying human
experts on a case-by-case basis. Human feedback can occur during large-scale batch training
or, more interestingly, during online operations. The system then has the capability of
lifelong learning, and it can keep improving itself by learning from its users.

* * *

We hope the work presented in this dissertation will provide useful building blocks on the
path toward transparent autonomous vehicles or, in a broader sense, autonomous systems
that humans can genuinely trust. We are sincerely looking forward to a new era of mixed
autonomy in which humans and AI agents share the social space harmoniously.
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